Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Random Fully Connected Neural Networks as Perturbatively Solvable Hierarchies

Boris Hanin; 25(267):1−58, 2024.

Abstract

We study the distribution of fully connected neural networks with Gaussian random weights/biases and L hidden layers, each of width proportional to a large parameter n. For polynomially bounded non-linearities we give sharp estimates in powers of 1/n for the joint cumulants of the network output and its derivatives. We further show that network cumulants form a perturbatively solvable hierarchy in powers of 1/n. That is, the k-th order cumulants in each layer are determined to leading order in 1/n by cumulants of order at most k computed at the previous layer. By explicitly deriving and then solving several such recursions, we find that the depth-to-width ratio L/n plays the role of an effective network depth, controlling both the distance to Gaussianity and the size of inter-neuron correlations.

[abs][pdf][bib]       
© JMLR 2024. (edit, beta)

Mastodon