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Abstract

We study the distribution of fully connected neural networks with Gaussian random
weights/biases and L hidden layers, each of width proportional to a large parameter n.
For polynomially bounded non-linearities we give sharp estimates in powers of 1/n for the
joint cumulants of the network output and its derivatives. We further show that network
cumulants form a perturbatively solvable hierarchy in powers of 1/n. That is, the k-th
order cumulants in each layer are determined to leading order in 1/n by cumulants of order
at most k computed at the previous layer. By explicitly deriving and then solving several
such recursions, we find that the depth-to-width ratio L/n plays the role of an effective
network depth, controlling both the distance to Gaussianity and the size of inter-neuron
correlations.

Keywords: Deep Learning, Neural Networks, Finite Width Corrections, Cumulants,
Quantitative CLT

1. Introduction

We live in an era of big data and cheap computation. This has led to remarkable progress
in domains ranging from self-driving cars (Krizhevsky et al. (2012)) to automatic drug dis-
covery (Jumper et al. (2021)) and machine translation (Brown et al. (2020)). Underpinning
many of these exciting practical developments is a class of computational models called neu-
ral networks. While they were originally developed in the 1940’s and 1950’s (see e.g. Hebb
(1949); Rosenblatt (1958)), the complexity of state-of-the-art neural nets is unprecedented.

The undeniable empirical utility of modern neural networks has led over the past decade
or so to significant interest in principled theoretical approaches to understanding deep learn-
ing (e.g. Bartlett et al. (2021); Belkin (2021); Jacot et al. (2018); Kawaguchi (2016); Roberts
et al. (2022)). One of the most well-developed lines of such work focuses on analyzing net-
works in the so-called NTK regime. As we explain more fully in §2.1, the NTK regime cap-
tures the structure of neural networks asymptotically when the network depth and training
set size are held fixed, while the hidden layer widths tend to infinity.

In the NTK regime neural networks are surprisingly simple. At the start of training,
when the network parameters are chosen at random, the network output converges to a
Gaussian process. The limiting covariance function, moreover, satisfies an explicit recursion
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Cumulants in Random Networks

with respect to network depth (see Theorem 2 and Lee et al. (2018); Matthews et al.
(2018); Neal (1996); Novak et al. (2018); Yang (2019a,b); Yang and Schoenholz (2018)).
Further, when network parameters are optimized by using gradient descent to minimize a
mean squared error objective, the full optimization trajectory coincides with that of the
network’s linearization around the start of training (see Bartlett et al. (2021); Chizat and
Bach (2018); Du et al. (2018); Jacot et al. (2018); Lee et al. (2019); Liu et al. (2022); Roberts
et al. (2022)). Neural networks in the NTK regime are thus equivalent to linear models.

While the NTK regime sheds light on the empirical success of optimization in modern
deep learning, it is therefore too rigid to capture the ability of real work networks to learn
data-dependent features (see e.g. Hanin and Nica (2020a); Huang and Yau (2020); Roberts
et al. (2022); Yang and Hu (2021)). Since it is precisely such feature learning that is
believed to be crucial for understanding why neural networks generalize well in practice,
it is imperative to understand neural networks beyond the NTK regime. Prior work has
approached this in several ways:

• Mean field instead of NTK initialization. The simplification of neural networks
in the NTK regime alluded to above depends on initializing networks in the specific
way typically done in practice. A range of articles such as Bordelon and Pehle-
van (2023); Mei et al. (2018); Rotskoff and Vanden-Eijnden (2018); Sirignano and
Spiliopoulos (2020); Woodworth et al. (2020); Yang et al. (2022) point out that al-
ternative mean-field initialization schemes can lead to feature learning and non-linear
training dynamics, even at infinite width.

• Growing dataset size. Even with the NTK initialization, if the size of the training
dataset and network width tend to infinity together, neural networks need not become
linear models (e.g. Cui et al. (2023); Hanin and Zlokapa (2022); Li and Sompolinsky
(2021); Seroussi and Ringel (2021)). Characterizing the simultaneous limit of wide
networks training on growing dataset sizes remains an important open question.

• Large learning rates. A key requirement for the asymptotic linearization of neural
network training in the NTK regime is that learning rates (i.e. step sizes used in
gradient descent) should tend to zero as the network width tends to infinity. Articles
such as Lewkowycz et al. (2020) and Zhu et al. (2022), however, show that larger
learning rates lead to non-NTK behavior.

• Finite width corrections to the NTK regime. Neural networks at large but finite
width are neither Gaussian processes at initialization nor linear models during training
(see Hanin (2018); Hanin and Paouris (2021); Hanin and Nica (2020b,a); Hanin and
Zlokapa (2022); Huang and Yau (2020); Roberts et al. (2022); Yaida (2020)). A key
message of these articles is that depth amplifies finite width effects, including feature
learning. This setting is the focus of the present article.

A key difficulty in the finite width approaches of the last bullet point is that, at initial-
ization, the distribution of network outputs is both non-Gaussian and involves complicated
correlations between neurons. The purpose of the present article is to develop, in simplest
important setting of fully connected networks (see §1.1 for the definition), a flexible set
of probabilistic tools to characterize these non-Gaussian effects. We summarize our main
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contributions in §1.2. Before doing so, we introduce in the next section some notation and
a precise statement of the problem statement.

1.1 Notation and Problem Statement

By definition, a fully connected network is a map that associates to each network input
xα ∈ Rn0 an output z(L+1)

α ∈ RnL+1 through a sequence of intermediate representations
z(`)
α ∈ Rn`

z(`+1)
α :=

{
b(`+1) +W (`+1)σ(z

(`)
α ), ` ≥ 1

b(1) +W (1)xα, ` = 0
, (1)

where
W (`+1) ∈ Rn`+1×n` , b(`+1) ∈ Rn`+1 .

In the recursion (1), the univariate function σ : R → R applied to a vector z(`)
α ∈ Rn` is

short-hand for applying it separately to each component and the widths n0, . . . , nL+1 are
known a priori. The entries of the matrices W (`) and the components of the vectors b(`) are
called the weights and biases in layer `, respectively. We shall typically refer to

z(`)
α =

(
z

(`)
1;α, . . . , z

(`)
n`;α

)
∈ Rn`

as the vector of pre-activations at layer ` corresponding to the input xα. The most popular
choices of σ in practice include ReLU(t) := max {0, t} as well the hyperbolic tangent and
their variations. We will analyze these cases in detail later (see §B.2), but for our general
results make only the following mild assumption

Assumption 1 There exists r ≥ 1 so that the r-th derivative of σ exists almost everywhere
and grows at most polynomially:

∃k ≥ 1 s.t.

∣∣∣∣∣∣∣∣(1 + |x|)−k d
r

dxr
σ(x)

∣∣∣∣∣∣∣∣
L∞(R,dx)

<∞.

The primary objects of study in this article are random fully connected neural networks,
obtained by choosing network weights and biases of a fully connected network to be inde-
pendent centered Gaussians:

W
(`)
ij ∼ N (0, CW /n`−1), b

(`)
i ∼ N (0, Cb) independent. (2)

Here Cb ≥ 0, CW > 0 are fixed constants. The 1/n`−1 scaling in the weight variance ensures
that the moments of the outputs z(L+1)

α remain uniformly bounded as n1, . . . , nL,→∞ (see
e.g. Theorem 2). The distribution (2) is used in practice to initialize neural networks at
the start of training (e.g. by gradient descent on an empirical loss)1.

The main problem we take up in the present article is to characterize the joint distribu-
tion of any finite number of components in a random neural network xα 7→ z(L+1)

α evaluated

1. While (2) is indeed the default initialization scheme mainly used in practice, there exists an important
alternative often referred to as a mean-field initialization in which the final layer weights W (L+1) have
a much smaller variance Mei et al. (2018); Rotskoff and Vanden-Eijnden (2018); Yang et al. (2022). In

this context, our analysis applies directly to pre-activations z
(`)
i;α in hidden layers with ` ≤ L.
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at potentially different inputs in the regime where the input dimension n0 is arbitrary, the
inputs xα satisfy

1

n0
||xα||22 <∞,

the output dimension nL+1 is fixed, and the hidden layer widths n` are taken large but
finite:

∃c, C > 0 s.t. cn ≤ n1, . . . , nL ≤ Cn, n� 1. (3)

Our approach will be to describe the random field xα 7→ z(L+1)
α perturbatively (i.e. as a

power series) in 1/n and recursively in L.

1.2 Main Contributions

The main results/contributions of the present article are:

• Sharp Estimates for Cumulants at Finite Width. At any fixed finite depth
L and large width n, we prove that the k-th cumulant of a random neural network
vanishes if k is odd and tends to zero like n−k/2+1 at large n when k is even. See
Theorem 3 and Corollary 6. This estimate is sharp in terms of its dependence on n
and can be viewed as a quantitative Central Limit Theorem for the finite-dimensional
distributions in wide neural networks (see Theorem 2).

• Hierarchy of Layer-wise Cumulant Recursions. At any fixed finite depth L and
large width n, we prove for any ` = 1, . . . , L that in a random neural network the k-th

cumulants of pre-activations z
(`+1)
α in layer ` + 1 are determined to leading order in

1/n by the cumulants of order at most k in layer `. In this way, the distribution of
a random neural network forms a perturbatively solvable hierarchy which extends the
infinite width covariance recursion from Theorem 2. See Theorem 4 and Corollary
5. This is similar in spirit, though with a rather different focus, to the breakthrough
work Huang and Yau (2020), which provides a hierarchy in powers of 1/n for the
dynamics of the NTK during network training.

• Emergence of Effective Network Depth. By solving explicitly cumulant re-
cursions for the k = 4th, 6th, 8th cumulants we observe a remarkable phenomenon.
Namely, while the k-th cumulant goes to zero like n−k/2+1, we also find that it grows
like Lk/2−1 at large depth L. Taken together, this shows that random neural net-
works that are both deep and wide are not close to Gaussian processes, with depth
amplifying finite width effects. Specifically, it is the effective network depth, given by
the depth-to-width ratio L/n, rather than the apparent depth L that is a more infor-
mative measure of neural network depth and complexity. This suggests a non-trivial
double scaling limit for random neural networks in which

n,L→∞ and L/n→ ξ ∈ [0,∞).

See Conjecture 11. For non-linear networks this scaling limit has only started to be
considered Hanin (2018); Hanin and Nica (2020b); Huang and Yau (2020); Li et al.
(2022); Roberts et al. (2022). Even in the very special case of product of L iid random
n × n matrices (sometimes called deep linear networks) the simultaneous large n,L
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regime has revealed a range of interesting and not fully understood properties (see
e.g. references in Akemann and Burda (2012); Akemann et al. (2019); Gorin and Sun
(2018); Hanin and Nica (2020b); Hanin and Paouris (2021); Hanin and Zlokapa (2022);
Liu et al. (2016)). This stands in contrast to the ξ = 0 regime often considered in
previous work on neural networks (c.f. e.g. Du et al. (2018, 2019); Jacot et al. (2018);
Liu et al. (2022)).

Several key ideas used to derive the results outlined above were first derived at a physics level
of rigor in Roberts et al. (2022). This monograph, based on joint work of the author with
Roberts and Yaida, develops a set of techniques that allow one to characterize properties
of wide network at first order in 1/n. A key strength of these techniques is that they can
be applied both at initialization (e.g. to understand objects such as the 4-th cumulant
of the network output and the variance of the NTK) and also to networks after training
(e.g. to obtain layer-wise recursions such as those in Chapter ∞ of Roberts et al. (2022)
for network predictions after training). However, not only are these techniques developed
only at a physics level of rigor but they are not well-adapted to studying all order effects
in powers of 1/n. One of the contributions of the present article is therefore to both make
mathematically rigorous the ideas in Roberts et al. (2022) and extend them to the point
where one can tractably study higher cumulants, though for now only at initialization.
We refer the interested reader to §3 for a brief technical summary of how we are able to
systematically capture the structure of all effects at all orders in powers of 1/n.

1.3 Outline for Rest of the Article

The remainder of this article is structured as follows. We begin in §2.1 by providing some
background about prior work on why at the start of training neural networks in the NTK
regime are Gaussian processes. We then present a range of results about the distribution of
wide but not infinitely wide networks at the start of training. As a first result we provide in
§2.2 sharp estimates, in terms of powers of 1/n for the cumulants of the output of a random
neural network and its derivatives (see Theorem 3). Then, in §2.3 we give expansions, as a
series in 1/n, for expectations of observables evaluated on the finite-dimensional distribution
of the output of a random neural network (see Theorem 4). This yields two Corollaries. The
first, Corollary 5 shows formally that cumulants form a perturbatively solvable hierarchy
with respect to network depth. Corollary 6 then makes these recursions explicit in some
special cases. As a final result, we present in §2.4 the solutions to the cumulant recursions
from Corollary 6, in which the effective network depth enters explicitly.

After presenting our results, we give some background on cumulants and Gaussian
integration by parts in §4. We then explain the main idea behind the proof our most
technical results, Theorems 3 and 4, in §3 before providing detailed proofs of our results
starting in §5. Finally, in the Appendix, we recapitulate the discussion of criticality and
universality in deep neural networks from Roberts et al. (2022), recall a trick for obtaining
the exact distribution of the output a ReLU network evaluated a single input, and give a
detailed analysis at large depth of the infinite width behavior of the Gaussian processes
obtained from networks with tanh-like non-linearities.
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2. Results

2.1 Background on Neural Networks at Infinite Width

To put the results of this article into context, note that in practice neural networks have
many parameters. Thus, to study the structure of neural networks at the start of training,
it is sensible to first understand various limits in which the number of parameters tends to
infinity. The most well-studied regime of this type (though not the only option cf eg Mei
et al. (2018); Rotskoff and Vanden-Eijnden (2018); Sirignano and Spiliopoulos (2020, 2021);
Yang and Hu (2021)) is the NTK regime alluded to in the Introduction. By definition, this
regime is accessed by fixing the depth L, the input and output dimensions n0, nL+1, the non-
linearity σ, the initialization scheme (2) and considering the limit when n1, . . . , nL → ∞.
In view of the relation (3) the NTK regime is obtained by taking n→∞ at fixed L. At the
start of training, neural networks converge to a Gaussian process (see Theorem 2 below and
Lee et al. (2018); Matthews et al. (2018); Neal (1996); Novak et al. (2018); Yang (2019a,b);
Yang and Schoenholz (2018)). More precisely, we have the following result:

Theorem 2 (Gaussian Process Limit of Wide Networks) Fix a non-negative inte-
ger r ≥ 0, and suppose σ : R → R is r-times differentiable and that its r-th derivative
is polynomially bounded:

∃k ≥ 1 s.t. sup
x∈R

∣∣∣∣(1 + |x|)−k d
r

dxr
σ(x)

∣∣∣∣ <∞.
Then the finite-dimensional distributions of the stochastic process xα 7→ z

(L+1)
α and its par-

tial derivatives (with respect to the input) of order up to r converge to those of a centered
Gaussian process with nL+1 iid components. The limiting covariance function of each com-
ponent

K
(L+1)
αβ := lim

n1,...,nL→∞
Cov

(
z

(L+1)
i;α , z

(L+1)
i;β

)
, xα, xβ ∈ Rn0 ,

satisfies the recursion

K
(`+1)
αβ =

{
Cb + CW 〈σ(zα)σ(zβ)〉K(`) , ` ≥ 1

Cb + CW
n0

∑n0
j=1 xj;αxj;β, ` = 0

. (4)

In the statement of Theorem 2 and henceforth we reserve the symbol 〈f(zα, zβ)〉κ to
denote the expectation of f(zα, zβ) with respect to the Gaussian distribution

(zα, zβ) ∼ N
(

0,

(
καα καβ
καβ κββ

))
,

where καβ = κ(xα, xβ) is a given covariance function. The conclusion in Theorem 2 is
not new, having been obtained many times and under a variety of different assumptions,
including for more general architectures. See Hanin (2021); Lee et al. (2018); Matthews
et al. (2018); Poole et al. (2016); Yang (2019b). We refer the interested reader to Hanin
(2021) for a discussion of prior work and note only that convergence of the derivatives of
the field z(L+1)

α to its Gaussian limit does not seem to have been previously considered. We
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give a short proof that includes convergence of derivatives along the lines of the arguments
in Hanin et al. (2022); Lee et al. (2018) in Appendix §A.

In the NTK regime, not only are neural networks at initialization given by Gaussian
processes but, for the purposes of optimization of a squared loss with a small learning rate,
the network can be replaced by its linearization at the start of training (see Bartlett et al.
(2021); Chizat and Bach (2018); Du et al. (2018); Jacot et al. (2018); Lee et al. (2019); Liu
et al. (2022)). Taken together, these two points show that at least at infinite width and
finite depth, it is the structure of the network at initialization that determines not only
the start of training but really the entire training trajectory. However, as we’ve already
mentioned, by virtue of the second point, the infinite width limit is too rigid to capture
the ability of real work networks to learn data-dependent features (see e.g. Hanin and Nica
(2020a); Huang and Yau (2020); Roberts et al. (2022); Yang and Hu (2021)). With the
NTK initialization (2), only finite width networks can capture these effects! It is the study
of such networks that we take up in this article.

2.2 Results on the Size of Cumulants at Finite Width

Since in the infinite width limit, the field z(L+1)
α is Gaussian (see Theorem 2), it is natural to

study finite width corrections to this regime by considering the behavior of the cumulants
of z(L+1)

α and its derivatives at large but finite values of the network width n. Recall that a
Gaussian process is determined by the condition that the mixed cumulants of order three
and higher vanish. Our first result, Theorem 3, gives sharp estimates on the rate of vanishing
in powers of 1/n for the cumulants of the finite-dimensional distributions of z(L+1)

α at large
width, providing a quantitative version of Theorem 2.

In order to state Theorem 3, we need some notation. First, given random variables
X1, . . . , Xk with finite moments defined on the same probability space, let us denote their
mixed cumulant by

κ (X1, . . . , Xk) := ik
∂k

∂t1 · · · ∂tk

∣∣∣∣
t=0

logE [exp [−i(t1X1 + · · ·+ tkXk)]] . (5)

Thus, for example, κ(X1) = E [X1] and κ(X1, X2) = Cov(X1, X2). We refer the reader to
§4.1 for background on cumulants. Next, let us we fix a finite collection

{xα, α ∈ A} ⊆ Rn0 ,

of |A| distinct network inputs. Moreover, let us also fix a collection of p directional deriva-
tives:

D = (d1, . . . , dp) , dj := ∇vj =

n0∑
i=1

vij∂xi (6)

and for any multi-index J = (j1, . . . , jp) ∈ Np denote by

DJ
α := dj11 · · · d

jp
m

∣∣∣∣
x=xα

the corresponding differential operator of order |J | := j1 + · · ·+ jp.
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Theorem 3 (size of cumulants in random networks) Fix r, L ≥ 1 and suppose that
σ : R → R satisfies Assumption (1) with this value of r. Suppose further that one of the
following two conditions holds:

• σ is smooth

• the limiting covariance matrix(
lim
n→∞

Cov
(
DJ1
α1
z

(`)
1;α1

, DJ2
α2
z

(`)
1;α2

))
|J1|,|J2|≤r
α1,α2∈A

(7)

of derivatives of order at most r in the directional derivatives d1, . . . , dp of the scalar

field z
(`)
1;α is strictly positive definite in the infinite width limit for all ` ≤ L.

Then, for each k ≥ 1 and 1 ≤ ` ≤ L+ 1, as n→∞

κ
(
DJ1
α1
z

(`)
i1;α1

, . . . , DJk
αk
z

(`)
ik;αk

)
=

{
0, k odd

O(n−
k
2

+1), k even
, (8)

where the implicit constant in the error term depends on k, the inputs xα1 , . . . , xαk , the
multi-indices J1, . . . , Jk, the weight and bias variances Cb, CW , the non-linearity σ, and the
layer index `.

We prove Theorem 3 in §5. At a physics level of rigor, Theorem 3 with k = 4 and no
derivatives was already derived in the breakthrough work of Yaida (2020). In fact, Yaida’s
original article went much further: it obtained a recursive formula with respect to ` for the
fourth cumulant κ(z(`)

i1;α1
, . . . , z(`)

i4;α4
) at layer ` in terms of the second and fourth cumulants

at layer ` − 1. This is analogous to the recursion (4) for the infinite width covariance
K(`)
α1α2 . This theme was then picked up and significantly expanded upon in the physics

monograph Roberts et al. (2022), which computes, among other things, at order 1/n the
leading corrections to the field z(`)

α and its derivatives with respect to both xα and model
parameters. We will reproduce some of these recursions and obtain new ones of a similar
flavor below (see Corollary 6).

Compared to prior work the main novelty of Theorem 3 is two-fold. First, it gives sharp
estimates in powers of 1/n for cumulants of all orders (the sharpness can already be seen
when ` = 2). Second, it treats in a uniform way the cumulants for not only the values but
also all derivatives of z(`)

α .

2.3 Results on Layer-wise Recursions for Cumulants

The estimate (8) in Theorem 3 only gives the order of magnitude in powers of 1/n for

the cumulants κ(DJ1
α1
z

(`)
i1;α1

, . . . , DJk
αk
z(`)

ik;αk
) but does not directly provide information about

their structural dependence on the remaining model parameters Cb, CW , σ, `. Our next set
of results supplies such information.

To state them, let us denote by F (`) the sigma algebra generated by the weights and
biases in layers up to and including `. Since we’ve assumed weights and biases to be
Gaussian and independent for different neurons, note that conditional on F (`) the vectors

z
(`+1)
i;A :=

(
z

(`+1)
i;α , α ∈ A

)
8
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are independent centered Gaussians with the conditional covariance

Σ
(`)
αα′ := Cov

(
z

(`+1)
i;α1

, z
(`+1)
i;α2

| F (`)
)

= Cb +
CW
n`

n∑̀
j=1

σ
(
z

(`)
j;α1

)
σ
(
z

(`)
j;α2

)
. (9)

Let us denote by

κ(`)
α1α2

:= Cov
(
z

(`+1)
i;α1

, z
(`+1)
i;α2

)
= E

[
Σ(`)
α1α2

]
the finite width covariance and by

∆(`)
α1α2

:= Σ(`)
α1α2

− κ(`)
α1α2

the difference between the conditional covariance matrix Σ(`) and its mean κ(`). Further, let
us agree to denote by 〈·〉κ(`) the expectation with respect to a collection of centered jointly
Gaussian random vectors

D≤rA zi =
(
DJ
αzi;α, α ∈ A, |J | ≤ r

)
which match the covariance of the neural network derivatives

D≤rA z
(`)
i :=

(
DJ
αz

(`)
i;α, α ∈ A, |J | ≤ r

)
in the sense that

Cov
(
DJ1
α1
zi1;α1 , D

J2
α2
zi2;α2

)
:= Cov

(
DJ1
α1
z

(`)
i1;α1

, DJ2
α2
z

(`)
i2;α2

)
= δi1i2D

J1
α1
DJ2
α2
κ(`)
α1α2

in each component separately but are defined to have zero covariance for different neurons.

Theorem 4 (1/n expansion of expectations at finite width) Fix an integer r ≥ 0
and suppose that f is continuous and polynomially bounded. Then for any q∗ ≥ 0 we have

E
[
f
(
D≤rz

(`+1)
1,A , . . . , D≤rz

(`+1)
m,A

)]
=

2q∗∑
q=0

(−1)q

2qq!

〈
E
[( ∑
|J |,|J ′|≤r
α,α′∈A

∆
JJ ′,(`)
αα′

m∑
j=1

∂DJαzj;α∂DJ′
α′zj;α′

)q]
f
(
D≤rA z1, . . . , D

≤r
A zm

)〉
κ(`+1)

+O(n−q∗−1), (10)

where the sum is over multi-indices J, J ′ ∈ Np of order at most r, we’ve set

∆
JJ ′,(`)
αα′ := DJ

αD
J ′
α′Σ

(`)
αα′ − E

[
DJ
αD

J ′
α′Σ

(`)
αα′

]
, (11)

and the derivatives ∂DJαzj;α are interpreted in the weak sense if f is not differentiable.

For example, taking r = 0,m = 1, and A be the singleton {α} gives

E
[
f
(
z

(`+1)
1;α

)]
=

2q∗∑
q=0

E
[(

∆(`)
αα

)q] 〈(
∂z1;α

)2q
f (z1;α)

〉
κ(`+1)

+O(n−q∗−1). (12)

9



Cumulants in Random Networks

As we explain in Lemma 18, Theorem 3 immediately yields

E

[
q∏
i=1

∆
JiJ
′
i ,(`)

αiα′i

]
= O

(
n−d

q
2
e
)
,

showing that the expansions in (10) and (12) are indeed series in decreasing powers of 1/n.
Moreover, each term in these power series is simply given by computing a Gaussian integral
with covariance κ(`+1) in which different neuron are independent.

We prove Theorem 4 in §7 and give the main idea of the proof in §3. By substituting
various polynomials in z(`+1)

α for f into the perturbative expansion (10), it is now possible
in principle to deduce recursions for the cumulants at layer `+ 1 in terms of objects of the
same type at layer `. In particular, we have the following

Corollary 5 (hierarchy of cumulants in 1/n) With the assumptions of Theorem 3, the
mixed cumulant

κ
(
DJ1
α1
z

(`+1)
i1;α1

, . . . , DJ2k
α2k
z

(`+1)
i2k;α2k

)
equals ∑

j≤k
J ′i , i=1,...,2j

|J ′1|+···+|J ′2j|
≤|J1|+···+|J2k|

C(J ′i ,K
(`)
αiαi′

i, i′ = 1, . . . , 2j) κ

(
D
J ′1
α1z

(`)
1;α1

, . . . , D
J ′2j
α2jz

(`)
2j;α2j

)
+O

(
n−k

)
,

(13)

where the sum is over multi-indices J ′i, the constants C(J ′i ,K
(`)
αiαj i, j = 1, . . . , 2k) depend

only on the multi-indices J ′i and the infinite width covariance K(`), while the implicit con-
stant in the error term depends on k, the inputs xα1 , . . . , xαk , the multi-indices J1, . . . , Jk,
the weight and bias variances Cb, CW , the non-linearity σ, and the layer index `.

We do not know how to efficiently compute the coefficients C in the recursion (13) for
general cumulants. Instead, we compute then by hand for small values of k and a single
input xα ∈ Rn0 :

κ
(`)
2k;α :=

1

(2k − 1)!!
κ

(
z

(`+1)
i;α , . . . , z

(`+1)
i;α︸ ︷︷ ︸

2k times

)
(14)

when k = 2, 3, 4. See Corollary 6. In order to facilitate a compact form for the recursions
described in first bullet point, let us write

T
(`)
i,j;α := CjW

〈
∂iz

{(
σ2(z)−

〈
σ2(z)

〉
K

(`)
αα

)j}〉
K

(`)
αα

, (15)

with the derivatives interpreted in the weak sense if σ is not sufficiently smooth and where
we remind the reader of our standing notation

〈f(z)〉K =

∫ ∞
−∞

f(zK1/2)e−
z2

2
dz√
2π
, K ≥ 0.

10
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Corollary 6 Fix r ≥ 1 and suppose that σ : R → R satisfies Assumption (1) with this
value of r. Consider a depth L random neural network with input dimension n0, hidden
layer widths n1, . . . , nL, output dimension nL+1 and non-linearity σ. Fix xα ∈ Rn0 and
define

χ
(`)
||;α :=

1

2
T

(`)
2,1;α =

CW
2

〈
∂2
zσ(z)2

〉
K

(`)
αα
,

where the second derivative is interpreted in the weak sense if σ is not twice differentiable.
For each ` = 1, . . . , L, in the notation of (14), the fourth cumulant satisfies

κ
(`+1)
4;α =

T
(`)
0,2;α

n`
+
(
χ

(`)
||;α

)2
κ

(`)
4,α +O(n−2). (16)

Further, the 6-th cumulant satisfies

κ
(`+1)
6;α =

T0,3;α

n2
`

+
3T

(`)
2,2;α

2n`
χ

(`)
||;ακ

(`)
4;α +

3T
(`)
4,1;α

4

(
χ

(`)
||;ακ

(`)
4;α

)2
+
(
χ

(`)
||;α

)3
κ

(`)
6;α +O(n−3). (17)

Finally, the 8-th cumulant satisfies:

κ
(`+1)
8;α =

1

n3
`

(
T

(`)
0,4;α − 3

(
T

(`)
0,2;α

)2
)

+
1

n2
`

[
2T

(`)
2,3;αχ

(`)
||;α − 12T

(`)
0,2;α

(
χ

(`)
||;α

)2
+

3

2

(
T

(`)
2,2;α

)2
− 3

2
T

(`)
4,1;αT

(`)
0,2;α

]
κ

(`)
4;α

− 1

n`

[
2T

(`)
2,2;αT

(`)
4,1;αχ

(`)
||;α −

1

2
T

(`)
4,2;α

(
χ

(`)
||;α

)2
+
(
χ

(`)
||;α

)4
](
κ

(`)
4;α

)2

+
1

n`

[
5T

(`)
0,2;αT

(`)
4,1;αχ

(`)
||;α + 12T

(`)
2,2;α

(
χ

(`)
||;α

)2
]
κ

(`)
6;α

+
3

32

(
T

(`)
4,1;α

)2 (
χ

(`)
||;α

)2 (
κ

(`)
4;α

)3
− 1

2

(
χ

(`)
||;α

)3
T

(`)
4,1;ακ

(`)
4;ακ

(`)
6;α

+
(
χ

(`)
||;α

)4
κ

(`)
8;α +O(n−4). (18)

The initial condition for the recursions (16)-(18) is that κ(1)

2k;α = 0 for all k ≥ 2.

Remark 7 Note that for k = 2, 3, 4, we therefore see that to leading order in 1/n the
recursions for κ(`+1)

2k;α depends only on κ(`)

2j;α for j ≤ k. This allows us to interpret (16) - (18)
as a forming the start of hierarchy in powers of 1/n describing the cumulants of the output
of a random neural network.

Let us briefly compare Corollary 6 to results in prior work:

• In the special case when σ is 1−homogeneous (i.e. is linear, ReLU, leaky ReLU,
etc, see (74)), the full distribution of a neuron pre-activation z(`)

i;α can be worked out
in closed form. Namely, as we explain in §B.2.1 and Appendix D, is has the same
distribution as a Gaussian with an independent random variance given by a product
of independent weighted chi-squared random variables. This was first pointed out
in Hanin (2018); Hanin and Nica (2020b) and described in the language of special
functions (namely Meijer G functions) in Zavatone-Veth and Pehlevan (2021). For
such non-linearities obtaining the recursions (16)-(18) is not new.

11
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• The breakthrough work Yaida (2020) was the first to obtain, at a physics level of
rigor, the recursion (16) and probe its solutions at large `.

• The ideas in Yaida (2020) then seeded the development in the monograph Roberts
et al. (2022) a much richer analysis, producing at a physics level of rigor many re-
cursions similar in flavor to (16)-(18) that describe the the behavior of objects such
as network derivatives at the start of training, the NTK at the start of training, and
even the change in the NTK and the resulting output of a trained network. Many of
these results go far beyond what we are currently capable of doing mathematically.

• The analysis in Roberts et al. (2022) never required studying cumulants κ(`)

2k;α for
k ≥ 3, and while the techniques developed there can certainly be used to obtain
the recursions (17) and (18) we take a rather different approach in this article that
produces such recursions more directly.

The functional χ(`)

||;α plays a fundamental role in the recursive description of random neural
networks supplied by Corollary 6, whose proof is in §7. In §B we explain a principled
procedure, called tuning to criticality, that reveals its origin (as well as that of a similar
object we denote χ(`)

⊥;α) and explains how to choose Cb, CW so that these functionals are
approximately equal to 1 at large `. As we will see, such a choice will ensure that the
recursions in Corollary 6 and their infinite width counterpart (4) have well-behaved solutions
at large `. We will then return in §B.2.1 and §B.2.2 to solving the recursions from Corollary
6 in random networks tuned to criticality (see (76) and Corollary 8).

2.4 Results on Effective Depth and Low Order Cumulants

As a final result, we record the following consequence of Corollary 6, which shows that it is
the effective network depth that controls the size of low order cumulants.

Corollary 8 Suppose σ is either ReLU or tanh and consider a depth L random neural
network with input dimension n0, output dimension nL+1, hidden layer widths satisfying

n1, . . . , nL = n� 1,

and non-linearity σ with CW = 1 if σ = tanh and CW = 2 if σ = ReLU as well as Cb = 0
in both cases. Write ξ = L/n and define the normalized cumulants

κ̂
(L)
2k;α :=

κ
(L)
2k;α

(K
(L)
αα )k

of pre-activations in layer L corresponding to a fixed network input xα. We have for k =
2, 3, 4 that

κ̂
(L)
2k;α = C2kξ

k−1
(
1 +O(L−1)

)
+O(n−k), (19)

where C2k are some positive universal constants depending on σ. The implicit constants in
error terms O(L−1) depend on σ,Cb, CW and constants in O(n−j), j = 2, 3, 4 may depend
in addition on L.

12
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Remark 9 Although we have formulated Corollary 8 only for ReLU and tanh non-linearities
we actually prove it for a more general classes of ReLU-like and tanh-like non-linearities
defined in §B.

Remark 10 Combining estimate (19) for k = 2 with the definition (79) of the K∗ = 0
universality class and (14) yields that in the setting of Corollary 6 we have to first order in
1/n and to leading order in 1/L that

V̂ar

[(
z

(`+1)
1;α

)2
]

= const× (1 + ξ), Corr

((
z

(`+1)
1;α

)2
,
(
z

(`+1)
2;α

)2
)

= const× ξ, ξ :=
L

n
,

where V̂ar[X] = Var[X]/E
[
X2
]
. Thus, both the fluctuations of a single neuron pre-activation

and the correlation between different neurons is controlled to first order in 1/n, 1/L by the
effective network depth ξ.

We prove Corollary 6 in §7.1 and note that formula (19) was derived in Yaida (2020) for
k = 2 at a physics level of rigor. While we do not know how to generalize the results in
(19) to obtain the corresponding formulas for general k, we make the following conjecture:

Conjecture 11 (Double Scaling Limit for Random Neural Networks) Consider a
random depth L neural network with input dimension n0, hidden layer widths

n1, . . . , nL = n� 1,

output dimension nL+1 and non-linearity σ. Suppose further that this network is tuned to
criticality in the sense that (73) is satisfied. Fix a non-zero network input xα ∈ Rn0 and
write ξ = L/n. For each k ≥ 1 there exists C2k > 0 depending on the universality class of
σ so that

κ
(L)
2k;α(

K
(L)
2;α

)k = C2kξ
k−1 +O

(
ξk
)
.

Moreover, for each ξ ∈ [0,∞) there exists a probability distribution Pξ,σ on R, depending
only on ξ and σ, such that in the double scaling limit

n,L→∞, L

n
→ ξ,

the random variable z
(`)
i;α converges in distribution to a random variable with law Pξ,σ.

3. Overview of Proofs

In this section, we present the essential idea for how we analyze a random fully connected

neural network xα 7→ z
(L+1)
α at finite width. Our approach is based on the following

structural properties:

• The sequence of fields z
(`)
α is a Markov Chain with respect to `.

13
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• Conditional on the sigma algebra F (`) defined by z
(`)
α is a Gaussian field with inde-

pendent components z
(`+1)
i;α . See Lemma 14.

• The variance of each component z
(`+1)
i;α depends on z

(`)
α only through random variables

of the form

O(`)
f :=

1

n`

n∑̀
j=1

f(z
(`)
i;α), f : R→ R polynomially bounded

which we refer to as collective observables. See (9).

• Centered moments of collective observables depend on n as if the random variables

f(z
(`)
i;α) were independent:

E
[(
O(`)
f − E

[
O(`)
f

])q]
= Oq

(
n−d

q
2
e
)
, q ≥ 0. (20)

Establishing this is the most difficult technical aspect of the present article. See
Theorem 16 and Lemma 18.

Let us briefly explain, mostly dispensing with rigor, how these four ideas come together to

obtain a recursive description of the distribution of the field z
(`+1)
α in terms of that of z

(`)
α .

To keep the notation to a minimum, we fix a network input xα and focus on describing

the joint distribution of z
(`+1)
i;α , i = 1, . . . ,m. Extensions to multiple inputs and derivatives

proceed along very similar lines. Denoting by ξ = (ξ1, . . . , ξm) dual variables, consider the
characteristic function

p(`+1)(ξ) := E

exp

−i m∑
j=1

ξjz
(`+1)
j;α

 .
Conditioning on z

(`)
α and using (9) allows us to write

p(`+1)(ξ) := E
[
exp

[
−1

2
||ξ||2 Σ(`)

αα

]]
,

where we remind the reader that

Σ(`)
αα = Var

[
z

(`+1)
i;α

∣∣ F (`)
]

= Cb +
CW
n`

n∑̀
j=1

σ(z
(`)
j;α)2

is a collective observable at the previous layer. Writing

κ(`)
αα := E

[
Σ(`)
αα

]
, ∆(`)

αα := Σ(`)
αα − E

[
Σ(`)
αα

]
,

we find

p(`+1)(ξ) := E
[
exp

[
−1

2
||ξ||2 ∆(`)

αα

]]
exp

[
−1

2
||ξ||2 κ(`)

αα

]
.

14
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The second term is precisely the characteristic function of a centered m-dimensional Gaus-

sian with iid components of variance κ
(`)
αα. Moreover, at least heuristically, the first term

can be written

E
[
exp

[
−1

2
||ξ||2 ∆(`)

αα

]]
=
∑
q≥0

E
[(

∆(`)
αα

)q] (−1)q

2qq!
||ξ||2q .

The concentration estimates (20) ensure that this series converges. Moreover, since the
Fourier transform turns polynomials into derivatives we have

− ||ξ||2 = Laplacian in the variables z
(`+1)
i;α .

Hence, we obtain for any reasonable test function f that

E
[
f(z

(`+1)
i;α , i = 1, . . . ,m)

]
=

∞∑
q=0

1

2qq!
E
[(

∆(`)
αα

)q]〈( m∑
i=1

∂2
zi;α

)q
f(zi;α, i = 1, . . . ,m)

〉
κ
(`)
αα

,

where (zi;α, i = 1, . . . ,m) is a vector of iid centered Gaussians with variance κ
(`)
αα. The con-

centration estimates (20) ensure that this expression is a power series in 1/n. In particular,

E
[
f(z

(`+1)
i;α , i = 1, . . . ,m)

]
= 〈f(zi;α, i = 1, . . . ,m)〉

κ
(`)
αα

(21)

+
E
[
(∆

(`)
αα)2

]
8

〈(
m∑
i=1

∂2
zi;α

)2

f(zi;α, i = 1, . . . ,m)

〉
κ
(`)
αα

+O(n−2).

This is the essence of Theorem 4. To derive usable recursions for cumulants of z
(`+1)
i;α , note

for instance that, in the notation of Corollary 6,

κ
(`)
4;α :=

1

3
κ
(
z

(`+1)
i;α , z

(`+1)
i;α , z

(`+1)
i;α , z

(`+1)
i;α

)
= E

[
(∆(`)

αα)2
]
.

Writing

Xj := σ(z
(`+1)
j;α )2 − E

[
σ(z

(`+1)
j;α )2

]
we thus have

κ(`+1)
αα = E

[(
∆(`)
αα

)2
]

=
C2
W

n`
E
[
X2

1

]
+ C2

W

(
1− n−1

`

)
E [X1X2] .

Applying the expansion (21) to both these terms and a bit of algebra already yields

κ(`+1)
αα = E

[(
∆(`)
αα

)2
]

=
C2
W

n`

(〈
σ4
〉
κ
(`)
αα
−
〈
σ2
〉2

κ
(`)
αα

)
+ C2

W

(
1− n−1

`

)((〈
σ2
〉
κ
(`)
αα
− E

[
σ(z

(`)
1;α)2

])2
+

1

4

〈
∂2σ2

〉2

κ
(`)
αα
κ

(`)
4;α

)
+O(n−2).
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A short argument supplied in §7 shows that〈
σ2
〉
κ
(`)
αα

= E
[
σ(z

(`)
1;α)2

]
+O(n−1)

and that we may replace κ
(`)
αα by its infinite width limit K

(`)
αα in all remaining expectations

at the cost of an O(n−1) error. This already yields the recursion (16) of Corollary 6.

4. Background

4.1 Properties of Cumulants

Recall that, given random variables X1, . . . , Xk on the same probability space, we denote
their mixed cumulant by

κ (X1, . . . , Xk) := ik
∂k

∂t1 · · · ∂tk

∣∣∣∣
t=0

logE [exp [−i(t1X1 + · · ·+ tkXk)]] .

In the following result, we recall the key properties of these mixed cumulants that we will
need.

Proposition 12 (See Theorem 2.3.1 in Brillinger (2001)) Mixed cumulants satisfy the
following properties.

1. Suppose X = (X1, . . . , Xk) is a random vector with finite moments of all orders.
Then, for any sub-sigma algebra F of the probability space on which X is defined

κ (X1, . . . , Xk) =
∑

π=(π1,...πb)

κ (κ (Xπ1 | F) , . . . , κ (Xπb | F)) , (22)

where the sum is over all partitions π of [k] and for each a = 1, . . . , b

Xπa := (Xi, i ∈ πa) .

This is known as the law of total cumulance. See Brillinger (1969).

2. Suppose X = (X1, . . . , Xk) is a random vector with finite moments of all orders.
When X can be partitioned into two independent subsets, the mixed cumulant κ(X)
vanishes. More precisely, suppose I ⊆ [k] and that I, Ic 6= ∅. Then

XI := (Xi, i ∈ I) ⊥ XIc = (Xi, i 6∈ I) =⇒ κ (X1, . . . , Xk) = 0. (23)

3. Mixed cumulants are multi-linear. More precisely if

{Xi,j , 1 ≤ j ≤ k, i ≤ Tj}

are random variables with finite moments defined on the same probability space, then

κ

 T1∑
i1=1

ai1,1Xi1,1, . . . ,

Tk∑
ik=1

aik,kXik,k

 =

T1∑
i1=1

· · ·
Tk∑
ik=1

ai1,1 · · · aik,kκ (Xi1,1, . . . , Xik,k)

(24)
for any ai,j ∈ R.
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4. Suppose X = (X1, . . . , Xj) ∼ N (0,Σ) is a centered Gaussian with covariance Σ. Then
for any i1, . . . , ik ∈ [j]

κ (Xi1 , . . . , Xik) =

{
Σi1i2 , k = 2

0, otherwise
. (25)

5. Moments are polynomials in cumulants. Specifically, suppose X = (X1, . . . , Xk) is a
random vector with finite moments of all orders. Then,

E [X1 · · ·Xk] =
∑

π=(π1,...,πb)

b∏
a=1

κ (Xπa) , (26)

where the sum is over all partitions of [k] and for each a ∈ [b] we’ve written

Xπa := (Xi, i ∈ πa) .

6. Cumulants are polynomials in moments. Specifically,

κ (X1, . . . , Xk) =
∑

π=(π1,...,πb)

(−1)b−1(b− 1)!
b∏

a=1

E

[∏
i∈πa

Xi

]
, (27)

where the sum is over all partitions of [k] and for each a ∈ [b] we’ve written

Xπa := (Xi, i ∈ πa) .

4.2 Gaussian Integration Lemma

Lemma 13 Fix r ≥ 1, a r × r matrix Σ and measurable function g : Rr → R that is
polynomially bounded:

∃r ≥ 1 s.t. sup
x∈Rr

∣∣(1 + ||x||)−r g(x)
∣∣ <∞.

If X is a standard Gaussian random vector in Rr, then the function

Σ 7→ E
[
g
(

Σ1/2X
)]

(28)

is smooth on the open set of strictly positive definite k×k matrices. Further, if g is a smooth
function and each of its derivatives is polynomially bounded, then the map (28) is extends
to a smooth function on the closed set of positive semi-definite matrices and, in particular,

∂

∂Σij
E
[
g
(

Σ1/2X
)]

= E
[
(∂i∂jg)(Σ1/2X)

]
. (29)

Proof On the open set of strictly positive definite matrices, the Gaussian density

Σ 7→ exp

[
−1

2
xTΣ−1x− 1

2
log det(2πΣ)

]
17
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is a smooth function of Σ with derivatives that are polynomials in x and the entries of
Σ,Σ−1. The assumption that f is polynomially bounded shows that we may differentiate
under the integral sign and see that that

E
[
g(Σ1/2X)

]
=

∫
Rr
g(x) exp

[
−1

2
xTΣ−1x− 1

2
log det(2πΣ)

]
dx

is indeed a smooth function of Σ. Suppose instead that g is a smooth function and that
it’s derivatives are all polynomially bounded. Suppose first that g is in fact a Schwartz
function. Then, writing ĝ for its Fourier transform we have

E
[
g(Σ1/2X)

]
=

∫
Rr
ĝ(ξ) exp

[
−1

2
ξTΣξ

]
dξ.

Since ĝ is also Schwartz, we may differentiate under the integral sign to obtain

∂

∂Σij
E
[
g(Σ1/2X)

]
= −

∫
Rr
ξiξj ĝ(ξ) exp

[
−1

2
ξTΣξ

]
dξ = E

[
∂xi∂xj

∣∣∣∣
x=Σ1/2X

g(x)

]
. (30)

Finally, if g is not Schwartz but is smooth with all derivatives being polynomially bounded,
we consider the convolution

gε(x) := (g ∗ ψε)(x), ψε(y) = exp

[
−||y||

2

2ε
− 1

2
log(2πε)

]
.

Then, gε is Schwartz for all ε > 0. Moreover, note that gε(Σ
1/2x) is also polynomially

bounded for any PSD matrix Σ. Specifically, for any fixed PSD matrix Σ0 we have for any
k ≥ 1

sup
ε∈[0,1]

sup
||Σ−Σ0||≤1

Σ PSD

sup
x∈Rr

∣∣∣(1 + ||x||)−kgε(Σ1/2x)
∣∣∣

= sup
ε∈[0,1]

sup
||Σ−Σ0||≤1

Σ PSD

sup
x∈Rr

∣∣∣∣(1 + ||x||)−k
∫
Rr
g(Σ1/2(x− y))ψε(y)dy

∣∣∣∣
≤ sup

ε∈[0,1]
sup

||Σ−Σ0||≤1
Σ PSD

sup
x∈Rr

{
(1 + ||x||)−k

∫
Rr

(
1 +

∣∣∣∣∣∣Σ1/2(x− y)
∣∣∣∣∣∣k)ψε(y)dy

}
<∞, (31)

Note that there exists K > 0 depending only k, r,Σ0 so that

sup
||Σ−Σ0||≤1

∣∣∣∣∣∣Σ1/2(x− y)
∣∣∣∣∣∣k ≤ K (1 +

∣∣∣∣∣∣Σ1/2
0

∣∣∣∣∣∣)k (||x||k + ||y||k).

Hence, since

sup
ε∈[0,1]

∫
Rr
||y||k ψε(y)dy <∞

18
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we find that

sup
ε∈[0,1]

sup
||Σ−Σ0||≤1

Σ PSD

sup
x∈Rr

∣∣∣(1 + ||x||)−kgε(Σ1/2x)
∣∣∣ <∞. (32)

The estimate above allows us to use dominate convergence to see that for any PSD Σ

E
[
g(Σ1/2X)

]
= lim

ε→0
E
[
gε(Σ

1/2X)
]
. (33)

To complete the proof we note that gε and ∂i∂jgε are both Schwartz for any positive ε.
Moreover, ∂i∂j∂k∂mgε satisfies (32). Hence, we conclude by applying (30) that for any PSD
matrix Σ0 there exists C > 0 so that

sup
||Σ−Σ0||≤1

Σ PSD

sup
ε∈[0,1]

∣∣∣E [gε(Σ1/2X)
]
− E

[
gε(Σ

1/2
0 X)

]
−
∑r

i,j=1 E
[
(∂i∂jgε)(Σ

1/2
0 X)

]
(Σ− Σ0)ij

∣∣∣
||Σ− Σ0||2

≤ sup
ε∈[0,1]

sup
||Σ−Σ0||≤1

∑
i,j,k,m=1,...,r

∣∣∣E [(∂i∂j∂k∂m)gε(Σ
1/2X)

]∣∣∣
≤ C.

Thus, if Σ− Σ0/ ||Σ− Σ0|| → Σ1, we find by applying (33) to ∂i∂jg that

lim
Σ→Σ0

E
[
g(Σ1/2X)

]
− E

[
g(Σ

1/2
0 X)

]
||Σ− Σ0||

= lim
Σ→Σ0

lim
ε→0

E
[
gε(Σ

1/2X)
]
− E

[
gε(Σ

1/2
0 X)

]
||Σ− Σ0||

= lim
Σ→Σ0

lim
ε→0


r∑

i,j=1

E
[
(∂i∂jgε(Σ

1/2
0 X))

] (Σ− Σ0)ij
||Σ− Σ0||


=

r∑
i,j=1

E
[
∂i∂jg(Σ

1/2
0 X)

]
(Σ1)ij .

This shows that (29) holds for any g that is smooth, completing the proof of Lemma 13.

5. Proof of Theorem 3

Let us first recall the notation. We fix r ≥ 1 and assume that σ : R→ R satisfies assumption
1 with this value of r. We also fix a finite collection xA = {xα, α ∈ A} ⊆ Rn0 of distinct
network inputs and p directional derivatives d1, . . . , dp as in (6). We denote by

N(p, r) = # {J = (j1, . . . , jp) ∈ Np | j1 + · · ·+ jp ≤ r} ,

which computes the number of possible derivatives of order at most r in the p directional
derivatives dj . We also denote by F (`) the sigma algebra generated by the weights and
biases in layers up to and including `. The starting point for proving Theorem 3 is the
following simple but fundamental observation.
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Lemma 14 For each ` ≥ 0, conditional on F (`),{(
DJ
αz

(`+1)
i;α , α ∈ A, |J | ≤ r

)}n`+1

i=1

is a collection of n`+1 iid centered Gaussians of dimension N(p, r).

Proof The defining recursion (1) of a fully connected network yields for each α, J

DJ
αz

(`+1)
i;α = DJ

α

b(`+1)
i +

n∑̀
j=1

W
(`+1)
ij σ

(
z

(`)
j;α

) = δ|J |=0b
(`+1)
i +

n∑̀
j=1

W
(`+1)
ij DJ

ασ
(
z

(`)
j;α

)
.

(34)

Note that DJ
ασ(z(`)

j;α) are measurable with respect to F (`). The conclusion now follows since

the weights W (`+1)

ij , j = 1 . . . , n` and bias b(`+1)

i are centered Gaussians and are independent
for different i.

Thus, the structure of z(`+1)
α and its derivatives is always that of a Gaussian field after

conditioning on F (`) . To ease the notation in what comes given f : R|A|×N(n0,r) → R, let us
abbreviate

f
(
z

(`)
j;A

)
:= f

(
DJ
αz

(`)
j;α, α ∈ A, |J | ≤ r

)
, j ∈ [n`].

Next, we remind the reader that given f : R|A|×N(n0,r) → R, which is measurable and

polynomially bounded, the corresponding collective observable O(`)
f at layer ` is

O(`)
f =

1

n`

n∑̀
j=1

f
(
z

(`)
j;A

)
and that the statement (67) in Proposition 21 ensures

sup
n≥1

E
[∣∣∣O(`)

f

∣∣∣] <∞. (35)

Recall also our notation for the conditional covariance

Σ(`)
α1α2

:= Cov
(
z

(`+1)
i;α1

, z
(`+1)
i;α2

| F (`)
)

= Cb +
CW
n`

n∑̀
j=1

σ
(
z

(`)
j;α1

)
σ
(
z

(`)
j;α2

)
and note that both it and its derivatives

DJ1
α1
DJ2
α2

Σ(`)
α1α2

= Cov
(
DJ1
α1
z

(`+1)
i;α1

, DJ2
α2
z

(`+1)
i;α2

| F (`)
)

= DJ1
α1
DJ2
α2

Cb +
CW
n`

n∑̀
j=1

σ
(
z

(`)
j;α1

)
σ
(
z

(`)
j;α2

)
are collective observables at layer `. Our first application of Lemma 14 is the following

reduction of the study of cumulants of DJ
αz

(`+1)
i;α to the cumulants of certain collective

observables.
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Proposition 15 Fix k, ` ≥ 1 and p-dimensional multi-indices J1, . . . , Jk with |Ji| ≤ r. If k
is odd, then

κ
(
DJ1
α1
z

(`+1)
i1;α1

, . . . , DJk
αk
z

(`+1)
ik;αk

)
= 0

In contrast, if k is even

κ
(
DJ1
α1
z

(`+1)
i1;α1

, . . . , DJk
αk
z

(`+1)
ik;αk

)
= finite sums of κ

(
O(`)
f1
, . . . ,O(`)

fk/2

)
,

where O(`)
fj

are collective observables of the form

DJ1
α1
DJ2
α2

Σ(`)
α1α2

, |J1| , |J2| ≤ r. (36)

Proof Using (22) and recalling that F (`) is the sigma algebra generated by weights and

biases in layers up to and including `, we have that κ
(
DJ1
α1
z

(`+1)
i1;α1

, . . . , DJk
αk
z

(`+1)
ik;αk

)
equals

∑
π=(π1,...,πB)

κ

(
κ

((
DJz(`+1)

)
π1

∣∣F (`)

)
, . . . , κ

((
DJz(`+1)

)
πB

∣∣F (`)

))
, (37)

where the sum is over partitions π of [k] and for b = 1, . . . , B we’ve abbreviated(
DJz(`+1)

)
πb

:=
(
DJt
αtz

(`+1)
it;αt

, t ∈ πb
)
.

By Lemma 14, {(DJ
αz

(`+1)
i;α , α ∈ A, |J | ≤ d), i = 1, . . . , n`+1} are iid centered Gaussians

conditional on F (`). Hence, by the properties (23) and (24) and (25) from Proposition 12,
in the sum over partitions above, a term is non-zero only if

∀b ∈ [B], |πb| = 2 and iπb(1) = iπb(2)

This proves that κ
(
DJ1z

(`+1)
i1;α1

, . . . , DJkz
(`+1)
ik;αk

)
vanishes if k is odd. To treat the case when

k is even observe that by (34)

κ
(
DJ1z

(`+1)
i1;α1

, DJ2z
(`+1)
i2;α2

∣∣F (`)
)

= δi1i2D
J1
α1
DJ2
α2

Σ(`)
α1α2

.

Substituting this into (37) completes the proof.

When k = 2, Proposition 15 and our assumption (1) shows that for each ` ≥ 1, any
i1, i2 ∈ [n`+1], α ∈ A, and multi-indices J1, J2 of order at most d, there exists a polynomially
bounded function f : R|A|×N(n0,d) → R for which

κ
(
DJ1
α1
z

(`+1)
i1;α1

, DJ2
α2
z

(`+1)
i2;α2

)
= E

[
O(`)
f

]
In light of (35) this proves Theorem 3 when k = 2. Further, since the cumulant of 2 or more
random variables is shift-invariant, we may assume for k ≥ 3 that the collective observables

DJ1
α1
DJ2
α2

Σ
(`)
α1α2 in Proposition 15 are replaced by their zero mean versions:

∆J1,J2,(`)
α1α2

:= DJ1
α1
DJ2
α2

Σ(`)
α1α2

− E
[
DJ1
α1
DJ2
α2

Σ(`)
α1α2

]
. (38)

Hence, Theorem 3 is a special case of the following result.
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Theorem 16 Fix k,m ≥ 1. Consider any m-tuple F = (f1, . . . , fm) consisting of measur-
able, functions

fi : R|A|×N(n0,r) → R, i = 1, . . . ,m

that are polynomially bounded and satisfy

E
[
O(`)
fi

]
= E

[
fi

(
z

(`)
1;A

)]
= 0, i = 1, . . . ,m.

Define the m−tuple of collective observables

−→
O (`)
F :=

(
O(`)
fi
, i = 1, . . . ,m

)
.

Consider further any measurable polynomially bounded functions

gj : Rm → R, j = 1, . . . , k.

which are smooth in a neighborhood of 0. If fi and σ are in fact smooth, then, for every
` ≥ 1

sup
n≥1

∣∣∣nk−1κ
(
g1

(−→
O (`)
F

)
, . . . , gk

(−→
O (`)
F

))∣∣∣ <∞ (39)

Moreover, (39) holds without the assumption that fi, σ are smooth provided that for each `

the vector of iterated directional derivatives (DJ
αz

(`)
i;α, |J | ≤ r, α ∈ A) of order at most r is

non-degenerate in the sense of (7).

Proof Our starting point is a reduction of Theorem 16 to the case when gj are polynomials.
This is related to a technique called the delta method in some parts of the mathematical
statistics literature Ver Hoef (2012).

Proposition 17 (Polynomials are Enough for Theorem 16) Fix m ≥ 1 and suppose
that for each n ≥ 1 we have an m−tuple Xn = (Xn,1, . . . , Xn,m) of mean 0 random variables
that possess bounded moments of all orders:

sup
n≥1

∣∣∣E [Xq1
n,1 · · ·X

qm
n,m

]∣∣∣ <∞, ∀ q1, . . . , qm ≥ 0. (40)

Suppose for any given polynomials p1, . . . , pk in m variables we have

sup
n≥1

∣∣∣nk−1κ (p1(Xn), . . . , pk(Xn))
∣∣∣ <∞. (41)

Then, for any measurable, polynomially bounded functions gj : Rm → R, j = 1, . . . , k, which
are smooth in some fixed neighborhood of 0

sup
n≥1

∣∣∣nk−1κ (g1 (Xn) , . . . , gk (Xn))
∣∣∣ <∞. (42)

Proof We begin with the following simple Lemma, which allows us to translate between
the cumulants bounds (41) and high probability bounds.
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Lemma 18 For any q ≥ 1

sup
n≥1

sup
1≤i≤m

∣∣∣nd q2 eE [Xq
i,n

]∣∣∣ <∞.
Proof We have by property (26) from Proposition 12 that

E
[
Xq
i;n

]
=

∑
π=(π1,...,πB)
π∈P (m)

B∏
b=1

κ
(
Xi;n, . . . , Xi;n︸ ︷︷ ︸
|πb| times

)
.

Since by assumption Xi;n has mean 0, we have

κ(Xi;n) = E [Xi;n] = 0.

Thus, the only partitions π = (π1, . . . , πB) ∈ S(m) that give rise to non-zero terms in the
expression above must have B ≤ b q2c. Moreover, for any such partition, we have

⌈q
2

⌉
= q −

⌊q
2

⌋
= −

⌊q
2

⌋
+

B∑
b=1

|πb| ≤
B∑
b=1

(|πb| − 1) .

Hence, we find

sup
n≥1

∣∣∣nd q2 eE [Xq
i;n

]∣∣∣ ≤ ∑
π=(π1,...,πB)
π∈P (m), |πb|≥2

B∏
b=1

sup
n≥1

∣∣∣∣∣∣∣n|πb|−1κ
(
Xi;n, . . . , Xi;n︸ ︷︷ ︸
|πb| times

)∣∣∣∣∣∣∣ <∞,
where the final inequality follows from the assumption (41).

Applying Markov’s inequality and Lemma 18 shows that for any q ≥ 1 we have

sup
n≥1

nqP (Scn) <∞, Sn :=
{
|Xi;n| ≤ n−1/4, i = 1, . . . ,m

}
. (43)

This localization estimate allows us to replace each gi by its Taylor expansion around 0.
Indeed, note that

κ (g1(Xn), . . . , gk(Xn)) = P (E [g1(Xn)q1 · · · gk(Xn)qk ] , q1 + · · ·+ qk ≤ k)

for some universal polynomial P evaluated at the mixed moments of Xn (the formula for this
polynomial is given in (27) but is not important). Moreover, using the growth assumption
(40) on X and the fact that gi are polynomially bounded we find that

sup
n≥1

E [g(Xn)q1 · · · gk(Xn)qk ] <∞, ∀ q1, . . . , qk ≥ 1. (44)

This, in combination with the localization estimate (43) applied with q = k − 1 yields

κ (g1(Xn), . . . , gk(Xn)) = P (E [1Sng1(Xn)q1 · · · gk(Xn)qm ] , q1 + · · ·+ qm ≤ k)+O(n−k+1).
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Note that for n sufficiently large, on the event Sn, the argument Xn is in any fixed neigh-
borhood of 0. Hence, we may write

gj(Xn) = pj(Xn) +O(n−k+1),

where pj represents the j−th order Taylor expansion of gj around 0 with j sufficiently large
(say bigger than 4k) and the constant in the error term is uniformly bounded. This yields

κ (g1(Xn), . . . , gk(Xn)) = P (E [1Snp1(Xn)q1 · · · pk(Xn)qm ] , q1 + · · ·+ qm ≤ k)+O(n−k+1).

Finally, using the mixed moment estimates (40) and the localization estimate (43), we
conclude

κ (g1(Xn), . . . , gk(Xn)) = P (E [p1(Xn)q1 · · · pk(Xn)qm ] , q1 + · · ·+ qm ≤ k) +O(n−k+1)

= κ (p1(Xn), . . . , pk(Xn)) +O(n−k+1).

Recalling (41) completes the proof.

Proposition 17 shows that, in establishing the conclusion (39) of Theorem 16, it is
sufficient to assume that gj are polynomials. The remainder of the proof of Theorem 16
is by induction on `, starting with ` = 1. In view of Proposition 17, the following result
establishes the base case.

Proposition 19 (Base Case: Theorem 16 holds for polynomials at ` = 1) Fix k,m ≥
1 and suppose fi, i = 1, . . . ,m are as in the statement of Theorem 16. Then, if p1, . . . , pk
are any polynomials in m variables, we have

sup
n≥1

∣∣∣nk−1κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))∣∣∣ <∞.
Proof Since cumulants are multi-linear, we may and shall assume that pa are monomials:

pa(x) = xQ
(a)

:= x
q
(a)
1

1 · · ·xq
(a)
m
m , x = (x1, . . . , xm) , Q(a) =

(
q

(a)
1 , . . . , q(a)

m

)
. (45)

Recall that

O(1)
fi

:= n−1
1

n1∑
j=1

fi

(
z

(1)
j;A

)
.

Therefore, writing q(a) := q
(a)
1 + · · ·+ q

(a)
m we find

pa

(−→
O (1)
F

)
= n−q

(a)

1

∑
J(a)

fJ(a) , fJ(a) :=
m∏
i=1

q
(a)
i∏
q=1

fi
(
z

(1)

j
(a)
q;i ;A

)
,

where the sum is over tuples of multi-indices

J (a) =
(
J

(a)
1 , . . . , J (a)

m

)
, J

(a)
i =

(
j

(a)
q;i ∈ [n1], i ∈ [m], q ∈ [q

(a)
i ]
)
. (46)
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Hence, using that cumulants are multi-linear (see (24)), we obtain

κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))
= n

−(q(1)+···+q(k))
1

∑
J(1),...,J(k)

κ (fJ(1) , . . . , fJ(k)) ,

where the sum extends over ordered collections
(
J (a), 1 ≤ a ≤ k

)
of multi-indices as in (46).

The expression on the right hand side can be interpreted as an average. Namely, we can

think of the indices j
(a)
q;i ∈ [n1] are chosen uniformly from [n1] and independently for all

i, q, a. Writing E for the average with respect to this distribution, we obtain

κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))
= E [κ (fJ(1) , . . . , fJ(k))] .

Our goal is to show that this average is small. To quantify this, let us associate to each
collection

(
J (a), a ∈ [k]

)
a graph

G
(
J (a), a ∈ [k]

)
=
(

[k], E
(
J (a), a ∈ [k]

))
, (47)

with vertex set [k] and edge set defined by

(a, a′) ∈ E
(
J (a), a ∈ [k]

)
⇐⇒ ∃i, i′ ∈ [m], q ∈ [q

(a)
i ], q′ ∈ [q

(a′)
i′ ] s.t. j

(a)
q;i = j

(a′)
q′;i′ .

The key point is that in light of the vanishing property (23) of cumulants and the fact that
neurons at layer 1 are independent

G
(
J (a), a ∈ [k]

)
disconnected =⇒ κ

(
f

(1)

J(1) , . . . , f
(1)

J(k)

)
= 0.

Hence,

κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))
= E

[
1{G(J(a), a∈[k]) connected}κ

(
f

(1)

J(1) , . . . , f
(1)

J(k)

)]
.

Since fi are assumed to be polynomially bounded and the distribution of the neuron pre-
activations z(1)

i;α is that of centered Gaussians with mean 0 and covariance

Cov
(
z(1)

i1;α1
, z(1)

i2;α2

)
= δi1i2

Cb +
CW
n0

∑
j=1n0

xj;α1xj;α2

 ,

we have for any fixed k that

sup
n≥1

sup
J(1),...,J(a)

∣∣∣κ(f (1)

J(1) , . . . , f
(1)

J(k)

)∣∣∣ <∞.
Hence,

κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))
= O

(
P
(
G
(
J (a), a ∈ [k]

)
connected

))
,
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where P is the probability measure associated to our random draw of J (1), . . . , J (k). To

complete the proof, note that since m, q
(a)
i are fixed, by a simple union bound, we obtain

P
(
G
(
J (a), a ∈ [k′]

)
connected

∣∣∣∣ G (J (a), a ∈ [k′ − 1]
)

connected

)
= O(n−1).

Hence,

P
(
G
(
J (a), a ∈ [k]

)
connected

)
=

k∏
k′=2

P
(
G
(
J (a), a ∈ [k′]

)
connected

∣∣∣∣ G (J (a), a ∈ [k′ − 1]
)

connected

)
= O(n−k+1). (48)

Thus,

κ
(
p1

(−→
O (1)
F

)
, . . . , pk

(−→
O (1)
F

))
= O(n−k+1),

as desired.

Propositions 17 and 19 together show that the conclusion (39) of Theorem 16 holds
at layer 1. In conjunction with Proposition 17, the following result establishes that if the
conclusion (39) of Theorem 16 holds at some layer ` ≥ 1 then it also holds at layer ` + 1.
This will complete the proof by inductive of Theorem 16.

Proposition 20 (Inductive Step: Reducing to smooth cumulants) Fix ` ≥ 1.

Case 1: Suppose that σ is smooth. Assume that for any collection

F ′ =
(
f ′i : R|A|×N(n0,r) → R, i = 1, . . . ,m

)
of smooth and polynomially bounded functions and any gj as in the statement of Theorem
16 the conclusion (39) of Theorem 16 holds at layer `:

sup
n≥1

∣∣∣nk−1κ
(
g1

(−→
O (`)
F ′

)
, . . . , gk

(−→
O (`)
F ′

))∣∣∣ <∞.
Then, if p1, . . . , pk are any polynomials in m variables, and F = (fi, i = 1, . . . ,m) is an
arbitrary collection of smooth and polynomially bounded functions fi : R|A|×N(n0,r) → R,
then

sup
n≥1

∣∣∣nk−1κ
(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

))∣∣∣ <∞.
Case 2: Suppose σ is not smooth but satisfies Assumption 1 and that (DJ

αz
(`)
i;α, α ∈ A, |J | ≤

r) is non-degenerate in the infinite width in the sense of (7). Assume that for any collection

F ′ =
(
f ′i : R|A|×N(n0,r) → R, i = 1, . . . ,m

)
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of measurable and polynomially bounded functions and any gj as in the statement of Theorem
16 the conclusion (39) of Theorem 16 holds at layer `:

sup
n≥1

∣∣∣nk−1κ
(
g1

(−→
O (`)
F ′

)
, . . . , gk

(−→
O (`)
F ′

))∣∣∣ <∞.
Then, if p1, . . . , pk are any polynomials in m variables, and F = (fi, i = 1, . . . ,m) is an
arbitrary collection of measurable and polynomially bounded functions fi : R|A|×N(n0,d) → R,
then

sup
n≥1

∣∣∣nk−1κ
(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

))∣∣∣ <∞.
Proof The proof of Proposition 20 is similar but somewhat more involved than that of
Proposition 19. Moreover, the two cases are proved in essentially the same way, except that
we will employ the different cases in Lemma 13. We give the details in the case when σ is
smooth and indicate where the proof is modified slightly to handle the non-smooth case.

To start, as in the proof of Proposition 19, note that since cumulants are multi-linear
(see (24)), it is enough to assume that pj are monomials. Thus, borrowing the notation
from the proof of Proposition 19 (see starting (45)), we find

κ
(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

))
= n

−(q(1)+···+q(a))
`+1

∑
J(1),...,J(k)

κ
(
f

(`+1)

J(1) , . . . , f
(`+1)

J(k)

)
,

where

f
(`+1)

J(a) :=
m∏
i=1

q
(a)
i∏
q=1

f
(`+1)

j
(a)
α

, f
(`+1)
j := f

(
z

(`+1)
j;A

)
.

Note that, as in Proposition 21, the polynomially bounded assumption on fj and the non-
linearity σ together with the Gaussianity of weights and biases show that

sup
n≥1

∣∣∣κ(f (`+1)

J(1) , . . . , f
(`+1)

J(k)

)∣∣∣ <∞. (49)

Using the law of total cumulance (22), we find that κ
(
p1(
−→
O (`+1)
F ), . . . , pk(

−→
O (`+1)
F )

)
equals

∑
π=(π1,...,πB)

n
−(q(1)+···+q(a))
`+1

∑
J(1),...,J(k)

κ
(
κ
(
f

(`+1)

J(π1)
| F (`)

)
, . . . , κ

(
f

(`+1)

J(πB) | F (`)
))

,

where π is any partition of [k] and

fJ(πb) := (fJ(a) , a ∈ πb) .

Just as in the proof of Proposition 19, we may interpret the sum over J (1), . . . , J (k) as an

average over the distribution in which j
(a)
q;i are drawn iid uniformly on [n`+1]. Writing E for

averages with respect to this distribution yields

κ
(
p1(
−→
O (`+1)
F ), . . . , pk(

−→
O (`+1)
F )

)
=

∑
π=(π1,...,πb)

E
[
κ
(
κ
(
f

(`+1)

J(π1)
| F (`)

)
, . . . , κ

(
f

(`+1)

J(πb)
| F (`)

))]
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As in (47), we may associate to each collection J (πt) the graph G
(
J (πt)

)
. Recall that by

Lemma 14, the neurons pre-activations DJ
αz

(`+1)
i;α in layer `+ 1 are independent for different

i conditional on F (`). Hence, in view of the vanishing property (23) of cumulants, we obtain

that κ
(
p1(
−→
O (`+1)
F ), . . . , pk(

−→
O (`+1)
F )

)
equals∑

π=(π1,...,πB)

E
[
1{G(J(πb)) connected ∀b∈[B]}κ

(
κ
(
f

(`+1)

J(π1)
| F (`)

)
, . . . , κ

(
f

(`+1)

J(πB) | F (`)
))]

Since we’ve assumed that fi are smooth and polynomially bounded, Lemma 13 shows that

for each b ∈ [B] = {1, . . . , B} the conditional cumulant κ
(
f

(`+1)

J(πb)
| z(`)

)
is a smooth function

of the centered entriesDJ1
α1
DJ2
α2

∆
(`)
α1α2 of the conditional covariance of

(
DJ
αz

(`+1)
i;A , α ∈ A, |J | ≤ r

)
given F (`). Thus, since these entries are collective observables at layer ` we may apply the
inductive hypothesis of Case 1 to find that

κ
(
p1(
−→
O (`+1)
F ), . . . , pk(

−→
O (`+1)
F )

)
=

∑
π=(π1,...,πB)

P
[
G
(
J (πb)

)
connected ∀b ∈ [B]

]
O(n−B+1).

Combining this with the estimate (48) shows

κ
(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

))
=

∑
π=(π1,...,πB)

O(n−B+1)
B∏
b=1

O(n−|πb|+1) = O(n−k+1),

as desired. The proof in Case 2 is almost identical. The only difference is that, we must
introduce the event

Sn =
{∣∣∣∆J1J2,(`)

α1α2

∣∣∣ < n−1/4
}
. (50)

Precisely as in the proof of Lemma 18 we find that

P(Scn) = O(n−∞).

Hence,

κ
(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

))
= κ

(
p1

(−→
O (`+1)
F

)
, . . . , pk

(−→
O (`+1)
F

)
| Sn

)
+O(n−∞),

where we’ve implicitly used (49). Moreover, since in Case 2 we assume that the vector(
DJ
αz

(`+1)

i;α , |J | ≤ r, α ∈ A
)

is non-degenerate in the infinite width limit in the sense of (7),

we see that for n sufficiently large the covariance of
(
DJ
αz

(`+1)

i;α , |J | ≤ r, α ∈ A
)

given F (`),

which is the matrix with entries

E
[
DJ1
α1
DJ2
α2

Σ(`)
α1α2

]
, α1, α2 ∈ A, |J1| , |J2| ≤ r

is also non-degenerate. On the event Sn, the conditional covariance of
(
DJ
αz

(`+1)

i;α , |J | ≤ r, α ∈ A
)

given F (`), which is a matrix with entries DJ1
α1
DJ2
α2

Σ
(`)
α1α2 , is also non-degenerate for all n

sufficiently large. Hence, we again conclude by Lemma 13 that conditional on Sn (which is
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measurable with respect to F (`)) for each b ∈ [B] the conditional cumulant κ
(
f

(`+1)

J(πb)
| F (`)

)
is a smooth function of DJ1

α1
DJ2
α2

Σ
(`)
α1α2 , which are collective observables at layer `. The re-

mainder of the proof now proceeds in the same way as for Case 1.

6. Proof of Theorem 4

Let us recall the notation. We consider a random depth L neural network with layer widths
n0, . . . , nL+1 with

∃c, C > 0 s.t. cn ≤ n1, . . . , nL ≤ Cn,

and a non-linearity σ that satisfies (1) for some r ≥ 1. We also fix p ≥ 1 directional deriva-
tives d1, . . . , dp as in (6) and the corresponding vectors of iterated directional derivatives

D≤rz
(`+1)
i,A :=

(
DJ
αz

(`+1)
i;α , α ∈ A, J = (j1, . . . , jp) ∈ Np, |J | ≤ r

)
.

Theorem 4 concerns, for each fixed m, ` ≥ 1, the expectation of a function f of of the form

f
(
D≤rz

(`+1)
1,A , . . . , D≤rz

(`+1)
m,A

)
,

which depends on all directional derivatives in di of order at most r in any m neuron pre-
activations at layer ` + 1. We seek to show that if f is both continuous and a tempered
distribution, then for all q∗ ≥ 1 we have

E
[
f
(
D≤rz

(`+1)
1,A , . . . , D≤rz

(`+1)
m,A

)]
= O(n−q∗−1)+ (51)

+

2q∗∑
q=0

(−1)q

2qq!
E
[〈( ∑

|J |,|J ′|≤r
α,α′∈A

∆
JJ ′,(`)
αα′

m∑
j=1

∂DJαzj;α∂DJ′
α′zj;α′

)q
f
(
D≤rA z1, . . . , D

≤r
A zm

)〉
κ(`)

]
.

We remind the reader the notation in this formula. First, we continue to denoted by 〈·〉κ(`)
the expectation with respect to a collection of centered jointly Gaussian random vectors

D≤rA zi =
(
DJ
αzi;α, α ∈ A, |J | ≤ r

)
with the same covariance

Cov
(
DJ1
α1
zi1;α1 , D

J2
α2
zi2;α2

)
= Cov

(
DJ1
α1
z

(`)
i1;α1

, DJ2
α2
z

(`)
i2;α2

)
= δi1i2κ

J1J2,(`)
α1α2

as the true vectors of derivatives D≤rA z(`)

i;A in each component separately but zero covariance
for different i. Second,

κ(`) = E
[
Σ≤r,(`)

]
, Σ≤r,(`) =

(
DJ
αD

J ′
α′Σ

(`)
αα′

)
|J |,|J ′|≤r
α,α′∈A

, (52)
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is an average of the conditional covariances

DJ
αD

J ′
α′Σ

(`)
αα′ := Cov

(
DJ
αz

(`+1)
1;α , DJ ′

α′z
(`+1)
1;α′ | F

(`)
)

= DJ
αD

J ′
α′

Cb +
CW
n`

n∑̀
j=1

σ
(
z

(`)
j;α

)
σ
(
z

(`)
j;α′

) .

Finally, ∆
JJ ′,(`)
αα′ measures the corresponding fluctuations:

∆
JJ ′,(`)
αα′ := DJ

αD
J ′
α′Σ

(`)
αα′ − E

[
DJ
αD

J ′
α′Σ

(`)
αα′

]
,

and we collect ∆
JJ ′,(`)
αα′ into a matrix as follows:

∆≤r,(`) :=
(

∆
JJ ′,(`)
αα′

)
|J |,|J ′|≤r
α,α′∈A

.

Our first step is to note that since the weights and biases in layer ` + 1 are Gaussian,
independent of one another, and independent of the sigma algebra F (`) generated by all
prior weights and biases, we may write

E
[
f
(
D≤rz

(`+1)
1;A , . . . , D≤rz

(`+1)
m;A

)]
= E

[
f

((
Σ≤r,(`)

)1/2
Z1, . . . ,

(
Σ≤r,(`)

)1/2
Zm

)]
,

where Z1, . . . , Zm are standard Gaussians which are independent of one another and of
Σ≤r,(`). Moreover, because Σ≤r,(`) is PSD the relation (52) ensures

ker(κ(`)) ⊆ ker(Σ≤r,(`)) a.s.,

where we recall our standing notation that κ(`) = E
[
Σ≤r, (`)

]
. By decomposing

Zi = Zi;|| + Zi;⊥, Zi;|| ∈ ker(κ(`)), Zi;⊥ ∈ ker(κ(`))⊥

and writing Σ
≤r,(`)
⊥ for the compression of Σ≤r,(`) onto ker(κ(`))⊥ we obtain by a slight abuse

of notation that

E
[
f
(
D≤rz

(`+1)
1;A , . . . , D≤rz

(`+1)
m;A

)]
= E

[
f

((
Σ
≤r,(`)
⊥

)1/2
Z1,⊥, . . . ,

(
Σ
≤r,(`)
⊥

)1/2
Zm,⊥

)]
.

The key point is now that Zi;⊥ are standard Gaussian vectors supported on a subspace

on which κ(`) is strictly positive definite and that Σ
≤r,(`)
⊥ maps this subspace into itself.

Consider the event

Sn =
{∣∣∣∆JJ ′,(`)

αα′

∣∣∣ < n−1/4, α, α′ ∈ A, |J | ,
∣∣J ′∣∣ ≤ r} =

{∣∣∣∣∣∣κ(`) − Σ≤r,(`)
∣∣∣∣∣∣
∞
< n−1/4

}
.

Note that, by applying Theorem 16 and arguing exactly as in Lemma 18, we find that since

∆
JJ ′,(`)
αα′ are centered collective observables,

∀q ≥ 1 ∃Cq > 0 s.t. P(Scn) ≤ Cq · n−q,
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which we summarize by writing that P(Scn) = O(n−∞). Since f is a tempered distribution
and a continuous function, its expectation against any Gaussian is finite and we therefore
have

E
[
f
(
D≤rz

(`+1)
1;A , . . . , D≤rz

(`+1)
m;A

)]
= E

[
1Snf

((
Σ
≤r,(`)
⊥

)1/2
Z1,⊥, . . . ,

(
Σ
≤r,(`)
⊥

)1/2
Zm,⊥

)]
,

plus an error of size O(n−∞). Let us denote by f̂(ξ1, . . . , ξm) the Fourier transform of f
and abbreviate

ξ = (ξ1, . . . , ξm) , ||ξ||2 :=
m∑
i=1

||ξi||2 , dξ := dξ1 · · · dξm

For a C > 0 that we will choose later let us write

E
[
1Snf

((
Σ
≤r,(`)
⊥

)1/2
Z1,⊥, . . . ,

(
Σ
≤r,(`)
⊥

)1/2
Zm,⊥

)]
=

∫
f̂(ξ)E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]]
dξ

=

∫
||ξ||2>C log(n)

f̂(ξ)E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]]
dξ

+

∫
||ξ||2≤C log(n)

f̂(ξ)E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]]
dξ

=: IC + IIC .

Let us now check that
∀q ≥ 1 ∃C = C(q) s.t. IC = O(n−q). (53)

By the fundamental structure theorem of tempered distributions (see e.g. Friedlander et al.
(1998)), there exist bounded continuous function uI,J and an integer o(f), called the order
of f , such that

f̂(ξ) =
∑
I,J

|I,J |≤o(f)

ξIDJuI,J(ξ), (54)

where where the derivatives DJ with respect to ξ1, . . . , ξm are defined in the weak sense and
ξ raised to a multi-index I denotes the corresponding monomial. Thus, we may use (54) to
write

|IC | =

∣∣∣∣∣∣∣∣
∑
I,J

|I|,|J |≤o(f)

∫
||ξ||2>C log(n)

uI,J(ξ)DJ

(
ξIE

[
1Sn exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]])
dξ

∣∣∣∣∣∣∣∣
≤

∑
I,J

|I|,|J |≤o(f)

||uI,J ||∞
∫
||ξ||2>C log(n)

E

[
1Sn

∣∣po(f)(ξ)
∣∣ exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]]
dξ,
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where po(f) is some polynomial of degree at most 2o(f) in the variables ξ1, . . . , ξm in which

the coefficients are themselves polynomials the entries of Σ
≤r,(`)
⊥ . On the event Sn, entries

of Σ
≤r,(`)
⊥ are uniformly bounded in n since by Theorem 16 the entries of κ(`) are uniformly

bounded in n and the event Sn guarantees that the difference κ(`) − Σ≤r,(`) is small for all
large n. In particular, for some T > 0 we may write

1Sn
∣∣po(f) (ξ1, . . . , ξm)

∣∣ ≤ 1SnT
(

1 + ||ξ||2
)o(f)

.

Note moreover that for all n sufficiently large, on the event Sn, we have that for some λ0 > 0
and any ξ ∈ ker(κ(`))⊥ that

1

2
ξTΣ

≤r,(`)
⊥ ξ ≥ λ0 ||ξ||2 .

Hence, passing to polar coordinates, we find that

IC ≤ T
∑
I,J

|I|,|J |≤o(f)

||uI,J ||∞
∫
r2>C log(n)

(1 + r2)o(f)+mN(r,p)|A|−1e−λ0r
2
dr,

where we recall that N(r, p) is the number of derivatives of order at most r in the p vector
fields d1, . . . , dp. Thus, we conclude that that for any q ≥ 1 there indeed exists C =
C(q), C ′ = C ′(q) such that

IC ≤ C ′n−q,

confirming (53). We therefore define C := C(q∗ + 1) and rewrite IIC as follows:

IIC =

∫
||ξ||2≤C log(n)

f̂(ξ)E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi Σ
≤r,(`)
⊥ ξi

]]
dξ

=

∫
||ξ||2≤C log(n)

f̂(ξ) exp

[
−1

2

m∑
i=1

ξTi κ
(`)ξi

]
E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi ∆≤r,(`)ξi

]]
dξ.

Note that on the event Sn there exists T > 0 so that

sup
||ξ||2≤C log(n)

m∑
i=1

ξTi ∆
≤r,(`)
A ξi ≤ CTm |A|2

log(n)

n1/4
.

Hence, we may choose Q∗ = Q∗(q∗, C, |A|) ≥ 1 so that

E

[
1Sn exp

[
−1

2

m∑
i=1

ξTi ∆
≤r,(`)
A ξi

]]
= E

1Sn

Q∗∑
q=0

(−1)q

2qq!

(
m∑
i=1

ξTi ∆
≤r,(`)
A ξi

)q+O(n−q∗−1).

(55)

We thus conclude that IIC equals

Q∗∑
q=0

(−1)q

2qq!

∫
||ξ||2≤C log(n)

E

[(
m∑
i=1

ξTi ∆
≤r,(`)
A ξi

)q]
f̂(ξ) exp

[
−1

2

m∑
i=1

ξTi κ
(`)ξi

]
dξ
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plus an error of size O(n−q∗−1). Note also that by applying Lemma 18 we have

E

[
1Sn

(
m∑
i=1

ξTi ∆
(`)
A ξi

)q]
= O

(
||ξ||2q n−d

q
2
e
)
.

Hence, since f̂ is a tempered distribution and κ(`) is strictly positive definite on ker(κ(`))⊥,
the terms corresponding to 2q∗ + 1 ≤ q ≤ Q∗ in (55) are of size O(n−q∗−1). Moreover,
applying the same reasoning as we used to bound IC , by incurring another error of order
O(n−q∗−1) we may drop the restriction in IIC that ||ξ||2 ≤ C

√
log(n). All together, IIC

therefore equals

2q∗∑
q=0

(−1)q

2qq!

∫
E

[(
m∑
i=1

ξTi ∆
≤r,(`)
A ξi

)q]
f̂(ξ) exp

[
−1

2

m∑
i=1

ξTi κ
(`)ξi

]
dξ.

plus an error of size O(n−q∗−1). Using that multiplication by components of ξi acting
on the Fourier transform corresponds to differentiation of with respect to the variables
{DJ

αzi;α, α ∈ A, |J | ≤ r}, yields the desired expression (51) and completes the proof of
Theorem 4. �

7. Proof of Corollary 6

The goal of this section is to derive recursions for

κ
(`+1)
2k;α = κk

(
∆(`)
αα, . . . ,∆

(`)
αα︸ ︷︷ ︸

k times

)
,

where we defined ∆(`)
αα in (11). Let us write

Xj := σ
(
z

(`)
j;α

)2
− E

[
σ
(
z

(`)
j;α

)2
]

so that

∆(`)
αα =

CW
n`

n∑̀
j=1

Xj .
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By symmetry, we then have

κ
(`+1)
4;α = E

[(
∆(`)
αα

)2
]

=
C2
W

n`
E
[
X2

1

]
+ C2

W

(
1− n−1

`

)
E [X1X2] (56)

κ
(`+1)
6;α = E

[(
∆(`)
αα

)3
]

=
C3
W

n2
`

E
[
X3

1

]
+

3C3
W

n`

(
1− 1

n`

)
E
[
X2

1X2

]
+ C3

W

(
1− 1

n`

)(
1− 2

n`

)
E [X1X2X3]

(57)

κ
(`+1)
8;α = E

[(
∆(`)
αα

)4
]
− 3E

[(
∆(`)
αα

)2
]2

=
C4
W

n3
`

(
E
[
X4

1

]
− 3E

[
X2

1

]2)
+
C4
W

n2
`

(
1− 1

n`

)[(
4

2

){
E
[
X2

1X2

]2 − E
[
X2

1

]
E
[
X2

2

]
− 2E [X1X2]2

}
+

(
4

1

){
E
[
X3

1X2

]
− E

[
X3

1

]
E [X2]− 2E

[
X2

1

]
E [X1X2]

}]
+
C4
W

n`

(
1− 1

n`

)(
1− 2

n`

)(
4

2

){
E
[
X2

1X2X3

]
− E

[
X2

1

]
E [X1X2]− 2E [X1X2]2

}
+ C4

W

(
1− 1

n`

)(
1− 2

n`

)(
1− 3

n`

)
E [X1X2X3X4] . (58)

To evaluate the mixed moments of Xi that appear in (56)-(58), we use Theorem 4 in the
case g ≡ 1, r = 0, q∗ = 1. In this setting, if f is a continuous function and a tempered
distribution, we find

E
[
f
(
z

(`)
1;α, . . . , z

(`)
m;α

)]
= 〈f (z1;α, . . . , zm;α)〉κ(`) (59)

+
κ

(`)
4;α

22 · 2!

〈 m∑
j=1

∂2
zj;α

2

f (z1;α, . . . , zm;α)

〉
κ(`)

+
κ

(`)
6;α

23 · 3!

〈 m∑
j=1

∂2
zj;α

3

f (z1;α, . . . , zm;α)

〉
κ(`)

+
κ

(`)
8;α + 3

(
κ

(`)
4;α

)2

24 · 4!

〈 m∑
j=1

∂2
zj;α

4

f (z1;α, . . . , zm;α)

〉
κ(`)

+O(n−4).

We remind the reader that, by definition, z1;α, . . . , zm;α are iid centered Gaussians with
variance κ(`)

αα. Since the derivations of (16)-(18) are very similar, let us give the details for

only cases of κ
(`)
4;α and κ

(`)
6;α. We have, using (59), that

κ(`+1)
αα = E

[(
∆(`)
αα

)2
]

=
C2
W

n`

(〈
σ4
〉
κ
(`)
αα
−
〈
σ2
〉2

κ
(`)
αα

)
+ C2

W

(
1− n−1

`

)(
〈X1〉2κ(`)αα +

1

4

〈
∂2σ2

〉2

κ
(`)
αα
κ

(`)
4;α

)
+O(n−2). (60)
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Next, note that by Theorem 4 we have

κ(`)
αα = K(`)

αα +O(n−1).

Moreover, note that since xα 6= 0, we have K
(`)
αα is non-zero. Hence, Gaussian integration

by parts yields that for any measureable polynomially bounded f we have

〈f〉
κ
(`)
αα

= 〈f〉
K

(`)
αα

+O(n−1). (61)

Note also that for all i by applying (59) we have

〈Xi〉κ(`) = −1

8
κ

(`)
4;α

〈
∂4X1

〉
K(`) +O(n−2). (62)

Thus, recalling the definition (72) of χ
(`)
||;α the estimate (60) immediately yields (16). Next,

using (59) as well as (61) and (62) that

C3
WE

[
X3

1

]
= C3

W

〈
X3

1

〉
K

(`)
αα

+O(n−1) = T
(`)
0,3;α +O(n−1).

Further, we seek to evaluate E
[
X2

1X2

]
up to errors of size O(n−2). We apply (59) as well

as (61) and (62) to obtain

C3
WE

[
X2

1X2

]
= C3

W

〈
X2

1

〉
κ(`)
〈X2〉κ(`) +O(n−2)

+
C3
W

8
κ

(`)
4;α

[〈
X2

1

〉
K(`)

〈
∂4X2

〉
K(`) + 2

〈
∂2X2

1

〉
K(`)

〈
∂2X2

〉
K(`)

]
+

1

2
T

(`)
2,2;αχ

(`)
||;ακ

(`)
4;α +O(n−2).

Finally, we must evaluate E [X1X2X3] up to errors of size O(n−3). Again using (62), we
find

C3
WE [X1X2X3] = C3

W 〈X1〉κ(`) 〈X2〉κ(`) 〈X3〉κ(`)

+
C3
W

8
κ

(`)
4;α

[
6 〈X1〉κ(`)

〈
∂2X2

〉2

κ(`)
+O(n−2)

]
+
C3
W

48
κ

(`)
6;α

[
6
〈
∂2X1

〉3

κ(`)
+O(n−1)

]
+

9C3
W

8

(
χ

(`)
||;ακ

(`)
4;α

)2
+O(n−3)

=
3

4
T

(`)
4,1;α

(
χ

(`)
||;ακ

(`)
4;α

)2 〈
∂4X1

〉
K(`) +

(
χ

(`)
||;α

)3
κ

(`)
6;α +O(n−3).

This completes the derivation of the recursion for κ
(`)
6;α. �

7.1 Proof of Corollary 8: 2nd, 4th Cumulants at Large Depth for the K∗ = 0
Universality Class

In this section, we complete the proof of Corollary 8. The results when σ is the ReLU
follow directly form the exact formula (76). For non-linearities such as tanh in the K∗ = 0
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universality class, our starting point is to observe that for every xα 6= 0 and δ ∈ (0, 1) we
have

K(`+1)
αα =

1

a`
+Oδ(`

−2+δ), (63)

where the implicit constant depends on δ, xα and the constant a is defined in (79). This
result was already derived in (5.93) of Roberts et al. (2022) (see Proposition 22 for a
mathematically complete proof). In order to prove Corollary (8) for k = 4 we must therefore
show that

κ
(`)
4;α =

2

3n`a2
(1 +O(`−1)) =

2`

3n

(
K(`)
αα

)2
(1 +O(`−1)). (64)

The proof of this estimate is a straightforward calculation using Theorem 4 and the technical
Lemma 23. Indeed, Theorem 4 shows

κ
(`+1)
4;α =

C2
W

n`

(〈
σ4
〉
κ(`)
−
〈
σ2
〉2

κ(`)

)
+
(
χ

(`)
||;α

)2
κ

(`)
4;α

plus errors of size O(n−2). A direction computation then yields

C2
W

n`

(〈
σ4
〉
κ(`)
−
〈
σ2
〉2

κ(`)

)
=

2

n`

(
κ(`)
αα

)2 (
1 +O(`−1)

)
.

Hence, setting n` = n we may apply Lemma 23 to obtain

κ
(`)
4;α =

2

3n`a2
(1 +O(`−1)).

The proof of Corollary 8 for k = 6, 8 is similar and is left to the reader.
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Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,
2021.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Infor-
mation Processing Systems, pages 586–594, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105, 2012.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. ICML 2018
andarXiv:1711.00165, 2018.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Jascha Sohl-Dickstein,
and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under
gradient descent. arXiv preprint arXiv:1902.06720, 2019.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari.
The large learning rate phase of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020.

38



Cumulants in Random Networks

Mufan Li, Mihai Nica, and Dan Roy. The future is log-gaussian: Resnets and their infinite-
depth-and-width limit at initialization. Advances in Neural Information Processing Sys-
tems, 34, 2021.

Mufan Bill Li, Mihai Nica, and Daniel M Roy. The neural covariance sde: Shaped infinite
depth-and-width networks at initialization. NeurIPS 2022, 2022.

Qianyi Li and Haim Sompolinsky. Statistical mechanics of deep linear neural networks: The
backpropagating kernel renormalization. Physical Review X, 11(3):031059, 2021.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Har-
monic Analysis, 59:85–116, 2022.

Dang-Zheng Liu, Dong Wang, and Lun Zhang. Bulk and soft-edge universality for singular
values of products of Ginibre random matrices. Annales de l’Institut Henri Poincaré,
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Appendix A. Proof of Theorem 2

Our proof of Theorem 2 closely follows the proof of Theorem 1.2 in Hanin (2021). Let us
first recall the notation and assumptions. We fix σ : R→ R such that

• There exists r ≥ 1 so that the r-th derivative of σ belongs to L∞.

• There exist c, c′ > 0 so that ∣∣∣∣∣∣∣∣e−cx2−c′ drdxr σ(x)

∣∣∣∣∣∣∣∣
L∞

<∞.

We take Cb ≥ and CW > 0 and consider a random depth L neural network with input
dimension n0, output dimension nL+1, hidden layer widths satisfying

∃c, C > 0 s.t. cn ≤ n1, . . . , nL ≤ Cn, n� 1,

non-linearity σ and random weights and biases as in (2). We also fix a finite collection

xA := {xα, α ∈ A}

of distinct network inputs as well as an integer m and study for each ` the random vectors

D≤rz
(`)
A :=

(
D≤rzi;A, i = 1, . . . ,m

)
,

where
D≤rzi;A :=

(
DJ
αz

(`)
i;α, α ∈ A, i = 1, . . . ,m, |J | ≤ r

)
are the derivatives of z(`)

i;A of order at most r. Our goal is to show that, as n→∞, the joint

distribution of the random vectors D≤rz(`)

i;A converges to that of of centered jointly Gaussian
vectors that are independent for different i and satisfy

lim
n→∞

Cov
(
DJ1
α1
z

(`)
i;α1

, DJ2
α2
z

(`)
i;α2

)
= DJ1

α1
DJ2
α2
K(`)
α1α2

,

where

K(`+1)
α1α2

= Cb + CW 〈σ(zα)σ(zβ)〉K(`) , K(1)
α1α2

= Cb + CW

n0∑
j=1

xj;α1xj;α2

is the infinite width covariance from Theorem 2. To prove this, let us denote by F (`) the
sigma algebra generated by the weigts and biases in layer up to and including `. Observe
that, conditional on F (`), we have that D≤rz(`)

i;A are already independent for different i and
that, since the weights and biases are Gaussian, each is a centered Gaussian with conditional
covariance

Cov

(
DJ1
α1
z

(`+1)
i;α1

, DJ2
α2
z

(`+1)
i;α2

∣∣∣∣ F (`)

)
= DJ1

α1
DJ2
α2

Σ(`)
α1α2

,

where

Σ(`)
α1α2

= Cb +
CW
n`

n∑̀
j=1

σ
(
z

(`)
j;α1

)
σ
(
z

(`)
j;α2

)
.
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Thus, by the continuous mapping theorem, it suffices to show that for any multi-indices
J1, J2 with |Ji| ≤ r and any α1, α2 ∈ A we have

lim
n→∞

E
[
DJ1
α1
DJ2
α2

Σ(`)
α1α2

]
exists and is finite (65)

and

lim
n→∞

Var
[
DJ1
α1
DJ2
α2

Σ(`)
α1α2

]
= 0. (66)

We establish (65) and (66) by induction on ` the following more general statement.

Proposition 21 Denote by N(n0, r) the number of derivatives of order at most r in n0

variables. Consider any measureable function f : RN(n0,r)×|A| → R that is polynomially
bounded, and define

O(`)
f :=

1

n`

n∑̀
j=1

f
(
D≤rzj;A

)
.

Then,

lim
n→∞

E
[
O(`)
f

]
exists and is finite (67)

and

lim
n→∞

Var
[
O(`)
f

]
= 0. (68)

Proof We proceed by induction, starting with ` = 1. Since weights and biases are Gaussian,

the vectors D≤rz
(1)
i;A are independent for all i and jointly Gaussian. The polynomial growth

assumption on f show the moments of f(x) are finite if x is Gaussian. This allows us to
apply the SLLN to conclude both (67) and (68).

Let us now assume we have proved (65) and (66) for layers 1, . . . , `. We start by fixing
any polynomially bounded f and establishing (65) at layer `+ 1. We have

E
[
O(`+1)
f

]
= E

[
f
(
D≤rz1;A

)]
.

As above, conditionl on F (`), we have the following equality in distribution:

D≤rz1;A
d
=
(

Σ≤r,(`)
)1/2

Z, Z ∼ N
(
0, IN(n0,r)×A

)
(69)

where Z is independent of the conditional covariance matrix

Σ≤r,(`) =
(
DJ1
α1
DJ2
α2

Σ(`)
α1α2

)
α1,α2∈A

.

The key observation is that each entry of Σ≤r,(`) is of the formO(`)
f for polynomially bounded

f . Hence, we may apply the inductive hypothesis to conclude that there exists a matrix
Σ≤r,(`) such that the following convergence in distribution holds

Σ≤r,(`)
d−→ Σ

≤r,(`)
as n→∞.
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The polynomial growth assumption on f together with the Skorohod representation theorem
and dominated convergence show that

lim
n→∞

E
[
f
(
D≤rz1;A

)]
= E

[
f

((
Σ
≤r,(`)

)1/2
Z

)]
=: O(`+1)

f exists and is finite.

This proves (67). To show (68), we proceed similarly. Namely, we have

Var
[
O(`+1)
f

]
=

1

n`+1
Var

[
f
(
D≤rz

(`+1)
1;A

)]
+

(
1− 1

n`+1

)
Cov

(
f
(
D≤rz

(`+1)
1;A

)
, f
(
D≤rz

(`+1)
2;A

))
.

Note that

Var
[
f
(
D≤rz

(`+1)
1;A

)]
≤ E

 1

n

n∑̀
j=1

[
f
(
D≤rz

(`+1)
1;A

)]2

 .
Hence, since f2 is also polynomially bounded we have already shown that (67) holds at
layer `+ 1, we see that

Var
[
O(`+1)
f

]
= Cov

(
f
(
D≤rz

(`+1)
1;A

)
, f
(
D≤rz

(`+1)
2;A

))
+O(n−1).

Next, using that conditional on F (`) the vectors D≤rz
(`+1)
i;A are independent for different i

we conclude from the law of total covariance that

Cov
(
f
(
D≤rz

(`+1)
1;A

)
, f
(
D≤rz

(`+1)
2;A

))
≤ Var

[
E
[
f
(
D≤rz

(`+1)
1;A

) ∣∣∣∣ F (`)

]]
.

Combining the equality in distribution (69) with the polynomial growth condition on f and
the dominated convergence theorem we find

lim
n→∞

Var

[
E
[
f
(
D≤rz

(`+1)
1;A

) ∣∣∣∣ F (`)

]]
= Var

[
E
[
f

((
Σ
≤r,(`)

)1/2
Z

)]]
= 0.

This completes the proof that (68) holds at infinite width, establishing Proposition 21.

Appendix B. Criticality and Universality in Wide and Deep Networks

In the main body we presented two kinds of results about the structure of random neural
networks at large but finite width. The first, Theorem 3, concerned the order of magnitude
for cumulants of the output of such a random network and its derivatives. The second,
Theorem 4 and Corollary 6, spelled out recursions with respect to the layer index ` that
describe, to leading order in 1/n, network cumulants at layer ` + 1 in terms of those at
layer `. Our purpose in forthcoming sections is to analyze these recursions at large ` and to
apply this analysis to obtain results about the structure of gradients in deep fully connected
networks. Before doing this, we must take a step back and ask: for which σ,Cb, CW are the
recursions (4) describing the infinite width covariance K(`) well-behaved at large `?
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In section §B.1, we recall a more or less canonical answer to this question whose roots
are in the early articles Poole et al. (2016); Raghu et al. (2017) and that was recently spelled
out in the generality presented here in Roberts et al. (2022). This procedure, called tuning
to criticality, prescribes combinations of σ,Cb, CW for which K(`) is indeed well-behaved at
large `. As we shall see below, the term criticality is meant to be evocative of it’s use in
the analysis of 2d systems in statistical mechanics in that tuning to criticality consists of
choosing Cb, CW so that the infinite width covariance function K(`) is as close to constant
as a function ` as possible.

At a high level, there are two reasons to ask that K(`) be slowly varying as a function of `.
First, it arguably only makes sense to study perturbative corrections in 1/n recursively in `
if the limiting n→∞ covariance structure does not change too rapidly between consecutive
layers. Second, and perhaps more importantly, as explained and thoroughly validated in
Park et al. (2019); Raghu et al. (2017), deep fully connected networks (without residual
connections He et al. (2015), batch normalization Ioffe (2017), etc) are numerically stable
enough for gradient-based optimization to succeed only if they are tuned to criticality.

We discuss in §B.2 how considerations underlying criticality naturally give rise to a
notion of universality classes for random neural networks. Even the correct definition of
universality is still not fully understood. Unlike in random matrix theory, universality for
random neural networks depends not on the statistics of the individual weights and biases
(though this is also an interesting direction to consider e.g. Hanin et al. (2022)) but rather
on the effect of the non-linearity σ on the behavior of the infinite width covariance K(`) at
large values of the depth `.

Before giving the details, we take this opportunity to emphasize, as we have elsewhere,
that the definitions of criticality and universality, the approach to solving the recursions
for κ(`)

2k;α from Corollary 6, and the resulting lessons learned about the role of the effective
network depth L/n closely follow the ideas developed in the monograph Roberts et al.
(2022). Though we pursue them in a somewhat different way, the author would nonetheless
like to acknowledge that his co-authors Dan Roberts and Sho Yaida in the book deserve
significant credit.

B.1 Tuning to Criticality

As originally explained in Poole et al. (2016); Raghu et al. (2017) and recently spelled out
in a definitive way in Roberts et al. (2022), tuning a neural network to criticality means
seeking choices of (Cb, CW ) that lead to critical fixed points of the form (K∗,K∗,K∗) for
the recursion (4), viewed as a dynamical system describing (K(`)

αα,K
(`)

ββ ,K
(`)

αβ) with time
parameter `. Specifically, criticality requires

∃K∗ ≥ 0 s.t. K∗ = Cb + CW
〈
σ2(z)

〉
K∗

(∗)

∀` ≥ 1
∂K

(`)
αα

∂K
(1)
αα

∣∣∣∣
K

(1)
αα=K∗

= 1 (||)

∀` ≥ 1
∂K

(`)
αβ

∂K
(1)
αβ

∣∣∣∣
K

(1)
αα=K

(1)
αα=K

(1)
αβ=K∗

= 1, (⊥)
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where

K(1)
αα = Cb + CWK

(0)
αβ , K

(0)
αβ :=

1

n0

n0∑
j=1

xj;αxj;β, xα, xβ ∈ Rn0 .

The intuitive meaning of these conditions is as follows. Due to Theorem 2, the first guar-
antees the existence of a fixed point K∗ for of the recursion

K(`+1)
αα = Cb + CW

〈
σ2(z)

〉
K

(`)
αα

(70)

of the infinite width variance. In particular, (∗) implies

K(1)
αα = Cb +

CW
n0
||xα||2 = K∗ =⇒ K(`)

αα = lim
n→∞

Var
[
z

(`)
i;α

]
= K∗ ∀` ≥ 1.

Thus, if a network is tuned to criticality, there is a critical radius

K2
crit := n0C

−1
W (K∗ − Cb)

such that for inputs xα on the sphere of radius Kcrit the variance of z(`)

i;α is independent of `
in the infinite width limit. In non-critical networks, we expect this variance to either grow
or decay exponentially in `, leading to numerical instabilities. The second condition (||)
considers the infinite width limit of the variance of z(`)

i;α for an input xα for which K(1)
αα is

close to K∗. Specifically, condition (||) requires for all ` ≥ 1 that

K(1)
αα = Var[z

(1)
i;α ] = K∗ + δK =⇒ K(`)

αα = lim
n→∞

Var
[
z

(`)
i;α

]
= K∗ + δK + o(δK).

This guarantees that the fixed point K∗ of the recursion (70) is critical and hence that
for inputs near the sphere of radius Kcrit the variance of the resulting pre-activations z(`)

i;α

is approximately constant in ` at large n. The final condition (⊥) considers instead the
covariance between two inputs on the sphere of radius Kcrit. Namely, given two nearby
network inputs xα, xβ ∈ Rn0 with

K(1)
αα = K

(1)
ββ = K∗, K

(1)
αβ = Cb +

CW
n0

n0∑
j=1

xj;αxj;β = K∗ − δK,

the third condition asks that

K
(`)
αβ = lim

n→∞
Cov

(
z

(`)
i;α, z

(`)
i;β

)
= K∗ − δK + o(δK), ∀`.

This ensures that the covariance between pre-activations z(`)

i;α and z(`)

i;β corresponding to two
nearby inputs on the Kcrit-sphere are approximately independent of ` at large n. A simple
computation directly from the recursion (4) shows that

χ||(K) :=
∂K

(`+1)
αα

∂K
(`)
αα

∣∣∣∣
K

(`)
αα=K

=
CW
2

〈
∂2
z (σ2(z))

〉
K

(71)

χ⊥(K) :=
∂K

(`+1)
αβ

∂K
(`)
αβ

∣∣∣∣
K

(`)
αα=K

(`)
ββ=K

(`)
αβ=K

= CW
〈
(∂zσ(z))2

〉
K
. (72)

Hence, all together, tuning to criticality requires

K∗ ≥ 0 s.t. K∗ = Cb + CW
〈
σ2(z)

〉
K∗

and χ||(K∗) = χ⊥(K∗) = 1. (73)
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B.2 Universality Classes of Random Neural Networks: Two Examples

We now turn to discussing the notion of universality classes for random neural networks. To
start, recall from Theorem 2 that the behavior at large depth ` of random fully connected
neural networks at infinite width is completely specified by the asymptotics of the limiting
covariance function K(`). Observe, moreover, that the coefficients in the recursions for k =
2, 3, 4 of the cumulants κ(`+1)

2k;α from Corollary 6, which by Theorem 3 determine the behavior
of random neural networks at finite width to the first four orders in 1/n, are completely
determined by σ, the infinite width covariance K(`), and cumulants κ(`)

2j;α, j ≤ k. It is

therefore in terms of the large ` behavior of K(`) that we should hope to define universality
classes of random neural networks at large depth. At present it is not clear what the correct
general definition of such a universality class should be. We content ourselves instead with
studying two important classes of examples.

B.2.1 The Universality Class of ReLU

The most popular non-linearities used in practice are positively homogeneous of degree 1,
i.e. have the form

σ(t) = (a−1{t<0} + a+1{t>0})t, a−, a+ ∈ R, a− 6= a+, a2
− + a2

+ 6= 0. (74)

Such non-linearities include the ReLU (a− = 0, a+ = 1) and the leaky ReLU (a− ∈
(0, 1), a+ = 1). A direct computation, left to the reader, shows that criticality is achieved
if and only if

K∗ ≥ 0 is arbitrary and Cb = 0, CW =
2

a2
+ + a2

−
.

Thus, the first property of the ReLU universality class is that setting (Cb, CW ) = (0, 2/(a2
++

a2
−)) allows all non-negative K∗ to satisfy (∗). In fact, at criticality, a simple symmetrization

argument shows that the variance of neuron pre-activations is preserved exactly even at
finite width

Var
[
z

(`)
i;α

]
= Var

[
z

(1)
i;α

]
=
CW
n0
||xα||2 ∀`, n0, . . . , n` ≥ 1, xα ∈ Rn0 (75)

and, relatedly, that we have

χ
(`)
||;α := χ||(K

(`)
αα) = 1 = χ⊥(K(`)

αα) =: χ
(`)
⊥;α, ∀` ≥ 1, xα ∈ Rn0 .

The remarkable property (75) is much stronger than the criticality condition (∗), which
requires only that this condition holds for some value of n−1

0 ||xα||
2 and only in the limit

when n→∞. It implies that the cumulant recursions from Corollary 6 for 1−homogeneous
non-linearities have constant coefficients and are therefore particularly simple to solve. For
instance, we find at leading order in 1/n

κ
(`+1)
4;α =

C2
W

n`

[〈
σ(z)4

〉
K

(`)
αα
−
〈
σ(z)2

〉2

K
(`)
αα

]
+
(
χ

(`)
||;α

)2
κ

(`)
4;α

=

(
2

(a2
+ + a2

−)n0
||xα||2

)2(
6
a4

+ + a4
−

(a2
+ + a2

−)2
− 1

) ∑̀
`′=1

1

n`′
,
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which shows that while κ(`)

4,α is suppressed by one power of 1/n relative to the infinite width

variance K(`)
αα, it also grows one order faster in `. This illustrates an important and general

theme: depth amplifies finite width effects. It is the effective depth `/n of neurons at layer
` that measures the distance to the infinite width Gaussian regime.

Moreover, in the special setting of 1-homogeneous non-linearities there is a simple
method for obtaining the full distribution of the pre-activation vector z(`)

α at a single input
at any finite values of n0, . . . , n`. This was first pointed out in Hanin (2018); Hanin and
Nica (2020b); Zavatone-Veth and Pehlevan (2021) and is briefly reviewed in Appendix D.
A key takeaway is that if we take the hidden layer widths n1 = · · · = nL = n, then we
have following convergence in distribution to product of independent normal and log-normal
random variables:

lim
n,L→∞

L/n→ξ∈[0,∞)

z
(L)
i;α

d
=

(
2 ||xα||2

(a2
+ + a2

−)n0

)1/2

Z1 exp [−µ(ξ, a+, a−) + σ(ξ, a+, a−)Z2] , (76)

where

µ(ξ, a+, a−) = σ2(ξ, a+, a−) :=
ξ

4

(
6
a4

+ + a4
−

(a2
+ + a2

+)2
− 1

)
, Z1, Z2 ∼ N (0, 1) iid.

The convergence (76) reveals that for a fixed input the distribution of the output of a
random with 1−homogeneous non-linearities at large depth and width depends in a simple
way on the limiting effective network depth ξ. This bolsters the claim that they are all
part of the same universality class. It also means that increasing the network depth L
drives it away from the infinite width Gaussian behavior observed at ξ = 0 and that the
outputs of deep and wide networks are not well-approximated by a Gaussian at all, unless
ξ is infinitesimal, in which case the log-normal term exp [−µ(ξ, a+, a−) + σ(ξ, a+, a−)Z2] is
negligible.

Prior work Hanin and Nica (2020a,b); Hanin and Rolnick (2018) of the author shows
that when σ = ReLU (or any other 1-homogeneous non-linearity), the distribution at large
n,L of not only the network output z(L+1)

i;α but also is derivatives with respect to inputs xα
and model parameters (e.g. weights and biases) depends only on the effective depth L/n.
We further note that it has also been observed that log-normal random variables describe
the structure of gradients in residual networks, even during/after training Li et al. (2021).

To complete our discussion of the ReLU universality class, we make two final remarks.
First, a direct computation (reviewed briefly in Proposition 26 of Appendix D) shows that
at criticality for any non-zero inputs xα1 , xα2 ∈ Rn0 with the same norm we have

lim
n→∞

Corr
(
z

(`)
i;α1

, z
(`)
i;α2

)
= 1− 2(a+ − a−)2

3π(a2
+ + a2

−)
`−2(1 + o(1)). (77)

The power law exponent 2 that appears in this estimate is common to all 1−homogeneous
non-linearities and is another reason to believe they fall into the same universality class.
In contrast, this exponent equals one for non-linearities in the K∗ = 0 universality class
presented below. The estimate (77) suggests that in order to define a double scaling limit
n,L→∞ and L/n→ ξ in which the entire field xα 7→ z(L+1)

α is non-degenerate (rather than
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just its value at a single input) one must rescale distances in the input space to prevent
the collapse of correlations otherwise guaranteed in (77). We leave this as an interesting
direction for future work.

B.2.2 The Universality Class of Hyperbolic Tangent

The second class of non-linearities we study is what Roberts et al. (2022) termed the K∗ = 0
universality class, which we take to mean non-linearities σ such that

• σ is a smooth, odd function satisfying Assumption 1.

• σ satisfies

σ1σ3 < 0, σj :=
1

j!

dj

dtj

∣∣∣∣
t=0

σ(t). (78)

• K∗ = 0 is the unique fixed point of equation (∗).

• At criticality, for every non-zero network input xα ∈ Rn0 and each δ ∈ (0, 1) we have
as L→∞ that

K(L)
αα =

1

aL

(
1 +O(L−1+δ)

)
, (79)

where the implicit constant depends on δ and xα and we’ve set

a := −6
σ3

σ1
.

This specific value of a, which is positive by (78), is the only possible candidate for
decay of the form (79) that is consistent with the recursion (4).

Some remarks are in order. First, if K∗ = 0 is the unique fixed point for (∗), then a simple
computation shows that criticality is achieved if and only if

K∗ = 0, Cb = 0, CW = σ−2
1 . (80)

Next, our definition of the K∗ = 0 universality class does not make apparent whether it
is empty. As we will see in Proposition 22, however, the K∗ = 0 universality class is in
fact quite large and contains for example the hyperbolic tangent and more generally any
non-linearity that is tanh-like in the sense that is smooth with σ1 6= 0, has the opposite sign
as its second derivative

for almost every z, sgn
(
σ(z)σ′′(z)

)
= −1,

is sub-linear
∃C > 0 s.t. ∀z ∈ R |σ(z)| ≤ |σ1z| ,

and is controlled by its first few non-zero Taylor series coefficients at 0:

∃C ≥ 0 s.t. ∀z ≥ 0, σ1z + σ3z
3 ≤ σ(z) ≤ σ1z + σ3z

3 + Cz4.

Further, by definition, for the K∗ = 0 universality class, the infinite width variance K(`)
αα

of neuron pre-activations z
(`)
i;α is qualitatively different from that of 1−homogeneous non-

linearities. Indeed, K(L)
αα depends on L, decaying polynomially to 0. Moreover, at large L,
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the value of K(L)
αα is independent of the initial condition K(0)

αα to leading order in L. As a
final remark let us point out that searching for non-linearities σ so that K∗ = 0 at criticality
is quite natural. Indeed, for any σ that is twice differentiable, we have

χ||(K) = χ⊥(K) + CW
〈
σ(z)σ′′(z)

〉
K

Hence, if K > 0, then

χ||(K) = 1, χ⊥(K) = 1 =⇒
〈
σ(z)σ′′(z)

〉
K

= 0.

But if σ is a sigmoidal function such as tanh, then σ(z)σ′′(z) < 0 for all z 6= 0. Hence,
〈σ(z)σ′′(z)〉K = 0 can only occur when K = 0.

As in the monograph Roberts et al. (2022), let us now probe the role of network depth
by studying the large L behavior of the cumulants κ(L)

2k;α, k = 2, 3, 4, in networks with non-
linearities from the K∗ = 0 universality class tuned to criticality. Note that in (79) the
limiting behavior of the variance K(L)

αα depends (mildly) on the non-linearity σ in terms of
is first few Taylor coefficients at 0. As we are about to see, however, the behavior of the
higher cumulants κ(L)

2k;α, k = 2, 3, 4, when normalized by the appropriate power of K(L)
αα , is

independent of σ at leading order in n and L and depends only on universal constants and
the effective network depth L/n.

Appendix C. Infinite Width Analysis of Tanh-like Non-linearities

The purpose of this section is to derive some basic properties of the infinite width variance
recursion

κ(`+1)
αα = Cb + CW

〈
σ(z)2

〉
κ
(`)
αα
. (81)

We abbreviate

σj :=
1

j!

dj

dxj

∣∣∣∣
x=0

σ(x)

and consider here the case when σ that is a tanh-like non-linearity in the sense that σ
satisfies:

• σ is smooth at 0 with σ1 6= 0

• σ has the opposite sign as its second derivative

for almost every z, sgn
(
σ(z)σ′′(z)

)
= −1. (82)

Note that this forces σ2 = 0 and

a := −6σ3

σ1
> 0.

• σ is sub-linear:
∃C > 0 s.t. ∀z ∈ R |σ(z)| ≤ |σ1z| , (83)

• σ is controlled by its first few non-zero Taylor series coefficients at 0:

∃C ≥ 0 s.t. ∀z ≥ 0, σ1z + σ3z
3 ≤ σ(z) ≤ σ1z + σ3z

3 + Cz4 (84)
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We will be interested in understanding the recursion (81) at criticality in the sense defined
in §B.1. Specifically, we remind the reader that this means we choose Cb, CW so that

∃K∗ ≥ 0 s.t. K∗ = Cb + CW
〈
σ2(z)

〉
K∗

χ||(K∗) =
CW
2

〈
∂2(σ(z)2)

〉
K∗

= 1

χ⊥(K∗) = CW
〈
(σ′(z))2

〉
K∗

= 1.

Before stating our main result (Proposition 22), let us explain intuitively what we expect.
First of all, as we shall see in Proposition 22, tanh-like non-linearities requires K∗ = 0 for

criticality. Second, by Taylor expanding the recursion (4) around small values of K
(`)
αα we

find

K(`+1)
αα = K(`)

αα − a
(
K(`)
αα

)2
+O

((
K(`)
αα

)3
)
.

This is well-approximated by the ODE

d

dt
K(t) = −aK(t)2,

whose solution is

K(t) =

(
at+

1

K(0)

)−1

.

This form for the solution has two important properties that we will check in Proposition

22 hold for the actual solution K
(`)
αα to the discrete difference equation (4):

• At large t, K(t) tends to zero like 1/at plus an error of size roughly O(t−2).

• The leading order behavior of K(t) at large t is independent of the initial condition.

Proposition 22 If σ is a tanh-like non-linearity in the sense defined above then criticality
is achieved for σ only with

K∗ = 0, Cb = 0, and CW = σ−2
1 . (85)

Moreover, for every δ ∈ (0, 1) we have

K(0)
αα > 0 ⇒ sup

`≥1
`2−δ

∣∣∣∣K(`)
αα −

1

a`

∣∣∣∣ <∞. (86)

Proof The proof relies on the following estimate

Lemma 23 Fix C1, C2, ψ > 0 satisfying

C2 ≥ 1, ψ 6= C2 + 1

as well as ∗ ∈ {≤, ≥}. Suppose also that for each ` ≥ 0 we have

a`+1 ∗ ξ` + (1− ζ`)a`, ζ` ∈ [0, 1] (87)
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with a0 ∈ R given and that there exist C ′1, C
′
2 > 0 so that∣∣∣ξ` − C1`

−ψ
∣∣∣ ≤ C ′1`−1−ψ,

∣∣ζ` − C2`
−1
∣∣ ≤ C ′2`−2.

Then

a`+1 ∗
`1−ψ

1− ψ + C2

(
1 +O(`−1)

)
+ e−C2γ`−C2a0

(
1 +O(`−1)

)
(88)

where γ is the Euler-Mascheroni constant and the implied constants depend only C1, C2, C
′
1, C

′
2.

Proof By unfolding the recursion (87) we find

a`+1 ∗
∑̀
`′=1

ξ`′
∏̀

`′′=`′+1

(1− ζ`′′) + a0

∏̀
`′′=0

(1− ζ`′′).

We have

∏̀
`′′=1

(1− ζ`′′) = exp

[∑̀
`′′=1

log
(
1− C2(`′′)−1 +O(`−2)

)]

= exp

[
O(`−1) +

∑̀
`′′=1

−C2(`′′)−1

]
= exp

[
O(`−1)− C2 log(`)− C2γ

]
= e−C2γ`−C2

(
1 +O(`−1)

)
.

This gives the second term in (88). For the first term, we write

∑̀
`′=1

ξ`′
∏̀

`′′=`′+1

(1− ζ`) =
∑̀
`′=1

ξ`′ exp

[ ∑̀
`′′=`′+1

log (1− ζ`)

]

=
∑̀
`′=1

ξ`′ exp

[ ∑̀
`′′=`′+1

−C2(`′′)−1 +O((`′′)−2)

]

=
∑̀
`′=1

C1(`′)−ψ(1 +O(`′)−1) exp

[
−C2 log

(
`

`′

)
+O((`′)−1)

]

= `−C2
∑̀
`′=1

C1(`′)−ψ+C2(1 +O(`′)−1)

=
C1

1 + C2 − ψ
`1−ψ

(
1 +O(`−1)

)
.

This completes the proof of (88).

Note that for any K ≥ 0 we have

χ||(K) = χ⊥(K) + CW
〈
σ(z)σ′′(z)

〉
K
. (89)
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Hence, at criticality, we must have 〈
σ(z)σ′′(z)

〉
K∗

= 0.

But due to assumption (82) we have

K > 0 =⇒
〈
σ(z)σ′′(z)

〉
K
< 0.

Thus, we indeed find that we must have K∗ = 0 at criticality. Hence, in light of (89)
criticality is equivalent to the system of equations

K∗ = 0 = Cb + CWσ(0)2, χ||(0) = χ⊥(0) = CW
〈
(σ′(z))2

〉
0

= CWσ
2
1 = 1.

This system has a unique solution:

Cb = 0, CW = σ−2
1 ,

completing the proof of the criticality conditions (85). Let us now establish (86). First note
that at criticality the sub-linearity condition (83) guarantees that for all δ > 0 there exists
cδ ∈ (0, 1) such that

K > δ =⇒ CW
〈
σ(z)2

〉
K
< (1− cδ)

〈
z2
〉
K

= (1− cδ)K.

Hence, for all K, δ > 0 there exists `0 ≥ 1 such that

K(0)
αα ≤ K =⇒ K(`)

αα ≤ δ ∀` ≥ `0. (90)

In particular, K(`)
αα is monotonically decreasing and converges to K∗ = 0 as ` grows. Let us

now define for each ` ≥ 1

K(`)
αα =:

1

a`
+ ε(`), a := −6

σ3

σ1
> 0,

where a is positive due to (82). Note that since K
(`)
αα tends to zero with `, so does ε(`). Let

us agree that for any t ∈ R the symbol t+ (resp. t−) means that for ` sufficiently large we
may make the constant t+ (resp. t−) arbitrary close to t from above (resp. below). In order
to prove (86), we start with the following elementary estimate.

Lemma 24 For all ` ≥ 1, we have

ε(`+1) ≥ − 1

a`2(`+ 1)
+ ε(`)

(
1− 2

`
− aε(`)

)
. (91)

Further, there exists a constant C > 0 depending only on σ with the following property. For
all K > 0 there exists a constant `0 ≥ 1 so that if K(0)

αα ≤ K, then for all δ ∈ (0, 1) we have

ε(`+1) ≤ C

`3
+ ε(`)

(
1− 2− δ

`

)
, ∀ ` ≥ `δ := max

{
C

δ
,

2C

a
, `0

}
. (92)
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Proof Plugging in the estimates (84) into the recursion (81) yields for some C > 0
depending only on σ

ε(`+1) ≤ C

`3
+ ε(`)

[
1− 2

`
+
C

`2

]
+
(
ε(`)
)2
(
−a+

C

`

)
+ C(ε(`))3

Note that for all ` ≥ 2C/a we have −a+ C/` ≤ 0. Hence, for all ` ≥ max {2C/a,C/δ} we
have

ε(`+1) ≤ C

`3
+ ε(`)

[
1− 2− δ

`

]
+ C(ε(`))3.

Moreover, if ε(`) ≤ 0, then (ε(`))3 ≤ 0. If on the other hand ε(`) ≥ 0, then from (90) we find
that there for all K > 0 there exists `0 so that (ε(`))3 ≤ a(ε(`))2/4 for all ` ≥ `0. Hence, in
all cases, for each δ ∈ (0, 1) if ` ≥ max {2C/a,C/δ, `0} , we find

ε(`+1) ≤ C

`3
+ ε(`)

[
1− 2− δ

`

]
,

as claimed. The lower bound follows from a similar but simpler computation.

Fix δ ∈ (0, 1). The relation (92), together with Lemma 23, show that for all K > 0 there
exists some C ′ > 0 depending on δ, σ,K such that if K(0)

αα ≤ K then

ε(`+1) ≤
∑̀
`′=`δ

C

`3

∏̀
`′′=`′+1

(
1− 2−

`

)
≤ C ′

[
1

`2
+ ε(`δ)

1

`2−δ

]
.

This shows that

∀δ ∈ (0, 1) ∃`δ ≥ 1 s.t. ε(`) ≤ 1

`2−δ
∀` ≥ `δ. (93)

To conclude (86) it therefore remains to deduce that

∀K1,K2 > 0, δ ∈ (0, 1) ∃`δ ≥ 1 s.t. K1 < K(0)
αα < K2 =⇒ ε(`) ≥ − 1

`2−δ
∀` ≥ `δ.

(94)
To aid with this, we will need the following

Lemma 25 For any δ ∈ (0, 1) there exists `δ ≥ 1 with the property that if ` ≥ `δ then

ε(`) ≥ −`−2+δ =⇒ ε(`+1) ≥ −(`+ 1)−2+δ.

Proof Suppose ε(`) ≥ −`−2+δ. The lower bound in (91) yields for some C,C ′ > 0

ε(`+1) + (`+ 1)−2+δ ≥ (`+ 1)−2+δ
[
1−

(
1 + `−1

)2−δ]− 2`−3+δ − C`−4+2δ

≥ δ`−3+δ − C ′(`−3 + `−4+2δ),

which is non-negative for all ` sufficiently large.

53



Cumulants in Random Networks

We are now in a position to establish (94). In light of the previous Lemma we need only
consider the case when

∀δ ∈ (0, 1) ∃ `δ ≥ 1 s.t. ε(`δ) < −`2−δ.

Note that in light of the upper bound (93) we find that for all δ ∈ (0, 1) there exists `δ ≥ 1
and Cδ > 0 so that for all ` ≥ `δ we have

K(`+1)
αα ≥ K(`)

αα

(
1− aK(`)

αα

)
≥ K(`)

αα

(
1− a

(
− 1

a`
+ Cδ`

−2+δ

))
= K(`)

αα

(
1− 1

`
− aCδ`−2+δ

)
.

Hence, assuming K2 ≥ K
(0)
αα ≥ K1 > 0, we may iterate this inequality to find that there

exists c > 0 depending on K1,K2 and `0 ≥ 1 so that

K(`)
αα ≥

c

a`
∀` ≥ `0.

Hence, since ε(`) < 0 for all ` ≥ `δ we find for all ` ≥ max {`0, `δ} that

−a(ε(`))2 ≥ ε(`) 1− c
`

Substituting this into the lower bound (91), we find that for all ` ≥ max {`0, `δ}

ε(`+1) ≥ −C
′

`3
+ ε(`)

(
1− 1 + c

`

)
.

Since ε(`δ) < 0, we see by applying Lemma 23 that there exists C > 0 so that for all
` ≥ max {`0, `δ}

ε(`+1) ≥ − C

`1+c
.

But now we can bootstrap this estimate. Indeed, for any δ ∈ (0, 1) we substitute this into
the lower bound (91) to find that for all ` sufficiently large

ε(`+1) ≥ −C
′

`3
+ ε(`)

(
1− 2− δ

`

)
.

Again applying Lemma 23 yields that for all ` sufficiently large

ε(`+1) ≥ − C

`2−δ
.

This completes the proof.

54



Cumulants in Random Networks

Appendix D. Exact Solutions for 1-homogeneous activations

In this appendix, we collect several known computations related to the distribution of
neuron activations in random fully connected networks with 1−homogeneous activations.
Specifically, we fix a one homogeneous non-linearity

σ(t) = (a+1t>0 + a−1t<0)t

and consider a random fully connected neural network with input dimension n0, output di-
mension nL+1, hidden layer widths n1, . . . , n`, and non-linearity σ that is tuned to criticality
in the sense that

Cb = 0, CW =
2

a2
+ + a2

−
.

Our first task is to derive in §D.1 a known exact formula for the infinite width covariance

K
(`+1)
αβ as a function of K

(`)
αα,K

(`)
αβ ,K

(`)
ββ . Then, in Section §D.2, we sketch a derivation of

the limiting distribution (76) of a neuron pre-activation in the double scaling limit n,L→
∞, L/n→ γ.

D.1 Covariance Propagation in Random Fully Connected 1-homogeneous
Networks

In this section, we consider two network inputs xα, xβ of the same norm:

K(0)
αα =

1

n0
||xα||2 = K =

1

n0
||xβ||2 = K

(0)
ββ , K > 0. (95)

Let us define

ε
(`)
αβ :=

1− Corr
(`)
αβ

2
, Corr

(`)
αβ :=

K
(`)
αβ(

K
(`)
ααK

(`)
ββ

)1/2

Our goal is to derive the following explicit recursion for ε
(`+1)
αβ in terms of ε

(`)
αβ. This derivation

follows the approach in §5.5 Roberts et al. (2022). To the author’s knowledge, the following
formula (or really something equivalent) was first derived in Cho and Saul (2009).

Proposition 26 (Correlation propagation for 1−homogeneous activation functions)
At criticality, we have the following exact formula:

1− 2ε
(`+1)
αβ =

2CW (a+ − a−)2

π

[
1

2

√
ε
(`)
αβ(1− ε(`)αβ) +

(
1

2
− ε(`)αβ

)
cos−1

(√
ε
(`)
αβ

)]
+ CWa+a−(1− 2ε

(`)
αβ) (96)

In particular, taking ε
(`)
αβ small we find

ε
(`+1)
αβ = ε

(`)
αβ −

4

3π

(
ε

(`)
αβ

)3/2
+O

((
ε

(`)
αβ

)5/2
)
.

Hence, as `→∞,

ε
(`)
αβ =

2

3π
`−2(1 + o(1)).
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Proof We have from Theorem 2 that

K
(`+1)
αβ = Cb + CW 〈σ(zα)σ(zβ)〉K(`) , (97)

where we recall that the brackets above mean the average with respect to the Gaussian
distribution (

zα
zβ

)
∼ N

(
0,

(
K

(`)
αα K

(`)
αβ

K
(`)
αβ K

(`)
ββ

))
.

Since we are at criticality, we have

Cb = 0, CW =
2

a2
+ + a2

−

and that moreover
K(`)
αα = K

(`)
ββ = K,

where K is the constant from (95). Our first step is to change from the Gaussian variables
zα, zβ to the new Gaussian variables

ξ =
zα + zβ

2
√
K

, η =
zα − zβ
2
√
K

.

We have
zα =

√
K(ξ + η), zβ =

√
K (ξ − η) .

Moreover, writing

ε := ε
(`)
αβ =

1

2

1−
K

(`)
αβ(

K
(`)
ααK

(`)
ββ

)1/2


we find

Var[ξ] = 1− ε, Var[η] = ε, Cov[ξ, η] = 0.

Hence, the right hand side of the recursion (97) reads

CWK

∫
R

∫
R
σ
(

(1− ε)1/2ξ + ε1/2η
)
σ
(

(1− ε)1/2ξ − ε1/2η
)

exp

[
−1

2

(
ξ2 + η2

)] dξdη
2π

.

Using the definition of σ yields

σ
(

(1− ε)1/2ξ + ε1/2η
)
σ
(

(1− ε)1/2ξ − ε1/2η
)

= (a+1ξ+η>0 + a−1ξ+η<0) (a+1ξ−η>0 + a−1ξ−η<0) ((1− ε)ξ2 − εη2).

Changing variables (ξ, η)→ (−ξ,−η) inside the integral and averaging yields

K
(`+1)
αβ = CWKa+a−(1− 2ε)

+
CWK(a+ − a−)2

2

∫
R2

1(1−ε)ξ2−εη2>0((1− ε)ξ2 − εη2) exp

[
−1

2

(
ξ2 + η2

)] dξdη
2π

.

Passing to polar coordinates and explicitly computing the resulting integral is now straight-
forward and completes the derivation of (96).
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D.2 Full Distribution of Neuron Pre-activations at a Single Input and the
Derivation of (76)

Our purpose in this section is to briefly recall an exact formula for the full distribution of

a neuron pre-activation z
(L+1)
i;α . For this, note that since xα 7→ z

(L+1)
α is piecewise linear

and the event that the Jacobian Jxαz
(L+1)
α is not well-defined at xα has probability zero,

we may write

z(L+1)
α = Jxαz

(L+1)
α xα.

Next,

Jxαz
(L+1)
α = W (L+1)D(L)W (L) · · ·D(1)W (1), (98)

where W (`) are simply the weight matrices and

D(`) := Diag
(
σ′(z

(`)
i;α), i = 1, . . . , n`

)
.

Arguing exactly as in Proposition 2 of Hanin and Nica (2020b), we have the following
equality in distribution:

D(L)W (L) · · ·D(1)W (1) d
= AD̂(L)W (L) · · · D̂(1)W (1),

where A is a diagonal matrix with iid ±1 entries on the diagonal that is independent of
W (`) and the diagonal matrices

D̂(`) = Diag

(
a+ξ

(`)
i + a−(1− ξ(`)

i )︸ ︷︷ ︸
=:d

(`)
i

, i = 1, . . . , n`

)
, ξ

(`)
i ∼ Bernoulli(1/2) iid.

Combining this with (98) and recalling that the entries of W (L+1) are iid centered Gaussians
with variance CW /nL yields

z
(L+1)
i;α

d
= Z1 ·

(
CW
nL

)1/2 ∣∣∣∣∣∣D̂(L)W (L) · · · D̂(1)W (1)xα

∣∣∣∣∣∣ ,
where Z1 ∼ N (0, 1) is independent of D̂(`),W (`), i = 1, . . . , L. Further, due to the right
orthogonal invariance of the Gaussian matrices W (`) and the normalization that the variance
of the entries of W (`) is CW /n`−11, we have that

log

[(
CW
nL

)1/2 ∣∣∣∣∣∣D̂(L)W (L) · · · D̂(1)W (1)xα

∣∣∣∣∣∣]
d
=

1

2
log

[
CW
n0
||xα||2

]
+

L∑
`=1

1

2
log

[
CW
nL

∣∣∣∣∣∣D̂(`)Ŵ (`)u(`)
∣∣∣∣∣∣2]

where u(`) ∈ Rn`−1 is collection of deterministic unit vectors and Ŵ (`) are independent
random matrices with iid standard Gaussian entries. The summands on the previous line

57



Cumulants in Random Networks

are independent and are each distributed like the logarithm of a randomly weighted χ2

random variable:

CW
n`

∣∣∣∣∣∣D̂(`)W (`)u(`)
∣∣∣∣∣∣2 d

=
CW
n`

n∑̀
j=1

(
d

(`)
i

)2 (
Z

(`)
i

)2
,

where Z
(`)
i ∼ N (0, 1) are iid and independent of d

(`)
i . Putting this all together, we find that

z
(L+1)
i;α

d
=

(
CW
n0
||xα||2

)1/2

· Z1 ·
L∏
`=1

(
CW
n`

)1/2 ∣∣∣∣∣∣D̂(`)W (`)u(`)
∣∣∣∣∣∣

is a product of L+ 1 independent random variables. Moreover, a direct computation shows
that

E

log

CW
n`

n∑̀
j=1

(
d

(`)
i

)2 (
Z

(`)
i

)2

 = −1

2
Var

CW
n`

n∑̀
j=1

(
d

(`)
i

)2 (
Z

(`)
i

)2

+O(n−2
` )

= − 1

2n`

(
6
a4

+ + a4
−

(a2
+ + a2

−)2
− 1

)
+O(n−2

` )

and also that

Var

log

CW
n`

n∑̀
j=1

(
d

(`)
i

)2 (
Z

(`)
i

)2

 = Var

CW
n`

n∑̀
j=1

(
d

(`)
i

)2 (
Z

(`)
i

)2

+O(n−2
` )

=
1

n`

(
6
a4

+ + a4
−

(a2
+ + a2

−)2
− 1

)
+O(n−2

` ).

Combining the preceding two estimates, taking n,L→∞ with L/n→ γ and applying the
CLT yields

lim
n,L→∞

L/n→γ∈[0,∞)

z
(L)
i;α

d−→
(
CW
n0
||xα||2

)1/2

Z1 exp [−µ(γ, a+, a−) + σ(γ, a+, a−)Z2] ,

where

µ(γ, a+, a−) = σ2(γ, a+, a−) :=
γ

4

(
6
a4

+ + a4
−

(a2
+ + a2

+)2
− 1

)
, Z1, Z2 ∼ N (0, 1) iid.

This is precisely the statement of (76).
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