On the Optimality of Gaussian Kernel Based Nonparametric Tests against Smooth Alternatives
Tong Li, Ming Yuan; 25(334):1−62, 2024.
Abstract
Nonparametric tests via kernel embedding of distributions have witnessed a great deal of practical successes in recent years. However, statistical properties of these tests are largely unknown beyond consistency against a fixed alternative. To fill in this void, we study here the asymptotic properties of goodness-of-fit, homogeneity and independence tests using Gaussian kernels, arguably the most popular and successful among such tests. Our results provide theoretical justifications for this common practice by showing that tests using a Gaussian kernel with an appropriately chosen scaling parameter are minimax optimal against smooth alternatives in all three settings. In addition, our analysis also pinpoints the importance of choosing a diverging scaling parameter when using Gaussian kernels and suggests a data-driven choice of the scaling parameter that yields tests optimal, up to an iterated logarithmic factor, over a wide range of smooth alternatives. Numerical experiments are also presented to further demonstrate the practical merits of the methodology.
[abs]
[pdf][bib]© JMLR 2024. (edit, beta) |