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Abstract

Nonparametric tests via kernel embedding of distributions have witnessed a great deal of
practical successes in recent years. However, statistical properties of these tests are largely
unknown beyond consistency against a fixed alternative. To fill in this void, we study here
the asymptotic properties of goodness-of-fit, homogeneity and independence tests using
Gaussian kernels, arguably the most popular and successful among such tests. Our re-
sults provide theoretical justifications for this common practice by showing that tests using
a Gaussian kernel with an appropriately chosen scaling parameter are minimax optimal
against smooth alternatives in all three settings. In addition, our analysis also pinpoints
the importance of choosing a diverging scaling parameter when using Gaussian kernels and
suggests a data-driven choice of the scaling parameter that yields tests optimal, up to an it-
erated logarithmic factor, over a wide range of smooth alternatives. Numerical experiments
are also presented to further demonstrate the practical merits of the methodology.

Keywords: Gaussian kernel embedding, maximum mean discrepancy (MMD), nonpara-
metric tests, diverging scaling parameter, minimax optimality, adaptation

1. Introduction

Tests for goodness-of-fit, homogeneity and independence are central to statistical inferences.
Numerous techniques have been developed for these tasks and are routinely used in practice.
In recent years, there has been a renewed interest on them from both statistics and other
related fields as they arise naturally in many modern applications where the performance
of the classical methods are less than satisfactory. In particular, nonparametric inferences
via the embedding of distributions into a reproducing kernel Hilbert space (RKHS) have
emerged as a popular and powerful technique to tackle these challenges. The approach
immediately allows for easy access to the rich machinery for RKHS and has found great
successes in a wide range of applications from causal discovery to deep learning. See, e.g.,
Muandet et al. (2017) for a recent review.

1.1 Nonparametric Tests via Kernel Embedding

More specifically, let K(·, ·) be a symmetric and positive definite function defined over
X ×X , that is K(x, y) = K(y, x) for all x, y ∈ X , and the Gram matrix [K(xi, xj)]1≤i,j≤n is
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positive definite for any distinct x1, . . . , xn ∈ X . The Moore-Aronszajn Theorem indicates
that such a function, referred to as a kernel, can always be uniquely identified with a RKHS
HK of functions over X . The embedding

µP(·) :=

∫
X
K(x, ·)P(dx)

maps a probability distribution P into HK . The difference between two probability distri-
butions P and Q can then be conveniently measured by

γK(P,Q) := ‖µP − µQ‖HK .

Under mild regularity conditions, it can be shown that γK(P,Q) is an integral probability
metric so that it is zero if and only if P = Q, and

γK(P,Q) = sup
f∈HK :‖f‖HK≤1

∫
X
fd (P−Q) .

As such, γK(P,Q) is often referred to as the maximum mean discrepancy (MMD) between P
and Q. See, e.g., Sriperumbudur et al. (2010) or Gretton et al. (2012a) for details. In what
follows, we shall drop the subscript K whenever its choice is clear from the context. It was
noted recently that MMD is also closely related to the so-called energy distance between
random variables (Székely et al., 2007; Székely and Rizzo, 2009) commonly used to measure
independence. See, e.g., Sejdinovic et al. (2013); Lyons (2013).

Given a sample from P and/or Q, estimates of the γ(P,Q) can be derived by replacing
P and Q with their respective empirical distributions. These estimates can subsequently be
used for various statistical inferences. Here are several notable examples that we shall focus
on in this work.

Goodness-of-fit tests. The goal of goodness-of-fit tests is to check if a sample comes
from a pre-specified distribution. Let X1, · · · , Xn be n independent X -valued samples from
a certain distribution P. We are interested in testing if the hypothesis HGOF

0 : P = P0

holds for a fixed P0. Deviation from P0 can be conveniently measured by γ(P,P0) which
can be readily estimated by:

γ(P̂n,P0) := sup
f∈HK :‖f‖K≤1

∫
X
fd
(
P̂n − P0

)
,

where P̂n is the empirical distribution of X1, · · · , Xn. A natural procedure is to reject H0

if the estimate exceeds a threshold calibrated to ensure a certain significance level, say α
(0 < α < 1).

Homogeneity tests. Homogeneity tests check if two independent samples come from a
common population. Given two independent samplesX1, · · · , Xn ∼iid P and Y1, · · · , Ym ∼iid

Q, we are interested in testing if the null hypothesis HHOM
0 : P = Q holds. Discrepancy

between P and Q can be measured by γ(P,Q), and similar to before, it can be estimated
by the MMD between P̂n and Q̂m:

γ(P̂n, Q̂m) := sup
f∈H(K):‖f‖K≤1

∫
X
fd
(
P̂n − Q̂m

)
.
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Again we reject H0 if the estimate exceeds a threshold calibrated to ensure a certain signif-
icance level.

Independence tests. How to measure or test of independence among a set of random
variables is another classical problem in statistics. Let X = (X1, . . . , Xk)> ∈ X1×· · ·×Xk.
If X1, . . . , Xk are jointly independent, then the distribution of X can be factorized:

HIND
0 : PX = PX

1 ⊗ · · · ⊗ PX
k
.

Dependence among X1, . . . , Xk can be naturally measured by the discrepancy between the
joint distribution and the product distribution evaluated under MMD:

γ(PX ,PX
1 ⊗ · · · ⊗ PX

k
) = ‖µPX − µPX1⊗···⊗PXk‖HK .

When k = 2, the squared discrepancy γ2(PX ,PX1 ⊗ PX2
) can be expressed as the squared

Hilbert-Schmidt norm of the cross-covariance operator associated with X1 and X2 and
is therefore referred to as Hilbert-Schmidt independence criterion (HSIC; Gretton et al.,
2005). The more general case as given above is sometimes referred to as dHSIC (see, e.g.,
Pfister et al., 2018). As before, we proceed to reject the independence assumption when

γ(P̂Xn , P̂X
1

n ⊗ · · · ⊗ P̂Xk

n ) exceeds a certain threshold where P̂Xn and P̂Xj

n are the empirical
distribution of X and Xj respectively.

In all these cases the squared test statistic, namely γ2(P̂n,P0), γ2(P̂n, Q̂m) or γ2(P̂n, P̂X
1

n ⊗
· · ·⊗ P̂Xk

n ), is a V-statistic. Following standard asymptotic theory for V-statistics (see, e.g.,
Serfling, 2009), it can be shown that under mild regularity conditions, when appropriately
scaled by the sample size, they converge to a mixture of χ2

1 distribution with weights de-
termined jointly by the underlying probability distribution and the choice of kernel K. In
contrast, it can also be derived that for a fixed alternative,

γ2(P̂n,P0)→p γ
2(P,P0), γ2(P̂n, Q̂m)→p γ

2(P,Q)

and γ2(P̂n, P̂X
1

n ⊗ · · · ⊗ P̂X
k

n )→p γ
2(P,PX

1 ⊗ · · · ⊗ PX
k
),

where →p stands for convergence in probability. This immediately suggests that all afore-
mentioned tests are consistent against fixed alternatives in that their power tends to one
as sample sizes increase. Although useful, such consistency results do not tell the full story
about the power of these tests, and if there are yet more powerful methods.

For example, as recently shown by Balasubramanian et al. (2017), any goodness-of-fit
test based on statistic γ2

K(P̂n,P0) with a fixed kernel K is necessarily suboptimal. Here, the
subscript K signifies the choice of kernel. Balasubramanian et al. (2017) also argued that
much more powerful tests can be constructed by regularized embedding. The appropriate
regularization they employed, however, relies on the knowledge of P0, and therefore is spe-
cialized to goodness-of-fit tests. While it is plausible that MMD based tests for homogeneity
or independence may suffer from similar deficiencies, it remains unclear how to construct
tests that are more powerful in these settings. The goal of the current work is specifically
to address this question. In particular, we show that embedding using a Gaussian kernel
with an appropriately chosen scaling parameter provides a unified treatment to all three
testing problems.
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1.2 Our Contribution: Optimality and Adaptivity of Gaussian Kernel
Embedding

When data are continuous, e.g., X = Rd, Gaussian kernels are arguably the most popular
and successful choice in practice. On the one hand, we show that this choice of kernel is
justified because in all three scenarios, MMD based tests can be optimal for testing against
smooth alternatives provided that an appropriate scaling parameter is elicited. On the
other hand, we argue that existing ways of selecting the scaling parameter may not exploit
the full potential of Gaussian kernel based approaches and yet more powerful tests can be
constructed with appropriate choice of the scaling parameter.

In particular, we investigate how the power of these tests increases with the sample size
by characterizing the asymptotic behavior of the smallest amount of departure from the
null hypothesis that can be consistently detected. More specifically, we adopt the minimax
hypothesis testing framework pioneered by Burnashev (1979); Ingster (1987, 1993). See
also Ermakov (1991); Spokoiny (1996); Lepski and Spokoiny (1999); Ingster and Suslina
(2000); Ingster (2000); Baraud (2002); Ingster and Suslina (2003); Fromont and Laurent
(2006); Fromont et al. (2012, 2013), and references therein. Within this framework, we
consider testing against alternatives getting closer and closer to the null hypothesis as
the sample size increases. The smallest departure from the null hypotheses that can be
detected consistently, in a minimax sense, is referred to as the optimal detection boundary.
In all three settings, goodness of fit, homogeneity and independence testing, we show that
Gaussian kernels with an appropriately chosen scaling parameter yield tests that are rate
optimal in detecting smooth departures from null hypotheses. It is worth pointing out that
even though the goodness-of-fit and homogeneity tests have been considered within this
framework before, it is always done under the assumption that the underlying distributions
are compactly supported. The use of Gaussian kernel enables us to do away this restriction.
Our results not only provide rigorous justifications to the practical successes of Gaussian
kernels based testing procedures but also offer guidelines on how to choose the scaling
parameter in a principled way.

The critical importance of selecting an appropriate scaling parameter is widely recog-
nized in practice. Yet, the way it is done is usually ad hoc and how to do so in a more
principled way remains one of the chief practical challenges. See, e.g., Gretton et al. (2008);
Sriperumbudur et al. (2009); Gretton et al. (2012b); Sutherland et al. (2017). Our result
shows that it is essential that we take a diverging scaling parameter as the sample size
increases, and the choice of the scaling parameter may determine against which types of
deviation from the null hypothesis the resulting test is most powerful.

This also naturally brings about the issue of adaptation and whether or not there is
an agnostic approach towards testing of the aforementioned null hypotheses without the
need to specify a scaling parameter. To address this challenge, we introduce a simple
testing procedure by maximizing a studentized MMD over a pre-specified range of scaling
parameters. Similar idea of maximizing MMD over a class of kernels was first introduced
by Sriperumbudur et al. (2009). Our analysis, however, suggests that it is more desirable to
maximize normalized MMD instead. More specifically, we show that the proposed procedure
can attain the optimal rate, up to an iterated logarithmic factor, simultaneously over the
collection of parameter spaces corresponding to different levels of smoothness.
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1.3 Relation to Earlier Work: A Tale of Two “Kernels”

A simple yet useful observation for our analysis is the close connection between MMD and
another type of kernel method that is common in the literature on nonparametric statistics,
namely, kernel density estimation (KDE). Through the lens of KDE, sample MMD can
be viewed as an estimate of the L2 distance between two smooth densities. A similar
observation was first made by Gretton et al. (2012a) in the context of homogeneity tests.
We argue that MMD based goodness-of-fit and independence test statistics can also be
viewed as such, albeit slightly unconventional ones. This relationship allows us to blend
insights and techniques from the two rich but largely separate strands of literature, which
in turn leads to better understanding of the operating characteristics of Gaussian kernel
based nonparametric tests.

We usually think of sample MMD as an estimate of MMD between two probability
measures. Note that the Gaussian kernel is a characteristic kernel (Fukumizu et al., 2007).
This means the sample MMD can be used to consistently differentiate between two fixed
probability measures as sample size increases. However, with an increasing sample size,
there is also the opportunity to differentiate between two probability measures that are
closer to each other. While there are many benefits to quantify the “closeness” by MMD, it
is nonetheless a rather weak distance metric. Consider for example two probability measures
P and Q with densities p and q respectively. It is not hard to see that γ(P,Q) is always
upper-bounded by the L2 distance ‖p − q‖L2 between p and q. This means that, when
measured by γ(P,Q), P and Q may appear much closer to each other than they actually
are. This also implies that a test based on the magnitude of an estimate of γ(P,Q), such
as those described earlier, may not be as powerful as a test based on estimating a stronger
distance measure between P and Q. This insight was exploited earlier by Balasubramanian
et al. (2017) in the context goodness-of-fit test where they construct a test based on the χ2

distance between distributions. As mentioned earlier, their construction is specialized to
goodness-of-fit test and requires evaluation of the eigenvalue decomposition of the kernel.
Our development shares a similar spirit. But, by leveraging the property that sample
MMD with an appropriately chosen kernel can estimate ‖p − q‖L2 well, our approach is
much simpler and more broadly applicable: using Gaussian kernel with a diverging scaling
parameter.

The problem of estimating the L2 distance between two densities is closely related to
estimating ‖p‖2L2

given a sample from the density p, which has been well studied in the
literature since the pioneering work of Bickel and Ritov (1988) who first showed that such
functionals can be estimated at the parametric rate for smooth functions. However, almost
none of the existing work employs KDE based methods. The lone exception and the work
most related to our treatment is Giné and Nickl (2008) who showed that when d = 1,
KDE based methods can also attain parametric rate. Similar to Giné and Nickl (2008),
our development is based on a combination of U-statistic theory and Fourier analytical
methods. However, there is also a crucial distinction: our goal is testing not estimation.
This difference manifests prominently in our power analysis of MMD based tests. As first
observed by Ingster (1987), optimal testing is often more subtle and requires more careful
analysis of the behavior of higher order terms. Indeed this is also the case in our setting and

5



Li and Yuan

as a result we show that it is possible to consistently differentiate between two probability
measures even in situations where their difference cannot be consistently estimated.

The marriage between these two perspectives also leads to intriguing new findings. In
particular, we show that, with Gaussian kernel, adaptativity can be attained by simply
maximizing studentized sample MMD. This is to be contrasted with the more sophisticated
procedure known as Lepski’s method (Lepskii, 1991; Lepski and Spokoiny, 1997) that is
typically used in nonparametric statistics. Our work here offers a partial explanation of the
success of Gaussian kernel in practice.

1.4 Organization of the Paper

The rest of this paper is organized as follows. In the next three sections, we shall investigate
the statistical properties of Gaussian kernel based tests for goodness-of-fit, homogeneity and
independence respectively, and show that with appropriate choice of the scaling parameter,
these tests are minimax optimal if the underlying densities are smooth. Since the optimal
choice of scaling parameter requires the knowledge of smoothness which is rarely available,
in Section 5 we introduce new tests that do not require such knowledge yet attain optimal
power, up to an iterated logarithmic factor, for a wide range of smooth alternatives. Numer-
ical experiments presented in Section 6 further illustrate the practical merits of our method
and theoretical developments. We conclude with some summary discussion in Section 7 and
all proofs are relegated to Section 8.

2. Test for Goodness-of-fit

Among the three testing problems that we consider, it is instructive to begin with the
case of goodness-of-fit. Obviously, the choice of kernel K plays an essential role in kernel
embedding of distributions. In particular, when data are continuous, Gaussian kernels are
commonly used. More specifically, a Gaussian kernel with a scaling parameter ν > 0 is
given by

Gd,ν(x, y) = exp
(
−ν‖x− y‖2d

)
, ∀x, y ∈ Rd.

Hereafter ‖·‖d stands for the usual Euclidean norm in Rd. For brevity, we shall suppress the
subscript d io both ‖·‖ and G when the dimensionality is clear from the context. When P and
Q are probability distributions defined over X = Rd, we shall write the MMD between them
with a Gaussian kernel and scaling parameter ν as γν(P,Q) where the subscript signifies
the specific value of the scaling parameter.

We shall restrict our attention to distributions with smooth densities. Denote by Ws,2
d

the sth order Sobolev space in Rd, that is

Ws,2
d =

{
f : Rd → R

∣∣f is almost surely continuous and

∫
(1 + ‖ω‖2)s‖F(f)(ω)‖2dω <∞

}
where F(f) is the Fourier transform of f :

F(f)(ω) =
1

(2π)d/2

∫
Rd
f(x)e−ix

>ωdx.
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In what follows, we shall again suppress the subscript d in Ws,2
d when it is clear from the

context. For any f ∈ Ws,2, we shall write

‖f‖2Ws,2 =

∫
Rd

(1 + ‖ω‖2)s‖F(f)(ω)‖2dω.

We are interested in the case when both p and p0 are elements from Ws,2.
Note that we can rewrite the null hypothesis HGOF

0 in terms of density functions: HGOF
0 :

p = p0 for some prespecified denstiy p0 ∈ Ws,2. To better quantify the power of a test,
we shall consider testing against an alternative that is increasingly closer to the null as the
sample size n increases:

HGOF
1 (∆n; s) : p ∈ Ws,2(M), ‖p− p0‖L2 ≥ ∆n,

where
Ws,2(M) =

{
f ∈ Ws,2 : ‖f‖Ws,2 ≤M

}
and

‖f‖2L2
=

∫
Rd
f2(x)dx.

The alternative hypothesis HGOF
1 (∆n; s) is composite and the power of a test Φ based on

X1, . . . , Xn ∼ p is therefore defined as

power(Φ;HGOF
1 (∆n; s)) := inf

p∈Ws,2(M),‖p−p0‖L2
≥∆n

P{Φ rejects HGOF
0 }.

Of particular interest here is the smallest ∆n so that a test is consistent in that the above
quantity converges to one.

Consider embedding with Gaussian kernel and a fixed scaling parameter ν > 0. Follow-
ing standard asymptotic theory for V-statistics (see, e.g., Serfling, 2009), it can be shown
that under HGOF

0 and certain regularity conditions,

nγ2
ν(P̂,P0)→d

∑
k≥1

λ2
kZ

2
k

where →d stands for convergence in distribution and λ1 ≥ λ2 ≥ · · · are the singular values
of the linear operator:

Lνf =

∫
Rd
Ḡν(x, x′;P0)f(x′)dx′, ∀f ∈ L2(Rd)

and

Ḡν(x, y;P0) = Gν(x, y)− EX∼P0Gν(X, y)− EX∼P0Gν(x,X) + EX,X′∼iidP0Gν(X,X ′)

and Zks are independent standard normal random variables. Hereafter, for brevity, we shall
omit the last argument of Ḡ when it is clear from the context. As such, we may proceed
to reject HGOF

0 if and only if nγ̂2
ν(P̂n,P0) exceeds the upper α quantile of its asymptotic

distribution, which yields an (asymptotic) α-level test. Following the same argument as
that from Balasubramanian et al. (2017), we can show that under mild regularity conditions
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such a test has power tending to one if and only if ∆n � n−1/4. In addition, as shown
by Balasubramanian et al. (2017), much more powerful tests exist when assuming that
the underlying densities are compactly supported and bounded away from 0 and 1. Here
we show that the same is true for broader classes of distributions using Gaussian kernel
embedding with a diverging scaling parameter.

Recall that

γ2
ν(P̂n,P0) =

1

n2

n∑
i,j=1

Ḡν(Xi, Xj).

It is not hard to see that this is a biased estimate of γ2
ν(P,P0) due to the oversized influence

of the summands when i = j. It is often common to correct for bias and use instead the
following U-statistic:

γ̂2
ν(P,P0) :=

1

n(n− 1)

n∑
1≤i 6=j≤n

Ḡν(Xi, Xj),

which we shall focus on in what follows.
The choice of the scaling parameter ν is essential when using RKHS embedding for

goodness-of-fit test. While the importance of a data-driven choice of ν is widely recognized
in practice, almost all existing theoretical studies assume a fixed kernel, therefore those
studies are valid for a fixed scaling parameter in the case of the Gaussian kernel. Here
we shall demonstrate the benefit of using a data-driven scaling parameter, and especially
choosing a scaling parameter that diverges with the sample size.

More specifically, we argue that, with appropriate scaling, γ̂2
ν(P,P0) can be viewed as

an estimate of ‖p− p0‖2L2
when ν →∞ as n→∞. Note that∫

(p− p0)2 =

∫
p2 − 2

∫
p · p0 +

∫
p2

0.

The first term can be estimated by∫
p2 ≈ 1

n

n∑
i=1

p(Xi) ≈
1

n

n∑
i=1

p̂h,−i(Xi)

where p̂h,−i is a kernel density estimate of p with bandwidth h and with the ith observation
removed:

p̂h,−i(x) =
1

n(2πh2)d/2

∑
j 6=i

G(2h2)−1(x−Xj).

Thus, we can estimate
∫
p2 by

1

n(n− 1)(2πh2)d/2

∑
1≤i 6=j≤n

G(2h2)−1(Xi, Xj).

Similarly, the cross-product term can be estimated by∫
p · p0 ≈

∫
p̂h(x)p0(x)dx =

1

n(2πh2)d/2

n∑
i=1

∫
G(2h2)−1(x,Xi)p0(x)dx.
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Together, we can view

1

n(n− 1)(2πh2)d/2

∑
1≤i 6=j≤n

Ḡ(2h2)−1(Xi, Xj) (1)

as an estimate of
∫

(p − p0)2. It is worth pointing out that, in spite the connection with
kernel density estimation (KDE, for short), (1) differs from the usual and well studied KDE
based estimate of

∫
(p− p0)2, namely,

∫
(p̂h − p0)2.

Nonetheless, this close relationship between the two types of kernel methods, one popular
in machine learning literature and the other common in statistics, allows us to draw insights
from the well established theory for kernel density estimator (see, e.g., Tsybakov, 2008) in
studying goodness-of-fit tests based on kernel embedding. In particular, following standard
asymptotic properties of the kernel density estimator, we know that

(π/ν)−d/2γ̂2
ν(P,P0)→p ‖p− p0‖2L2

if ν → ∞ in such a fashion that ν = o(n4/d). Motivated by this observation, we shall now

consider testing HGOF
0 using γ̂2

ν(P,P0) with a diverging ν. To signify the dependence of ν
on the sample size, we shall add a subscript n in what follows.

Under HGOF
0 , it is clear that Eγ̂2

νn(P,P0) = 0. Note also that

var(γ̂2
νn(P,P0))

=
2

n(n− 1)
E
[
Ḡ2
νn(X1, X2)

]
=

2

n(n− 1)

[
E
[
G2
νn(X1, X2)

]
− 2E[Gνn(X1, X2)Gνn(X1, X3)] + [EGνn(X1, X2)]2

]
=

2

n(n− 1)

[
EG2νn(X1, X2)− 2E[Gνn(X1, X2)Gνn(X1, X3)] + [EGνn(X1, X2)]2

]
. (2)

Simple calculations yield:

var(γ̂2
νn(P,P0)) =

2(π/(2νn))d/2

n2
· ‖p0‖2L2

· (1 + o(1)),

assuming that νn →∞. We shall show that

n√
2

(
2νn
π

)d/4
γ̂2
νn(P,P0)→d N

(
0, ‖p0‖2L2

)
.

To use this as a test statistic, however, we will need to estimate var(γ̂2
νn(P,P0)). To this

end, it is natural to consider estimating each of the three terms in (2) by U-statistics:

s̃2
n,νn =

1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(Xi, Xj)

− 2(n− 3)!

n!

∑
1≤i,j1,j2≤n
|{i,j1,j2}|=3

Gνn(Xi, Xj1)Gνn(Xi, Xj2)

+
(n− 4)!

n!

∑
1≤i1,i2,j1,j2≤n
|{i1,i2,j1,j2}|=4

Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2).
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Note that s̃2
n,νn is not always positive. To avoid a negative estimate of the variance, we

can replace it with a sufficiently small value, say 1/n2, whenever it is negative or too small.
Namely, let

ŝ2
n,νn = max

{
s̃2
n,νn , 1/n

2
}
,

and consider a test statistic:

TGOF
n,νn :=

n√
2
ŝ−1
n,νn γ̂

2
νn(P,P0).

We have the following result.

Theorem 1 Let νn → ∞ as n → ∞ in such a fashion that νn = o(n4/d). Then, under
HGOF

0 ,

n√
2

(
2νn
π

)d/4
γ̂2
νn(P,P0)→d N(0, ‖p0‖2L2

). (3)

Moreover,

TGOF
n,νn →d N(0, 1). (4)

Theorem 1 immediately implies a test, denoted by ΦGOF
n,νn,α (with α ∈ (0, 1)), that re-

jects HGOF
0 if and only if TGOF

n,νn exceeds zα, the upper α quantile of the standard normal
distribution, is an asymptotic α-level test.

We now proceed to study its power against a smooth alternative. Following the same
argument as before, it can be shown that

1

n(n− 1)(π/νn)d/2

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj)→p ‖p− p0‖2L2
,

and

(2νn/π)d/2ŝ2
n,νn →p ‖p‖2L2

,

so that

n−1(νn/(2π))d/4TGOF
n →p ‖p− p0‖2L2

/‖p‖L2 .

This immediately implies that, if νn →∞ in such a manner that νn = o(n4/d), then ΦGOF
n,νn,α

is consistent for a fixed p 6= p0 in that its power converges to one. In fact, as n increases,
more and more subtle deviation from p0 can be detected by ΦGOF

n,νn,α. A refined analysis of

the asymptotic behavior of TGOF
n,νn yields the following result.

Theorem 2 Assume that n2s/(d+4s)∆n →∞. Then for any α ∈ (0, 1),

lim
n→∞

power{ΦGOF
n,νn,α;HGOF

1 (∆n; s)} = 1,

provided that νn � n4/(d+4s).

In other words, ΦGOF
n,νn,α has a detection boundary of the order O(n−2s/(d+4s)) which turns

out to be minimax optimal in that no other tests could attain a detection boundary with
faster rate of convergence. More precisely, we have

10
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Theorem 3 Assume that lim infn→∞ n
2s/(d+4s)∆n <∞ and p0 is density such that

‖p0‖Ws,2 < M . Then there exists some α ∈ (0, 1) such that for any test Φn of level α
(asymptotically) based on X1, . . . , Xn ∼ p,

lim inf
n→∞

power{Φn;HGOF
1 (∆n; s)} < 1.

The lower bound given by Theorem 3 is similar in spirit to the classical result by Ingster
(1987) who considers the case when both P and P0 are compactly supported. Together,
Theorems 2 and 3 suggest that Gaussian kernel embedding of distributions is especially
suitable for testing against smooth alternatives, and it yields a test that could consistently
detect the smallest departures from the null distribution. The idea can also be readily
applied to testing of homogeneity and independence which we shall examine next.

3. Test for Homogeneity

As in the case of goodness of fit test, we shall consider the case when the underlying
distributions have smooth densities so that we can rewrite the null hypothesis as HHOM

0 :
p = q ∈ Ws,2(M), and the alternative hypothesis as

HHOM
1 (∆n; s) : p, q ∈ Ws,2(M), ‖p− q‖L2 ≥ ∆n,m.

The power of a test Φ based on X1, . . . , Xn ∼ p and Y1, . . . , Ym ∼ q is given by

power(Φ;HHOM
1 (∆n; s)) := inf

p,q∈Ws,2(M),‖p−q‖L2
≥∆n

P{Φ rejects HHOM
0 }.

To fix ideas, we shall also assume that c ≤ m/n ≤ C for some constants 0 < c ≤ C <∞. In
addition, we shall express explicitly only the dependence (for example, of ∆) on n and not
m, for brevity. Our treatment, however, can be straightforwardly extended to more general
situations.

We shall focus on an unbiased estimate of γ2
νn(P,Q), namely,

γ̂2
νn(P,Q) =

1

n(n− 1)

∑
1≤i 6=j≤n

Gνn(Xi, Xj) +
1

m(m− 1)

∑
1≤i 6=j≤m

Gνn(Yi, Yj)

− 2

mn

n∑
i=1

m∑
j=1

Gνn(Xi, Yj).

It is easy to see that under HHOM
0 ,

Eγ̂2
νn(P,Q) = 0

and

var
(
γ̂2
νn(P,Q)

)
= 2

(
1

n(n− 1)
+

2

mn
+

1

m(m− 1)

)
E(X,Y )∼P⊗QḠ

2
νn(X,Y ),

where

Ḡνn(x, y) = Gν(x, y)− EX∼PGνn(X, y)− EY∼QGνn(x, Y ) + E(X,Y )∼P⊗QGνn(X,Y ).

11
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It is therefore natural to consider estimating the variance by ŝ2
n,m,νn = max

{
s̃2
n,m,νn , 1/n

2
}

where

s̃2
n,m,νn =

1

N(N − 1)

∑
1≤i 6=j≤N

G2νn(Zi, Zj)

− 2(N − 3)!

N !

∑
1≤i,j1,j2≤N
|{i,j1,j2}|=3

Gνn(Zi, Zj1)Gνn(Zi, Zj2)

+
(N − 4)!

N !

∑
1≤i1,i2,j1,j2≤N
|{i1,i2,j1,j2}|=4

Gνn(Zi1 , Zj1)Gνn(Zi2 , Zj2),

with N = n + m and Zi = Xi if i ≤ n and Yi−n if i > n. This leads to the following test
statistic:

THOM
n,νn =

nm√
2(n+m)

· ŝ−1
n,m,νn · γ̂2

νn(P,Q).

As before, we can show

Theorem 4 Let νn → ∞ as n → ∞ in such a fashion that νn = o(n4/d). Then under
HHOM

0 : p = q ∈ Ws,2(M),

THOM
n,νn →d N(0, 1), as n→∞.

Note that the condition c ≤ m/n ≤ C implies that m → ∞ when n → ∞. Motivated
by Theorem 4, we can consider a test, denoted by ΦHOM

n,νn,α, that rejects HHOM
0 if and only

if THOM
n,νn exceeds zα. By construction, ΦHOM

n,νn,α is an asymptotic α level test. We now turn

to study its power against HHOM
1 . As in the case of goodness of fit test, we can prove that

ΦHOM
n,νn,α is minimax optimal in that it can detect the smallest difference between p and q in

terms of rate of convergence. More precisely, we have

Theorem 5 (i) Assume that n2s/(d+4s)∆n →∞. Then for any α ∈ (0, 1),

lim
n→∞

power{ΦHOM
n,νn,α;HHOM

1 (∆n; s)} = 1,

provided that νn � n4/(d+4s).

(ii) Conversely, if lim infn→∞ n
2s/(d+4s)∆n < ∞, then there exists some α ∈ (0, 1) such

that for any test Φn of level α (asymptotically) based on X1, . . . , Xn ∼ p and
Y1, . . . , Ym ∼ q,

lim inf
n→∞

power{Φn;HHOM
1 (∆n; s)} < 1.

Similar to the setting for goodness-of-fit test, Theorem 5 suggests that Gaussian kernel
embedding of distributions with appropriate choice of the scaling parameter is also minimax
rate optimal for testing of homogeneity. Our result, again, differs from previous studies that
often require that the P and Q are compactly supported.

12
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4. Test for Independence

Similarly, we can also use Gaussian kernel embedding to construct minimax optimal tests
of independence. Let X = (X1, . . . , Xk)> ∈ Rd be a random vector where the subvectors
Xj ∈ Rdj for j = 1, . . . , k so that d1 + · · ·+ dk = d. Denote by p the joint density function
of X, and pj the marginal density of Xj . We assume that both the joint density and the
marginal densities are smooth. Specifically, we shall consider testing

HIND
0 : p = p1 ⊗ · · · ⊗ pk, pj ∈ Ws,2(Mj), 1 ≤ j ≤ k

against a smooth departure from independence:

HIND
1 (∆n; s) : p ∈ Ws,2(M), pj ∈ Ws,2(Mj), 1 ≤ j ≤ k and ‖p− p1 ⊗ · · · ⊗ pk‖L2 ≥ ∆n,

where M =
k∏
j=1

Mj so that p1⊗ · · ·⊗ pk ∈ Ws,2(M) under both the null and the alternative

hypotheses.

Given a sample {X1, . . . , Xn} of independent copies of X, we shall consider the following

unbiased estimate of γ2
νn(P,PX1 ⊗ · · · ⊗ PXk

),

γ̂2
νn(P,PX

1 ⊗ · · · ⊗ PX
k
)

=
1

n(n− 1)

∑
1≤i 6=j≤n

Gνn(Xi, Xj)

+
(n− 2k)!

n!

∑
1≤i1,··· ,ik,j1,··· ,jk≤n
|{i1,··· ,ik,j1,··· ,jk}|=2k

Gνn((X1
i1 , . . . , X

k
ik

), (X1
j1 , . . . , X

k
jk

))

− 2(n− k − 1)!

n!

∑
1≤i,j1,··· ,jk≤n
|{i,j1,··· ,jk}|=k+1

Gνn(Xi, (X
1
j1 , . . . , X

k
jk

)).

Under HIND
0 , we have

Eγ̂2
νn(P,PX

1 ⊗ · · · ⊗ PX
k
) = 0.

Deriving its variance, however, requires a bit more work. Write

hj(x
j , y) = E

X∼PX1⊗···⊗PXkGνn((X1, . . . , Xj−1, xj , Xj+1, . . . , Xk), y)

and

gj(x
j , y) = hj(x

j , y)− E
Xj∼PXjhj(X

j , y)− EY∼Phj(xj , Y ) + E
(Xj ,Y )∼PXj⊗Phj(X

j , Y ).

With slight abuse of notation, we write

hj1,j2(xj1 , yj2) = E
X,Y∼iidPX

1⊗···⊗PXkGνn((X1, . . . , Xj1−1, xj1 , Xj1+1, . . . , Xk),

(Y 1, . . . , Y j2−1, yj2 , Y j2+1, . . . , Y k))

13
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and

gj1,j2(xj1 , yj2) =hj1,j2(xj1 , yj2)− E
Xj1∼PXj1 hj1,j2(Xj1 , yj2)

− E
Xj2∼PXj2 hj1,j2(xj1 , Xj2) + E

(Xj1 ,Y j2 )∼PXj1⊗PXj2 hj1,j2(Xj1 , Y j2).

Then we have

Lemma 6 Under HIND
0 ,

var
(
γ̂2
νn(P,PX

1 ⊗ · · · ⊗ PX
k
)
)

=
2

n(n− 1)

(
EḠ2

νn(X,Y )− 2
∑

1≤j≤k
E
(
gj(X

j , Y )
)2

+
∑

1≤j1,j2≤k
E
(
gj1,j2(Xj1 , Y j2)

)2)
+O(EG2νn(X,Y )/n3).

(5)

In light of Lemma 6, a variance estimator can be derived by estimating the leading term
on the righthand side of (5) term by term using U-statistics. Formulae for estimating the
variance for general k are tedious and we defer them to the appendix for space consideration.
In the special case when k = 2, the leading term on the righthand side of (5) takes a much
simplified form:

2

n(n− 1)
EḠνn(X1, Y 1) · EḠνn(X2, Y 2),

where Xj , Y j ∼iid PXj
for j = 1, 2. Thus, we can estimate E[Ḡνn(Xj , Y j)]2 by

s̃2
n,j,νn =

1

n(n− 1)

∑
1≤i1 6=i2≤n

G2νn(Xj
i1
, Xj

i2
)

− 2(n− 3)!

n!

∑
1≤i,l1,l2≤n
|{i,l1,l2}|=3

Gνn(Xj
i , X

j
l1

)Gνn(Xj
i , X

j
l2

)

+
(n− 4)!

n!

∑
1≤i1,i2,l1,l2≤n
|{i1,i2,l1,l2}|=4

Gνn(Xj
i1
, Xj

l1
)Gνn(Xj

i2
, Xj

l2
)

and estimate var(γ̂2
νn(P,PX1 ⊗ PX2

)) by 2/[n(n− 1)]ŝ2
n,νn where

ŝ2
n,νn := max

{
s̃2
n,1,νn s̃

2
n,2,νn , 1/n

2
}
.

Then, a test statistic for HIND
0 is

T IND
n,νn :=

n√
2
ŝ−1
n,νn γ̂

2
νn(P,PX

1 ⊗ PX
2
).

Test statistics for general k > 2 can be defined similarly.

Theorem 7 Let νn → ∞ as n → ∞ in such a fashion that νn = o(n4/d). Then under
HIND

0 ,
T IND
n,νn →d N(0, 1), as n→∞.
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As before, let ΦIND
n,νn,α be the test that rejects HIND

0 if and only if T IND
n,νn exceeds zα. We

have the following.

Theorem 8 (i) Assume that n2s/(d+4s)∆n →∞. Then for any α ∈ (0, 1),

lim
n→∞

power{ΦIND
n,νn,α;HIND

1 (∆n; s)} = 1,

provided that νn � n4/(d+4s).

(ii) Conversely, if lim infn→∞ n
2s/(d+4s)∆n < ∞, then there exists some α ∈ (0, 1) such

that for any test Φn of level α (asymptotically) based on X1, . . . , Xn ∼ p,

lim inf
n→∞

power{Φn;HIND
1 (∆n; s)} < 1.

As before, Theorem 8 shows that ΦIND
n,νn,α is also minimax optimal.

5. Adaptation

The results presented in the previous sections not only suggest that Gaussian kernel em-
bedding of distributions is especially suitable for testing against smooth alternatives, but
also indicate the importance of choosing an appropriate scaling parameter in order to detect
small deviation from the null hypothesis. To achieve maximum power, the scaling param-
eter should be chosen according to the smoothness of underlying density functions. This,
however, presents a practical challenge because the level of smoothness is rarely known a
priori. This naturally brings about the questions of adaption: can we devise an agnostic
testing procedure that does not require such knowledge but still attain similar performance?
We shall show in this section that this is possible, at least for sufficiently smooth densities.

5.1 Test for Goodness-of-fit

We again begin with the test for goodness-of-fit. As we show in Section 2, under HGOF
0 , we

have TGOF
n,νn →d N(0, 1) if 1� νn � n4/d; whereas for any p ∈ Ws,2 such that ‖p− p0‖L2 �

n−2s/(d+4s), TGOF
n,νn → ∞ provided that νn � n4/(d+4s). This motivates us to consider the

following test statistic:

TGOF(adapt)
n = max

1≤νn≤n2/d
TGOF
n,νn .

In light of earlier discussion, it is plausible that such a statistic could be used to detect
any smooth departure from the null provided that the level of smoothness s ≥ d/4. We
now argue that this is indeed the case. Thus far, we do not know if adaptation can extend
beyond d/4 and we shall leave this for future investigation.

More specifically, we shall proceed to reject HGOF
0 if and only if T

GOF(adapt)
n exceeds

the upper α quantile, denoted by qGOF
n,α , of its null distribution. In what follows, we shall

call this test ΦGOF(adapt). Note that, even though it is hard to derive the analytic form for
qGOF
n,α , it can be readily evaluated via Monte Carlo method, i.e., it can be approximated

by the sample quantile of T
GOF(adapt)
n simulated under the null hypothesis. To study the
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power of ΦGOF(adapt) against HGOF
1 with different levels of smoothness, we shall consider

the following alternative hypothesis

H
GOF(adapt)
1 (∆n,s : s ≥ d/4) : p ∈

⋃
s≥d/4

{p ∈ Ws,2(M) : ‖p− p0‖L2 ≥ ∆n,s}.

The following theorem characterizes the power of ΦGOF(adapt) against this alternative.

Theorem 9 There exists a constant c > 0 such that if

lim inf
n→∞

∆n,s(n/ log log n)2s/(d+4s) > c,

then
power{ΦGOF(adapt);H

GOF(adapt)
1 (∆n,s : s ≥ d/4)} → 1.

Theorem 9 shows that ΦGOF(adapt) has a detection boundary of the order (log log n/n)
2s
d+4s

when p ∈ Ws,2 for any s ≥ d/4. If s is known in advance, as we showed in Section 2, the
optimal test is based on TGOF

n,νn with νn � n4/(d+4s) and has a detection boundary of the

order O(n−2s/(d+4s)). The extra polynomial of iterated logarithmic factor (log log n)2s/(d+4s)

is the price we pay to ensure that no knowledge of s is required and ΦGOF(adapt) is powerful
against smooth alternatives for all s ≥ d/4.

5.2 Test for Homogeneity

The treatment for homogeneity tests is similar. Instead of THOM
n,νn , we now consider a test

based on
THOM(adapt)
n = max

1≤νn≤n2/d
THOM
n,νn .

If T
HOM(adapt)
n exceeds the upper α quantile, denoted by qHOM

n,α , of its null distribution, then

we reject HHOM
0 . In what follows, we shall refer to this test as ΦHOM(adapt). As before,

we do not have a closed form expression for qHOM
n,α , and it needs to be evaluated via Monte

Carlo method. In particular, in the case of homogeneity test, we can approximate qHOM
n,α

by permutation where we randomly shuffle {X1, . . . , Xn, Y1, . . . , Ym} and compute the test
statistic as if the first n shuffled observations are from the first population whereas the other
m are from the second population. This is repeated multiple times in order to approximate
the critical value qHOM

n,α .

The following theorem characterize the power of ΦHOM(adapt) against an alternative with
different levels of smoothness

H
HOM(adapt)
1 (∆n,s : s ≥ d/4) : (p, q) ∈

⋃
s≥d/4

{(p, q) : p, q ∈ Ws,2(M), ‖p− q‖L2 ≥ ∆n,s}.

Theorem 10 There exists a constant c > 0 such that if

lim inf
n→∞

∆n,s(n/ log log n)2s/(d+4s) > c,

then
power{ΦHOM(adapt);H

HOM(adapt)
1 (∆n,s : s ≥ d/4)} → 1.
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Similar to the case of goodness-of-fit test, Theorem 10 shows that ΦHOM(adapt) has a detec-
tion boundary of the order O((n/ log log n)−2s/(d+4s)) when p 6= q ∈ Ws,2 for any s ≥ d/4.
In light of the results from Section 3, this is optimal up to an extra polynomial of iterated
logarithmic factor. The main advantage is that ΦHOM(adapt) is powerful against smooth
alternatives simultaneously for all s ≥ d/4.

5.3 Test for Independence

Similarly, for independence test, we adopt the following test statistic:

T IND(adapt)
n = max

1≤νn≤n2/d
T IND
n,νn .

and reject HIND
0 if and only T

IND(adapt)
n exceeds the upper α quantile, denoted by qIND

n,α , of

its null distribution. In what follows, we shall refer to this test as ΦIND(adapt). The critical
value, qIND

n,α , can also be evaluated via permutation test. See, e.g., Pfister et al. (2018) for
detailed discussions.

We now show that ΦIND(adapt) is powerful in testing against the alternative with different
levels of smoothness

H
IND(adapt)
1 (∆n,s : s ≥ d/4) : p ∈

⋃
s≥d/4

{
p ∈ Ws,2(M), pj ∈ Ws,2(Mj), 1 ≤ j ≤ k,

‖p− p1 ⊗ · · · ⊗ pk‖L2 ≥ ∆n,s

}
.

More specifically, we have the following result.

Theorem 11 There exists a constant c > 0 such that if

lim inf
n→∞

∆n,s(n/ log log n)2s/(d+4s) > c,

then
power{ΦIND(adapt);H

IND(adapt)
1 (∆n,s : s ≥ d/4)} → 1.

Similar to before, Theorem 11 shows that ΦIND(adapt) is optimal up to an extra polynomial
of iterated logarithmic factor for detecting smooth departure from independence simulta-
neously for all s ≥ d/4.

6. Numerical Experiments

To complement our theoretical development and demonstrate the practical merits of the
proposed methodology in choosing the scaling parameter, we conducted several sets of
numerical experiments.

6.1 Effect of Scaling Parameter

Our first set of experiments was designed to illustrate the importance of the scaling pa-
rameter and highlight the potential room for improvement over the “median” heuristic—a
common data-driven choice of the scaling parameter in practice (see, e.g., Gretton et al.,
2008; Pfister et al., 2018).
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• Experiment I : the homogeneity test with underlying distributions being the normal
distribution and the mixture of several normal distributions. Specifically,

p(x) = f(x; 0, 1), q(x) = 0.5× f(x; 0, 1) + 0.1×
∑
µ∈µ

f(x;µ, 0.05)

where f(x;µ, σ) denotes the density of N(µ, σ2) and µ = {−1,−0.5, 0, 0.5, 1}.

• Experiment II: the joint independence test of X1, · · · , X5 where

X1, · · · , X4, (X5)′ ∼iid N(0, 1), X5 =
∣∣(X5)′

∣∣× sign

(
4∏
l=1

X l

)
.

Clearly X1, · · · , X5 are jointly dependent since
∏d
l=1X

l ≥ 0.

In both experiments, our primary goal is to investigate how the power of Gaussian MMD
based test is influenced by a pre-fixed scaling parameter. These tests are also compared to
the ones with scaling parameter selected via “median” heuristic. In order to evaluate tests
with different scaling parameters under a unified framework, we determined the critical
values for each test via a permutation test.

For Experiment I we fixed the sample size at n = m = 200; and for Experiment II at
n = 400. The number of permutations was set at 100, and significance level at α = 0.05.
We first repeated the experiments 100 times under the null to verify that permutation tests
indeed yield the correct size, up to Monte Carlo error. Each experiment was then repeated
for 100 times and the observed power (± one standard error) for different choices of the
scaling parameter. The results are summarized in Figure 1. It is perhaps not surprising
that the scaling parameter selected via “median heuristic” has little variation across each
simulation run, and we represent its performance by a single value.
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Figure 1: Observed power against log(ν) in Experiment I (left) and Experiment II (right).

The importance of the scaling parameter is evident from Figure 1 where the observed
power varies quite significantly for different choices. It is also of interest to note that in

18



Optimality of Gaussian Kernel Nonparametric Tests against Smooth Alternatives

these settings the “median” heuristic typically does not yield a scaling parameter with
great power. More specifically, in Experiment I, log(νmedian) ≈ 0.2 and maximum power
is attained at log(ν) = 4; in Experiment II, log(νmedian) ≈ −2.15 and maximum power is
attained at log(ν) = 1. This suggests that more appropriate choice of the scaling parameter
may lead to much improved performance.

6.2 Efficacy of Adaptation

Our second set of experiments aims to illustrate that the adaptive procedures we proposed
in Section 5 indeed yield more powerful tests when compared with other procedures that are
commonly used in practice. In particular, we compare the proposed self-normalized adaptive
test (S.A.) with several data-driven approaches, namely the “median” heuristic (Median),
the training-testing approach (T.T.) in Sutherland et al. (2017) and the unnormalized
adaptive test (U.A.) proposed in Sriperumbudur et al. (2009). For T.T., U.A. and S.A.,
we first rescaled the squared distance ‖Xi − Xj‖2 by the dimensionality d before taking
maximum within a certain range of the scaling parameter. We considered two experiment
setups:

• Experiment III : the homogeneity test with the underlying distributions being

P ∼ N(0, Id), Q ∼ N
(
0,
(

1 + 2d−1/2
)
Id

)
.

As the ‘signal strength’, the ratio between the variances of Q and P in each single
direction is set to decrease to 1 at the order 1/

√
d with d, which is the decreasing

order of variance ratio that can be detected by the classical F -test.

• Experiment IV : the independence test of X1, X2 ∈ Rd/2, where X = (X1, X2) follows
a mixture of

N (0, Id) and N
(
0, (1 + 6d−3/5)Id

)
with mixture probability being 0.5. Similarly, the ratio between the variances in each
direction is set to decrease with d, but at a slightly higher rate.

To better compare different methods, we considered different combinations of sample size
and dimensionality for each experiment. More specifically, for Experiment III, the sample
sizes were set to be m = n ∈ {25, 50, 75, · · · , 200} and dimension d ∈ {1, 10, 100, 1000};
for Experiment IV, the sample size were n ∈ {100, 200, · · · , 600} and dimension d ∈
{2, 10, 100, 1000}. In both experiments, we fixed the significance level at α = 0.05, did
100 permutations to calibrate the critical values as before. Again we simulated under H0 to
verify that the resulting tests have the targeted size, up to Monte Carlo error. The power
of each method, estimated from 100 such experiments, is reported in Figures 2 and 3.
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Figure 2: Observed power versus sample size in Experiment III for d = 1, 10, 100, 1000 from
left to right.
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Figure 3: Observed power versus sample size in Experiment IV for d = 2, 10, 100, 1000 from
left to right.

As Figures 2 and 3 show, for both experiments, these tests are comparable in low-
dimensional settings. But as d increases, the proposed self-normalized adaptive test (S.A.)
and the training-testing approach (T.T.) become more and more preferable to U.A. and
Median, and the self-normalized adaptive test even performs better than the training-testing
approach. For example, for Experiment IV, when d = 1000, the observed power of the self-
normalized adaptive test is about 90% when n = 600, while the power of the training-testing
approach is about 50% and the other two tests have power around only 15%.

Another interesting phenomenon to observe is that in both experiments with sample
size fixed, the power of our proposed adaptive test S.A. maintains or even increases as the
dimensionality increases, while that of Median and U.A. exhibits a quite clear downtrend.
Experiment III taken as an example, although the difference between P and Q on a single
dimension decreases at the rate 1/

√
d, the aggregated difference can still be identifiable.

For example, if we knew a priori that all dimensions of P(Q) are independent and they
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follow the identical normal distribution, we could conduct the classical F -test based on
n × d samples from each univariate normal distribution. Without relying on such a priori
information, it is still achievable to identify the difference between P and Q using kernel
embedding related test, whereas a key step is to ensure that an appropriate scaling pa-
rameter is selected. In particular, after all squared distance ‖Xi − Xj‖2 are rescaled by
d, some basic calculations suggest that with ν �

√
d, the ‘signal-to-noise ratio’, defined as

γ2
ν(P,Q)/s.d.

(
γ̂2
ν(P,Q)

∣∣∣HHOM
0

)
, can be bounded away from 0 as d varies, which essentially

guarantees the power of the test. Our adaptive test is exactly designed for the purpose of
selecting the appropriate scaling parameter automatically.

6.3 Real Data Example

Finally, we considered applying the proposed self-normalized adaptive test in a data example
from Mooij et al. (2016). The data set consists of three variables, altitude (Alt), average
temperature (Temp) and average duration of sunshine (Sun) from different weather stations.
One goal of interest is to figure out the causal relationship among the three variables by
figuring out a suitable directed acyclic graph (DAG) among them. Following Peters et al.
(2014), if a set of random variables X1, · · · ,Xd follow a DAG G0, then we assume that they
follow a sequence of additive models:

X l =
∑
r∈PAl

fl,r(X
r) +N l, ∀ 1 ≤ l ≤ d,

where N l’s are independent Gaussian noises and PAl denotes the collection of parent nodes
of node l specified by G0. As shown by (Peters et al., 2014), G0 is identifiable from the
joint distribution of X1, · · · , Xd under the assumption of fl,r’s being non-linear. Therefore,
a natural method of deciding a specific DAG underlying a set of random variables is by
testing the independence of the regression residuals after fitting the DAG induced additive
models. In our case, there are totally 25 possible DAGs for the three variables. We can
apply independence tests for the residuals for each of the 25 DAGs and choose the one with
the largest p-value as the most plausible underlying DAG. See Peters et al. (2014) for more
details.

As before, we considered four different ways for independence tests: the proposed self-
normalized adaptive test (S.A.), Gaussian kernel embedding based independent test with
the scaling parameter determined by the “median” heuristic (Median), the training-testing
approach (T.T.) and the unnormalized adaptive test from Sriperumbudur et al. (2009)
(U.A.). Note that the three variables have different scales and we standardize them before
applying the tests of independence.

The overall sample size of the data set is 349. Each time we randomly select 150 samples
and compute the p-value associated with each DAG. The p-value is again computed based
on 100 permutations. We repeated the experiment for 1000 times and recorded for each
test the DAG with the largest p-value. All four tests agree on the top three most selected
DAGs and they are shown in Figure 4.

In addition, we report in Table 1 the frequencies that these three DAGs were selected
by each of the tests. They are generally comparable with the proposed method more
consistently selecting DAG I, the one heavily favored by all four methods.
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Alt

Temp Sun

DAG I

Alt

Temp Sun

DAG II

Alt

Temp Sun

DAG III

Figure 4: DAGs with the top 3 highest probabilities of being selected.

Test

Prob(%) DAG
I II III

Median 78.5 4.7 14.5
T.T. 62.4 16.0 8.3
U.A. 81.4 8.1 8.5
S.A. 83.4 9.8 4.7

Table 1: Frequency that each DAG in Figure 4 was selected by four tests.

7. Concluding Remarks

In this paper, we provide a systematic investigation of the statistical properties of Gaussian
kernel embedding based nonparametric tests. Our contribution is twofold.

First of all, we provide theoretical justifications for this popular class of methods by
showing that they are capable of detecting the smallest possible deviation from the null
hypotheses in the context of goodness-of-fit, homogeneity, and independence test. Our
analyses also suggest that the existing theoretical studies do not fully explain the practical
success of these methods because they assume a fixed kernel or scaling parameter for Gaus-
sian kernel and these methods, as we argue, are most powerful with a scaling parameter
that increases appropriately with the sample size.

From a more practical viewpoint, we offer general guidelines on choosing the scaling
parameter for Gaussian kernels: our results highlight the importance of using larger scaling
parameter for larger sample size and establish the relationship between the smoothness of
the underlying densities and the appropriate scaling parameter. Furthermore, we intro-
duce new adaptive testing procedures for goodness-of-fit, homogeneity, and independence,
respectively, that are optimal up to a polynomial of iterated logarithmic factor, for a wide
range of smooth densities while not needing to know the level of smoothness.

RKHS embedding has emerged as a powerful tool for nonparametric inferences and has
found success in numerous applications. Our work here provides insights into their operating
characteristics and leads to improved testing procedures within the framework. Our work
also pointed to a number of interesting directions that are worth investigating further.
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Efficient computation is essential when applying to large datasets. While naive com-
putation of s̃2

n,νn requires O(n4) operations, the computational complexity of an equivalent
form is only O(n2). See Appendix B for more details. Similar techniques have been devel-
oped in Sutherland et al. (2017). Therefore, the computation of the proposed test ΦGOF

n,νn,α

can be completed with O(n2) operations. The same is true for the homogeneity test ΦHOM
n,νn,α

and independence test ΦIND
n,νn,α. Particularly, the independence test statistic itself has very

similar expression with the aforementioned variance estimator and an equivalent form guar-
antees O(n2) computational complexity. See also Song et al. (2007). It is of great interest
to see if the computation cost can be further reduced.

Another potential direction is to explore to what extent our findings can be applied to
kernels other than Gaussian. A possible class of kernels that may benefit from the technical
tools we developed is the translation invariant kernels. This is broad class of kernels that
have been widely used, and of which the Gaussian kernel is a specific example. As indicated
by Bochner’s theorem, every continuous translation invariant kernel is the Fourier transform
of some positive finite measure. For example, the Laplacian kernel can be expressed as

exp(−γ‖x− x′‖) = π−(d+1)/2γ−dΓ

(
d+ 1

2

)∫ (
1 +
‖ω‖2

γ2

)−(d+1)/2

exp(−i(x− x′)>ω)dω.

Namely, the Laplacian kernel is the Fourier transform of γ−d
(
1 + ‖ω/γ‖2

)−(d+1)/2
up to

some constant, where γ is the scaling parameter. By tuning the positive finite measure
at every given sample size, we may be able to make the nonparametric test based on the
associated kernel minimax optimal, which warrants further exploration in future studies.

8. Proofs

Throughout this section, we shall write an . bn if there exists a universal constant C > 0
such that an ≤ Cbn. Similarly, we write an & bn if bn . an, and an � bn if an . bn and
an & bn. When the the constant depends on another quantity D, we shall write an .D bn.
Relations &D and �D are defined accordingly.

Proof of Theorem 1 We begin with (3). Note that γ̂2
νn(P,P0) is a U-statistic. We

can apply the general techniques for U-statistics to establish its asymptotic normality. In
particular, as shown in Hall (1984), it suffices to verify the following four conditions:(

2νn
π

)d/2
EḠ2

νn(X1, X2)→ ‖p0‖2L2
, (6)

EḠ4
νn(X1, X2)

n2[EḠ2
νn(X1, X2)]2

→ 0, (7)

E[Ḡ2
νn(X1, X2)Ḡ2

νn(X1, X3)]

n[EḠ2
νn(X1, X2)]2

→ 0, (8)

EH2
νn(X1, X2)

[EḠ2
νn(X1, X2)]2

→ 0, (9)

as n→∞, where

Hνn(x, y) = EḠνn(x,X3)Ḡνn(y,X3), ∀ x, y ∈ Rd.
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Verifying Condition (6). Note that

EḠ2
νn(X1, X2) = EG2

νn(X1, X2)− 2E{E[Gνn(X1, X2)|X1]}2 + [EGνn(X1, X2)]2.

By Lemma 14,

EGνn(X1, X2) =

(
π

νn

) d
2
∫

exp

(
−‖ω‖

2

4νn

)
‖Fp0(ω)‖2 dω,

which immediately yields (νn
π

) d
2 EGνn(X1, X2)→ ‖p0‖2L2

and (
2νn
π

) d
2

EG2
νn(X1, X2) =

(
2νn
π

) d
2

EG2νn(X1, X2)→ ‖p0‖2L2
,

as νn →∞.

On the other hand,

E{E[Gνn(X1, X2)|X1]}2

=

∫ (∫
Gνn(x, x′)Gνn(x, x′′)p0(x)dx

)
p0(x′)p0(x′′)dx′dx′′

=

∫ (∫
G2νn(x, (x′ + x′′)/2)p0(x)dx

)
Gνn/2(x′, x′′)p0(x′)p0(x′′)dx′dx′′.

Let Z ∼ N(0, 4νnId). Then∫
G2νn(x, (x′ + x′′)/2)p0(x)dx = (2π)d/2E

[
Fp0(Z) exp

(
x′ + x′′

2
iZ

)]
≤ (2π)d/2

√
E ‖Fp0(Z)‖2

.d ‖p0‖L2/ν
d/4
n .

Thus

E{E[Gνn(X1, X2)|X1]}2 .d ‖p0‖3L2
/ν3d/4
n .

Condition (6) then follows.

Verifying Conditions (7) and (8). Since

EḠ2
νn(X1, X2) �d,p0 ν−d/2n .

and

EḠ4
νn(X1, X2) . EG4

νn(X1, X2) .d ν
−d/2
n ,

we obtain

n−2EḠ4
νn(X1, X2)/(EḠ2

νn(X1, X2))2 .d,p0 ν
d/2
n /n2 → 0.
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Similarly,

EḠ2
νn(X1, X2)Ḡ2

νn(X1, X3) . EG2
νn(X1, X2)G2

νn(X1, X3)

= EG2νn(X1, X2)G2νn(X1, X3)

.d,p0 ν
−3d/4
n .

This implies

n−1EḠ2
νn(X1, X2)Ḡ2

νn(X1, X3)/(EḠ2
νn(X1, X2))2 .d,p0 ν

d/4
n /n→ 0,

which verifies (8).
Verifying Condition (9). We now prove (9). It suffices to show

νdnE(E(Ḡνn(X1, X2)Ḡνn(X1, X3)|X2, X3))2 → 0

as n→∞. Note that

E(E(Ḡνn(X1, X2)Ḡνn(X1, X3)|X2, X3))2

.E(E(Gνn(X1, X2)Gνn(X1, X3)|X2, X3))2

=EGνn(X1, X2)Gνn(X1, X3)Gνn(X4, X2)Gνn(X4, X3)

=E(Gνn(X1, X4)Gνn(X2, X3)E(Gνn(X1 +X4, X2 +X3)|X1 −X4, X2 −X3)).

Since for any δ > 0,

νdnE(Gνn(X1, X4)Gνn(X2, X3)E(Gνn(X1 +X4, X2 +X3)|X1 −X4, X2 −X3)

(1{‖X1−X4‖>δ} + 1‖X2−X3‖>δ}))→ 0,

it remains to show that

νdnE(Gνn(X1, X4)Gνn(X2, X3)E(Gνn(X1 +X4, X2 +X3)|X1 −X4, X2 −X3)

1{‖X1−X4‖≤δ,‖X2−X3‖≤δ}))→ 0

for some δ > 0, which holds as long as

E(Gνn(X1 +X4, X2 +X3)|X1 −X4, X2 −X3)→ 0 (10)

uniformly on {‖X1 −X4‖ ≤ δ, ‖X2 −X3‖ ≤ δ}.
Let

Y1 = X1 −X4, Y2 = X2 −X3, Y3 = X1 +X4, Y4 = X2 +X3.

Then

E(Gνn(X1 +X4, X2 +X3)|X1 −X4, X2 −X3)

=

(
π

νn

) d
2
∫

exp

(
−‖ω‖

2

4νn

)
FpY1(ω)FpY2(ω)dω

≤

√(
π

νn

) d
2
∫

exp

(
−‖ω‖

2

4νn

)
‖FpY1(ω)‖2 dω

√(
π

νn

) d
2
∫

exp

(
−‖ω‖

2

4νn

)
‖FpY2(ω)‖2 dω
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where

py(y
′) =

p(Y1 = y, Y3 = y′)

p(Y1 = y)
=

p0

(
y+y′

2

)
p0

(
y′−y

2

)
∫
p0

(
y+y′

2

)
p0

(
y′−y

2

)
dy′

is the conditional density of Y3 given Y1 = y. Thus to prove (10), it suffices to show

hn(y) :=

(
π

νn

) d
2
∫

exp

(
−‖ω‖

2

4νn

)
‖Fpy(ω)‖2 dω

= π
d
2

∫
exp

(
−‖ω‖

2

4

)
‖Fpy(

√
νnω)‖2 dω

→ 0

uniformly over {y : ‖y‖ ≤ δ}.
Note that

hn(y) = EGνn(X,X ′)

where X,X ′ ∼iid py, which suggests hn(y) → 0 pointwisely. To prove the uniform conver-
gence of hn(y), we only need to show

lim
y1→y

sup
n
|hn(y1)− hn(y)| = 0

for any y.
Since p0 ∈ L2, P (Y1 = y) is continuous. Therefore, the almost surely continuity of p0

immediately suggests that for every y, py1(·)→ py(·) almost surely as y1 → y. Considering
that py1 and py are both densities, it follows that

|Fpy1(ω)−Fpy(ω)| ≤ (2π)−d/2
∫
|py1(y′)− py(y′)|dy′ → 0,

i.e., Fpy1 → Fpy uniformly as y1 → y. Therefore we have

sup
n→∞

|hn(y1)− hn(y)| . ‖Fpy1 −Fpy‖L∞ → 0,

which ensures the uniform convergence of hn(y) to h(y) over {y : ‖y‖ ≤ δ}, and hence (9).
Indeed, we have shown that

nγ̂2
νn(P,P0)√

2E
[
Ḡ2
νn(X1, X2)

] →d N(0, 1).

By Slutsky Theorem, in order to prove (4), it sufficies to show

ŝ2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
→p 1,

which is equivalent to

s̃2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
→p 1 (11)
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since 1/n2 = o(E
[
Ḡ2
νn(X1, X2)

]
).

It follows from

E
(
s̃2
n,νn

)
= E

[
Ḡ2
νn(X1, X2)

]
and

var
(
s̃2
n,νn

)
.n−4var

 ∑
1≤i 6=j≤n

G2νn(Xi, Xj)

+ n−6var

 ∑
1≤i,j1,j2≤n
|{i,j1,j2}|=3

Gνn(Xi, Xj1)Gνn(Xi, Xj2)



+ n−8var

 ∑
1≤i1,i2,j1,j2≤n
|{i1,i2,j1,j2}|=4

Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2)


.n−2EG4νn(X1, X2) + n−1EG2νn(X1, X2)G2νn(X1, X3) + n−1(EG2νn(X1, X2))2

= o
((

EḠ2
νn(X1, X2)

)2)
.

that (11) holds.

Proof of Theorem 2 Recall that

γ̂2
νn(P,P0) =

1

n(n− 1)

∑
i 6=j

Ḡνn(Xi, Xj ;P0)

=γ2
νn(P,P0) +

1

n(n− 1)

∑
i 6=j

Ḡνn(Xi, Xj ;P)

+
2

n

n∑
i=1

(
EX∼P[Gνn(Xi, X)|Xi]− EX∼P0 [Gνn(Xi, X)|Xi]

− EX,X′∼iidPGνn(X,X ′) + E(X,Y )∼P⊗P0
Gνn(X,Y )

)
.

Denote by the last two terms on the rightmost hand side by V
(1)
νn and V

(2)
νn respectively. It

is clear that EV (1)
νn = EV (2)

νn = 0.
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Note that

P
(
TGOF
n,νn ≥ zα

)
=P
(
n√
2
ŝ−1
n,νn

(
γ2
νn(P,P0) + V (1)

νn + V (2)
νn

)
≥ zα

)
≥P
(
n√
2
ŝ−1
n,νn

(
γ2
νn(P,P0) + V (1)

νn + V (2)
νn

)
≥ zα, V (1)

νn + V (2)
νn ≥ −

1

2
γ2
νn(P,P0)

)
≥P
(

n

2
√

2
ŝ−1
n,νnγ

2
νn(P,P0) ≥ zα, V (1)

νn + V (2)
νn ≥ −

1

2
γ2
νn(P,P0)

)
≥1− P

(
n

2
√

2
ŝ−1
n,νnγ

2
νn(P,P0) < zα

)
− P

(
V (1)
νn + V (2)

νn < −1

2
γ2
νn(P,P0)

)

≥1−
2
√

2zα

√
E
(
ŝ2
n,νn

)
nγ2

νn(P,P0)
−

E
(
V

(1)
νn + V

(2)
νn

)2

γ4
νn(P,P0)/4

.

Then once we prove

sup
p∈Ws,2(M)
‖p−p0‖≥∆n

E
(
V

(1)
νn

)2
+ E

(
V

(2)
νn

)2

γ4
νn(P,P0)

→ 0 (12)

and

inf
p∈Ws,2(M)
‖p−p0‖≥∆n

nγ2
νn(P,P0)√
E
(
ŝ2
n,νn

) →∞ (13)

as n→∞, it immediately follows that

power{ΦGOF
n,νn,α;HGOF

1 (∆n; s)}
= inf

p∈Ws,2(M)
‖p−p0‖≥∆n

P
(
TGOF
n,νn ≥ zα

)

≥1− 2
√

2zα · sup
p∈Ws,2(M)
‖p−p0‖≥∆n

√
E
(
ŝ2
n,νn

)
nγ2

νn(P,P0)
− 8 · sup

p∈Ws,2(M)
‖p−p0‖≥∆n

E
(
V

(1)
νn

)2
+ E

(
V

(2)
νn

)2

γ4
νn(P,P0)

→ 1.

We first prove (12). Note that ‖p‖L2 ≤ ‖p‖Ws,2(M) ≤ M . Following arguments similar
to those in the proof of Theorem 1, we get

E
(
V (1)
νn

)2
. n−2EG2

νn(X1, X2) .d M
2n−2ν−d/2n ,
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and

E
(
V (2)
νn

)2
≤ 4

n
E [EX∼P[Gνn(Xi, X)|Xi]− EX∼P0 [Gνn(Xi, X)|Xi]]

2

=
4

n

∫ (∫
G2νn(x, (x′ + x′′)/2)p(x)dx

)
Gνn/2(x′, x′′)f(x′)f(x′′)dx′dx′′

.d
4M

nνd/4

∫
Gνn/2(x′, x′′)|f(x′)||f(x′′)|dx′dx′′

.d
4M

nν3d/4
‖f‖2L2

.

By Lemma 15, there exists a constant C > 0 depending on s and M only such that for
f ∈ Ws,2(M), ∫

exp

(
−‖ω‖

2

4νn

)
‖Ff(ω)‖2 dω ≥ 1

4
‖f‖2L2

given that νn ≥ C‖f‖−2/s
L2

. Because νn∆
s/2
n →∞, we obtain

γ2
νn(P,P0) &d ν

−d/2
n ‖f‖2L2

,

for sufficiently large n. Thus

sup
p∈Ws,2(M)
‖p−p0‖≥∆n

E
(
V

(1)
νn

)2

γ4
νn(P,P0)

.d M
2(n2ν−d/2n ∆4

n)−1 → 0

and

sup
p∈Ws,2(M)
‖p−p0‖≥∆n

E
(
V

(2)
νn

)2

γ4
νn(P,P0)

.d M(nν−d/4n ∆2
n)−1 → 0,

as n→∞.
Next we prove (13). It follows from

E
(
ŝ2
n,νn

)
≤ Emax

{∣∣s̃2
n,νn

∣∣ , 1/n2
}
. EG2νn(X1, X2) + 1/n2 .d M

2ν−d/2n + 1/n2

that (13) holds.

Proof of Theorem 3 This, in a certain sense, can be viewed as an extension of results
from Ingster (1987), and the proof proceeds in a similar fashion. While Ingster (1987)
considered the case when p0 is the uniform distribution on [0, 1], we shall show that similar
bounds hold for a wider class of p0.

For any M > 0 and p0 such that ‖p0‖Ws,2 < M , let

HGOF
1 (∆n; s,M − ‖p0‖Ws,2)∗

:= {p ∈ Ws,2 : ‖p− p0‖Ws,2 ≤M − ‖p0‖Ws,2 , ‖p− p0‖L2 ≥ ∆n}.
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It is clear that HGOF
1 (∆n; s) ⊃ HGOF

1 (∆n; s,M − ‖p0‖Ws,2)∗. Hence it suffices to prove
Theorem 3 with HGOF

1 (∆n; s) replaced by HGOF
1 (∆n; s,M)∗ for an arbitrary M > 0. We

shall abbreviate HGOF
1 (∆n; s,M)∗ as HGOF

1 (∆n; s)∗ in the rest of the proof.
Since p0 is almost surely continuous, there exists x0 ∈ Rd and δ, c > 0 such that

p0(x) ≥ c > 0, ∀ ‖x− x0‖ ≤ δ.

In light of this, we shall assume p0(x) ≥ c > 0, for all x ∈ [0, 1]d without loss of generality.
Let an be a multivariate random index. As proved in Ingster (1987), in order to prove

the existence of α ∈ (0, 1) such that no asymptotic α-level test can be consistent, it suffices
to identify pn,an ∈ HGOF

1 (∆n; s)∗ for all possible values of an such that

Ep0
(
pn(X1, · · · , Xn)∏n

i=1 p0(Xi)

)2

= O(1), (14)

where

pn(x1, · · · , xn) = Ean

(
n∏
i=1

pn,an(xi)

)
, ∀ x1, · · · , xn,

i.e., p is the mixture of all pn,an ’s.
Let 1{x∈[0,1]d}, φn,1, · · · , φn,Bn be an orthonormal sets of functions in L2(Rd) such that

the supports of φn,1, · · · , φn,Bn are disjoint and all included in [0, 1]d. Let

an = (an,1, · · · , an,Bn)

satisfy that an,1, · · · , an,Bn are independent and that

p(an,k = 1) = p(an,k = −1) =
1

2
, ∀ 1 ≤ k ≤ Bn.

Define

pn,an = p0 + rn

Bn∑
k=1

an,kφn,k.

Then

pn,an
p0

= 1 + rn

Bn∑
k=1

an,k
φn,k
p0

,

where 1,
φn,1
p0
, · · · , φn,Bnp0

are orthogonal in L2(P0).
By arguments similar to those in Ingster (1987), we find

Ep0
(
pn(X1, · · · , Xn)∏n

i=1 p0(Xi)

)2

≤ exp

(
1

2
Bnn

2r4
n max

1≤k≤Bn

(∫
φ2
n,k/p0dx

)2
)

≤ exp

(
1

2c2
Bnn

2r4
n

)
.

In order to ensure (14), it suffices to have

B1/2
n nr2

n = O(1). (15)
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Therefore, given ∆n = O
(
n−

2s
4s+d

)
, once we can find proper rn, Bn and φn,1, · · · , φn,Bn

such that pn,an ∈ HGOF
1 (∆n; s)∗ for all an and (15) holds, the proof is finished.

Let bn = B
1/d
n , φ be an infinitely differentiable function supported on [0, 1]d that is

orthogonal to 1{x∈[0,1]d} in L2, and for each xn,k ∈ {0, 1, · · · , bn − 1}⊗d, let

φn,k(x) =
b
d/2
n

‖φ‖L2

φ(bnx− xn,k), ∀ x ∈ Rd.

Then all φn,k’s are supported on [0, 1]d and

〈φn,k, 1〉L2 =
b
d/2
n

‖φ‖L2

∫
Rd
φ(bnx− xn,k)dx =

1

b
d/2
n ‖φ‖L2

∫
Rd
φ(x)dx = 0,

‖φn,k‖2L2
=

bdn
‖φ‖2L2

∫
[0,1/bn]d

φ2(bnx)dx = 1,

‖φn,k‖2Ws,2 ≤ b2sn
‖φ‖2Ws,2

‖φ‖2L2

.

Since for k 6= k′, the supports of φn,k and φn,k′ are disjoint,

‖pn,an − p0‖∞ = rnb
d/2
n

‖φ‖∞
‖φ‖L2

,

and
〈φn,k, φn,k′〉L2 = 0, 〈φn,k, φn,k′〉Ws,2 = 0,

from which we immediately obtain

‖pn,an − p0‖2L2
= r2

nb
d
n

‖pn,an − p0‖2Ws,2 ≤ r2
nb
d+2s
n

‖φ‖2Ws,2

‖φ‖2L2

.

To ensure pn,an ∈ HGOF
1 (∆n; s)∗, it suffices to make

rnb
d/2
n

‖φ‖∞
‖φ‖L2

→ 0 as n→∞, (16)

r2
nb
d
n = ∆2

n, (17)

r2
nb
d+2s
n

‖φ‖2Ws,2

‖φ‖2L2

≤M2. (18)

Let

bn =

(M‖φ‖2L2

‖φ‖Ws,2

)1/s

∆−1/s
n

 , rn =
∆n

b
d/2
n

.

Then (17) and (18) are satisfied. Moreover, given ∆n = O
(
n−

2s
4s+d

)
,

B1/2
n nr2

n = b−d/2n n∆2
n .d,φ,M n∆

4s+d
2s

n = O(1),
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and

rnb
d/2
n

‖φ‖∞
‖φ‖L2

.φ ∆n = o(1)

ensuring both (15) and (16).
Finally, we show the existence of such φ. Let

φ0(x1) =


exp

(
− 1

1−(4x1−1)2

)
0 < x1 <

1
2

− exp
(
− 1

1−(4x1−3)2

)
1
2 < x1 < 1

0 otherwise

.

Then φ0 is supported on [0, 1], infinitely differentiable and orthogonal to the indicator
function of [0, 1].

Let

φ(x) =
d∏
l=1

φ0(xl), ∀ x = (x1, · · · , xd) ∈ Rd.

Then φ is supported on [0, 1]d, infinitely differentiable and 〈φ, 1〉L2 = 〈φ0, 1〉dL2[0,1] = 0.

Proof of Theorem 4 Let N = m + n denote the total sample size. It suffices to prove
the result under the assumption that n/N → r ∈ (0, 1).

Note that under H0,

γ̂2
νn(P,Q) =

1

n(n− 1)

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj) +
1

m(m− 1)

∑
1≤i 6=j≤m

Ḡνn(Yi, Yj)

− 2

nm

∑
1≤i≤n

∑
1≤j≤m

Ḡνn(Xi, Yj).

Let n/N = rn. Then we have

γ̂2
νn(P,Q)

=N−2

 1

rn(rn −N−1)

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj) +

1

(1− rn)(1− rn −N−1)

∑
1≤i 6=j≤m

Ḡνn(Yi, Yj)−
2

rn(1− rn)

∑
1≤i≤n

∑
1≤j≤m

Ḡνn(Xi, Yj)

 .

Let

γ̂2
νn(P,Q)′ =N−2

 1

r2

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj) +
1

(1− r)2

∑
1≤i 6=j≤m

Ḡνn(Yi, Yj)

− 2

r(1− r)
∑

1≤i≤n

∑
1≤j≤m

Ḡνn(Xi, Yj)

 .
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As we assume rn → r as n→∞, Theorem 1 ensures that

nm√
2(n+m)

[
EḠ2

νn(X1, X2)
]− 1

2

(
γ̂2
νn(P,Q)− γ̂2

νn(P,Q)′
)

= op(1)

A slight adaption of arguments in Hall (1984) suggests that

EḠ4
νn(X1, X2)

N2EḠ2
νn(X1, X2)

+
EḠ2

νn(X1, X2)Ḡ2
νn(X1, X3)

NEḠ2
νn(X1, X2)

+
EH2

νn(X1, X2)

EḠ2
νn(X1, X2)

→ 0 (19)

ensures that
nm√

2(n+m)

[
EḠ2

νn(X1, X2)
]− 1

2 γ̂2
νn(P,Q)′ →d N(0, 1).

Following arguments similar to those in the proof of Theorem 1, given νn → ∞ and
νn/n

4/d → 0, (19) holds and therefore

nm√
2(n+m)

[
EḠ2

νn(X1, X2)
]− 1

2 γ̂2
νn(P,Q)→d N(0, 1).

Additionally, based on the same arguments as in the proof of Theorem 1,

ŝ2
n,m,νn/E

[
Ḡ2
νn(X1, X2)

]
→p 1.

The proof is therefore concluded.

Proof of Theorem 5 With slight abuse of notation, we shall write

Ḡνn(x, y;P,Q) = Gνn(x, y)− EY∼QGνn(x, Y )− EX∼PGνn(X, y) + E(X,Y )∼P⊗QGνn(X,Y ),

We consider the two parts separately.
Part (i). We first verify the consistency of ΦHOM

n,νn,α with νn � n4/(d+4s) given ∆n �
n−2s/(d+4s).

Observe the following decomposition of γ̂2
νn(P,Q),

γ̂2
νn(P,Q) = γ2

νn(P,Q) + L(1)
n,νn + L(2)

n,νn ,

where

L(1)
n,νn =

1

n(n− 1)

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj ;P)− 2

mn

∑
1≤i≤n

∑
1≤j≤m

Ḡνn(Xi, Yj ;P,Q)

+
1

m(m− 1)

∑
1≤i 6=j≤m

Ḡνn(Yi, Yj ;Q)

and

L(2)
n,νn =

2

n

n∑
i=1

(
E[Gνn(Xi, X)|Xi]− EGνn(X,X ′)− E[Gνn(Xi, Y )|Xi] + EGνn(X,Y )

)
+

2

m

m∑
j=1

(
E[Gνn(Yj , Y )|Yj ]− EGνn(Y, Y ′)− E[Gνn(X,Yj)|Yj ] + EGνn(X,Y )

)
.
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Similarly to the proof of Theorem 2, in order to prove the consistency of ΦHOM
n,νn,α, it suffices

to show

sup
p,q∈Ws,2(M)
‖p−q‖L2

≥∆n

E
(
L

(1)
n,νn

)2
+ E

(
L

(2)
n,νn

)2

γ4
νn(P,Q)

→ 0, (20)

inf
p,q∈Ws,2(M)
‖p−q‖L2

≥∆n

γ2
νn(P,Q)

(1/n+ 1/m)
√
E
(
ŝ2
n,m,νn

) →∞, (21)

as n→∞. Following arguments similar to those in the proof of Theorem 2, we can ensure
that (20) and (21) hold.

Part (ii). Next, we prove that if lim infn→∞∆nn
2s/(d+4s) <∞, then there exists some

α ∈ (0, 1) such that no asymptotic α-level test can be consistent. To prove this, we shall
verify that consistency of homogeneity test is harder to achieve than that of goodness-of-fit
test.

Consider an arbitrary p0 ∈ Ws,2(M/2). It immediately follows

HHOM
1 (∆n; s) ⊃ {(p, p0) : p ∈ HGOF

1 (∆n; s)}.

Let {Φn}n≥1 be any sequence of asymptotic α-level homogeneity tests, where

Φn = Φn(X1, · · · , Xn, Y1, · · · , Ym).

Then if Y1, · · · , Ym ∼iid P0, {Φn}n≥1 can also be treated as a sequence of (random) goodness-
of-fit tests

Φn(X1, · · · , Xn, Y1, · · · , Ym) = Φ̃n(X1, · · · , Xn)

whose probabilities of type I error with respect to P0 are controlled at α asymptotically.
Moreover,

power{Φn;HHOM
1 (∆n; s)} ≤ power{Φ̃n;HGOF

1 (∆n; s)}

Since 0 < c ≤ m/n ≤ C <∞, Theorem 3 ensures that there exists some α ∈ (0, 1) such
that for any sequence of asymptotic α-level tests {Φn}n≥1,

lim inf
n→∞

power{Φn;HHOM
1 (∆n; s)} ≤ lim inf

n→∞
power{Φ̃n;HGOF

1 (∆n; s)} < 1

given lim infn→∞∆nn
2s/(d+4s) <∞.

Proof of Theorem 7 For brevity, we shall focus on the case when k = 2 in the rest of
the proof. Our argument, however, can be straightforwardly extended to the more general

cases. The proof relies on the following decomposition of γ̂2
νn(P,PX1 ⊗ PX2

) under HIND
0 :

γ̂2
νn(P,PX

1 ⊗ PX
2
) =

1

n(n− 1)

∑
1≤i 6=j≤n

G∗νn(Xi, Xj) +Rn,
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where

G∗νn(x, y) = Ḡνn(x, y)−
∑

1≤j≤2

gj(x
j , y)−

∑
1≤j≤2

gj(y
j , x) +

∑
1≤j1,j2≤2

gj1,j2(xj1 , yj2)

and the remainder Rn satisfies

E(Rn)2 . EG2ν(X1, X2)/n3 .d ‖p‖2L2
ν−d/2n /n3.

See Appendix E for more details.

Moreover, borrowing arguments in the proof of Lemma 6, we obtain

E
[
(G∗νn(X1, X2)− Ḡνn(X1, X2))2

]
.
∑

1≤j≤2

E
(
g2
j (X

j
1 , X2)

)
+

∑
1≤j1,j2≤2

E
(
g2
j1,j2(Xj1

1 , X
j2
2 )
)

≤
∑

1≤j1 6=j2≤2

EG2νn(Xj1
1 , X

j1
2 ) · E

{
E
[
Gνn(Xj2

1 , X
j2
2 )
∣∣∣Xj2

1

]}2
+

∑
1≤j1 6=j2≤2

EG2νn(Xj1
1 , X

j1
2 )[EGνn(Xj2

1 , X
j2
2 )]2+

2E
{
E
[
Gνn(X1

1 , X
1
2 )
∣∣∣X1

1

]}2
E
{
E
[
Gνn(X2

1 , X
2
2 )
∣∣∣X2

1

]}2

.d ν
−d1/2−3d2/4
n ‖p1‖2L2

‖p2‖3L2
+ ν−3d1/4−d2/2

n ‖p1‖3L2
‖p2‖2L2

Together with the fact that

(2νn/π)d/2EḠ2
νn(X1, X2)→ ‖p‖2L2

as νn →∞, we conclude that

γ̂2
νn(P,PX

1 ⊗ PX
2
) = D(νn) + op

(√
ED2(νn)

)
,

where

D(νn) =
1

n(n− 1)

∑
1≤i 6=j≤n

Ḡνn(Xi, Xj).

Applying arguments similar to those in the proofs of Theorem 1 and 4, we have

D(νn)√
ED2(νn)

→d N(0, 1).

Since

ED2(νn) =
2

n(n− 1)
E
[
Ḡ2
νn(X1, X2)

]
and E

[
Ḡ2
νn(X1, X2)

]
/E[G∗νn(X1, X2)2]→ 1,

it remains to prove

ŝ2
n,νn/E[G∗νn(X1, X2)2]→p 1,
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which immediately follows by observing

s̃2
n,νn/E[G∗νn(X1, X2)2] =

2∏
j=1

s̃2
n,j,νn/E

[
Ḡ2
νn(Xj

1 , X
j
2)
]
→p 1

and 1/n2 = o
(
E[G∗νn(X1, X2)2]

)
. The proof is therefore concluded.

Proof of Theorem 8 We prove the two parts separately. Part (i). The proof of
consistency of ΦIND

n,νn,α is very similar to its counterpart in the proof of Theorem 5. It
sufficies to show

sup
p∈HIND

1 (∆n,s)

var(γ̂2
νn(P,PX1 ⊗ PX2

))

γ4
νn(P,PX1 ⊗ PX2)

→ 0, (22)

inf
p∈HIND

1 (∆n,s)

nγ2
νn(P,PX1 ⊗ PX2

)

E (ŝn,νn)
→∞, (23)

as n→∞.
We begin with (22). Let f = p − p1 ⊗ p2. Lemma 15 then implies that there exists

C = C(s,M) > 0 such that

γ2
ν(P,PX

1 ⊗ PX
2
) �d ν−d/2‖f‖2L2

for ν ≥ C‖f‖−2/s
L2

, which is satisfied by all p ∈ HIND
1 (∆n, s) given ν = νn and lim

n→∞
∆nn

2s
4s+d

= ∞. On the other hand, we can still do the decomposition of γ̂2
νn(P,PX1 ⊗ PX2

) as in
Appendix E. We follow the same notations here.

Under the alternative hypothesis, the “first order” term

D1(νn)

=
2

n

∑
1≤i≤n

(
EXi,X∼iidP[Gνn(Xi, X)|Xi]− EX,X′∼iidPGνn(X,X ′)

)
− 2

n

∑
1≤i≤n

(
E
Xi∼P,Y∼PX1⊗PX2 [Gνn(Xi, Y )|Xi]− E

X∼P,Y∼PX1⊗PX2Gνn(X,Y )
)

−
∑

1≤j≤2

 2

n

∑
1≤i≤n

(
E
Xi∼PX1⊗PX2 ,X∼P[Gνn(Xi, X)|Xj

i ]− E
X∼P,Y∼PX1⊗PX2Gνn(X,Y )

)
+
∑

1≤j≤2

 2

n

∑
1≤i≤n

(
E
Xi,Y∼iidPX

1⊗PX2 [Gνn(Xi, Y )|Xj
i ]− E

Y,Y ′∼iidPX
1⊗PX2Gνn(Y, Y ′)

)
no longer vanish, but based on arguments similar to those in the proof of Theorem 2,

ED2
1(νn) .d Mn−1ν−3d/4

n ‖f‖2L2
.
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Moreover, the “second order” term D2(νn) is not solely
∑

1≤i 6=j≤n
G∗νn(Xi, Xj)/(n(n−1)), but

we still have

ED2
2(νn) . n−2 max{EG2νn(X1, X2),EG2νn(X1

1 , X
1
2 )EG2νn(X2

1 , X
2
2 )} .d M

2n−2ν−d/2n .

Similarly, define the third order term D3(νn) and the fourth order term D4(νn) as the
aggregation of all 3-variate centered components and the aggregation of all 4-variate centered

components in γ̂2
νn(P,PX1 ⊗ PX2

) respectively, which together constitue Rn. Then we have

ED2
3(νn) .d M

2n−3ν−d/2n , ED2
4(νn) .d M

2n−4ν−d/2n .

Hence we finally obtain

γ̂2
νn(P,PX

1 ⊗ PX
2
) = γ2

νn(P,PX
1 ⊗ PX

2
) +

4∑
l=1

Dl(νn)

and

var
(
γ̂2
νn(P,PX

1 ⊗ PX
2
)
)

=

4∑
l=1

ED2
l (νn) .d Mn−1ν−3d/4

n ‖f‖2L2
+M2n−2ν−d/2n

which proves (22).
Now consider (23). Since

ŝn,νn ≤ max


2∏
j=1

√∣∣∣s̃2
n,j,νn

∣∣∣, 1/n
 ,

we have

E (ŝn,νn) ≤
2∏
j=1

√
E
∣∣∣s̃2
n,j,νn

∣∣∣+ 1/n,

where

2∏
j=1

E
∣∣s̃2
n,j,νn

∣∣ . 2∏
j=1

EG2νn(Xj
1 , X

j
2) = E

Y1,Y2∼iidPX
1⊗PX2G2νn(Y1, Y2) .d M

2ν−d/2n .

Therefore (23) holds.
Part (ii). Then we verify that n2s/(d+4s)∆n → ∞ is also the necessary condition for

the existence of consistent asymptotic α-level tests for any α ∈ (0, 1). Similarly to the
proof of Theorem 5, the idea is to relate the existence of consistent independence test to
the existence of consistent goodness-of-fit test.

Let pj,0 ∈ Ws,2
(
Mj/
√

2
)

be density on Rdj for j = 1, 2 and p0 be the product of p1,0

and p2,0, i.e.,
p0(x1, x2) = p1,0(x1)p2,0(x2), ∀ x1 ∈ Rd1 , x2 ∈ Rd2 .

Hence p0 ∈ Ws,2(M/2).
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Let

HGOF
1 (∆n; s)′ := {p : p ∈ Ws,2(M), p1 = p1,0, p2 = p2,0, ‖p− p0‖L2 ≥ ∆n}.

We immediately have
HIND

1 (∆n; s) ⊃ HGOF
1 (∆n; s)′

Let {Φn}n≥1 be any sequence of asymptotic α-level independence tests, where

Φn = Φn(X1, · · · , Xn).

Then {Φn}n≥1 can also be treated as a sequence of asymptotic α-level goodness-of-fit tests
with the null density being p0. Moreover,

power{Φn;HIND
1 (∆n; s)} ≤ power{Φn;HGOF

1 (∆n; s)′}.

It remains to show that given lim infn→∞ n
2s/(d+4s)∆n <∞, there exists some α ∈ (0, 1)

such that

lim inf
n→∞

power{Φn;HGOF
1 (∆n; s)′} < 1,

which cannot be directly obtained from Theorem 3 because of the additional constraints

p1 = p1,0, p2 = p2,0 (24)

in HGOF
1 (∆n; s)′.

However, by modifying the proof of Theorem 3, we only need to further require each
pn,an in the proof of Theorem 3 satisfying (24), or equivalently,∫

Rd2
(p− p0)(x1, x2)dx2 = 0,

∫
Rd1

(p− p0)(x1, x2)dx1 = 0.

Recall that each pn,an = p0 + rn
Bn∑
k=1

an,kφn,k, where

φn,k(x) =
b
d/2
n

‖φ‖L2

φ(bnx− xn,k).

Write xn,k = (x1
n,k, x

2
n,k) ∈ Rd1 × Rd2 . Since φ can be decomposed as

φ(x1, x2) = φ1(x1)φ2(x2),

we have

φn,k(x) =
b
d/2
n

‖φ‖L2

φ1(bnx
1 − x1

n,k)φ2(bnx
2 − x2

n,k)

Hence∫
Rd2

(pn,an − p0)(x1, x2)dx2 =rn

Bn∑
k=1

an,k

∫
Rd2

φn,k(x
1, x2)dx2

=rn

Bn∑
k=1

an,k
b
d/2
n

‖φ‖L2

· φ1(bnx
1 − x1

n,k) ·
1

bd2n

∫
Rd2

φ2(x2)dx2

=0
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since
∫
Rd2 φ2(x2)dx2 = 0. Similarly,

∫
Rd1 (pn,an − p0)(x1, x2)dx1 = 0. The proof is therefore

finished.

Proof of Theorem 9 The proof of Theorem 9 consists of two steps. First, we bound
qGOF
n,α . To be more specific, we show that there exists C = C(d) > 0 such that

qGOF
n,α ≤ C(d) log log n

for sufficiently large n, which holds if

lim
n→∞

P (TGOF(adapt)
n ≥ C(d) log log n) = 0 (25)

under HGOF
0 . Second, we show that there exists c > 0 such that

lim inf
n→∞

∆n,s(n/ log log n)2s/(d+4s) > c

ensures

inf
p∈HGOF(adapt)

1 (∆n,s:s≥d/4)

P (TGOF(adapt)
n ≥ C(d) log log n)→ 1 (26)

as n→∞.
Verifying (25). In order to prove (25), we first show the following two lemmas. The

first lemma suggests that ŝ2
n,νn is a consistent estimator of EḠ2

νn(X1, X2) uniformly over all

νn ∈ [1, n2/d]. Recall we have shown in the proof of Theorem 1 that for νn increasing at a
proper rate,

ŝ2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
→p 1.

Hence the first lemma is a uniform version of such result.

Lemma 12 We have that ŝ2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
converges to 1 uniformly over νn ∈ [1,

n2/d], i.e.,
sup

1≤νn≤n2/d

∣∣ŝ2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
− 1
∣∣ = op(1).

We defer the proof of Lemma 12 to the appendix. Note that

TGOF(adapt)
n = sup

1≤νn≤n2/d

nγ̂2
νn(P,P0)√

2E
[
Ḡ2
νn(X1, X2)

] ·√E
[
Ḡ2
νn(X1, X2)

]
/ŝ2
n,νn

≤ sup
1≤νn≤n2/d

∣∣∣∣∣∣ nγ̂2
νn(P,P0)√

2E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣ · sup

1≤νn≤n2/d

√
E
[
Ḡ2
νn(X1, X2)

]
/ŝ2
n,νn .

Lemma 12 first ensures that

sup
1≤νn≤n2/d

√
E
[
Ḡ2
νn(X1, X2)

]
/ŝ2
n,νn = 1 + op(1).
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It therefore suffices to show that under HGOF
0 ,

T̃GOF(adapt)
n := sup

1≤νn≤n2/d

∣∣∣∣∣∣ nγ̂2
νn(P,P0)√

2E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣

is also of order log log n. This is the crux of our argument yet its proof is lengthy. For
brevity, we shall state it as a lemma here and defer its proof to the appendix.

Lemma 13 There exists C = C(d) > 0 such that

lim
n→∞

P
(
T̃GOF(adapt)
n ≥ C log logn

)
= 0

under HGOF
0 .

Verifying (26). Let

νn(s)′ =

(
log logn

n

)−4/(4s+d)

,

which is smaller than n2/d for s ≥ d/4. Hence it suffices to show

inf
s≥d/4

inf
p∈HGOF

1 (∆n,s;s)
P (TGOF

n,νn(s)′ ≥ C(d) log log n)→ 1

as n→∞.
First of all, observe

0 ≤ E
(
s̃2
n,νn(s)′

)
≤ EG2νn(s)′(X1, X2) ≤M2(2νn(s)′/π)−d/2

and

var
(
s̃2
n,νn(s)′

)
.d M

3n−1(νn(s)′)−3d/4 +M2n−2(νn(s)′)−d/2

for any s and p ∈ HGOF
1 (∆n,s, s). Further considering 1/n2 = o(M2(2νn(s)′/π)−d/2) uni-

formly over all s, we obtain that

inf
s≥d/4

inf
p∈HGOF

1 (∆n,s;s)
P
(
ŝ2
n,νn(s)′ ≤ 2M2(2νn(s)′/π)−d/2

)
→ 1.

Let

∆n,s ≥ c(
√
M +M)(log log n/n)2s/(d+4s)

for some sufficiently large c = c(d). Then

Eγ̂2
νn(s)′(P,P0) = γ2

νn(s)′(P,P0) ≥
(

π

νn(s)′

)d/2
·
‖p− p0‖2L2

4
,

as guaranteed by Lemma 15. Further considering that

var
(
γ̂2
νn(s)′(P,P0)

)
.d M

2n−2(νn(s)′)−d/2 +Mn−1(νn(s)′)−3d/4‖p− p0‖2L2
,
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we immediately have

lim
n→∞

inf
s≥d/4

inf
p∈HGOF

1 (∆n,s;s)
P (TGOF

n,νn(s)′ ≥ C(d) log log n)

≥ lim
n→∞

inf
s≥d/4

inf
p∈HGOF

1 (∆n,s;s)
P

nγ2
νn(s)′(P,P0)/2√

2ŝ2
n,νn(s)′

≥ C(d) log log n

 = 1.

Proof of Theorem 10 and Theorem 11 The proof of Theorem 10 and Theorem 11 is
very similar to that of Theorem 9. Hence we only emphasize the main differences here.

For adaptive homogeneity test: to verify that there exists C = C(d) > 0 such that

lim
n→∞

P (THOM(adapt)
n ≥ C log logn) = 0

under HHOM
0 , observe that

THOM(adapt)
n ≤ sup

1≤νn≤n2/d

√
E
[
Ḡ2
νn(X1, X2)

]
ŝ2
n,m,νn

·
(

1

n
+

1

m

)−1

sup
1≤νn≤n2/d

|γ̂2
νn(P,Q)|√

2E
[
Ḡ2
νn(X1, X2)

] .
Denote X1, · · · , Xn, Y1, · · · , Ym as Z1, · · · , ZN . Hence

2

n∑
i=1

m∑
j=1

Gνn(Xi, Yj) =
∑

1≤i 6=j≤N
Gνn(Zi, Zj)−

∑
1≤i 6=j≤n

Gνn(Xi, Xj)−
∑

1≤i 6=j≤m
Gνn(Yi, Yj)

and

sup
1≤νn≤n2/d

|γ̂2
νn(P,Q)|√

2E
[
Ḡ2
νn(X1, X2)

]
≤
(

1

n(n− 1)
+

1

mn

)
sup

1≤νn≤n2/d

∣∣∣∣∣∣
∑

1≤i 6=j≤n

Ḡνn(Xi, Xj)√
2E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣

+

(
1

m(m− 1)
+

1

mn

)
sup

1≤νn≤n2/d

∣∣∣∣∣∣
∑

1≤i 6=j≤m

Ḡνn(Yi, Yj)√
2E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣

+
1

mn
sup

1≤νn≤n2/d

∣∣∣∣∣∣
∑

1≤i 6=j≤N

Ḡνn(Zi, Zj)√
2E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣

Apply Lemma 13 to bound each term of the right hand side of the above inequality. Then
we conclude that for some C = C(d) > 0,

lim
n→∞

P

( 1

n
+

1

m

)−1

sup
1≤νn≤n2/d

|γ̂2
νn(P,Q)|√

2E
[
Ḡ2
νn(X1, X2)

] ≥ C log logn

 = 0.
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For adaptive independence test: to verify that there exists C = C(d) > 0 such that

lim
n→∞

P (T IND(adapt)
n ≥ C log logn) = 0 (27)

under HIND
0 , recall the decomposition

γ̂2
νn(P,PX

1 ⊗ PX
2
) = D2(νn) +Rn =

1

n(n− 1)

∑
1≤i 6=j≤n

G∗νn(Xi, Xj) +Rn,

where we express Rn as Rn = D3(νn) +D4(νn) in the proof of Theorem 8.
Following arguments similar to those in the proof of Lemma 13, we obtain that there

exists C(d) > 0 such that for sufficiently large n,

P

(
sup

1≤νn≤n2/d

∣∣∣∣∣ nD2(νn)√
2E[G∗νn(X1, X2)2]

∣∣∣∣∣ ≥ C(d)(log log n+ t log log log n)

)
. exp(−t2/3),

Similarly,

P

(
sup

1≤νn≤n2/d

∣∣∣∣∣ n3/2D3(νn)√
2E[G∗νn(X1, X2)2]

∣∣∣∣∣ ≥ C(d)(log log n+ t log log log n)

)
. exp(−t1/2)

P

(
sup

1≤νn≤n2/d

∣∣∣∣∣ n2D4(νn)√
2E[G∗νn(X1, X2)2]

∣∣∣∣∣ ≥ C(d)(log log n+ t log log log n)

)
. exp(−t2/5)

for sufficiently large n.
On the other hand, note that

E[G∗νn(X1, X2)2] =

2∏
j=1

E
[
Ḡ2
νn(Xj

1 , X
j
2)
]
,

and based on results in the proof of Lemma 12, sup
1≤νn≤n2/d

∣∣∣s̃2
n,j,νn

/E
[
Ḡ2
νn(Xj

1 , X
j
2)
]
− 1
∣∣∣ =

op(1) for j = 1, 2. Further considering that

1/n2 = o
(
E[G∗νn(X1, X2)2]

)
uniformly over all νn ∈ [1, n2/d], we obtain

sup
1≤νn≤n2/d

∣∣ŝ2
n,νn/E[G∗νn(X1, X2)2]− 1

∣∣ = op(1).

They combined together ensure that (27) holds.
To show that the detection boundary of ΦIND(adapt) is of orderO((n/ log logn)−2s/(d+4s)),

observe that

0 ≤ E
(
s̃2
n,j,νn(s)′

)
≤ EG2νn(s)′(X

j
1 , X

j
2) ≤M2

j (2νn(s)′/π)−dj/2

and
var
(
s̃2
n,j,νn(s)′

)
.dj M

3
j n
−1(νn(s)′)−3dj/4 +M2

j n
−2(νn(s)′)−dj/2
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for j = 1, 2, where νn(s)′ = (log log n/n)−4/(4s+d) as in the proof of Theorem 9. Therefore,

inf
s≥d/4

inf
p∈HIND

1 (∆n,s;s)
P
(∣∣∣s̃2

n,j,νn(s)′

∣∣∣ ≤√3/2M2
j (2νn(s)′/π)−dj/2

)
→ 1, j = 1, 2.

Further considering 1/n2 = o(M2(2νn(s)′/π)−d/2) uniformly over all s, we obtain that

inf
s≥d/4

inf
p∈HIND

1 (∆n,s;s)
P
(
ŝ2
n,νn(s)′ ≤ 2M2(2νn(s)′/π)−d/2

)
→ 1.
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Appendix A. Properties of Gaussian Kernel

We collect here a couple of useful properties of Gaussian kernel that we used repeated in
the proof to the main results.

Lemma 14 For any f ∈ L2(Rd),∫
Gν(x, y)f(x)f(y)dxdy =

(π
ν

) d
2

∫
exp

(
−‖ω‖

2

4ν

)
‖Ff(ω)‖2 dω.

Proof Denote by Z a Gaussian random vector with mean 0 and covariance matrix 2νId.
Then ∫

Gν(x, y)f(x)f(y)dxdy =

∫
exp

(
−ν‖x− y‖2

)
f(x)f(y)dxdy

=

∫
E exp[iZ>(x− y)]f(x)f(y)dxdy

=E
∥∥∥∥∫ exp(−iZ>x)f(x)dx

∥∥∥∥2

=

∫
1

(4πν)d/2
exp

(
−‖ω‖

2

4ν

)∥∥∥∥∫ exp(−iω>x)f(x)dx

∥∥∥∥2

=
(π
ν

) d
2

∫
exp

(
−‖ω‖

2

4ν

)
‖Ff(ω)‖2 dω,

which concludes the proof.

A useful consequence of Lemma 14 is a close connection between Gaussian kernel MMD
and L2 norm.

Lemma 15 For any f ∈ Ws,2(M)(ν
π

)d/2 ∫
Gν(x, y)f(x)f(y)dxdy ≥ 1

4
‖f‖2L2

,

provided that

νs ≥ 41−sM2

(log 3)s
· ‖f‖−2

L2
.

Proof In light of Lemma 14,(ν
π

)d/2 ∫
Gν(x, y)f(x)f(y)dxdy =

∫
exp

(
−‖ω‖

2

4ν

)
‖Ff(ω)‖2 dω.

By Plancherel Theorem, for any T > 0,∫
‖ω‖≤T

‖Ff(ω)‖2 dω = ‖f‖2L2 −
∫
‖ω‖>T

‖Ff(ω)‖2 dω ≥ ‖f‖2L2 −
M2

T 2s
,
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Choosing

T =

(
2M

‖f‖L2

)1/s

,

yields ∫
‖ω‖≤T

‖Ff(ω)‖2 dω ≥ 3

4
‖f‖2L2 .

Hence ∫
exp

(
−‖ω‖

2

4ν

)
‖Ff(ω)‖2 dω ≥ exp

(
−T

2

4ν

)∫
‖ω‖≤T

‖Ff(ω)‖2 dω

≥ 3

4
exp

(
−T

2

4ν

)
‖f‖2L2 .

In particular, if

ν ≥ (2M)2/s

4 log 3
· ‖f‖−2/s

L2 ,

then ∫
exp

(
−‖ω‖

2

4ν

)
‖Ff(ω)‖2 dω ≥ 1

4
‖f‖2L2 ,

which concludes the proof.

Appendix B. Computation Complexity of the Variance Estimator

We show that ∑
1≤i1,i2,j1,j2≤n
|{i1,i2,j1,j2}|=4

Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2)

can be computed with O(n2) operations. The result for

∑
1≤i,j1,j2≤n
|{i,j1,j2}|=3

Gνn(Xi, Xj1)Gνn(Xi, Xj2)

follows similarly.

Proof In this proof, we shall skip writing the constraint that 1 ≤ i1, i2, j1, j2 ≤ n but that
should be assumed by default.
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But checking straightforwardly, we can observe that∑
|{i1,i2,j1,j2}|=4

f(i1, i2, j1, j2)

=
∑

f(i1, i2, j1, j2)

−

∑
i1=i2

f(i1, i2, j1, j2) +
∑
i1=j1

f(i1, i2, j1, j2) +
∑
i1=j2

f(i1, i2, j1, j2) + · · ·


+

 ∑
i1=i2=j1

f(i1, i2, j1, j2) +
∑

i1=i2=j2

f(i1, i2, j1, j2) + · · ·

× 2

+

 ∑
i1=i2,j1=j2

f(i1, i2, j1, j2) +
∑

i1=j1,i2=j2

f(i1, i2, j1, j2) +
∑

i1=j2,i2=j1

f(i1, i2, j1, j2)


−

 ∑
i1=i2=j1=j2

f(i1, i2, j1, j2)

× 6

for a general f .

Let f(i1, i2, j1, j2) = Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2). Then it follows that∑
|{i1,i2,j1,j2}|=4

Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2)

=
(∑

Gνn(Xi, Xj)
)2
−
(∑

Gνn(Xi, Xi)
)
×
(∑

Gνn(Xi, Xj)
)
× 2

−

∑
i

∑
j

Gνn(Xi, Xj)

2× 4 +
(∑

Gνn(Xi, Xi)Gνn(Xi, Xj)
)
× 8

+
(∑

Gνn(Xi, Xi)
)2

+
(∑

G2
νn(Xi, Xj)

)
× 2−

(∑
G2
νn(Xi, Xi)

)
× 6

=
(∑

Gνn(Xi, Xj)
)
×
(∑

Gνn(Xi, Xj)− 2n+ 8
)
−

∑
i

∑
j

Gνn(Xi, Xj)

2× 4

+
(∑

G2νn(Xi, Xj)
)
× 2 + n2 − 6n,

which can be computed with O(n2) operations.

Appendix C. Proof of Lemma 12

We first prove that sup
1≤νn≤n2/d

∣∣s̃2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
− 1
∣∣ = op(1) and then show the differ-

ence caused by the modification from s̃2
n,νn to ŝ2

n,νn is asymptotically negligible.
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Note that

sup
1≤νn≤n2/d

∣∣s̃2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
− 1
∣∣

≤
(

inf
1≤νn≤n2/d

νd/2n E
[
Ḡ2
νn(X1, X2)

])−1

· sup
1≤νn≤n2/d

νd/2n

∣∣s̃2
n,νn − E

[
Ḡ2
νn(X1, X2)

]∣∣ .
For X ∼ P0, denote the distribution of (X,X) as P1. Then we have

E
[
Ḡ2
νn(X1, X2)

]
= γ2

νn(P1,P0 ⊗ P0).

Hence E
[
Ḡ2
νn(X1, X2)

]
> 0 for any νn > 0 since Gνn is characteristic.

In addition, ν
d/2
n E

[
Ḡ2
νn(X1, X2)

]
is continuous with respect to νn and

lim
νn→∞

νd/2n E
[
Ḡ2
νn(X1, X2)

]
=
(π

2

)d/2
‖p0‖2L2

.

Therefore,

inf
1≤νn≤n2/d

νd/2n E
[
Ḡ2
νn(X1, X2)

]
≥ inf

νn∈[0,∞)
νd/2n E

[
Ḡ2
νn(X1, X2)

]
> 0,

and it remains to prove

sup
1≤νn≤n2/d

νd/2n

∣∣s̃2
n,νn − E

[
Ḡ2
νn(X1, X2)

]∣∣ = op(1).

Recall the expression of s̃2
n,νn . It suffcies to show that

sup
1≤νn≤n2/d

νd/2n

∣∣∣∣∣∣ 1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(Xi, Xj)− EG2νn(X1, X2)

∣∣∣∣∣∣ (28)

sup
1≤νn≤n2/d

νd/2n

∣∣∣∣∣∣∣∣
2(n− 3)!

n!

∑
1≤i,j1,j2≤n
|{i,j1,j2}|=3

Gνn(Xi, Xj1)Gνn(Xi, Xj2)− EGνn(X1, X2)Gνn(X1, X3)

∣∣∣∣∣∣∣∣ (29)

sup
1≤νn≤n2/d

νd/2n

∣∣∣∣∣∣∣∣
(n− 4)!

n!

∑
1≤i1,i2,j1,j2≤n
|{i1,i2,j1,j2}|=4

Gνn(Xi1 , Xj1)Gνn(Xi2 , Xj2)− [EGνn(X1, X2)]2

∣∣∣∣∣∣∣∣ (30)

are all op(1). We shall first control (28) and then bound (29) and (30) in the same way.

Let

ÊnG2νn(X,X ′) =
1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(Xi, Xj).

In the rest of this proof, abbreviate ÊnG2νn(X,X ′) and EG2νn(X1, X2) as ÊnG2νn and
EG2νn respectively when no confusion occurs.
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Divide the whole interval [1, n2/d] into A sub-intervals, [u0, u1], [u1, u2], · · · , [uA−1, uA]
with u0 = 1, uA = n2/d. For any νn ∈ [ua−1, ua],

νd/2n ÊnG2νn − νd/2n EG2νn ≥− νd/2n

∣∣∣ÊnG2ua − EG2ua

∣∣∣− νd/2n

∣∣EG2ua − EG2ua−1

∣∣
≥− ud/2a

∣∣∣ÊnG2ua − EG2ua

∣∣∣− ud/2a

∣∣EG2ua − EG2ua−1

∣∣
and

νd/2n ÊnG2νn − νd/2n EG2νn ≤ ud/2a

∣∣∣ÊnG2ua−1 − EG2ua−1

∣∣∣+ ud/2a

∣∣EG2ua − EG2ua−1

∣∣ ,
which together ensure that

sup
1≤νn≤n2/d

∣∣∣νd/2n ÊnG2νn − νd/2n EG2νn

∣∣∣
≤ sup

1≤a≤A

(
ua
ua−1

)d/2
· sup

0≤a≤A
ud/2a

∣∣∣ÊnG2ua − EG2ua

∣∣∣+ sup
1≤a≤A

ud/2a

∣∣EG2ua − EG2ua−1

∣∣
≤ sup

1≤a≤A

(
ua
ua−1

)d/2
· sup

0≤a≤A
ud/2a

∣∣∣ÊnG2ua − EG2ua

∣∣∣+ sup
1≤a≤A

∣∣∣ud/2a EG2ua − u
d/2
a−1EG2ua−1

∣∣∣
+ sup

1≤a≤A

((
ud/2a − ud/2a−1

)
EG2ua−1

)
.

Bound the three terms in the right hand side of the last inequality separately.
Let {ua}a≥0 be a geometric sequence, namely,

A := inf{a ∈ N : ra ≥ n2/d},

and

ua =

{
ra, ∀ 0 ≤ a ≤ A− 1

n2/d, a = A
,

with r > 1 to be determined later.
Since lim

ν→∞
νd/2EG2νn = (π/2)d/2‖p0‖2 and νd/2EG2ν is continuous, we obtain that for

any ε > 0, there exsits sufficiently small r > 1 such that

sup
1≤a≤A

∣∣∣ud/2a EG2ua − u
d/2
a−1EG2ua−1

∣∣∣ ≤ ε.
At the same time, we can also ensure

sup
1≤a≤A

((
ud/2a − ud/2a−1

)
EG2ua−1

)
≤ (rd/2 − 1)

(π
2

)d/2
‖p0‖2 ≤ ε

by choosing r sufficiently small.
Finally consider

sup
1≤a≤A

(
ua
ua−1

)d/2
· sup

0≤a≤A
ud/2a

∣∣∣ÊnG2ua − EG2ua

∣∣∣ .
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On the one hand,

sup
1≤a≤A

(
ua
ua−1

)d/2
≤ rd/2.

On the other hand, since

var
(
ÊnG2νn

)
.

1

n
EG2νn(X,X ′)G2νn(X,X ′′) +

1

n2
EG4νn(X,X ′)

.d
ν
−3d/4
n ‖p0‖3

n
+
ν
−d/2
n ‖p0‖2

n2

for any νn ∈ (0,∞), we have

P

(
sup

0≤a≤A
ud/2a

∣∣∣ÊnG2ua − EG2ua

∣∣∣ ≥ ε)

≤

A∑
a=0

udavar
(
ÊnG2ua

)
ε2

.d,r
1

ε2

(
u
d/4
A ‖p0‖3

n
+
u
d/2
A ‖p0‖2

n2

)
→ 0

as n→∞. Hence we conclude sup
1≤νn≤n2/d

∣∣∣νd/2n ÊnG2νn − ν
d/2
n EG2νn

∣∣∣ = op(1).

Considering that

lim
νn→∞

νd/2n EGνn(X1, X2)Gνn(X1, X3) = 0, lim
νn→∞

νd/2n [EGνn(X1, X2)]2 = 0,

we obtain that (29) and (30) are also op(1), based on almost the same arguments. Hence

sup
1≤νn≤n2/d

∣∣s̃2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
− 1
∣∣ = op(1).

On the other hand, since E
[
Ḡ2
νn(X1, X2)

]
&p0,d ν

−d/2
n for νn ∈ [1, n2/d],

sup
1≤νn≤n2/d

1

n2E
[
Ḡ2
νn(X1, X2)

] = op(1).

Hence we finally conclude that

sup
1≤νn≤n2/d

∣∣ŝ2
n,νn/E

[
Ḡ2
νn(X1, X2)

]
− 1
∣∣ = op(1).

Appendix D. Proof of Lemma 13

Let

Kνn(x, x′) =
Gνn(x, x′)√

2EG2νn(X1, X2)
, ∀ x, x′ ∈ Rd,
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and accordingly,

K̄νn(x, x′) =
Ḡνn(x, x′)√

2EG2νn(X1, X2)
.

Hence

T̃GOF(adapt)
n = sup

1≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj) ·

√
EG2νn(X1, X2)

E
[
Ḡ2
νn(X1, X2)

]
∣∣∣∣∣∣ .

To finish this proof, we first bound

sup
1≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣ (31)

and then control T̃
GOF(adapt)
n .

Step (i). There are two main tools that we borrow in this step. First, we apply results
in Arcones and Gine (1993) to obtain a Bernstein-type inequality for∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄ν0(Xi, Xj)

∣∣∣∣∣∣ and

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

(
K̄νn(Xi, Xj)− K̄ν′n(Xi, Xj)

)∣∣∣∣∣∣
for some ν0 and arbitrary νn, ν

′
n ∈ [1,∞). And based on that, we borrow Talagrand’s

techniques on handling Bernstein-type inequality (e.g., see Talagrand, 2014) to give a generic
chaining bound of (31).

To be more specific, for any ν0, νn, ν
′
n ∈ [1, n2/d], define

d1(νn, ν
′
n) = ‖K̄ν′n − K̄νn‖L∞ , d2(νn, ν

′
n) = ‖K̄ν′n − K̄νn‖L2 .

Then Proposition 2.3 (c) of Arcones and Gine (1993) ensures that for any t > 0,

P

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄ν0(Xi, Xj)

∣∣∣∣∣∣ ≥ t
 ≤ C exp

(
−C min

{
t

‖K̄ν0‖L2

,

( √
nt

‖K̄ν0‖L∞

) 2
3

})
(32)

and

P

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

(
K̄νn(Xi, Xj)− K̄ν′n(Xi, Xj)

)∣∣∣∣∣∣ ≥ t


≤C exp

(
−C min

{
t

d2(νn, ν ′n)
,

( √
nt

d1(νn, ν ′n)

) 2
3

})
for some C > 0, and based on a chaining type argument (see, e.g., Theorem 2.2.28 in
Talagrand, 2014) the latter inequality suggests there exists C > 0 such that

P

(
sup

1≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

(
K̄νn(Xi, Xj)− K̄ν0(Xi, Xj)

)∣∣∣∣∣∣ ≥ (33)

C

(
γ2/3([1, n2/d], d1)

√
n

t+ γ1([1, n2/d], d2) +D2t

))
. exp(−t2/3),
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where γ2/3([1, n2/d], d1), γ1([1, n2/d], d2) are the so-called γ-functionals and

D2 =
∑
l≥0

el([1, n
2/d], d2)

with el being the so-called entropy numbers.
A straightforward combination of (32) and (33) then gives

P

(
sup

1≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣ ≥
C

(
γ2/3([1, n2/d], d1)

√
n

t+ γ1([1, n2/d], d2) +D2t+
‖K̄ν0‖L∞√

n
+ ‖K̄ν0‖L2t

))
. exp(−t2/3).

Therefore, given that the bounds on ‖K̄ν0‖L2 and ‖K̄ν0‖L∞ can be obtained quite di-
rectly, e.g., with ν0 = 1,

‖K̄ν0‖L∞ ≤ 4‖Kν0 ||L∞ =
4√

2EG2
, ‖K̄ν0‖L2 ≤ ‖Kν0‖L2 =

√
2

2
,

the main focus is to bound γ2/3([1, n2/d], d1), γ1([1, n2/d], d2) and D2 properly.

First consider γ2/3([1, n2/d], d1). Note that for any 1 ≤ νn < ν ′n <∞,

d1(νn, ν
′
n) ≤ 4‖Kνn −Kν′n‖L∞ ≤ 4

∫ ν′n

νn

∥∥∥∥dKu

du

∥∥∥∥
L∞

du

Since for any νn,

dKνn

dνn
=(−‖x− x′‖2)Gνn(X1, X2) (EG2νn(X1, X2))−1/2

−1

2
Gνn(X1, X2) (EG2νn(X1, X2))−3/2 d

dνn
EG2νn(X1, X2)

where

(EG2νn(X1, X2))−1/2 =
(π

2

)−d/4
νd/4n

(∫
exp

(
−‖ω‖

2

8νn

)
‖Fp0(ω)‖2dω

)−1/2

.d ν
d/4
n

(∫
exp

(
−‖ω‖

2

8

)
‖Fp0(ω)‖2dω

)−1/2

,

(EG2νn(X1, X2))−3/2 .d ν
3d/4
n

(∫
exp

(
−‖ω‖

2

8

)
‖Fp0(ω)‖2dω

)−3/2

,

and

d

dνn
E2νn(X1, X2)

=
(π

2

)d/2
ν−d/2−1
n

(
−d

2
·
∫

exp

(
−‖ω‖

2

8νn

)
‖Fp0(ω)‖2dω

+

∫
exp

(
−‖ω‖

2

8νn

)(
‖ω‖2

8νn

)
‖Fp0(ω)‖2dω

)
,
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which together ensure ∥∥∥∥dKνn

dνn

∥∥∥∥
L∞

.d,p0 ν
d/4−1
n .

Hence
d1(νn, ν

′
n) .d,p0 |νd/4n − (ν ′n)d/4|,

and γ2/3([1, n2/d], d1) .d,p0 |(n2/d)d/4 − 1d/4| ≤
√
n.

Then consider γ1([1, n2/d], d2). We have

d2
2(νn, ν

′
n) ≤ ‖Kν′n −Kνn‖2L2

= 1−
EGνnGν′n√
EG2νnEG2ν′n

≤ − log

(
EGνnGν′n√
EG2νnEG2ν′n

)

Let f1(νn) =
∫

exp
(
−‖ω‖

2

8νn

)
‖Fp0(ω)‖2dω. Then

log (EG2νn) =
d

2
log

(
π

2νn

)
+ log f1(νn)

and hence

− log

(
EGνnGν′n√
EG2νnEG2ν′n

)

=
d

2

(
− log νn + log ν ′n

2
+ log

(
νn + ν ′n

2

))
+

(
log f1(νn) + log f1(ν ′n)

2
− log f1

(
νn + ν ′n

2

))
.

Note that

log f1(νn) + log f1(ν ′n)

2
− log f1

(
νn + ν ′n

2

)
=

1

2

∫ ν′n−νn
2

0

∫ u

−u

(
log f1

(
ν ′n + νn

2
+ v

))′′
dvdu.

For any νn ≥ 1,

(log f1(νn))′′ =
f1(νn)f ′′1 (νn)− (f ′1(νn))2

f2
1 (νn)

≤ f ′′1 (νn)

f1(νn)
,

and

f ′′1 (νn) =

∫
exp

(
−‖ω‖

2

8νn

)(
‖ω‖4

64ν4
n

− ‖ω‖
2

4ν3
n

)
‖Fp0(ω)‖2dω . ν−2

n ‖p0‖2L2
.

Moreover, there exists ν∗n = ν∗n(p0) > 1 such that f1(ν∗n) ≥ ‖p0‖2L2
/2, from which we obtain

(log f1(νn))′′ .

{
ν−2
n ‖p0‖2L2

/f1(1), 1 ≤ νn ≤ ν∗n
ν−2
n , ν∗n < νn ≤ n2/d

,

which suggests that for any νn, ν
′
n ∈ [1, ν∗n]

d2
2(νn, ν

′
n) .

(
d

2
+
‖p0‖2L2

f1(1)

)(
− log νn + log ν ′n

2
+ log

(
νn + ν ′n

2

))

.

(
d

2
+
‖p0‖2L2

f1(1)

)
| log νn − log ν ′n|,
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and for any νn, ν
′
n ∈ [ν∗n, n

2/d]

d2
2(νn, ν

′
n) .

(
d

2
+ 1

)
| log νn − log ν ′n|.

Note that in addition to the bound on d2 obtained above, we also have

d2(νn, ν
′
n) ≤ ‖K̄νn‖L2 + ‖K̄ν′n‖L2 ≤ ‖Kνn‖L2 + ‖Kν′n‖L2 ≤

√
2.

Therefore,

γ1([1, n2/d], d2) ≤
∑
l≥0

2lel([1, n
2/d], d2)

.e0([1, n2/d], d2) +
∑
l≥0

2lel([1, ν
∗
n], d2) +

∑
l≥0

2lel([ν
∗
n, n

2/d], d2)

.1 +

√
d

2
+
‖p0‖2L2

f1(1)

∑
l≥0

2l
√

log ν∗n − log 1

22l

+

√
d

2
+ 1

∑
l≥0

2l min

1,

√
log n2/d − log ν∗n

22l




.1 +

√
d

2
+
‖p0‖2L2

f1(1)

√
log ν∗n +

√
d

2
+ 1

∑
l≥0

2l min

1,

√
log n2/d

22l




.1 +

√
d

2
+
‖p0‖2L2

f1(1)

√
log ν∗n +

√
d

2
+ 1

 ∑
0≤l<l∗

2l +
∑
l≥l∗

2l

√
log n2/d

22l


.1 +

√
d

2
+
‖p0‖2L2

f1(1)

√
log ν∗n +

√
d

2
+ 1 · 2l∗

where l∗ is the smallest l such that √
log n2/d

22l
≤ 1.

Hence 2l
∗ � log log n and there exists C = C(d) > 0 such that

γ1([1, n2/d], d2) ≤ C(d) log log n

for sufficiently large n.
By the similar approach, we get that

D2 . 1 +

√
d

2
+
‖p0‖2L2

f1(1)

√
log ν∗n +

√
d

2
+ 1 · l∗

which is upper-bounded by C(d) log log log n for sufficiently large n.
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Therefore, we finally obtain that there exists C(d) > 0 such that for sufficiently large n,

P

 sup
1≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣ ≥ C(d)(log logn+ t log log log n)

 . exp(−t2/3).

(34)

Step (ii). By slight abuse of notation, there exists ν∗n = ν∗n(p0) > 1 such that

EG2νn(X1, X2)

E
[
Ḡ2
νn(X1, X2)

] ≤ 2

for νn ≥ ν∗n. Therefore,

T̃GOF(adapt)
n ≤ sup

1≤νn≤ν∗n

√
EG2νn(X1, X2)

E
[
Ḡ2
νn(X1, X2)

] · sup
1≤νn≤ν∗n

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣+
√

2 sup
ν∗n≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣
≤C(p0) sup

1≤νn≤ν∗n

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣+
√

2 sup
ν∗n≤νn≤n2/d

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣
for some C(p0) > 0.

Based on arguments similar to those in the first step,

P

 sup
1≤νn≤ν∗n

∣∣∣∣∣∣ 1

n− 1

∑
i 6=j

K̄νn(Xi, Xj)

∣∣∣∣∣∣ ≥ C(d, p0)t

 . exp(−t2/3)

for some C(d, p0) > 0 and (34) still holds when νn is restricted to [ν∗n, n
2/d]. They together

prove Lemma 13.

Appendix E. Decomposition of dHSIC and Its Variance Estimation

In this section, we first derive an approximation of γ̂2
ν(P,PX1 ⊗ · · · ⊗ PXk

) under H0 for

general k, and then the approximation of var
(
γ̂2
ν(P,PX1 ⊗ · · · ⊗ PXk

)
)

can be obtained

subsequently.
Note that

Gν(x, y)

=

∫
Gν(u, v)d(δx − P + P)(u)d(δy − P + P)(v)

=Ḡν(x, y) + (EGν(x,X)− EGν(X,X ′)) + (EGν(y,X)− EGν(X,X ′)) + EGν(X,X ′).
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Similarly write

Gν(x, (y1, · · · , yk))

=

∫
Gν(u, (v1, · · · , vk))d(δx − P + P)d(δy1 − PX

1
+ PX

1
) · · · d(δyk − PX

k
+ PX

k
)

and expand it as the summation of all l-variate centered components where l ≤ k + 1. Do
the same expansion to Gν((x1, · · · , xk), (y1, · · · , yk)) and write it as the summation of all

l-variate centered components where l ≤ 2k. Plug these expansions in γ̂2
ν(P,PX1 ⊗ · · · ⊗

PXk
) and denote the summation of all l-variate centered components in such expression of

γ̂2
ν(P,PX1 ⊗ · · · ⊗ PXk

) by Dl(ν) for l ≤ 2k. Let the remainder Rn =
2k∑
l=3

Dl(ν) so that

γ̂2
ν(P,PX

1 ⊗ · · · ⊗ PX
k
) = γ2

ν(P,PX
1 ⊗ · · · ⊗ PX

k
) +D1(ν) +D2(ν) +Rn.

Straightforward calculation yields the following facts:

• E(Rn)2 .k n
−3

(
EG2ν(X1, X2) +

k∏
l=1

EG2ν(X l
1, X

l
2)

)
;

• under the null hypothesis, D1(ν) = 0 and

D2(ν) =
1

n(n− 1)

∑
1≤i 6=j≤n

G∗ν(Xi, Xj)

where

G∗ν(x, y) = Ḡν(x, y)−
∑

1≤j≤k
gj(x

j , y)−
∑

1≤j≤k
gj(y

j , x) +
∑

1≤j1,j2≤k
gj1,j2(xj1 , yj2).

Proof of Lemma 6
Observe that under H0,

var
(
γ̂2
ν(P,PX

1 ⊗ · · · ⊗ PX
k
)
)

= E(D2(ν))2+E (Rn)2 =
2

n(n− 1)
E
[
G∗ν(X1, X2)2

]
+E (Rn)2 ,

E (Rn)2 .k n
−3EG2ν(X1, X2),

and

E
[
G∗ν(X1, X2)2

]
=E

Ḡν(X1, X2)−
∑

1≤j≤k
gj(X

j
1 , X2)

2
− E

 ∑
1≤j≤k

gj(X
j
2 , X1) +

∑
1≤j1,j2≤k

gj1,j2(Xj1
1 , X

j2
2 )

2
=EḠ2

ν(X1, X2)− 2
∑

1≤j≤k
E
(
g2
j (X

j
1 , X2)

)
+

∑
1≤j1,j2≤k

E
(
g2
j1,j2(Xj1

1 , X
j2
2 )
)
.
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They together conclude the proof.

Below we shall further expand EḠ2
ν(X1, X2), E

(
g2
j (X

j
1 , X2)

)
and E

(
g2
j1,j2

(Xj1
1 , X

j2
2 )
)

in Lemma 6, based on which consistent estimator of var
(
γ̂2
ν(P,PX1 ⊗ · · · ⊗ PXk

)
)

can be

derived naturally.

First,

EḠ2
ν(X1, X2)

=EG2ν(X1, X2)− 2EGν(X1, X2)Gν(X1, X3) + (EGν(X1, X2))2

=
∏

1≤l≤k
EG2ν(X l

1, X
l
2)− 2

∏
1≤l≤k

EGν(X l
1, X

l
2)Gν(X l

1, X
l
3) +

∏
1≤l≤k

(
EGν(X l

1, X
l
2)
)2
.

Second,

E
(
g2
j (X

j
1 , X2)

)
=EG2ν(Xj

1 , X
j
2) ·

∏
l 6=j

EGν(X l
1, X

l
2)Gν(X l

1, X
l
3)−

∏
1≤l≤k

EGν(X l
1, X

l
2)Gν(X l

1, X
l
3)

− EGν(Xj
1 , X

j
2)Gν(Xj

1 , X
j
3) ·

∏
l 6=j

(EGν(X l
1, X

l
2))2 +

∏
1≤l≤k

(
EGν(X l

1, X
l
2)
)2
.

Hence

∑
1≤j≤k

E
(
g2
j (X

j
1 , X2)

)

=

 ∏
1≤l≤k

EGν(X l
1, X

l
2)Gν(X l

1, X
l
3)

 ∑
1≤j≤k

EG2ν(Xj
1 , X

j
2)

EGν(Xj
1 , X

j
2)Gν(Xj

1 , X
j
3)
− k


−

 ∏
1≤l≤k

(
EGν(X l

1, X
l
2)
)2

 ∑
1≤j≤k

EGν(Xj
1 , X

j
2)Gν(Xj

1 , X
j
3)

(EGν(Xj
1 , X

j
2))2

− k

 .

Finally,

E
(
g2
j1,j2(Xj1

1 , X
j2
2 )
)

=


E(Ḡ2

ν(Xj1
1 , X

j1
2 )) ·

∏
l 6=j1

(
EGν(X l

1, X
l
2)
)2
, j1 = j2∏

l∈{j1,j2}
(EGν(X l

1, X
l
2)Gν(X l

1, X
l
3)− (EGν(X l

1, X
l
2))2)

∏
l 6=j1,j2

(
EGν(X l

1, X
l
2)
)2
, j1 6= j2.
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Hence ∑
1≤j1,j2≤k

E
(
g2
j1,j2(Xj1

1 , X
j2
2 )
)

=

 ∏
1≤l≤k

(
EGν(X l

1, X
l
2)
)2

( ∑
1≤j1≤k

E(Ḡ2
ν(Xj1

1 , X
j1
2 ))

(EGν(Xj1
1 , X

j1
2 ))2

+
∑

1≤j1 6=j2≤k

∏
l∈{j1,j2}

(
EGν(X l

1, X
l
2)Gν(X l

1, X
l
2)(

EGν(X l
1, X

l
2)
)2 − 1

))
.

Then the consistent estimator s̃2
n,ν of E

(
G∗ν(X1, X2)2

)
is constructed by replacing

EG2ν(X l
1, X

l
2), EGν(X l

1, X
l
2)Gν(X l

1, X
l
3), (EGν(X l

1, X
l
2))2

in the above expansions of

EḠ2
ν(X1, X2),

∑
1≤j≤k

E
(
g2
j (X

j
1 , X2)

)
,

∑
1≤j1,j2≤k

E
(
g2
j1,j2(Xj1

1 , X
j2
2 )
)

with the corresponding unbiased estimators

1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(X l
i , X

l
j),

(n− 3)!

n!

∑
1≤i,j1,j2≤n
|{i,j1,j2}|=3

Gνn(X l
i , X

l
j1)Gνn(X l

i , X
l
j2)

(n− 4)!

n!

∑
1≤i1,i2,j1,j2≤n
|{i1,i2,j1,j2}|=4

Gνn(X l
i1 , X

l
j1)Gνn(X l

i2 , X
l
j2)

for 1 ≤ l ≤ k. Again, to avoid a negative estimate of the variance, we can replace s̃2
n,νn with

1/n2 whenever it is negative or too small. Namely, let

ŝ2
n,νn = max

{
s̃2
n,νn , 1/n

2
}
,

and estimate var
(
γ̂2
ν(P,PX1 ⊗ · · · ⊗ PXk

)
)

by 2ŝ2
n,ν/(n(n− 1)).

Therefore for general k, the single kernel test statistic and the adaptive test statistic are
constructed as

T IND
n,νn =

n√
2
ŝ−1
n,νn γ̂

2
νn(P,PX

1 ⊗ · · · ⊗ PX
k
) and T IND(adapt)

n = max
1≤νn≤n2/d

T IND
n,νn

respectively. Accordingly, ΦIND
n,νn,α and ΦIND(adapt) can be constructed as in the case of k = 2.

Appendix F. Theoretical Properties of Independence Tests for General k

In this section, with ΦIND
n,νn,α and ΦIND(adapt) constructed in Appendix E for general k, we

confirm that Theorem 7, Theorem 8 and Theorem 11 still hold. We shall only emphasize
the main differences between the new proofs and the original proofs in the case of k = 2.

57



Li and Yuan

Under the null hypothesis: we only need to re-ensure that s̃2
n,νn is a consistent

estimator of E[G∗νn(X1, X2)2]. Specifically, we show that

s̃2
n,νn/E[G∗νn(X1, X2)2]→p 1

given 1� νn � n4/d for Theorem 7 and

sup
1≤νn≤n2/d

∣∣s̃2
n,νn/E[G∗νn(X1, X2)2]− 1

∣∣ = op(1)

for Theorem 11.

To prove the former one, since

E[G∗νn(X1, X2)2]

(π/(2νn))d/2‖p‖2L2

→ 1

as νn →∞, it suffices to show

νd/2n

∣∣s̃2
n,νn − E[G∗νn(X1, X2)2]

∣∣ = op(1),

which follows considering that

νdl/2n EG2νn(X l
1, X

l
2), νd/2n EGνn(X l

1, X
l
2)Gνn(X l

1, X
l
3), νdl/2n (EGνn(X l

1, X
l
2))2 (35)

are all bounded and they are estimated consistently by their corresponding estimators. For
example,

νdl/2n EG2νn(X l
1, X

l
2)→ (π/2)dl/2 ‖pl‖2L2

and

νdln E

 1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(X l
i , X

l
j)− EG2νn(X l

1, X
l
2)

2

= νdln var

 1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(X l
i , X

l
j)


. νdln

(
n−1EG2νn(X l

1, X
l
2)G2νn(X l

1, X
l
3) + n−2EG4νn(X l

1, X
l
2)
)

.dln
−1νdl/4n ‖pl‖3L2

+ n−2νdl/2n ‖pl‖2L2
→ 0.

The proof of the latter one is similar. It sufficies to have

• each term in (35) is bounded for νn ∈ [1,∞), which immediately follows since each
term is continuous and converges at ∞;

• the difference between each term in (35) and its corresponding estimator converges to
0 uniformly over νn ∈ [1, n2/d], the proof of which is the same with that of Lemma 12.
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Under the alternative hypothesis: we only need to re-ensure that ŝn,νn is bounded.
Specifically, we show

inf
p∈HIND

1 (∆n,s)

nγ2
νn(P,PX1 ⊗ · · · ⊗ PXk

)[
E
(
ŝ2
n,νn

)1/k]k/2 →∞

for Theorem 8 and

inf
s≥d/4

inf
p∈HIND

1 (∆n,s;s)
P
(
ŝ2
n,νn(s)′ ≤ 2M2(2νn(s)′/π)−d/2

)
→ 1 (36)

for Theorem 11, where νn(s)′ = (log log n/n)−4/(4s+d).

The former one holds because

E
(
ŝ2
n,νn

)1/k ≤ E
(
max

{∣∣s̃2
n,ν

∣∣ , 1/n2
})1/k

≤ E
∣∣s̃2
n,ν

∣∣1/k + n−2/k

.k

(
k∏
l=1

EG2νn(X l
1, X

l
2)

)1/k

+ n−2/k

≤
(
M2(π/(2νn))d/2

)1/k
+ n−2/k.

where the second to last inequality follows from generalized Hölder’s inequality. For exam-
ple,

E

 k∏
l=1

1

n(n− 1)

∑
1≤i 6=j≤n

G2νn(X l
i , X

l
j)

1/k

≤

(
k∏
l=1

EG2νn(X l
1, X

l
2)

)1/k

.

To prove the latter one, note that for νn = νn(s)′, all three terms in (35) are bounded
by M2

l (π/2)dl/2 and the variances of their corresponding estimators are bounded by

C(dl)
(
n−1

(
νn(s)′

)dl/4M3
l + n−2

(
νn(s)′

)dl/2M2
l

)
= o(1)

uniformly over all s. Therefore,

inf
s≥d/4

inf
p∈HIND

1 (∆n,s;s)
P
((
νn(s)′

)d/2 ∣∣∣s̃2
n,νn(s)′ − E[G∗νn(s)′(Y1, Y2)2]

∣∣∣ ≤M2(π/2)d/2
)
→ 1

where Y1, Y2 ∼iid PX1 ⊗ · · · ⊗ PXk
. Further considering that

E[G∗νn(s)′(Y1, Y2)2] ≤ E[Ḡ2
νn(s)′(Y1, Y2)] ≤M2(π/(2νn(s)′))d/2

and that

1/n2 = o((νn(s)′)−d/2)

uniformly over all s, we prove (36).
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