Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

JMLR Volume 16

Statistical Decision Making for Optimal Budget Allocation in Crowd Labeling
Xi Chen, Qihang Lin, Dengyong Zhou; (1):1−46, 2015.
[abs][pdf][bib]

Simultaneous Pursuit of Sparseness and Rank Structures for Matrix Decomposition
Qi Yan, Jieping Ye, Xiaotong Shen; (2):47−75, 2015.
[abs][pdf][bib]

Statistical Topological Data Analysis using Persistence Landscapes
Peter Bubenik; (3):77−102, 2015.
[abs][pdf][bib]

Links Between Multiplicity Automata, Observable Operator Models and Predictive State Representations -- a Unified Learning Framework
Michael Thon, Herbert Jaeger; (4):103−147, 2015.
[abs][pdf][bib]

SAMOA: Scalable Advanced Massive Online Analysis
Gianmarco De Francisci Morales, Albert Bifet; (5):149−153, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Online Learning via Sequential Complexities
Alexander Rakhlin, Karthik Sridharan, Ambuj Tewari; (6):155−186, 2015.
[abs][pdf][bib]

Learning Transformations for Clustering and Classification
Qiang Qiu, Guillermo Sapiro; (7):187−225, 2015.
[abs][pdf][bib]

Multi-layered Gesture Recognition with Kinect
Feng Jiang, Shengping Zhang, Shen Wu, Yang Gao, Debin Zhao; (8):227−254, 2015.
[abs][pdf][bib]

Multimodal Gesture Recognition via Multiple Hypotheses Rescoring
Vassilis Pitsikalis, Athanasios Katsamanis, Stavros Theodorakis, Petros Maragos; (9):255−284, 2015.
[abs][pdf][bib]

An Asynchronous Parallel Stochastic Coordinate Descent Algorithm
Ji Liu, Stephen J. Wright, Christopher Ré, Victor Bittorf, Srikrishna Sridhar; (10):285−322, 2015.
[abs][pdf][bib]

Geometric Intuition and Algorithms for Ev--SVM
Álvaro Barbero, Akiko Takeda, Jorge López; (11):323−369, 2015.
[abs][pdf][bib]

Composite Self-Concordant Minimization
Quoc Tran-Dinh, Anastasios Kyrillidis, Volkan Cevher; (12):371−416, 2015.
[abs][pdf][bib]

Network Granger Causality with Inherent Grouping Structure
Sumanta Basu, Ali Shojaie, George Michailidis; (13):417−453, 2015.
[abs][pdf][bib]

Iterative and Active Graph Clustering Using Trace Norm Minimization Without Cluster Size Constraints
Nir Ailon, Yudong Chen, Huan Xu; (14):455−490, 2015.
[abs][pdf][bib]

A Classification Module for Genetic Programming Algorithms in JCLEC
Alberto Cano, José María Luna, Amelia Zafra, Sebastián Ventura; (15):491−494, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

AD3: Alternating Directions Dual Decomposition for MAP Inference in Graphical Models
André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, Eric P. Xing; (16):495−545, 2015.
[abs][pdf][bib]

Introducing CURRENNT: The Munich Open-Source CUDA RecurREnt Neural Network Toolkit
Felix Weninger; (17):547−551, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

The flare Package for High Dimensional Linear Regression and Precision Matrix Estimation in R
Xingguo Li, Tuo Zhao, Xiaoming Yuan, Han Liu; (18):553−557, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Regularized M-estimators with Nonconvexity: Statistical and Algorithmic Theory for Local Optima
Po-Ling Loh, Martin J. Wainwright; (19):559−616, 2015.
[abs][pdf][bib]

Generalized Hierarchical Kernel Learning
Pratik Jawanpuria, Jagarlapudi Saketha Nath, Ganesh Ramakrishnan; (20):617−652, 2015.
[abs][pdf][bib]

Discrete Restricted Boltzmann Machines
Guido Montúfar, Jason Morton; (21):653−672, 2015.
[abs][pdf][bib]

Evolving GPU Machine Code
Cleomar Pereira da Silva, Douglas Mota Dias, Cristiana Bentes, Marco Aurélio Cavalcanti Pacheco, Le, ro Fontoura Cupertino; (22):673−712, 2015.
[abs][pdf][bib]

A Compression Technique for Analyzing Disagreement-Based Active Learning
Yair Wiener, Steve Hanneke, Ran El-Yaniv; (23):713−745, 2015.
[abs][pdf][bib]

Response-Based Approachability with Applications to Generalized No-Regret Problems
Andrey Bernstein, Nahum Shimkin; (24):747−773, 2015.
[abs][pdf][bib]

Strong Consistency of the Prototype Based Clustering in Probabilistic Space
Vladimir Nikulin; (25):775−785, 2015.
[abs][pdf][bib]

Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario March, Jean-Francis Roy; (26):787−860, 2015.
[abs][pdf][bib]

A Statistical Perspective on Algorithmic Leveraging
Ping Ma, Michael W. Mahoney, Bin Yu; (27):861−911, 2015.
[abs][pdf][bib]

Distributed Matrix Completion and Robust Factorization
Lester Mackey, Ameet Talwalkar, Michael I. Jordan; (28):913−960, 2015.
[abs][pdf][bib]

Combined l1 and Greedy l0 Penalized Least Squares for Linear Model Selection
Piotr Pokarowski, Jan Mielniczuk; (29):961−992, 2015.
[abs][pdf][bib]

Learning with the Maximum Correntropy Criterion Induced Losses for Regression
Yunlong Feng, Xiaolin Huang, Lei Shi, Yuning Yang, Johan A.K. Suykens; (30):993−1034, 2015.
[abs][pdf][bib]

Joint Estimation of Multiple Precision Matrices with Common Structures
Wonyul Lee, Yufeng Liu; (31):1035−1062, 2015.
[abs][pdf][bib]

Lasso Screening Rules via Dual Polytope Projection
Jie Wang, Peter Wonka, Jieping Ye; (32):1063−1101, 2015.
[abs][pdf][bib]

Fast Cross-Validation via Sequential Testing
Tammo Krueger, Danny Panknin, Mikio Braun; (33):1103−1155, 2015.
[abs][pdf][bib]

Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data
Jean Honorio, Luis Ortiz; (34):1157−1210, 2015.
[abs][pdf][bib]

Local Identification of Overcomplete Dictionaries
Karin Schnass; (35):1211−1242, 2015.
[abs][pdf][bib]      [erratum]

Encog: Library of Interchangeable Machine Learning Models for Java and C#
Jeff Heaton; (36):1243−1247, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code] [webpage]

Perturbed Message Passing for Constraint Satisfaction Problems
Siamak Ravanbakhsh, Russell Greiner; (37):1249−1274, 2015.
[abs][pdf][bib]

Learning Sparse Low-Threshold Linear Classifiers
Sivan Sabato, Shai Shalev-Shwartz, Nathan Srebro, Daniel Hsu, Tong Zhang; (38):1275−1304, 2015.
[abs][pdf][bib]

Learning Equilibria of Games via Payoff Queries
John Fearnley, Martin Gairing, Paul W. Goldberg, Rahul Savani; (39):1305−1344, 2015.
[abs][pdf][bib]

Rationality, Optimism and Guarantees in General Reinforcement Learning
Peter Sunehag, Marcus Hutter; (40):1345−1390, 2015.
[abs][pdf][bib]

The Algebraic Combinatorial Approach for Low-Rank Matrix Completion
Franz J.Király, Louis Theran, Ryota Tomioka; (41):1391−1436, 2015.
[abs][pdf][bib]

A Comprehensive Survey on Safe Reinforcement Learning
Javier García, Fern, o Fernández; (42):1437−1480, 2015.
[abs][pdf][bib]

Second-Order Non-Stationary Online Learning for Regression
Edward Moroshko, Nina Vaits, Koby Crammer; (43):1481−1517, 2015.
[abs][pdf][bib]

A Finite Sample Analysis of the Naive Bayes Classifier
Daniel Berend, Aryeh Kontorovich; (44):1519−1545, 2015.
[abs][pdf][bib]

Flexible High-Dimensional Classification Machines and Their Asymptotic Properties
Xingye Qiao, Lingsong Zhang; (45):1547−1572, 2015.
[abs][pdf][bib]

RLPy: A Value-Function-Based Reinforcement Learning Framework for Education and Research
Alborz Geramifard, Christoph Dann, Robert H. Klein, William Dabney, Jonathan P. How; (46):1573−1578, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Calibrated Multivariate Regression with Application to Neural Semantic Basis Discovery
Han Liu, Lie Wang, Tuo Zhao; (47):1579−1606, 2015.
[abs][pdf][bib]

Bayesian Nonparametric Crowdsourcing
Pablo G. Moreno, Antonio Artes-Rodriguez, Yee Whye Teh, Fern, o Perez-Cruz; (48):1607−1627, 2015.
[abs][pdf][bib]

Approximate Modified Policy Iteration and its Application to the Game of Tetris
Bruno Scherrer, Mohammad Ghavamzadeh, Victor Gabillon, Boris Lesner, Matthieu Geist; (49):1629−1676, 2015.
[abs][pdf][bib]

Preface to this Special Issue
Alex Gammerman, Vladimir Vovk; (50):1677−1681, 2015.
[abs][pdf][bib]

V-Matrix Method of Solving Statistical Inference Problems
Vladimir Vapnik, Rauf Izmailov; (51):1683−1730, 2015.
[abs][pdf][bib]

Batch Learning from Logged Bandit Feedback through Counterfactual Risk Minimization
Adith Swaminathan, Thorsten Joachims; (52):1731−1755, 2015.
[abs][pdf][bib]

Optimal Estimation of Low Rank Density Matrices
Vladimir Koltchinskii, Dong Xia; (53):1757−1792, 2015.
[abs][pdf][bib]

Fast Rates in Statistical and Online Learning
Tim van Erven, Peter D. Grünwald, Nishant A. Mehta, Mark D. Reid, Robert C. Williamson; (54):1793−1861, 2015.
[abs][pdf][bib]

On the Asymptotic Normality of an Estimate of a Regression Functional
László Györfi, Harro Walk; (55):1863−1877, 2015.
[abs][pdf][bib]

Sharp Oracle Bounds for Monotone and Convex Regression Through Aggregation
Pierre C. Bellec, Alexandre B. Tsybakov; (56):1879−1892, 2015.
[abs][pdf][bib]

Exceptional Rotations of Random Graphs: A VC Theory
Louigi Addario-Berry, Shankar Bhamidi, Sébastien Bubeck, Luc Devroye, Gábor Lugosi, Roberto Imbuzeiro Oliveira; (57):1893−1922, 2015.
[abs][pdf][bib]

Semi-Supervised Interpolation in an Anticausal Learning Scenario
Dominik Janzing, Bernhard Schölkopf; (58):1923−1948, 2015.
[abs][pdf][bib]

Towards an Axiomatic Approach to Hierarchical Clustering of Measures
Philipp Thomann, Ingo Steinwart, Nico Schmid; (59):1949−2002, 2015.
[abs][pdf][bib]

Predicting a Switching Sequence of Graph Labelings
Mark Herbster, Stephen Pasteris, Massimiliano Pontil; (60):2003−2022, 2015.
[abs][pdf][bib]

Learning Using Privileged Information: Similarity Control and Knowledge Transfer
Vladimir Vapnik, Rauf Izmailov; (61):2023−2049, 2015.
[abs][pdf][bib]

Alexey Chervonenkis's Bibliography: Introductory Comments
Alex Gammerman, Vladimir Vovk; (62):2051−2066, 2015.
[abs][pdf][bib]

Alexey Chervonenkis's Bibliography
Alex Gammerman, Vladimir Vovk; (63):2067−2080, 2015.
[abs][pdf][bib]

Photonic Delay Systems as Machine Learning Implementations
Michiel Hermans, Miguel C. Soriano, Joni Dambre, Peter Bienstman, Ingo Fischer; (64):2081−2097, 2015.
[abs][pdf][bib]

On Linearly Constrained Minimum Variance Beamforming
Jian Zhang, Chao Liu; (65):2099−2145, 2015.
[abs][pdf][bib]

Constraint-based Causal Discovery from Multiple Interventions over Overlapping Variable Sets
Sofia Triantafillou, Ioannis Tsamardinos; (66):2147−2205, 2015.
[abs][pdf][bib]

Existence and Uniqueness of Proper Scoring Rules
Evgeni Y. Ovcharov; (67):2207−2230, 2015.
[abs][pdf][bib]

Adaptive Strategy for Stratified Monte Carlo Sampling
Alexandra Carpentier, Remi Munos, András Antos; (68):2231−2271, 2015.
[abs][pdf][bib]

Concave Penalized Estimation of Sparse Gaussian Bayesian Networks
Bryon Aragam, Qing Zhou; (69):2273−2328, 2015.
[abs][pdf][bib]

Agnostic Insurability of Model Classes
Narayana Santhanam, Venkat Anantharam; (70):2329−2355, 2015.
[abs][pdf][bib]

Achievability of Asymptotic Minimax Regret by Horizon-Dependent and Horizon-Independent Strategies
Kazuho Watanabe, Teemu Roos; (71):2357−2375, 2015.
[abs][pdf][bib]

Multiclass Learnability and the ERM Principle
Amit Daniely, Sivan Sabato, Shai Ben-David, Shai Shalev-Shwartz; (72):2377−2404, 2015.
[abs][pdf][bib]

Geometry and Expressive Power of Conditional Restricted Boltzmann Machines
Guido Montúfar, Nihat Ay, Keyan Ghazi-Zahedi; (73):2405−2436, 2015.
[abs][pdf][bib]

From Dependency to Causality: A Machine Learning Approach
Gianluca Bontempi, Maxime Flauder; (74):2437−2457, 2015.
[abs][pdf][bib]

The Libra Toolkit for Probabilistic Models
Daniel Lowd, Amirmohammad Rooshenas; (75):2459−2463, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Complexity of Equivalence and Learning for Multiplicity Tree Automata
Ines Marusic, James Worrell; (76):2465−2500, 2015.
[abs][pdf][bib]

Bayesian Nonparametric Covariance Regression
Emily B. Fox, David B. Dunson; (77):2501−2542, 2015.
[abs][pdf][bib]

A General Framework for Fast Stagewise Algorithms
Ryan J. Tibshirani; (78):2543−2588, 2015.
[abs][pdf][bib]

Counting and Exploring Sizes of Markov Equivalence Classes of Directed Acyclic Graphs
Yangbo He, Jinzhu Jia, Bin Yu; (79):2589−2609, 2015.
[abs][pdf][bib]

pyGPs -- A Python Library for Gaussian Process Regression and Classification
Marion Neumann, Shan Huang, Daniel E. Marthaler, Kristian Kersting; (80):2611−2616, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Derivative Estimation Based on Difference Sequence via Locally Weighted Least Squares Regression
WenWu Wang, Lu Lin; (81):2617−2641, 2015.
[abs][pdf][bib]

When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity
Animashree An, kumar, Daniel Hsu, Majid Janzamin, Sham Kakade; (82):2643−2694, 2015.
[abs][pdf][bib]

Absent Data Generating Classifier for Imbalanced Class Sizes
Arash Pourhabib, Bani K. Mallick, Yu Ding; (83):2695−2724, 2015.
[abs][pdf][bib]

Decision Boundary for Discrete Bayesian Network Classifiers
Gherardo Var, o, Concha Bielza, Pedro Larranaga; (84):2725−2749, 2015.
[abs][pdf][bib]

A View of Margin Losses as Regularizers of Probability Estimates
Hamed Masnadi-Shirazi, Nuno Vasconcelos; (85):2751−2795, 2015.
[abs][pdf][bib]

Online Tensor Methods for Learning Latent Variable Models
Furong Huang, U. N. Niranjan, Mohammad Umar Hakeem, Animashree An, kumar; (86):2797−2835, 2015.
[abs][pdf][bib]

Optimal Bayesian Estimation in Random Covariate Design with a Rescaled Gaussian Process Prior
Debdeep Pati, Anirban Bhattacharya, Guang Cheng; (87):2837−2851, 2015.
[abs][pdf][bib]

CEKA: A Tool for Mining the Wisdom of Crowds
Jing Zhang, Victor S. Sheng, Bryce A. Nicholson, Xindong Wu; (88):2853−2858, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

Linear Dimensionality Reduction: Survey, Insights, and Generalizations
John P. Cunningham, Zoubin Ghahramani; (89):2859−2900, 2015.
[abs][pdf][bib]

The Randomized Causation Coefficient
David Lopez-Paz, Krikamol Mu, et, Benjamin Recht; (90):2901−2907, 2015.
[abs][pdf][bib]

Optimality of Poisson Processes Intensity Learning with Gaussian Processes
Alisa Kirichenko, Harry van Zanten; (91):2909−2919, 2015.
[abs][pdf][bib]

Combination of Feature Engineering and Ranking Models for Paper-Author Identification in KDD Cup 2013
Chun-Liang Li, Yu-Chuan Su, Ting-Wei Lin, Cheng-Hao Tsai, Wei-Cheng Chang, Kuan-Hao Huang, Tzu-Ming Kuo, Shan-Wei Lin, Young-San Lin, Yu-Chen Lu, Chun-Pai Yang, Cheng-Xia Chang, Wei-Sheng Chin, Yu-Chin Juan, Hsiao-Yu Tung, Jui-Pin Wang, Cheng-Kuang Wei, Felix Wu, Tu-Chun Yin, Tong Yu, Yong Zhuang, Shou-de Lin, Hsuan-Tien Lin, Chih-Jen Lin; (92):2921−2947, 2015.
[abs][pdf][bib]

Comparing Hard and Overlapping Clusterings
Danilo Horta, Ricardo J.G.B. Campello; (93):2949−2997, 2015.
[abs][pdf][bib]

Completing Any Low-rank Matrix, Provably
Yudong Chen, Srinadh Bhojanapalli, Sujay Sanghavi, Rachel Ward; (94):2999−3034, 2015.
[abs][pdf][bib]

Eigenwords: Spectral Word Embeddings
Paramveer S. Dhillon, Dean P. Foster, Lyle H. Ungar; (95):3035−3078, 2015.
[abs][pdf][bib]

Discrete Reproducing Kernel Hilbert Spaces: Sampling and Distribution of Dirac-masses
Palle Jorgensen, Feng Tian; (96):3079−3114, 2015.
[abs][pdf][bib]

A Direct Estimation of High Dimensional Stationary Vector Autoregressions
Fang Han, Huanran Lu, Han Liu; (97):3115−3150, 2015.
[abs][pdf][bib]

Global Convergence of Online Limited Memory BFGS
Aryan Mokhtari, Alej, ro Ribeiro; (98):3151−3181, 2015.
[abs][pdf][bib]

On Semi-Supervised Linear Regression in Covariate Shift Problems
Kenneth Joseph Ryan, Mark Vere Culp; (99):3183−3217, 2015.
[abs][pdf][bib]

Ultra-Scalable and Efficient Methods for Hybrid Observational and Experimental Local Causal Pathway Discovery
Alexander Statnikov, Sisi Ma, Mikael Henaff, Nikita Lytkin, Efstratios Efstathiadis, Eric R. Peskin, Constantin F. Aliferis; (100):3219−3267, 2015.
[abs][pdf][bib]

Plug-and-Play Dual-Tree Algorithm Runtime Analysis
Ryan R. Curtin, Dongryeol Lee, William B. March, Parikshit Ram; (101):3269−3297, 2015.
[abs][pdf][bib]

Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates
Yuchen Zhang, John Duchi, Martin Wainwright; (102):3299−3340, 2015.
[abs][pdf][bib]

Learning Theory of Randomized Kaczmarz Algorithm
Junhong Lin, Ding-Xuan Zhou; (103):3341−3365, 2015.
[abs][pdf][bib]

Matrix Completion and Low-Rank SVD via Fast Alternating Least Squares
Trevor Hastie, Rahul Mazumder, Jason D. Lee, Reza Zadeh; (104):3367−3402, 2015.
[abs][pdf][bib]

On the Inductive Bias of Dropout
David P. Helmbold, Philip M. Long; (105):3403−3454, 2015.
[abs][pdf][bib]

Agnostic Learning of Disjunctions on Symmetric Distributions
Vitaly Feldman, Pravesh Kothari; (106):3455−3467, 2015.
[abs][pdf][bib]

SnFFT: A Julia Toolkit for Fourier Analysis of Functions over Permutations
Gregory Plumb, Deepti Pachauri, Risi Kondor, Vikas Singh; (107):3469−3473, 2015.
[abs][pdf][bib]

The Sample Complexity of Learning Linear Predictors with the Squared Loss
Ohad Shamir; (108):3475−3486, 2015.
[abs][pdf][bib]

Minimax Analysis of Active Learning
Steve Hanneke, Liu Yang; (109):3487−3602, 2015.
[abs][pdf][bib]

Convergence Rates for Persistence Diagram Estimation in Topological Data Analysis
Frédéric Chazal, Marc Glisse, Catherine Labruère, Bertrand Michel; (110):3603−3635, 2015.
[abs][pdf][bib]

Supervised Learning via Euler's Elastica Models
Tong Lin, Hanlin Xue, Ling Wang, Bo Huang, Hongbin Zha; (111):3637−3686, 2015.
[abs][pdf][bib]

Learning to Identify Concise Regular Expressions that Describe Email Campaigns
Paul Prasse, Christoph Sawade, Niels L, wehr, Tobias Scheffer; (112):3687−3720, 2015.
[abs][pdf][bib]

Non-Asymptotic Analysis of a New Bandit Algorithm for Semi-Bounded Rewards
Junya Honda, Akimichi Takemura; (113):3721−3756, 2015.
[abs][pdf][bib]

Condition for Perfect Dimensionality Recovery by Variational Bayesian PCA
Shinichi Nakajima, Ryota Tomioka, Masashi Sugiyama, S. Derin Babacan; (114):3757−3811, 2015.
[abs][pdf][bib]

Graphical Models via Univariate Exponential Family Distributions
Eunho Yang, Pradeep Ravikumar, Genevera I. Allen, Zhandong Liu; (115):3813−3847, 2015.
[abs][pdf][bib]

Marginalizing Stacked Linear Denoising Autoencoders
Minmin Chen, Kilian Q. Weinberger, Zhixiang (Eddie) Xu, Fei Sha; (116):3849−3875, 2015.
[abs][pdf][bib]

PAC Optimal MDP Planning with Application to Invasive Species Management
Majid Alkaee Taleghan, Thomas G. Dietterich, Mark Crowley, Kim Hall, H. Jo Albers; (117):3877−3903, 2015.
[abs][pdf][bib]

partykit: A Modular Toolkit for Recursive Partytioning in R
Torsten Hothorn, Achim Zeileis; (118):3905−3909, 2015. (Machine Learning Open Source Software Paper)
[abs][pdf][bib]      [code]

© JMLR .
Mastodon