Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Discrete Reproducing Kernel Hilbert Spaces: Sampling and Distribution of Dirac-masses

Palle Jorgensen, Feng Tian; 16(96):3079−3114, 2015.

Abstract

We study reproducing kernels, and associated reproducing kernel Hilbert spaces (RKHSs) $\mathscr{H}$ over infinite, discrete and countable sets $V$. In this setting we analyze in detail the distributions of the corresponding Dirac point-masses of $V$. Illustrations include certain models from neural networks: An Extreme Learning Machine (ELM) is a neural network-configuration in which a hidden layer of weights are randomly sampled, and where the object is then to compute resulting output. For RKHSs $\mathscr{H}$ of functions defined on a prescribed countable infinite discrete set $V$, we characterize those which contain the Dirac masses $\delta_{x}$ for all points $x$ in $V$. Further examples and applications where this question plays an important role are: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to graph-Laplacians where the set $V$ of vertices is then equipped with a resistance metric; and finally (iii) the study of Gaussian free fields.

[abs][pdf][bib]       
© JMLR 2015. (edit, beta)

Mastodon