JMLR Volume 10
- Exploring Strategies for Training Deep Neural Networks
- Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, Pascal Lamblin; (1):1−40, 2009.
[abs][pdf][bib]
- Markov Properties for Linear Causal Models with Correlated Errors
- Changsung Kang, Jin Tian; (2):41−70, 2009.
[abs][pdf][bib]
- An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs
- M. Pawan Kumar, Vladimir Kolmogorov, Philip H.S. Torr; (3):71−106, 2009.
[abs][pdf][bib]
- Subgroup Analysis via Recursive Partitioning
- Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M. Nickerson, Bogong Li; (5):141−158, 2009.
[abs][pdf][bib]
- Python Environment for Bayesian Learning: Inferring the Structure of Bayesian Networks from Knowledge and Data
- Abhik Shah, Peter Woolf; (6):159−162, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- On The Power of Membership Queries in Agnostic Learning
- Vitaly Feldman; (7):163−182, 2009.
[abs][pdf][bib]
- Using Local Dependencies within Batches to Improve Large Margin Classifiers
- Volkan Vural, Glenn Fung, Balaji Krishnapuram, Jennifer G. Dy, Bharat Rao; (8):183−206, 2009.
[abs][pdf][bib]
- Distance Metric Learning for Large Margin Nearest Neighbor Classification
- Kilian Q. Weinberger, Lawrence K. Saul; (9):207−244, 2009.
[abs][pdf][bib]
- Data-driven Calibration of Penalties for Least-Squares Regression
- Sylvain Arlot, Pascal Massart; (10):245−279, 2009.
[abs][pdf][bib]
- Analysis of Perceptron-Based Active Learning
- Sanjoy Dasgupta, Adam Tauman Kalai, Claire Monteleoni; (11):281−299, 2009.
[abs][pdf][bib]
- Improving the Reliability of Causal Discovery from Small Data Sets Using Argumentation
- Facundo Bromberg, Dimitris Margaritis; (12):301−340, 2009.
[abs][pdf][bib]
- Low-Rank Kernel Learning with Bregman Matrix Divergences
- Brian Kulis, Mátyás A. Sustik, Inderjit S. Dhillon; (13):341−376, 2009.
[abs][pdf][bib]
- Supervised Descriptive Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup Mining
- Petra Kralj Novak, Nada Lavrač, Geoffrey I. Webb; (14):377−403, 2009.
[abs][pdf][bib]
- Particle Swarm Model Selection
- Hugo Jair Escalante, Manuel Montes, Luis Enrique Sucar; (15):405−440, 2009.
[abs][pdf][bib]
- Generalization Bounds for Ranking Algorithms via Algorithmic Stability
- Shivani Agarwal, Partha Niyogi; (16):441−474, 2009.
[abs][pdf][bib]
- Controlling the False Discovery Rate of the Association/Causality Structure Learned with the PC Algorithm
- Junning Li, Z. Jane Wang; (17):475−514, 2009.
[abs][pdf][bib]
- Identification of Recurrent Neural Networks by Bayesian Interrogation Techniques
- Barnabás Póczos, András Loőrincz; (18):515−554, 2009.
[abs][pdf][bib]
- On the Consistency of Feature Selection using Greedy Least Squares Regression
- Tong Zhang; (19):555−568, 2009.
[abs][pdf][bib]
- Online Learning with Sample Path Constraints
- Shie Mannor, John N. Tsitsiklis, Jia Yuan Yu; (20):569−590, 2009.
[abs][pdf][bib]
- NEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM
- Pradip Ghanty, Samrat Paul, Nikhil R. Pal; (21):591−622, 2009.
[abs][pdf][bib]
- Scalable Collaborative Filtering Approaches for Large Recommender Systems
- Gábor Takács, István Pilászy, Bottyán Németh, Domonkos Tikk; (22):623−656, 2009.
[abs][pdf][bib]
- Nearest Neighbor Clustering: A Baseline Method for Consistent Clustering with Arbitrary Objective Functions
- Sébastien Bubeck, Ulrike von Luxburg; (23):657−698, 2009.
[abs][pdf][bib]
- Properties of Monotonic Effects on Directed Acyclic Graphs
- Tyler J. VanderWeele, James M. Robins; (24):699−718, 2009.
[abs][pdf][bib]
- On Efficient Large Margin Semisupervised Learning: Method and Theory
- Junhui Wang, Xiaotong Shen, Wei Pan; (25):719−742, 2009.
[abs][pdf][bib]
- Nieme: Large-Scale Energy-Based Models
- Francis Maes; (26):743−746, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Similarity-based Classification: Concepts and Algorithms
- Yihua Chen, Eric K. Garcia, Maya R. Gupta, Ali Rahimi, Luca Cazzanti; (27):747−776, 2009.
[abs][pdf][bib]
- Sparse Online Learning via Truncated Gradient
- John Langford, Lihong Li, Tong Zhang; (28):777−801, 2009.
[abs][pdf][bib]
- A New Approach to Collaborative Filtering: Operator Estimation with Spectral Regularization
- Jacob Abernethy, Francis Bach, Theodoros Evgeniou, Jean-Philippe Vert; (29):803−826, 2009.
[abs][pdf][bib]
- Stable and Efficient Gaussian Process Calculations
- Leslie Foster, Alex Waagen, Nabeela Aijaz, Michael Hurley, Apolonio Luis, Joel Rinsky, Chandrika Satyavolu, Michael J. Way, Paul Gazis, Ashok Srivastava; (31):857−882, 2009.
[abs][pdf][bib]
- Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods
- Holger Höfling, Robert Tibshirani; (32):883−906, 2009.
[abs][pdf][bib]
- Polynomial-Delay Enumeration of Monotonic Graph Classes
- Jan Ramon, Siegfried Nijssen; (33):907−929, 2009.
[abs][pdf][bib]
- Java-ML: A Machine Learning Library
- Thomas Abeel, Yves Van de Peer, Yvan Saeys; (34):931−934, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Nonextensive Information Theoretic Kernels on Measures
- André F. T. Martins, Noah A. Smith, Eric P. Xing, Pedro M. Q. Aguiar, Mário A. T. Figueiredo; (35):935−975, 2009.
[abs][pdf][bib]
- On Uniform Deviations of General Empirical Risks with Unboundedness, Dependence, and High Dimensionality
- Wenxin Jiang; (36):977−996, 2009.
[abs][pdf][bib]
- Fourier Theoretic Probabilistic Inference over Permutations
- Jonathan Huang, Carlos Guestrin, Leonidas Guibas; (37):997−1070, 2009.
[abs][pdf][bib]
- An Algorithm for Reading Dependencies from the Minimal Undirected Independence Map of a Graphoid that Satisfies Weak Transitivity
- Jose M. Peña, Roland Nilsson, Johan Björkegren, Jesper Tegnér; (38):1071−1094, 2009.
[abs][pdf][bib]
- Universal Kernel-Based Learning with Applications to Regular Languages
- Leonid (Aryeh) Kontorovich, Boaz Nadler; (39):1095−1129, 2009.
[abs][pdf][bib]
- Multi-task Reinforcement Learning in Partially Observable Stochastic Environments
- Hui Li, Xuejun Liao, Lawrence Carin; (40):1131−1186, 2009.
[abs][pdf][bib]
- The Hidden Life of Latent Variables: Bayesian Learning with Mixed Graph Models
- Ricardo Silva, Zoubin Ghahramani; (41):1187−1238, 2009.
[abs][pdf][bib]
- Incorporating Functional Knowledge in Neural Networks
- Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia; (42):1239−1262, 2009.
[abs][pdf][bib]
- Perturbation Corrections in Approximate Inference: Mixture Modelling Applications
- Ulrich Paquet, Ole Winther, Manfred Opper; (43):1263−1304, 2009.
[abs][pdf][bib]
- Robust Process Discovery with Artificial Negative Events
- Stijn Goedertier, David Martens, Jan Vanthienen, Bart Baesens; (44):1305−1340, 2009.
[abs][pdf][bib]
- Feature Selection with Ensembles, Artificial Variables, and Redundancy Elimination
- Eugene Tuv, Alexander Borisov, George Runger, Kari Torkkola; (45):1341−1366, 2009.
[abs][pdf][bib]
- A Parameter-Free Classification Method for Large Scale Learning
- Marc Boullé; (46):1367−1385, 2009.
[abs][pdf][bib]
- Model Monitor (M2): Evaluating, Comparing, and Monitoring Models
- Troy Raeder, Nitesh V. Chawla; (47):1387−1390, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- A Least-squares Approach to Direct Importance Estimation
- Takafumi Kanamori, Shohei Hido, Masashi Sugiyama; (48):1391−1445, 2009.
[abs][pdf][bib]
- Classification with Gaussians and Convex Loss
- Dao-Hong Xiang, Ding-Xuan Zhou; (49):1447−1468, 2009.
[abs][pdf][bib]
- Entropy Inference and the James-Stein Estimator, with Application to Nonlinear Gene Association Networks
- Jean Hausser, Korbinian Strimmer; (50):1469−1484, 2009.
[abs][pdf][bib]
- Robustness and Regularization of Support Vector Machines
- Huan Xu, Constantine Caramanis, Shie Mannor; (51):1485−1510, 2009.
[abs][pdf][bib]
- Strong Limit Theorems for the Bayesian Scoring Criterion in Bayesian Networks
- Nikolai Slobodianik, Dmitry Zaporozhets, Neal Madras; (52):1511−1526, 2009.
[abs][pdf][bib]
- Bayesian Network Structure Learning by Recursive Autonomy Identification
- Raanan Yehezkel, Boaz Lerner; (53):1527−1570, 2009.
[abs][pdf][bib]
- Learning Linear Ranking Functions for Beam Search with Application to Planning
- Yuehua Xu, Alan Fern, Sungwook Yoon; (54):1571−1610, 2009.
[abs][pdf][bib]
- Marginal Likelihood Integrals for Mixtures of Independence Models
- Shaowei Lin, Bernd Sturmfels, Zhiqiang Xu; (55):1611−1631, 2009.
[abs][pdf][bib]
- Transfer Learning for Reinforcement Learning Domains: A Survey
- Matthew E. Taylor, Peter Stone; (56):1633−1685, 2009.
[abs][pdf][bib]
- Application of Non Parametric Empirical Bayes Estimation to High Dimensional Classification
- Eitan Greenshtein, Junyong Park; (57):1687−1704, 2009.
[abs][pdf][bib]
- Learning Permutations with Exponential Weights
- David P. Helmbold, Manfred K. Warmuth; (58):1705−1736, 2009.
[abs][pdf][bib]
- SGD-QN: Careful Quasi-Newton Stochastic Gradient Descent
- Antoine Bordes, Léon Bottou, Patrick Gallinari; (59):1737−1754, 2009.
[abs][pdf][bib]
- Dlib-ml: A Machine Learning Toolkit
- Davis E. King; (60):1755−1758, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Settable Systems: An Extension of Pearl's Causal Model with Optimization, Equilibrium, and Learning
- Halbert White, Karim Chalak; (61):1759−1799, 2009.
[abs][pdf][bib]
- Distributed Algorithms for Topic Models
- David Newman, Arthur Asuncion, Padhraic Smyth, Max Welling; (62):1801−1828, 2009.
[abs][pdf][bib]
- Nonlinear Models Using Dirichlet Process Mixtures
- Babak Shahbaba, Radford Neal; (63):1829−1850, 2009.
[abs][pdf][bib]
- CarpeDiem: Optimizing the Viterbi Algorithm and Applications to Supervised Sequential Learning
- Roberto Esposito, Daniele P. Radicioni; (64):1851−1880, 2009.
[abs][pdf][bib]
- Learning Acyclic Probabilistic Circuits Using Test Paths
- Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, Lev Reyzin; (65):1881−1911, 2009.
[abs][pdf][bib]
- Learning Approximate Sequential Patterns for Classification
- Zeeshan Syed, Piotr Indyk, John Guttag; (66):1913−1936, 2009.
[abs][pdf][bib]
- Hybrid MPI/OpenMP Parallel Linear Support Vector Machine Training
- Kristian Woodsend, Jacek Gondzio; (67):1937−1953, 2009.
[abs][pdf][bib]
- Provably Efficient Learning with Typed Parametric Models
- Emma Brunskill, Bethany R. Leffler, Lihong Li, Michael L. Littman, Nicholas Roy; (68):1955−1988, 2009.
[abs][pdf][bib]
- Fast Approximate kNN Graph Construction for High Dimensional Data via Recursive Lanczos Bisection
- Jie Chen, Haw-ren Fang, Yousef Saad; (69):1989−2012, 2009.
[abs][pdf][bib]
- Ultrahigh Dimensional Feature Selection: Beyond The Linear Model
- Jianqing Fan, Richard Samworth, Yichao Wu; (70):2013−2038, 2009.
[abs][pdf][bib]
- Evolutionary Model Type Selection for Global Surrogate Modeling
- Dirk Gorissen, Tom Dhaene, Filip De Turck; (71):2039−2078, 2009.
[abs][pdf][bib]
- An Anticorrelation Kernel for Subsystem Training in Multiple Classifier Systems
- Luciana Ferrer, Kemal Sönmez, Elizabeth Shriberg; (72):2079−2114, 2009.
[abs][pdf][bib]
- Deterministic Error Analysis of Support Vector Regression and Related Regularized Kernel Methods
- Christian Rieger, Barbara Zwicknagl; (73):2115−2132, 2009.
[abs][pdf][bib]
- RL-Glue: Language-Independent Software for Reinforcement-Learning Experiments
- Brian Tanner, Adam White; (74):2133−2136, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Discriminative Learning Under Covariate Shift
- Steffen Bickel, Michael Brückner, Tobias Scheffer; (75):2137−2155, 2009.
[abs][pdf][bib]
- Optimized Cutting Plane Algorithm for Large-Scale Risk Minimization
- Vojtěch Franc, Sören Sonnenburg; (76):2157−2192, 2009.
[abs][pdf][bib]
- Margin-based Ranking and an Equivalence between AdaBoost and RankBoost
- Cynthia Rudin, Robert E. Schapire; (77):2193−2232, 2009.
[abs][pdf][bib]
- The P-Norm Push: A Simple Convex Ranking Algorithm that Concentrates at the Top of the List
- Cynthia Rudin; (78):2233−2271, 2009.
[abs][pdf][bib]
- Learning Nondeterministic Classifiers
- Juan José del Coz, Jorge Díez, Antonio Bahamonde; (79):2273−2293, 2009.
[abs][pdf][bib]
- The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs
- Han Liu, John Lafferty, Larry Wasserman; (80):2295−2328, 2009.
[abs][pdf][bib]
- Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors
- Mathias Drton, Michael Eichler, Thomas S. Richardson; (81):2329−2348, 2009.
[abs][pdf][bib]
- Estimating Labels from Label Proportions
- Novi Quadrianto, Alex J. Smola, Tibério S. Caetano, Quoc V. Le; (82):2349−2374, 2009.
[abs][pdf][bib]
- Exploiting Product Distributions to Identify Relevant Variables of Correlation Immune Functions
- Lisa Hellerstein, Bernard Rosell, Eric Bach, Soumya Ray, David Page; (83):2375−2411, 2009.
[abs][pdf][bib]
- Reinforcement Learning in Finite MDPs: PAC Analysis
- Alexander L. Strehl, Lihong Li, Michael L. Littman; (84):2413−2444, 2009.
[abs][pdf][bib]
- Prediction With Expert Advice For The Brier Game
- Vladimir Vovk, Fedor Zhdanov; (85):2445−2471, 2009.
[abs][pdf][bib]
- Bi-Level Path Following for Cross Validated Solution of Kernel Quantile Regression
- Saharon Rosset; (86):2473−2505, 2009.
[abs][pdf][bib]
- When Is There a Representer Theorem? Vector Versus Matrix Regularizers
- Andreas Argyriou, Charles A. Micchelli, Massimiliano Pontil; (87):2507−2529, 2009.
[abs][pdf][bib]
- Maximum Entropy Discrimination Markov Networks
- Jun Zhu, Eric P. Xing; (88):2531−2569, 2009.
[abs][pdf][bib]
- Learning When Concepts Abound
- Omid Madani, Michael Connor, Wiley Greiner; (89):2571−2613, 2009.
[abs][pdf][bib]
- Hash Kernels for Structured Data
- Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, S.V.N. Vishwanathan; (90):2615−2637, 2009.
[abs][pdf][bib]
- DL-Learner: Learning Concepts in Description Logics
- Jens Lehmann; (91):2639−2642, 2009. (Machine Learning Open Source Software Paper)
[abs][pdf][bib] [code]
- Bounded Kernel-Based Online Learning
- Francesco Orabona, Joseph Keshet, Barbara Caputo; (92):2643−2666, 2009.
[abs][pdf][bib]
- Learning Halfspaces with Malicious Noise
- Adam R. Klivans, Philip M. Long, Rocco A. Servedio; (94):2715−2740, 2009.
[abs][pdf][bib]
- Reproducing Kernel Banach Spaces for Machine Learning
- Haizhang Zhang, Yuesheng Xu, Jun Zhang; (95):2741−2775, 2009.
[abs][pdf][bib]
- Cautious Collective Classification
- Luke K. McDowell, Kalyan Moy Gupta, David W. Aha; (96):2777−2836, 2009.
[abs][pdf][bib]
- Adaptive False Discovery Rate Control under Independence and Dependence
- Gilles Blanchard, Étienne Roquain; (97):2837−2871, 2009.
[abs][pdf][bib]
- Online Learning with Samples Drawn from Non-identical Distributions
- Ting Hu, Ding-Xuan Zhou; (98):2873−2898, 2009.
[abs][pdf][bib]
- Efficient Online and Batch Learning Using Forward Backward Splitting
- John Duchi, Yoram Singer; (99):2899−2934, 2009.
[abs][pdf][bib]
- A Survey of Accuracy Evaluation Metrics of Recommendation Tasks
- Asela Gunawardana, Guy Shani; (100):2935−2962, 2009.
[abs][pdf][bib]
© JMLR . |