Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Reproducing Kernel Banach Spaces for Machine Learning

Haizhang Zhang, Yuesheng Xu, Jun Zhang; 10(95):2741−2775, 2009.

Abstract

We introduce the notion of reproducing kernel Banach spaces (RKBS) and study special semi-inner-product RKBS by making use of semi-inner-products and the duality mapping. Properties of an RKBS and its reproducing kernel are investigated. As applications, we develop in the framework of RKBS standard learning schemes including minimal norm interpolation, regularization network, support vector machines, and kernel principal component analysis. In particular, existence, uniqueness and representer theorems are established.

[abs][pdf][bib]       
© JMLR 2009. (edit, beta)

Mastodon