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Abstract

Support vector machine (SVM) is one of the most popular and promising classification algorithms.
After a classification rule is constructed via the SVM, it is essential to evaluate its prediction accu-
racy. In this paper, we develop procedures for obtaining both point and interval estimators for the
prediction error. Under mild regularity conditions, we derive the consistency and asymptotic nor-
mality of the prediction error estimators for SVM with finite-dimensional kernels. A perturbation-
resampling procedure is proposed to obtain interval estimates for the prediction error in practice.
With numerical studies on simulated data and a benchmark repository, we recommend the use of
interval estimates centered at the cross-validated point estimates for the prediction error. Further
applications of the proposed procedure in model evaluation and feature selection are illustrated with
two examples.

Keywords: k-fold cross-validation, model evaluation, perturbation-resampling, prediction errors,
support vector machine

1. Introduction

As a state-of-the-art machine learning algorithm in classifying high-dimensional data, support vec-
tor machines (SVMs) developed by Vapnik and his colleagues (1995, 1998) have gained popularity
due to many attractive features. The SVM has been used frequently in practice for developing
prediction rules. After a prediction rule is constructed, the common practice is to provide a point
estimate of the corresponding accuracy without accounting for the sampling variability in the esti-
mated accuracy of the prediction rule. However, to ensure the reproducibility of the reported results,
it is crucial to account for such sampling variability and provide interval estimates for the accuracy
measures, especially when the sample size is not large relative to the number of unknown model
parameters.

Various methods have been available to estimate the prediction error of classifiers based on
the cross-validation and bootstrap methods (Efron, 1986; Efron and Tibshirani, 1997; Fu et al.,
2005; Molinaro et al., 2005; Shao, 1996; Varma and Simon, 2006). When the sample size is not
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sufficiently large, point estimates may be inadequate for choosing the classifier with optimized
parameters or features (Reunanen, 2003; Varma and Simon, 2006). For example, in Table 1, we
summarize the accuracies of SVM classifiers with different kernels based on on two artificial data
sets that are generated as in Section 4.3. It appears that the polynomial kernel outperforms the linear
kernel for both data sets with higher accuracy. However, it is unclear whether the difference in the
higher accuracy is due to randomness. Due to its high generalization ability, the linear kernel may
be preferred unless it results in significantly lower accuracy. As such, the point estimates of the
accuracy measures may not provide sufficient evidence for determining which type of kernel should
be used.

To adequately assess the accuracy and draw valid conclusions, it is important to account for
the sampling variability in the estimated prediction error. Some studies have suggested performing
hypothesis testing by considering the variability in the cross-validated estimator (Dietterich, 1998).
Bengio and Grandvalet (2004) and Nadeau and Bengio (2003) pointed out that there exists no uni-
versally unbiased estimator of the variance of K-fold cross-validated estimator that is based only on
the results of the cross-validation experiments. Therefore, the estimation of uncertainty around the
prediction error estimators remains a theoretical, as well as practical problem.

Data Sample Linear Kernel Polynomial Kernel
Type Size Accuracy Accuracy

1 100 94% 95%
2 100 92% 96%

Table 1: Kernel selection in SVM classifiers based on the cross-validation point estimates for the
prediction error.

To assess the predictive performance of SVM derived from data with finite sample size, prob-
abilistic bounds such as VC-based bounds (Vapnik, 1998) and stability-based bounds (Kearns and
Ron, 1999; Bousquet and Elisseeff, 2002) have been proposed. However, those theoretical bounds
are too conservative to give an accurate estimation. In particular, they do not account for the sam-
pling variability inherent in different types of data. In statistical literature, the bootstrap resampling
procedure (Efron, 1979) and its variants (Efron, 1987; Wu, 1986; Liu, 1988; Hall and Mammen,
1994) provide a general framework for ascertaining variances and constructing confidence intervals,
but limited effort has been made to study the distributional properties of the estimated prediction
error (Efron and Tibshirani, 1995, Section 5).

In this article, we develop procedures to approximate the distribution of the estimated accuracy
measures for SVM classifiers and construct confidence intervals for the accuracy measures. The
proposed method, which may be linked to the weighted bootstrap resampling (Hall and Mammen,
1994; Hall and Maesono, 2000) and the Bayesian bootstrap method (Rubin, 1981), directly builds
on the perturbation-resampling procedure considered in Park and Wei (2003) and Cai et al. (2005).
The accuracy measure we consider is the expected absolute difference between the true and pre-
dicted responses for future subjects. For SVMs with finite-dimensional kernels, we show that the
accuracy measure can be consistently estimated via cross-validation procedures, and the resulting
estimators are asymptotically normal. A practical perturbation-resampling procedure is proposed
to approximate the sampling distribution of the prediction error. This inference procedure is valid
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without having to specify the true association between the response and the predictors. This is par-
ticularly appealing when it is difficult, if not impossible, to identify the true model under which the
data are generated. Numerical studies based on simulated data and a benchmark repository sug-
gest that both the variance estimator and the interval estimator centered at the cross-validated point
estimator perform well. The proposed procedure is further illustrated with applications in kernel
selection and in the genotypic testing for drug resistance.

2. Estimating the Prediction Error of SVM Classifiers

In this section, we provide a brief review on the construction of SVM classifiers and introduce point
estimators of the accuracy measure used for evaluating the performance of SVM classifiers.

2.1 Basic Notations and Construction of SVM Classifiers

The SVM classifier is derived based on the hinge loss function:

L(Y, f (X)) = [1−Y f (X)]+ =

{

0 , Y f (X) > 1
1−Y f (X) , Y f (X) ≤ 1

,

where X is the input vector and Y ∈ {−1,1} is the output label, and f (X) is the prediction function.
Here, we first consider the case when f (X) is a linear function, f (X;θ) = w′X + b (we use V′ to
denote the transpose of the vector V hereafter), where θ = (w′,b)′ is the adjustable parameter. Based
on f (·), we predict Y by the decision function Ŷ (X,θ) = sign{ f (X;θ)}, where sign(·) denotes the
sign of the function value.

To construct an optimal prediction rule, one may consider the prediction function f (X;θ) that
minimizes the SVM risk function

Q(θ) = E{[1−Y f (X;θ)]+} .

To approximate the expected risk function Q(θ), one may consider its penalized empirical counter-
part,

Q̂n(θ) =
1
n

n

∑
i=1

[1−Yi f (Xi;θ)]+ +λnw′w , (1)

and obtain θ̂ = argminθQ̂n(θ), where {(Xi,Yi); i = 1, . . . ,n} are n independent realizations of (X,Y ),
and λn is the regularization parameter that controls the amount of penalty. Subsequently, the pre-
diction of Y may be made based on f (X; θ̂).

In practice, the minimizer θ̂ may be ascertained through quadratic programming techniques
since the minimization of Q̂n(θ) is equivalent to the minimization of

min
α

{
n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiYi(X′
iX j)Yjα j} , (2)

with linear constraints 0 ≤ αi ≤ C, i = 1, . . . ,n and ∑n
i=1 αiYi = 0, where C = 1/(2λnn). Here, the

constraint parameter C = C(n) depends on the sample size n and typically satisfies nC(n) → ∞, or
equivalently λn → 0, under which requirement SVM classifiers are universally consistent (Steinwart,
2002).
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Note that the only way in which the input vectors appear in the minimizing problem (2) is in
the form of inner products, X′

iX j. If the input vectors are mapped to a so called ”feature space” H
via a mapping denoted by Φ, then the minimizing algorithm would only depend on the data through
inner products in H , that is, functions of the form Φ(Xi)

′Φ(X j). Hence, if there is a kernel function
K(·, ·) such that K(Xi,X j) = Φ(Xi)

′Φ(X j), one may carry out the minimization based on kernel
function K(·, ·) only. For the simplest case when K(Xi,X j) = X′

iX j, we will refer to function K(·, ·)
as the linear kernel. Other examples include the polynomial kernel K(Xi,X j) = (γX′

iX j + b)d , and
the RBF kernel K(Xi,X j) = exp{−‖Xi −X j‖2/2σ2}, with specified hyper-parameters γ, b, d and
σ.

2.2 Point Estimators for the Prediction Error

To evaluate how well the trained SVM performs on a future, independent subject (X0,Y0) from the
same population of (X,Y ), we consider the absolute prediction error D0:

D0 = E|Y0 − Ŷ (X0, θ̂)| , (3)

where θ̂ is the solution to minimizing function (1), and Ŷ (X,θ) is the decision function introduced in
Section 2.1. Note that θ̂ is a function of random variables {(Xi,Yi); i = 1, . . . ,n}, and the expectation
E in (3) is with respect to {(Xi,Yi); i = 1, . . . ,n} and (X0,Y0). Thus, D0 depends on sample size n and
is sometimes referred to as the generalization error (see Nadeau and Bengio, 2003). To estimate D0,
we first consider the training error, which is also called apparent or re-substitution error in statistical
literature, D̂ = D̂(θ̂), where

D̂(θ) = n−1
n

∑
i=1

|Yi − Ŷ (Xi,θ)| . (4)

When the sample size n is small or moderate relative to the dimension of parameter θ, training
error D̂(θ̂) tends to be biased downward as an estimate of D0. One remedy to reduce such a bias is to
use the cross-validation procedure. Here we consider the commonly used K-fold cross-validation.
Specifically, we randomly split the data into K disjoint subsets of about equal size and label them as
Ik,k = 1, . . . ,K. For each k, we use all observations which are not in Ik to obtain an estimate θ̂(−k)

for θ via (1), and then compute the prediction error estimate D̂(k)(θ) via (4) based on observations
in Ik. Then, the cross-validated prediction error estimator for D0 is

D̂ = K−1
K

∑
k=1

D̂(k)(θ̂(−k)) . (5)

We show in the next section that the cross-validation estimator D̂ is consistent for estimating
the prediction error of SVM classifiers under certain conditions. However, as we have mentioned
above, point estimates are not adequate in drawing valid conclusions, and we need to further study
the distributional properties of the estimated prediction error.

3. Interval Estimators for the Prediction Error

In this section, we provide large sample properties of the estimated prediction error. In particular,
we discuss the consistency and asymptotic normality of the estimators. Based on these theoretical
results, we present a simple perturbation-resampling procedure to obtain interval estimates for the
prediction error. In addition, we provide inference procedures for comparing two competing models.
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3.1 Large Sample Properties of Point Estimators

Suppose that the parameter θ belongs to a compact set Θ, and both the expectation E(X) and the
covariance matrix var(X) of the input vector X are finite. To derive the asymptotic properties for
D̂, we first need to establish that θ̂ ”stabilizes” as n increases, that is, θ̂ converges to a constant
vector in probability, as n → ∞. In Theorem 1 of Appendix A, we show that under some regularity
conditions, the limiting objective function Q(θ) is strictly convex with a unique minimizer θ0, and
thus for large n, there exists a unique minimizer, θ̂, of Q̂n(θ). Furthermore, as n → ∞, θ̂ → θ0 and
D̂(θ̂) → D0 in probability.

To further study the large sample property of D̂, we explore the distribution of

W = n1/2{D̂(θ̂)−D0} . (6)

Note that although D̂(θ) is not differentiable with respect to θ, E[D̂(θ)] is continuously differentiable
at θ0. In Theorem 2 of Appendix B, we show that W is asymptotically equivalent to n−1/2 ∑n

i=1 ηi,
and converges in distribution to a zero mean normal with variance E(η2

i ), where ηi is defined in
(14) of Appendix B. The variance of W can be approximated by

n−1
n

∑
i=1

η̂2
i , (7)

where η̂i is obtained by replacing all the theoretical quantities in ηi by their empirical counterparts.

It is commonly known that the training error D̂ is biased downward as an estimate of D0 and
hence should not be used without correction. To reduce such a bias, we consider the K-fold cross-
validated estimator given in (5), where K is fixed and relatively small with respect to n. Using similar
arguments as for the convergence of D̂(θ̂), one may show that D̂ converges to D0 in probability.
Furthermore, we show in Theorem 3 of Appendix C that

W = n1/2{D̂ −D0} (8)

is asymptotically equivalent to W in (6) and thus W also converges in distribution to a zero mean
normal with variance E(η2

i ). This implies that the cross-validated estimator D̂ , while potentially
has less bias compared to the training error D̂, is expected to have the same magnitude of variability
as that of D̂. Thus, we recommend to construct confidence intervals for D0 by centering at D̂ with
width determined by the variability in W . Although the proposed procedure is derived through large
sample approximations, the results of numerical studies given below indicate that the distributions
of W and W are reasonably close in finite samples.

3.2 Perturbation-Resampling Procedure for Estimating the Confidence Interval

Estimating the variance of W based on (7) may be difficult in practice with high-dimensional θ
since it requires the estimation of the gradient of an unknown non-parametric function. To over-
come such difficulties, we propose a computationally efficient perturbation-resampling procedure
to approximate the distribution of W . To be specific, let {Gi; i = 1, . . . ,n} be a vector of independent
and identically distributed positive random variables with unit mean and unit variance that are gen-
erated independent of the data. In practice, one may generate {Gi; i = 1, . . . ,n} from an exponential
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distribution. For any given set of {Gi; i = 1, . . . ,n}, we define

Q̂∗
n(θ) =

1
n

n

∑
i=1

Gi{[1−Yi f (Xi;θ)]+ +λnw′w} , (9)

and let θ∗ be the minimizer of Q̂∗
n(θ). Note that conditionally on the observed data, the only random

quantities in Q̂∗
n(θ) are the G’s. Next, let

W ∗ = n−1/2
n

∑
i=1

{|Yi − Ŷ (Xi,θ∗)|− D̂(θ̂)}Gi . (10)

It follows from the arguments given in Appendix D that the distribution of W in (8) can be approx-
imated well by the conditional distribution of W ∗ in (10) given the data {(Xi,Yi); i = 1, . . . ,n}. The
random variables Gi used in (10) may be linked to the Bayesian bootstrap method (Rubin, 1981)
with Gi/(n−1 ∑n

i=1 Gi) being the weights instead.
To obtain θ∗ numerically, one may solve the dual problem of (9),

min
α

{
n

∑
i=1

αi −
1
2

n

∑
i, j=1

αiYi(X′
iX j)Yjα j} , (11)

under the constraints ∑n
i=1 αiYi = 0 and 0 ≤ αi ≤CGi for i = 1, . . . ,n. The solution of w is given by

w∗ = (∑n
i=1YiαiXi)/(n−1 ∑n

i=1 Gi). Note that the only difference between (2) and (11) is that there
is a random multiplier on the upper bound of αi in (11). For each generated set of {Gi; i = 1, . . . ,n},
we compute the corresponding W ∗ via (10). By repeatedly generating {Gi; i = 1, . . . ,n}, we may
obtain a large number of realizations of W ∗ which may be used to approximate the distribution of
W and construct confidence intervals for D0. For example, a 100(1−α)% confidence interval for
D0 may be obtained as

[D̂ −n−1/2ξ̂1−α/2,D̂ −n−1/2ξ̂α/2],

where ξ̂α is the αth percentile of W ∗. The integrated procedure of perturbation-resampling is given
in Algorithm 1, where N is the number of perturbations.

Algorithm 1 Perturbation-Resampling Procedure
1: Given data {(Xi,Yi); i = 1, . . . ,n}, a classifier is trained based on the SVM algorithm
2: Estimate the cross-validation error of the classifier by using (5)
3: for r = 1 → N do
4: Generate independent positive random variables {Gi; i = 1, . . . ,n} from an exponential dis-

tribution with unit mean and unit variance
5: Solve the quadratic programming problem (11), and calculate W ∗

r by using (10)
6: end for
7: Estimate the resampling distribution of W ∗ based on {W ∗

r ;r = 1, . . . ,N}, which approximates
the distribution of W in (6), or asymptotically the distribution of W in (8)

8: Use the resampling distribution to estimate the confidence interval of the prediction error cen-
tered at the cross-validation error estimate

9: Statistical evaluation of different models can be further made based on the resampling distribu-
tion (see Section 3.3)
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3.3 Comparing Models Based on Interval Estimates

Suppose there are two competing models, say, f j(X; θ̂ j), j = 1,2, where the functions f1 and f2

could be different in the kernels or features used, and θ̂ j is the solution via (1) with the function f j

and the data {(Xi,Yi); i = 1, . . . ,n}. The theoretical and empirical prediction errors D0 j and D̂ j(θ j)
are defined by (3) and (4) accordingly, j = 1,2. We are interested in making inference about, for
example, ∆ = D02 −D01 to assess how much improvement Model 2 is over Model 1.

A consistent estimator for ∆ is ∆̂ = D̂2(θ̂2)− D̂1(θ̂1). It follows from the argument presented in
Section 3.1 that

W∆ = n1/2{∆̂−∆}

is asymptotically normal with mean zero. To approximate this normal distribution, one may use the
perturbation-resampling technique discussed in Section 3.2. Specifically, let θ∗

j be the minimizer of
n−1 ∑n

i=1 Gi{[1−Yi f j(Xi;θ)]+ +λnw′w}, j = 1,2. Also, let

W ∗
j = n−1/2

n

∑
i=1

{|Yi − Ŷj(Xi,θ∗
j)|− D̂ j(θ̂ j)}Gi ,

where Ŷj(X,θ) = sign{ f j(X;θ)}. Then, the distribution of W∆ can be approximated by the condi-
tional distribution of W ∗

∆ = W ∗
2 −W ∗

1 . Confidence intervals for ∆ can then be constructed.
Note that even if ∆̂ is a consistent estimator for the prediction gain ∆, it represents the fitting gain

of using Model 2 and may lead to a wrong comparison between models with a large probability. By
applying the cross-validation procedure, the overfitted model is likely to have a larger prediction er-
ror and one would choose the more parsimonious model. Thus, the K-fold cross-validated estimator
D̂2 − D̂1, where D̂ j is defined by (5) for Model j, j = 1,2, may be less biased than ∆̂ particularly
in non-asymptotic situations. Let W j be defined by (8) based on Model j. Again, the resampling
distribution of W2 −W1 can be asymptotically approximated by W ∗

∆ . Based on the results of our
simulated experiments, this approximation performs quite well even with limited number of sam-
ples.

4. Numerical Studies and Examples

In this section, we examine the finite-sample performance of the proposed inference procedure via
extensive numerical studies based on both simulated data and a benchmark repository. Furthermore,
we illustrate the new procedure with examples in kernel and biomarker selections.

4.1 Simulation Studies

We first conduct simulation studies to examine how well the proposed inference procedure performs
in finite samples. The data are generated as follows: (1) the response Y is generated from {−1,1}
with equal probabilities; (2) given Y , the input vector X are generated from d-dimensional multivari-
ate normal with mean 1d×1I(Y = 1)+(−1)d×1I(Y = −1), where 1d×1 is a d-dimensional vector of
ones. We consider sample sizes n = 50 and 100, and dimensions d = 10,20, and 30. For each con-
figuration, we generate 1,000 independent data sets. For each simulated data set, SVM classifiers
are trained by using the LIBSVM program (Chang and Lin, 2001) with a linear kernel. For simplic-
ity, we set the penalty parameter C equal to 1 here. We estimate the empirical absolute prediction
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error via 5-fold cross-validation. The distribution of the empirical absolute prediction is obtained
by using perturbation-resampling procedure with 1,000 times of perturbations (N = 1,000 in Al-
gorithm 1). Confidence interval with nominal level of 95% is then constructed based on empirical
percentiles of the resampling distribution. To evaluate normal approximation and cross-validation
procedures, we also construct confidence intervals based on normal assumption with both the esti-
mated variance and the true variance calculated from the simulation parameters of the samples. For
comparison, VC-based bounds (Vapnik, 1998) and stability-based bounds (Bousquet and Elisseeff,
2002) on the prediction error are also obtained with the same nominal level of 95%.

To evaluate these interval estimates, the true prediction errors of the trained SVM classifiers
are calculated according to 10,000 replications of simulated data sets for each setting. Confidence
intervals are compared with the true prediction error, and their coverage accuracies are obtained
by averaging on 1,000 data sets. Coverage accuracy is defined as the frequency for true value to
fall inside the estimated confidence interval, which measures the accuracy of interval estimates.
In the ideal case, the coverage accuracy of an estimated interval should be equal or close to its
level of confidence, and with its length as small as possible. In Table 2, we report the coverage
accuracies and average lengths of 95% confidence intervals centered at 5-fold cross-validation errors
for different procedures.

Sample Dimen- Empirical Normal Normal VC Stability
Size sion Percentiles1 Estimated2 True3 Bound Bound

CA AL CA AL CA AL CA CA
10 94.7 0.20 93.9 0.19 94.8 0.20 100.0 100.0

50 20 94.4 0.16 92.5 0.15 94.5 0.20 100.0 100.0
30 93.8 0.12 90.4 0.14 94.2 0.17 100.0 100.0
10 95.1 0.15 94.8 0.14 95.2 0.16 100.0 100.0

100 20 95.2 0.15 94.5 0.13 95.1 0.16 100.0 100.0
30 94.6 0.12 93.2 0.12 95.1 0.15 100.0 100.0

Table 2: Coverage accuracies (CA) and average lengths (AL) of 95% confidence intervals obtained
by using different procedures on simulated data.

As shown in Table 2, at sample size of n = 100, the empirical coverage levels for the 95% con-
fidence intervals under normal approximation with the true variance range from 95.1% to 95.2%,
which validates the accuracy of cross-validation and normal approximation. In practice, the true
variance of the prediction error estimator is unknown and thus the perturbation-resampling proce-
dure would be used to ascertain the variability of the estimator. From the results in Table 2, we can
see that confidence intervals obtained by the empirical percentiles of the perturbed samples perform
slightly better than those constructed via normal approximation with estimated variances, in a sense
that intervals based on the empirical percentiles have larger coverage accuracies with comparable

1. Interval estimates are constructed by using empirical percentiles of the resampling distribution obtained by
perturbation-resampling.

2. Interval estimates are constructed as D̂ ± 1.96n−1/2σ̂ with σ̂2 being the conditional variance of W ∗ estimated by
perturbation-resampling.

3. Interval estimates are constructed as D̂ ±1.96n−1/2σ with σ2 calculated as the true variance of W .
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lengths. Although the proposed algorithm may fail when the dimension of the unknown parameters
is equal to or larger than the sample size, the simulation results indicate that the procedure derived
through large sample approximations performs well even when sample size is moderate relative to
the dimension of the parameters. On the contrary, we note that confidence bounds based on VC
dimension or stability are too conservative with relative small number of samples in this example.
Since these bounds are proposed to provide general guides on the construction of classifiers, they
may not be suitable to account for the sampling variability from a specific population.

4.2 Variance Estimation on Benchmark Repository

We further validate the ability of the proposed procedure in estimating the variance of the cross-
validation estimator on the benchmark repository used in Mika et al. (1999) and Chang and Lin
(2001). The benchmark repository consists of 10 artificial and real-world data sets from the UCI,
DELVE and STATLOG benchmark repositories. These data sets are collected from a variety of
research areas ranging from oncology and disease diagnosis to molecular biology, astronomy, bank-
ing and signal processing. Each data set is randomly divided into 100 partitions with equal size (50
partitions for the flare-solar, image and titanic data sets).

To evaluate the variance estimator obtained by the perturbation-resampling procedure, we esti-
mate the standard deviation of 5-fold cross-validation error based only on the first partition of each
data set. We also obtain the 5-fold cross-validation estimates of the SVM classifier on the rest 99
partitions, and the results are used to calculate the sample standard deviation of the cross-validation
estimator, which is regarded as the true value. For comparison, we estimate the standard deviation
based on two other methods proposed by Nadeau and Bengio (2003) using the first partition of each
data set. The first approach is performed by randomly splitting data into two distinct sets (we name
it ”splitting” method here), and the second approach is based on the approximation of a so-called
statistic ρ (we name it ”ρ-based” method here). The description of the data sets, the standard de-
viations estimated by different methods, and their computational efficiencies are shown in Table 3.
Computational time is tested on a PC with a Pentium 4 running at 2.8GHz and 512MB of RAM.

The results in Table 3 suggest that the perturbation-resampling based estimate of the standard
deviation using only the first partition of each data set is rather close to the sample standard de-
viation estimated using the entire data set. To the contrary, the standard deviation estimated by
splitting the data set tends to be biased upward, while the ρ-based method tends to underestimate
the standard deviation of the cross-validation error. In the results shown above, 1,000 times of ran-
domly splitting or resampling are used in all the three methods, and as a result, the actual computa-
tional efficiencies of different methods are comparable. This study demonstrates that the proposed
perturbation-resampling procedure can be an accurate and efficient way to estimate the variance of
the cross-validation error.

4.3 Example in Kernel Selection

To illustrate the application of the proposed procedure in model comparison, we perform kernel
selection for SVM classifiers on simulated data. Samples {(X1i,X2i); i = 1, ...,n} are generated from
a uniform distribution on two-dimensional area [0,1]× [0,1]. For data type 1, two classes of samples
are separated by the curve corresponding to a linear function, X1 + X2 = 1, with a few exceptions
introduced as ”noise”. For data type 2, the separating curve corresponds to a cubic function X 3

1 +
X3

2 = 1. Intuitively, samples of data type 1 should be classified well by using the simple linear
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Data Sample Dimen- True4 Resampling5 Splitting6 ρ-based7

Set Size sion Sd Sd Time Sd Time Sd Time
banana 53 2 0.089 0.090 1.8 0.095 2.2 0.029 2.1
covtype 200 54 0.058 0.060 29 0.044 36 0.016 29

flare-solar 21 9 0.120 0.124 1.3 0.113 1.2 0.036 1.2
ijcnn1 283 22 0.022 0.023 21 0.024 25 0.009 23
image 46 18 0.081 0.089 4.0 0.123 4.2 0.037 3.9

ringnorm 74 20 0.065 0.067 17 0.107 16 0.030 16
svmguide1 70 4 0.029 0.030 88 0.055 71 0.017 66

titanic 44 3 0.078 0.082 1.3 0.123 1.3 0.034 1.2
twonorm 74 20 0.027 0.026 3.9 0.084 3.9 0.021 3.8
waveform 50 21 0.046 0.049 3.1 0.130 3.4 0.033 3.4

Table 3: Estimating the standard deviation of the 5-fold cross-validation error using different meth-
ods (computational time is shown in seconds).

kernel, while the cubic polynomial kernel might perform better when classifying samples from data
type 2. We generate each type of data with sample size n equal to 100 and 200, respectively.

Polynomial kernels can be generalized as K(Xi,X j) = (γX′
iX j + b)d , where Xi and X j, i, j =

1, . . . ,n, are input vectors. In our study, we choose the hyper-parameters as γ = 1/n, b = 0, and
d = 3. Then we apply the SVM algorithm by using the linear kernel and the polynomial kernel
with optimal hyper-parameter C chosen by a cross-validation procedure, respectively. To make
inference about the performances of different kernels, we use the model comparison procedure
introduced in Section 3.3 to obtain 95% confidence intervals for the difference in cross-validation
errors when using different kernels. We also compute the true prediction errors, together with the
exact confidence intervals on the difference between their cross-validated estimates, based on the
prediction results of 1,000 replications of simulated data sets for each setting. In Table 4, we report
the 10-fold cross-validation errors by using linear and polynomial kernels, the 95% confidence
intervals on the difference between errors, and their respective true values.

For the first type of data, although the polynomial kernel could potentially lead to slightly lower
error rates compared to the linear kernel, 95% confidence intervals for error difference are quite tight
around zero. This suggests that the classifiers obtained based on these two types of kernels have
similar accuracies as we expect. On the other hand, for the second type of data, 95% confidence
intervals for error differences tend to deviate downward from zero, which indicates that the polyno-
mial kernel indeed performs better than the linear kernel. (At the significant level of 0.05, n = 100
is not sufficient to conclude this, whereas n = 200 allows to make the above statement.) These

4. The true standard deviation (Sd) is calculated based on 5-fold cross-validation errors estimated on the rest 99 parti-
tions of the data.

5. Standard deviation (Sd) and computation time (Time) are obtained by applying perturbation-resampling method on
the first partition of the data.

6. Standard deviation (Sd) and computation time (Time) are obtained by applying splitting method (Nadeau and Bengio,
2003) on the first partition of the data.

7. Standard deviation (Sd) and computation time (Time) are obtained by applying ρ-based method (Nadeau and Bengio,
2003) on the first partition of the data.
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Data Sample Linear Kernel Polynomial Kernel .95 Interval on Difference
Type Size Errors Errors Between CV Errors

CV8 True9 CV True Estimated Exact10

1 100 0.060 0.055 0.050 0.065 [-0.111, 0.066] [-0.050, 0.080]
2 100 0.080 0.078 0.040 0.037 [-0.120, 0.004] [-0.130, 0.001]
1 200 0.080 0.074 0.075 0.077 [-0.041, 0.024] [-0.035, 0.025]
2 200 0.150 0.153 0.085 0.087 [-0.106, -0.004] [-0.105, -0.005]

Table 4: Kernel selection based on the interval estimates of the difference in cross-validation errors.

conclusions are consistent with the intuitions behind the data generating procedure. In particular,
the predicted results are consistent with the true values of both point and interval estimates obtained
by simulating a large number of data sets. This study serves as an example to demonstrate how to
use the proposed model comparison procedure to choose an appropriate kernel in constructing SVM
classifiers.

4.4 Example in the Genotypic Testing for Drug Resistance

In this section, we give an example to show how the proposed procedure can be used in selecting
important markers in the genotypic testing for HIV protease inhibitor (PI) resistance on the HIV
RT and Protease Sequence Database (Rhee et al., 2003). First, we divide the sample set into two
classes by labeling each protease sequence sample with 99 amino acids as either ”resistant” or
”susceptible”, depending on whether the resistance factor of the sample exceeds a certain drug-
specific cutoff value or not (Beerenwinkel et al., 2002). Then, we predict the resistance to seven
FDA-approved PIs using 10 sites on the substrate binding cleft or its flap that are reported to cause
resistance by reducing the binding affinity between the inhibitor and the mutant protease enzyme.
Aside from these mutations, mutation information at site 90, denoted by X(90), on the protease
sequence has been reported to either contribute to or directly confer in vitro and in vivo resistance
to each of the seven approved PIs, but the mechanism by which these mutations cause PI resistance
is still not known. It is interesting to assess the incremental value of X(90) in predicting HIV drug
resistance. To this end, we compare the prediction errors for the models with and without X(90) and
evaluate the incremental value of X(90) based on the reduction in the prediction error, denoted by
∆X(90)

. We obtain the point and interval estimates of ∆X(90)
based on the model comparison method

discussed in Section 3.3 with 10-fold cross-validation. In both cases, the hyper-parameter C is
chosen by using a cross-validation procedure, respectively.

The results in Table 5 show that the 95% confidence intervals for ∆X(90)
are tight around zero for

drugs APV, ATV, and LPV, which indicates that X(90) adds rather modest value, if any, on top of other
variables, for predicting resistance to these drugs. On the other hand, by including information on
X(90), the prediction of drug resistance to IDV and RTV can be significantly improved in a sense that

8. 10-fold cross-validation errors are computed.
9. The true errors are estimated based on the prediction results of 1,000 replications of simulated data sets for each

setting.
10. The exact confidence intervals are estimated based on the prediction results of 1,000 replications of simulated data

sets for each setting.
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Drug Sample Resistant Without Site 90 With Site 90 .95 Interval
Name Size Fraction Error .95 Interval Error .95 Interval for Difference
APV 577 38.1% 0.149 [0.130,0.202] 0.147 [0.129,0.198] [-0.025,0.025]
ATV 142 51.4% 0.261 [0.195,0.403] 0.197 [0.135,0.270] [-0.110,0.022]
IDV 579 50.6% 0.123 [0.108,0.163] 0.081 [0.067,0.133] [-0.063,-0.006]
LPV 253 74.7% 0.119 [0.090,0.236] 0.115 [0.078,0.167] [-0.032,0.027]
NFV 617 64.0% 0.113 [0.093,0.147] 0.092 [0.076,0.130] [-0.050,0.001]
RTV 510 50.2% 0.098 [0.069,0.123] 0.057 [0.039,0.090] [-0.060,0.000]
SQV 598 43.6% 0.172 [0.146,0.211] 0.132 [0.113,0.166] [-0.080,0.002]

Table 5: Interval estimates for the prediction errors and their difference in the genotypic testing
for HIV drug resistance with or without mutation information at site 90 on the protease
sequence.

the 95% confidence intervals for ∆X(90)
tend to locate on the negative side of the zero point. These

results are consistent with studies in literature (see Para et al., 2000; Shulman et al., 2002; Campo
et al., 2003; Saah et al., 2003). Therefore, X(90) is an important marker for choosing antiretroviral
drugs and therapies, and the roles played by X(90) in reducing the susceptibility of these two drugs
need to be further studied.

5. Discussion

In this paper, we propose procedures for making inference about the prediction error of SVM clas-
sifiers based on cross-validated point estimators and their corresponding interval estimators. We es-
tablish large sample theory for the cross-validated estimators, and present a perturbation-resampling
procedure to construct the confidence interval for prediction errors. The proposed interval estimates
are obtained by approximating the spread of W with that of W . Alternatively, one may consider
directly perturbing W to yield potentially better approximations. However, such a perturbation
procedure may be computationally intensive since a K-fold cross-validation scheme has to be con-
ducted for each realization of the resampling weights. Results from extensive simulation studies
suggest that the proposed point and interval estimators perform well in finite samples. Furthermore,
through numerical studies, we demonstrate that the interval estimates provide much more informa-
tion about the true underlying prediction accuracy than the point estimates. Although it is unclear
whether similar theoretical results hold for SVM classifier with the RBF kernel (see the discussion
in Appendix B), the framework in this article is likely to be applicable to other inductive learning
algorithms with different types of loss functions.

The proposed procedures also allow us to tackle the issue of model evaluation and selection by
taking the uncertainty of estimators for the prediction error into account. We give several examples
to illustrate some direct applications of the method, such as to provide confidence intervals around
the estimated prediction error in kernel and biomarker selections. In addition to the examples out-
lined above, the proposed procedures may have other practical applications in model evaluation or
variable selection.
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Appendix A. Consistency of θ̂ and D̂

In the following theorem, we will show that as n → ∞, θ̂ → θ0 and the training error D̂(θ̂) will con-
verge to the absolute prediction error D0 in probability. Without loss of generality, we assume that
g0(X) = P(Y = 1 | X) and the distribution function of X are continuously differentiable hereafter.

Theorem 1 Let θ0 = (w′
0,b0)

′ = argminθ∈ΘQ(θ), Ω be the input vector space, and

Λ(Y,θ1) = {X ∈ Ω | [1−Y (w′
0X+b0)][1−Y (w′

1X+b1)] < 0}
for θ1 = (w′

1,b1)
′. Furthermore, we assume the following regularity condition:

P(Y = 1,X ∈ Λ(1,θ1))+P(Y = −1,X ∈ Λ(−1,θ1)) > 0 (12)

for any θ1 6= θ0. Then, as n → ∞, θ̂ → θ0 and D̂(θ̂) → D0 in probability.

Proof. In view of Theorem 2.1 of Newey and McFadden (1994, Section 2), we can establish the
convergence of θ̂→ θ0 by showing that (a) Q(θ) has a unique minimizer θ0; and (b) Q̂n(θ) converges
to Q(θ) in probability, uniformly in θ.

For (a), we note that since Q(θ) is continuous with respect to θ and Θ is compact, it must have
a minimum within Θ. Furthermore, it is easy to verify that for any a,b ∈ R,

(a+b)+ ≤ a+ +b+ , (13)

and a strict inequality holds if and only if ab < 0. As a result, under condition (12), Q(θ) is a strictly
convex function at θ0, and thus has a unique minimizer θ0.

For (b), since Q̂n(θ) is also a convex function of θ because of (13), and Q̂n(θ) converges in
probability to Q(θ) for each θ ∈ Θ, we have supθ∈Θ |Q̂n(θ)−Q(θ)| goes to zero in probability,
a uniform convergence property for convex functions proved by Pollard (1991, Section 6). This
concludes the proof for the convergence of θ̂ to θ0 in probability.

It remains to show the consistency of D̂(θ̂) for D0. Since g0(X) is continuously differentiable,
E|Y0 − Ŷ (X0,θ)| is continuously differentiable in θ with bounded derivatives. Moreover, since
0 ≤ E|Y0 − Ŷ (X0,θ)| ≤ 2, it follows from a uniform law of large numbers (Pollard, 1990, Chap-
ter 8) that supθ∈Θ |D̂(θ)−E|Y0 − Ŷ (X0,θ)|| → 0 in probability. This, coupled with the convergence
of θ̂ to θ0, implies that D̂(θ̂)−D0 → 0 in probability.

The regularity condition in (12) guarantees the existence and uniqueness of the minimizer to
the objective function. This condition states that any deviation of the parameter θ from the mini-
mizer θ0 will always result in the change of output labels of certain samples. Given the continuous
differentiability of both g0(X) = P(Y = 1 | X) and the distribution function of X, the condition can
be satisfied if the probability density function of the input vector X is not equal to zero in some
neighboring area of the optimal separating hyperplane.
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Appendix B. Large Sample Distribution for D̂

With the assumption that g0(X) = P(Y = 1 | X) and the distribution function of X are continuously
differentiable, we have ∇θ=θ0Q(θ) = −E{Y I(Y f (X;θ0) < 1)(X′,1)′}, which is also differentiable,
almost everywhere θ ∈Θ. Thus, Q(θ) is twice differentiable almost everywhere θ ∈ Θ. Let H be the
Hessian matrix of Q(θ) at θ0, d(θ) = E{D̂(θ)} and ḋ(θ) = ∇d(θ), we prove the following theorem:

Theorem 2 Under the regularity condition (12) in Theorem 1, the distribution of W is asymptotically
equivalent to n−1/2 ∑n

i=1 ηi and converges to a zero mean normal with variance E(η2
i ), where

ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0) , (14)

and Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.

Proof. Under the regularity condition, the limiting objective function Q(θ) is strictly convex at θ0,
and thus its Hessian matrix H at θ0 is positive definite. To derive the asymptotic distribution theory
for W , we first show that

√
n(θ̂−θ0) = −n−1/2H−1

n

∑
i=1

Mi(θ0)+op(1) , (15)

where Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.
To this end, let Z = (X′,Y )′, t = (w′

t ,bt)
′, and write

[1−Y f (X;θ0 + t)]+− [1−Y f (X;θ0)]+ = B(Z)′t+R(Z, t) , (16)

where B(Z) = −Y I(Y f (X;θ0) < 1)(X′,1)′, and

R(Z, t) = {1−Y f (X;θ0 + t)}[I{Y f (X;θ0 + t) < 1}− I{Y f (X;θ0) < 1}] .

Noting that R(Z,0) = 0, and that the distribution function of X and the conditional probability mass
function of Y given X are continuous differentiable, it is easy to verify that

ER(Z, t) =
1
2

t′Ht+o(‖t‖2) and ER(Z, t)2 = O(‖t‖3) .

Furthermore, EB(Z) is just the first order derivative of Q(θ) at θ0, thus EB(Z) = 0. Let Zi =
(X′

i,Yi)
′, s = (w′

s,bs)
′, and An(s) = ∑n

i=1{[1−Yi f (Xi;θ0+s/
√

n)]++λn(w0+ws/
√

n)′(w0+ws/
√

n)
−[1−Yi f (Xi;θ0)]+ −λnw′

0w0}. An(s) is convex with respect to s because of (13), and it is mini-
mized by

√
n(θ̂n−θ0). Note first that nER(Z,s/

√
n) = 1

2 s′Hs+rn,0(s), where rn,0(s) = o(‖s‖2)→ 0
for fixed s. Accordingly, using (16),

An(s) =
n

∑
i=1

{[B(Zi)+2λn(w′
0,0)′]′s/

√
n+R(Zi,s/

√
n)−ER(Zi,s/

√
n)}

+nER(Z,s/
√

n)+λnw′
sws

= U ′
ns+

1
2

s′Hs+ rn,0(s)+ rn,1(s)+ rn,2(s) ,

where Un = n−1/2 ∑n
i=1{B(Zi)+2λn(w′

0,0)′} = n−1/2 ∑n
i=1 Mi(θ0), rn,2(s) = λnw′

sws, and rn,1(s) =

∑n
i=1{R(Zi,s/

√
n)−ER(Zi,s/

√
n)}. Now rn,1(s) tends to be zero in probability for each s, since its
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mean is zero and its variance is ∑n
i=1 var{R(Zi,s/

√
n)} = o(‖s‖2). Moreover, rn,2(s) also tends to

be zero in probability when λn → 0. Since An(s) is a convex function, H is positive definite, and the
covariance matrix var(X) is finite, it follows from the Basic Corollary of Hjort and Pollard (1993)
that (15) holds.

Secondly, we show that the class of functions indexed by θ, ℑ = {|Y − Ŷ (X,θ)| : ‖θ−θ0‖ ≤ δ}
is a Donsker class, where δ is a given positive number and Ŷ (X,θ) = sign(w′X + b). Both of
the classes of function {1 + Ŷ (X,θ) : ‖θ − θ0‖ ≤ δ} and {1 − Ŷ (X,θ) : ‖θ − θ0‖ ≤ δ} are VC
classes (van der Vaart and Wellner, 1996, Lemma 2.6.15), and hence are Donsker. Note that in
this case ℑ = {I(Y = −1)[1 + Ŷ (X,θ)]+ I(Y = 1)[1− Ŷ (X,θ)] : ‖θ−θ0‖ ≤ δ}, and therefore is a
Donsker class. It follows that n1/2[D̂(θ)− d(θ)], a process in θ, converges weakly to a zero mean
Gaussian process and thus is stochastic equicontinuous at θ0. This, coupled with (15), implies that
n1/2{D̂(θ̂)−D0} = n1/2[D̂(θ̂)− D̂(θ0)]+n1/2[D̂(θ0)−D0] is asymptotically equivalent to

n1/2{D̂(θ0)−D0}+ ḋ(θ0)n
1/2(θ̂−θ0) ' n−1/2

n

∑
i=1

ηi ,

where

ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0) .

Here and in the sequel, we use the notation a ' b to denote that a = b + op(1). Thus, W =
n1/2{D̂(θ̂)−D0} converges in distribution to a zero mean normal random variable.

Since the limiting variance of W is σ2 = E(η2
i ) and n−1 ∑n

i=1 η2
i converges to σ2 in probability

(based on the law of large numbers), one may estimate σ2 by n−1 ∑n
i=1 η2

i . Furthermore, it is not
difficult to show that n−1 ∑n

i=1(η2
i − η̂2

i ) → 0 since we expect that all the empirical estimates of the
theoretical quantities in ηi are consistent. We note that although n−1 ∑n

i=1 η̂2
i is a consistent estimator

of σ2, we approximate σ2 based on the resampling method, not n−1 ∑n
i=1 η̂2

i .
For a more general case, when the prediction function f (X) in (1) is not a linear function of the

input vector X, one can rewrite the prediction function in the form of f (X) = w′Φ(X)+b, where Φ
is a mapping from the input vector space to a ”feature space” H . Given that the expectation EΦ(X),
the covariance matrix var(Φ(X)), and the VC dimension of f (X) are all finite (for example, when
Φ is a mapping corresponding to a polynomial kernel function), and coupled with the fact that a
{0,1}-valued class of functions is a uniform Donsker class if and only if its VC dimension is finite
(Dudley, 1999), one can prove all the results given above using similar arguments. Note that when
it comes to construct SVM classifier using the RBF kernel, however, these conditions cannot be
satisfied because of the infinite-dimensional feature space of the RBF kernel.

Appendix C. Large Sample Property of D̂

In this appendix, we will show that the distribution of W is asymptotically equivalent to that of W
based on training error.

Theorem 3 W in (8) is asymptotically equivalent to W in (6).

Proof. For each partition Ik, n−1/2{D̂(k)(θ̂(−k))−D0} is asymptotically equivalent to n−1/2K ∑n
i=1

I(ξi = k){|Yi − Ŷ (Xi, θ̂(−k))| −D0}, where {ξi; i = 1, . . . ,n} are n exchangeable discrete random
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variables uniformly distributed over {1, . . . ,K}, independent of the data, which satisfy ∑n
i=1 I(ξi =

k) ' n/K,k = 1, . . . ,K. Conditionally on {ξi; i = 1, . . . ,n}, it follows from similar arguments in
Appendix B that

θ̂(−k)−θ0 = − K
n(K −1)

H−1
n

∑
i=1

I(ξi 6= k)Mi(θ0)+op(n
−1/2) .

Then using the same argument as given for n1/2{D̂(θ̂)−D0}, one can show that n1/2{D̂(k)(θ̂(−k))−
D0} is asymptotically equivalent to

n1/2{D̂(k)(θ0)−D0}+ ḋ(θ0)n
1/2(θ̂(−k)−θ0) ' n1/2

n

∑
i=1

ηki ,

where

ηki = I(ξi = k)K{|Yi − Ŷ (Xi,θ0)|−D0}+ I(ξi 6= k)
K

K −1
ḋ(θ0)H−1Mi(θ0) .

It follows that n1/2(D̂ −D0) ' n−1/2 ∑n
i=1(∑

K
k=1 K−1ηki). Since ∑K

k=1 I(ξi = k) = 1 and ∑K
k=1 I(ξi 6=

k) = K −1, it is straightforward to show that

n−1/2
n

∑
i=1

(
K

∑
k=1

K−1ηki) = n−1/2
n

∑
i=1

{

|Yi − Ŷ (Xi,θ0)|−D0 + ḋ(θ0)H−1Mi(θ0)
}

= n−1/2
n

∑
i=1

ηi .

Appendix D. Justification for the Perturbation-Resampling Procedure

Here, we give a brief justification for the perturbation-resampling approach presented in Section
3.2. For formal justification of the approach, please see similar but more rigorous derivations given
in Park and Wei (2003) and Cai et al. (2005).

To justify the resampling method, we first note that it follows from the arguments in Appendix
B that

√
n(θ̂−θ0) = −n−1/2H−1

n

∑
i=1

Mi(θ0)+op(1) ,

and that
√

n(θ∗−θ0) = −n−1/2H−1
n

∑
i=1

GiMi(θ0)+op(1) ,

where Mi(θ0) = −YiI(Yi f (Xi;θ0) < 1)(X′
i,1)′ +2λn(w′

0,0)′.
Then, consider the unconditional version of W ∗. Let D∗(θ) = n−1 ∑n

i=1{|Yi − Ŷ (Xi,θ)|Gi},
D̂(θ) = n−1 ∑n

i=1 |Yi−Ŷ (Xi,θ)|, and D0 = E|Y0−Ŷ (X0, θ̂)|, where (X0,Y0) is an independent sample

536



ESTIMATING THE CONFIDENCE INTERVAL FOR PREDICTION ERRORS OF SVM

from the same population of (X,Y ), and the expectation E is with respect to {(Xi,Yi); i = 1, . . . ,n}
and (X0,Y0). As θ̂ converges to θ0 and D̂(θ̂) converges to D0, it is straight forward to show that

W ∗ = n1/2(D∗(θ∗)−D∗(θ0))−n1/2(D̂(θ̂)− D̂(θ0))

+n1/2(D∗(θ0)− D̂(θ0))−n−1/2
n

∑
i=1

D̂(θ̂)(Gi −1)

' ḋ(θ0)n
1/2(θ∗−θ0)− ḋ(θ0)n

1/2(θ̂−θ0)

+n−1/2
n

∑
i=1

|Yi − Ŷ (Xi,θ0)|(Gi −1)−n−1/2
n

∑
i=1

D0(Gi −1)

' n−1/2
n

∑
i=1

{|Yi − Ŷ (Xi,θ0)|−D0}(Gi −1)− ḋ(θ0)n
−1/2H−1

n

∑
i=1

Mi(θ0)(Gi −1)

= n−1/2
n

∑
i=1

ηi(Gi −1) ,

where ηi = |Yi − Ŷ (Xi,θ0)|−D0 − ḋ(θ0)H−1Mi(θ0).
Conditionally on the data, it follows from the Multiplier Central Limit Theorem (van der Vaart

and Wellner, 1996, Chapter 2.9) that the conditional distribution of W ∗ converges to a normal with
mean 0 and variance n−1 ∑n

i=1 η2
i , which are the same as the unconditional distribution of W (or

its cross-validation counterpart W ). This implies that for ε > 0, there exists an N0 such that when
n > N0, the probability, with respect to samples S = {(Xi,Yi); i = 1, . . . ,n} , of the event

sup
u∈R

|P(W ∗ ≤ u|S)−P(W ≤ u)| < ε ,

is at least 1− ε.
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