
Journal of Machine Learning Research 26 (2025) 1-7 Submitted 12/24; Published 3/25

Lightning UQ Box:
Uncertainty Quantification for Neural Networks

Nils Lehmann n.lehmann@tum.de
Data Science in Earth Observation, Technical University of Munich

Nina Maria Gottschling nina-maria.gottschling@dlr.de
MF-DAS OP - EO Data Science, German Aerospace Center (DLR)

Jakob Gawlikowski jakob.gawlikowski@dlr.de
MF-DAS OP - EO Data Science, German Aerospace Center (DLR)

Adam J. Stewart adam.stewart@tum.de
Data Science in Earth Observation, Technical University of Munich

Stefan Depeweg stefan.depeweg@siemens.com
Siemens AG

Eric Nalisnick nalisnick@jhu.edu

Johns Hopkins University

Editor: Joaquin Vanschoren

Abstract

Although neural networks have shown impressive results in a multitude of application do-
mains, the “black box” nature of deep learning and lack of confidence estimates have led
to scepticism, especially in domains like medicine and physics where such estimates are
critical. Research on uncertainty quantification (UQ) has helped elucidate the reliability
of these models, but existing implementations of these UQ methods are sparse and difficult
to reuse. To this end, we introduce Lightning UQ Box, a PyTorch-based Python library
for deep learning-based UQ methods powered by PyTorch Lightning. Lightning UQ Box
supports classification, regression, semantic segmentation, and pixelwise regression appli-
cations, and UQ methods from a variety of theoretical motivations. With this library, we
provide an entry point for practitioners new to UQ, as well as easy-to-use components and
tools for scalable deep learning applications.

Keywords: Uncertainty Quantification, Bayesian Deep Learning, Conformal Prediction,
Deep Learning, PyTorch

1. Introduction

Deep learning is increasingly being applied in a variety of application domains that require
decision making under uncertainty. Examples include medical applications like tumor seg-
mentation (Abdullah et al., 2022), Earth observation cases, in particular natural disaster

c©2025 Nils Lehmann, Nina Maria Gottschling, Jakob Gawlikowski, Adam J. Stewart, Stefan Depeweg, and Eric
Nalisnick.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/24-2110.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/24-2110.html


Lehmann, Gottschling, Gawlikowski, Stewart, Depeweg, and Nalisnick

response (Schumann et al., 2016), robotics (Sanket et al., 2023), and healthcare (Seoni et al.,
2023). These applications demand reliable predictive uncertainty estimates which neural
networks usually do not provide by default. Numerous uncertainty quantification (UQ)
approaches for neural networks have been proposed (Gawlikowski et al., 2023). However,
to adequately evaluate the efficacy of these methods for various applications, a common
modeling framework is necessary to foster the reproducibility of experiments, provide a
fair evaluation, and make UQ methods more easily accessible to various research domains.
Multiple open-source implementations and frameworks for uncertainty quantification in
deep learning are available (Lee et al., 2022; Esposito, 2020; Krishnan et al., 2022; Detom-
maso et al., 2024; Lafage and Laurent, 2024), often focusing on specific tasks or leaving out
specific types of methods, e.g., Bayesian Deep Learning, or without the modularity and
flexibility provided by a framework such as PyTorch Lightning. In a recent position paper,
Papamarkou et al. (2024) state that “There is a demand for user-friendly software that
facilitates the integration of BDL [Bayesian Deep Learning] into various projects”. Light-
ning UQ Box 1 aims to fill this gap, but simultaneously it does not limit itself to Bayesian
frameworks but instead includes UQ methods from a diverse set of theoretical underpin-
nings across current research focuses, for example, conformal prediction (Angelopoulos
et al., 2023).

2. Library Design

  Lightning UQ Toolbox

 

 Lightning

 

 PyTorch Environment
 

Module

Task Specific 
Data Module

Uncertainty
Quantification

Lightning 
Module

 UQ Core
 

(partial) BNNs, Deep Ensembles,
Evidential approaches, Conformal
Predictions, ... 

Implementations and functionalities
provided in PyTorch and wide PyTorch
related open-source landscape. 

Data handling management, deep
learning pipeline management, logging,
GPU-Distribution, ... 

Automated
Training and
Evaluation

Data 
ModuleTrainer UQ 

Methods
(Pre-Trained)

Networks

Losses,
Evaluation 

Metrics

Lightning 
Trainer

Experiment
User Managed Pipeline

Functionalities to be
included in Notebooks or 
user managed pipelines. 

Automated Pipeline

Performance Logs, Saved
Checkpoints, Evaluation, ...

Output

User Specific
Configurations

Task Specific 
Dataset

Input

Figure 1: The structure of Lightning UQ Box. The experiments can be built and evaluated
at scale or manually tailored to specific use cases. For large experiments at scale, only a
dataset and a configuration file have to be provided.

1. Lightning UQ Box GitHub repository and documentation

2

https://github.com/lightning-uq-box/lightning-uq-box
https://lightning-uq-box.readthedocs.io/en/latest/


Lightning UQ Box

The PyTorch ecosystem (Paszke et al., 2019) has enabled tremendous progress in various
application domains. Lightning UQ Box is built on top of PyTorch Lightning (Falcon,
2019) with a focus on reproducibility and scalability of deep learning experiments under a
modular design. PyTorch Lightning asks the user to organize code in a more structured
way regarding training and evaluation steps, additionally removes boilerplate code, and
separates dataset and model logic under different modules. To this end, every supported
UQ method and task combination in Lightning UQ Box is a LightningModule that can
leverage the training capabilities of PyTorch Lightning, such as automatic logging, mixed
precision training, multi-GPU training, etc. to run experiments. The modular design
is visualized in Figure 1. Through its enforced code organization, a LightningModule

clearly defines what a given UQ method does during training, validation, and prediction
and is easy to follow in the code files. This can more clearly highlight differences and
commonalities not just between different methods, but also among different prediction
tasks for any particular method. The modular design allows a straightforward extension to
new tasks or new UQ methods that arise in this active research field and further simplifies
community contributions.

2.1 Feature Highlights

Breadth of Methods Uncertainty Quantification in neural networks has been approached
from various theoretical underpinnings (Gawlikowski et al., 2023) and Lightning UQ Box re-
flects this through the variety of methods it supports from the various categorized perspec-
tives, such as Bayesian, conformal prediction, evidential deep learning, generative models,
or post-hoc calibration methods.2

Backbone Agnostic A core design principle of Lightning UQ Box is that the imple-
mented models are “backbone” agnostic, meaning that users can bring their custom Py-
Torch architecture or pretrained models from libraries like timm (Wightman, 2019), on top
of which the selected UQ method will be applied without the user having to customize their
model for different UQ methods. Selected model parts can also be frozen during training,
which has potential applications of equipping large scale foundation models with UQ, for
example through last-layer UQ fine tuning (Papamarkou et al., 2024).

Minimization of Boilerplate Code The modular design of PyTorch Lightning sig-
nificantly reduces the amount of boilerplate code and allows fast experiment setup and
iteration. The UQ Box can further seamlessly be used with existing Lightning pipelines.

Modern Bayesian Methods A common criticism of BNNs is that they are expensive
to train and do not scale to large data problems (Papamarkou et al., 2024). The supported
Bayesian UQ methods are made scalable to larger data regimes with partially stochastic
variants (Sharma et al., 2023), that are also supported for Laplace (Daxberger et al.,

2. See the documentation page or repository README for a complete overview of supported methods

3

https://lightning-uq-box.readthedocs.io/en/latest/
https://github.com/lightning-uq-box/lightning-uq-box


Lehmann, Gottschling, Gawlikowski, Stewart, Depeweg, and Nalisnick

2021a), SWAG (Maddox et al., 2019), and MC-Dropout (Gal and Ghahramani, 2016).
This allows for flexible hybrid approaches like last-layer or subnetwork approximations
(Daxberger et al., 2021b). Furthermore, we support Deep Kernel Learning (DKL) (Wilson
et al., 2016), Spectral-Normalized Gaussian Processes (SNGP) (Liu et al., 2020), and Deep
Deterministic Uncertainty (DDU) (Van Amersfoort et al., 2020) as hybrid approaches.

Reproducibility Several works postulated that machine learning finds itself in a repro-
ducibility crisis across application domains (Kapoor and Narayanan, 2023). In a related
article in life sciences, Heil et al. (2021) state “The gold standard for reproducibility re-
quires the entire analysis to be reproducible with a single command”. Lightning UQ Box
works towards this goal by supporting configuration of experiments with simple configura-
tion files, as well as the Lightning command line interface (CLI). For example, the required
configurations to run a partially stochastic BNN or Deep Kernel Learning model based
on the timm library ResNet18 implementation on the EuroSAT dataset from torchgeo is
shown in Figure 2. For more examples, see the Lightning-UQ-Box documentation page.

1 uq_method:

2 _target_: BNN_VI_ELBO_Classification

3 model:

4 _target_: timm.create_model

5 model_name: resnet18

6 in_chans: 13

7 num_classes: 10

8 criterion:

9 _target_: torch.nn.CrossEntropyLoss

10 num_mc_samples_train: 3

11 num_mc_samples_test: 25

12 stochastic_module_names: [’layer4 .1.conv1 ’,

’layer4 .1.conv2 ’, ’fc ’]

13
14 datamodule:

15 _target_: torchgeo.datamodules.EuroSATDataModule

16 batch_size: 64

17 download: True

18
19 trainer:

20 _target_: lightning.Trainer

21 max_epochs: 40

1 model:

2 _target_: DKLClassification

3 feature_extractor:

4 _target_: timm.create_model

5 model_name: resnet18

6 num_classes: 8 # num latent features

7 gp_kernel: "RBF"

8 n_inducing_points: 5

9 input_size: 64

10 num_classes: 10

11
12 datamodule:

13 _target_: torchgeo.datamodules.EuroSATDataModule

14 batch_size: 64

15 download: True

16
17 trainer:

18 _target_: lightning.Trainer

19 max_epochs: 40

20 gradient_clip_val: 1.0

21 accumulate_grad_batches: 2

Figure 2: Example YAML files that configure (left) a partially stochastic BNN based on
a timm ResNet18 model implementation and (right) the same ResNet18 as Deep Kernel
Learning model for training on the EuroSAT classification dataset from the geospatial
PyTorch domain library TorchGeo (Stewart et al., 2022).

Introduction and Tutorials A great emphasis has been placed on providing an entry
point to UQ for practitioners from various domains. To this end, we include more than 30
tutorials as Jupyter Notebooks (Kluyver et al., 2016) in the accompanying documentation
page that explain the theoretical framework and demonstrate their application to common
toy datasets.

4

https://lightning-uq-box.readthedocs.io/en/latest/


Lightning UQ Box

3. Conclusion

We introduce Lightning UQ Box, a PyTorch framework built on PyTorch Lightning for UQ
in deep learning. By offering a comprehensive set of methods across theoretical frameworks
that can be scaled to common problems from different domains, the toolbox allows prac-
titioners to easily and fairly compare these approaches. Together with detailed tutorials,
we hope that the library can provide an entry point for people interested in UQ, support
large scale experiments across methods and perhaps foster new research ideas.

References

Abdullah A. Abdullah, Masoud M. Hassan, and Yaseen T. Mustafa. A review on Bayesian
deep learning in healthcare: Applications and challenges. IEEE Access, 10:36538–36562,
2022.

Anastasios N. Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle intro-
duction. Foundations and Trends R© in Machine Learning, 16(4):494–591, 2023.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias
Bauer, and Philipp Hennig. Laplace redux-effortless Bayesian deep learning. Advances
in Neural Information Processing Systems, 34:20089–20103, 2021a.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. Bayesian deep learning via subnetwork inference. In International
Conference on Machine Learning, pages 2510–2521. PMLR, 2021b.

Gianluca Detommaso, Alberto Gasparin, Michele Donini, Matthias Seeger, Andrew Gordon
Wilson, and Cedric Archambeau. Fortuna: A library for uncertainty quantification in
deep learning. Journal of Machine Learning Research, 25(238):1–7, 2024.

Piero Esposito. BLiTZ - Bayesian Layers in Torch Zoo (a Bayesian deep learing library for
Torch). https://github.com/piEsposito/blitz-bayesian-deep-learning/, 2020.

William A. Falcon. PyTorch Lightning. https://github.com/Lightning-AI/

pytorch-lightning, 2019.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050–1059. PMLR, 2016.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias
Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher,
et al. A survey of uncertainty in deep neural networks. Artificial Intelligence Review, 56
(Suppl 1):1513–1589, 2023.

5

https://github.com/piEsposito/blitz-bayesian-deep-learning/
https://github.com/Lightning-AI/pytorch-lightning
https://github.com/Lightning-AI/pytorch-lightning


Lehmann, Gottschling, Gawlikowski, Stewart, Depeweg, and Nalisnick

Benjamin J. Heil, Michael M. Hoffman, Florian Markowetz, Su-In Lee, Casey S. Greene,
and Stephanie C. Hicks. Reproducibility standards for machine learning in the life
sciences. Nature Methods, 18(10):1132–1135, 2021.

Sayash Kapoor and Arvind Narayanan. Leakage and the reproducibility crisis in machine-
learning-based science. Patterns, 4(9), 2023.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay,
Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and Jupyter development
team. Jupyter notebooks - a publishing format for reproducible computational work-
flows. In Fernando Loizides and Birgit Scmidt, editors, Positioning and Power in Aca-
demic Publishing: Players, Agents and Agendas, pages 87–90, Netherlands, 2016. IOS
Press. URL https://eprints.soton.ac.uk/403913/.

Ranganath Krishnan, Pi Esposito, and Mahesh Subedar. Bayesian-Torch: Bayesian
neural network layers for uncertainty estimation. https://github.com/IntelLabs/

bayesian-torch, January 2022. URL https://doi.org/10.5281/zenodo.5908307.

Adrian Lafage and Olivier Laurent. Torch Uncertainty. https://github.com/

ENSTA-U2IS-AI/torch-uncertainty, 2024.

Sungyoon Lee, Hoki Kim, and Jaewook Lee. GradDiv: Adversarial robustness of random-
ized neural networks via gradient diversity regularization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lak-
shminarayanan. Simple and principled uncertainty estimation with deterministic deep
learning via distance awareness. Advances in neural information processing systems, 33:
7498–7512, 2020.

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. Advances in Neural
Information Processing Systems, 32, 2019.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan
Arbel, David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, Aliaksandr
Hubin, et al. Position paper: Bayesian deep learning in the age of large-scale AI. arXiv
preprint arXiv:2402.00809, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch:
An imperative style, high-performance deep learning library. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

6

https://eprints.soton.ac.uk/403913/
https://github.com/IntelLabs/bayesian-torch
https://github.com/IntelLabs/bayesian-torch
https://doi.org/10.5281/zenodo.5908307
https://github.com/ENSTA-U2IS-AI/torch-uncertainty
https://github.com/ENSTA-U2IS-AI/torch-uncertainty


Lightning UQ Box

Nitin J. Sanket, Chahat Deep Singh, Cornelia Fermüller, and Yiannis Aloimonos. Ajna:
Generalized deep uncertainty for minimal perception on parsimonious robots. Science
Robotics, 8(81):eadd5139, 2023.

Guy Schumann, Dalia Kirschbaum, Eric Anderson, and Kashif Rashid. Role of Earth
observation data in disaster response and recovery: From science to capacity building.
Earth Science Satellite Applications: Current and Future Prospects, pages 119–146, 2016.

Silvia Seoni, Vicnesh Jahmunah, Massimo Salvi, Prabal Datta Barua, Filippo Molinari, and
U Rajendra Acharya. Application of uncertainty quantification to artificial intelligence
in healthcare: A review of last decade (2013–2023). Computers in Biology and Medicine,
page 107441, 2023.

Mrinank Sharma, Sebastian Farquhar, Eric Nalisnick, and Tom Rainforth. Do Bayesian
neural networks need to be fully stochastic? In International Conference on Artificial
Intelligence and Statistics, pages 7694–7722. PMLR, 2023.

Adam J Stewart, Caleb Robinson, Isaac A Corley, Anthony Ortiz, Juan M Lavista Ferres,
and Arindam Banerjee. Torchgeo: deep learning with geospatial data. In Proceedings of
the 30th international conference on advances in geographic information systems, pages
1–12, 2022.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation
using a single deep deterministic neural network. In International Conference on Machine
Learning, pages 9690–9700. PMLR, 2020.

Ross Wightman. PyTorch Image Models. https://github.com/rwightman/

pytorch-image-models, 2019.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370–378. PMLR, 2016.

7

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Library Design
	Feature Highlights

	Conclusion

