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Abstract

gsplat is an open-source library designed for training and developing Gaussian Splat-
ting methods. It features a front-end with Python bindings compatible with the Py-
Torch library and a back-end with highly optimized CUDA kernels. gsplat offers nu-
merous features that enhance the optimization of Gaussian Splatting models, which in-
clude optimization improvements for speed, memory, and convergence times. Experimen-
tal results demonstrate that gsplat achieves up to 10% less training time and 4× less
memory than the original Kerbl et al. (2023) implementation. Utilized in several re-
search projects, gsplat is actively maintained on GitHub. Source code is available at
https://github.com/nerfstudio-project/gsplat under Apache License 2.0. We wel-
come contributions from the open-source community.
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1. Introduction

Gaussian Splatting, a seminal work proposed by Kerbl et al. (2023) is a rapidly developing
area of research for high fidelity 3D scene reconstruction and novel view synthesis with wide
interest in both academia and industry (Fei et al., 2024; Chen and Wang, 2024; Bao et al.,
2024; Wu et al., 2024). It outperforms many of the previous NeRF-based (Mildenhall et al.,
2020) methods in several important areas, including i) computational efficiency for training
and rendering, ii) ease of editing and post-processing, and iii) deployability on hardware-
constrained devices and web-based technologies. In this paper, we introduce gsplat, an
open-source project built around Gaussian Splatting that aims to be an efficient and user-
friendly library. The underlying concept is to enable a simple and easily modifiable API for
PyTorch-based projects developing Gaussian Splatting models. gsplat supports the latest
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research features and is developed with modern software engineering practices in mind.
Since its initial release in October 2023, gsplat has garnered 67 contributors and over 2.5k
stars on GitHub. gsplat is released under the Apache License 2.0. Documentation and
further information are available on the website at:

http://docs.gsplat.studio/

The closest prior work implementing open-source Gaussian Splatting methods include GauS-
tudio (Ye et al., 2024a) which consolidates various research papers into a single code reposi-
tory, several PyTorch-based reproductions (Patas, 2023; Huang, 2023), and the more recent
Slang.D (Kopanas, 2024) and Brush (Brussee, 2024) reimplementations using the Slang.D
and Rust programming languages, respectively. Unlike previous work, gsplat not only
seeks to implement the original 3DGS work with performance improvements, but aims
to provide an easy-to-use and modular API interface allowing for external extensions and
modifications, promoting further research in Gaussian Splatting. We welcome contributions
from students, researchers, and the open-source community.

2. Design

gsplat is a standalone library developed with efficiency and modularity in mind. It is in-
stalled from PyPI on both Windows and Linux platforms, and provides a PyTorch interface.
For speed considerations, many operations are programmed into optimized CUDA kernels
and exposed to the developer via Python bindings. In addition, a native PyTorch imple-
mentation is also carried in gsplat to support iteration on new research ideas. gsplat

is designed to provide a simple interface that can be imported from external projects,
allowing easy integration of the main Gaussian Splatting functionality as well as algo-
rithmic customization based on the latest research. With well-documented examples, test
cases verifying the correctness of CUDA operations, and further documentation hosted on-
line, gsplat can also serve as an education resource for new researchers entering the field.

1 import torch

2 from gsplat import rasterization

3 # Initialize a 3D Gaussian:

4 mean = torch.tensor ([[0. ,0. ,0.01]] , device="cuda")

5 quat = torch.tensor ([[1. ,0. ,0. ,0.]] , device="cuda")

6 color = torch.rand((1, 3), device="cuda")

7 opac = torch.ones ((1,), device="cuda")

8 scale = torch.rand((1, 3), device="cuda")

9 view = torch.eye(4, device="cuda")[None]

10 K = torch.tensor ([[[1. , 0., 120.] , [0., 1., 120.] ,

[0., 0., 1.]]], device="cuda") # camera intrinsics

11 # Render an image using gsplat:

12 rgb_image , alpha , metadata = rasterization(

13 mean , quat , scale , opac , color , view , K, 240,

240)

Figure 1: Implementation of the main 3D Gaussian rendering process using the gsplat

(v1.3.0) library with only 13 lines of code. A single Gaussian is initialized (left codeblock)
and rendered as an RGB image (right).

2

http://docs.gsplat.studio/


gsplat: An Open-Source Library for Gaussian Splatting

3. Features

The gsplat librarconsists of features and algorithmic implementations relating to Gaussian
Splatting. With a modular interface, users can choose to enable features with simple API
calls. Here, wy briefly describe some of the algorithmic enhancements provided by gsplat

which are not present in the original 3DGS implementation by Kerbl et al. (2023).
Densification strategies. A key component of the Gaussian Splatting optimization pro-
cedure consists of densification and pruning of Gaussians in under- and over-reconstructed
regions of the scene respectively. This has been an active area of research, and the gsplat

library supports some of the latest densification strategies. These include the Adaptive
Density Control (ADC) proposed by Kerbl et al. (2023), the Absgrad method proposed
in Ye et al. (2024b), and the Markov Chain Monte Carlo (MCMC) method proposed in
Kheradmand et al. (2024). gsplat’s modular API allows users to easily change between
strategies. For further details regarding densification strategies, we refer to A.1.

1 from gsplat import MCMCStrategy , rasterization

2 strategy = MCMCStrategy () #Initialize the strategy

3 strategy_state = strategy.initialize_state ()

4 for step in range (1000): # Training loop

5 render_image , render_alpha , info = rasterization (...)

6 strategy.step_pre_backward (...)# Pre -backward step

7 loss = ... # Compute the loss

8 loss.backward () # Backward pass

9 strategy.step_post_backward (...) # Post -backward step

10

Figure 2: Code-block for training a Gaussian model with a chosen densification strategy.

Pose optimization. The Gaussian rendering process (seen in Figure 1) in gsplat is
fully differentiable, enabling gradient flow to Gaussian parameters G(c,Σ, µ, o) and to other
parameters such as the camera view matrices P = [R | t], which were not considered in the
original work. This is crucial for mitigating pose uncertainty in datasets. Specifically, gra-
dients of the reconstruction loss are computed with respect to the rotation and translation
components of the camera view matrix, allowing for optimization of initial camera poses
via gradient descent. More details are in A.2.
Depth rendering. Rendering depth maps from a Gaussian scene is important for appli-
cations such as regularization and meshing. gsplat supports rendering depth maps using
an optimized RGB+Depth rasterizer that is also fully differentiable. gsplat supports ren-
dering depth maps using the accumulated z-depth for each pixel and the alpha normalized
expected depth. Definitions are found in A.3.
N-Dimensional rasterization. In addition to rendering three-channel RGB images,
gsplat also supports rendering higher-dimensional feature vectors. This is motivated
by algorithms that combine learned feature maps with differentiable volume rendering
(Kobayashi et al., 2022; Kerr et al., 2023). To accommodate the storage needs of these
features, the gsplat backend allows for adjustments to parameters affecting memory allo-
cation during training, such as kernel block sizes.
Anti-aliasing. Viewing a 3D scene represented by Gaussians at varying resolutions can
cause aliasing effects, as seen in prior 3D representations (Barron et al., 2021, 2022). When
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the resolution decreases or the scene is viewed from afar, individual Gaussians smaller than
a pixel in size produce aliasing artifacts due to sampling below the Nyquist rate. Mip-
Splatting (Yu et al., 2024) proposes a low pass filter on projected 2D Gaussian covariances,
ensuring a Gaussian’s extent always spans a pixel. gsplat supports rendering with the 2D
anti-aliasing mode introduced in Yu et al.. Definitions are found in A.4

4. Evaluation

Overall comparison. We compare the training performance and efficiency of gsplat

training against the original implementation by Kerbl et al. on the MipNeRF360 dataset
(Barron et al., 2022). We use the standard ADC densification strategy and equivalent
configuration settings for both. We report average results on novel-view synthesis, memory
usage, and training time using an A100 GPU (PyTorch v2.1.2 and cudatoolkit v11.8) at
7k and 30k training iterations in Table 1.

Table 1: Comparison of gsplat training performance with the original 3DGS (Kerbl et al.)
implementation on the MipNeRF360 dataset. Results are averaged over 7 scenes.

PSNR ↑ SSIM ↑ LPIPS ↓ Memory (GB) ↓ Time (min) ↓

3DGS -7k 27.23 .8290 .2041 7.7 4.64
gsplat -7k 27.23 .8311 .2027 4.3 3.36
3DGS -30k 28.95 .8702 .1381 9.0 26.19
gsplat -30k 29.00 .8715 .1357 5.6 19.39

We achieve the same rendering performance as the original implementation whilst using
less memory and significantly reducing training time.

Feature comparison. Furthermore, we analyze the impact of features provided in the
gsplat library in Table 2. Additional quantitative evaluations can be found in Appendix B.

Table 2: gsplat feature comparison on the MipNeRF360 dataset averaged over 7 scenes.

PSNR↑ SSIM↑ LPIPS↓ Num GS Mem (GB) ↓ Time (min) ↓

gsplat 29.00 .8715 .1357 3.24 M 5.62 19.39

w/ absgrad 29.11 .8778 .1241 2.47 M 4.40 18.10
w/ mcmc 29.18 .8745 .1446 1.00 M 1.98 15.42
w/ antialiased 29.03 .8711 .1389 3.38 M 5.87 19.52
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Supplementary Material

In this supplementary material we provide further details regarding the features present
in the gsplat library in Appendix A. We give additional quantitative comparisons in
Appendix B. Furthermore, we present additional details regarding the mathematical im-
plementation of the forward pass in Appendix C and backward pass in Appendix D, which
are at the core of the gsplat library. Lastly, we explain conventions used in the gsplat

library in Appendix E.
gsplat is constantly being updated and improved. For example, recent enhancements have
enabled multi-GPU training support for large-scale scene reconstruction. For most recent
updates, check the commit history at https://github.com/nerfstudio-project/gsplat.

Mathematical Symbols and Abbreviations

We denote the camera matrix with P ∈ SE(3), consisting of a rotation R ∈ R3×3 and
translation t ∈ R3×1. The intrinsic matrix of the camera K ∈ R3×3 includes the focal
lengths (fx, fy) and the principal points (cx, cy). A Gaussian primitive in three dimen-
sions is denoted with G and we refer to µ,Σ, o, c as its mean, covariance, opacity, and
color, respectively. The Gaussian center is denoted as µ in world coordinates, µ̃ in camera
coordinates, and µ′ in image space.

Appendix A. Further Details for gsplat Features

A.1 Densification Strategies

As of July 2024, gsplat supports the following densification strategies.

A.1.1 ADC

The Adaptive Density Control (ADC) method was originally proposed by Kerbl et al.
(2023). During training, the positional gradients ∇µ̃nL = ‖ ∂L

∂µ̃n
‖ are tracked for a single

Gaussian primitive Gn(µn,Σn, cn, on) and average over multiple renderings with camera
views {P}Mk=1. If the accumulated positional gradients for a primitive exceed a user set
threshold T (default is 0.0002), a Gaussian is either split or cloned. Gaussians are split
if the extent of the primitive, measured by the size of the largest scale of a Gaussian, is
beyond another threshold (set to 0.01); otherwise, the Gaussian is simply cloned.
The ADC system periodically culls Gaussian primitives based on their opacity values, on.
Gaussians with opacity values below a threshold (set at 0.005) are removed at fixed intervals
during training. Additionally, the ADC system periodically resets all Gaussian opacities to
a small value to further encourage the culling of more Gaussians during training.

A.1.2 Absgrad

In the ADC densification strategy, the view space positional gradients for a Gaussian
∇µ̃nL =

∑M
k=1( δLxδµ̃x

,
δLy
δµ̃y

) are tracked across M camera views during training and a cri-
terion for splitting and duplicating is set by a threshold. Ye et al. and Liu et al. dis-
covered that this formulation of positional gradient accumulation can result in gradient
collisions, where negative and positive view-space gradients cancel each other out, result-
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ing in a poor densification heuristic. They propose to accumulate gradients using absolute
sums ∇µ̃nL =

∑M
k=1(| δLxδµ̃x

|, | δLyδµ̃y
|) instead. gsplat supports training with both versions of

view-space accumulated gradients. The Absgrad feature is enabled with a simple API call:

1 for step in range (1000): # Training loop

2 rgb_image , alpha , meta_data = rasterization(

3 ...,

4 absgrad = True) # Absgrad feature is enabled

5 loss = ...

6 loss.backward ()

7

Figure 3: Training with the Absgrad view space gradients enabled.

A.1.3 MCMC

The authors in Kheradmand et al. (2024) adopt an alternative Bayesian perspective to the
densification strategy in Gaussian Splatting. The authors reformulate Gaussian Splatting
densification as a Stochastic Gradient Langevin Dynamic (SGLD) update rule and rewrite
stochastic gradient descent updates, expressed as with G ← G − λlr · ∇GEI∼I [L(G; I)] as
SGLD updates

G ← G − λlr · ∇GEI∼I [Ltotal (G; I)] + λnoise · ε (1)

controlled by hyperparameters λnoise and λlr and a noise term ε applied to the center
locations µ of Gaussians.

A.2 Pose optimization

Gradients of the reconstruction loss are computed to the rotation and translation compo-
nents of a given camera view matrix using:

δL
δt

= −
∑
n

δL
δµ̃n

,
δL
δR

= −

[∑
n

δL
δµ̃n

(µn − t)ᵀ]

]
R (2)

A.3 Depth rendering

The definitions for accumulated depth and expected depth at a pixel (x, y) are

Accumulated

depth
daccx,y =

N∑
n=1

zn · αn · Tn (3)
Expected

depth dexpx,y =

∑N
n=1 zn · αn · Tn∑N
n=1 αn · Tn

(4)

where Tn =
∏n−1
j=1 (1 − αj) is the accumulated transparency of depth-sorted Gaussians at

pixel (x, y).

A.4 Anti-aliasing

gsplat supports rendering under the classic and anti-alias modes which modify the screen-
space 2D gaussian sizes G2D as follows:

8



gsplat: An Open-Source Library for Gaussian Splatting

Classic

mode
G2D = on · exp

(
−1

2
(p− µn)ᵀ(Σ2D

n + s · I)−1(p− µn)

)
(5)

Anti-alias

mode G2D =

√
|Σ2D

n |
|Σ2D

n + s · I|
· on · exp

(
−1

2
(p− µn)ᵀ(Σ2D

n + s · I)−1(p− µn)

)
(6)

where s is set as a hyper-parameter during training, default is 0.3, to ensure that a 2D
Gaussian’s size spans the width of a single pixel.

Appendix B. Additional Evaluations

We provide additional quantitative evaluation for the various features provided in the
gsplat library. We ablate performance using default settings, with Absgrad and MCMC
densification strategies, as well as using antialiased rendering. We report per scene novel-
view synthesis metrics on the MipNeRF360 dataset in Table 3, Table 4, and Table 5 as well
as memory usage in Table 6.

Table 3: Per scene PSNR metrics on the MipNeRF360 dataset.

Bicycle Bonsai Counter Garden Kitchen Room Stump

gsplat 25.29 32.21 29.01 27.39 31.37 31.23 26.51

absgrad 25.44 31.98 29.07 27.47 31.65 31.43 26.71
mcmc 1 mill 25.27 32.54 29.40 27.03 31.39 32.01 26.66
mcmc 2 mill 25.52 32.99 29.56 27.40 31.99 32.34 26.90
mcmc 3 mill 25.58 33.13 29.65 27.65 32.21 32.40 26.93
antialiased 25.31 32.27 29.01 27.33 31.34 31.53 26.44

Table 4: Per scene SSIM metrics on the MiPNeRF360 dataset.

Bicycle Bonsai Counter Garden Kitchen Room Stump

gsplat .7665 .9423 .9089 .8678 .9278 .9191 .7682

absgrad .7837 .9437 .9099 .8713 .9295 .9236 .7825
mcmc 1 mill .7665 .9482 .9172 .8510 .9305 .9295 .7782
mcmc 2 mill .7832 .9515 .9208 .8652 .9345 .9325 .7904
mcmc 3 mill .7889 .9528 .9220 .8709 .9358 .9333 .7935
antialiased .7654 .9428 .9084 .8657 .9277 .9194 .7684

Appendix C. Forward Pass

A 3D Gaussian is parametrized by its mean µ ∈ R3, covariance matrix Σ ∈ R3×3 decom-
posed into a scaling vector s ∈ R3 and a rotation quaternion q ∈ R4, opacity o ∈ R, and
a feature vector c ∈ RN . For the remainder of the derivations, we denote c ∈ R3 as color

9
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Table 5: Per scene LPIPS metrics on the MipNeRF360 dataset. LPIPS is computed using
AlexNet features.

Bicycle Bonsai Counter Garden Kitchen Room Stump

gsplat .1703 .1329 .1546 .0754 .0955 .1651 .1558

absgrad .1391 .1267 .1499 .0724 .0924 .1523 .1361
mcmc 1 mill .1978 .1237 .1425 .1107 .0974 .1469 .1724
mcmc 2 mill .1662 .1166 .1335 .0915 .0905 .1403 .1466
mcmc 3 mill .1521 .1140 .1292 .0833 .0884 .1383 .1369
antialiased .1811 .1329 .1565 .0822 .0957 .1657 .1585

Table 6: Per scene memory consumption (in GB) metrics on the MipNeRF360 dataset.

Bicycle Bonsai Counter Garden Kitchen Room Stump

gsplat 10.47 2.41 2.36 9.89 3.16 2.84 8.20

absgrad 8.75 1.91 2.02 6.36 2.84 2.75 6.15
mcmc 1 mill 1.84 2.06 2.02 1.81 2.05 2.14 1.82
mcmc 2 mill 3.21 3.51 3.57 3.18 3.51 3.84 3.17
mcmc 3 mill 4.75 5.11 5.59 4.54 4.97 5.38 4.59
antialiased 11.30 2.41 2.34 10.10 3.17 2.81 8.97

encoded via spherical harmonics similar to the original work by Kerbl et al. (2023); how-
ever, the derivations also apply to other N -dimensional vectors. To render a view from the
Gaussian scene, we compute their projected 2D means and extents in the camera plane.
Visible 2D Gaussians are then sorted by depth and composited from front to back using
the discrete rendering equation to construct the output image.

C.1 Projection of Gaussians

The render camera is described by its extrinsics P, which transforms points from the world
coordinate space to the camera coordinate space, and its intrinsics K which projects Gaus-
sians from camera coordinates to image coordinates:

P =

[
R t
0 1

]
, K =

fx 0 cx
0 fy cy
0 0 1

 (7)

A visible 3D Gaussians Gn(µ,Σ, o, c) in world space is mapped into camera space using:

µ̂n = R>(µn − p), Σ̂n = R>ΣR, ĉn = SH(
µn − t
‖µn − t‖

) (8)

Furthermore, the camera coordinate Gaussian Ĝn(µ̂n, Σ̂n, on, ĉn) projects to a image space
2D Gaussian Ĝ2D

n (µ′, d,Σ′) with z-depth d via:

d = µ̃z, µ′ = (µ̃x/d, µ̃y/d), Σ′ = J>Σ̂J (9)
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L

Ci =
∑

n∈N cnαn
∏n−1
j=1 (1− αj)

cn αn = σnG
′
n

σ̃n = sigmoid(σn)

σn

G′n(x) = exp
(
−1

2(x− µ′n)>Σ′−1
n (x− µ′n)

)

µ′n = Pµn Σ′n = JnWΣnW
>J>n

µn Σn = RSSR>

s̃n = exp(sn)

sn

q̂n = qn
‖qn‖

qn

∂q̂n
∂qn

∂s̃n
∂sn

∂Σn
∂s̃n

∂Σn
∂q̂n

∂Σ′
n

∂Σn

∂µ′n
∂µn

∂G′

∂µ′n

∂G′

∂Σ′
n

∂σ̃n
∂σn

∂αn
∂σ̃n

∂Ci
∂αn

∂L
∂Ci

∂Ci
∂cn

∂αn
∂G′

Figure 4: An illustration of the forward (Appendix C) and backward (Appendix D) com-
putation graphs of the main gsplat Gaussian Splatting rendering function for Gaussian
parameters c, σ, µ, s, and q.

We approximate the projection of camera space Σ̂n to image space with a first-order Taylor
expansion located at the pose P. Specifically, we compute the affine transform J ∈ R2×3

as:

J =
1

d

[
1 0 −µ̃x/d
0 1 −µ̃y/d

]
(10)

Note, unlike the original implementation by Kerbl et al. (2023), we do not use the OpenGL
NDC coordinate system as an intermediate representation. Thus, a 2D Gaussian
G2D
n (µ′,Σ′, o, c) is defined in image coordinates with the covariance matrix Σ′ ∈ R2×2:

Σ2D
n = J>R>ΣRJ. (11)

11
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We further map from image to pixel coordinates for rasterization. See Appendix E for more
details.

C.2 Rasterization of Gaussians

We directly follow the tile sorting method introduced by Kerbl et al., which bins the 2D
Gaussians into 16× 16 tiles and sorts them per tile by depth. For each Gaussian, we com-
pute the axis-aligned bounding box around the 99th percentile ellipse of each 2D projected
covariance (3 standard deviations), and include it in a tile bin if its bounding box intersects
with the tile. We then apply the tile sorting algorithm as presented in Appendix C of Kerbl
et al. (2023) to get a list of Gaussians sorted by depth for each tile. We then rasterize the
sorted Gaussians within each tile. For a color at a pixel p(x,y), let i index the N Gaussians
involved in that pixel.

Ĉx,y =
∑
n∈N

cnαnTi, where Ti =

i−1∏
j=1

(1− αj) (12)

We compute αn with the 2D covariance Σ2D
n ∈ R2×2 and opacity parameters:

αn = on · exp

(
−1

2
(p(x,y) − µn)ᵀ(Σ2D

n )−1(p(x,y) − µn)

)
(13)

We compute Ti online as we iterate through the Gaussians front to back.

Appendix D. Backward Pass

D.1 Computing Gradients of Gaussians

We now compute the gradients of a scalar loss with respect to the input Gaussian parame-
ters. That is, given the gradient of a scalar loss L with respect to each pixel of the output
image, we propagate the gradients backward toward the original input parameters with
standard chain rule mechanics. In the following we will use the Frobenius inner product in
deriving the matrix derivatives Giles (2008):

〈X,Y 〉 = Tr(X>Y ) = vec(X)>vec(Y ) ∈ R (14)

and can be thought of as a matrix dot product. The Frobenius inner product has the
following properties:

〈X,Y 〉 = 〈Y,X〉 (15)

〈X,Y 〉 = 〈X>, Y >〉, (16)

〈X,Y Z〉 = 〈Y >X,Z〉 = 〈XZ>, Y 〉, (17)

〈X,Y + Z〉 = 〈X,Y 〉+ 〈X,Z〉 (18)

Suppose we have a scalar function f of X ∈ Rm×n, and that X = AY , with A ∈ Rm×p and
Y ∈ Rp×n. We can write the gradient of f with respect to an arbitrary scalar θ ∈ R as

∂f

∂θ
= 〈 ∂f

∂X
,
∂X

∂θ
〉, (19)

12



gsplat: An Open-Source Library for Gaussian Splatting

for which we use the shorthand

∂f = 〈 ∂f
∂X

, ∂X〉. (20)

Here ∂f
∂θ ∈ R, ∂f

∂X ∈ Rm×n, and ∂X
∂θ ∈ Rm×n.

In this case, it is simple to continue the chain rule. Letting G = ∂f
∂X , we have

∂f

∂θ
=

〈
G,

∂(AY )

∂θ

〉
=

〈
G,

∂A

∂θ
Y

〉
+

〈
G,A

∂Y

∂θ

〉
=

〈
GY >,

∂A

∂θ

〉
+

〈
A>G,

∂Y

∂θ

〉
.

From here, we read out the elements of the gradients of f with respect to A and Y by letting
θ = Aij and θ = Yij respectively, and find that

∂f

∂A
= GY > ∈ Rm×p,

∂f

∂Y
= A>G ∈ Rp×n (21)

D.2 Depth Compositing Gradients

We start with propagating the loss gradients of a pixel i back to the Gaussians that con-
tributed to the pixel. Specifically, for a Gaussian n that contributes to the pixel i, we
compute the gradients with respect to color ∂L

∂cn
∈ R3, opacity ∂L

∂on
∈ R, the 2D means

∂L
∂µ′n
∈ R2, and 2D covariances ∂L

∂Σ′
n
∈ R2×2, given the ∂L

∂Ci
∈ R3. In the forward pass,

we compute the contribution of each Gaussian to the pixel color from front to back, i.e.
Gaussians in the back are downstream of those in the front. As such, in the backward pass,
we compute the gradients of the Gaussians from back to front. For the color, we have

∂Ci(k)

∂cn(k)
= αn · Tn (22)

for each channel k. We save the final TN value from the forward pass and compute next
Tn−1 values as we iterate backward:

Tn−1 =
Tn

1− αn−1
(23)

For the α gradient, for each channel k we have the scalar gradients

∂Ci(k)

∂αn
= cn(k) · Tn −

Sn(k)

1− αn
where Sn =

∑
m>n

cmαmTm. (24)

We can also compute Sn−1 as we iterate backward over Gaussians:

SN (k) = 0

Sn−1(k) = cn(k)αnTn + Sn(k).
(25)

13
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For the opacity and sigma, we have scalar gradients

∂αn
∂on

= exp (−σn) ,
∂αn
∂σn

= −on exp (−σn) (26)

For the 2D mean, we have the Jacobian

∂σn
∂µ′n

=
∂σn
∂∆n

= Σ′−1
n ∆n ∈ R2 (27)

For the 2D covariance, we let Y = Σ′−1
n , which has a straightforward Jacobian from σn :

∂σn
∂Y

=
1

2
∆n∆>n ∈ R2×2. (28)

To continue back-propagating through Y ∈ R2×2, we let G = ∂σn
∂Y and write the gradients

with respect to a scalar variable x as

∂σn
∂x

=

〈
G,

∂Y

∂x

〉
. (29)

We use the identity [Petersen and Pedersen (2012), Dwyer and Macphail (1948)] that ∂Y
∂x =

−Y ∂Σ′
n

∂x Y , and have

∂σn
∂x

=

〈
G,−Y ∂Σ′n

∂x
Y

〉
=

〈
−Y >GY >, ∂Σ′n

∂x

〉 (30)

The gradient of σn with respect to Σ′n is then

∂σn
∂Σ′n

= −1

2
Σ′−1
n ∆n∆>nΣ′−1

n (31)

D.3 Projection Gradients

Given the gradients of L with respect the projected 2D mean µ′ and covariance Σ′ of a
Gaussian, we can continue to backpropagate the gradients of its 3D means µ and covariances
Σ. Here we deal only with a single Gaussian at a time, so we drop the subscript n and
compute the gradients ∂L

∂µ ∈ R3 and ∂L
∂Σ ∈ R3×3, given the gradients ∂L

∂µ′ ∈ R2 and ∂L
∂Σ′ ∈

R2×2.
We first compute the gradient contribution of 2D mean µ′ to camera coordinates t ∈ R4,
and of 2D covariance Σ′ to 3D covariance Σ and camera coordinates t. Note that both µ′

and Σ′ contribute to the gradient with respect to t :

∂L
∂ti

=
∂Lµ′
∂ti

+
∂LΣ′

∂ti
=
∂L
∂µ′

∂µ′

∂ti
+

〈
∂L
∂Σ′

,
∂Σ′

∂ti

〉
(32)

For 2D mean µ′, we have the contribution to the gradient of t as:

∂Lµ′
∂t

=
1

2
P>

[
w/tw 0 0 −w · tx/t2w

0 h/tw 0 −w · ty/t2w

]>
∂L
∂µ′

. (33)
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The 2D covariance Σ′ contributes to the gradients of Σ and t. where Σ′ = TΣT>. The
contribution to Σ is straightforward. Letting G = ∂L

∂Σ′ , we have

∂LΣ′ =
〈
G, ∂Σ′

〉
=
〈
G, (∂T )ΣT> + T (∂Σ)T> + TΣ

(
∂T>

)〉
=
〈
GTΣ>, ∂T

〉
+
〈
T>GT, ∂Σ

〉
+
〈
G>TΣ, ∂T

〉
=
〈
GTΣ> +G>TΣ, ∂T

〉
+
〈
T>GT, ∂Σ

〉
.

(34)

We read out the gradient with respect to Σ ∈ R3×3 as

∂L
∂Σ

= T>
∂L
∂Σ′

T . (35)

We continue to propagate gradients through T = JRcw ∈ R2×3 for J ∈ R2×3 :

∂L =

〈
∂L
∂T

, (∂J)Rcw

〉
=

〈
∂L
∂T

R>cw, ∂J

〉
, where

∂L
∂T

=
∂L
∂Σ′

TΣ> +
∂L
∂Σ′

TΣ. (36)

We continue propagating through J for camera coordinates t ∈ R4 for the contribution
through Σ′ to the gradients of t :

∂J

∂tx
=

[
0 0 −fx/t2z
0 0 0

]
,

∂J

∂ty
=

[
0 0 0
0 0 −fy/t2z

]
, (37)

∂J

∂tz
=

[
−fx/t2z 0 2fxtx/t

3
z

0 −fy/t2z 2fyty/t
3
z

]
,

∂J

∂tw
= 02×3. (38)

We can now sum the two gradients
∂Lµ′
∂t and

∂LΓ′
∂t into G = ∂L

∂t , and compute the full
gradients with respect to the 3D mean µ and the view matrix Tcw. We have that t = Tcwq,

where q =
[
µ 1

]>
.

∂L = 〈G, ∂t〉 = 〈G, ∂ (Tcwq)〉

=
〈
Gq>, ∂Tcw

〉
+
〈
T>cwG, ∂q

〉
.

(39)

The gradients with respect to Tcw and µ are then

∂L
∂Tcw

=
∂L
∂t
q> ∈ R4×4,

∂L
∂µ

= R>cw

[
∂L
∂tx

∂L
∂ty

∂L
∂tz

]>
∈ R3 (40)

D.4 Scale and rotation gradients

Now we have Σ = MM> and ∂L
∂Σ . Letting G = ∂L

∂Σ , we have

∂L = 〈G, ∂Σ〉

=
〈
G, (∂M)M> +M

(
∂M>

)〉
=
〈
GM +G>M,∂M

〉 (41)
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which gives us
∂L
∂M

=
∂L
∂Σ

M +
∂L
∂Σ

>
M (42)

Now we have M = RS, with G = ∂L
∂M as

∂L = 〈G, ∂M〉
= 〈G, (∂R)S〉+ 〈G,R(∂S)〉

=
〈
GS>, ∂R

〉
+
〈
R>G, ∂S

〉 (43)

which gives us
∂L
∂R

=
∂L

∂M
S>,

∂L
∂S

= R>
∂L

∂M
. (44)

The Jacobians of the rotation matrix R wrt the quaternion parameters q = (w, x, y, z) are

∂R

∂w
= 2

 0 −z y
z 0 −x
−y x 0

 , ∂R
∂x

= 2

 0 y z
y −2x −w
z w −2x

 , (45)

∂R

∂y
= 2

 −2y x w
x 0 z
−w z −2y

 , ∂R
∂z

= 2

 −2z −w x
w −2z y
x y 0

 . (46)

The Jacobians of the scale matrix S with respect to the scale parameters s = (sx, sy, sz) are

∂S

∂sj
= δij (47)

whichs selects the corresponding diagonal element of ∂L
∂S .

Appendix E. Data Conventions

Various conventions are used within the gsplat library. We briefly outline the most impor-
tant ones.

E.0.1 Rotation matrix representation

Similar to the original work by Kerbl et al., we represent a Gaussian rotation by a four
dimensional quaternion q = (w, x, y, z) with the Hamilton convention such that the SO(3) ∈
R3×3 rotation matrix is given by

R =

1− 2
(
y2 + z2

)
2 (xy − wz) 2 (xz + wy)

2 (xy + wz) 1− 2
(
x2 + z2

)
2 (yz − wx)

2 (xz − wy) 2 (yz + wx) 1− 2
(
x2 + y2

)
 . (48)

E.0.2 Pixel Coordinates

Conversion to discrete pixel coordinates p = (pi, pj) ∈ Z+ from continuous image coor-
dinates µ′ = (µ′x, µ

′
y) ∈ R+ assumes that a pixel’s center is located at the center of a
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box of area 1. This gives the following relation between pixel space, image space, and 3D
coordinates t = (tx, ty, tz):

pi + 0.5 = µ′x = fx · tx/tz + cx

pj + 0.5 = µ′y = fy · ty/tz + cy
(49)

where (fx, fy, cx, cy) are the pinhole camera intrinsics.
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