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Abstract
Robustness to malicious attacks is of paramount importance for distributed learning. Existing works
usually consider the classical Byzantine attacks model, which assumes that some workers can send
arbitrarily malicious messages to the server and disturb the aggregation steps of the distributed
learning process. To defend against such worst-case Byzantine attacks, various robust aggregators
have been proposed. They are proven to be effective and much superior to the often-used mean ag-
gregator. In this paper, however, we demonstrate that the robust aggregators are too conservative for
a class of weak but practical malicious attacks, known as label poisoning attacks, where the sample
labels of some workers are poisoned. Surprisingly, we are able to show that the mean aggregator
is more robust than the state-of-the-art robust aggregators in theory, given that the distributed data
are sufficiently heterogeneous. In fact, the learning error of the mean aggregator is proven to be
order-optimal in this case. Experimental results corroborate our theoretical findings, showing the
superiority of the mean aggregator under label poisoning attacks.

Keywords: distributed learning, Byzantine attacks, label poisoning attacks

1. Introduction

With the rising and rapid development of large machine learning models, distributed learning has at-
tracted intensive research attention due to its provable effectiveness in solving large-scale problems
(Verbraeken et al., 2020; Li et al., 2020). In distributed learning, there often exist one parameter
server (called server thereafter) owning the global model and some computation devices (called
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workers thereafter) owning the local data. In the training process, the server sends the global model
to the workers, and the workers use their local data to compute the local stochastic gradients or
momenta of the global model and send them back to the server. Upon receiving the messages from
all workers, the server aggregates them and uses the aggregated stochastic gradient or momentum
to update the global model. After the training process, the trained global model is evaluated on
the testing data. An essential component of distributed learning is federated learning (McMahan
et al., 2017; Yang et al., 2019; Gosselin et al., 2022; Ye et al., 2023; Fraboni et al., 2023), which is
particularly favorable in terms of privacy preservation.

However, the distributed nature of such a server-worker architecture is vulnerable to malicious
attacks during the learning process (Lewis et al., 2023). Due to data corruptions, equipment failures,
or cyber attacks, some workers may not follow the algorithmic protocol, and instead send incorrect
messages to the server. Previous works often characterize these attacks by the classical Byzantine
attacks model, which assumes that some workers can send arbitrarily malicious messages to the
server so that the aggregation steps of the learning process are disturbed (Lamport et al., 1982). For
such worst-case Byzantine attacks, various robust aggregators have been proven effective and much
superior to the mean aggregator (Chen et al., 2017; Xia et al., 2019; Karimireddy et al., 2021; Wu
et al., 2023).

The malicious attacks encountered in reality, on the other hand, are often less destructive than
the worst-case Byzantine attacks. For example, a distributed learning system may often suffer from
label poisoning attacks, which are weak yet of practical interest. Considering a highly secure email
system in a large organization (for example, government or university), if hackers (some users) aim
to disturb the online training process of a spam detection model, one of the most effective ways
for them is to mislabel received emails from “spam” to “non-spam”, resulting in label poisoning
attacks. Similar attacks may happen in fraudulent short message service (SMS) detection held by
large communication corporations, too.

To this end, in this paper, we consider label poisoning attacks where some workers have local
data with poisoned labels and generate incorrect messages during the learning process. Under label
poisoning attacks and with some mild assumptions, surprisingly we are able to show that the mean
aggregator is more robust than the state-of-the-art robust aggregators in theory. To be specific, we
prove that the mean aggregator has a better learning error bound than the robust aggregators (see
Theorems 7 and 8 in Section 4), given that the distributed data are sufficiently heterogeneous. The
main contributions of this paper are summarized as follows.

C1) To the best of our knowledge, our work is the first to investigate the robustness of the mean
aggregator in distributed learning. Our work reveals an important fact that the mean aggregator is
more robust than the existing robust aggregators under specific types of malicious attacks, which
motivates us to rethink the usage of different aggregators within practical scenarios.

C2) Under label poisoning attacks, we theoretically analyze the learning errors of the mean
aggregator and the state-of-the-art robust aggregators. The results show that when the heterogeneity
of the distributed data is large, the learning error of the mean aggregator is order-optimal regardless
of the fraction of poisoned workers.

C3) We empirically evaluate the performance of the mean aggregator and the state-of-the-art
robust aggregators under label poisoning attacks. The experimental results fully support our theo-
retical findings.

This paper significantly extends upon our previous conference paper (Peng et al., 2024). First,
Peng et al. (2024) considered the distributed gradient descent algorithm, which ignores the stochas-
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tic gradient noise that is critical to distributed learning. To address this issue, we investigate dis-
tributed stochastic momentum as the backbone algorithm, and provide new theoretical analysis for
distributed stochastic momentum with the mean aggregator or the robust aggregators. By properly
handling the stochastic gradient noise, we establish the tight upper bounds and the lower bound for
the learning error. These theoretical results recover those in Peng et al. (2024) if the momentum
coefficient is set to 1 and the inner variance bound is 0 (see Remark 10). Second, we present new,
comprehensive experimental results to compare the performance of various aggregators combined
with the distributed stochastic momentum algorithm, validating our theoretical findings.

2. Related Works

Poisoning attacks can be categorized into targeted attacks and untargeted attacks; or model poison-
ing attacks and data poisoning attacks (Kairouz et al., 2021). In this paper, we focus on the latter
categorization. In model poisoning attacks, the malicious workers send arbitrarily poisoned models
to the server, while data poisoning attacks yield poisoned messages by fabricating poisoned data at
the malicious workers’ side (Shejwalkar et al., 2022). Below we briefly review the related works of
the two types of poisoning attacks in distributed learning, respectively.

Under model poisoning attacks, most of the existing works design robust aggregators for aggre-
gating local stochastic gradients of the workers and filter out the potentially poisoned messages. The
existing robust aggregators include Krum (Blanchard et al., 2017), geometric median (Chen et al.,
2017), coordinate-wise median (Yin et al., 2018), coordinate-wise trimmed-mean (Yin et al., 2018),
FABA (Xia et al., 2019), centered clipping (Karimireddy et al., 2021), VRMOM (Tu et al., 2021),
etc. The key idea behind these robust aggregators is to find a point that has bounded distance to the
true stochastic gradient such that the learning error is under control. Farhadkhani et al. (2022) and
Allouah et al. (2023) propose a unified framework to analyze the performance of these robust aggre-
gators under attacks. However, the above works do not consider the effect of the stochastic gradient
noise which may provide a shelter for Byzantine attacks and increase the learning error. To address
this issue, Khanduri et al. (2019); Wu et al. (2020); Karimireddy et al. (2021); Rammal et al. (2024);
Guerraoui et al. (2024) propose to use the variance-reduction and momentum techniques to allevi-
ate the effect of the stochastic gradient noise and enhance the Byzantine-robustness. Though these
methods work well when the data distributions are the same over the workers, their performance
degrades when the data distributions become heterogeneous (Li et al., 2019; Karimireddy et al.,
2022). Therefore, Li et al. (2019) suggests using model aggregation rather than stochastic gradient
aggregation to defend against model poisoning attacks in the heterogeneous case. Karimireddy et al.
(2022); Peng et al. (2022); Allouah et al. (2023) propose to use the bucketing/resampling and nearest
neighbor mixing techniques to reduce the heterogeneity of the messages, prior to aggregation.

Some other works focus on asynchronous learning (Yang and Li, 2023) or decentralized learning
without a server (Peng et al., 2021; He et al., 2022; Wu et al., 2023), under model poisoning attacks.
Nevertheless, we focus on synchronous distributed learning with a server in this paper.

There are also a large amount of papers focusing on data poisoning attacks (Sun et al., 2019;
Bagdasaryan et al., 2020; Wang et al., 2020; Rosenfeld et al., 2020; Cinà et al., 2024). To defend
against data poisoning attacks, the existing works use data sanitization to remove poisoned data
(Steinhardt et al., 2017), and prune activation units that are inactive on clean data (Liu et al., 2018).
For more defenses against data poisoning attacks, we refer the reader to the survey paper (Kairouz
et al., 2021).
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In practice, however, attacks may not necessarily behave as arbitrarily malicious as the above
well-established works consider. Some weaker attacks models are structured; for example, Tavallali
et al. (2022) considers the label poisoning attacks in which some workers mislabel their local data
and compute the incorrect messages using those poisoned data. Specifically, Tolpegin et al. (2020);
Lin et al. (2021); Jebreel and Domingo-Ferrer (2023); Jebreel et al. (2024) consider the case where
some workers flip the labels of their local data from source classes to target classes. Notably, label
poisoning is a kind of data poisoning but not necessarily the worst-case attack, since label poisoning
attacks fabricate the local data, yet only on the label level.

It has been shown that the robust aggregators designed for model poisoning attacks can be
applied to defend against the label poisoning attacks, as validated by Fang et al. (2020); Karimireddy
et al. (2022); Gorbunov et al. (2022). There also exist some works designing new robust aggregators
based on specific properties of label poisoning. For example, the work of Tavallali et al. (2022)
proposes regularization-based defense to detect and exclude the samples with flipped labels in the
training process. However, Tavallali et al. (2022) requires to access a clean validation set, which
has privacy concerns in distributed learning. Another work named as LFighter (Jebreel et al., 2024)
is the state-of-the-art defense for label poisoning attacks in federated learning. Jebreel et al. (2024)
proposes to cluster the local gradients of all workers, identify the smaller and denser clusters as the
potentially poisoned gradients, and discard them. The key idea of LFighter is that the difference
between the stochastic gradients connected to the source and target output neurons of poisoned
workers and regular workers becomes larger when the training process evolves. Therefore, we are
able to identify the potentially poisoned stochastic gradients. However, LFighter only works well
when data distributions at different workers are similar. If the heterogeneity of the distributed data
is large, the performance of LFighter degrades, as we will show in Section 5.

Though the recent works of Karimireddy et al. (2022) and Farhadkhani et al. (2024) respectively
prove the optimality of certain robust aggregators for model poisoning attacks and data poisoning
attacks, they only consider the case that the poisoned workers can cause unbounded disturbances to
the learning process. In contrast, we consider the case that the disturbances caused by the poisoned
workers is bounded and prove the optimality of the mean aggregator for label poisoning attacks
when the distributed data are sufficiently heterogeneous, and experimentally validate our theoretical
findings.

The recent work of Shejwalkar et al. (2022), similar to our findings, reveals the robustness of the
mean aggregator under poisoning attacks in production federated learning systems. Nevertheless,
their study is restrictive in terms of the poisoning ratio (for example, less than 0.1% workers are
poisoned while we can afford 10% in the numerical experiments) and lacks theoretical analysis. In
contrast, we provide both theoretical analysis and experimental validations.

In conclusion, our work is the first one to investigate the robustness of the mean aggregator in
distributed learning. It reveals an important fact that the robust aggregators cannot always outper-
form the mean aggregator under specific attacks, promoting us to rethink the application scenarios
for the use of robust aggregators.

3. Problem Formulation

Consider a distributed learning system with one server and W workers. Denote the set of workers
asW with |W| = W , and the set of regular workers asR with |R| = R. Note that the number and
identities of the regular workers are unknown. Our goal is to solve the following distributed learning
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problem defined over the regular workers inR, at the presence of the set of poisoned workersW\R:

min
x∈RD

f(x) ,
1

R

∑
w∈R

fw(x), (1)

with fw(x) ,
1

J

J∑
j=1

fw,j(x), ∀w ∈ R.

Here, x ∈ RD is the global model and fw(x) is the local cost of worker w ∈ R that averages the
costs fw,j(x) of J samples. Without loss of generality, we assume that all workers have the same
number of samples J .

We begin with characterizing the behaviors of the poisoned workers inW \R. Different to the
classical Byzantine attacks model that assumes some workers to disobey the algorithmic protocol
and send arbitrarily malicious messages to the server (Lamport et al., 1982), here we assume the
poisoned workers to: (i) have samples with poisoned labels; (ii) exactly follow the algorithmic
protocol during the distributed learning process. The formal definition is given as follows.

Definition 1 (Label poisoning attacks) In solving (1), there exist a number of poisoned workers,
whose local costs are in the same form as the regular workers but an arbitrary fraction of sample
labels are poisoned. Nevertheless, these poisoned workers exactly follow the algorithmic protocol
during the distributed learning process.

We solve (1) with the distributed stochastic momentum algorithm, which includes the popular
distributed gradient descent and distributed stochastic gradient descent algorithms as special cases.
At each iteration, each worker randomly accesses one local sample to compute a local stochastic
gradient, updates its local momentum, and sends the local momentum to the server. Then, the server
aggregates the local momenta of all workers. However, as we have emphasized, the number and
identities of the regular workers are unknown, such that the server cannot distinguish the true local
momenta from the regular workers and the poisoned local momenta from the poisoned workers. We
call the true and poisoned local momenta as messages, which the server must judiciously aggregate.

The distributed stochastic momentum algorithm works as follows. At iteration t, the server first
broadcasts the global model xt to all workers. Then, each worker w ∈ W selects a sample index
itw uniformly randomly from {1, · · · , J} and computes the corresponding stochastic gradient at the
global model xt. We denote the true stochastic gradient of regular workerw ∈ R as∇fw,itw(xt) and
the poisoned stochastic gradient of poisoned worker w ∈ W \R as ∇f̃w,itw(xt). Next, the workers
update their local momenta and send to the server. For each regular worker w ∈ R, its true local
momentum is

mt
w = (1− α)mt−1

w + α∇fw,itw(xt), (2)

where α ∈ [0, 1] is the momentum coefficient and m−1
w is initialized as ∇fw,i0w(x0). For each

poisoned worker w ∈ W \R, its poisoned local momentum is

m̃t
w = (1− α)m̃t−1

w + α∇f̃w,itw(xt), (3)

where m̃−1
w is initialized as ∇f̃w,i0w(x0

w). For notational convenience, we denote the message sent
by worker w, no matter true or poisoned, as
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m̂t
w =

{
mt
w, w ∈ R,

m̃t
w, w ∈ W \R.

(4)

Upon receiving all messages {m̂t
w : w ∈ W}, the server may choose to aggregate them with a

robust aggregator RAgg(·) and then move a step along the negative direction, as

xt+1 = xt − γ · RAgg({m̂t
w : w ∈ W}), (5)

where γ > 0 is the step size. State-of-the-art robust aggregators include trimmed mean (TriMean)
(Chen et al., 2017), FABA (Xia et al., 2019), centered clipping (CC) (Karimireddy et al., 2021), to
name a few.

In this paper, we argue that the mean aggregator Mean(·), which is often viewed as vulnerable,
is more robust than the state-of-the-art robust aggregators under label poisoning attacks. With the
mean aggregator, the update is

xt+1 = xt − γ ·Mean({m̂t
w : w ∈ W}), (6)

where

Mean({m̂t
w : w ∈ W}) , 1

W

∑
w∈W

m̂t
w. (7)

We summarize the distributed stochastic momentum algorithm with different aggregators in Al-
gorithm 1. Note that when the momentum coefficient α = 1, it reduces to the popular distributed
stochastic gradient descent algorithm. Further, if at each iteration, each worker accesses all J sam-
ples to compute the local gradient other than stochastic gradient, the algorithm becomes distributed
gradient descent.

Algorithm 1
Input: Initializations x0 ∈ RD, m−1

w = ∇fw,i0w(x0) if w ∈ R, m̃−1
w = ∇f̃w,i0w(x0

w) if w ∈ W \R,
with i0w being uniformly randomly sampled from {1, · · · , J}; step size γ; momentum coefficient α;
number of overall iterations T .

1: for t = 0, 1, · · · , T − 1 do
2: Server broadcasts xt to all workers.
3: Regular worker w ∈ R uniformly randomly samples itw from {1, · · · , J}, computes

∇fw,itw(xt), updates mt
w = (1− α)mt−1

w + α∇fw,itw(xt), and sends m̂t
w = mt

w to server.
4: Poisoned worker w ∈ W \R uniformly randomly samples itw from {1, · · · , J}, computes

∇f̃w,itw(xt), updates m̃t
w = (1− α)m̃t−1

w + α∇f̃w,itw(xt), and sends m̂t
w = m̃t

w to server.
5: Server receives {m̂t

w}w∈W from all workers and updates xt+1 according to (5) or (6).
6: end for
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4. Convergence Analysis

In this section, we analyze the learning errors of Algorithm 1 with different aggregators under label
poisoning attacks. We make the following assumptions. For regular worker w ∈ R, we respectively
denote the true gradients of the local cost and the j-th sample cost as ∇fw(·) and ∇fw,j(·). For
poisoned worker w ∈ W \ R, we respectively denote the poisoned gradients of the local cost and
the j-th sample cost as∇f̃w(·) and ∇f̃w,j(·).

Assumption 1 (Lower boundedness) The global cost f(·) is lower bounded by f∗, i.e., f(x) ≥
f∗.

Assumption 2 (Lipschitz continuous gradients) The global cost f(·) has L-Lipschitz continuous
gradients. That is, for any x, y ∈ RD, it holds that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖. (8)

Assumption 3 (Bounded heterogeneity) For any x ∈ RD, the maximum distance between the
local gradients of any regular worker w ∈ R and the global gradient is upper-bounded by ξ, i.e.,

max
w∈R
‖∇fw(x)−∇f(x)‖ ≤ ξ. (9)

Assumption 4 (Bounded inner variance) For any x ∈ RD, the variance of the local stochastic
gradients of any worker w ∈ W with respect to the local gradient is upper-bounded by σ2, i.e.,

Eiw‖∇fw,iw(x)−∇fw(x)‖2 ≤ σ2, ∀w ∈ R, (10)

Eiw‖∇f̃w,iw(x)−∇f̃w(x)‖2 ≤ σ2, ∀w ∈ W \R, (11)

where iw denotes a sample index uniformly randomly selected from {1, · · · , J}.

Assumptions 1, 2, 3 and 4 are all common in the analysis of distributed first-order stochastic
algorithms. In particular, Assumption 3 characterizes the heterogeneity of the distributed data across
the regular workers; larger ξ means higher heterogeneity. Assumption 4 is made for both regular
and poisoned workers. This is reasonable since the poisoned workers only poison their local labels
while keep local features clean, such that the variances of poisoned local stochastic gradients do not
drastically change. We will validate Assumption 4 with numerical experiments in Appendix G.

Assumption 5 (Bounded disturbances of poisoned local gradients) For any x ∈ RD, the maxi-
mum distance between the poisoned local gradients of poisoned workers w ∈ W \R and the global
gradient is upper-bounded by A, i.e.,

max
w∈W\R

‖∇f̃w(x)−∇f(x)‖ ≤ A. (12)

Assumption 5 bounds the disturbances caused by the poisoned workers. This assumption does
not hold for the worst-case Byzantine attacks model, where the disturbances caused by the Byzan-
tine workers can be arbitrary. However, under label poisoning attacks, we prove that this assumption
holds for distributed softmax regression as follows. We will also demonstrate with numerical ex-
periments that this assumption holds naturally in training neural networks.
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4.1 Justification of Assumption 5

Example: Distributed softmax regression under label poisoning attacks. Distributed softmax
regression is common for classification tasks, where the local cost of worker w ∈ R is in the form
of

fw(x) =
1

J

J∑
j=1

fw,j(x), where fw,j(x) = −
K∑
k=1

1{b(w,j) = k} log
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))
. (13)

In (13), K stands for the number of classes; (a(w,j), b(w,j)) represents the j-th sample of worker w
with a(w,j) ∈ Rd and b(w,j) ∈ R being the feature and the label, respectively; 1{b(w,j) = k} is the
indicator function that outputs 1 if b(w,j) = k and 0 otherwise; xk , [x]kd:(k+1)d ∈ Rd is the k-th
block of x.

Note that for poisoned worker w ∈ W \R, the labels are possibly changed from b(w,j) to b̃(w,j)

for all j ∈ {1, · · · , J}. Therefore, the local cost of worker w ∈ W \R is in the form of

f̃w(x) =
1

J

J∑
j=1

f̃w,j(x), where f̃w,j(x) = −
K∑
k=1

1{b̃(w,j) = k} log
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))
. (14)

It is straightforward to verify that the global cost f(x) with the local costs fw(x) in (13) satisfies
Assumptions 1 and 2. Since the gradients of local costs fw(x) in (13) are bounded (see Lemma 11
in Appendix A), the global cost f(x) satisfies Assumptions 3 and ξ refers to the heterogeneity of the
local costs fw(x). Further, since the gradients of the regular sample costs fw,j(·) and the poisoned
sample costs f̃w,j(·) are all bounded (see Lemma 11 in Appendix A), the local cost of any worker
w ∈ W satisfies Assumption 4. Next, we show that Assumption 5 also holds.

Lemma 2 Consider the distributed softmax regression problem where the local costs of the workers
are in the forms of (13) and (14). Therein, the poisoned workers are under label poisoning attacks,
with arbitrary fractions of sample labels being poisoned. If a(w,j) is entry-wise non-negative for all
w ∈ W and all j ∈ {1, · · · , J}, then Assumption 5 is satisfied with

A ≤ 2
√
K max

w∈W
‖ 1

J

J∑
j=1

a(w,j)‖. (15)

Proof See Appendix A.2.

Lemma 2 explicitly gives the upper bound of the smallest possible A in Assumption 5. Observe
that the non-negativity assumption of a(w,j) naturally holds; for example, in image classification
tasks, each entry of the feature stands for a pixel value. For other tasks, we can shift the features to
meet this requirement.
Relation between Assumptions 3 and 5. Interestingly, the constants ξ and A in Assumptions 3
and 5 are tightly related. Similar to Lemma 2 that gives the upper bound of the smallest possible A
in Assumption 5, for the distributed softmax regression problem, we can give the upper bound of
the smallest possible ξ in Assumption 3 as follows.
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Lemma 3 Consider the distributed softmax regression problem where the local costs of the regular
workers are in the form of (13). If a(w,j) is entry-wise non-negative for all w ∈ R and all j ∈
{1, · · · , J}, then Assumption 3 is satisfied with

ξ ≤ 2
√
K max

w∈R
‖ 1

J

J∑
j=1

a(w,j)‖. (16)

Proof See Appendix A.3.

In particular, in the sufficiently heterogeneous case that each regular worker only has the samples
from one class and the samples from one class only belong to one regular worker, the constant
ξ is in the same order of maxw∈R ‖ 1

J

∑J
j=1 a

(w,j)‖ (see Lemma 12 in Appendix A). Further, if
the feature norms of the regular and poisoned workers have similar magnitudes, which generally
holds in practice, then maxw∈R ‖ 1

J

∑J
j=1 a

(w,j)‖ is in the same order as maxw∈W ‖ 1
J

∑J
j=1 a

(w,j)‖.
Hence, we can conclude that A = O(ξ) when the distributed data are sufficiently heterogeneous.
This conclusion will be useful in our ensuing analysis.

4.2 Main Results

To analyze the learning errors of Algorithm 1 with robust aggregators, we need to characterize the
approximation abilities of the robust aggregators, namely, how close their outputs are to the average
of the messages from the regular workers. This gives rise to the definition of ρ-robust aggregator
(Wu et al., 2023; Dong et al., 2024).

Definition 4 (ρ-robust aggregator) Consider anyW messages y1, y2, · · · , yW ∈ RD, among which
R messages are from regular workers w ∈ R. An aggregator RAgg(·) is said to be a ρ-robust ag-
gregator if there exists a contraction constant ρ ≥ 0 such that

‖RAgg({y1, · · · , yW })− ȳ‖ ≤ ρ ·max
w∈R
‖yw − ȳ‖, (17)

where ȳ = 1
R

∑
w∈R yw is the average message of the regular workers.

From Definition 4, a small contraction constant ρ means that the output of the robust aggregator
is close to the average of the messages from the regular workers. The error is proportional to the
heterogeneity of the messages from the regular workers, characterized by maxw∈R ‖yw − ȳ‖.

However, since a robust aggregator cannot distinguish the regular and poisoned workers, ρ is
unable to be arbitrarily close to 0. Additionally, when the messages from the poisoned workers are
majority, there is no guarantee to satisfy Definition 4. Therefore, we have the following lemma.

Lemma 5 Denote δ , 1− R
W as the fraction of the poisoned workers. Then a ρ-robust aggregator

exists only if δ < 1
2 and ρ ≥ min{ δ

1−2δ , 1}.

Proof See Appendix B.1.

We prove that several state-of-the-art robust aggregators, such as TriMean (Chen et al., 2017),
CC (Karimireddy et al., 2021) and FABA (Xia et al., 2019), all satisfy Definition 4 when the fraction
of poisoned workers is below their respective thresholds. Their corresponding contraction constants
ρ are given in Appendix B.
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Remark 6 Our definition is similar to (f, κ)-robustness in Allouah et al. (2023), while our hetero-
geneity measure is maxw∈R ‖yw−ȳ‖ instead of 1

R

∑
w∈R ‖yw−ȳ‖2. Due to the fact maxw∈R ‖yw−

ȳ‖2 ≤
∑

w∈R ‖yw − ȳ‖2, our definition implies (f, κ)-robustness in Allouah et al. (2023). Further,
according to Propositions 8 and 9 in Allouah et al. (2023), our definition also implies (f, λ)-resilient
averaging and (δmax, c)-ARAgg in Farhadkhani et al. (2022) and Karimireddy et al. (2022), respec-
tively. The lower bound of ρ is determined by the fraction of the poisoned workers δ. A smaller δ
leads to a smaller lower bound of ρ, which aligns with our intuition. Similar results can be found in
Farhadkhani et al. (2022) and Allouah et al. (2023).

Thanks to the contraction property in Definition 4, we can prove that the learning error of Algo-
rithm 1 with a ρ-robust aggregator is bounded under label poisoning attacks.

Theorem 7 Consider Algorithm 1 with a ρ-robust aggregator RAgg(·) to solve (1) and suppose that
Assumptions 1, 2, 3, and 4 hold. Under label poisoning attacks where the fraction of poisoned work-

ers is δ ∈ [0, 1
2), if the step size is γ = min

{
O
(√

LF 0+ρ2σ2

TL2σ2(ρ2+1)

)
, 1

8L

}
, the momentum coefficient is

α = 8Lγ, then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 (18)

=O

(
ρ2ξ2 +

√
(LF 0 + ρ2σ2)(ρ2 + 1)σ2

T
+
LF 0 + (ρ2 + 1)σ2 + ρ2ξ2

T

)
.

where the expectation is taken over the algorithm’s randomness and F 0 , f(x0)− f∗.

Proof See Appendix C.

Interestingly, we are also able to prove that under label poisoning attacks, Algorithm 1 with the
mean aggregator has a bounded learning error.

Theorem 8 Consider Algorithm 1 with the mean aggregator Mean(·) to solve (1) and suppose that
Assumptions 1, 2, 4, and 5 hold. Under label poisoning attacks where the fraction of poisoned work-
ers is δ ∈ [0, 1), if the step size is γ = min

{
O
(√

LF 0+δ2σ2

TL2σ2(δ2+1)

)
, 1

8L

}
, the momentum coefficient is

α = 8Lγ, then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 (19)

=O

(
δ2A2 +

√
(LF 0 + δ2σ2)(δ2 + 1)σ2

T
+
LF 0 + (δ2 + 1)σ2 + δ2A2

T

)
.

where the expectation is taken over the algorithm’s randomness and F 0 , f(x0)− f∗.

Proof See Appendix D.
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Theorems 7 and 8 demonstrate that Algorithm 1 with both ρ-robust aggregators and the mean
aggregator can sublinearly converge to neighborhoods of a first-order stationary point of (1), while
the non-vanishing learning errors are O(ρ2ξ2) for ρ-robust aggregators and O(δ2A2) for the mean
aggregator. It is worth noting that the constants within O(ρ2ξ2) for the ρ-robust aggregator and
O(δ2A2) for the mean aggregator are the same (see Theorem 17 in Appendix C and Theorem 18 in
Appendix D). We omit these constants here to present the theoretical results concisely. Observe that
without the O(ρ2ξ2) and O(δ2A2) terms, the O( 1√

T
) convergence rates are optimal for first-order

nonconvex stochastic optimization algorithms (Arjevani et al., 2023).
Before comparing the learning errors in Theorems 7 and 8, we first give the lower bound of the

learning error for a class of identity-invariant algorithms.

Theorem 9 Under label poisoning attacks with δ = 1− R
W fraction of poisoned workers, consider

any algorithm running for T iterations and generating xt at iteration t. Suppose that the output of
the algorithm is invariant with respect to the identities of the workers. Then, there exist R regular
local functions {fw(x) : w ∈ R} and W − R poisoned local functions {f̃w(x) : w ∈ W \R},
which are all composed of J sample costs fw,j(x) or f̃w,j(x) respectively, satisfying Assumptions
1, 2, 3, 4, and 5 such that the iterates {xt : t = 1, · · · , T} of the algorithm satisfy

1

T

T∑
t=1

E‖∇f(xt)‖2 = Ω(δ2 min{A2, ξ2}). (20)

where the expectation is taken over the algorithm’s randomness.

Proof See Appendix E.

The identity-invariant property in Theorem 9 means that, given any W local costs of which R
are regular, the output of the algorithm is invariant with respect to which local costs are regular or
poisoned. This property excludes the “omniscient” algorithms that know the identities of the work-
ers and thus can exclude the local costs of the poisoned workers. In fact, all practical algorithms
are identity-invariant, including Algorithm 1 with any ρ-robust aggregator or the mean aggregator.
In Karimireddy et al. (2022) and Allouah et al. (2023), the authors implicitly confine their analyses
to the algorithms that share the same identity-invariant property as stated in Theorem 9, resulting in
comparable lower bounds to ours. On the other hand, in Karimireddy et al. (2021), the authors estab-
lish a lower bound for the algorithms with a stronger iteration-wise permutation-invariant property,
which excludes our distributed stochastic momentum algorithm.

For any identity-invariant algorithm, it is impossible to fully eliminate the effect of malicious
attacks, which results in the non-vanishing learning error as demonstrated in Theorem 9. When the
disturbances caused by the poisoned workers are small such that A < ξ, the lower bound in (20)
becomes Ω(δ2A2), matching the learning error of Algorithm 1 with the mean aggregator in (19).
It implies that the learning error of the mean aggregator is order-optimal in the presence of small
disturbances. On the other hand, when the disturbances caused by the poisoned worker are large
such that A ≥ ξ, the lower bound in (20) becomes Ω(δ2ξ2). In Table 1, we compare the learning
errors for different aggregators, given large heterogeneity such that A is at most the same order as
ξ (which holds when the distributed data are sufficiently heterogeneous, as we have discussed in
Section 4.1).

11
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Aggregator Learning error

TriMean O( δ2ξ2

(1−2δ)2
)

CC O(δξ2)

FABA O( δ2ξ2

(1−3δ)2
)

Mean O(δ2ξ2)

Lower bound Ω(δ2ξ2)

Table 1: Learning errors of Algorithm 1 with TriMean, CC, FABA and the mean aggregator when the hetero-
geneity of distributed data is sufficiently large such that A is in the same order as ξ. The lower bound of the
learning error is also given.

According to Table 1, we know that the learning errors of TriMean, FABA and the mean aggre-
gator all match the lower bound in terms of the order, when δ is small. However, the learning errors
of TriMean and FABA explode when δ approaches 1

2 and 1
3 , respectively, while the mean aggregator

is insensitive. Therefore, the learning error of the mean aggregator is order-optimal regardless of
the fraction of poisoned workers. In addition, the learning error of the mean aggregator is smaller
than that of CC by a magnitude of δ.

Remark 10 Note that our backbone algorithm, distributed stochastic momentum, degenerates to
distributed stochastic gradient descent (when α = 1) and distributed gradient descent (when α = 1
and σ = 0). Following our analysis, the non-vanishing learning errors of distributed stochastic
gradient descent, when using a ρ-robust aggregators and the mean aggregator, are O(ρ2σ2 + ρ2ξ2)
and O(δ2σ2 + δ2A2) respectively (substituting α = 1 to the proofs of Theorems 7 and 8 yields
these results). When the data heterogeneity term ξ2 and the disturbance term A2 both dominate the
variance of the stochastic gradients σ2, our conclusions made in this paper remain valid. Further
letting σ = 0, the non-vanishing learning errors of distributed gradient descent, when using a ρ-
robust aggregator and the mean aggregator, are O(ρ2ξ2) and O(δ2A2) respectively. This way, we
can obtain the same results in Table 1, as shown in Peng et al. (2024).

5. Numerical Experiments

In this section, we conduct numerical experiments to validate our theoretical findings and demon-
strate the performance of Algorithm 1 with the mean and robust aggregators under label poisoning
attacks. The code is available at https://github.com/pengj97/LPA.

5.1 Experimental Settings

Datasets and partitions. In the numerical experiments, we investigate a convex problem of softmax
regression on the MNIST dataset. We also consider two non-convex problems. The first one is to
train two-layer perceptrons, in which each layer has 50 neurons and the activation function is ReLU,

12
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Figure 1: Accuracies of softmax regression on the MNIST dataset under static label flipping attacks.
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Figure 2: Accuracies of softmax regression on the MNIST dataset under dynamic label flipping attacks.
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Figure 3: Heterogeneity of regular local gradients (the smallest ξ satisfying Assumption 3) and disturbance
of poisoned local gradients (the smallest A satisfying Assumption 5) in softmax regression on the MNIST
dataset, under static label flipping and dynamic label flipping attacks.
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Layer Name Layer size

Convolution + ReLU 3 × 3 × 16

Max pool 2 × 2

Convolution + ReLU 3 × 3 × 32

Max pool 2 × 2

Fully connected + ReLU 128

Softmax 10

Table 2: Architecture of the convolutional neural network trained on the CIFAR10 dataset.

on the MNIST dataset. The second one is to train convolutional neural networks, whose architecture
is given in Table 2, on the CIFAR10 dataset1.

We setupW = 10 workers whereR = 9 workers are regular and the remaining one is poisoned.
The impact of different fractions of poisoned workers is demonstrated in Appendix H. We consider
three data distributions: i.i.d., mild non-i.i.d. and non-i.i.d. cases. In the i.i.d. case, we uniformly
randomly divide the training data among all workers. In the mild non-i.i.d. case, we divide the
training data using the Dirichlet distribution with hyper-parameter β = 1 by default (Hsu et al.,
2019). In the non-i.i.d. case, we assign each class of the training data to one worker.
Label poisoning attacks. We investigate two types of label poisoning attacks: static label flipping
where the poisoned worker flips label b to 9 − b with b ranging from 0 to 9, and dynamic label
flipping where the poisoned worker flips label b to the least probable label with respect to the global
model xt (Shejwalkar et al., 2022).
Aggregators to compare. We are going to compare the mean aggregator with several representa-
tive ρ-robust aggregators, including TriMean, FABA, CC, and LFighter. The baseline is the mean
aggregator without attacks. The step size is γ = 0.01 and the momentum coefficient is α = 0.1.

5.2 Convex Case

Classification accuracy. We consider softmax regression on the MNIST dataset. The classification
accuracies under static label flipping and dynamic label flipping attacks are shown in Figure 1 and
Figure 2, respectively. In the i.i.d. case, all methods perform well and close to the baseline, but the
mean aggregator has an apparently lower classification accuracy. In the mild non-i.i.d. case, FABA
and LFighter are the best among all aggregators and the other aggregators have similar performance.
In the non-i.i.d. case, since the heterogeneity is large, all aggregators are tremendously affected
by the label poisoning attacks, and have gaps to the baseline in terms of classification accuracy.
Notably, the mean aggregator performs the best among all aggregators in this case, which validates
our theoretical results.
Heterogeneity of regular local gradients and disturbance of poisoned local gradients. To fur-
ther validate the reasonableness of Assumptions 3 and 5, as well as the correctness of our theoretical

1. Although the ReLU function is non-smooth, the training process rarely reaches the non-smooth point. Therefore,
the results on the ReLU function are similar to those on a smooth function (which can be obtained by modifying the
ReLU function and has Lipschitz continuous gradients).

14
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results in Section 4.1, we compute the smallest ξ and A that satisfy Assumptions 3 and 5 for the
softmax regression problem. As shown in Figure 3, the disturbances of the poisoned local gradients,
namely A, are bounded under both static label flipping and dynamic label flipping attacks, which
corroborates the theoretical results in Lemma 2. From i.i.d., mild non-i.i.d. to the non-i.i.d. case,
the heterogeneity of the regular local gradients characterized by ξ increases. Particularly, in the
non-i.i.d. case, ξ is close to A under both static label flipping and dynamic label flipping attacks,
which aligns our discussions below Lemma 3. Recall Table 1 that shows when the heterogeneity is
in the same order of the disturbances caused by the label poisoning attacks, the learning error of the
mean aggregator is order-optimal. This explains the results in Figures 1 and 2.

5.3 Nonconvex Case

Classification accuracy. Next, we train two-layer perceptrons on the MNIST dataset and convolu-
tional neural networks on the CIFAR10 dataset under static label flipping and dynamic label flipping
attacks, as depicted in Figures 4 and 5. In the i.i.d. case, all methods have good performance and are
close to the baseline, except for CC that performs worse than the other aggregators on the CIFAR10
dataset under dynamic label flipping attacks. In the mild non-i.i.d. case and on the MNIST dataset,
all methods perform well and are close to the baseline. On the CIFAR10 dataset, Mean, FABA and
LFighter are the best and close to the baseline, CC and TriMean are worse, while TriMean is the
worst and with an obvious gap under dynamic label flipping attacks. In the non-i.i.d. case, all meth-
ods are affected by the attacks and cannot reach the same classification accuracy of the baseline, but
the mean aggregator is still the best. CC, FABA and LFighter are worse and TriMean fails.
Heterogeneity of regular local gradients and disturbance of poisoned local gradients. We also
calculate the smallest values of ξ and A satisfying Assumptions 3 and 5, respectively. As shown in
Figure 6, the disturbance of poisoned local gradients measured byA are bounded on the MNIST and
CIFAR10 datasets under both static label flipping and dynamic label flipping attacks. From i.i.d.,
mild non-i.i.d. to the non-i.i.d. case, the heterogeneity of regular local gradients ξ is increasing. In
the non-i.i.d. case, ξ is close to A.

5.4 Impacts of Heterogeneity and Attack Strengths

To further show the impacts of heterogeneity of data distributions and strengths of label poisoning
attacks, we compute classification accuracies of the trained two-layer perceptrons on the MNIST
dataset, varying the data distributions and the levels of label poisoning attacks. We employ the
Dirichlet distribution by varying the hyper-parameter β = {5, 1, 0.1, 0.05, 0.03, 0.01} to simulate
various heterogeneity of data distributions, in which a smaller β corresponds to larger heterogeneity
(Hsu et al., 2019). In addition, we let the poisoned worker apply static label flipping attacks by flip-
ping labels with probability p = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} to simulate different attack strengths.
A larger flipping probability indicates stronger attacks.

We present the best performance among all aggregators, and mark the corresponding best ag-
gregator in Figure 7. More details are in Table 3 of Appendix F. The mean aggregator outperforms
the robust aggregators when the heterogeneity is large. For example, the mean aggregator exhibits
superior performance when β = 0.01 and the flipping probability p = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0},
as well as when β = 0.03 and p = {0.0, 0.2, 0.4, 0.6, 0.8}. Furthermore, fixing the flipping proba-
bility p, when the hyper-parameter β becomes smaller which means that the heterogeneity becomes
larger, the mean aggregator gradually surpasses the robust aggregators. Fixing the hyper-parameter
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Figure 4: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under static label flipping attacks.
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Figure 5: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under dynamic label flipping attacks.
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β, when the flipping probability p becomes smaller which means that the attack strength becomes
smaller, the mean aggregator gradually surpasses the robust aggregators. According to the above
observations, we recommend to apply the mean aggregator if the distributed data are sufficiently het-
erogeneous, or the disturbance caused by label poisoning attacks is comparable to the heterogeneity
of regular local gradients.

6. Conclusions

We studied the distributed learning problem subject to the label poisoning attacks. We theoretically
proved that when the distributed data are sufficiently heterogeneous, the learning error of the mean
aggregator is order-optimal. Further corroborated by numerical experiments, our work revealed an
important fact that state-of-the-art robust aggregators cannot always outperform the mean aggrega-
tor, if the attacks are confined to label poisoning. We expect that this fact can motivate readers to
revisit which application scenarios are proper for using robust aggregators. In our future work, we
will extend the analysis to the more challenging decentralized learning problem.
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Appendix A. Analysis of Distributed Softmax Regression

In this section, we analyze the property of distributed softmax regression where the local cost of
worker w ∈ W is in the forms of (13) and (14). We first show that the gradients of the sample
costs fw,j(x), f̃w,j(x) and the local cost fw(x), f̃w(x) are bounded. Then, we prove Lemma 2 that
provides the constant A in Assumption 5. Last, we prove Lemma 3 that gives the constant ξ in
Assumption 3, and further demonstrate that when the distributed data across the regular workers are
sufficiently heterogeneous, the constant ξ is in the same order of maxw∈R ‖ 1

J

∑J
j=1 a

(w,j)‖.

A.1 Bounded Gradients of Local Costs

Lemma 11 Consider the distributed softmax regression problem where the local cost of worker
w ∈ W is in the forms of (13) and (14). Then, the gradients of the sample costs are bounded by the
norms of the corresponding sample features, i.e.,

‖∇fw,j(x)‖ ≤ 2‖a(w,j)‖, ∀w ∈ R, ∀j ∈ [1, · · · , J ], (21)

‖∇f̃w,j(x)‖ ≤ 2‖a(w,j)‖, ∀w ∈ W \R, ∀j ∈ [1, · · · , J ]. (22)

and the gradient of the local cost is bounded by the maximum norm of the local features, i.e.,

‖∇fw(x)‖ ≤ 2 max
j∈[J ]
‖a(w,j)‖, ∀w ∈ R, (23)

‖∇f̃w(x)‖ ≤ 2 max
j∈[J ]
‖a(w,j)‖, ∀w ∈ W \R. (24)

Moreover, if a(w,j) is entry-wise non-negative for all w ∈ W and all j ∈ {1, · · · , J}, we have

‖∇fw(x)‖ ≤
√
K‖ 1

J

J∑
j=1

a(w,j)‖, ∀w ∈ R, (25)

‖∇f̃w(x)‖ ≤
√
K‖ 1

J

J∑
j=1

a(w,j)‖, ∀w ∈ W \R. (26)

Proof For notational convenience, we denote the local cost of worker w ∈ W as

f̂w(x) =
1

J

J∑
j=1

f̂w,j(x), where f̂w,j(x) = −
K∑
k=1

1{b̂(w,j) = k} log
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))
, (27)

and

b̂(w,j) =

{
b(w,j), w ∈ R,
b̃(w,j), w ∈ W \R.

(28)

We first prove that the sample gradient∇f̂w,j(·) is bounded. For the k-th block of∇f̂w,j(·), we
have

∇xk f̂w,j(x) = −a(w,j)
(
1{b̂(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)
. (29)
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Therefore, the entire sample gradient∇f̂w,j(·) satisfies

‖∇f̂w,j(x)‖2 =
K∑
k=1

‖∇xk f̂w,j(x)‖2 (30)

=
K∑
k=1

‖a(w,j)
(
1{b̂(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)
‖2

=

K∑
k=1

(
1{b̂(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)2‖a(w,j)‖2.

Since

K∑
k=1

(
1{b̂(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)2
(31)

≤
( K∑
k=1

|1{b̂(w,j) = k} −
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))
|
)2
≤ 4,

we have

‖∇f̂w,j(x)‖2 ≤
K∑
k=1

(
1{b̂(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)2‖a(w,j)‖2 ≤
(
2‖a(w,j)‖

)2
, (32)

and

‖∇f̂w,j(x)‖ ≤ 2‖a(w,j)‖. (33)

which shows the upper bound for the gradient of the sample cost function f̂w,j(·).
Now we prove that the local gradient∇f̂w(·) is also bounded. By∇f̂w(x) = 1

J

∑J
j=1∇f̂w,j(x),

we have

‖∇f̂w(x)‖ = ‖ 1

J

J∑
j=1

∇f̂w,j(x)‖ ≤ 1

J

J∑
j=1

‖∇f̂w,j(x)‖ ≤ 2 max
j∈[J ]
‖a(w,j)‖. (34)

Finally, we refine the bound of the local gradient ∇f̂w(·) under the non-negativity assumption.
Starting from the second equality in (30) and using∇xk f̂w(x) = 1

J

∑J
j=1∇xk f̂w,j(x), we have

‖∇f̂w(x)‖2 =

K∑
k=1

‖ 1

J

J∑
j=1

a(w,j)
(
1{b(w,j) = k} −

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

)
‖2 (35)

≤
K∑
k=1

∥∥∥∥∥∥max
j∈[J ]

∣∣1{b(w,j) = k} −
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))

∣∣ · 1

J

J∑
j=1

a(w,j)

∥∥∥∥∥∥
2

,
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where the inequality is due to
∣∣∑

j∈[J ] cjxj
∣∣ ≤ maxj∈[J ] |cj | ·

∑
j∈[J ] xj for any sequence {cj}j∈[J ]

and any positive sequence {xj}j∈[J ]. Since maxj∈[J ]

∣∣1{b(w,j) = k} − exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

∣∣ ≤ 1, we

reach our conclusion of

‖∇f̂w(x)‖2 ≤ K‖ 1

J

J∑
j=1

a(w,j)‖2, (36)

which completes the proof.

A.2 Proof of Lemma 2

Proof Note that

max
w∈W\R

‖∇f̃w(x)−∇f(x)‖2 ≤ 2 max
w∈W\R

‖∇f̃w(x)‖2 + 2‖∇f(x)‖2. (37)

From Lemma 11, we know the first term at the right-hand side of (37) can be upper-bounded as

max
w∈W\R

‖∇f̃w(x)‖2 ≤ K max
w∈W\R

‖ 1

J

J∑
j=1

a(w,j)‖2. (38)

For the second term at the right-hand side of (37), applying the inequality of ‖ 1
R

∑
w∈R∇fw‖2 ≤

1
R

∑
w∈R ‖∇fw‖2 gives

‖∇f(x)‖2 ≤ 1

R

∑
w∈R
‖∇fw(x)‖2 ≤ max

w∈R
‖∇fw(x)‖2 ≤ K max

w∈R
‖ 1

J

J∑
j=1

a(w,j)‖2, (39)

where the last inequality similarly comes from the assumption that a(w,j) is entry-wise non-negative
for all w ∈ W and all j ∈ {1, · · · , J}.

Combining (38) and (39), we have

max
w∈W\R

‖∇f̃w(x)−∇f(x)‖2 ≤ 4K max
w∈W

‖ 1

J

J∑
j=1

a(w,j)‖2, (40)

or equivalently

max
w∈W\R

‖∇f̃w(x)−∇f(x)‖ ≤ 2
√
K max

w∈W
‖ 1

J

J∑
j=1

a(w,j)‖, (41)

which is exactly (8) with A ≤ 2
√
K maxw∈W ‖ 1

J

∑J
j=1 a

(w,j)‖.
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A.3 Proofs of Lemma 3 and Its Extension

The following lemma combines Lemma 3 and its extension in the sufficiently heterogeneous case.

Lemma 12 Consider the distributed softmax regression problem where the local costs of the regular
workers are in the form of (13). If a(w,j) is entry-wise non-negative for all w ∈ R and all j ∈
{1, · · · , J}, then Assumption 3 is satisfied with

ξ ≤ 2
√
K max

w∈R
‖ 1

J

J∑
j=1

a(w,j)‖. (42)

Further, if any regular worker w ∈ R only has the samples from one class and the samples from
one class only belongs to one regular worker (i.e., b(w,j) = b(w

′,j′) if and only if w = w′, for all
w,w′ ∈ R and all j, j′ ∈ {1, · · · , J}), we have

ξ = Θ
(

max
w∈R
‖ 1

J

J∑
j=1

a(w,j)‖
)
. (43)

Proof Note that for any regular worker w ∈ R, it holds

‖∇fw(x)−∇f(x)‖ = ‖
(
1− 1

R

)
∇fw(x)−

∑
w′∈R,w′ 6=w

1

R
∇fw′(x)‖ (44)

≤
(
1− 1

R

)
‖∇fw(x)‖+

1

R

∑
w′∈R,w′ 6=w

‖∇fw′(x)‖

≤ 2 max
w′∈R

‖∇fw′(x)‖.

max
w∈R
‖∇fw(x)−∇f(x)‖ ≤ 2

√
K max

w∈R
‖ 1

J

J∑
j=1

a(w,j)‖, (45)

and thus Assumption 3 is satisfied with

ξ ≤ 2
√
K max

w∈R
‖ 1

J

J∑
j=1

a(w,j)‖. (46)

Next, we prove the lower bound of ξ when any regular worker w ∈ R only has the samples
from one class and the samples from one class only belongs to one regular worker. For any regular
worker w′ ∈ R and any x ∈ RD, Assumption 3 gives that

ξ2 ≥ ‖∇fw′(x)−∇f(x)‖2 =
K∑
k=1

‖ 1

J

J∑
j=1

a(w′,j)(1{b(w′,j) = k} −
exp(xTk a

(w′,j))∑K
l=1 exp(xTl a

(w′,j))
) (47)

− 1

R

∑
w∈R

1

J

J∑
j=1

a(w,j)(1{b(w,j) = k} −
exp(xTk a

(w,j))∑K
l=1 exp(xTl a

(w,j))
)‖2.
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Letting [xk]i = 0 for any i ∈ {1, · · · , D} and k ∈ {1, · · · ,K}, it holds that

exp(xTk a
(w,j))∑K

l=1 exp(xTl a
(w,j))

=
1

K
, ∀w ∈ R, j ∈ {1, · · · , J}, k ∈ {1, · · · ,K}.

Given the heterogeneous label distribution, there exists k′ ∈ {1, · · · ,K}, such that b(w
′,j) = k′ 6=

b(w,j) for all w 6= w′ and j ∈ {1, · · · , J}. Specifically, taking one of the summands in (47) with
k = k′, we obtain

ξ2 ≥‖
(
1− 1

R

) 1

J

J∑
j=1

a(w′,j)(1− 1

K
) (48)

− 1

R

∑
w∈R,w 6=w′

1

J

J∑
j=1

a(w,j)(1{b(w,j) = k′} −
exp(xTk′a

(w,j))∑K
l=1 exp(xTl a

(w,j))
)‖2

=‖
(
1− 1

R

)(
1− 1

K

) 1

J

J∑
j=1

a(w′,j) +
1

RK

∑
w∈R,w 6=w′

1

J

J∑
j=1

a(w,j)‖2

≥‖
(
1− 1

R

)(
1− 1

K

) 1

J

J∑
j=1

a(w′,j)‖2,

where the last inequality is due to the fact that each term in the summation is non-negative. Note
that w′ ∈ R is arbitrary, which results in

ξ ≥
(
1− 1

R

)(
1− 1

K

)
max
w∈R
‖ 1

J

J∑
j=1

a(w,j)‖. (49)

Combining (46) and (49), we have

ξ = Θ
(

max
w∈R
‖ 1

J

J∑
j=1

a(w,j)‖
)
, (50)

which completes the proof.

Appendix B. Analysis of ρ-Robust Aggregators

In this section, we prove Lemma 5 that explores the approximation abilities of ρ-robust aggregators,
and show that the state-of-the-art robust aggregators, including TriMean, CC, and FABA, are all
ρ-robust aggregators when the fraction of poisoned workers is below their respective thresholds.

B.1 Proof of Lemma 5

An equivalent statement of Lemma 5 is shown below.
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Lemma 13 Denote δ , 1− R
W as the fraction of the poisoned workers. For any aggregator RAgg,

if δ ≥ 1
2 or ρ < min{ δ

1−2δ , 1}, then there exist W messages y1, y2, . . . , yW ∈ RD such that

‖RAgg({y1, . . . , yW })− ȳ‖ > ρ ·max
w∈R
‖yw − ȳ‖. (51)

where ȳ = 1
R

∑
w∈R yw is the average message of the regular workers.

Proof Without loss of generality, considerD = 1 andR = {1, 2, . . . , R}. For the high-dimensional
cases, setting all entries but one as zero degenerates to the scalar case. The key idea of our proof
is to find two sets of W messages that are the same but the messages from regular workers are
different. Therefore, any aggregator cannot distinguish between them and will yield the same output.
Elaborately designing these two sets, we shall guarantee that at least one of them satisfies (51).

We first consider the case that δ ≥ 1
2 , or equivalently, 2R ≤ W . In this case, if we can find W

messages y1, · · · , yW ∈ RD such that ‖RAgg({y1, . . . , yW })−ȳ‖ 6= 0 and maxw∈R ‖yw−ȳ‖ = 0,
we have found the set of messages satisfying (51). The construction is as follows. Let y1 = · · · = yR
= 0, yR+1 = · · · y2R = ρ+1 and y2R+1 = · · · = yW = 0. Then ȳ = 0 and maxw∈R ‖yw− ȳ‖ = 0.
If RAgg({y1, . . . , yW }) 6= 0, these W messages satisfy (51) and our task is fulfilled. Otherwise,
we know that RAgg({y1, . . . , yW }) = 0. Rearranging these messages as z1 = . . . zR = ρ + 1 and
zR+1 = . . . = zW = 0, the aggregator outputs the same value RAgg({z1, . . . , zW }) = 0, while
z̄ = ρ+ 1 and maxw∈R ‖zw − z̄‖ = 0. Thus, {zw, w ≤W} is the set of messages satisfying (51).

Second, we consider the case that δ < 1
2 and ρ < min{ δ

1−2δ , 1}. In this case, if we can find
W messages y1, · · · , yW such that ‖RAgg({y1, . . . , yW }) − ȳ‖ = δ

1−δ and maxw∈R ‖yw − ȳ‖ =
max{1−2δ,δ}

1−δ , we have found the set of messages satisfying (51). Similar to the above construction
yet with 2R > W , we consider y1 = . . . = yR = 0 and yR+1 = . . . = yW = 1. Accordingly, we
have ȳ = 0 and maxw∈R ‖yw − ȳ‖ = 0. If RAgg({y1, . . . , yW }) 6= 0, we have found W messages
to satisfy (51). Otherwise, we know that RAgg({y1, . . . , yW }) = 0. Rearranging those messages
as z1 = . . . zW−R = 1 and zW−R+1 = . . . = zW = 0, the aggregator outputs the same value
RAgg({z1, . . . , zW }) = 0, while z̄ = δ

1−δ and maxw∈R ‖zw − z̄‖ = max{1−2δ,δ}
1−δ . In consequence,

{zw, w ≤W} is the set of messages satisfying (51).

Our proof is motivated by those of Farhadkhani et al. (2022, Proposition 2) and Allouah et al.
(2023, Proposition 6). However, their definitions of the robust aggregator are different to ours such
that the proofs are different too.

B.2 TriMean

TriMean is an aggregator that discards the smallest W − R elements and largest W − R elements
in each dimension. The aggregated output of TriMean in dimension d is given by

[TriMean({y1, . . . , yW })]d =
1

2R−W
∑

w∈[U ]d

[yw]d, (52)

where [·]d denotes the d-th coordinate of a vector, and [U ]d is the set of workers whose d-th elements
are not filtered after removal. Below we show that TriMean is a ρ-robust aggregator if δ < 1

2 .

Lemma 14 Denote δ , 1 − R
W as the fraction of the poisoned workers. If δ < 1

2 , TriMean is a
ρ-robust aggregator with ρ = 3δ

1−2δ min{
√
D,
√
R}.
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Proof We first analyze the aggregated result in one dimension d and then extend it to all dimensions.
Denote [UR]d , [U ]d ∩R and [UP ]d , [U ]d ∩ (W \R) as the set of remaining regular workers and
poisoned workers after removal, respectively.

If TriMean successfully removes all the poisoned workers in dimension d, such that [UP ]d = ∅
and [U ]d ⊆ R, it holds

‖[TriMean({y1, . . . , yW })]d − [ȳ]d‖ =‖ 1

2R−W
∑

w∈[U ]d

[yw]d −
1

R

∑
w∈R

[yw]d‖ (53)

=‖( 1

2R−W
− 1

R
)
∑
w∈R

[yw]d −
1

2R−W
∑

w∈R\[U ]d

[yw]d‖

=‖ W −R
2R−W

[ȳ]d −
1

2R−W
∑

w∈R\[U ]d

[yw]d‖

≤ 1

2R−W
∑

w∈R\[U ]d

‖[yw]d − [ȳ]d‖

≤ δ

1− 2δ
·max
w∈R
‖[yw]d − [ȳ]d‖.

Otherwise, TriMean cannot remove all poisoned workers in dimension d, which means [UP ]d 6=
∅. Define

ȳRd
,

1

|[UR]d|
∑

w∈[UR]d

[yw]d, ȳPd
,

1

|[UP ]d|
∑

w∈[UP ]d

[yw]d (54)

as the average of elements in [UR]d and [UP ]d, respectively. Also denote ui ,
|[UP ]d|
|[U ]d| as the fraction

of poisoned workers that remains. With the above definitions, we have ui ≤ W−R
2R−W = δ

1−2δ and

‖[TriMean({y1, . . . , yW })]d − [ȳ]d‖ (55)

=‖ui · ȳPd
+ (1− ui) · ȳRd

− [ȳ]d‖
≤ui‖ȳPd

− [ȳ]d‖+ (1− ui)‖ȳRd
− [ȳ]d‖.

For the first term at the right-hand side of (55), we have

ui‖ȳPd
− [ȳ]d‖ =ui‖

1

|[UP ]d|
∑

w∈[UP ]d

[yw]d − [ȳ]d‖ (56)

≤ δ

1− 2δ
max

w∈[UP ]d
‖[yw]d − [ȳ]d‖

≤ δ

1− 2δ
max
w∈R
‖[yw]d − [ȳ]d‖,

where the last inequality is due to the principle of filtering. Specifically, as the poisoned workers
cannot own the W −R largest values in dimension d, there exists a regular worker such that its d-th
element is larger than [yw]d for all w ∈ [UP ]d. Similarly, there exists a regular worker with the d-th
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element smaller than all [yw]d’s. This observation guarantees the last inequality in (56). For the
second term at the right-hand side of (55), we have

(1− ui)‖ȳRd
− [ȳ]d‖ =(1− ui)‖(

1

|[UR]d|
− 1

R
)
∑
w∈R

[yw]d −
1

|[UR]d|
∑

w∈R\[UR]d

[yw]d‖ (57)

=(1− ui) ·
1

|[UR]d|
‖

∑
w∈R\[UR]d

([yw]d − [ȳ]d)‖

≤ 1

2R−W
∑

w∈R\[UR]d

‖[yw]d − [ȳ]d‖

≤R− |[UR]d|
2R−W

max
w∈R
‖[yw]d − [ȳ]d‖

≤ 2δ

1− 2δ
max
w∈R
‖[yw]d − [ȳ]d‖,

where the last inequality is due to |[UR]d| = (2R−W )−|[UP ]d| ≥ (2R−W )−(W−R) = 3R−2W .
Substituting (56) and (57) into (55), we have

‖[TriMean({y1, . . . , yW })]d − [ȳ]d‖ ≤
3δ

1− 2δ
max
w∈R
‖[yw]d − [ȳ]d‖. (58)

Combining the first case (53) and the second case (58), we have

‖[TriMean({y1, . . . , yW })]d − [ȳ]d‖ ≤
3δ

1− 2δ
max
w∈R
‖[yw]d − [ȳ]d‖. (59)

Next, we extend the scalar scenario to the vector scenario. Notice that

D∑
d=1

max
w∈R
‖[yw]d − [ȳ]d‖2 ≤

D∑
d=1

max
w∈R
‖yw − ȳ‖2 ≤ Dmax

w∈R
‖yw − ȳ‖2. (60)

On the other hand, we also have

D∑
d=1

max
w∈R
‖[yw]d − [ȳ]d‖2 (61)

≤
D∑
d=1

∑
w∈R
‖[yw]d − [ȳ]d‖2

≤
∑
w∈R

D∑
d=1

‖[yw]d − [ȳ]d‖2

≤Rmax
w∈R
‖yw − ȳ‖2.

Combining (60) and (61) gives

D∑
d=1

max
w∈R
‖[yw]d − [ȳ]d‖2 ≤ min{D,R}max

w∈R
‖yw − ȳ‖2. (62)
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Substituting (62) into (59), we have

‖TriMean({y1, . . . , yW })− ȳ‖2 =
D∑
d=1

‖[TriMean({y1, . . . , yW })]d − [ȳ]d‖2 (63)

≤(
3δ

1− 2δ
)2

D∑
d=1

max
w∈R
‖[yw]d − [ȳ]d‖2

≤(
3δ

1− 2δ
)2 min{D,R}max

w∈R
‖yw − ȳ‖2.

Taking the square roots on both sides of (63), we have

‖TriMean({y1, . . . , yW })− ȳ‖ ≤
3δ

1− 2δ
·min{

√
D,
√
R} ·max

w∈R
‖yw − ȳ‖, (64)

which completes the proof.

B.3 CC

CC is an aggregator that iteratively clips the messages from workers. CC starts from some point v0.
At iteration i, the update rule of CC can be formulated as

vi+1 = vi +
1

W

W∑
w=1

CLIP(yw − vi, τ), (65)

where

CLIP(yw − vi, τ) =

yw − v
i, ‖yw − vi‖ ≤ τ,

τ

‖yw − vi‖
(yw − vi), ‖yw − vi‖ > τ,

(66)

and τ ≥ 0 is the clipping threshold. After L iterations, CC outputs the last vector as

CC({y1, . . . , yW }) = vL. (67)

Below we prove that with proper initialization and clipping threshold, one-step CC (L = 1) is a
ρ-robust aggregator if δ < 1

2 .

Lemma 15 Denote δ , 1 − R
W as the fraction of the poisoned workers. If δ < 1

2 , choosing
the starting point v0 satisfying ‖v0 − ȳ‖2 ≤ maxw∈R ‖yw − ȳ‖2 and the clipping threshold τ =√

4(1−δ) maxw∈R ‖yw−ȳ‖2
δ , one-step CC is a ρ-robust aggregator with ρ =

√
24δ.

Proof The output of one-step CC is

CC({y1, . . . , yW }) = v0 +
1

W

W∑
w=1

CLIP(yw − v0, τ). (68)
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Note that if maxw∈R ‖yw−ȳ‖ = 0, we have τ = 0 and v0 = ȳ, which leads to CC({y1, . . . , yW }) =
ȳ. Therefore, we have

‖CC({y1, . . . , yW })− ȳ‖ = max
w∈R
‖yw − ȳ‖ ≤

√
24δmax

w∈R
‖yw − ȳ‖. (69)

Below we consider the case that maxw∈R ‖yw − ȳ‖ > 0, then by definition τ > 0.
Denoting ŷw = v0 + CLIP(yw − v0, τ) for any w ∈ {1, . . . ,W}, we have

CC({y1, . . . , yW }) =
1

W

W∑
w=1

ŷw. (70)

According to (70), we have

‖CC({y1, . . . , yW })− ȳ‖2 =‖ 1

W

W∑
w=1

ŷw − ȳ‖2 (71)

=‖(1− δ) · ( 1

R

∑
w∈R

ŷw − ȳ) + δ · 1

W −R
∑

w∈W\R

(ŷw − ȳ)‖2

≤2(1− δ)2‖ 1

R

∑
w∈R

(ŷw − yw)‖2 + 2δ2‖ 1

W −R
∑

w∈W\R

(ŷw − ȳ)‖2

≤2(1− δ)2 1

R

∑
w∈R
‖ŷw − yw‖2 + 2δ2 1

W −R
∑

w∈W\R

‖ŷw − ȳ‖2.

where the last two inequalities are due to the Cauchy-Schwarz inequality.
For any w ∈ R, the term ‖ŷw − yw‖ holds

‖ŷw − yw‖ = v0 − yw + CLIP(yw − v0, τ). (72)

If the regular message yw is not clipped, meaning that CLIP(yw − v0, τ) = yw − v0, we have

‖ŷw − yw‖ = 0. (73)

Otherwise, we have

‖ŷw − yw‖ = ‖v0 − yw −
τ

‖yw − vl‖
(v0 − yw)‖ = ‖v0 − yw‖ − τ. (74)

Since

‖v0 − yw‖ − τ ≤
‖v0 − yw‖2

τ
≤ 2‖v0 − ȳ‖2 + 2‖yw − ȳ‖2

τ
≤ 4 maxw∈R ‖yw − ȳ‖2

τ
, (75)

where the first inequality is due to a−b ≤ a2

b that holds for any a ≥ 0, b > 0, and the last inequality
is due to ‖v0 − ȳ‖2 ≤ maxw∈R ‖yw − ȳ‖2, we have

‖ŷw − yw‖ ≤
4 maxw∈R ‖yw − ȳ‖2

τ
. (76)
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Combining (73) and (76), we have

‖ŷw − yw‖ ≤
4 maxw∈R ‖yw − ȳ‖2

τ
. (77)

For any w ∈ W \R, the term ‖ŷw − ȳ‖2 holds

‖ŷw − ȳ‖2 ≤ 2‖ŷw − v0‖2 + 2‖v0 − ȳ‖2 ≤ 2τ2 + 2 max
w∈R
‖yw − ȳ‖2, (78)

where the last inequality is due to ‖ŷw − v0‖2 = ‖CLIP(yw − v0, τ)‖2 ≤ τ2 and ‖v0 − ȳ‖2 ≤
maxw∈R ‖yw − ȳ‖2.

Substituting (77) and (78) into (71), we have

‖CC({y1, . . . , yW })− ȳ‖2 (79)

≤2(1− δ)2(
4 maxw∈R ‖yw − ȳ‖2

τ
)2 + 4δ2τ2 + 4δ2 max

w∈R
‖yw − ȳ‖2

≤24δ(1− δ) max
w∈R
‖yw − ȳ‖2 + 4δ2 max

w∈R
‖yw − ȳ‖2

≤24δmax
w∈R
‖yw − ȳ‖2,

where the second inequality is due to τ =

√
4(1−δ) maxw∈R ‖yw−ȳ‖2

δ .
Therefore, we have

‖CC({y1, . . . , yW })− ȳ‖ ≤
√

24δmax
w∈R
‖yw − ȳ‖. (80)

Combining (69) and (80), we have that one-step CC is a ρ-robust aggregator with ρ =
√

24δ. This
completes the proof.

B.4 FABA

FABA is an aggregator that iteratively discards a possible outlier and averages the messages that
remain after W − R iterations. To be more concrete, denote U (i) as the set of workers that are not
discarded at the i-th iteration. Initialized with U (0) = {1, . . . ,W}, at iteration i, FABA computes
the average of the messages from U (i) and discards the worker whose message is farthest from that
average to form U (i+1). After W − R iterations, FABA obtains U (W−R) with R workers, and then
outputs

FABA({y1, . . . , yW }) =
1

R

∑
w∈U(W−R)

yw. (81)

Below we prove that FABA is a ρ-robust aggregator if δ < 1
3 .

Lemma 16 Denote δ , 1 − R
W as the fraction of poisoned workers. If δ < 1

3 , FABA is a ρ-robust
aggregator with ρ = 2δ

1−3δ .
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Proof For notational convenience, denote R(i) , U (i) ∩R and P(i) , U (i) ∩ (W \R) as the sets
of the regular workers and the poisoned workers in U (i), respectively. Further denote three different
averages

ȳU(i) ,
1

|U (i)|
∑

w∈U(i)

yw, ȳR(i) ,
1

|R(i)|
∑

w∈R(i)

yw, ȳP(i) ,
1

|P(i)|
∑

w∈P(i)

yw (82)

over U (i),R(i) and P(i), respectively. Then

ȳU(i) = (1− ui) · ȳR(i) + ui · ȳP(i) , (83)

and our goal is to bound ‖ȳU(P ) − ȳ‖ by maxw∈R ‖yw − ȳ‖.
Denote ui ,

|P(i)|
|U(i)| as the fraction of the poisoned workers in U (i). From δ < 1

3 , ui ≤ W−R
R < 1

2

for any i ∈ {0, . . . ,W −R}. We claim that a regular worker is filtered out at iteration i only if

‖ȳR(i) − ȳP(i)‖ ≤
1

1− 2ui
max
w∈R
‖yw − ȳR(i)‖. (84)

This is because if ‖ȳR(i) − ȳP(i)‖ > 1
1−2ui

maxw∈R ‖yw − ȳR(i)‖, then for any w ∈ R, we have

‖yw − ȳU(i)‖ ≤‖yw − ȳR(i)‖+ ‖ȳR(i) − ȳU(i)‖ (85)

=‖yw − ȳR(i)‖+
ui

1− ui
‖ȳP(i) − ȳU(i)‖

≤max
w∈R
‖yw − ȳR(i)‖+

ui
1− ui

‖ȳP(i) − ȳU(i)‖

<
1− 2ui
1− ui

‖ȳP(i) − ȳU(i)‖+
ui

1− ui
‖ȳP(i) − ȳU(i)‖

≤ max
w∈P(i)

‖yw − ȳU(i)‖,

where (83) is applied to both the second and fourth lines. Therefore, there exists w′ ∈ P(i) with
farther distance to ȳU(i) than all the regular workers, which guarantees that all the remaining regular
workers will not be removed in this iteration.

If at every iteration FABA discards a poisoned worker, then U (W−R) = R and

‖ȳU(W−R) − ȳ‖ = 0 ≤ 2δ

1− 3δ
·max
w∈R
‖yw − ȳ‖. (86)

Otherwise, there are iterations with regular workers removed. Denote i∗ as the last one among the
W −R iterations that removes the regular worker. Denote w(i∗) as the discarded worker at iteration
i∗, we have w(i∗) ∈ R and from the algorithmic principle of removal

‖yw(i∗) − ȳU(i∗)‖ = max
w∈U(i∗)

‖yw − ȳU(i∗)‖. (87)

Note that

‖ȳU(W−R) − ȳ‖ ≤ ‖ȳU(W−R) − ȳU(i∗)‖+ ‖ȳU(i∗) − ȳ‖, (88)
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thus it suffices to bound the two terms at the right separately. First we notice that

‖ȳU(W−R) − ȳU(i∗)‖ =‖ 1

|U (W−R)|
∑

w∈U(W−R)

yw −
1

|U (i∗)|
∑

w∈U(i∗)

yw‖ (89)

=‖( 1

|U (W−R)|
− 1

|U (i∗)|
)
∑

w∈U(i∗)

yw −
1

|U (W−R)|
∑

w∈U(i∗)\U(W−R)

yw‖

=
1

|U (W−R)|
‖

∑
w∈U(i∗)\U(W−R)

(yw − ȳU(i∗))‖

≤|U
(i∗)| − |U (W−R)|
|U (W−R)|

max
w∈U(i∗)\U(W−R)

‖yw − ȳU(i∗)‖

≤W −R− i
∗

R
‖yw(i∗) − ȳU(i∗)‖

≤W −R− i
∗

R
(‖yw(i∗) − ȳR(i∗)‖+ ‖ȳR(i∗) − ȳU(i∗)‖)

=
W −R− i∗

R
(‖yw(i∗) − ȳR(i∗)‖+ ui∗‖ȳR(i∗) − ȳP(i∗)‖)

≤W −R− i
∗

R

(
max
w∈R
‖yw − ȳR(i∗)‖+

ui∗

1− 2ui∗
·max
w∈R
‖yw − ȳR(i∗)‖

)
=
W −R− i∗

R
· 1− ui∗

1− 2ui∗
max
w∈R
‖yw − ȳR(i∗)‖,

where the second inequality is from (87) and the last inequality is from (84) with i = i∗. Addition-
ally, the second term at the right-hand side of (88) has upper bound

‖ȳU(i∗) − ȳ‖ = ‖(1− ui∗) · ȳR(i∗) + ui∗ · ȳP(i∗) − ȳ‖ ≤ ‖ȳR(i∗) − ȳ‖+ ui∗‖ȳR(i∗) − ȳP(i∗)‖.
(90)

For ‖ȳR(i∗) − ȳ‖, we have

‖ȳR(i∗) − ȳ‖ =‖ 1

|R(i∗)|
∑

w∈R(i∗)

yw −
1

R

∑
w∈R

yw‖ (91)

=
1

|R(i∗)|
‖

∑
w∈R\Ri∗

(ȳ − yw)‖

≤R− |R
(i∗)|

|R(i∗)|
max
w∈R
‖yw − ȳ‖.

Substituting (91) and (84) into (90), we have

‖ȳU(i∗) − ȳ‖ ≤
R− |R(i∗)|
|R(i∗)|

max
w∈R
‖yw − ȳ‖+

ui∗

1− 2ui∗
max
w∈R
‖yw − ȳR(i∗)‖. (92)

Substituting (89) and (92) into (88), we have

‖ȳU(W−R) − ȳ‖ (93)

≤(
W −R− i∗

R
· 1− ui∗

1− 2ui∗
+

ui∗

1− 2ui∗
) max
w∈R
‖yw − ȳR(i∗)‖+

R− |R(i∗)|
|R(i∗)|

max
w∈R
‖yw − ȳ‖.

32



MEAN AGGREGATOR IS MORE ROBUST THAN ROBUST AGGREGATORS

Since

max
w∈R
‖yw − ȳR(i∗)‖ ≤ max

w∈R
‖yw − ȳ‖+ ‖ȳR(i∗) − ȳ‖ ≤

R

|R(i∗)|
max
w∈R
‖yw − ȳ‖, (94)

where the last inequality comes from (91), we have

‖ȳU(W−R) − ȳ‖ (95)

≤
(

(
W −R− i∗

R
· 1− ui∗

1− 2ui∗
+

ui∗

1− 2ui∗
)

R

|R(i∗)|
+
R− |R(i∗)|
|R(i∗)|

)
max
w∈R
‖yw − ȳ‖

=
2ui∗

1− 2ui∗
max
w∈R
‖yw − ȳ‖. (96)

Since ui∗ = |P(i∗)|
|U(i∗)| ≤

W−R
R = δ

1−δ , we have

‖ȳU(W−R) − ȳ‖ ≤
2δ

1− 3δ
·max
w∈R
‖yw − ȳ‖. (97)

Combining the first case (86) and the second case (97), we have

‖FABA({y1, . . . , yW } − ȳ)‖ = ‖ȳU(P ) − ȳ‖ ≤
2δ

1− 3δ
·max
w∈R
‖yw − ȳ‖, (98)

which completes the proof.

Appendix C. Proof of Theorem 7

We give a complete version of Theorem 7 as follows.

Theorem 17 Consider Algorithm 1 with a ρ-robust aggregator RAgg(·) to solve (1) and suppose
that Assumptions 1, 2, 3, and 4 hold. Under label poisoning attacks where the fraction of poisoned
workers is δ ∈ [0, 1

2), if the step size is

γ = min
{√√√√4(f(x0)− f∗) +

15ρ2(R+ 1
R

)σ2

8L

T (40Lσ2)(3ρ2(R+ 1
R) + 2

R)
,

1

8L

}
, (99)

the momentum coefficient α = 8Lγ, then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 (100)

≤15ρ2ξ2 +

√
20Lσ2( 2

R + 3ρ2(R+ 1
R))

T
·
√

32(f(x0)− f∗) +
15

L
ρ2(R+

1

R
)σ2

+
32L(f(x0)− f∗)

T
+

15ρ2(R+ 1
R)σ2

T
+

10σ2

R + 12ρ2((R+ 1
R)σ2 + ξ2)− ‖∇f(x0)‖
T

.

where the expectation is taken over the algorithm’s randomness.
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Proof For notational convenience, denote mt = RAgg({m̂t
w : w ∈ W}) and m̄t = 1

R

∑
w∈Rm

t
w.

Denote the conditional expectation E[·|iτw : τ < t, w ∈ W] as Et[·]. Because f(x) has L-Lipschitz
continuous gradients from Assumption 2, it holds that

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+
L

2
‖xt+1 − xt‖2 (101)

≤ f(xt)− γ〈∇f(xt),mt〉+
L

2
γ2‖mt‖2.

Since

−〈∇f(xt),mt〉 =
1

2
‖mt −∇f(xt)‖2 − 1

2
‖∇f(xt)‖2 − 1

2
‖mt‖2, (102)

we have

f(xt+1) ≤f(xt) +
γ

2
‖mt −∇f(xt)‖2 − γ

2
‖∇f(xt)‖2 − γ

2
(1− Lγ)‖mt‖2 (103)

≤f(xt) +
γ

2
‖mt −∇f(xt)‖2 − γ

2
‖∇f(xt)‖2

≤f(xt) + γ‖mt − m̄t‖2 + γ‖m̄t −∇f(xt)‖2 − γ

2
‖∇f(xt)‖2

=f(xt) + γ‖mt − m̄t‖2 + γ‖et‖2 − γ

2
‖∇f(xt)‖2,

where the second inequality is from γ ≤ 1
8L < 1

L and et , m̄t −∇f(xt). Taking expectations on
both sides of (103) reaches

E[f(xt+1)] ≤ E[f(xt)] + γE‖mt − m̄t‖2 + γE‖et‖2 − γ

2
E‖∇f(xt)‖2. (104)

For the term ‖mt− m̄t‖2, since RAgg(·) is a ρ-robust aggregator with Definition 4, it holds that

‖mt − m̄t‖2 ≤ ρ2 ·max
w∈R
‖mt

w − m̄t‖2. (105)

For the term maxw∈R ‖mt
w − m̄t‖2, we have

max
w∈R
‖mt

w − m̄t‖2 (106)

≤max
w∈R

{
3‖mt

w − E[mt
w]‖2 + 3‖m̄t − E[m̄t]‖2 + 3‖E[mt

w]− E[m̄t]‖2
}

≤3 max
w∈R
‖mt

w − E[mt
w]‖2 + 3‖m̄t − E[m̄t]‖2 + 3 max

w∈R
‖E[mt

w]− E[m̄t]‖2.

We will bound the expectation of each term at the right-hand side of (106) as follows.
For the first term at the right-hand side of (106), we have

E[max
w∈R
‖mt

w − E[mt
w]‖2] ≤ E[

∑
w∈R
‖mt

w − E[mt
w]‖2] =

∑
w∈R

E‖mt
w − E[mt

w]‖2. (107)

For any w ∈ R, denoting

Atw , E‖mt
w − E[mt

w]‖2, (108)
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we obtain that

Atw = E‖(1− α)(mt−1
w − E[mt−1

w ]) + α(∇fw,itw(xt)−∇fw(xt))‖2 (109)

= (1− α)2E‖mt−1
w − E[mt−1

w ]‖2 + α2E‖∇fw,itw(xt)−∇fw(xt)‖2

= (1− α)2E‖mt−1
w − E[mt−1

w ]‖2 + α2E[Et‖∇fw,itw(xt)−∇fw(xt)‖2]

≤ (1− α)2At−1
w + α2σ2

≤ (1− α)2tA0
w + (

t∑
l=1

(1− α)2(t−l))α2σ2,

where the first inequality comes from Assumption 4 and the second inequality is due to the use of
telescopic cancellation. Since

A0
w = E‖m0

w − E[m0
w]‖2 = E‖∇fw,i0w(x0)−∇fw(x0)‖2 ≤ σ2, (110)

where the inequality is due to Assumption 4, we have

Atw ≤ σ2(α+ (1− α)2t), (111)

and

E[max
w∈R
‖mt

w − E[mt
w]‖2] ≤ Rσ2(α+ (1− α)t+1). (112)

For the second term at the right-hand side of (106), denoting

Bt , E‖m̄t − E[m̄t]‖2, (113)

we have that

Bt = E‖ 1

R

∑
w∈R

(mt
w − E[mt

w])‖2 (114)

=
1

R2
E‖
∑
w∈R

(mt
w − E[mt

w])‖2

=
1

R2

( ∑
w∈R

E‖mt
w − E[mt

w]‖2 +
∑
w∈R

∑
v∈R,v 6=w

E〈mt
w − E[mt

w],mt
v − E[mt

v]〉
)

=
1

R2

( ∑
w∈R

E‖mt
w − E[mt

w]‖2 +
∑
w∈R

∑
v∈R,v 6=w

〈E[mt
w]− E[mt

w],E[mt
v]− E[mt

v]〉︸ ︷︷ ︸
=0

)
=

1

R2

∑
w∈R

E‖mt
w − E[mt

w]‖2

=
1

R2

∑
w∈R

Atw.

With (111), we obtain that

Bt ≤ σ2

R
(α+ (1− α)2t). (115)

35



PENG, LI, VLASKI AND LING

For the third term at the right-hand side of (106), denoting

Ct , max
w∈R
‖E[mt

w]− E[m̄t]‖2, (116)

we have

Ct = max
w∈R
‖(1− α)(E[mt−1

w ]− E[m̄t−1]) + α(∇fw(xt)−∇f(xt))‖2 (117)

≤max
w∈R

{
(1− α)‖E[mt−1

w ]− E[m̄t−1]‖2 + α‖∇fw(xt)−∇f(xt)‖2
}

≤(1− α) max
w∈R
‖E[mt−1

w ]− E[m̄t−1]‖2 + αmax
w∈R
‖∇fw(xt)−∇f(xt)‖2

≤(1− α)Ct−1 + αξ2

≤(1− α)tC0 + (
t−1∑
l=0

(1− α)l)αξ2,

where the third inequality is from Assumption 3. Since

C0 = max
w∈R
‖∇fw(x0)−∇f(x0)‖2 ≤ ξ2, (118)

which come from Assumption 3, it holds that

Ct ≤ ξ2
(

(1− α)t + (
t−1∑
l=0

(1− α)l)α
)

= ξ2. (119)

Substituting (112), (115) and (119) into (106) and taking expectations on both sides of (106),
we have

E[max
w∈R
‖mt

w − m̄t‖2] ≤ 3((R+
1

R
)σ2(α+ (1− α)2t) + ξ2). (120)

With (105), we have

E‖mt − m̄t‖2 ≤ 3ρ2((R+
1

R
)σ2(α+ (1− α)2t) + ξ2). (121)

For the term E‖et‖2 in (103), according to (Karimireddy et al., 2022, Lemma 10), E‖e0‖2 ≤ σ2

R
and for t ≥ 1, it holds that

E‖et‖2 ≤ (1− 2α

5
)E‖et−1‖2 +

α

10
E‖∇f(xt−1)‖2 +

α

10
E‖mt−1 − m̄t−1‖2 +

α2σ2

R
. (122)

Combining (103) and (122), we have

E[f(xt+1)] +
5γ

2α
E‖et‖2 (123)

≤E[f(xt)] + γE‖mt − m̄t‖2 + γE‖et‖2 − γ

2
E‖∇f(xt)‖2 + (

5γ

2α
− γ)E‖et−1‖2

+
γ

4
E‖∇f(xt−1)‖2 +

γ

4
E‖mt−1 − m̄t−1‖2 +

5αγσ2

2R
.
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Using (121) to bound E‖mt − m̄t‖2 and E‖mt−1 − m̄t−1‖2, it is obtained that

E[f(xt+1)] +
5γ

2α
E‖et‖2 (124)

≤E[f(xt)] +
15

4
γρ2(R+

1

R
)σ2(α+ (1− α)2t) +

15

4
γρ2ξ2 + γE‖et‖2

− γ

2
E‖∇f(xt)‖2 + (

5γ

2α
− γ)E‖et−1‖2 +

γ

4
E‖∇f(xt−1)‖2 +

5αγσ2

2R
.

Therefore, we have

E[f(xt+1)] + (
5γ

2α
− γ)E‖et‖2 +

γ

4
E‖∇f(xt)‖2 (125)

≤E[f(xt)] + (
5γ

2α
− γ)E‖et−1‖2 +

γ

4
E‖∇f(xt−1)‖2 − γ

4
E‖∇f(xt)‖2

+
15

4
γρ2(R+

1

R
)σ2(α+ (1− α)2t) +

15

4
γρ2ξ2 +

5αγσ2

2R
.

Denoting Et = E[f(xt+1)] + ( 5γ
2α − γ)E‖et‖2 + γ

4E‖∇f(xt)‖2, we have

γ

4
E‖∇f(xt)‖2 ≤ Et−1 − Et +

15

4
γρ2(R+

1

R
)σ2(α+ (1− α)2t) +

15

4
γρ2ξ2 +

5αγσ2

2R
, (126)

and

1

T

T∑
t=1

E‖∇f(xt)‖2 (127)

≤4(E0 − ET )

γT
+

1

T

T∑
t=1

15ρ2(R+
1

R
)σ2(α+ (1− α)2t) + 15ρ2ξ2 +

10ασ2

R

≤4(E0 − ET )

γT
+

15ρ2(R+ 1
R)σ2

αT
+ 15ρ2(R+

1

R
)σ2α+ 15ρ2ξ2 +

10ασ2

R
.

≤4(E0 − f∗)
γT

+
15ρ2(R+ 1

R)σ2

αT
+ 15ρ2(R+

1

R
)σ2α+ 15ρ2ξ2 +

10ασ2

R
.

where the second inequality is from
∑T

t=1(1− α)2t ≤ 1
α when 0 ≤ α ≤ 1, and the third inequality

is from ET ≥ f∗ due to Assumption 1. Using the following equalities and inequalities

E0 = E[f(x1)] +
3γ

2
E‖e0‖2 +

γ

4
‖∇f(x0)‖2, (128)

E[f(x1)] ≤ f(x0) + γE‖m0 − m̄0‖2 + γE‖e0‖2 − γ

2
‖∇f(x0)‖2, (129)

E‖e0‖2 = E‖m̄0 −∇f(x0)‖2 = E‖ 1

R

∑
w∈R

(∇fw,i0w(x0)−∇fw(x0))‖2 ≤ σ2

R
, (130)

E‖m0 − m̄0‖2 ≤ ρ2E[max
w∈R
‖m0

w − m̄0‖2] ≤ 3ρ2((R+
1

R
)σ2 + ξ2), (131)

we have

E0 ≤ f(x0) +
5γσ2

2R
+ 3γρ2((R+

1

R
)σ2 + ξ2)− γ

4
‖∇f(x0)‖2. (132)

37



PENG, LI, VLASKI AND LING

Substituting (132) into (127), we have

1

T

T∑
t=1

E‖∇f(xt)‖2 (133)

≤4(f(x0)− f∗)
γT

+
15ρ2(R+ 1

R)σ2

8γLT
+ 120ρ2(R+

1

R
)σ2γL+

80Lγσ2

R

+
10σ2

R + 12ρ2((R+ 1
R)σ2 + ξ2)− ‖∇f(x0)‖
T

+ 15ρ2ξ2,

=
1

γ
·
(4(f(x0)− f∗)

T
+

15ρ2(R+ 1
R)σ2

8LT

)
+ γ ·

(
120ρ2(R+

1

R
)σ2L+

80Lσ2

R

)
+

10σ2

R + 12ρ2((R+ 1
R)σ2 + ξ2)− ‖∇f(x0)‖
T

+ 15ρ2ξ2,

where the inequality uses the fact that α = 8Lγ. Substituting the step size

γ = min
{√√√√4(f(x0)− f∗) +

15ρ2(R+ 1
R

)σ2

8L

T (40Lσ2)(3ρ2(R+ 1
R) + 2

R)
,

1

8L

}
, (134)

we have

1

γ
= max

{√√√√ T (40Lσ2)(3ρ2(R+ 1
R) + 2

R)

4(f(x0)− f∗) +
15ρ2(R+ 1

R
)σ2

8L

, 8L
}

(135)

≤

√√√√ T (40Lσ2)(3ρ2(R+ 1
R) + 2

R)

4(f(x0)− f∗) +
15ρ2(R+ 1

R
)σ2

8L

+ 8L.

Thus, we have

1

T

T∑
t=1

E‖∇f(xt)‖2 (136)

≤15ρ2ξ2 +

√
20Lσ2( 2

R + 3ρ2(R+ 1
R))

T
·
√

32(f(x0)− f∗) +
15

L
ρ2(R+

1

R
)σ2

+
32L(f(x0)− f∗)

T
+

15ρ2(R+ 1
R)σ2

T
+

10σ2

R + 12ρ2((R+ 1
R)σ2 + ξ2)− ‖∇f(x0)‖
T

.

which completes the proof.

Appendix D. Proof of Theorem 8

We give a complete version of Theorem 8 as follows.
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Theorem 18 Consider Algorithm 1 with the mean aggregator Mean(·) to solve (1) and suppose
that Assumptions 1, 2, 4, and 5 hold. Under label poisoning attacks where the fraction of poisoned
workers is δ ∈ [0, 1), if the step size is

γ = min
{√4(f(x0)− f∗) + 30δ2σ2

8L

T (40Lσ2)(6δ2 + 2
R)

,
1

8L

}
, (137)

the momentum coefficient α = 8Lγ, then we have

1

T

T∑
t=1

E‖∇f(xt)‖2 ≤15δ2A2 +

√
20Lσ2( 2

R + 6δ2)

T
·
√

32(f(x0)− f∗) +
30

L
δ2σ2 (138)

+
32L(f(x0)− f∗)

T
+

30δ2σ2

T
+

10σ2

R + 24δ2(σ2 + ξ2)− ‖∇f(x0)‖
T

.

where the expectation is taken over the algorithm’s randomness.

Proof The proof of Theorem 8 is similar to that of Theorem 7, except for the analysis of the dis-
tance between the aggregated message and the true average of the regular messages. For notational
simplicity, denote the conditional expectation E[·|iτw : τ < t, w ∈ W] as Et[·]. Denoting mt =
Mean({m̂t

w : w ∈ W}) and m̄t = 1
R

∑
w∈Rm

t
w, we have

E‖mt − m̄t‖2 = E‖ 1

W

∑
w∈W

m̂t
w −

1

R

∑
w∈R

mt
w‖2 (139)

= E‖ 1

W

∑
w∈W\R

m̃t
w − (

1

R
− 1

W
)
∑
w∈R

mt
w‖2

= (
1

W
)2E‖

∑
w∈W\R

(m̃t
w − m̄t)‖2

≤ W −R
W 2

∑
w∈W\R

E‖m̃t
w − m̄t‖2.

For the term E‖m̃t
w − m̄t‖2, for any w ∈ W \R, we have

E‖m̃t
w − m̄t‖2 ≤ 3

(
E‖m̃t

w − E[m̃t
w]‖2 + E‖m̄t − E[m̄t]‖2 + ‖E[m̃t

w]− E[m̄t]‖2
)
. (140)

For the first term at the right-hand side of (140), similar to the proof from (109) to (111), for any
w ∈ W \R, we have

E‖m̃t
w − E[m̃t

w]‖2 = E‖(1− α)(m̃t−1
w − E[m̃t−1

w ]) + α(∇f̃w,itw(xt)−∇f̃w(xt))‖2 (141)

= (1− α)2E‖m̃t−1
w − E[m̃t−1

w ]‖2 + α2E‖∇f̃w,itw(xt)−∇f̃w(xt)‖2

= (1− α)2E‖m̃t−1
w − E[m̃t−1

w ]‖2 + α2E[Et‖∇f̃w,itw(xt)−∇f̃w(xt)‖2]

= (1− α)2E‖m̃t−1
w − E[m̃t−1

w ]‖2 + α2σ2

≤ σ2(α+ (1− α)2t).
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For the second term at the right-hand side of (140), similar to the proof of (114), we have

E‖m̄t − E[m̄t]‖2 = E‖ 1

R

∑
w∈R

mt
w − E[mt

w]‖2 (142)

=
1

R2

∑
w∈R

E‖mt
w − E[mt

w]‖2

≤ σ2

R
(α+ (1− α)2t).

For the third term at the right-hand side of (140), we have

‖E[m̃t
w]− E[m̄t]‖2 = ‖(1− α)(E[m̃t−1

w ]− E[m̄t−1]) + α(∇f̃w(xt)−∇f(xt))‖2 (143)

≤ (1− α)‖E[m̃t−1
w ]− E[m̄t−1]‖2 + α‖∇f̃w(xt)−∇f(xt)‖2

≤ (1− α)‖E[m̃t−1
w ]− E[m̄t−1]‖2 + αA2

≤ (1− α)t‖E[m̃0
w]− E[m̄0]‖2 + (

t−1∑
l=0

(1− α)l)αA2

= (1− α)t‖∇f̃w(x0)−∇f(x0)‖2 + (
t−1∑
l=0

(1− α)l)αA2

≤ A2((1− α)t + 1− (1− α)t)

= A2,

where the second inequality and the fourth inequality are due to Assumption 5.
Substituting (140), (141), (142) into (143), we have

E‖mt − m̄t‖2 ≤ 3 · (W −R)2

W 2
· (σ2(α+ (1− α)2t)(1 +

1

R
) +A2) (144)

≤ 3 · (W −R)2

W 2
· (2σ2(α+ (1− α)2t) +A2)

= 6δ2σ2(α+ (1− α)2t) + 3δ2A2,

where the second inequality is due to R ≥ 1.
The rest of the proof is the same as that of Theorem 7 and therefore omitted. This completes the

proof.

Appendix E. Proof of Theorem 9

Proof The key idea of the proof is to construct two instances that have the same set of W local
costs after the poisoned workers carry out label poisoning attacks, while the objectives based on
the R regular local costs are different in these two instances. Since the algorithm whose output is
invariant with respect to the identities of the workers cannot distinguish these two instances, it yields
the same output. However, the two different objectives imply that the algorithmic output must fail
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on at least one among the two. Therefore, the instance that has a larger learning error gives a lower
bound of the learning error for the algorithm.

Without loss of generality, we letW = {1, · · · ,W} be the set of workers, within which R =
{1, · · · , R} is the set of regular workers. The samples of all workers have two possible labels, 1 or
2, which correspond to two different functions f(x; 1) and f(x; 2) with

f(x; k) =
(1− δ)c√

2
[x]k +

L

2
‖x‖2, k ∈ {1, 2}, (145)

within which c , min{ξ, A}.
Each worker w ∈ {1, · · · ,W} has the same J samples costs, in the form of

f̂w,j(x) = f̂w(x) = f(x; b̂(w)), ∀j ∈ {1, · · · , J}, (146)

or equivalently

fw,j(x) = fw(x) = f(x; b(w)), ∀w ≤ R, ∀j ∈ {1, · · · , J}, (147)

f̃w,j(x) = f̃w(x) = f(x; b̃(w)), ∀w > R, ∀j ∈ {1, · · · , J}. (148)

Now we construct two instances with different sets of labels. The first set of labels, denoted as
{b̂(w,1), w ∈ {1, · · · ,W}}, is given by

b̂(w,1) =

{
1, w ≤ R,
2, w > R.

(149)

The second set of labels, denoted as {b̂(w,2), w ∈ {1, · · · ,W}}, is given by

b̂(w,2) =

{
1, w > W −R,
2, w ≤W −R.

(150)

Denote f (1)(x) = 1
R

∑R
w=1 f(x; b̂(w,1)) and f (2)(x) = 1

R

∑R
w=1 f(x; b̂(w,2)) as the two objec-

tives. We can check that all the assumptions are satisfied in these two instances. Since

∇f(x; k) =
(1− δ)c√

2
ek + Lx, (151)

where ek is the unit vector with the k-th element being 1, the gradients of f (1) and f (2) are

∇f (1)(x) =
(1− δ)c√

2
e1 + Lx, (152)

∇f (2)(x) =
(1− 2δ)c√

2
e1 +

δc√
2
e2 + Lx. (153)
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As a result, we know their minimums are achieved at x∗,(1) = − (1−δ)c√
2L

e1 and x∗,(2) = − (1−2δ)c√
2L

e1−
δc√
2L
e2, respectively, and there exists a uniform lower bound

f (k)(x) ≥ f∗ , − c
2

2L
. (154)

satisfying Assumption 1 for k ∈ {1, 2}.
As the gradients are linear, Assumption 2 is satisfied and the constant is exactly L.
Further, Assumption 3 is satisfied with constant ξ, as

max
w≤R
‖∇f(x; b̂(w,1))−∇f (1)(x)‖ = 0, (155)

max
w≤R
‖∇f(x; b̂(w,2))−∇f (2)(x)‖ = max{|1− 2δ|, δ}c ≤ c ≤ ξ. (156)

The last inequality of (156) comes from c , min{A, ξ} ≤ ξ.
Note that fw,j(x) = f̂w,j(x) when w ≤ R and f̃w,j(x) = f̂w,j(x) otherwise. Therefore, due to

f̂w,j(x) = f̂w(x), Assumption 4 is satisfied with constant σ = 0.
Assumption 5 is satisfied with constant A, since

max
w>R
‖∇f(x; b̂(w,1))−∇f (1)(x)‖ = (1− δ)c ≤ c ≤ A, (157)

max
w>R
‖∇f(x; b̂(w,2))−∇f (2)(x)‖ = δc ≤ c ≤ A. (158)

The last inequalities of (157) and (158) come from c , min{A, ξ} ≤ A.
The two constructed instances result in the same set of local costs (R of them are f(x; 1) and

the others are f(x; 2)) yet different orders of labels. Since the algorithm whose output is invariant
with respect to the identities of the workers cannot distinguish these two instances, it yields the
same output. Nevertheless, according to (152) and (153), the gradients of the two objectives at the
algorithmic output are different. Therefore, the algorithmic output must fail on at least one among
the two. Below, we investigate the learning errors in the two instances, and the larger one exactly
gives the lower bound of the learning error for the algorithm.

For any x, note that

max{‖∇f (1)(x)‖, ‖∇f (2)(x)‖} (159)

≥1

2

(
‖∇f (1)(x)‖+ ‖∇f (2)(x)‖

)
≥1

2
‖∇f (1)(x)−∇f (2)(x)‖

=
δc

2
.

Specifically, letting x = xt be the t-th iterate of the algorithm running on either of the two instances,
(159) gives that

max
k∈{1,2}

E‖∇f (k)(xt)‖2 = max
k∈{1,2}

‖∇f (k)(xt)‖2 ≥ δ2c2

4
. (160)
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where the first equality is because there is no randomness in these two instances. Further, since

E‖∇f (1)(xt)‖2 + E‖∇f (2)(xt)‖2 ≥ max
k∈{1,2}

E‖∇f (k)(xt)‖2 ≥ δ2c2

4
, (161)

we have

1

T

T∑
t=1

E‖∇f (1)(xt)‖2 +
1

T

T∑
t=1

E‖∇f (2)(xt)‖2 (162)

=
1

T

T∑
t=1

(
E‖∇f (1)(xt)‖2 + E‖∇f (2)(xt)‖2

)
≥δ

2c2

4
.

With the fact that

2 max
k∈{1,2}

1

T

T∑
t=1

E‖∇f (k)(xt)‖2 ≥ 1

T

T∑
t=1

E‖∇f (1)(xt)‖2 +
1

T

T∑
t=1

E‖∇f (2)(xt)‖2 ≥ δ2c2

4
, (163)

we have

max
k∈{1,2}

1

T

T∑
t=1

E‖∇f (k)(xt)‖2 ≥ δ2c2

8
. (164)

Choosing R regular local costs {fw(x) = f(x; b̂(w,k)) : w ≤ R} and W − R poisoned local costs
{f̃w(x) = f(x; b̂(w,k)) : w > R} where k = arg maxk∈{1,2}

1
T

∑T
t=1 E‖∇f (k)(xt)‖2, (164) gives

that

1

T

T∑
t=1

E‖∇f(xt)‖2 ≥ δ2c2

8
=
δ2 min{A2, ξ2}

8
, (165)

which concludes the proof.

The proof is motivated by those of Karimireddy et al. (2022, Theorem 3) and Allouah et al.
(2023, Proposition 1). The major difference is that we consider label poisoning attacks in which the
poisoned workers can only poison their local labels, while Karimireddy et al. (2022) and Allouah
et al. (2023) consider Byzantine attacks in which the Byzantine workers can behave arbitrarily.
Different types of attacks lead to different constructions of the instances in the proofs.

Appendix F. Impacts of Heterogeneity and Attack Strengths

To investigate the impacts of heterogeneity of data distributions and strengths of label poisoning
attacks, we have conducted numerical experiments by varying the data distributions and the levels
of label poisoning attacks, and presented the best classification accuracies in Figure 7. Here, we
provide all classification accuracies in Table 3 to complement Figure 7.
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β p Mean CC FABA LFighter TriMean

5

0.0 0.9441 0.9385 0.9410 0.9420 0.9429
0.2 0.9426 0.9405 0.9439 0.9437 0.9425
0.4 0.9443 0.9421 0.9437 0.9456 0.9430
0.6 0.9427 0.9402 0.9431 0.9439 0.9397
0.8 0.9429 0.9408 0.9424 0.9443 0.9386
1.0 0.9415 0.9382 0.9423 0.9437 0.9371

1

0.0 0.9437 0.9362 0.9390 0.9361 0.9402
0.2 0.9448 0.9371 0.9417 0.9341 0.9373
0.4 0.9417 0.9404 0.9447 0.9404 0.9396
0.6 0.9386 0.9355 0.9409 0.9422 0.9365
0.8 0.9402 0.9323 0.9386 0.9431 0.9318
1.0 0.9424 0.9401 0.9414 0.9433 0.9273

0.1

0.0 0.9407 0.9251 0.9404 0.9170 0.9134
0.2 0.9423 0.9292 0.9271 0.9313 0.9076
0.4 0.9420 0.9270 0.9229 0.9201 0.8942
0.6 0.9372 0.9226 0.8996 0.9377 0.8891
0.8 0.9278 0.9135 0.9431 0.9433 0.8498
1.0 0.8327 0.8305 0.9426 0.9449 0.8054

0.05

0.0 0.9468 0.9317 0.8976 0.8617 0.8763
0.2 0.9467 0.9311 0.8603 0.8845 0.8529
0.4 0.9474 0.9279 0.8601 0.8860 0.8526
0.6 0.9418 0.9248 0.8571 0.9343 0.8492
0.8 0.9201 0.9155 0.9394 0.9385 0.8576
1.0 0.8573 0.8950 0.9384 0.9374 0.8106

0.03

0.0 0.9426 0.9299 0.8634 0.8517 0.8523
0.2 0.9413 0.9298 0.8507 0.8493 0.8427
0.4 0.9393 0.9268 0.8506 0.8502 0.8370
0.6 0.9374 0.9206 0.8481 0.8449 0.8246
0.8 0.9159 0.8679 0.8019 0.8313 0.7869
1.0 0.8312 0.8152 0.7437 0.9396 0.7514

0.01

0.0 0.9456 0.9164 0.8678 0.8681 0.8008
0.2 0.9441 0.9165 0.8657 0.8660 0.7788
0.4 0.9415 0.9135 0.8631 0.8632 0.7858
0.6 0.9356 0.9039 0.8601 0.8399 0.7708
0.8 0.8827 0.8750 0.8155 0.7864 0.7457
1.0 0.8505 0.8278 0.7731 0.8162 0.7258

Table 3: Accuracies of trained two-layer perceptrons by all aggregators on the MNIST dataset under static
label flipping attacks. The hyper-parameter β that characterizes the heterogeneity is in [5, 1, 0.1, 0.05, 0.03,
0.01] and the flipping probability p that characterizes the attack strength is in [0.0, 0.2, 0.4, 0.6, 0.8, 1.0].
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Figure 8: Maximum variance of regular stochastic gradients and variance of poisoned stochastic gradients in
softmax regression on the MNIST dataset under static label flipping attacks.

Appendix G. Bounded Variance of Stochastic Gradients

Now we verify the reasonableness of Assumption 4. We consider softmax regression on the MNIST
dataset and setup W = 10 workers where R = 9 workers are regular and the remaining one is poi-
soned. We compute the variances of regular stochastic gradients and poisoned stochastic gradients
under static label flipping attacks in the i.i.d., mild non-i.i.d. and non-i.i.d. cases, and present the
maximum variance of regular stochastic gradients and poisoned stochastic gradient in Figure 8. As
depicted in Figure 8, the variances of regular stochastic gradients and poisoned stochastic gradients
are both bounded under static label flipping attacks, which validates Assumption 4.

Appendix H. Impact of Fraction of Poisoned Workers

To further investigate the impact of different fractions of poisoned workers, here we vary the number
of poisoned workers. We setup W = 10 workers, among which R = 8 (R = 7) are regular, while
the remaining 2 (3) are poisoned. The experimental settings are the same as those in the nonconvex
case. We use a step size of γ = 0.01 and a momentum coefficient of α = 0.1. As shown in Figures
9, 10, 11, and 12, the mean aggregator generally outperforms the robust aggregators in the non-i.i.d.
case, which is consistent with the experimental results of R = 9. Additionally, from Figures 4 and
5 to Figures 9, 10, 11 and 12, we observe that as the fraction of poisoned workers increases, the
performance of both the mean aggregator and robust aggregators decreases. This aligns with the
theoretical results in Theorems 7 and 8.

References

Youssef Allouah, Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot, and John
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Figure 9: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under static label flipping attacks when R = 8.
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Figure 10: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under dynamic label flipping attacks when R = 8.
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Figure 11: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under static label flipping attacks when R = 7.
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Figure 12: Accuracies of two-layer perceptrons on the MNIST dataset and convolutional neural networks on
the CIFAR10 dataset under dynamic label flipping attacks when R = 7.
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Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen
Zhao. Advances and open problems in federated learning. Foundations and Trends in Machine
Learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Learning from history for Byzantine robust
optimization. In International Conference on Machine Learning, pages 5311–5319, 2021.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. Byzantine-robust learning on heterogeneous
datasets via bucketing. In International Conference on Learning Representations, 2022.

Prashant Khanduri, Saikiran Bulusu, Pranay Sharma, and Pramod K. Varshney. Byzantine resilient
non-convex svrg with distributed batch gradient computations. arXiv preprint arXiv:1912.04531,
2019.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

Cody Lewis, Vijay Varadharajan, and Nasimul Noman. Attacks against federated learning defense
systems and their mitigation. Journal of Machine Learning Research, 24(30):1–50, 2023.

Boyue Li, Shicong Cen, Yuxin Chen, and Yuejie Chi. Communication-efficient distributed opti-
mization in networks with gradient tracking and variance reduction. Journal of Machine Learning
Research, 21(180):1–51, 2020.

Liping Li, Wei Xu, Tianyi Chen, Georgios B. Giannakis, and Qing Ling. RSA: Byzantine-robust
stochastic aggregation methods for distributed learning from heterogeneous datasets. In AAAI
Conference on Artificial Intelligence, pages 1544–1551, 2019.

Jing Lin, Long Dang, Mohamed Rahouti, and Kaiqi Xiong. ML attack models: adversarial attacks
and data poisoning attacks. arXiv preprint arXiv:2112.02797, 2021.

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: defending against backdoor-
ing attacks on deep neural networks. In International Symposium on Research in Attacks, Intru-
sions, and Defenses, pages 273–294, 2018.

49



PENG, LI, VLASKI AND LING

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics, pages 1273–1282, 2017.

Jie Peng, Weiyu Li, and Qing Ling. Byzantine-robust decentralized stochastic optimization over
static and time-varying networks. Signal Processing, 183:108020, 2021.

Jie Peng, Zhaoxian Wu, Qing Ling, and Tianyi Chen. Byzantine-robust variance-reduced federated
learning over distributed non-iid data. Information Sciences, 616:367–391, 2022.

Jie Peng, Weiyu Li, and Qing Ling. Mean aggregator is more robust than robust aggregators under
label poisoning attacks. In International Joint Conference on Artificial Intelligence, pages 4797–
4805, 2024.

Ahmad Rammal, Kaja Gruntkowska, Nikita Fedin, Eduard Gorbunov, and Peter Richtárik. Commu-
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