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Abstract

In this paper, we present Ontolearn—a framework for learning OWL class expressions
over large knowledge graphs. Ontolearn contains efficient implementations of recent state-
of-the-art symbolic and neuro-symbolic class expression learners including EvoLearner
and DRILL. A learned OWL class expression can be used to classify instances in the
knowledge graph. Furthermore, Ontolearn integrates a verbalization module based on an
LLM to translate complex OWL class expressions into natural language sentences. By
mapping OWL class expressions into respective SPARQL queries, Ontolearn can be easily
used to operate over a remote triplestore. The source code of Ontolearn is available at
https://github.com/dice-group/Ontolearn.
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1. Introduction

Explainability is quintessential to establishing trust in AI decisions (Rudin, 2019). It becomes
particularly important when an AI algorithm relies on data from the Web—the largest and
arguably most used information infrastructure available to humanity with over 5 billion
users (Demir and Ngomo, 2023a). A key development over the last decade has been the
increasing availability of Web data in the form of large-scale knowledge bases in RDF (Hogan
et al., 2022). Although devising explainable ML approaches for Web-scale RDF knowledge
graphs (KGs) is an indisputable building block of a trustworthy Web, most symbolic learners
cannot operate well on large KGs having millions of triples.
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Given a knowledge base and sets of positive and negative examples, the goal of class
expression learning is to learn a class expression in description logics such that the positive
examples are instances of this expression and the negative examples are not (see Figure 2 for
an example and Lehmann and Hitzler (2010) for a formal definition). DL-Learner (Lehmann,
2009) was regarded as the most mature system for OWL class expression learning (Bühmann
et al., 2018; Sarker and Hitzler, 2019), featuring the symbolic learners ELTL, OCEL, and
CELOE. However, because DL-Learner has not been actively maintained since its last release
in 2021, it does not integrate the latest neuro-symbolic models.

In this paper, we present Ontolearn, an open-source Python library that facilitates OWL
class expression learning over large RDF knowledge graphs. Figure 1 shows the software
architecture of Ontolearn. Ontolearn

1. provides nine recent state-of-the-art symbolic, neuro-symbolic and deep learning
algorithms to learn OWL class expressions along with efficient Python implementations
of CELOE and OCEL from DL-Learner,

2. uses various OWL reasoners for class expression learning via Owlapy,1

3. verbalizes complex OWL class expressions through large-language models (LLMs).

At the time of writing, Ontolearn provides more OWL class expression learning algorithms
than any other publicly available framework. Moreover, Ontolearn is a well-tested framework
that comes with 156 unit and regression tests along with 95% test coverage. Ontolearn has
already been downloaded more than 26,000 times. Importantly, we provide 26 example
scripts along with a documentation to guide new users.2 Ontolearn can easily be used via
PyPI under the MIT license.3

2. Ontolearn

The Knowledge Base class is designed for efficient and easy access to a given OWL
ontology. We support reading OWL ontologies into memory in RDF/XML, OWL/XML, and
N-Triples formats. Given the challenges of loading large-scale ontologies with more than 108

triples into memory, data can alternatively be loaded into a triplestore like Tentris (Bigerl
et al., 2020) and OWL class expressions can be mapped to SPARQL queries (Karalis et al.,
2024), enabling efficient instance retrieval from the triplestore. Users can either provide the
file path of an ontology or the endpoint of a triplestore when using Ontolearn.

Reasoner is an external component used to infer new knowledge from asserted axioms
and to determine all instances of a given class expression. During concept learning in
Ontolearn, we use OWL reasoners, e.g. Hermit (Glimm et al., 2014) and Pellet (Sirin et al.,
2007)), which are implemented in Owlapy, to retrieve instances of class expressions.

The Learning Problem class encapsulates all relevant information related to OWL
class expression learning problems. Figure 2 visualizes a supervised OWL class expression
learning problem based on positive E+ and negative E− examples. Ontolearn provides
scalable implementations of recent state-of-the-art OWL class expression learners, including

1. https://pypi.org/project/owlapy
2. https://ontolearn-docs-dice-group.netlify.app/
3. https://pypi.org/project/ontolearn
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Figure 1: Ontolearn architecture. Green rectangles show the top-level components, whereas
beige rectangles show the sub-components.

EvoLearner (Heindorf et al., 2022), CLIP (Kouagou et al., 2022), NCES (Kouagou et al.,
2023a), NCES2 (Kouagou et al., 2023b), DRILL (Demir and Ngomo, 2023a), Nero (Demir
and Ngomo, 2023b), ROCES (Kouagou et al., 2024) and efficient Python implementations
of CELOE and OCEL (Lehmann, 2009). Moreover, Ontolearn includes wrappers for the
DL-Learner framework, allowing access to the original implementations of the previous
state-of-the-art symbolic learners CELOE and OCEL. Ontolearn also supports sampling
techniques to accelerate the learning process (Baci and Heindorf, 2023), and triplestore
implementations for loading and querying large-scale knowledge bases in distributed and
cloud-based environments. Finally, Ontolearn offers the functionality of verbalizing class
expressions into natural language using the power of LLMs like Llama (Touvron et al., 2023)
or Mistral (Jiang et al., 2023).

3. Implementation

The documentation4 gives an overview of Ontolearn’s key functions and how to use them.
The Ontolearn project consists of approximately 20,000 lines of code. At the time of writing,
it contains 26 example scripts showcasing its main functionalities. The code’s correctness is
ensured by 156 test cases in Python’s unittest framework.

Ontolearn provides all the functionalities and helper functions to easily extend it with
novel concept learners. It also includes the code required to launch it as a web service.

4. https://ontolearn-docs-dice-group.netlify.app/
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F10M171 F10F172

F10M180 F10F179 F10M173 F10F174

F10F177 F10F175

Learning Problem - “Married Female”:

E+ = {F10F172, F10F179, F10F174}
E− = {F10F177, F10F175}
Learned Concept:
Learned concept in DL: Female u (∃married.>)
LLM-verbalized: A female who is married

TBox:
Brother vMale
Brother v PersonWithASibling
Child v Person
Daughter v Child, Daughter v Female
Father v Male, Father v Parent
Female v Person
Grandchild v Child
Granddaughter v Female
Granddaughter v Grandchild
Grandfatherv Grandparent
Grandfatherv Male
GrandmothervFemale
Grandmotherv Grandparent
GrandparentvParent
GrandsonvGrandchild,GrandsonvMale
Male v Person
Mother v Person, Mother v Parent
Parent v Person
PersonWithASibling v Person
Sister v Female
Sister v PersonWithASibling
Son v Child, Son v Male

Figure 2: A partial visualization of the Family knowledge base along with a learning problem
defined by E+ and E−. An example of a learned concept is given in DL syntax
which is verbalized into natural language using an LLM.

4. Use Cases & Complementary Libraries

Ontolearn has already been applied in industrial projects, where ante-hoc explainability is
required. For example, Ontolearn has been used within Industry 4.0 settings (Demir et al.,
2022) to automatically learn human-interpretable descriptions of the skills of machines,
which is crucial for tasks like skill matching in production processes.

EDGE (Sapkota et al., 2024) employs Ontolearn to explain graph neural networks
in terms of class expressions. AutoCL (Li et al., 2024) facilitates feature selection and
hyperparameter tuning for Onotlearn’s concept learners. OntoSample (Baci and Heindorf,
2023) applies advanced graph sampling techniques prior to inputting the ontology into
Ontolearn, enabling substantial speedups while maintaining high predictive performance.
Tab2Onto (Zahera et al., 2022) allows to automatically convert tabular data to an OWL
ontology, simplifying the application of Ontolearn to a wide range of industrial use cases.
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