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University of California, San Diego
La Jolla, CA 92093, USA

Elizabeth Coda ecoda@ucsd.edu

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093, USA

Editor: Daniel Hsu

Abstract

In this paper, we take an axiomatic approach to defining a population hierarchical clustering
for piecewise constant densities, and in a similar manner to Lebesgue integration, extend
this definition to more general densities. When the density satisfies some mild conditions,
e.g., when it has connected support, is continuous, and vanishes only at infinity, or when
the connected components of the density satisfy these conditions, our axiomatic definition
results in Hartigan’s definition of cluster tree.
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1. Introduction

Clustering, informally understood as the grouping of data, is a central task in statistics and
computer science with broad applications. Modern clustering algorithms originated in the
work of numerical taxonomists, who developed methods to identify hierarchical structures
in the classification of plant and animal species. Since then clustering has been used in
disciplines such as medicine, astronomy, anthropology, economics, etc., with aims such as
exploratory analysis, data summarization, the identification of salient structures in data,
and information organization.

The notion of a “good” or “accurate” clustering varies between fields and applications.
For example, to some computer scientists, the correct clustering of a dataset is often defined
as the solution to an optimization problem (think K-means) and a good algorithm either
solves or approximates a solution to this problem, ideally with some guarantees (Puzicha
et al., 2000; Dasgupta, 2016; Arthur and Vassilvitskii, 2007). From this perspective, the
dataset is viewed as fixed, and the cluster definition is based on the data alone (Hennig,
2015). Moreover, depending on the particular application, how good a clustering is deemed
to be may be further loosened, such as in the task of image segmentation, where a good
clustering need only “extract the global impression of an image” according to Shi and Malik
(2000). For an early discussion and criticism of this vagueness, see the paper of Cormack
(1971) surveying the field at the time, where the author says that “There are many intuitive
ideas, often conflicting, of what constitutes a cluster, but few formal definitions.” More
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recent discussions include those of Estivill-Castro (2002), von Luxburg et al. (2012) and
that of Hennig (2015). As Gan et al. (2021) say in their recent book on clustering, “The
clustering problem has been addressed extensively, although there is no uniform definition
for data clustering and there may never be one”.

Even as this algorithmic view of clustering is widespread well outside computer science,
it is not satisfactory from a statistical inference perspective. Indeed, in statistics, it is
typically assumed that the sample is representative of an underlying population and a
clustering method, to be useful, should inform the analyst about that population. This
viewpoint calls for a definition of clustering at the population level. When the sample is
assumed iid from an underlying distribution representing the population, by clustering we
mean a partition of the support of that distribution, and in that case, a clustering of the
sample is deemed “good” or “accurate” by reference to the population clustering — and
a clustering algorithm is a good one if it is consistent, meaning, exact in the large-sample
limit. This reference to the population is what gives meaning to statistical inference, and
to questions such as whether an observed cluster is “real” or not.

Our contribution is the following. We propose a set of axioms for population hierarchical
clustering and show that this axiomatic definition is well-founded and essentially coincides
with the cluster tree introduced by Hartigan (1975).

1.1 Definitions of Clustering Algorithms

While we take an axiomatic approach to defining the population-level hierarchical clustering,
several previous works have explored axiomatic approaches to defining clustering algorithms.

1.1.1 Flat Clustering

The most famous of these works which might be that of Kleinberg (2002), who proposes
three axioms (scale-invariance, richness, and consistency1) and establishes an impossibility
theorem stating that no clustering algorithm can simultaneously satisfy all three axioms.

As pointed out by Ben-David and Ackerman (2008); Strazzeri and Sánchez-Garćıa
(2022); Cohen-Addad et al. (2018) and others, including Kleinberg himself in the same
article (Kleinberg, 2002, Sec 5), the consistency axiom may not be so desirable. Rather, a
relaxation of this property, in which a refinement or coarsening of the clusters is allowed,
may be more appropriate. Kleinberg states that clustering algorithms that satisfy scale-
invariance, richness, and this relaxed notion of refinement-coarsening consistency do exist
and clustering algorithms that satisfy scale-invariance, near richness, and refinement con-
sistency also exist. This was, in a sense, confirmed by Cohen-Addad et al. (2018), who
allow the number of clusters to vary with the refinement. Zadeh and Ben-David (2009)
show that, if the number of clusters that a clustering algorithm can return is fixed at k,
there exist clustering algorithms that satisfy scale-invariance, k-richness, and consistency
in the original sense of (Kleinberg, 2002). They also show that single linkage is the unique
clustering algorithm returning a fixed number of clusters simultaneously satisfying these
axioms and two additional axioms.

1. The ‘consistency’ axiom is not in the statistical sense, but refers to the property that if within-cluster
distances are decreased and between-cluster distances are enlarged, then the output clustering does not
change.
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Puzicha et al. (2000) consider clustering data via optimization of a suitable objective
function and define a suitable objective function with a set of axioms. Though their axioms
are somewhat strong, requiring the objective function have an additive structure, they show
that only one of the objective functions considered satisfies all of their axioms. Ben-David
and Ackerman (2008) also propose a set of axioms which strongly parallel Kleinberg’s axioms
for a clustering quality measure function and show the existence of functions satisfying these
axioms.

1.1.2 Hierarchical Clustering

In the 1960s and 1970s, there was some interest in developing an axiomatic foundation
of hierarchical clustering. For example, Jardine and Sibson (1968); Jardine et al. (1967);
Sibson (1970) list axioms that, according to them, a hierarchical clustering algorithm should
satisfy, and then state that single linkage is the only algorithm they are aware of that satisfies
all of their axioms.

More recently, in large part motivated by the work of Kleinberg (2002), Carlsson and
Mémoli (2010) propose their own sets of axioms for hierarchical clustering, and then prove
that single linkage is the only algorithm that satisfies them.2

1.2 Definitions of Population Clustering

There is not a generally accepted definition of clustering at the population level.

1.2.1 Flat Clustering

Given a clustering algorithm based on optimizing an objective function, it is sometimes
possible to extend that objective function to apply to a probability distribution, in which
case the solution to the resulting optimization problem becomes a natural definition of
clustering for the population defined by the probability distribution—and the clustering
algorithm has good chances of being statistically consistent for that population clustering.
Famously, this is the case of K-means, as first established by Pollard (1981) in the context of
Euclidean spaces, later extended by Pärna (1990, 1986); Jaffe (2022) to the broader context
of Banach and other metric spaces.

Another popular approach assumes that the data is drawn from a mixture model f =∑k
i=1 αifi and the population level clustering consists of k clusters corresponding to the

mixture components (Fraley and Raftery, 2002; Bouveyron et al., 2019; McLachlan et al.,
2019; Everitt, 2013; McLachlan and Peel, 2000). If the underlying density is not a mixture,
it can be approximated by a mixture model (typically chosen to be a multivariate Gaussian),
though this requires a modeling choice. This approximation may require a very large number
of components to approximate well, resulting in an artificially large number of clusters.
Moreover, even if the density is a mixture, under this definition, a unimodal mixture could
have multiple clusters. We mention that the estimation of mixtures has led to a number of
algorithms and methods including the famous EM algorithm (Dempster et al., 1977) and
more recent spectral approaches (Anandkumar et al., 2012; Hsu and Kakade, 2013).

2. Though this result has been presented as a demonstration that Kleinberg’s impossibility theorem does
not hold when hierarchical clustering algorithms are considered, this connection is somewhat unclear to
us, as the proposed axioms do not mirror Kleinberg’s axioms very precisely.
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Alternatively, in the gradient flow approach to defining the population level clustering,
often attributed to Fukunaga and Hostetler (1975), each point is assigned to the nearest
mode (i.e. local maximum) in the direction of the gradient. Thus, at least when the
density has Morse regularity, the clusters correspond to the basins of attraction of the
modes. Although this definition relies on assumptions about the smoothness of the density
and does not account for arbitrarily flat densities (Menardi, 2016), it overcomes some of
the described difficulties of mixture model clustering. That said, if the components in
the mixture model are well-separated, this definition results in a similar clustering to the
mixture-based definition (Chacón, 2020).

1.2.2 Hierarchical Clustering

Adopting a hierarchical perspective of clustering, Hartigan (1975) proposes a population-
level cluster tree, where clusters correspond to the maximally connected components of
density upper level sets. Though Hartigan provides minimal motivation for this definition
beyond observing that each cluster C in his tree “conforms to the informal requirement
that C is a high-density region surrounded by a low-density region”, this definition of hier-
archical clustering at the population level has led to a substantial amount of work (Eldridge
et al., 2015; Wang et al., 2019; Chaudhuri et al., 2014; Kim et al., 2016; Balakrishnan
et al., 2013; Steinwart, 2011). We note that Hartigan’s definition of hierarchical clustering
has been shown to be fully compatible with Fukunaga and Hostetler’s definition of flat
clustering (Arias-Castro and Qiao, 2023).

1.3 Contribution and Content

Although multiple definitions of population clustering exist (Section 1.2), we are not aware of
definitions that rely on axioms. Inspired by the axiomatic approaches to defining clustering
algorithms (Section 1.1), we propose a set of axioms that we believe a population hierarchical
clustering ought to satisfy. We show that this axiomatic definition is well-posed and further
show that it leads to the definition put forth by Hartigan (1975) under some conditions, for
example, when the underlying population has a continuous density with connected support
satisfying some additional mild assumptions.

We note that, although an axiomatic definition of population flat clustering is also
lacking, we focus entirely on hierarchical clustering.

The organization of the paper is as follows. Section 2 provides some basic notation
and definitions. In Section 3, we take an axiomatic approach to defining a hierarchical
clustering for a piecewise constant density with connected support. In Section 4, we extend
this definition to continuous densities, first to densities with connected support, and then to
more general densities. Section 5 is a discussion section where we go over some extensions,
some practical considerations, and also discuss some outlook on flat clustering. In an
appendix, we provide a close examination of the merge distortion metric of Eldridge et al.
(2015) (Section A), and provide further technical details for the special case of a Euclidean
space (Section B).
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2. Preliminaries

Throughout this paper, we will work with a metric space (Ω, d). For technical reasons, we
assume it is locally connected, which is for example the case if the balls are connected. This
is so that the connected components of an open set are connected.3

In principle, we would equip this metric space with a suitable Borel measure, and con-
sider densities with respect to that measure. As it turns out, this equipment is not needed
as we can directly work with non-negative functions. We will do so for the most part,
although we will sometimes talk about densities.

For a set A ⊆ Ω, we let int(A) or A◦ denote its interior and clo(A) or A denote its
closure; we also let cc(A) denote the collection of its connected components. For a function
f : Ω → R, its support is supp(f) = clo{f 6= 0}, and for λ ∈ R, its upper λ-level set is
defined as {f ≥ λ}, denoted Uλ when there is no ambiguity.

Definition 1 (Hierarchical clustering or cluster tree) A hierarchical clustering, also
referred to as a cluster tree, of X ⊆ Ω is a collection of connected subsets of X , referred to
as clusters, that has a nested structure in that two clusters are either disjoint or nested.

A hierarchical clustering of a function f is understood as a hierarchical clustering of its
support supp(f). Hartigan’s definition of hierarchical clustering for a density is arguably
the most well-known one.

Definition 2 (Hartigan cluster tree) The Hartigan cluster tree of a function f , which
will be denoted Hf , is the collection consisting of the maximally connected components of
the upper λ-level sets of f for all λ > 0. Hf is a hierarchical clustering of supp(f).

A dendrogram is commonly understood as the output of a hierarchical clustering algo-
rithms such as single-linkage clustering. It turns out to be simpler to work with dendrograms
instead of directly with cluster trees (Carlsson and Mémoli, 2010; Eldridge et al., 2015).

Definition 3 (Dendrogram) A dendrogram is a cluster tree equipped with a real-valued
non-increasing function defined on the cluster tree called the height function. A dendrogram
is thus of the form (C, h) where C is a cluster tree and h : C → R is such that h(C ′) ≥ h(C)
whenever C ′ ⊆ C.

The Hartigan tree of a function f is naturally equipped with the following height function

hf (C) = inf
x∈C

f(x). (1)

Note that this function has the required monotonicity.

Eldridge et al. (2015) introduced the merge distortion metric to compare dendrograms.
It is based on the notion of merge height, which gives the height at which two points stop
belonging to the same cluster, or equivalently, the height of the smallest cluster that contains
both points.

3. This is, in fact, an equivalence, the proof of which is left as an exercise in Armstrong’s textbook (Arm-
strong, 1983, Ch 3).
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Definition 4 (Merge height) Let (C, h) be a dendrogram. The merge height of two points
x, y ∈ Ω is defined as

m(C,h)(x, y) = sup
C∈C
x,y∈C

h(C). (2)

For the special case of an Hartigan cluster tree,

mf (x, y) = m(Hf ,hf )(x, y) = sup
C connected

x,y∈C

inf
z∈C

f(z). (3)

Definition 5 (Merge distortion metric) For two dendrograms, (C, h) and (C′, h′), their
merge distortion distance is defined as

dM ((C, h), (C′, h′)) = sup
x,y∈Ω

∣∣m(C,h)(x, y)−m(C′,h′)(x, y)
∣∣.

The merge distortion metric has the following useful property (Eldridge et al., 2015, Th
17).

Lemma 6 For two functions f and g,

dM ((Hf , hf ), (Hg, hg)) ≤ ‖f − g‖∞.

Proof The arguments in (Eldridge et al., 2015) are a little unclear (likely due to typos),
but correct arguments are given in (Kim et al., 2016, Lem 1). We nonetheless provide a
concise proof as it is instructive. Take x, y ∈ Ω, and let s = mf (x, y) and t = mg(x, y).
We need to show that |s − t| ≤ η := ‖f − g‖∞. For any ε > 0, by (3), there is a con-
nected set C containing x and y such that f(z) ≥ s − ε for all z ∈ C. Since this implies
that g(z) ≥ s − ε − η for all z ∈ C, by (3) again, this yields t ≥ s − ε − η. We have
thus shown that s ≤ t + η + ε, and can show that t ≤ s + η + ε in exactly the same way,
which combined allows us to obtain that |s−t| ≤ η+ε. With ε > 0 arbitrary, we conclude.

The merge distortion metric has gained some popularity in subsequent works that discuss
the consistency of hierarchical methods (Kim et al., 2016; Wang et al., 2019). In Section A
we discuss some limitations and issues with the merge distortion metric, which is in fact a
pseudometric on general cluster trees. However, in the context in which we use the metric,
these issues are not significant.

We also introduce the notion of neighboring sets. Throughout, we adopt the convention
that the empty set is disconnected.

Definition 7 (Neighboring regions) Given a collection of sets A = {Ai}, we define the
neighborhood of Ai as

N (Ai) =
⋃{

Aj : int
(
Ai ∪Aj

)
is connected

}
. (4)

Note that Aj ⊆ N (Ai) ⇔ Ai ⊆ N (Aj), so that we may speak of Ai and Aj as being
neighbors, which we will denote by Ai ∼ Aj.
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Figure 1: Left: A collection of sets with neighboring regions (green) and non-neighboring
regions (red). This collection of sets does not have the internally connected
property. Right: A collection of sets with the internally connected property.

Under this definition, in a Euclidean space, balls that only meet at one point are not
neighbors, and neither are rectangles in dimension three that intersect only along an edge.
Our discussion will be simplified in the case where we consider collections where all sets
that intersect are neighbors.

Definition 8 (Internally connected property) Let A = {Ai} be a collection of sets.
We say A has the internally connected property if

Ai ∪Aj connected ⇒ int
(
Ai ∪Aj

)
connected .

Figure 1 illustrates these two definitions.

3. Axioms

In this section, we develop a definition of the population cluster tree for a density f . Inspired
by previous axiomatic approaches to clustering algorithms and in the spirit of Lebesgue
integration, we propose a set of axioms for a population cluster tree when the density is
piecewise constant with connected support. We then extend this definition to more general
densities, and arrive at a definition that is equivalent to Hartigan’s tree (Definition 2) for
continuous densities with multiple connected components, under some mild assumptions.

3.1 Axioms for Piecewise Constant Functions

Previous work has discussed difficulties in defining what the “true” clusters are (Cormack,
1971; Hartigan, 1975; Hennig, 2015; von Luxburg et al., 2012), observing that there may not
be a single definition for all intents and purposes. So as to simplify the situation as much
as possible so that a definition may arise as natural, we first consider piecewise constant
functions with connected, bounded support. These piecewise constant functions can be
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Figure 2: A piecewise constant density in F . On the left, the highlighted region may be a
cluster under Axiom 1 and on the right, the highlighted region is not a cluster
under Axiom 1 as the interior is not connected.

viewed as a mixture of uniform distributions. A function in that class is of the form

f =

m∑
i=1

λi IAi , (5)

where, for all i, λi > 0 and Ai is a connected, bounded region with connected interior, and
we also require that supp(f) =

⋃m
i=1Ai has connected interior. Additionally, without loss

of generality, assume the Ai are disjoint. Let F denote the class of all such functions.

Remark 9 We require each region Ai and the entire support to not only be connected, but
have connected interior, and the same is true of the clusters (Axiom 1). It is well-known
that the closure of a connected set is always connected, so that this is a stronger requirement,
and is meant to avoid ambiguities.

For f ∈ F we propose that a hierarchical clustering C should satisfy the following three
axioms. For what it’s worth, Axiom 1 and Axiom 3 were put forth early on by Carmichael
et al. (1968) and, most famously although not as directly, by Hartigan (1975), and also
correspond to the 7th item on the list of “desirable characteristics of clusters” suggested by
Hennig (2015), and Axiom 2 can be motivated by the 13th item on Hennig’s list.

3.1.1 Axiom 1: Clusters have connected interior

We propose that any cluster in C should not only be connected, but have a connected
interior. With Axiom 2 below in place, see (A2), we may express Axiom 1 as follows:

If C ∈ C and Ai, Aj ⊆ C, then there are Ak1 , . . . , Akn ⊆ C (A1)

such that Ai ∼ Ak1 ∼ · · ·Akn ∼ Aj .

For example, for the density in Figure 2, the highlighted region in the right hand figure
should not be a cluster in C, but the highlighted region in the left hand figure could be a
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Figure 3: Left: A simple example of a piecewise constant density built on two regions.
Right: The clustering output of K-means with number of clusters K = 2. One of
the clusters is disconnected.

cluster in C. This reflects the idea that elements of a cluster should in some sense be similar
to each other, without imposing additional assumptions on the within-cluster distances,
between-cluster distances, the relative sizes of clusters, or the shape of clusters.

The condition that a cluster be a connected region was considered early on in the
literature as it was part of the postulates put forth by Carmichael et al. (1968). However,
it is important to note that this condition is not enforced in other definitions of what a
cluster is. Most prominently, K-means can return disconnected clusters– see Figure 3 for
an example.

3.1.2 Axiom 2: Clusters do not partition connected regions of constant
density

We propose that a connected region with constant density should not be broken up into
smaller clusters as this would impose an additional structure that is not present in the
density. We may write this axiom as:

Any C ∈ C is of the form C =
⋃
i∈I

Ai for some I ⊆ {1, 2, . . . ,m}. (A2)

Figure 4 depicts and example of a valid and invalid cluster under this axiom. Note that
as a consequence of this axiom, the within-cluster distances may be larger than the between-
cluster distances, depending on the relative widths and separations between regions.

We find this condition to be particularly natural in the present situation where the
density is piecewise constant. It is in essence already present in the concept of relatedness
introduced by Carmichael et al. (1968). But it is important to note that other definitions
do not enforce this property. This is the case of K-means, which can split connected regions
of constant density—see, again, Figure 3 for an example.
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Figure 4: On the left, the highlighted region could be a cluster under Axiom 2, but the
highlighted region on the right oversegments a region of constant density, and
should not be a cluster.

Figure 5: On the left, the lowest density in highlighted cluster exceeds the largest density
in a neighboring set. On the right, the highlighted cluster contains a region with
lower density than a neighbor, and thus this should not be a cluster.
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3.1.3 Axiom 3: Clusters are surrounded by regions of lower density

We propose that a cluster should be surrounded by regions of lower density, meaning that:

For any C ∈ C, it holds that inf
x∈C

f(x) > sup
x∈N (C)\C

f(x), (A3)

where, if C =
⋃
i∈I Ai, then N (C) =

⋃
i∈I N (Ai) denotes the neighbor of C, extending the

definition given in (4). Figure 5 includes an example.

This is one of the postulates of Carmichael et al. (1968), although it was perhaps most
popularized by Hartigan in his well-known book (Hartigan, 1975, Ch 11). Although it is
not part of most other approaches to clustering—K-means being among those as Figure 3
shows—we find that this condition is rather compatible with the colloquial understanding
of ‘points clustering together’.

3.2 Finest hierarchical clustering

Definition 10 (Finer cluster tree) We say that a cluster tree C is finer than (or a refine-
ment of) another cluster tree C′ if C includes all the clusters of C′, namely, C ∈ C′ ⇒ C ∈ C.

As it turns out, given a nonnegative function, there is one, and only one, finest cluster
tree among those satisfying the axioms above.

Proposition 11 For any f ∈ F , there exists a unique finest hierarchical clustering of f
among those satisfying the axioms.

Proof Let f be as in (5). The proof is by construction. Let C∗ denote the collection
of every cluster that satisfies (A1), (A2), and (A3). Clearly, it suffices to show that C∗ is
a hierarchical clustering (Definition 1). Take two clusters in C∗, say C1 =

⋃
i∈I1 Ai and

C2 =
⋃
i∈I2 Ai. We need to show that C1 and C2 are either disjoint or nested. Suppose for

contradiction that this is not the case, so that C1 and C2 are neither disjoint nor nested.
Since they are not disjoint, there is i ∈ I1 ∩ I2, so that Ai ⊆ C1 ∩ C2. And since they are
not nested, there is j ∈ I1 \ I2, so that Aj ⊆ C1 \ C2. By (A1), there are i1, . . . , is ∈ I1

such that Ai ∼ Ai1 ∼ · · · ∼ Ais ∼ Aj . Let t = max{q : Aiq ⊆ C2}, so that Ait ⊆ C2 while
Ait+1 * C2, and in particular Ait+1 ⊆ N (C2) \ C2, and applying (A3), we get

min
C2

f > max
N (C2)\C2

f ≥ λit+1 ≥ min
C1

f,

using at the end the fact that Ait+1 ⊆ C1. However, we could also get the reverse inequality,
minC1 f > minC2 f , in the same exact way, which would result in a contradiction.

Proposition 11 justifies the following definition.

Definition 12 (Finest axiom cluster tree) For f ∈ F , we denote by C∗f the finest clus-
ter tree of f among those satisfying the axioms.
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Figure 6: An example where Hartigan’s cluster tree does not satisfy the axioms, so that
C∗f 6= Hf . Indeed, Hf = {A1, A1 ∪ A2, A1 ∪ A2 ∪ A3} but A1 ∪ A2 /∈ C∗f because
int(A1 ∪A2) is not connected. Instead, we have C∗f = {A1, A2, A1 ∪A2 ∪A3}.

3.3 Comparison with Hartigan’s Cluster Tree

It is natural to compare the finest axiom cluster tree of Definition 12 with the Hartigan
cluster tree of Definition 2. First, observe that for f ∈ F , Hf satisfies (A2) and (A3).
However, Hf need not satisfy (A1), as clusters in Hf are only required to be connected. As
a result, in general, the Hartigan tree Hf is not the same as the finest axiom cluster tree
C∗f . A counter example is given in Figure 6.

We define Fint as the class of functions in F with {Ai} in (5) having the internally
connected property (Definition 8).

Theorem 13 For any f ∈ Fint, it holds that C∗f = Hf .

Proof First, observe that under our assumption, Hf satisfies all axioms (A1), (A2), and
(A3). Thus, because C∗f is the finest cluster tree among those satisfying the axioms (Propo-
sition 11), it must be the case that Hf ⊆ C∗f .

For the reverse inclusion, take any C ∈ C∗f . We want to show that C ∈ Hf . Recalling
the definition of hf in (1), define λ = hf (C) and let M be the maximally connected subset
of {f ≥ λ} that contains C. We need to show that C = M . Noting that C is of the form⋃
i∈I Ai because of (A2), and that M must be of the form

⋃
j∈J Aj because f is of the form

(5), and that M contains C by definition, it is the case that I ⊆ J .
Suppose for contradiction that C 6= M , so that I 6= J . Since M is connected, there

must be Ai in C and Aj in M \ C such that Ai ∪ Aj is connected. As is well-known, this
implies that Ai ∪Aj = Ai ∪ Aj is connected, and since f ∈ Fint, int(Aj ∪ Ai) is also con-
nected, in turn implying that Ai ∼ Aj . Applying (A3), we get that λ > f(Aj), and this is
a contradiction since Aj ⊆M and M is part of the upper λ-level set.

Remark 14 As a relaxation of Axiom 1, we could simply require a cluster to be connected,
and allow it to have disconnected interior. If the definition of a neighboring region were
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also relaxed so that if the closure of the union of two sets is connected, then the sets are
considered neighbors, then the relaxed Axiom 1, original Axiom 2, and original Axiom 3
would yield an axiomatic definition of a cluster tree that is identical to the Hartigan tree for
f ∈ F . All that said, we find the requirement that the interior be connected in our original
Axiom 1 (and in Definition 7) to be more natural and robust.

4. Extension to Continuous Functions

Having defined the finest axiom cluster tree for a piecewise constant function (Definition 12),
we now examine its implication when piecewise constant functions are used to approximate
continuous functions. More specifically, we consider sequences of piecewise constant func-
tions in Fint converging to a continuous function, and show that, under some conditions,
the corresponding finest axiom cluster trees converge to the Hartigan cluster tree of the
limit function in merge distortion metric (Definition 5).

4.1 Functions with Connected Support

We start with continuous functions whose support has connected interior.

Definition 15 Given a continuous function f with connected support, we say that C is an
axiom cluster tree for f if there is a sequence (fn) ⊆ Fint that uniformly approximates f
such that

lim
n→∞

dM ((C∗fn , hfn), (C, hf )) = 0. (6)

At this point it is not clear whether a continuous function admits an axiom cluster tree.
However, if it does, then its Hartigan cluster tree is one of them and, moreover, all other
axiom cluster trees are zero merge distortion distance away.

Theorem 16 Suppose f is a continuous function that admits an axiom cluster tree. Then
its Hartigan tree Hf is an axiom cluster tree for f . Moreover, if C is an axiom cluster tree
for f , then dM ((C, hf ), (Hf , hf )) = 0.

Proof Let C be an axiom cluster tree for f . By Definition 15, there is a sequence (fn) in
Fint that converges uniformly to f such that (6) holds. By the triangle inequality,

dM ((C, hf ), (Hf , hf )) ≤ dM ((C, hf ), (C∗fn , hfn)) + dM ((C∗fn , hfn), (Hf , hf )).

We already know that the first term on the RHS tends to zero. For the second term, using
Theorem 13 and Lemma 6,

dM ((C∗fn , hfn), (Hf , hf )) = dM ((Hfn , hfn), (Hf , hf )) ≤ ‖fn − f‖∞ → 0, n→∞. (7)

We thus have that dM ((C, hf ), (Hf , hf )) = 0 — this being true for any axiom cluster tree
C. In the process, we have also shown in (7) that Hf is axiomatic.

The remaining of this subsection is dedicated to providing sufficient conditions on a
function f for the existence of sequence (fn) ⊆ Fint that converges uniformly to f . In
formalizing this, we will utilize the following terminology and results.
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Definition 17 (Internally connected partition property) We say that Ω has the in-
ternally connected partition property if it is connected, and for any r > 0, there exists a
locally finite partition {Ai} of Ω that has the internally connected property and is such that,
for all i, Ai is connected with connected interior and diameter at most r.

We establish in Proposition 25 that any Euclidean space (and, consequently, of any
finite-dimensional normed space) has the internally connected partition property. And we
conjecture that this extends to some Riemannian manifolds.

Proposition 18 Suppose (Ω, d) is a metric space where all closed and bounded sets are
compact4, and that has the internally connected partition property. Let f : Ω → [0,∞) be
continuous with all upper level sets bounded, and such that the upper λ-level set is connected
when λ > 0 is small enough. Then, there is a sequence (fn) ∈ Fint that converges uniformly
to f .

Proof It is enough to show that, for any η > 0, there is a function in Fint within η of
f in supnorm. Therefore, fix η > 0, and take it small enough that the upper η-level set,
K = {x : f(x) ≥ η}, is connected. Consider

K1 =
{
y : d(y, x) ≤ 1, for some x ∈ K

}
.

In particular, K1 is compact, and since f is continuous on K1, it is uniformly so, and
therefore there exists 0 < ε < 1 such that, if x, y ∈ K1 are such that d(x, y) ≤ ε, then
|f(x)− f(y)| ≤ η.

By the fact that Ω has the internally connected partition property, it admits a locally
finite partition {Ai} with the internally connected property and such that, for all i, Ai has
connected interior and diameter at most ε. Let

I = {i : Ai ∩K 6= ∅},

and note that I is finite and that K ⊆
⋃
i∈I Ai ⊆ K1. For i ∈ I, let λi = supx∈Ai

f(x).
Because Ai ∩ K 6= ∅, we have λi ≥ η. Finally, we define the piecewise constant function
g =

∑
i∈I λiIAi . We claim that g ∈ Fint. Since {Ai : i ∈ I} inherits the internally

connected property from {Ai}, all we need to check is that
⋃
i∈I Ai is connected. To

see this, first note that it is enough that
⋃
i∈I Ai be connected (since the closure of a

connected set is connected). Suppose for contradiction that
⋃
i∈I Ai is disconnected, so

that we can write it as a disjoint union of
⋃
i∈I1 Ai and

⋃
i∈I2 Ai, where I1 and I2 are non-

empty disjoint subsets of I. Because K ⊆
⋃
i∈I Ai, then we have that K is the disjoint

union of K1 :=
⋃
i∈I1 Ai and K2 :=

⋃
i∈I2 Ai, both non-empty by construction, so that K is

not connected—a contradiction.

We now show that ‖f − g‖∞ ≤ η. For x /∈
⋃
i∈I Ai, g(x) = 0 and since x /∈ K, f(x) < η,

so that |f(x) − g(x)| ≤ η. For x ∈ Ai, for some i ∈ I, g(x) = f(y) for some y ∈ Ai, and
because x, y ∈ K1 and d(x, y) ≤ ε, we have |f(y)− f(x)| ≤ η.

14
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Figure 7: An example of density with a support that has disconnected interior which ap-
pears to exhibit some clustering structure beyond that happening inside each of
its eight connected components.

4.2 Functions with Disconnected Support

So far, we have focused our attention on densities whose support has connected interior.
However, there is no real difficulty in extending our approach to more general densities.
Indeed, given a function with support having disconnected interior, our approach can define
a hierarchical clustering of each connected component of {f > 0}.

In more detail, let f be a function of the form

f =

N∑
j=1

fj , (8)

where int(supp(fj)) ∩ int(supp(fk)) = ∅ when j 6= k. First, suppose that each fj ∈ F . If
we apply the axioms of Section 3, we obtain that C is a cluster for f if and only if it is a
cluster for one of the fj , and consequently that the finest axiom cluster tree for f is simply
the union of the finest axiom cluster trees for the fj , i.e.,

C∗f =

N⋃
j=1

C∗fj .

If f is continuous, that is, if each fj in (8) is continuous, we may proceed exactly as in
Section 4.1 and, based on the facts that Hf =

⋃
j Hfj , hf (C) = hfj (C) when C ∈ Cfj , and

dM ((C, hf ), (C′, hf )) = max
j=1,...,N

dM ((Cj , hfj ), (C
′
j , hfj )),

for any two axiom cluster trees for f , C =
⋃
j Cj and C′ =

⋃
j C′j (all cluster trees for f are

of that form), we find that Theorem 16 applies verbatim.

4. This is sometimes called the Heine–Borel property.

15



Arias-Castro and Coda

This is as far as our approach goes. The end result is Hartigan’s cluster tree, with the
same caveats that come from using the merge distortion metric detailed in Section A. In
particular, instead of a tree we have a forest with N trees in general, one for each fj . We
find this end result natural, but if it is desired to further group regions (see Figure 7 for an
illustration), one possibility is to apply a form of agglomerative hierarchical clustering to
the ‘clusters’, supp(f1), . . . , supp(fN ). (In our definition, these are not clusters of Hf , but
this is immaterial.) Doing this presents the usual question of what clustering procedure to
use, but given what we discuss in Section 5.3.1, single-linkage clustering would be a very
natural choice.

5. Discussion

5.1 Extensions

We speculate that our axiomatic definition of hierarchical clustering can be extended beyond
continuous functions (Section 4) to piecewise continuous functions with connected support
by the same process of taking a limit of sequences in Fint that uniformly approximate the
function of interest f .

The natural approach is to work within each region where f is continuous, say R, and
to consider there a partition of R that would allow the definition of a piecewise constant
function approximating f uniformly on R. The main technical hurdle is the construction of
such a partition with the internally connected property, as a region R may not be regular
enough to allow for that. Additionally, even if there is a partition with the internally con-
nected property on each region, taken together, these partitions may not have the internally
connected property. We see some possible workarounds, but their implementation may be
complicated.

5.2 Limitations

We consider an example where the second axiom may be undesirable. Suppose the support
of a piecewise constant density includes a region of constant density consisting of two balls
connected by a narrow bottleneck. Under the axiom of connectedness, this forms one cluster
that cannot be segmented into any smaller clusters. However, it may be preferred to consider
the two balls as two separate clusters.

We concede that if the bottleneck is narrow enough, this is reasonable, though if the
width of the bottleneck increases, eventually the two balls should not be considered two
separate clusters. If we were to modify the axiom and consider the degree of connectedness,
we would need to decide how to measure connectedness (e.g., via the Cheeger constant) and
choose a threshold value for connectedness above which a region of constant density would
not be divisible. Although such a variant of the second axiom could be desirable in practical
situations, at the fundamental level, the specification of a measure of connectedness and
the choice of a threshold would involve a certain degree of arbitrariness, and it would make
the axiom quantitative and no longer be qualitative, thus resulting in a substantial loss of
elegance and naturalness.
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5.3 Practical Implications

We first examine some implications of adopting the axioms defining clusters in Section 3.

5.3.1 Algorithms

A large majority of existing algorithms for hierarchical clustering do not return cluster tree
estimators that are asymptotically consistent with the proposed population hierarchical
clustering. This is true of all agglomerative hierarchical clustering algorithms that we
know of, with the partial exception of single-linkage clustering, as repeatedly pointed out
by Hartigan (1977, 1981, 1985). Interestingly, single-linkage clustering arises out of various
axiomatic discussions of flat clustering5 such as (Kleinberg, 2002; Ben-David and Ackerman,
2008; Zadeh and Ben-David, 2009; Cohen-Addad et al., 2018), as well as in axiomatic
discussions of hierarchical clustering algorithms (Jardine and Sibson, 1968; Carlsson and
Mémoli, 2010).

The fact that single linkage clustering arises as a viable candidate in multiple axiomatic
definitions of clustering is despite the heavy criticism in the literature for its ‘chaining’
tendencies. Indeed, in practice this behavior can be a concern, and regularized variants of
single-linkage clustering are often preferred. Most prominently, this includes the “robust”
variant of single-linkage clustering proposed in Chaudhuri et al. (2014), and a hierarchical
extension of DBSCAN (Ester et al., 1996), as described in Wang et al. (2019). Both of
these estimators have been shown to be consistent in the merge distortion metric for the
estimation of Hartigan’s cluster tree, by Eldridge et al. (2015) and Wang et al. (2019),
respectively.

5.3.2 Hierarchical Clustering in High Dimensions

Wang et al. (2019) derive minimax rates for the estimation of the Hartigan cluster tree,
which turn out to match the corresponding minimax rates for density estimation in the L∞
norm under assumptions of Hölder smoothness on the density. In particular, these rates
exhibit the usual behavior in that they require that the sample size grow exponentially
with the dimension. This is a real limitation of adopting the axiomatic definition that we
propose.

That been said, the usual caveats apply in that the curse of dimensionality is with respect
to the intrinsic dimension if the density is in fact with respect to a measure supported on a
lower-dimensional manifold (Balakrishnan et al., 2013); and assuming more structure can
help circumvent the curse of dimensionality, as done for example in (Chacón, 2019), where
a mixture is fitted to the data before applying modal clustering.

Acknowledgements

We would like to thank Sanjoy Dasgupta for suggesting the potential issue with the second
axiom discussed in Section 5.2.

5. The hierarchical single-linkage algorithm can be terminated early to obtain a flat clustering.
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Appendix A. Merge Distortion Metric

In this section we discuss some limitations and issues of the merge distortion metric. We
restrict our attention to the situation considered in (Eldridge et al., 2015) where the height
of a tree is defined by the density itself as in (1). We denote the density by f and the
corresponding height function by h, and we identify a cluster tree C with the dendrogram
(C, h) whenever needed. We only consider cluster trees C made of clusters C ∈ C satisfying
h(C) > 0. Our discussion applies to non-negative functions, and throughout this section, f
will be non-negative.

The main issue that we want to highlight is that the merge distortion metric is only a
pseudometric, and not a metric, on general cluster trees, as it is possible to have dM (C, C′) =
0 even when C and C′ are not isomorphic. (To be clear, we take the partially ordered sets
C and C′ to be isomorphic if they are order isomorphic.) Two examples of this follow.

Example 1 Consider f = 1
2IA1 + 1

3IA2 + 1
6IA3 where the Ai are disjoint sets with unit

measure. Let C = {A1, A1 ∪ A2, A1 ∪ A2 ∪ A3} and C′ = {A1, A2, A1 ∪ A2, A1 ∪ A2 ∪ A3}.
Both C and C′ are cluster trees and it can be checked that mC(x, y) = mC′(x, y) for all x, y
so that dM (C, C′) = 0. However, the two trees are clearly not isomorphic.

Example 2 Consider f = IA where A has unit measure. Then any collection of subsets of
A with a nested structure is a cluster tree for f , and the merge distortion distance between
any pair of such cluster trees is zero.

The issue in the preceding examples arises because a cluster tree contains nested clusters
with the same cluster height. For example, in Example 1, the addition of the cluster A2

to C does not change the merge height of any two points, and hence the merge distance
between C and C′ is zero.

Note that neither of these examples compare Hartigan trees, and we suspect in the
original merge distortion metric paper (Eldridge et al., 2015), the claim (without proof)
that if the merge distortion metric is zero then the trees must be isomorphic was intended
in the context of comparing Hartigan trees. This is true for comparing Hartigan trees of
continuous densities on Rd, as for Hartigan trees of continuous functions f, g,

dM (Hf ,Hg) = ‖f − g‖∞.

This is established in (Kim et al., 2016, Lem 1). The proof of that result can be adapted to
extend the result to the case where f is continuous and g is piecewise-continuous satisfying
an additional regularity condition that, for every x in its support, there exists a δ small
enough such that g is continuous on a half-ball centered at x of radius δ.

In view of Theorem 16, we are particularly interested in understanding how different a
cluster tree C such that dM (C,Hf ) = 0 can be from Hf . The following results clarify the
situation. The λ-level set of f is defined as

Lλ = {f = λ}.

Proposition 19 Let f be a continuous density. Consider a collection of clusters of the
form

C = (Hf \ {Ci : i ∈ I}) ∪ {Sj : j ∈ J}, (9)
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where Ci ∈ cc(Uλi) for some λi > 0 such that {λi : i ∈ I} has empty interior; and Sj is
a cluster tree of Lλj for some λj > 0 such that {λj : j ∈ J} are all distinct. Then C is a
cluster tree for f satisfying dM (C,Hf ) = 0.

Proof We will use the fact that, by continuity of f , the supremum in (2) is attained,
or more specifically, that if λ = mf (x, y), there is a connected component C of Uλ that
contains x and y. The continuity of f also implies that, for any subset C, h(C) = h(C).

We first show that any C defined as in (9) is a cluster tree. Indeed, the removal of
any number of clusters preserves the nested structure. Now, consider adding Sj , a cluster
tree for Lλj for some λj > 0. We may clearly assume that Sj is a cluster tree for a
connected component of Lλj , say Bj , which is itself contained in some Cj ∈ cc(Uλj ), so
that S ⊆ Bj ⊆ Cj for any S ∈ Sj . Take C ∈ Hf distinct from Cj . We show that either
S ∩ C = ∅ or S ⊆ C for any S ∈ Sj . Let λ = h(C) so that C is a connected component of
Uλ. If λ = λj , Cj and C are disjoint. If λ < λj , Bj is disjoint from C unless C contains
Cj . If this is the case, C also contains Bj , and therefore S. If λ > λj , Bj ⊆ Lλj , C ⊆ Uλ,
and Lλj ∩ Uλ = ∅. Take S′ ∈ Sk. We show that S and S′ are either disjoint or nested.
This is the case if j = k by assumption that Sj is a cluster tree. For j 6= k, Bj and Bk
are disjoint since, by assumption, λj 6= λk in that case. (We have used the fact that two
distinct clusters in Hf have disjoint boundaries.)

To go further, we use the assumption that Λ := {λi : i ∈ I} has empty interior. We
want to show that mC(x, y) = mf (x, y) for any pair of points x and y. First, consider
C1 = Hf \ {cc(Uλi) : i ∈ I}. Clearly, because the merge height is defined based on a
supremum, mC1(x, y) ≤ mC(x, y). Let λ = mf (x, y), so that there is C ∈ cc(Uλ) such
that x, y ∈ C. If λ 6= λi for all i ∈ I, then mC1(x, y) ≥ λ. If λ = λi for some i ∈ I, we
reason as follows. For t < λ, let Ct be the connected component of Ut that contains C.
Then x, y ∈ Ct for all t < λ, and therefore mC1(x, y) ≥ t for any t < λ not in Λ. Since Λ
has empty interior, its complement is dense in Λ, and by continuity of f this implies that
mC1(x, y) ≥ λ. We have thus established that mC1(x, y) ≥ λ = mf (x, y), which then implies
mC(x, y) ≥ mf (x, y). Next, consider C2 = Hf ∪ {Sj : i ∈ J}, so that mC2(x, y) ≥ mC(x, y).
Consider S ∈ Sj , so that S ⊆ Cj for some Cj ∈ cc(Uλj ). Because h(S) ≤ h(Cj) and
Cj ∈ Hf , the merge height of x and y is not increased by adding S to Hf . Therefore,
mC2(x, y) ≤ mf (x, y), which then implies that mC(x, y) ≤ mf (x, y).

It turns out that the condition (9) is not necessary for a cluster tree C to satisfy
dM (C,Hf ) = 0 — although we believe it is not far from that. To deal with the pos-
sible removal of clusters from Hf , we only consider cluster trees satisfying the following
regularity condition. We say that a cluster tree C is closed (for h = hf ) if it is closed under
intersection and union in the sense that, for any sub-collection of nested clusters S ⊆ C,⋂
C∈S C ∈ C and, if infC∈S h(C) > 0,

⋃
C∈S C ∈ C. (Note that this is automatic when S is

finite, but below we will consider infinite sub-collections.)

Lemma 20 Suppose C is a closed cluster tree. Then the supremum defining the merge
height in (2) is attained, meaning that for any x, y there is C ∈ C containing x, y such that
mC(x, y) = h(C).
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Proof Fix x, y and let λ = mC(x, y), assumed to be strictly positive. It suffices to show
that there is a cluster that contains these points with height at least λ.

By the definition in (2), for any m ≥ 1 integer, there is Cm ∈ C that contains x, y such
that h(Cm) > λ(1−1/m). Note that Cm and Cn have at least x, y in common, so that they
must be nested. Therefore the sub-collection {Cm : m ≥ 1} is nested, and by the fact that
C is closed, C =

⋂
m≥1Cm is a cluster in C. By monotonicity of h, h(C) ≥ h(Cm) for all m,

so that h(C) ≥ λ.

To simplify things further, we just avoid talking about what happens within level sets.
We will use the following results.

Lemma 21 For any s, t > 0, the connected components of {f > s} and those of {f ≥ t}
are either disjoint or nested.

Proof Let R be a connected component of {f > s} and let C be a connected component
of {f ≥ t}. Assume they intersect, i.e., C ∩ R 6= ∅. First, assume that s < t. In that case
C ⊆ {f > s}, and being connected, there is a unique connected component of {f > s} that
contains it, which is necessarily R. The reasoning is similar if s ≥ t. Indeed, in that case
R ⊆ {f ≥ t}, and being connected, there is a unique connected component of {f ≥ t} that
contains it, which is necessarily C.

Recall that a mode is simply a local maximum with strictly positive value, i.e., it is a
point x such that f(x) > 0 and f(x) ≥ f(y) whenever d(x, y) ≤ r for some r > 0.

Lemma 22 Consider a continuous function f with bounded upper level sets. Then each
connected component of any of its upper level sets contains at least one mode.

Proof Take C ∈ cc(Uλ) for some λ > 0. Because f is continuous and Uλ is compact, C is
compact, so that there is x0 ∈ C such that f(x0) = maxC f . Because the distance function
is continuous,6 and the fact that all connected components of Uλ are compact, we have that
d(C,C ′) := minx∈C,x′∈C′ d(x, x′) > 0 for all C ′ ∈ cc(Uλ), so that there is η > 0 such that
d(C,C ′) > η for all C ′ ∈ cc(Uλ). Now, consider y within distance η of x0. If y ∈ C, then
f(y) ≤ maxC f = f(x0); and if y /∈ C, then y /∈ Uλ, and therefore f(y) < λ ≤ f(x0). We
can conclude that x0 is a mode.

Lemma 23 Consider a continuous function f with bounded upper level sets and locally
finitely many modes. Then, f satisfies the following property:

For every λ > 0, if ε > 0 is small enough, each connected component of {f > λ}
contains exactly one connected component of {f > λ+ ε}.

(10)

6. As is well-known, |d(x, y) − d(x′, y′)| ≤ d(x, x′) + d(y, y′) by a simple use of the triangle inequality, so
that d : Ω× Ω→ R is Lipschitz and continuous when equipping Ω× Ω with the product topology.

20



An Axiomatic Definition of Hierarchical Clustering

Proof Take any upper level set U . Since U is bounded, it can only include a finite number
of modes. And since each of its connected components contains at least one mode by
Lemma 22, it must be the case that U has at most as many connected components as it
contains modes.

We now assume that the upper level sets all have finitely many components, and show
that (10) holds. We do so by contradiction. Therefore, assume that (10) does not hold so
that there is λ > 0 and R a connected component of {f > λ}, and a sequence (εn), which
we can take to be decreasing and converging to zero, such that for each n, R contains at
least two connected components of {f ≥ λ+ εn}. Because R is a bounded region, applying
the first part of the statement we find that R can only contain finitely many components
of {f > λ + εn}, denoted An1 , . . . , A

n
mn

, with 2 ≤ mn ≤ M for all n, where M is the num-
ber of modes within Uλ. By taking a subsequence if needed, we may further assume that
mn = m ≥ 2 for all n. By the usual nesting property, at every n, for each i, there is exactly
one j such that Ani ⊆ An+1

j , and so that we may choose the indexing in such a way that

Ani ⊆ An+1
i for all n and all i. This allows us to define Ai =

⋃
nA

n
i for i = 1, . . . ,m. Since

f is continuous, {f > λ+ εn} is open, and therefore so are its connected components (since
we assume throughout that Ω is locally connected), and therefore each Ani is open, which
then carries over to each Ai being open. The Ai are disjoint because Ani ∩ An

′
i′ = ∅ unless

i = i′. Therefore, because R =
⋃
iAi, R must be disconnected — a contradiction.

Proposition 24 Let f be a continuous density. Assume that C is a closed cluster tree such
that dM (C,Hf ) = 0. Then C contains Hf . If, in addition, (10) holds, then, for every C ∈ C,
{f > h(C)} ∩ C is some union of connected components of {f > h(C)}.

Proof Let V ∈ cc(Uλ) for some λ > 0. Fix x ∈ V such that f(x) = λ. Take y ∈ V .
First, mf (x, y) = λ, and since mC(x, y) = mf (x, y) and C is assumed closed, there is Cy ∈ C
containing x, y such that h(Cy) = λ. Note that this implies that Cy ⊆ V since V is the
largest connected set that contains x, y such that h(V ) ≥ λ. If y 6= z are both in V , we
have that x ∈ Cy ∩Cz, so that Cy and Cz are nested. Therefore, the collection {Cy : y ∈ V }
is nested, and because C is closed, C =

⋃
y∈V Cy belongs to C. Since Cy ⊆ V for all y, we

have C ⊆ V ; and since Cy contains y for all y, we also have C ⊇ V ; therefore, C = V , and
we conclude that V ∈ C.

For the second part, assume that (10) holds. Take C ∈ C with λ = h(C) > 0. We want
to show that, if R is a connected component of {f > λ} such that R ∩C 6= ∅, then R ⊆ C.
For ε > 0 small enough, R contains exactly one connected component of {f > λ + ε},
which by way of Lemma 21 implies that R contains exactly one connected component of
{f ≥ λ + ε}, which we denote by Vε. By the first part of the proposition, which we have
already established, Vε belongs to C, and C being a cluster tree, we have either Vε∩C = ∅ or
Vε ⊆ C. Only the latter is possible when ε is small enough. Indeed, take x ∈ R∩C, so that
f(x) > λ. Let ε > 0 be small enough that f(x) ≥ λ+ε, so that x ∈ Vε. Hence, Vε ⊆ C when
ε > 0 is small enough, and we then use the fact that R =

⋃
ε>0 Vε to conclude that R ⊆ C.

We remark that, when f is ‘flat nowhere’ in the sense that

{f > λ} = {f ≥ λ} for any λ > 0,
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Figure 8: Left: The level sets of a bimodal Gaussian. The upper level set “splits” at the
level containing the saddle point. (The level set and saddle point are highlighted.)
Right: The highlighted cluster is R1. The addition of this cluster to Hf forms a
valid and distinct cluster tree C1.

then, under the same conditions as in Proposition 24, any C ∈ C is closure of the union
of connected components of {f > λ}. This still leaves the possibility that C 6= Hf , and
it can indeed happen — unless f is unimodal. To see this, for simplicity, suppose that
f is ‘flat nowhere’ and has exactly two modes. Assuming that its support has connected
interior, there is exactly one level λ > 0 where the upper level set ‘splits’ in the sense that
{f > λ} has two connected components, say R1 and R2, while {f ≥ λ} is connected. Then,
for j ∈ {1, 2}, Rj does not belong to Hf and Cj = Hf ∪ {Rj} is a cluster tree satisfying
dM (Cj ,Hf ) = 0. (Note that Hf ∪ {R1, R2} is not a cluster tree since R1 and R2 intersect
but are not nested.) The situation is illustrated in Figure 8.

Appendix B. Euclidean Spaces

In this section we show that Euclidean spaces have the internally connected partition prop-
erty by constructing a ‘shifted’ grid that has the required property.

Proposition 25 Any Euclidean space has the internally connected partition property.

Proof Consider the Euclidean space Rd (equipped with its Euclidean norm). It is enough
to show that there is a a locally finite partition {Ai} that has the internally connected
property and is such that, for all i, int(Ai) is connected and diam(Ai) ≤

√
d.

Let L1 = Z, and for d ≥ 2, define

Ld =
{

(x1, . . . , xd) : xd ∈ 2Z and (x1, . . . , xd−1) ∈ Ld−1;

or xd ∈ 2Z + 1 and (x1 + 1
2 , . . . , xd−1 + 1

2) ∈ Ld−1

}
.

For (x1, . . . , xd) ∈ Ld define the corresponding cell

A(x1,...,xd) = [x1, x1 + 1)× · · · × [xd, xd + 1).

And consider the collection of these cells

Ad =
{
A(x1,...,xd) : (x1, . . . , xd) ∈ Ld

}
.
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Figure 9: The existence of this shifted grid clearly shows that R2 has the internally con-
nected partition property. This definition of a shifted grid can be extended to
higher dimensions to show that Rd has the internally connected partition prop-
erty for any d ≥ 2. (This is trivially true in dimension d = 1 where a regular grid
can be used to show that R has the internally connected partition property.)

Each of these cells has connected interior and has diameter
√
d. Moreover, Ad is a

partition of the entire space Rd. And, as a partition, Ad is clearly locally finite. The
partition is depicted for d = 2 in Figure 9.

We now prove that Ad has the internally connected property. We will proceed by
induction on d. For d = 1, this is clear. For d ≥ 2, assume that Ad−1 has the internally
connected property. Consider (x1, . . . , xd) and (y1, . . . , yd), both in Ld, such that A(x1,...,xd)∪
A(y1,...,yd) is connected. We want to show that int

(
A(x1,...,xd) ∪ A(y1,...,yd)

)
is connected too.

By induction, {A(z1,...,zd) : zd = xd} has the internally connected property, so that it is
enough to consider a situation where yd 6= xd. Suppose, for example, that yd > xd. In
that case, the fact that A(x1,...,xd) ∪ A(y1,...,yd) is connected implies that yd = xd + 1 and

yi = xi ± 1
2 for 1 ≤ i ≤ d− 1. Further,

int(A(x1,...,xd) ∪A(y1,...,yd)) = int(A(x1,...,xd)) ∪ int(A(y1,...,yd)) ∪ C,

where

C =
{

(z1, z2, . . . , zd−1, xd + 1) : xi + 1
4 + 1

4 sign(yi − xi) ≤ zi ≤ xi + 3
4 + 1

4 sign(yi − xi)
}
.

The fact that C ⊆ ∂A(x1,...,xd) ∩ ∂A(y1,...,yd) proves that the union above is connected.
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