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Abstract
Unambiguous identification of the rewards driving behaviours of entities operating in
complex open-ended real-world environments is difficult, in part because goals and associated
behaviours emerge endogenously and are dynamically updated as environments change.
Reproducing such dynamics in models would be useful in many domains, particularly where
fixed reward functions limit the adaptive capabilities of agents. Simulation experiments
described here assess a candidate algorithm for the dynamic updating of the reward function,
RULE: Reward Updating through Learning and Expectation. The approach is tested in
a simplified ecosystem-like setting where experiments challenge entities’ survival, calling
for significant behavioural change. The population of entities successfully demonstrate the
abandonment of an initially rewarded but ultimately detrimental behaviour, amplification of
beneficial behaviour, and appropriate responses to novel items added to their environment.
These adjustments happen through endogenous modification of the entities’ reward function,
during continuous learning, without external intervention.
Keywords: Reinforcement Learning, Reward updating, Evolution, Open world

1. Introduction and context

This paper addresses the difficulty of simulating agents which operate in complex, open-ended
environments, where the goals and objective functions of the individuals are incompletely
defined. Real-world entities in open environments (e.g. humans, animals) may face multiple
concurrent challenges and undertake a broad set of potentially competing tasks. They
must learn how to behave without the opportunity of replaying and improving upon past
choices, operating on a linear timeline. Changes in the environment, and the co-evolution
of interactions between multiple individuals, mean the behaviour required for survival may
change significantly over time. In the case of biological life, evolution provides opportunities
for long-term adaptation, while short-term learning drives behavioural responses, potentially
over multiple lifetimes through ‘cultural inheritance’. This paper is an attempt to capture
this rather constrained adaptability within a simulated environment, using embedded rein-
forcement learning (RL) (Arulkumaran et al., 2017) agents and a simplified evolutionary
process. In RL, scalar-valued rewards serve as feedback to guide learning, typically generated
externally to the agent using human-specified reward functions. Achieving the desired be-
haviour reduces largely to the problem of defining appropriate reward functions, which ideally
provide effective (frequent and unambiguous) training signals. In well-defined tasks with
clear goals (‘achieve the highest score in game X’, or ‘place object A at position B’) shaped
external reward functions designed by humans can be highly successful, for example Mnih
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et al. (2015); Gu et al. (2016); Silver et al. (2016); Jumper et al. (2021). Taking this further,
when the goal of agents can be explicitly stated, proximity of learnt agent behaviour to the
desired goal can provide a signal with which to optimise reward functions, further improving
performance ( Faust et al. 2019; see also the Problem statement below). However, in many
complex open-ended environments it is not possible to know the reward functions of relevant
entities. An alternative approach to designing or optimizing reward functions is to infer an
agent’s objectives, values, or rewards from observation of example behaviour, using Inverse
reinforcement learning (Arora and Doshi, 2021). While powerful in many contexts, this
approach has a number of significant difficulties in the present case: it cannot produce reward
functions relevant to novel (unseen) situations and faces challenges when example behaviour
is ambiguous or suboptimal; it struggles computationally in high-dimensional spaces and
can misinterpret actions driven by unseen features; the method can yield multiple plausible
reward functions, potentially over-fitting to limited data (Arora and Doshi, 2021; Dexter
et al., 2021). In the present open-ended context, a priori observations are not assumed
available, and are of course not possible for novel environmental contexts. If a relevant dense
reward function is not known, and can not be estimated, a possible solution is to embody
high level goals as the reward. For example in the case of a simulated animal, a large reward
for each surviving offspring might encourage multiple required subsidiary behaviours to be
learnt. A drawback is the sparse reward signal coming from the environment: multiple
(un-rewarded) behaviours are needed, potentially multiple times, before the high level reward
can be obtained and it is unlikely these would be undertaken by chance, hence slowing the
learning process. More fundamentally, the problem of how to choose the high-level reward to
drive the lower level behaviours persists. The problem of sparseness can in some cases be ad-
dressed through internal/intrinsic rewards, which encourage exploration of novel behaviours
and system states (Lopes et al., 2012; Poupart et al., 2006; Campero et al., 2020; Karayanni
and Nelken, 2022) and/or improvements in knowledge of the environment (Schmidhuber,
1991; Chentanez et al., 2004; Stadie et al., 2015; Houthooft et al., 2016). Curiosity-driven
exploration is one such approach (Oudeyer et al., 2007; Oudeyer and Kaplan, 2007; Pathak
et al., 2017; Zheng et al., 2021), where rewards reflect how well the agent predicts the
outcome of its actions or how surprised it is by its observations. Over repeated periods
of learning these approaches can yield impressive results, as in Pathak et al. (2017). In
‘novelty search’ (Risi et al., 2009; Lehman and Stanley, 2011; Conti et al., 2018), rewards
are earned by diverging from stored memories of prior behaviour, and the novelty metric
creates a constant pressure to innovate through state exploration. In the present case, an
expected drawback of these approaches is they are not guaranteed to consistently find and
exploit specific objectives, particularly for more complex problems. Behaviours which are
‘good’ in some sense for agents (for example, in aiding survival) may be abandoned for
more novel behaviours. At a deeper level, it remains the case that prior decisions are made
which to a large extent direct the behaviour of the agents, here deciding time should be
spent exploring above all else, which may not reflect the behaviour of real-world agents in
linear timelines. Additionally, human-chosen extrinsic rewards may still be required in order
to achieve specific goals (such as producing offspring) as a drive to explore will alone not
necessarily lead to discovery of behaviours unrelated to the agent’s own ability to explore. In
the realm of evolutionary algorithms, rewards directly inspired by the survival challenges of
living entities can be operationalized through an explicit (modeller-defined) fitness function
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which promotes selection for progressively fitter generations, as for example in Moriarty et al.
(1999); Lambora et al. (2019); Faust et al. (2019); Hallawa et al. (2020). In the present work
importance is given to avoiding the modeller setting permanent objectives (defining success),
as this would ultimately be responsible for directing behaviour, and therefore not necessarily
adaptive to novel environmental conditions. An alternative to this is to use survival itself to
implicitly define success (only those which behave ‘well’ will survive). This essentially calls
for adaptive agents which determine their own goals, transcribe these in to dense external
rewards, and promote the learning of beneficial behaviours on a linear timescale. A complete
approach would also generalise beyond adjusting rewards for existing behaviours, to including
means of discovering and rewarding new actions in appropriate ways.

This contribution Through simulation, this paper shows endogenous updating of a dense
external reward function can produce simulated populations of agents which dynamically
adjust to challenges within an open-ended environment: a self-replenishing population of
agents continuously learn and dynamically adapt their rewards (and therefore their behaviour)
as time proceeds. This is in contrast to existing RL approaches that attempt to find optimal
policies for fixed reward functions. While agent behaviour can adapt to variations in its
environment during standard RL training (and potentially in subsequent inference), because
the reward function remains fixed, behavioural adaptation is essentially finding different
solutions to meet the same objective, rather than reformulating the objectives (through the
reward function) to meet the requirements of new challenges. An abstract ecosystem-like
simulated environment is used to test these ideas: entities with finite lifetimes possess initial
reward functions comprising multiple components; entities inherit (from their maternal parent)
the value for each reward coefficient and also an expectation over time of rewards for each
component; when they become parents they pass on an updated version of both the reward
coefficient and its expectation; the modification is based on their own experience. This process
is termed RULE: Reward Updating through Learning and Expectation (Bailey, 2023). This
paper presents a conceptually simple test of this approach in which detrimental/advantageous
options are made available to simulated entities, who adjust their reward functions in ways
which are advantageous to them in avoiding extinction, without being explicitly encouraged
to survive.

1.1 Scope and Problem statement

The context of this work is the behaviour of entities, and populations of entities, operating
in open world contexts, with constraints on, for example, information availability, interaction
rates, energy use/availability, and transfer of currencies (in the broad sense), which affect the
ability of entities to survive. The environment is open in the sense there is no clear task to
complete, and there are multiple simultaneous influences on entities, with the possibility of
new phenomena at any time. These features are seen in many real-world contexts including
ecological-, economic-, and social-systems and the generalisability of the current findings
is discussed in later sections. An abstract ecosystem-like model is used here as a test case,
which hosts a single type/species of agent entity (named ‘Ents’) and a single type of primary
producer (‘PP’).
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Problem statement The true state of the world is only partially observable by each Ent
agent in the simulation. The learning problem conforms to a Partially-Observable Markov
Decision Process, described by the tuple ⟨S,A,O,D,R, γ⟩, where S = {s1, s2, . . . , sn} is a set
of partially observable states, A = {a1, a2, . . . , am} is a set of actions, and O = {o1, o2, . . . , ok}
is a set of observations. D : S ×A× S → [0, 1] models the unknown system dynamics as a
transition distribution. The immediate reward, R(θ, s, a) : S ×A→ R, where θ ∈ Θ are the
reward coefficients, is then discounted at a rate γ ∈ [0, 1]. RL is an attempt to find a policy π∗R
that maximizes the expected cumulative discounted reward R of trajectories T drawn from
a set of initial conditions N ⊂ O, such that π∗R = argmaxπ ET (N,D,π)

[∑|T |
i=0 γ

iR (θ, si,ai)
]
.

The behaviour of the agent is therefore dependent on the reward function R, which is
typically shaped through human selection of θ to result in the desired outcomes. The success
of any policy can be quantified as J (π) = ET (N,D,π) [G (T )], where G is the metric for
trajectory success. In unambiguous RL tasks, the relationship between R and candidate
(human-created) evaluation functions G can be straightforward, and the chosen G can even
be used as a fitness metric against which to evolve successful reward functions (Faust et al.,
2019). Defining success for an agent (or population of agents) in real-world open-ended
systems is not so straightforward, as multiple related tasks are underway simultaneously and
both the properties of agents and the challenges they face may change over time. Further, the
agent may face both behavioural and evolutionary trade-offs which are not explicitly known,
and maximizing lower-level rewards may have impacts on achieving higher-level success. For
example, maximizing lower-level rewards for consumption might produce longer-lived entities
and therefore yield larger more successful populations (higher-level success) even though
population size/persistence is not part of the reward definition. Such high-level success could
in principle be measured by a suitable metric, but finding a unique such function (G̃) is not
expected to be possible in real-world open-ended systems (e.g. finding a unique goal and
therefore suitable success metric for an animal within an ecosystem). The present work is not
therefore an attempt to find an optimally-shaped reward function (i.e. argmaxθJ (π̂)) that
maximizes an explicit success metric. Instead, the goal is to produce an emergent process
which endogenously updates θ in order to maximise the unobservable success metric (G̃).
Ideally, the process must explore and adjust both the reward coefficients (θ) and the basic
properties of the agents (P ) to prevailing conditions. Given that high level objectives emerge
dynamically from contingent (survival) challenges faced by populations of entities, it is not
guaranteed that endogenous processes (through selection pressures) acting on θ will result
in convergence to optimal solutions, π̃ = argmaxθ J̃ (π̃), where J̃ (π̃) = ET (N,D,π̃)

[
G̃ (T )

]
.

Indeed, in real-world complex adaptive systems there is ample evidence of entities occupying
local physiological and behavioural minima, for example due to inescapable physiological
inheritance (Wedel, 2011) or behavioural path-dependence (Heino et al., 2023).

2. Simulated open-world environment

In the simulated environment, discrete individual entities (‘Ents’) with finite lifetimes
operate within a spatially extensive physically-based world. The environment enforces
certain constraints, including physical constraints on movement, information transfer, and
conservation of energy. An external source provides energy in the form of light which
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powers the system, and reproducing ‘primary producers’ directly use this light to create
biomass. All actions have an energy cost and are therefore limited by energy availability.
Mobile entities (‘Ents’) with finite lifetimes exist in this environment, obtain energy through
consumption, and have the potential to reproduce. They possess multiple senses and (using
reinforcement-learning, RL) learn to map their observations to a fixed set of available actions
which include movement, manipulation of objects, emission of signals, and the transferring
of various currencies to other Ents. Some of the state variables describing each entity are
fixed throughout each lifetime and inherited during reproduction through ‘genes’ from the
two required parent Ents. The demands of the environment naturally produce selection
pressures, and these result in evolution. The following sections provide brief descriptions of
the components of the model. Additional details are given in Appendix A.

Simulated physical environment The simulated environment is a continuous 3D space,
with a basal surface area of 20 x 20 m2 and unbounded in the vertical dimension. Time
proceeds discretely in integer steps ∆t = 0.02 s. Basic physics (gravity, inertia, response to
force, drag and scattering during collisions) is applied to all rigid objects (the simulation
was built using the Unity 3D game engine, with physics updates implemented using Nvidia
PhysX). Time is defined in seconds, mass in kg, and length in m. Energy is normalised to
the power of the external source, S, which remains fixed at 1 throughout all of the reported
experiments. The main physical elements of the world are shown in Figure 1.

2.1 Primary producers (PP)

Primary producers are the base of the food chain and produce biomass (bodymass and fruits)
using energy derived directly from the external energy (light) source. Information contained
in their genes entirely determines their physiology and behavioural responses. PPs grow
from seeds ejected within fruits by a parent PP. On the ground, fruits notionally decompose
and their seeds lay dormant for a genetically defined period before starting to grow. While
on the ground, some fraction of the non-palatable fruits are available and may be collected
by Ents (and potentially converted later to processed food). Once a seed begins to grow,
it grows at a rate proportional to its mass and the strength of the incident light, until it
reaches a genetically-set maximum mass. While alive, PPs compete with each other for space,
within a competition radius proportional to their height, with the larger of the two killing
the smaller. PPs can also be consumed directly by Ents, who remove bite-sized amounts of
mass. The palatability of primary producers to Ents (and hence the sign and proportion of
the biomass-derived energy available to the Ent) is determined by the genes of both Ent and
PP. Eventually, PPs die for one of three reasons: (i) reaching their genetically-determined
maximum lifespan; (ii) loosing all mass to consumption; or (iii) being outcompeted for space
by a larger nearby PP.

2.2 Ents

Simulated entities (‘Ents’) inhabit the surface of the environment and are essentially spherical
in shape and have a density equivalent to that of water. To aid visual interpretation,
additional body parts (eyes, crests, and tails) are given to Ents but these serve no functional
purpose. The internal physiological workings of Ents are not resolved, and the ability to
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perform essential physical operations, such as movement, digestion, growth and reproduction,
are assumed. Ents can be damaged through impact, predation or mass loss due to starvation
and can therefore die before their maximum potential lifetime is reached. Ent behaviour is
learnt collectively using reinforcement learning (details below).

Figure 1: A screen capture of the model running, showing the environment components.

Energy Energy costs are associated with various activities, including the base running
cost (resting metabolic rate, proportional to mass2/3), movement (proportional to mass),
growth of biomass, synthesizing of currencies, processing raw material (from inedible fruits
to processed blue ‘cakes’), currency transactions, and collision damage (which is proportional
to the strength of the impact above a minimum threshold). Ents obtain energy through the
consumption of primary producers (PPs), other Ents, and processed ‘cakes’. To consume
food, Ents must physically touch the object and bite-off an amount of mass in proportion
to their own body mass. This ingested material is then notionally stored within the Ent’s
stomach and gradually digested to obtain energy. The energy release occurs incrementally
over a period that is proportional to the mass consumed. Further consumption is only
possible once the stomach has emptied sufficiently. The energy obtained from consumption
depends on the energy density of the material and its palatability to the Ent. Palatability is
determined by the genetic makeup of both the Ent and material consumed (the palatability
of a specific potential foodstuff is therefore subject to evolutionary adaptation); three values
within the genes of Ents and PPs determine their tissue makeup, and are also translated to
RGB to render the Ent/PP colours in visualisations. Energy obtained by digesting consumed
material can be stored (as ‘fat mass’) for later use in powering physiological functions, and
meeting other costs, or it can go to growing biomass (both for the Ent and any offspring).
If an Ent is not fully grown, and its stored energy level is below a genetically-set amount,
energy from digestion is partitioned between growth and storage according to a genetically
determined ratio; if the energy store has reached the minimum amount (and the Ent is not
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fully grown), all energy is used for biomass growth; finally, if the Ent is fully grown, all
energy sent to the store for later use. In the absence of available food, Ents automatically
draw energy from their energy stores. If no food is available and the energy (fat) store is
depleted, the Ent’s remaining (lean) body mass is internally converted into energy until it
reaches a minimum viable body mass (relative to its maximum previously-achieved mass).
Once the minimum viable body mass is reached, the Ent dies.

Currencies By definition, interactions between entities in real systems involve a transfer of
some combination of information, material and/or service (loosely termed), and to augment
potentially meaningful interactions between Ents, a generalised representation of currencies
is introduced in to the simulation. Here, a currency is something that one entity can
choose to give to another, and is not necessarily tangible. Two two key properties are used
to differentiate four types of currencies: ‘subtractability’ (True: the currency is used-up
when given; False: the currency is not used-up when given) and ‘synthesizability’ (True:
currencies can and must first be created by individuals, with some material/energy cost;
False: the currency can only be exchanged once collected). Exchange of currencies may incur
a transaction cost, and rewards are associated with their transfer. One of each currency type
is used in the current experiments, summarised in Table 1.

Currency Subtractable Synthesizable Model component

C1 True True An item requiring energy + raw material to
produce. Here, inedible fruits from PPs can
be collected and processed by Ents, producing
processed material (‘cakes’) with maximum
possible nutritional value, as currency C1

C2 False False A service-/action-related currency, which is
innate and entails no additional cost (groom-
ing, and the display of positive emotions, are
examples).

C3 False True A non-innate skill which can be obtained at
some production cost, but is then infinitely
reusable (a skill such as the ability to play
music is an example).

C4 True False Found objects, typically finite. Here, ‘coins’
are dropped in to the environment periodically,
and can be picked-up, dropped again, or given
to other Ents; uncollected coins vanish after a
set duration.

Table 1: Properties of transferable currencies

Life-cycle, reproduction and inheritance Each Ent has a finite lifetime, during which
it can be both a ‘father’ and ‘mother’ to offspring. Reproduction is not a specific single
action in its own right, rather reproduction happens as two Ents touch when either/both of
them are in a reproductive (‘mother’) state. Each Ent possesses an inherited set of numerical
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values that determine its core properties, referred to as its gene, G =
{
gi, . . . gng

}
(noting

this gross simplification compared to biological genes). The reproductive (‘mother’) state
can occur up to a genetically-determined number of times over each lifetime if/when the
Ent reaches a minimum relative size and accumulates sufficient stored energy. Ents can
(and do) learn to recognise when others are in this reproductive state. If ‘Ent-A’ (father)
touches a reproductive ‘Ent-B’ (mother), there is an exchange of genetic material (A→ B)
and ‘Ent-B’ produces a genetically-mixed offspring (and burdens the associated energy cost
of biomass production) (genetic noise is also added during reproduction). The ‘decision’ to
mate is therefore expressed through movement. Offspring are born immediately on mating
and possess an energy reserve (genetically set) donated by the mother sufficient under initial
gene values to keep them alive for ~10 s (~5% of their maximum lifetime) without additional
consumption. Offspring possess no other currencies or items, and these must be acquired
during their lives. Ents finally die due to either (i) reaching their (genetically-determined)
maximum lifespan, or (ii) loss of mass due to predation or starvation; their biomass is
removed instantly from the system, along with their stored currencies and any collected
items (with the exception of coins, currency C4 ) with persist for 1 s before disappearing).

3. Agent behaviour

3.1 Reinforcement Learning

The ability of Ents to learn (continuously) is an important feature of the present work,
and Ent behaviour (the choice of action taken) is learnt from experience using deep RL, as
outlined in the introductory section. In some of the experiments described below, learning
is continuous meaning decisions are part of the learning process and any change in reward
function has potential to feed through to changes in behaviour. In other experiments, a
previously learnt policy is used (in inference mode) to decide actions, without being updated.
A high level summary of the main component of the process are provided below (technical
details of the model and RL process are given in the Appendix).

Observations Each 0.02 s time step, entities make a range of observations covering their
own internal state and their detectable environment (including other entities). ‘Movement’:
horizontal movement (x and z velocity) and rotation angle; ‘Vision’: Ray sensors provide
information about visible object type, direction relative to the forward direction of the Ent,
and distance (17 rays, equally spaced over ±40 degrees of the forward direction, with a
range dependent upon the illumination level, up to a maximum range of 50 m). ‘Taste’ /
palatability: when Ents consume material, they sense its palatability (based on the paired
sums of the three ‘tissue’ genes described above). ‘Touch’: Ents can sense the impact
damage when they hit any object through an energy cost which is proportional to the impact
force (notionally associated to the repair cost). ‘Hearing’: Within a genetically-set radius,
Ents can identify signals (equal to {0, 1, 2}), and perceive their direction and distance (s = 0
is also the sound observation made in the absence of any Ent signals). No intrinsic meaning
is given to these signals and Ents are free to use them, or not, and to make their own
associations. ‘Smell/scent’: Ents can detect the ‘scent’ of the closest Ent within their
sensing radius. The ‘scent’ is a single value, calculated as the mean absolute difference
between each of three ‘tissue genes’ described above. ‘Nearby group size’: the (normalized)
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number of Ents within sensing radius; ‘Inventories’: the amount of each Currency stored
(including the amount of stored energy, C0), the ‘starvation level’ (proximity to minimum
viable bodymass), amount of stored raw material (PP fruits) and processed material (‘blue
cakes’), and numbers of cubes held (0 or 1). Physiological state: whether ready to mate
and give birth (indicated by a red crest); whether ‘feeling pain’ (from being eaten, or from
dying before the genetically-determined maximum lifespan); Light level: the intensity of
the external light source.

Actions The ‘physiological’ processes of Ents (digestion, energy partitioning, growth,
gestation) are regularly updated automatically without any direct control by the Ent. Ents
can however choose to interact with the environment through various discrete actions (each
of which entails an energy cost): moving, picking-up/dropping objects, exchanging currencies
and signals, eating, processing raw materials and reproducing. Any set of non-exclusionary
actions can be taken in each successive 0.02 s time increment, as listed here (details in
Appendix A). Those actions which are not logically possible are ‘masked’ (made unavailable)
to reduce the action space for learning. For example, the action to drop an object is masked
if the object is not currently held. Move: Ents can choose to rotate in 1◦ increments around
their vertical axis, ∆Rotation = {0, 1◦,−1◦}; a forward force ∆F = {0, δF,−δF} can be
applied, where the increment δF is a function of Ent lean mass, while the force acts on
the total body mass. Eat/bite: {true, false} if Ents are touching a ‘soft’ object they
can bite it and take some of its mass. If the palatability score is positive, the material is
digested over a period of time (during which no further consumption is possible) and energy
is obtained (depending on the energy density and palatability of the material); if palatability
is negative, no energy is obtained from digestions and a ‘poisoning’ energy reduction is
applied, in proportion to the palatability score. Emit signal: Ents choose whether to remain
silent (emit signal 0), or to emit signal {1, 2}. Give currency: When touching another
Ent, any currency possessed can be given to that Ent, in increments of Cigiven, which is
determined genetically (G[66-69]) for each currency (except for currency C4 (coins) which
is given one-at-a-time); the receiving Ent increases its currency inventory by this amount;
the giving Ent reduces its inventory by this amount only if the currency is ‘subtractable’,
and by zero if the currency is ‘non-subtractable’. Pick up object: When touching any
movable object with mass less than the Ent, a {true, false} choice is made to pick it up; all
objects other than blocks can be stored in the Ent’s inventory; blocks are carried aloft by
the Ent and in this case no other objects can be picked up until the block is dropped. Drop
object: any object being carried (a cube, coins (C4), fruits or processed ‘cake’ material) can
be dropped, with a {true, false} choice. Process raw material in inventory: If the Ent
is carrying a PP seed, the mass of the seed can be converted to a processed ‘blue cake’, which
is edible and has the maximum possible palatability (hence, maximum possible energy yield
on consumption/digestion). Once processed, the blue-cake must be dropped to be eaten. It
can be dropped and picked up to store again as required.

Training Proximal policy optimisation, PPO (Schulman et al., 2017), was used to train
the Ent agents, implemented through the ML-Agents Toolkit within Unity (Juliani et al.,
2020). A Python API provides a low-level Python interface for communication between the
simulation and relevant PyTorch libraries. In the present case, only a single type of Ent
is present in the simulations and PPO is implemented with a single policy, with all active

9



Bailey, R.M.

Ent agents contributing to the learning process and sharing that same policy (details of the
chosen hyper-parameters are provided in the Appendix).

3.2 Rewards and Reward updating via RULE

In order to create a population of Ents which can potentially go on to update their reward
functions endogenously, an initial reward function is required to begin the process of learning
(an alternative, not chosen, being to slowly evolve such a function from scratch). Approaches
to creating dynamic reward functions are discussed in Section 6. The chosen reward function
(Equation 1) comprises a set of minimum essential components (for eating, reproduction and
pain) plus components for each of the (NC = 4) currencies, to provide potential for richer
Ent interactions and experimental manipulations. The reward obtained at time step t is
defined

R = f · θconsumption + b · θreproduction + p · θpain +
∑NC

j=1
∆Cjθj (1)

For each of the 7 reward components there is a coefficient θ which scales the contribution to
the total. The first term accounts for consumption (of food material) where f is the food
mass consumed, the second is reproduction where b is the number of offspring produced
(rewards are given to both parent Ents). The third term defines the contribution of pain
(due to impact damage, being bitten/eaten or dying before the maximum lifespan is reached)
and is the only reward coefficient which remains fixed, providing an anchor to which all other
reward coefficients are relative. The final term accounts for net changes in currencies. The
proposed algorithm for endogenous reward updating is outlined in Algorithm 1 below and it
results in updates to θi (where i indexes all components except pain). The algorithm can be
qualitatively described as follows: each Ent inherits (from its mother) the value of each reward
function coefficient θi and also an expectation distribution (over age) of the accumulated
reward for each component. If an Ent becomes a mother, it passes on updated versions of
each reward coefficient and each expectation distribution, where the modification depends
on its own experience: for each reward component, if the mother Ent has accumulated
more reward than expected (within a 20 s age bin), a larger reward value and increased
expectation is passed on, and vice versa. Ents pass on reward coefficients to their offspring
which encourage behaviour closer to their own than had no modifications been made. Ents
which are more successful in some way, because of their experiences in the environment, will
be more likely to pass on their encouragements, and what is effectively a majority vote on
reward updates (and therefore eventually behaviour) occurs at the population level.
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Algorithm 1 RULE: Reward Updating through Learning and Expectation
Require: θ, E(τ ), α, β, lifeStatus ≡ alive
Ensure: Offspring with updated Reward Expectations Ei(t) and Reward coefficients θi, if

offspring produced
1: Initialize Ai ← 0, ∀i ▷ i ∈ [1,numberOfRewards]
2: while alive do
3: Ai ← Ai +Ri,t,∀i ▷ Incrementally sum rewards each time step t
4: if producing offspring then
5: τ = f(T ) ▷ Calculate age bin τ based on current age of parent, T
6: ∆i ← Ai − Ei(τ),∀i ▷ Compare accumulated rewards to expected rewards
7: if ∆i > 0 then
8: δE = αi

9: δθ = βi
10: else if ∆i < 0 then
11: δE = −αi

12: δθ = −βi
13: else
14: δE = 0
15: δθ = 0
16: end if
17: Ei(τ)← Ei(τ) + δE ▷ Updated Reward Expectations
18: θi ← θi + δθ ▷ Updated Reward Coefficients
19: Offspring.Ei(τ)← Parent.Ei(τ), ∀{i, τ} ▷ Pass on updated values to offspring
20: Offspring.θi ← Parent.θi, ∀i
21: end if
22: end while

Definitions: θ: the set of reward coefficients; R: the set of reward values obtained
at time t; α: the set of reward expectation increments; β: the set of reward coefficient
increments; E(τ ): the set of initial Expected Accumulated Rewards distributions, across age
classes τ

The time complexity of the RULE algorithm depends on the number of iterations of
the while loop (determined by Ent lifespan, of order 10e4-10e5), and per iteration on
numberOfRewards, so overall O(Iterations · numberOfRewards).

4. Experiments

4.1 Purpose and overview

To test the RULE algorithm assessments were made of whether Ent populations could make
significant changes (autonomously) to their reward coefficients (and hence their behaviour,
under continuous learning) in order to improve their chances of survival, in response to
changing environmental conditions. In Experiments 1 & 2 outlined below, a challenge to
population survival was set up which can only be overcome if the population ‘chooses’ to
abandon certain behaviour, running contrary to the initial reward structure (later populations
must act ‘against the will’ of the initial population). The environment of the Ents was
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set up initially with constant benign conditions and initial reward coefficients (θ) hand-
chosen to yield learnt behaviour conducive to a persistent (multi-generational) population.
Within this setting the collection of coins (currency C4 ) is rewarded. Collecting coins is
an intentionally frivolous activity, providing no immediate benefit and entailing a small
time/energy (and therefore opportunity) cost. During Experiment 2, coin availability was
progressively increased to the point where so much time/effort could be spent on coin
collection that the population would suffer (through starvation and a lack of reproduction).
This is the coins challenge the Ent population faced. Experiment 3 is a repeat of Experiment
2 but with coin collection directly affecting Ent stored energy and reproduction probability.
The purpose of this experiment is to assess the ability of Ents to adjust their behaviours due
to more direct signals compared to the more implicit opportunity-cost signal associated with
coin collection in Experiment 2. Where there are positive energy/reproduction benefits, coins
are referred to as ‘vitamins’, and when the effects are negative, ‘poisons’. For the RULE
algorithm to be judged successful, the population must survive the coins challenge and be
able to modify behaviour in response to the opportunities and risks associated with vitamins
and poisons. The purpose of the final experiment (Experiment 4) was to assess whether
reward updating could ‘switch on’ behaviour associated with previously unseen actions, and
is a test of the generalisability of the RULE approach.

4.2 Baseline conditions

In all model runs, both the initial Ent population size and initial PP population size were set
to 100, and these were distributed randomly across the inner 7x7 m (PPs) and 6x6 m (Ents)
of the 10x10 m surface of the simulated environment. PP initial age and mass were chosen
at random (to avoid forcing cyclic behaviour in biomass availability): age ∼ U [1, 100] and
mass ∼ U [5, 50]. Ent initial ages were set to zero (so initial training is forced to cover this
crucial initial period where risk of death by starvation is high), and their mass to 3.75 kg (the
offspring mass of the lightest possible mother). Each Ent is provided (by the mother) with
an initial energy store equal to 1 unit (this amount is genetically determined and therefore
subject to change when evolution is enabled). Batches of currency C4 (coins) are dropped
into the environment (materializing at a random height, ∼ U [0.05, 0.1], and falling to the
surface under simulated gravity) at regular intervals, with a batch of ncoins coins per 10 s
(referred to as a ‘coin cycle’). Coins persist on the surface for 20 s (during which time they
may be picked up) before disappearing. Under baseline conditions ncoins = 10. The external
light source was held constant throughout all simulations at a value of 1. The simulation
halted if the Ent population reached zero, and ran no longer than the maximum time limit
of 20,000 s for all experiments.

4.3 Preliminary stage

Baseline policy training and population persistence The first step involved choosing
(by trial and error) a set of initial values for genes and reward coefficients, and running
RL training for a sufficient number of steps to create a robust initial policy under baseline
conditions. During the training process, if all Ents in the population died, the environment
was reset. Eventually, as the behaviour of the Ents improved under training, reproduction
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offset the loss (death) of Ents, and the population survived for increasingly longer periods.
What counts as a ‘robust’ policy was determined using two attributes:

(1) Persistence: the ability to maintain a finite population of Ents over time under
benign conditions. This requires sufficient rewards for at least food consumption (for energy
supply) and reproduction. The reward coefficients found to meet this requirement were
θconsumption = 0.3 and θreproduction = 1. In the same spirit, the initial genes chosen for Ents
and PPs make PPs palatable to Ents. Relatively small coefficients were assigned to changes
in currencies (θ1,2,3 = 0.1), to encourage currency transfers but to ensure currency dynamics
did not initially dominate eating and reproduction during the initial period. The reward for
dying before the genetically-determined maximum lifespan (from a lack of mass, due either
to starvation or predation) was set to θPain = −1. The reward for being bitten by another
Ent was set to θconsumption · θPain = −0.3. It is unlikely the initial reward coefficients and
gene values are optimal in any sense and this was not the goal, but they were sufficient to
produce stable populations from which the dynamic updating processes could proceed.

(2) Coin collecting: The second necessary attribute was that the Ents should expend
effort collecting currency C4 (‘coins’). Coin collection is a necessary part of the experiment
outlined below and this behaviour can only be achieved if Ents are sufficiently rewarded.
The reward for ∆C4 (collection of a single coin) was set to θ4 = 0.3.

Baseline reward expectations Following training of the baseline policy (with fixed θ
values) reward expectation distributions, Ei(τ), were created, as required for later application
of the RULE algorithm. To achieve this, the model was run with evolution disabled (offspring
received an exact copy of their mother’s genes), reward coefficients (θ) held constant, and Ent
behaviour driven by the baseline policy (in inference mode, with no learning). Populations
of Ents and PPs were initiated (parameter values equal to those during initial training) and
all expectation values were initialised to zero. The model was run for 10,000 s, updating
reward expectations for each offspring according to RULE, providing sufficient time for the
expected reward distributions Ei(τ) to stabilize at consistent values (see Appendix A.2.4
for further details). These distributions, together with the trained RL policy, provide the
necessary ingredients for the experiments to proceed.

4.4 Experiment design

Assessing whether Ents can survive the coins challenge involves controlling combinations
of three factors: evolution (of genes), learning (continuously updating the policy through
training), and reward updating with RULE (which can only happen during learning) - see
Table 2. Note that the learning condition here does not involve resetting of the environment
if the population dies. The population is expected to be replenished through reproduction,
so if the population collapses that is the end of the experiment. Evolution can be disabled by
giving offspring an exact copy of their mother’s genes (and disabling mutation); learning can
be switched-off by running the Ent behaviour model in inference mode rather than training
mode; finally, reward updating (even if learning is enabled) can be switched off by setting
δE = δθ = 0 for all reproductions.

Experiment 1: Baseline coins sensitivity The baseline sensitivity of the population to
coin rate was measured under otherwise standard conditions, using Ents with no evolution
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or learning (and no reward updating), primarily to confirm whether a ‘fatal dose’ of coins
exists, and to estimate its value (to inform subsequent experiments and interpretations). The
experiment involved 10 repeat runs at each of 10 different (constant) coin rates (from 0-80
coins/10 s). Each simulation was run for 10,000 s, as this was deemed sufficient time to asses
with confidence whether a population could survive.

Experiment 2: Coins challenge A total of 18 combinations of conditions were used in
Experiment 2. For each of the 6 conditions listed in Table 2 experiments were conducted
with: (i) constant coin rate of 10/cycle (baseline control conditions); (ii) a linear increase in
coin supply at a slower rate, where the number of coins dropped per 10 s cycle was equal
to ncoins(t) = 10 + 0.0097t (reaching 107 coins per cycle at 10,000 s); (iii) a similar linear
increase in coin supply but at a faster rate, ncoins(t) = 10 + 0.014t (reaching 150 coins
per cycle at 10,000 s). For the RULE algorithm to be deemed successful, Ent populations
must survive increases in coin supply rates which are fatal to populations under the same
conditions without RULE being enabled.

Experiment condition Evolution Learning Reward updating

[2a] Inference-only False False False
[2b] Evolution-only True False False
[2c] Learning-only False True False
[2d] Evolution + Learning True True False
[2e] Learning + Reward-updating False True True
[2f] Learning + Reward-updating + Evolution True True True

Table 2: List of experiment conditions. In each case, there are three coin rate conditions, (i)
constant (10 coins / cycle), (ii) Increasing from 10 to 107 coins / cycle, (iii) Increasing from
10 to 150 coins / cycle.

Experiment 3: Vitamins and poisons The purpose of Experiment 3 was to assess the
extent to which explicitly ‘beneficial’ or ‘harmful’ behaviours can be amplified/abandoned
by reward updating. This is in contrast to the implicit (opportunity) cost associated with
picking up otherwise neutral coins in Experiment 2. In Experiment 3, the effects of picking
up coins are extended to (i) an instantaneous change in the energy stored by the Ent
(∆C0), and (ii) a multiplier of the probability of reproduction. Under these changes, ‘coins’
are re-conceptualised as ‘Vitamins’ and ‘Poisons’: stronger vitamins, ∆C0 = 10,P = 5;
weaker vitamins, ∆C0 = 0.5,P = 1.25; stronger poison, ∆C0 = −2,P = 0.1; weaker poison,
∆C0 = −0.5,P = 0.5. To pass this test, rewards for picking-up (beneficial) vitamins should
increase (from the baseline value of θ4 = 0.3), and rewards for (harmful) poisons should
decrease to the extent that the population is able to survive. This is a particularly difficult
challenge in the case of poisons, as Ents begin the experiment with strong poison-collecting
behaviour and relativey high reward coefficients for something that is highly detrimental to
their survival prospects.

Experiment 4: Dormant rewards The purpose of this experiment was to assess whether
(under RULE) Ents can successfully adopt/ignore beneficial/harmful activities of which they
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have had no previous experience. This is in contrast to Experiment 2 and 3 which test the
ability to modify already-learnt behaviours in the face of new environmental conditions. The
introduced conditions chosen were the coins and vitamins of Experiment 3. Experiment 4
therefore required starting the baseline training process from the beginning to establish a
persistent Ent population without coins having been present, and without coin collection
having been learnt. Experiment 4 began with this persistent population, with the coin reward
coefficients (θ4) set to a low value of 0.001, and with expected distributions for coin rewards
initialised randomly within the range [-0.001, 0.001]. In two separate experiment runs, (1)
coins, and (2) vitamins, were introduced at a linearly-increasing rate (ncoins(t) = 10+ 0.014t,
the higher rate used in the coins challenge). For RULE to be deemed successful in these
contexts, Ents should discover and then learn to pick up (beneficial) vitamins; conversely,
they should not learn to pick up detrimental quantities of (harmful) poison.

5. Results

Preliminary stage results During baseline training (with repeated periods of learning and
re-setting the environment after Ent population collapse), Ents successfully learnt a policy
which allowed them to survive in their environment, maintaining a persistent population
through reproduction. At a minimum this required Ents to successfully identify and then
move to targets, eat, and reproduce. The time series of rewards obtained during initial
training is shown in Figure 2, along with data on the succession of Ent populations observed.
During the early phase of training (0-30e6 steps), Ent populations collapsed after short
periods as individual Ents had not learnt to eat and reproduce. As these and other skills were
acquired through training, populations persisted for longer durations, producing successive
generations (Figure 2b), eventually resulting in a stable population (Figure 2a) which met
both the persistence and coin-collecting criteria outlined above. In subsequent experiments
involving continuous learning (a requirement for RULE) the PPO algorithm (with constant
learning rate) was found to be stable, with no evidence of reward/behaviour deterioration,
or failure to learn.

Results for the ‘Baseline Expected Rewards’ distributions Ei(τ) are shown in Figure
3 for Currency, Consumption and Reproduction rewards. Variation was observed in the
distributions of individual Ents, due to differences in life experience accumulated down
the maternal line. However, over the course of the 10,000 s model run, mean Ei(τ) values
(averaged over the last n = 500 Ent births) converged on the values shown (black squares in
Figure 3) and were used as the starting distributions for each Ent in subsequent experiments.
The red circles in these figures are the Ei(τ) adjustments following the ‘coins challenge’, and
are discussed below.

Experiment 1: Baseline coins sensitivity Summary results for the preliminary coin-
sensitivity experiment are shown in Figure 4. Part (a) plots the final Ent population (after
10,000 s) against the coin rate. The inset shows the posterior probability of population
collapse. Coin rates ≤ 30 did not impact the survival probability of the Ent population;
coins rates ≥ 50 always collapsed the population, and those intermediate rates produced
increased risk of collapse as coin rate increased (see inset). Between model runs there was
broad consistency and example population time series are shown in Figure 4(b). These results
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Figure 2: Baseline training. (a) Black symbols indicate the total reward obtained at each step
during the initial policy training. Data in light grey are the birth number of each Ent born
during the training period, plotted against ‘Birth time’ (time of birth since the beginning of
the population). Stronger vertical components indicate lower reproduction rates, leading to
population collapse; more diagonal components indicate more consistent birth rates. Part
(b) shows the first 3,100 births in greater detail, showing where multiples of the maximum
lifespan (200 s) are observed, indicating increasingly successful Ent survival and reproduction.
Below "2nd", no successful offspring are created; above "2nd" are second generation Ents;
"3rd" and "4th" are not strictly generation numbers, but indicate increasing population
persistence as Ents are born at times which can only be reached due to multiples of the
maximum lifespan.

together demonstrate there is indeed a maximum survivable ‘dose rate’ of coins, and that
increasing coins over time to beyond this limits would provide a suitable survival challenge.

Experiment 2: Coins challenge This experiment involves a linear increase in coin-rate
(number of coins dropped each 10 s interval), under the conditions summarised in Table 2,
Experiments[2a-f]. Figure 5 displays representative individual time series from each of these
experiments, with (S) and (F) indicating whether the slower or faster increase in coin rates is
shown. Table 3 provides descriptive data on the outcomes of these experiments and summary
plots of repeated trials are shown in Appendix A.3. In sections A and B of Figure 5 coloured
lines show data from experiment conditions (orange for populations which collapse and blue
for those which survive); green horizontal lines indicate the [min,max] range of population
collapse times. Grey lines plot results from control conditions where coin rates were held
constant at 10 coins/cycle (noting all populations survived all control condition runs).

Section A of Figure 5 shows (in the upper row, darker orange) Ent population over time
for experiment conditions 2a-2d. The lower row (lighter orange) shows the rate of coin
collection across the whole Ent population, falling to zero as the populations crash. Dashed
lines indicate the availability of new coins increasing over time (collection rates may exceed
supply rates if coins dropped by Ents are subsequently picked-up). Results in parts (a,b)
(‘Inference [2a]’, where Ent behaviour choices are made using the fixed baseline policy, with
no additional learning) show the population to be initially stable as the coin rate increases
linearly (collection follows supply, meaning almost all available coins are collected). Rather
abruptly at ~6,000 s the population and coin collection rate fall to zero. This coincides with
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Figure 3: Expected rewards distributions Ei(τ) are shown here for Currency, Consumption
and Reproduction reward coefficients. Black squares indicate the mean values (at each time
point) from the last 500 Ents born in the 10,000 s simulation. These values are the ‘Baseline
reward expectations’, following the initial policy training based on the chosen reward function
coefficients (red circles show results from the coins challenge, discussed in the main text).

Figure 4: Results from the coins sensitivity experiment. (a) Final population after 10,000 s
at the constant coin rate shown in the horizontal axis. The inset shows the probability of
population collapse. (b) Example Ent population time series for a range of coin rates.

the coin supply rate increasing beyond ~60 coins/cycle (~300 coins/50 s), consistent with
results shown in Figure 4. The results shown are for the slower coin increase rate but as
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Figure 5: Results from Experiment 2: the ‘coins challenge’. Dashed black lines indicate
the availability of new coins. Data are plotted as orange/blue to highlight cases where Ent
populations collpased/survived under the experimental conditions. For collapsing populations,
green horizontal lines indicate the [min,max] range of collapse times from multiple repeated
runs (see A.3). Grey lines are data from control conditions in which the coin rate was kept
constant at 10 coins/cycle. In part (q) blue symbols indicate coin reward coefficients θ4 for
each Ent offspring, plotted against the time of its birth. Further details are available in the
main text.

indicated in Table 3, ‘faster’ coin increase rates produce similar results, but with shorter-lived
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populations, as the ‘fatal dose’ of coins is reached more quickly. In parts (b,f), it can be
seen that enabling ‘evolution’ (Expt.[2b]) under the inference condition does not lead to
longer-lived populations, and there is some evidence it may shorten survival times (Table
3). Under the ‘Learning’ condition (parts c,g of Figure 5), where Ents actively update their
shared policy throughout the experiment, populations survive the coins challenge for ~50%
longer (and are able to collect more coins) compared to (non-learning) ‘inference’ conditions.
However, the overall pattern is similar in that populations (Figure 4c,d) and collection rates
(Figure 4g,h) for both coin increase rates, with and without evolution enabled, eventually
collapse over a simlar range of times as coin availability increases (Table 3). Under the control
conditions, there is no evidence that continuous learning was detrimental to population size
(in fact the combination of Learning & Evolution led to significant population increase, Figure
4d). The important observation from Experiments [2c] and [2d] is that neither learning (with
a fixed reward function), nor Learning & Evolution, provided means for the population to
survive the coins challenge.

Section B shows results for Experiments 2e and 2f (which involve continuous learning with
adaptive reward coefficient updating, RULE), for the faster (F) and slower (S) rates of coin
increase, both with and without evolution enabled. Figures 5(i,j) show results for Experiment
[2e] (RULE). Unlike results presented in part A, the large majority of populations do not
collapse as coin rates increased (Table 3), with populations typically remaining at broadly
consistent levels throughout the experiment. The coin collection rates initially increase,
following the coin supply, but then reduce considerably, meaning not all available coins were
collected. This reduction was not caused by population decline (as in the Inference and
Learning conditions) but by changes in Ent behaviour driven by updating of the reward
coefficient (θ4; part C), associated with changes in the expected reward distributions (E(τ),
Figure 3). Successful Ent populations survive increases in coin rate to levels well beyond the 50
coins/cycle limit identified in Figure 4. The majority of populations across repeat runs passed
this test (see Table 3). In some cases, eventhough behavioural change occurred as θ4 reached
near-zero values, populations fell to low levels, and some collapsed. This is an expected
consequence of the stochastic nature of small spatially distributed populations, where chance
plays a part in, for example, the likelihood of reproduction, and is well-documented in many
ecological populations (e.g. Kramer et al. (2009)). Reward updating via RULE therefore
appears to provide a mechanism for populations to survive the coins challenge.

For the ‘RULE & Evolution’ condition [2f], the success of the population in defeating the
coins challenge depends on the rate at which the coin supply is increased. At the lower rate
(S), the response in terms of coin collection (Figure 5(o)) is similar to the ‘RULE’ condition
over the first ~11,000 s, but the population increases dramatically from ~14,000 s, and the
coin collection rate eventually matches the coin availability rate. In contrast, under the
higher coin increase rate (F), the population collapses relatively quickly as coin availability
increases (Figure 5(l,p)).

Section C of Figure 5 shows the reward coefficient for coins (θ4) over time, for Experiments
[2a,2b,2c,2d,2e]. In the case of Experiments [2a,2b] (Inference) and Experiments [2c,2d]
(Learning), all reward coefficients are held constant. In Experiments [2e,2f] (RULE), where
reward coefficients are updated actively over time, significant changes are observed (results
for both experiments are similar (Appendix A.3) and for clarity, only example results for
2f are shown). Each point plotted represents the θ4 value of an Ent offspring, at the time
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of its birth. A dominant features is for θ4 to reduce towards zero, and this is evident from
the beginning of the time series. The range of θ4 values initially increases, going above
and below the initial value of 0.3, before becoming more restricted at later times. During
the ‘coins challenge’, the increasing availability of coins means some Ents collect more, and
subsequently give birth to Ents which similarly pick up relatively large numbers of coins.
This drives up θ4 for those Ents and these ‘lineages’ can be seen in the data plotted in Figure
5(i). At the same time, other Ents pick up fewer than expected coins, and give birth to
Ents who have similar experiences. Hence in the early stages of Experiment 2e, there is a
diversity of branching θ4 responses. As coin availability increases further, those Ents who
happen to collect more coins are on average less successful at producing offspring, and so the
‘signal’ to the population encouraging greater coin collection is relatively weak. Conversely,
those collecting fewer coins will on average produce more offspring with θ and E(τ) values
which encourage less coin collection. As these effects continue, θ4 drops significantly over the
course of the experiment, to values below those for both θconsumption and θreproduction. The
outcome in terms of behaviour is that Ents pick up coins if they are in their vicinity, but
won’t abandon food or reproduction opportunities for coins. So, while some coin collecting
behaviour continues, many coins are left un-collected and populations survive.

Experiment % survival
(n)

tcollapse

[min, max]
θ4

(coins)
θ5

(consumpt.)
θ6

(reproduct.)

[2a] Inf (F) 0 (10) 5020 [4000,5950] - - -
(S) 0 (10) 6192 [4750,7300] - - -

[2b] Inf,Ev (F) 0 (10) 3920 [3250,5450] - - -
(S) 0 (10) 4940 [3950,5800] - - -

[2c] Lrn (F) 0 (10) 7925 [6100,10200] - - -
(S) 0 (10) 9970 [8350,13550] - - -

[2d] Lrn,Ev (F) 0 (10) 5940 [3700,8300] - - -
(S) 0 (10) 8930 [6600,12450] - - -

[2e] RULE (F) 83 (12) - 0.04 [0.03,0.06] 0.32 [0.24,0.4] 0.97 [0.95,0.98]
(S) 80 (10) - 0.03 [0.03,0.06] 0.32 [0.22,0.42] 0.97 [0.97,0.98]

[2f] RULE,Ev (F) 0 (12) 7340 [2150, 14050] - - -
(S) 75 (12) - 0.03 [0.02,0.06] 0.38 [0.2,0.62] 0.98 [0.97,0.98]

Vitamins
Stronger (F) 100 (6) - 1.0 [1.0,1.0] 0.13 [0.11,0.14] 0.99 [0.99,1.0]
Weaker (F) 100 (6) - 1.0 [1.0,1.0] 0.04 [0.02,0.07] 1.00 [0.99,1.0]

Poisons
Weaker (S) 75 (12) - 0.01 [0.01,0.03] 0.24 [0.17,0.42] 0.97 [0.96,0.97]
Stronger (F) 0 (12) 4988 [4400,6100] - - -

Table 3: Experiments results summary. (F) and (S) refer to the slower and faster rates of
coin increase (§4.4). Each experiment was repeated n times and the ‘% survival’ column
indicates the proportion of those populations surviving the experimental conditions (bold font
highlights those conditions for which the majority of populations survived the experiment).
For conditions where all populations collapsed, the mean [min, max] time to collapse is shown.
No time to collapse is shown for conditions where survival dominates. In these cases, the
final θi values (the mean of the last 10% of each time series), and the [min,max] range are
given. These data are not provided for populations which collapsed during the experiment.
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Effects of evolution For experiment [2b], 10 repeats of the control condition were run
(evolution was enabled, but no learning or reward updating). Across the results from these
runs some gene values showed no consistent changes and drifted to both higher and lower
values. In contrast, other gene values showed consistent patterns across all 10 repeat runs.
The left-side (blue) panels of Figure 6 show representative results of this latter group. Each
data point represents the gene value for an Ent offspring, plotted at its time of birth. The
distributions shown to the right of the gene time series are frequency distributions of the
gene values from the last 500 offspring of the time series; the dashed line indicates the initial
genes value. Amongst these data there is a tendency over time towards the following: larger
Ents [evolving from an initial value of 25 →mean value of 36] (b) who keep larger energy
reserves [1.0 →2.1] (f), with consistent (<5% change) relative stomach sizes [2.0 →2.1] (g)
and maximum lifespans [200 →193] (c); able to reproduce when smaller (lower body mass)
[0.75 →0.60] (d), giving birth to relatively larger offspring [0.20 →0.31] (e). These genetic
changes yield a stable persistent population. For comparison, equivalent (orange) plots are
shown on the right side of Figure 6, generated using data from Experiment [2f] (increasing
coin rate, learning and reward updating via RULE & Evolution). Under these conditions, the
evolutionary response has some key differences to the control condition described above: Ents
become smaller, with lower maximum mass [25.0 →13.6] (i); their maximum age reduces to
a greater extent [200 →118] (j); minimum reproduction mass is reduced by a much greater
amount, with the distribution running in to its enforced minimum value at 0.2 [0.75 →0.23]
(k) while the relative mass of offspring increases to a greater extent [0.20 →0.36] (l); relative
stomach masses increase dramatically [0.20 →0.35] (n) and energy reserves (while more
variable) extend to higher values [1.0 →2.7] (m). Proposed explanations for the changes
observed during the control conditions and the coin challenge conditions are presented in the
Discussion section below.

Experiment 3: Vitamins and poisons Figure 7 presents example results from Exper-
iment 3, a ‘coins challenge’ experiment (with RULE and no evolution) in which the act
of picking up coins was combined with either energy-and-reproductive benefits (coins as
‘vitamins’) or reductions (coins as ‘poisons’). The top and middle rows provide time series
of reward coefficients for coins (θ4) and food consumption (θconsumption) respectively; the
bottom row shows Ent population time series. Three experimental conditions are shown in
the columns: weak vitamins, strong vitamins, poison (see experiment description section
above for details). In both ‘vitamins’ experiments, θ4 increases dramatically while the con-
sumption (eating) reward θconsumption drops significantly. In both cases reward coefficients
θ4 reach the maximum value of 1, and this happens in ~8,000 s for weaker vitamins, versus
a considerably faster ~4,000 s for stronger vitamins. These relative rates are also seen in
the reduction of θconsumption values. Conversely, θ4 reduces to near zero in the ‘coins as
poison’ condition, and coin collection also falls to very low levels (Appendix A.3). This
is accompanied by an increase in θconsumption. In all cases, Ent populations remain viable
throughout the experiments. The key observation from these results is that both reward
coefficients and coin collection rates increase when coins are (at least superficially) beneficial
(vitamins), and both decrease when coins are harmful (poisons).

Experiment 4: Dormant reward Figure 8 shows results from Experiment 4 (in which
coins are absent from the environment during baseline training, and are then introduced at a

21



Bailey, R.M.

Figure 6: Evolution of gene values. Each point in the time series represents the gene value of
an Ent, plotted at its time of birth. The gene value distributions are for the last 500 Ent
births of the experiment, with the vertical dashed line indicating the initial gene value in
each case.

linearly-increasing rate during the experiment; RULE is enabled and there is no evolution).
Figure 8 parts (iii) and (iv) together show that θ4 and the rate of coin collection remain
consistently around zero for the 20,000 s of the experiment; conversely, θ4 values and the
rate of vitamin collection per Ent show significant increases over time after ~2,000 s. The
upper limit of θ4 = 1 is reached at ~15,000 s and is associated with a stabilised collection
rate. The difference in behavioural response to introduced coins and vitamins is indicated
in Figure 8: by the end of the experiment, Ents are positioning themselves roughly evenly
within the area where vitamins are dropped and collecting them quickly (ii), while avoiding
the area where coins are dropped (i), and showing consistent disinterest in collecting them.
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Figure 7: Vitamins and Poison. Results from three experiments in which ‘coins’ were recast
as ‘vitamins’ or ‘poison’. Picking-up vitamins provides an instantaneous increase in stored
energy and an increased probability of becoming reproductive. Conversely, picking up‘poison’
reduces both stored energy and reproduction probability. The results shown are for cases
where RULE updating of reward coefficients is enabled. The positive/negative benefits/costs
of vitamins/poisons are reflected in the increased/decreased reward coefficients for ‘coins’
(θ4).

Currencies 1-3 and Signals transfers Currency and signal transfers are not the core
focus of the current experiments, and only brief mention is given here. Transfers of currencies
between Ents are observed in the results, and signals were also passed. However, there
were no major consistent trends in the data across the various experiments, suggesting
these behaviours were not instrumental in surviving the coins challenge, or in surviving the
otherwise benign conditions of the baseline experiments, and for the sake of brevity are not
reported further.

23



Bailey, R.M.

Figure 8: Dormant reward response to Coins and Vitamins. (i) and (ii) show example
snapshots of the distribution of Ents in the environment during each experiment. The
clustering of Ents close to Vitamins and the avoidance of Coins is observed. In (iii), each
point represents the θ4 value of an Ent born at the time indicated. (iv) shows the rate (per
Ent) at which coins/vitamins were collected over the duration of the experiment.

6. Discussion

Death by coins Collecting coins is intentionally frivolous as it wastes time and energy that
could be spent on more productive things (eating and reproduction, for example). Baseline
coin rewards were set relatively high at the outset, to promote coin collection, with a small
and fixed supply rate of coins promoting competition amongst the Ents (as was observed).
With fixed rewards, high rates of coin supply are fatal to the Ent population: greater coin
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availability per Ent means more time collecting them, hence the sometimes sharp populations
collapse as more coins are collected by ever-decreasing numbers of Ents. Behavioural policies
that would have resulted in higher rewards (with the same reward function), e.g. collecting
fewer coins in order to preserve life (hence avoiding the -1 reward for early death) plus eating
and reproducing more, were not discovered during training before populations collapsed.
With large numbers of repeated attempts, such policies may have been discovered, but doing
this in linear time adds additional (possibly insurpassable) difficulties. Indeed, if this were
possible a single high-level sparse reward may indeed meet the challenges posed in this
work (although this of course does not avoid the issue of choosing what that high level
reward should be). Results show no evidence that (continuous) learning, with fixed reward
coefficients, can solve the coins problem, as learning is always in service to the same reward
function.

Testing RULE: the coins challenge The RULE algorithm is proposed as an approach
to address the problem of fixed reward coefficients: parents (mothers) modify the values of
reward coefficients and expected reward distributions passed on to their offspring, based
on their own experiences. During continuous learning across the population, the policy is
updated to maximize rewards and the modifications parents make to θ act to encourage
their offspring to behave more like the parents. A diversity of experiences across the Ent
population, and hence differences in the ‘success’ of individuals, is exploited to promote
behaviour which is good for the population. The process is a dynamic majority vote to
reinforce beneficial modifications to reward coefficient values, but also to leave open the
possibility of reinforcing different behaviours. For example, in results for the second half
of Experiment 2, the average θ4 value is close to zero, but small sub-populations continue
to have different coin collection experiences and produce short-lived ‘exploratory’ lineages,
as excursions from the main trend. These excursions die out if the associated experience is
not beneficial but it is this exploration of rewards that is needed to find new behavioural
solutions to novel conditions (as seen in Experiments 3 & 4.). It is possible that perturbing
the reward function in the way described may address potential issues related to loss of
plasticity under attempted continuous learning tasks, as Ents appear to have little problem
adapting their behaviour to novel environmental conditions when RULE is applied. The
evidence supports the conclusion that dynamic beneficial reward updating is possisble. This
is true for coins, even though in themselves they are not harmful, and their impact on Ents is
indirect via opportunity costs. RULE should work equally well, or even more ‘purposefully’
when faced with more direct impacts. To this end, Experiment 3 (‘vitamins and poisons’)
was focused on understanding how the nature of the response to collectable objects depends
on their properties.

Testing RULE: vitamins and poisons Vitamins provide clear benefits to Ents (increased
energy and reproduction rate), their collection makes sense, and the results show as vitamins
are made available, RULE increases θ4; further, the associated increase in collection rate
which follows reflects the strength of their benefits. The response to stronger vitamins is
faster and more coherent, and there is little ‘exploration’ of lower θ4 values (Figure 7(b)).
For weaker vitamins, where the benefits are more marginal, there is more ‘exploration’ of
lower θ4 values before higher rewards eventually win out (Figure 7(a)). A greater level
of ‘deliberation’ in less straightforward cases is perhaps inevitable given the presence of
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conflicting reward-updating signals. In both cases θ4 values reach their maximum limit
of 1 and there is a major change in Ent behaviour. The Ents consumption of PPs and
processed material drops significantly, as they become reliant on vitamins (reward coefficient
θconsumption values drop significantly in both cases). This behavioural response to vitamins
represents a major departure from the baseline behaviour of the Ents.

The opposite response is seen in Figure 7(c,f): reduced θ4 and increased θconsumption.
Poisons have a negative impact on Ent energy levels and reduce reproduction rates. Under
RULE, they are almost entirely abandoned (very few poisons are picked up) and Ents
navigate between/away-from poisons if they stray close them. The ‘Poison’ challenge is a
difficult challenge as Ents begin the experiment with strong poison(coin)-collecting behaviour
(relativey high reward coefficients and associated policy) and therefore impose increasing
levels of harm on the population as the poison (coin) supply increases over time. There is
essentially a race between the harm inflicted (decreasing the population) and the adaptation
of behaviour (increasing the population). The faster of the two poison (coin) increase rates
exceeds the ability of the population to adapt (none survive), while the slower increase
allows enough time for behaviour to successfully adapt and the large majority of populations
survive (Table 3). The difficulty of this experiment, even for slower rates of coin increase,
is seen in Figure 7(h) as a relatively low population. Low populations are at the mercy of
stochastic variation and this is reflected in the lower proportion of populations surviving this
experiment (75% versus 80% in Experiment [2e]). In summary, and as seen in results for
the ‘coins challenge’, the diversity of experiences across the Ent population is exploited by
RULE as it responds to both beneficial (collecting vitamins) and harmful (collecting poisons)
behaviours, by appropriately modifying rewards and therefore learnt behavioural responses.

Testing RULE: dormant rewards The reward function components used in the present
simulation, while defensible in that they produce persistent populations, are somewhat
arbitrary, and this inevitably limits generalisability: only the reward components present can
be updated and these may not necessarily apply to future changes in the environment. Two
options to tackle this problem are discussed: (1) Predefined ‘dormant’ rewards, (2) Dynamic
reward function expansion.

Option (1) involves increasing the fixed number of components in the reward function,
with a subset of these being redundant at first (in the sense they contribute nothing to the
total reward as the phenomenon they reward is absent and the coefficient is set to zero). In
this case, at some point in the future RULE might be provoked by the environment in to
‘switching-on’ the rewards (increasing the absolute value of the coefficient), thus having it
contribute more or less to the ongoing learnt behaviour. Option (2) calls for a mechanism to
recognise new ‘rewardable’ phenomena and to dynamically add relevant components to the
reward function (for example, when phenomena are above some threshold level of surprise).
Option (2) approaches Option (1) as knowledge of possible future rewards increases. The
question of how to practically implement option (2) is not addressed in this work.

Experiment 4 provides a test of how well RULE responds in the presence of a dormant
reward (Option 1), in this case for coins and vitamins. When a persistent Ent population
experienced coins for the first time (with θ4 ≈ 0), a small number of coins were picked-up
by chance. As coin availability was increased (linearly) over time, coins continued to be
picked-up only at a low rate and rewards did not change significantly: coin collection was

26



Continuously evolving rewards in an open-ended environment

not ‘switched-on’ to any significant degree. Coins provided no benefit. These findings are
consistent with those of Experiment 2. Conversely, after vitamins were first experienced, the
dormant reward showed signs of being ‘switched-on’ after ~1 ks, with rewards and collection
rates increasing significantly (θ4 eventually reaching its maximum value). These observations
suggest RULE has the potential to respond appropriately to novel conditions, setting reward
coefficients to values which reflect the benefit of the action. These results underscore how
‘artificially’ high the baseline value for θ4 was set, and that given the chance to either start
at θ4 = 0 and discover coins for themselves, or to start at θ4 = 0.3 and adjust to the reward,
Ents using RULE settle on θ4 ≈ 0.

Impacts of Evolution With broadly stable conditions, no evolution of the primary
producers, and only a single species of Ent, there is limited evolutionary pressure in the
present set of experiments. Nonetheless, if the initially chosen baseline gene values were sub-
optimal (which is likely), evolution would be expected to fine-tune these values over time, and
this is essentially what is observed. Each of the consistent gene-value changes observed under
baseline conditions can be interpreted as aiding survival (larger Ents with greater energy
reserves who start to produce larger offspring earlier in their lives). Under the coins challenge
experiment, evolutionary changes alone were not sufficient for the population to survive, but
in combination with learning and reward updating (under the slower of the two coin increase
rates), systematic changes in gene values did produce Ents with characteristics well-suited to
surviving high-coin-rate conditions, and resulted in the largest populations recorded across all
repeated experiments. However, as shown in Figure 5(l), imposing the higher rate of increase
in coin availability caused the population to collapse (results which were consistent across
multiple repeat runs). In ecological settings, populations may experience a lag in adaptation
when conditions change rapidly, meaning relatively slowly-changing traits which were once
beneficial become harmful under new conditions. In the present case, population collapse
happens before large systematic changes in mean gene values have happened, but there is a
significant increase in the spread of gene values ( ~25% mean increase in relative standard
deviation). There is a potential asymmetry present in that random combinations of gene
values which aid survival have relatively small effects (as seen in Experiment 2a,b), whereas
those which hinder survival have enough of an effect, in the presence of high coin-stress, to
reduce the population. Once the population starts to decline, positive feedback (increasingly
higher availability of coins per Ent) takes over (as discussed above). It appears then that
if RULE can provide resilience to coins, Evolution fine-tunes the Ents, but if the increase
in environmental stress is too fast, the negative aspects of gene value variation collapse the
population before RULE can save it.

Reward hacking The goal of RL is to tune a policy to maximizes long-term rewards,
and during continuous learning the RULE algorithm modifies reward coefficients based on
policy-driven behaviour. In principle then, the training process could hijack the adjustment of
actions in order to drive a modification of rewards, thus boosting the rewards obtained (reward
hacking). In fact, multiple simultaneous interacting optimisation processes are at work in
some experiments: implicit evolutionary optimisation of gene values, explicit maximizing of
rewards through policy updating, and the RULE-based reward coefficient updating. Potential
exists for any of these to amplify or dampen each others’ impacts. Constant baseline
conditions, with RULE and evolution enabled, and all but one (reproduction) of the reward
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coefficients set below their maximum value of 1.0, provides a good base from which to test
for reward hacking. In the results from this case (the control condition of Experiment 2f),
no systematic increase in reward coefficients is observed. It is possible that survival needs
impose strong constraints on what behaviours can be rewarded (increasing rewards for one
activity potentially means less of another), and that this keeps reward hacking in check.
There are however other observations which paint a more nuanced picture. During the coin
challenge (Expt. 2e; RULE with no evolution), θ4 is reduced to a level where coin collection
still happens, but at a much-reduced level. That is, the reward from coins is not lost, but
is reduced to a point which does not threaten the population (in stark contrast to the case
of weaker poisons, where collection was halted altogether). The response to Experiment 2e
created a population largely un-interested in coins, living outside the area where coins were
dropped, with a small fraction of the Ents collecting coins at relatively low rates in the coins
area. When evolution is added to this condition (Expt. 2f), the body characteristics of Ents
are changed significantly, resulting in a very large population of shorter-lived Ents who as a
population are able (by the end of the experiment period) to collect very high levels of coins
without the population collapsing. This ‘solution’ to the coins challenge is therefore successful
in both producing a surviving population and also maximising the reward from coins. This
is perhaps more of a ‘reward co-operation’ between processes than a ‘reward hacking’ by
one of them. It is possible that if the complexity of the environment was increased further,
agents may find other opportunities to hack rewards, but the constraints imposed by survival
(in the linear timeframe) may dampen such tendencies. This remains an open question and
an avenue for further work.

Hidden goals In the introductory sections it is argued that the goals of autonomous
real-world agents are typically hidden, and that survival challenges guide the emergence
of rewards to satisfy those hidden goals. Since RULE can adjust reward coefficients, it is
natural to consider whether the resultant reward function might be interpretable in terms of
the hidden goal(s) it serves. It is argued below that this is not possible. Updated rewards
elicit individual behaviours which result in emergent consequences at the population level (as
in the present case, agents operate within the context of other agents). To take an extreme
hypothetical case, imagine Ents using RULE see an increase in the reward for consumption,
which rises to the maximum value of 1. At the same time, all other rewards fall to low
levels. Interpretation of the goal may appear simple: maximizing consumption of food is the
most important factor in survival. However, when all of the population focusses on eating,
there is a secondary effect such as out-competing a second species which would otherwise
have competed in some other way (e.g. competition for space). The imperative driving the
true goal therefore is reducing competition for space. This was achieved in the present case
through competing for food, but could feasibly have been achieved in other ways. This is a
relatively simple case and yet the true high level goal is not easily derived from the reward
function, or at least not uniquely. When there are multiple reward components and more
complex behaviours, it seems likely identifying goals would become more difficult. Hidden
goals therefore likely remain hidden, even when the results of reward function updating are
known.

Wider application of RULE To what extent can RULE be used in other multi-agent
contexts? RULE operates at the population level by exploiting variation in individual experi-
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ences, and works essentially because successful/unsuccessful behaviour is amplified/dampened.
The current context approximates a simple ecosystem, where entities face a constant survival
challenge. One potential solution to generalising RULE is to cast other situations as analogues
of the survival challenges of individuals. For example, economic agents may have money in
place of energy, costs such as wages instead of base metabolism, acquisitions as foraged food,
sales as consumption, expansion as reproduction, bankruptcy as death, etc.. On social media
platforms, influencers and content creators vie for limited user attention and engagement,
where audience size mirrors reproduction. While such analogies can be somewhat strained,
RULE is expected to work well in situations where populations of decision-making entities
exist within resource-constrained environments (defined broadly), where there is scope for
differing experiences which affect outcomes driving implicit or explicit competition. The
action space of entities in the current environment is intentionally relatively small and it
remains to be seen whether the RULE algorithm can indeed scale to even more complex
environments, e.g. Baker et al. (2022). A useful further benchmarking exercise would be a
comprehensive comparison of RULE to RL approaches based on fixed higher-level intrinsic
rewards (such as novelty search) and possibly hybrid schemes which combine aspects of
these approaches with RULE. The RULE approach should in principle also apply in cases
where entities are not individuals, but collectives of individuals. For example, in supply
chain networks, manufacturing firms, distributors, and retail companies, are decision-making
entities which compete for resources and customers under constraints of costs. Similarly,
city entities compete for population, funding, and natural resources, with expansion through
infrastructure development and decline through population and economic loss. Where indi-
vidual agents in the simulated system are not of a type which produce offspring (or have
enforced maximum lifespans), a different mechanism is required. Agents could, for example,
periodically replace themselves with updated versions (effectively reproducing ‘in place’)
when some resource condition was met, with calculated adjustments to θi and E(τ)based on
comparisons of accumulated rewards to expected rewards over a rolling time window.

7. Conclusion

Central to this work is the idea that goals and reward functions of real-world entities, which
we may wish to represent in models, are hidden from observers (and most likely also from the
entities themselves). Further, the reward functions that guide behaviour are in some sense
chosen, or emergent, in real-world systems and adapt over time as environments changes.
If out of a necessity to elicit some desired aspects of the entity’s observed behaviour, we
formulate a fixed reward function, we risk pre-defining incorrect behaviour in novel situations
for which we have no observational data, potentially limiting future adaptability. Hence
there is a need to model entities which endogenously shape their own reward functions
over time, particularly in response to changes in their environments, and thereby update
their own behaviour for their own benefit. If our aim is to reproduce the dynamics of
real-world systems, entities must also re-shape their behaviour in linear time, without the
chance to learn by resetting their environments when they fail in some sense. The evidence
presented from simulations of entities (Ents) within a simplified ecosystem-like environment
shows that continuous Reinforcement Learning, together with continuous updating of reward
functions using the RULE algorithm (Reward Updating through Learning and Expectation),

29



Bailey, R.M.

can achieve these goals. The algorithm exploits the diversity of experience across the Ent
population to endogenously reinforce beneficial behaviours and reduce those which are
harmful. This was demonstrated first by Ents ‘choosing’ to abandon previously learnt and
positively-rewarded behaviours when they became harmful. Populations also responded
appropriately to previously unseen objects, by creating positive rewards for (and collecting)
beneficial ‘vitamins’, and holding the reward at zero (and not collecting) ‘coins’ with no
intrinsic benefits when these were introduced in to their environment. The relatively simple
ecosystem-like context of the present experiments was chosen as a ‘toy’ example because it
contains generic properties found in many systems, including multiple competing agents,
scare resources, a spatial domain, costs, and exchanges of information. Applying RULE to
yet more complex environments, in cases where multi-agent problems are cast as survival
challenges, is potentially a useful focus for future work.
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Appendix A. Additional model description

Broad descriptions of the simulated environment, its model components and their behaviours
are provided in the main text. Finer details of aspects not covered there are provided below.

A.1 Primary Producers

Each Primary Producer (PP) updates its state every P = 25∆t = 0.5 s (the model update
frequency is 50s−1; ∆t = 0.02 s). The characteristics of each PP are determined by its gene
values. In the present simulations, evolution is not enabled and when reproducing each PP
simply passes on an exact copy of its genes.

Genes Each PP has its own set of genes which determine its characteristics, as outlined
below.

Description Symbol Units Range Initial
value

G[0] maximum biomass mppMax kg > 0 50
G[1] ‘Lock’ L1 [colour, r] L1 - [0, 1] 0.9
G[2] ‘Lock’ L2 [colour, g] L2 - [0, 1] 0.7
G[3] ‘Lock’ L3 [colour, b] L3 - [0, 1] 0.9
G[4] Probability increment per 1% of accumulated mass rinc - [0, 1] 5 · 10−5

G[5] Initial reproduction probability r0 - [0, 1] 0
G[6] Maximum age amax s > 0 100
G[7] Gene copying noise zpp - [0, 1] 0
G[8] Energy harvesting coefficient cs,m - > 0 2
G[9] Body mass energy density ρEpp E/kg > 0 5
G[10] Maximum reproduction probability (per dt) rppmax - [0, 1] 0.005
G[11] Exclusion radius to height ratio hex - > 0 3
G[12] Growth rate (kg growth per kg of body mass per s,
when s=1)

gpp s−1 > 0 0.5

G[13] Pre-growth pause tpause s > 0 5
G[14] Inner exclusion ratio rin s > 0 0.2
G[15] Proportion of seeds on surface psurf - [0, 1] 0.05

Table A.1: Gene values for Primary Producers. Gene index numbers are shown. Genes [1,2,3]
are jointly the {r,g,b} colour tuple (expressed as ratios) for the PP outward appearance and
the ‘lock’ values L1-3 which determine palatability. As PP evolution is not enabled in the
present case, the initial values shown remain fixed throughout all model runs.

Reproduction via seed production Each PP produces a fruit within any given update
step with reproduction probability r, which is initialised at rpp0 and increases over time
if rpp < rppmax where rppmax is a genetically-set maximum reproduction probability. The
increment increases to a maximum, as

∆rp =
mpp

mppMax
· rinc · p+ nbites · rinc (A.1)

where, mppis current PP mass (kg), mppMax = 50kg is the genetically-set maximum mass,
rinc = 5 · 10−5dt−1 is the reproduction probability increment, nbites counts the number of
times the PP has been bitten by Ents since the last fruit production. This provides feedback
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from Ent behaviour to PP behaviour, relevant to co-evolution of Ents and PPs, but has
limited impact at present as evolution of PP gene values is not enabled in the simulations
reported.

When fruiting occurs, fruits are dropped at a random position between an inner and
outer calculated radius, with radii satisfying max(h · rin · 0.5, 0.3), where, h = 0.005mpp is
the height of the PP and rin = 0.2 is the genetically set inner exclusion ratio.

A genetically determined proportion (psurf = 0.05) of the seeds produced remain on the
surface for a period of 10 s, and then transition below the surface. During their period at
the surface seeds can be picked up and stored by Ents (details below). After a genetically
determined ‘germination’ period of duration tpause = 5 (s), seeds begin to grow symmetrically
out from the surface and deeper in to the ground.

Growth Condition When illuminated, PPs add biomass in increments ∆mpp while
mpp < mppMax.

∆mpp = Es · cs,m ·mc ·
gpp
ρEpp

·∆t · P (A.2)

where Es = 1.0 is the energy input from the external source, cs,m = 2 is the external energy
collected (collection area × conversion efficiency), gpp = 0.5 is a growth constant (kg growth
per s, per kg of biomass), ρEpp = 5 is the body mass energy density.

Competition for space To ensure some degree of spacing between PPs, PPs mimic the
behaviour of many real-world primary producers and exert direct competitive pressure on
their neighbours. A PP competes with another PP if it is within its inner (rinner) and outer
(router) competition radii. If they compete, the larger of the two competing PPs has a 10%
chance (per ∆t) of killing the smaller PP.

rinner = h · ζx (A.3)

router = hmax · ζx (A.4)

where hmax = 0.005 ·mmaxpp = 0.25m is the maximum PP height and ζx = 3 is the
genetically-set exclusion-distance-to-height ratio.

Death PPs die if (i) they reach the genetically-determined maximum age (G[0]=100 s),
(ii) they are out-competed (as outlined above), or (iii) they are consumed to the extent their
biomass is reduced to zero. Upon dying, the PP does not instantaneously disappear, but
reduces its remaining mass linearly at a rate −mfade.

A.2 Ents

A.2.1 Energy

Energy available to Ents is obtained from consumption and can be stored within their bodies,
converted to biomass (growth), used to meet basic metabolic costs and to undertake actions,
all of which have an associated energy cost. Energy is quantified in arbitrary ‘energy units’
and referred to inter-changeably as currency-zero (C0).

Metabolic Cost Base metabolic cost is subtracted automatically.

kbase = ν · b · L0.667 (A.5)
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where, kbase is base metabolic cost rate, L is the lean mass of the entity, I is the ratio of
infrequent updates, used to adjust the calculation based on the frequency of updates.

Consumption If an Ent is touching an object, it automatically evaluates whether the
object is a soft and therefore whether it can be bitten (Ents, PPs and processed blue-cakes are
soft). If the Ent chooses to bite the object, it consumes some of its mass, which is immediately
removed from the other object. The Ent obtains energy by digesting the consumed mass,
the amount of which depends on multiple factors, including the mass, energy density and
palatability of the consumed material.

meaten = min(qmax − q,mobj) (A.6)

where, meaten is the mass consumed, qmax is the maximum stomach capacity (calculated as
ment × qf , where ment is the lean bodymass of the Ent (see below) and qf is the fractional
stomach capacity), q is the current mass in the stomach, and mobj is the mass of the object.
The mass consumed is digested over time in a series of increments, and as each increment is
digested the Ent receives energy

∆q = (qmax/50tdig) (A.7)

where, ∆q is the digestion mass increment, q is the stomach content, and tdig is the digestion
time needed.

tdig = q/(qmax · dr) (A.8)

where dr is the basic rate at which the stomach can process its contents. The energy derived
from each digested increment is calculated as

∆C0con = ρEent · ξcon ·∆q · η (A.9)

where, ∆C0con is the energy available, ρEent is the energy density of the consumed material
(E/kg), ξcon is the conversion efficiency for consumed mass, and η is the nutritional value
coefficient.

For processed blue-cake, the nutritional value is set as η = 1. For other consumed
material, η depends on the palatability of the consumed material, which is determined by
‘key’ {K1,K2,K3} values of the consumer Ent and the ‘lock’ {L1, L2, L3} values and of the
Ent or PP being consumed.

Palatability (P ) is based on genetic compatibility over the lock and key values

P =

∑
i 1− (Ki + Li)

n
(A.10)

with n = 3 in this case. The nutrition coefficient is bounded within [−1, 1], calculated as

nv = max(min(1− 4 · |p|, 1),−1) (A.11)

where | · | is the absolute value.
Energy partitioning After energy is obtained from digestion, it is routed to either

biomass growth or storage (for later use) via a growth-to-free-energy ratio g. Ents maintain a
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reserve of energy, as a buffer against scarcity, and the size of this reserve (Eres) is controlled
by gene value G[34]. The partitioning ratio g is determined by:

g =


0 if L ≥ mentMax,

max(0,min(1, g0 · (1−ment · gcon))) if L < mentMax and C0 < Eres,

1 if L < mentMax and C0 ≥ Eres.

(A.12)

Here, ment is the lean mass of the Ent, mentMax is the maximum lean mass (G[0]), C0 is the
amount of energy being stored (as fat) by the Ent, Eres is the energy reserve level, g0 = 0.5
is the initial value of g (G[8]), gcon is the growth-energy constant defined by

gcon = g∆max/mentMax · g0 (A.13)

where, g∆max = 0 in the present case, meaning the second condition in Eq. A.12 reduces to
g0.

This logic gives priority to filling the energy reserve; once this is full, energy is shared
equally between growth and additional storage until growth is complete; then, energy obtained
from digestion is all sent to storage for later use.

Growth Growth occurs incrementally once each 0.25 s.

∆ment = ∆C0con · g/ρEent (A.14)

where ρEent is the energy density (E/kg) of the Ent.
Starvation If an Entity does not eat, it continues to operate by using its energy reserve.

If its reserve gets depleted, biomass is converted directly to energy (equivalent to catabolism
in biological life) at a rate

∆C0con = ∆ment · ψ (A.15)

where ψ = 0.9 (G[47]) is the conversion efficiency between Ent biomass and energy. This
process can continue until the Ent’s body mass (ment) reaches a minimum viable level, after
which the Ent dies. This ‘point of starvation’ is dynamically updated, being a fixed fraction
of the largest previously-achieved lean biomass.

mstarv,t = max(mstarv,t−1,ment · fstarv) (A.16)

where, mstarv,t is the current minimum viable body mass, mstarv,t−1 is the value until the
previous time step, ment is the lean mass, and fstarv is the minimum viable body mass
fraction.

A.2.2 Movement

Ents can choose to move, which involves deciding on rotation and applied force. The
simulation is physically based and so other factors also influence Ent movement such as
collision with other (potentially moving) objects, friction (both linear and rotational) acting
against the applied forces, and gravity.

In each time step (0.02 s), Ents update their rotation by choosing an action arot =
{−1, 0, 1}, which defines their change in rotation ∆Φ.

∆Φ = ∆t · t−1
rot · arot · 360 (A.17)
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where, trot is the time required for a single rotation and is set be gene G[23], arot is the chosen
rotation action (either of {−1, 0, 1}), and the value 360 converts the rotation to degrees.

Similarly, Ents choose how to increment their velocity by applying force F in either a
forwards or backwards direction aligned with their rotation angle.

F = max(Fmax ·ment · (1− qf ), 100) (A.18)

where Fmax is the maximum force per kilogram the Ent can apply (set by gene value G[9]),
ment is the lean mass, qf is the stomach mass ratio. The maximum velocity of Ents (vmax = 1
m/s) is set by gene value G[46]. A minimum value of F = 100 is enforced so that even small
Ents can overcome friction and move. The inclusion of (1− qf ) means there is a trade-off
when evolution is enabled between larger stomach size (ability to consume faster) and ability
to move quickly. The total mass of the Ent (which the applied force is acting on) includes
lean mass, fat mass, stomach content and also any items being carried, and the force in
proportion to net lean mass represents the force generating part of the Ent body (muscle,
ligaments, bone).

Movement cost Generating force for movement costs energy and this is calculated as
kmove based on the magnitude of force applied and a predefined rate of energy consumption.

kmove = vk · F (A.19)

where, vk = −4× 10−5 is the energy consumption rate per unit of force. An amusing mistake
during the early phase of this work led to the sign of velocity being reversed in the movement
cost calculation. During training, Ents quickly learnt they could maximize their energy
inputs, without going to the trouble of eating, by travelling backwards as fast as possible in
tight circles.

Collision damage Movement can also be associated with a different cost, that associated
with collision damage. For some sense of realism, Ents should learn not to collide at high
speeds with solid objects. The impact damage calculation models the collision of two objects
based on their kinetic properties. Assuming the position vector of the first object is p⃗1 and
the point of collision is c⃗, the vector d⃗, pointing from the position of the first object to the
point of collision, is calculated as

d⃗ = c⃗− p⃗1 (A.20)

The velocity component along the collision direction is given by

vline = d⃗ · v⃗/∥d⃗∥ (A.21)

where v⃗ is the velocity vector of the object, and ∥d⃗∥ is the magnitude of the collision direction
vector. The effective mass used in the damage calculation is

meff = min(10m1,m2) (A.22)

where m1 is the mass of the first object and m2 is the mass of the second object. This
formulation limits the impact of extremely disparate mass values on the calculation. The
relative impact damage is calculated by

Drel = − (max(0, vline) ·meff · k) /(m1 +meff) (A.23)
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Here, k is a coefficient representing the impact damage sensitivity, which scales the damage
based on the physical properties and the dynamics of the collision. The use of max(0, vline)
ensures that only impacts where objects move towards each other are considered, avoiding
negative damage values from receding collisions. The total impact damage inflicted by the
collision is then computed as

D = Drel ·m1 · ψ (A.24)

where ψ is the same conversion efficiency between biomass and energy as described above in
the context of starvation.

A.2.3 Reproduction and inheritance

Ents do not have different sexes, and each can act as both a ‘mother’ (which gives birth
to offspring) and a ‘father’ (which is required to pass on their genes to mothers, triggering
reproduction). Ents can enter the ‘mother’ state if the following conditions are satisfied:

ment ≥ mrepMin and C0 ≥ EbirthTotal, (A.25)

where ment represents the lean mass of the entity; mrepMin is the minimum mass required for
reproduction; C0 is stored energy; EbirthTotal is the total energy cost required to produce an
offspring. This total energy cost is met by the mother and is defined

EbirthTotal = −(noffspring ·moffspring · ρent)− C0,0 (A.26)

where noffspring is the number of offspring produced (fixed at 1 in the present case), moffspring =
mentMax · orelMass is the mass of each offspring (orelMass = G[19] being the genetically-
determined relative offspring mass), and C0,0 is the energy given by the mother which goes in
to the offspring’s (fat) store (the mother also contributes initial amounts of currency C1 and
C2 equal to Cinitial = 0.1; G[43]). Upon satisfying the conditions of Eq.A.25 the probability
of entering the mother state (per 0.25 s) is prep, where

prep = νr · (mRepMin/mentMax)
−1/(νglobal · amax/λrMax) (A.27)

where νr = 25 is the timsteps between each reproductioni state update, νglobal = 50 is the
global update frequency (s−1), λrMax is the genetically-determined expected number of
offspring produced per maximum Ent lifetime.

Once a ‘mother’ Ent is in the reproductive state, in order to produce an offspring a
‘father’ Ent must physically touch the ‘mother’. When this happens, the genetic distance
between the two entities (∆g) is used to assess their compatibility:

∆g =

∑3
i=1 |g1i − g2i|

3
(A.28)

where, g1i is the ith gene of the first entity, and g2i is the ith gene of the second entity.
Reproduction is successful if ∆g < ∆gmax , with ∆gmax = 0.15 being the maximum allowable
genetic difference for reproductive compatibility. This value (∆gmax) is itself determined by
a gene value, G[42]. If reproduction is allowed, the offspring’s gene values are a random
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selection of its parents’ genes (with each gene value having a 50% chance of coming from
either parent). Once selected, each value is perturbed by noise, according to

G[i] = G[i] + δG[i] · Ũ (A.29)

where δG[i] = 0.015 is a ‘copying noise’ parameter, determined by gene value G[56], which
means the rate of evolution is to some extent controlled by evolution; Ũ is a uniform random
number over the range [-1,1]. Upon successful reproduction, the Ent offspring appears in the
simulated environment next to the mother Ent. It then contributes observations, actions
and rewards to the learning process along with other Ents.

A.2.4 Reward updating

The RULE algorithm is outlined in the main paper. Constants αi and βi (where i is reward
coefficient number) are calculated as follows: run simulation under background conditions
with chosen θi; while running, record rewards accumulated at each time bin τ for each Ent,
and continue simulation until mean accumulated reward in each age bin are stable, yielding
expected values Ei(τ); set Ti =

∑
τ Ei(τ), ni = Ti/θi, αi = Ti/nu, where nu = 25 was

user-defined, reflecting the number of generations over which reward adjustment occurs (nu
could of course be added to the gene to make this an evolved choice). Recall that α is the
increment for updating Ei(τ) under RULE and βi values increment θi. An unstable response
(where θi values are always driven to either their minimum or maximum values) is observed
when β ≥ Ti/n2, and so βi = ciTi/n

2, with ci < 1.

A.2.5 Observations

Observations are made automatically (Ents do not have to choose to make observations).
‘Vision’ Ents do not have access to images obtained from their point of view. This

approach was tried in the early phases of development, and while it worked, it offered no
advantages over the chosen approach, was more computationally costly, and produced slower
learning. Therefore, observations analogous to vision are made by Ents using ray-casting
within Unity. Notionally, 17 beams are sent from the Ent (a central beam at 0deg, and 8
equally spaced beams either side, providing an 80 deg field of view). Each beam is a cone,
expanding away from the Ent to a sphere of radius 0.05 m. The length of each beam lray
is determined by the strength of the external energy (light) source, so Ents ‘see’ further in
stronger light.

lray = max(1,−15 + 65 · slight) (A.30)

where slight is the light intensity in normalised units, which for convenience is equal to
the normalised energy source value Es. Each beam returns data on whether the beam hit
anything, what that object was (a one-hot encoding of an object tag list), and distance
to the object. This information is updated each 0.02 s, and contributes to the total set of
observation used to inform Ent behaviour and learning. In addition to this ‘vision’ data, 22
other observations are listed below in Table A.2.

A.2.6 Actions

Picking-up objects Entities have the capability to interact with and pick up objects based
on specific conditions. This mechanism is crucial for simulating realistic interactions and
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Observation Observation Description Values

1 Normalized X velocity of rigidbody [0, 1]
2 Normalized Z velocity of rigidbody [0, 1]
3 Normalized Y rotation angle [0, 1]
4 Starvation level [0, 1]
5 Raw material presence {0, 1}
6 Processed material presence {0, 1}
7 Carrying cube {0, 1}
8 Reproduction readiness {0, 1}
9 Normalized currency 0 [0, 1]
10 Normalized C1 [0, 1]
11 Normalized C2 [0, 1]
12 Normalized C3 [0, 1]
13 Normalized C4 [0, 1]
14 Absence of broadcast signal {0, 1}
15 Broadcast signal 1 detected {0, 1}
16 Broadcast signal 2 detected {0, 1}
17 Genetic distance of closest entity ≥ 0
18 Normalized distance to broadcast signal source [0, 1]
19 Normalized angle to broadcast signal source [0, 1]
20 Normalised number of entities within detection range ≥ 0
21 Detect being bitten/eaten {-1, 0}
22 External energy source strength ≥ 0

[in addition, Vision information from 17 rays cast]

Table A.2: Ent observations. In the table {} indicate discrete sets of observations, [ ]
indicate continuous inclusive ranges. Each Ent collects and processes observations every
0.02 s. See text for information on vision observations. Some raw observed values are
divided by a normalization factor: [Observations 1,2] Velocity is normalized by maximum
velocity G[46]; [3,19] Rotation angle is normalized by 360; [4] The Starvation Level is defined
S = 1 − (mstarv,t/ment); [9-13] All currency values are normalized by 100; [17] Genetic
distance to the physically nearest Ent is calculated as ∆g (Eq.A.28), and is referred to as
a ‘sense of smell’ in the main body of the paper; [18] Distance is normalised to the sensing
radius (G[41]); [20] The number of Ents within the sensing radius is divided by 100.

Action Equation / Condition

1. Attempt to bite object {0=False, 1=True}
2. Give currency {0=False, 1=Give C1, 2=Give C2, 3=Give C3, 4=Give C4}
3. Synthesize currency {0=False, 1=True}
4. Send signal {0=False, 1=Emit_signal_1, 2=Emit_signal_2}
5. Update rotation {-1=Rotate_aniticlockwise, 0=No_change, 1=Rotate_clockwise}
6. Update speed {-1=Apply_negative_force, 0=No_change, 1=Apply_positive_force}
7. Attempt pick up object {0=False, 1=True}
8. Drop object {0=False, 1=True}

Table A.3: Ent discrete action choices. Choices are made by each Ent every 0.02 s.
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behaviours such as resource gathering or item collection. Even if an entity has the intent to
collect objects from its environment, it can only pick up objects lighter than itself, simulating
a basic physical constraint.

mobject < mentity (A.31)

where mobject is the mass of the object being considered for pickup, and mentity is the mass
of the entity.

The entity’s storage capacity is equal to its (lean) mass, so new objects can only be stored
when:

wstorage +mobject < mentity (A.32)

where wstorage is the current total weight in the entity’s current storage.

Training The proximal policy optimisation, PPO (Schulman et al., 2017) algorithm was
employed for RL, implemented through the ML-Agents Toolkit within Unity (Juliani et al.,
2020). A Python API provides a low-level Python interface for communication between the
simulation and relevant PyTorch libraries. In the present case, only a single type of Ent
is present in the simulations and PPO is implemented with a single policy, with all active
agents contributing to the learning process and sharing that same policy. The following
hyper-parameters were used during model training: hidden-layers=2x256, gamma=0.99
(discount factor for future rewards), batch-size=32 (number of experiences in each iteration of
gradient descent), buffer-size=320000 (the number of experiences collected before updating the
policy), time-horizon=32 (the number of steps of experience to collect per-agent before adding
to the experience buffer), learning-rate=0.000025 (gradient descent rate, held constant),
beta=0.0035 (strength of the entropy regularization, which ensures exploration by adding
randomness to the policy; held constant throughout learning), epsilon=0.15 (a control on the
evolution rate of the policy during training, controlling the divergence between current and
updated policies; held constant constant during training), lambda=0.99 (a regularisation
parameter, weighting the contributions from current and updated policy). During the initial
training phase, the maximum number of steps was set to 1e8 (recall there are 50 steps per
second, and typically approx.100 agents contributing to the process, so this equates to a time
limit of approx. 20,000 s). In subsequent experiments the maximum number of steps was set
to infinity, and an upper time limit of 20,000 s was enforced.
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Gene Description Symbol Units Range Initial Value

G[0]* Maximum biomass mEntMax kg [0.01, 50] 25
G[1] Lock L1 & rgb[0] L1 - [0, 1] 0.05
G[2] Lock L2 & rgb[1] L2 - [0, 1] 0.20
G[3] Lock L3 & rgb[2] L3 - [0, 1] 0.40
G[4] Key K1 K1 - [0, 1] 0.10
G[5] Key K2 K2 - [0, 1] 0.30
G[6] Key K3 K3 - [0, 1] 0.10
G[7]* Maximum age amax s [20, 300] 200
G[8]* Initial Growth: Free Energy ratio g0 - [0.2, 0.8] 0.5
G[9]* Maximum Force/Kg Fmax - [0, 35] 30
G[10] - - - - -
G[11] - - - - -
G[12] Reward for currency C1 θ1 - [-1 , 1] 0.10
G[13] Reward for currency C2 θ2 - [-1 , 1] 0.10
G[14] Reward for currency C3 θ3 - [-1 , 1] 0.10
G[15] Reward for currency C4 θ4 - [-1 , 1] 0.30
G[16] Tag number - - ≥ 1 1
G[17]* Reproduction min. required mass fraction mrepMin - [0.2, 1] 0.75
G[18] Offspring per reproduction noffspring - ≥ 1 1
G[19]* Relative mass of offspring orelMass - [0, 0.5] 0.2
G[20] - - - - -
G[21] Reward for consumption θ5 - [0, 1] 0.25
G[22] Minimum viable body mass fraction fstarv - [0.2 - 0.9] 0.75
G[23] Time for single rotation trot s [0.9 - 1.1] 1
G[24] Digestion rate constant ξcon s−1 [0, 1] 0.2
G[25] Max change in Growth: Free Energy g∆max - ≥ 0 0
G[26] Reward for reproduction θ6 - [0, 1] 1
G[27]* Mean reproductions per max lifetime λrMax - ≥ 1 4
G[28] Alpha for currency C1 αC1 - ≥ 0 1.87e-3
G[29] Alpha for currency C2 αC2 - ≥ 0 1.25e-2
G[30] Alpha for currency C3 αC3 - ≥ 0 1.83e-2
G[31] Alpha for currency C4 αC4 - ≥ 0 1.13e-3
G[32] Alpha for consumption αeat - ≥ 0 6.2e-1
G[33] Alpha for reproduction αrep - ≥ 0 8.29e-1
G[34]* Energy reserve (C0) C0res - ≥ 0 1
G[35] Synthesizability of C1 z1 - {0, 1} 1
G[36] Synthesizability of C2 z2 - {0, 1} 0
G[37] Synthesizability of C3 z3 - {0, 1} 1
G[38] Synthesizability of C4 z4 - {0, 1} 0
G[39] - - - - -

Table A.4: Ent Gene values 0-39. * indicates the gene values which change under evolution.
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Gene Description Symbol Units Range Initial Value

G[40] Entity type - - ≥ 1 1
G[41]* Sensing radius rsensing m ≥ 0 3
G[42]* Maximum gene difference ∆gmax - [0, 0.2] 0.15
G[43]* Initial currency provided Cinitial - ≥ 0 0.1
G[44] Impact damage coefficient k - ≥ 0 0.001
G[45] Consumption conversion efficiency ξcon - ≥ 0 0.9
G[46]* Maximum velocity vmax m/s [0, 3] 1
G[47] Self mass conversion efficiency ψ - ≥ 0 0.9
G[48] Movement cost rate νk - ≤ 0 -4e-5
G[49] Transaction cost ktrans - ≥ 0 0
G[50] Currency amount given Cgiven - ≥ 0 0.1
G[51] Base metabolic running cost kbase E/kg ≤ 0 -0.002
G[52]* Synthesized currency Csynth - 0 - 1 0.02
G[53] Pain reward θpain - [-1, 1] -1
G[54] Number of Locks nlocks - ≥ 1 3
G[55] Energy density ρEent

E/kg ≥ 0 1
G[56]* Gene copying noise δG[i] - [0.01, 0.05] 0.015
G[57]* Stomach mass ratio qf - [0.05, 0.5] 0.2
G[58] C0 given to offspring at birth C0,0 - ≥ 0 1
G[59] - - - - -
G[60] Beta value for currency C1 βC1 - ≥ 0 3.8e-3
G[61] Beta value for currency C2 βC2 - ≥ 0 3.8e-3
G[62] Beta value for currency C3 βC3 - ≥ 0 3.8e-3
G[63] Beta value for currency C4 βC4 - ≥ 0 1.14e-2
G[64] Beta value for currency consumption βeat - ≥ 0 9.5e-3
G[65] Beta value for currency reproduce βrep - ≥ 0 5e-3
G[66]* Currency 1 amount given C1given - ≥ 0 0.1
G[67]* Currency 2 amount given C2given - ≥ 0 0.1
G[68]* Currency 3 amount given C3given - ≥ 0 0.1
G[69] Currency 4 amount given C4given - ≥ 0 1

Table A.5: Ent Gene values 40-69. * indicates the gene values which change under evolution.
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A.3 Repeat runs

The stochastic nature of the simulated environment and of the learnt policy leads to variation
between repeated runs of the same experimental conditions. The figures below provide
data for repeat runs of the main experiments (see also Table 3 for details). The data
shown in figures below are: Ent population (first column), the total number of coins (or
vitamins/poisons) being collected per successive 50 s period (column 2); the ratio of these
two, showing mean number of coins collected per 50 s increment per Ent (column 3); reward
coefficient values for eating, θ3 (column 4); reward coefficient values for coin collection, θ4
(column 5). Two styles of plots are used: (i) Where the majority of populations survive the
experiment (see values in square brackets in each caption), median values for the surviving
populations are shown with a blue band indicating the full range of those cases. A locally
weighted linear regression method (the ‘Lowess’ Matlab function, with a window of 500
points). For comparison, an example raw (non-smoothed) population time series in shown in
each case. (ii) Where populations do not survive the experiment, data for each population
are shown as individual time series (in this case only the reward coefficient time series are
smoothed.). In the captions below, results presented are linked to experiment numbers and
coin increase rates defined in Table 2 (faster rate of coin increase being 0.014s−1 and the
slower 0.0097s−1).
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A.3.1 Coins experiments

Figure 9: Experiment 2c: Learning, slower coin increase.

Figure 10: Experiment 2c: Learning, faster coin increase.
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Figure 11: Experiment 2d: Learning and Evolution, faster coin increase.

Figure 12: Experiment 2d: Learning and Evolution, slower coin increase.
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Figure 13: Experiment 2e: Learning and Reward Updating (RULE), faster coin increase.

Figure 14: Experiment 2e: Learning and Reward Updating (RULE), slower coin increase.
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Figure 15: Experiment 2f: Learning, Reward Updating (RULE) and Evolution, faster coin increase.

Figure 16: Experiment 2f: Learning, Reward Updating (RULE) and Evolution, slower coin increase.
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A.3.2 Vitamins and poisons experiments

Figure 17: Experiment 3: Weaker vitamins, Learning, Reward Updating (RULE), faster coin (vitamin) increase.

Figure 18: Experiment 3: Stronger vitamins, Learning, Reward Updating (RULE), faster coin (vitamin) increase.
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Figure 19: Experiment 3: Weaker poison, Learning, Reward Updating (RULE), slower coin (poison) increase.

Figure 20: Experiment 3: Weaker poison, Learning, Reward Updating (RULE), faster coin (poison) increase.
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