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Abstract

Unsupervised node clustering (or community detection) is a classical graph learning task.
In this paper, we study algorithms that exploit the geometry of the graph to identify
densely connected substructures, which form clusters or communities. Our method imple-
ments discrete Ricci curvatures and their associated geometric flows, under which the edge
weights of the graph evolve to reveal its community structure. We consider several discrete
curvature notions and analyze the utility of the resulting algorithms. In contrast to prior
literature, we study not only single-membership community detection, where each node be-
longs to exactly one community, but also mixed-membership community detection, where
communities may overlap. For the latter, we argue that it is beneficial to perform commu-
nity detection on the line graph, i.e., the graph’s dual. We provide both theoretical and
empirical evidence for the utility of our curvature-based clustering algorithms. In addition,
we give several results on the relationship between the curvature of a graph and that of its
dual, which enable the efficient implementation of our proposed mixed-membership com-
munity detection approach and which may be of independent interest for curvature-based
network analysis.

Keywords: Community Detection, Node Clustering, Discrete Curvature, Line Graph,
Graph-based Learning

1. Introduction

Relational data, such as graphs or networks, is ubiquitous in machine learning and data
science. Consequently, a large body of literature devoted to studying the structure of such
data has been developed. Clustering on graphs, also known as community detection or (un-
supervised) node clustering, is of central importance to the study of relational data. It seeks
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Figure 1: Clustering on Graphs.

to identify densely interconnected substructures (clusters) in a given graph. Such structure
is ubiquitous in relational data: We may think of friend circles in social networks, metabolic
pathways in biochemical networks or article categories in Wikipedia. A standard mathe-
matical model for analyzing community structure in graphs is the Stochastic Block Model
(SBM), which has led to fundamental insights into the detectability of communities (Abbe,
2017). Classically, communities are identified by clustering the nodes of the graph. Popular
methods include the Louvain algorithm (Blondel et al., 2008), the Girvan-Newman algo-
rithm (Girvan and Newman, 2002) and Spectral clustering (Cheeger, 1969; Fiedler, 1973;
Spielman and Teng, 1996). Recently, there has been growing interest in another class of
algorithms, which applies a geometric lens to community detection.

Graph curvatures provide a means to understanding the structure of networks through
a characterization of their geometry. More generally, curvature is a classical tool in differ-
ential geometry, which is used to characterize the local and global properties of geodesic
spaces. While originally defined in continuous spaces, discrete notions of curvature have
recently seen a surge of interest. Of particular interest are discretizations of Ricci curvature,
which is a local notion of curvature that relates to the volume growth rate of the unit ball
in the space of interest (geodesic dispersion). Curvature-based analysis of relational data
(see, e.g., (Weber et al., 2017a,b)) has been applied in many domains, including to biolog-
ical (Elumalai et al., 2022; Weber et al., 2017¢c; Tannenbaum et al., 2015), chemical (Leal
et al., 2021; Saucan et al., 2018), social (Painter et al., 2019) and financial networks (Sandhu
et al., 2016).

Community detection via graph curvatures is motivated by the observation that edges
between communities (so called bridges, see Figure 1b(a)) have low Ricci curvature. By
identifying and removing such bridges, one can learn a partition of the graph into its com-
munities. This simple idea has given rise to a series of curvature-based approaches for
community detection (Ni et al., 2019; Sia et al., 2019; Weber et al., 2018; Tian et al., 2023).
However, the picture is far from complete. The proposed algorithms vary significantly in
their implementation, in particular in the choice of the curvature notion that they utilize.
In this paper, we will elucidate commonalities and differences among variants of the two
most common curvature notions in terms of their utility for community detection. To this
end, we propose a unifying framework for curvature-based community detection algorithms
and perform a systematic analysis of the advantages and disadvantages of each curvature
notion. The insights gained from this analysis give rise to several improvements, which
mitigate the identified shortcomings in accuracy and scalability.
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The present paper also addresses a second important gap in the literature. Existing
work on partition-based community detection, specifically on curvature-based approaches,
focuses almost exclusively on detecting communities with unique membership, i.e., each
node can belong to only one community (single-membership community detection). How-
ever, in many complex systems that generate relational data, nodes may belong to more
than one community: A member of a social network might belong to a circle of high school
friends and a circle of college friends, a protein may have different functional roles in a bio-
chemical network etc. This creates a need for algorithms that can cluster nodes with mized
membership (Airoldi et al., 2008; Yang and Leskovec, 2013; Zhang et al., 2020), so-called
mixed-membership community detection. Observe that the mixed-membership structure
precludes the existence of bridges between communities, because the communities overlap
(see Figure 1b(b)). This renders community detection methods that rely on graph parti-
tions, such as the curvature-based methods discussed above, inapplicable. In this paper, we
propose a principled curvature-based approach for detecting mixed-membership community
structure. We show that while partition-based approaches do not recover the underlying
community structure when applied to the original graph, they perform well on its dual,
the line graph. The line graph encodes the connectivity between the edges of the original
graph (see Figure 2). This reformulation of the relational information in the graph allows
for disentangling the overlapping community structure (see Figure 3). When applied to the
line graph, our curvature-based community detection approach correctly identifies edges in
the line graph, which can be cut to partition the graph into its communities and assign node
labels that reflect mixed-membership community structure. Utilizing fundamental relation-
ships between the curvature of a graph and its dual, we demonstrate that curvature-based
mixed-membership community detection results in scalable and accurate methods.

1.1 Overview and Summary of Contributions

Our main contributions are as follows:

1. We propose a unifying framework for curvature-based community detection (unsu-
pervised node clustering) algorithms (Section 2). Our framework encompasses several
previously studied algorithms for curvature-based single-membership community de-
tection (sec. 2.3, 6.1.1 and 6.2.1). Utilizing this framework, we systematically investi-
gate the strengths and weaknesses of different discrete curvature notions (specifically,
variants of Forman’s and Ollivier’s Ricci curvature, Sections 7 and 8).

2. We adapt our proposed framework to mixed-membership community detection (Sec-
tion 6), providing the first curvature-based algorithms for this setting.

3. We elucidate significant scalability issues in community detection approaches that
utilize Ollivier’s notion of discrete curvature. To overcome these issues, we propose
an effective approximation, which may be of independent interest in the broader area
of curvature-based network analysis (Sections 4.1.3 and 5.2.2).

4. We demonstrate the utility of our framework through theoretical analysis (Section 6.1.2)
and through a series of systematic experiments with synthetic and real network data.
We further benchmark curvature-based methods against classical community detec-
tion approaches (Section 7).
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5. As a byproduct, we derive several fundamental relations between discrete curvatures
in a graph and its dual. Those relations may be of independent interest (Section 5).

2. Clustering on Graphs

Community structure is a hallmark feature of networks, characterized by clusters of nodes
that have more internal connections than connections to nodes in other clusters. In networks
with mixed-membership structure, which quantifies the idea of overlapping communities,
nodes may belong to more than one cluster.

In the following, let G = (V, E, W) denote a graph with vertex set V and edge set FE.
We may associate weights with both vertices and edges, defined as functions w(v) : V- — R4
and w(e) : E — Ry. The distance measure on G is the standard path distance d, i.e.,

-1

dg(u,v) := i%f Z w({zi, zit1}), (2.1)

1=1

where the infimum is taken over all u — v paths P = {z; é:l C V, with {z;,z41} € E for
each i, and z; = u, z; = v. We further define the degree d,, of a node u as the weighted sum
of its adjacent edges, i.e.,

dy = wle). (2.2)

ure

We remark that the terms “network” and “graph” are often used interchangeably. Fol-
lowing the convention in the graph learning literature, we use “graph”, if we refer to the
mathematical object and “network” when referring to a data set or specific instance of a
graph. We will use the terms “node” and “vertex” interchangeably.

2.1 Single-Membership Node Clustering
2.1.1 SINGLE-MEMBERSHIP COMMUNITY STRUCTURE

In classical community detection, each node can only belong to one community, which
characterizes the community structure as being single-membership. Various algorithms exist
by virtue of interdisciplinary expertise (Blondel et al., 2008; Girvan and Newman, 2002; von
Luxburg, 2007), generally aiming to optimize a quality function with respect to different
partitions of the network. We denote a quality function as () which increases as the resulting
community structure becomes clearer from some perspective, such as the modularity (Girvan
and Newman, 2002), and denote a partition of the vertices as {By, ..., Bi} that are mutually
exclusive and exhaustive, i.e., By, N B; = () when h # [ and Uﬁleh =V, with k£ being the
number of communities. The classical community detection problem can then be formulated
as the combinatorial optimization problem

max max Bi,...,Br}).
ph {Bl,...,Bk}Q({ 1, 3 k})
In this generality, the community detection problem is NP-hard, so heuristics-based algo-
rithms are typically applied in order to provide a sufficiently good solution.

The Stochastic Block Model (short: SBM) (Holland et al., 1983) is a random graph
model, which emulates the community structure found in many real networks. It is a
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popular model for studying complex networks and, in particular, clustering on graphs. In
the SBM, vertices are partitioned into subgroups called blocks, and the distribution of the
edges between vertices is dependent on the blocks to which the vertices belong. Formally:

Definition 1 (Stochastic Block Model) Let {Bi,...,B;} be a partition of a graph’s
vertices into k blocks, and let B = (By;) denote the characteristic matrix between the blocks,
where Bj; shows the probability of an edge existing between a vertex in block By, and one
in B;. Then, if we denote the random adjacency matrix of the network by A = (A;;) where
A;; = 1if there is an edge between vertices v; and vj,

P (Aij = 1) = By(i)o(j) »

where o : V. — {1,...,k} indicates the block membership. A planted SBM has the
additional structure that Bpp = pin, Vh, and Bp = pout, Yh # [, which we denote by

SBM(pimpout)-

2.1.2 PARTITION-BASED CLUSTERING METHODS

Of particular importance for classical community detection are edges between clusters, of-
ten called bridges. Bridges connect two nodes in distinct communities (see Figure la). In
graphs with single-membership community structure, i.e., where each node belongs to one
community only, such edges always exist (otherwise each community is a connected com-
ponent). This observation has motivated a range of partition-based community detection
approaches (Blondel et al., 2008; Girvan and Newman, 2002; von Luxburg, 2007), which rely
on identifying and cutting such bridges to partition the graph into communities. Among the
most popular community detection methods is the Louvain algorithm (Blondel et al., 2008),
which is a heuristic method proposed to maximize modularity hierarchically, starting from
each node as a community and then successively merging with its neighboring communities
whenever it improves modularity. Spectral clustering (von Luxburg, 2007), another widely
used method, utilizes the spectrum of the graph Laplacian to find a partition of the graph
with a minimal number of edge cuts (mincut problem). This optimization problem too is
NP-hard, but it can be solved efficiently after relaxing some constraints. We give a brief
overview of other classical partition-based community detection methods in Section 3. In
this paper, we discuss methods that utilize discrete curvature to identify bridges: Below,
we introduce a blueprint for partition-based clustering via discrete Ricci curvature.

2.2 Mixed-Membership Node Clustering
2.2.1 MIXED-MEMBERSHIP COMMUNITY STRUCTURE

In graphs with mixed-membership communities, nodes may belong to more than one com-
munity. Such community structure can be formalized via an extension of the SBM: The
Mized-Membership Stochastic Block Model (short: MMB) (Airoldi et al., 2008). In both
models, each element of the adjacency matrix A above the diagonal is an independent
Bernoulli random variable whose expectation only depends on the block memberships of
the corresponding nodes. In the MMB, it is possible that nodes belong to more than one
block, with various affiliation strengths. Formally:
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Definition 2 (Mixed-Membership Block Model) We assume that the expectation
E[A] has the form E[A] = XBXT, where X € [0,1]"** is the community membership
matrix with X;; indicating the affiliation of node ¢ with community [ and ), X;; = 1, and
n denotes the size of the network. The matrix B € [0, 1]*** encodes the block connection
probabilities. If X;; = 1 for some [, we call vertex ¢ a pure node; otherwise 7 is a mized node.

When all nodes are pure, we recover the ordinary SBM model. In our experiments, we
consider a planted version where By, = pin, Vh, and By = pout, Vh # 1, which we denote
by MMB(pma pout)-

2.2.2 LINE GRAPHS

We denote the dual of a graph as its line graph:

Definition 3 Given an unweighted, undirected graph & iy

G = (V,E), its line graph is defined as L(G) = :>—o—q<: I>D—O<I
(E,&), where each edge {{u,v},{r,s}} € & appears

when [{u,v} N {r,s}| = 1. In other words, e, e’ are

adjacent in L(G) when they are both incident on the I>'_' °<I>°
same vertez.

The line graph can be seen as a re-parametrization
of the input graph, which encodes higher-order in-
formation about its edges’ connectivity. Examples
of graphs and their line graphs can be found in Fig-
ure 2. Importantly, cycles are preserved under this
construction (e.g., Figure 2 (bottom)). Cliques and
cycles in the line graph may also arise from nodes of
degree three or higher (see, e.g., Figure 2 (top)).

Notice that the line graph is typically larger in
size than the original graph. In a graph with n vertices and average degree na,,, we expect
to have n%a,, edges. In the line graph, this means n?q, vertices and na? edges, though
this number increases with greater variation of the vertex degrees in the original graph.
For the applications to community detection that we will discuss below, this necessitates a
careful consideration of the scalability of different community detection approaches.

The classical line graph construction gives a graph without edge weights, since edge
weights in the original graph correspond to node weights in the line graph. We will dis-
cuss below (Section 5.2.2) how weights can be imposed on line graph edges that encode
meaningful structural information in the original graph.

7

Figure 2: Graphs G with their cor-
responding line graphs L(G). Note
that vertices in G with degree at
least 3 result in cliques in L(G), and
that cycles are preserved.

2.2.3 PARTITION-BASED METHODS ON THE LINE GRAPH.

We have seen above that edges between clusters, often called bridges, are of particular im-
portance for single-membership community detection. However, overlaps between commu-
nities preclude the existence of these bridges (see Figure 1b), which limits the applicability
of partition-based approaches. In this paper we argue that the line graph provides a nat-
ural input for partition-based mixed-membership community detection. While nodes may
not have a unique label in this model, the adjacent edges may still be internal, connecting
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two nodes that are in the same community (at least partially). In this case, each edge is
associated with a single community (see Figure 3 (left)). Consequently, by representing
the relationships among edges in a line graph, we disentangle the overlapping communities.
Each edge in the line graph appears at a vertex in the original graph. When the vertex has
mixed membership, a bridge between the communities arises in the line graph (Figure 3

(right)).

2.3 Curvature-based Clustering Algorithm

Algorithm 1 Curvature-based Clustering via Ricci Flow

1: Input: Graph G = (V, E,W}), hyperparameters v (step size, flow), e (tolerance), €4
(drop threshold), T' (number of iterations)

2: fort=1,...,7T do

3: for {u,v} € F do

4: Compute curvature x({u,v}).

5: Evolve weight under Ricci flow: w!({u,v}) < (1 — v - s({u,v}))da(u,v).

6: end for

7. Renormalize edge weights W: w!({u,v}) + Z{u,{f‘}ii(zg()u,w,) for all {u,v} € E.
8: end for

9: Construct cut-off points {xg, z1,. .., xnf}.

10: Initialize 1 € RIV! (list of node labels), Q_1, Qpest := €.
11: for ¢ =0,...nf do
12: Construct G; = (V, E;, W) with E; = {{u,v} : wT ({u,v}) > 2;} and W = W7

B
13: Determine connected components of G;. Assign node labels by components.
14: Compute the modularity @; of the resulting community assignment.
15: if Qi > Qpest; QFQQ.H > ¢4 then
16: Store label assiénments inl. Qpest = Q-
17: end if
18: end for

19: If Qpest > €, return 1.

In this section, we will describe the blueprint
of our curvature-based clustering algorithm, which
we will then specialize to the single- and mixed- I>’_._<I
membership problem described above. In the com- .
munity detection literature, approaches based on I>_._.<I M
discrete Ricci curvature and an associated Ricci ;
flow have been studied for unique-membership com- G
munities (Ni et al., 2019; Sia et al., 2019; Weber
et al., 2018). We discuss the details of those ap-
proaches in Sections 6.1 and 6.2. To the best of
our knowledge, extensions of curvature-based meth-
ods to mixed-membership community detection have
not been studied before.

Figure 3: Community structure in
a graph G and its line graph L(G)
with node labels (top) and edge la-
bels (bottom).
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Like previous approaches that utilize Ricci curvature (e.g., Ni et al. (2019)), we build
on a notion of discrete Ricci flow first proposed by Ollivier (2009):

%dc(u,v)(t) = —r({u,v})(t) - dg(u,0)(t)  ({u,v} € E), (2.3)

where dg(u,v) denotes the shortest path distance between adjacent nodes uw,v € E and
k({u,v}) the Ricci curvature along that edge. In this work, x({u,v}) may denote either
Forman’s or Ollivier’s Ricci curvature. We will describe the two resulting methods in detail
below.

Curvature-based clustering implements discrete Ricci flow via a combinatorial evolution
equation, which evolves edge weights according to the local geometry of the graph. Consider
a family of weighted graphs Gt = {V, E, W'}, which is constructed from an input graph G
by evolving its edge weights as

w'({u,v}) < (1= s({u,v}))da(w,v)  ({u,v} € E), (2.4)

where the curvature x({u,v}) and shortest-path distance dg(u, v) is computed on the graph
G'~!. Equation (2.4) can be viewed as a discrete analog of Ricci flow on Riemannian
manifolds; it was first introduced by Ollivier (2010) with x denoting ORC. Since then,
several variants have been studied in the context of clustering, utilizing ORC (Ni et al.,
2019; Sia et al., 2019; Tian et al., 2023), as well as FRC (Weber et al., 2018). Each of these
algorithms is a special case of the general framework that we describe below.

The clustering procedure is initialized with the (possibly unweighted) input graph, i.e.,
G" := G. We then evolve the edge weights for T iterations under Ricci flow (Equation (2.4)).
In each iteration, the edge weights are renormalized using

|Eldc(u, v)

wt U, V}) .
(o)) e = )

(2.5)

Over time, the negativity of the curvature of edges that bridge communities intensifies, as
edges with lower Ricci curvature contract more slowly under Ricci flow. On the other hand,
edges with higher Ricci curvature contract faster. This results in a decrease of the weight
of internal edges over time, while the weight of the bridges increases (see Figure 4). With
that, the discrete Ricci flow reinforces the meso-scale structure of the network.

In order to recover single-membership labels, we cut the edges in the graph with high
weights (or, equivalently, with very negative curvature) after evolving edge weights for T'
iterations. The resulting partition delivers a node clustering. In the mixed-membership
case, we cut the edges in the line graph with the highest weight (or, equivalently, the most
negative curvature) after evolving edge weights for T iterations. The resulting partition of
the graph delivers an edge clustering from which we infer the community labels: We obtain
a mixed-membership label vector y for each node v by computing

n() = 0 3 e (26)

| ’U‘ GEEU

where x; is the indicator for the edge cluster Cj. Intuitively, each edge belonging to cluster
[ that is incident on a node v adds more evidence of affinity between the node v and the
cluster C;.
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Figure 4: To illustrate the effect of the discrete Ricci flow in Algorithm 1, we consider a
planted SBM of size n = 100, two equally-sized blocks, p;, = 0.3 and peyu: = 0.02, visualized
in the left panel. We select representative edges within a community, shown in orange on
the graph, and plot the evolution of their weights in the middle panel. In the right panel,
we show this evolution for selected edges between communities (i.e., bridges), shown in blue
on the graph.

In both cases, the success of the method depends crucially on identifying a good weight
threshold for cutting edges in the original graph (single-membership case) or the line graph
(mixed-membership case). We propose to perform a hyperparameter search over cut-off
points {xo,x1,...,Zn,}. The construction of the cut-off points is an important design
choice and depends on the curvature notion used in the approach. We then compute the
modularity, a classical quality metric in the community detection literature, for the label
assignments corresponding to each cut-off point z;. Specifically, modularity (Girvan and
Newman, 2002; Gémez et al., 2009) is defined as

1 dyd,
Q=g X (wtuon -G

{u,v}eFE

> d(o(u),o(v)), (2.7)

where 2w := Zij w({i,7}). The larger the modularity, the better we expect the clustering
to reflect the underlying community structure induced by the graph’s connectivity. Our
approach is schematically shown in Algorithm 1. Note that in Algorithm 1, the number of
iterations are selected a priori, while the choice can also be integrated with the modularity
check. This is because the choice of T = 10 generally provides sufficiently good results,
which is verified with the comparison to the variant with intermediate modularity check
and simple stopping criteria in Section 7.3.

3. Related Work

Community detection. Mixed-membership community detection is widely studied in
the network science and data mining communities. Notable approaches include Bayesian
methods (Airoldi et al., 2008; Hopkins and Steurer, 2017), matrix factorization (Yang
and Leskovec, 2013), spectral clustering (Zhang et al., 2020), and vertex hunting (Jin
et al., 2017), among others. In addition to the mixed-membership model that we consider
here (Airoldi et al., 2008), there is a significant body of literature on closely related overlap-
ping community models (Lancichinetti et al., 2009; Xie et al., 2013), which also study the
problem of learning non-unique node labels. Curvature-based community detection meth-
ods for non-overlapping communities have recently received growing interest (Ni et al., 2019;
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Sia et al., 2019; Gosztolai and Arnaudon, 2021; Weber et al., 2018). Such approaches utilize
notions of discrete Ricci curvature (Sia et al., 2019; Gosztolai and Arnaudon, 2021; Weber
et al., 2018), as well as an associated Ricci flow (Ni et al., 2019) to partition networks into
communities, based on the observation that edges between communities have low curvature.
The absence of such bridges in overlapping communities renders these approaches inappli-
cable to the setting studied in this paper. To the best of our knowledge, our algorithm is
the first to study mixed-membership community structure with curvature-based methods.

Higher-order structure in Networks. Historically, much of the network analysis liter-
ature has focused on the structural information encoded in nodes and edges. Recently, the
analysis of higher-order structures has received increasing attention. A plethora of methods
for analyzing higher-order structure in relational data has been developed (Benson et al.,
2016; Battiston et al., 2020). Our work follows this line of thought, in that it focuses on
the relations between edges and the structural information encoded therein. Curvature of
higher-order structure has previously been studied in (Weber et al., 2017b; Saucan and
Weber, 2018; Leal et al., 2021). Here, networks have been studied as polyhedral com-
plexes (Weber et al., 2017b), or interactions between groups of nodes have been encoded in
hypergraphs (Saucan and Weber, 2018; Leal et al., 2021). To the best of our knowledge,
this is the first work that studies the curvature of line graphs.

Line Graphs. The notion of the line graph goes back at least to (Whitney, 1932), where
it is shown that whenever |V| > 5, two graphs are isomorphic if and only if their line graphs
are. An effective version of this result, which reports whether a given graph is a line graph,
and if it is, returns the base graph, appears in Lehot (1974). Community detection and
more generally network analysis via the line graph has been recently studied in (Chen et al.,
2017; Krzakala et al., 2013; Lubberts et al., 2021; Evans and Lambiotte, 2010).

Discrete Curvature. There exists a large body of literature on discrete notions of cur-
vature. Notable examples include Gromov’s §-hyperbolicity (Gromov, 1987), Bakry-Emre
curvature (Erbar and Maas, 2012), as well as Forman’s and Ollivier’s Ricci curvatures (For-
man, 2003; Ollivier, 2010). While there is some work on studying those curvature notions
on higher-order networks (Bloch, 2014; Weber et al., 2017b) and hypernetworks (Saucan
and Weber, 2018; Leal et al., 2021), they have not been studied on line graphs. Curvature-
based analysis of relational data (see, e.g., (Weber et al., 2017a,b)) has been applied in many
domains, including to biological (Elumalai et al., 2022; Weber et al., 2017¢; Tannenbaum
et al., 2015), chemical (Leal et al., 2021; Saucan et al., 2018), social (Painter et al., 2019),
information (Ni et al., 2015) and financial networks (Sandhu et al., 2016). Discrete curva-
ture has also found applications in Representation Learning, in particular for identifying
representation spaces in graph embeddings (Lubold et al., 2023; Weber, 2020; Weber and
Nickel, 2018).

4. Discrete Graph Curvature

Curvature is a classical tool in Differential Geometry, which is used to characterize the
local and global properties of geodesic spaces. In this paper, we investigate discrete notions
of curvature that are defined on graphs. Specifically, we focus on discretizations of Ricci

10
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(b) FRC
(a) ORC

Figure 5: Computation of discrete Ricci curvature.

curvature, which is a local notion of curvature that relates to the volume growth rate of the
unit ball in the space of interest (geodesic dispersion).

In the following, we only consider undirected networks. We introduce two classical
notions of discrete Ricci curvature, which were originally introduced by Ollivier (2010)
and Forman (2003), respectively.

4.1 Ollivier’s Ricci Curvature

Our first notion of discrete curvature relates geodesic dispersion to optimal mass transport
on the graph.

4.1.1 FORMAL DEFINITION

Consider the transportation cost between two distance balls (i.e., vertex neighborhoods)
along an edge in the network. In an unweighted graph, we endow the neighborhoods of
vertices u, v adjacent to an edge e = {u,v} with a uniform measure, i.e.,

1
my(2) == T Vz, sit.un~ z, (4.1)

and analogously for m,(z). Here, u ~ z indicates that u,z are neighbors. In a weighted
graph, for a € [0, 1] and p > 0, we set

« if z = u,
moP(z) = 15—5‘ exp(—dg(u, 2)P) if z ~ u, (4.2)
0 else.

where the normalizing constant C, = ), , exp(—dg(u, 2)P). Notice that for neighboring
vertices u,z we have dg(u,z) = w({u, z}) == w, .. When o = 0, and p = 0 or we have
an unweighted graph, this reduces to the uniform measure. We define Ollivier’s Ricci
curvature (Ollivier, 2010) (short: ORC) with respect to the Wasserstein-1 distance W)
between those measures, i.e.,

Wl (mU7 mv)

Ricp(e) :=1— o v)

(4.3)
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Figure 6: Scatter plot of the ORC on G obtained from the optimization versus its ap-
proximation, where the optimization is done by solving the earth mover’s distance exactly
(middle) and approximately with Sinkhorn (right), and G is obtained from the planted SBM
of size n = 100, two equally-sized blocks, poy = 0.02 and p;, = 0.4, with weights being 1
(top), and the 2-d RGG of size n = 100 and radius r = 0.4 with weights being 1 (middle),
and proportional to the distance (bottom). G is visualised in the left column, with the color
indicating the ORC obtained by solving the earth mover’s distance exactly.

The computation of ORC is illustrated in Figure 5a. We can further define ORC for vertices
with respect to the curvature of its adjacent edges. Formally, let E, := {e € F : v € e}
denote the set of edges adjacent to a vertex v. Then its curvature is given by

Rico(v) = ) Ricole) - (4.4)

eck,

4.1.2 COMPUTATIONAL CONSIDERATIONS

Computing ORC on a graph is quite expensive. The high cost arises mainly from the
computation of the Wi-distance, which, in the discrete setting, is also known as earth
mover’s distance. Computing Wi (m,,, m,) between the neighborhoods of two vertices u, v

12
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that are connected by an edge, corresponds to solving the linear program

min = Wi (my, my,) = ir/{fz Z Nijda (i, 7) (4.5)
1~ Iy
s.t. Zx\ij:mé Vi~uy; Z)\ij:m;Viwx;
1~ I~y
Xij >0 Vi, j.

Classically, Wi(m,,m,) is computed using the Hungarian algorithm (Kuhn, 1955), the
fastest variant of which has a cubic complexity. With growing neighborhood size, the
computational cost of the Hungarian algorithm becomes prohibitively large. Alternatively,
W1 (my, my) can be approximated with the faster Sinkhorn algorithm (Sinkhorn and Knopp,
1967), whose complexity is only quadratic. However, even a quadratic cost introduces a
significant computational bottleneck on the large-scale network data that we encounter in
machine learning and data science applications. Here, we propose a different approach.
Instead of approximating the Wi-distance, we propose an approximation of ORC. Our
approximation can be written as a simple combinatorial quantity, which can be computed
in linear time.

We begin by recalling a few classical bounds on ORC, first proven by Jost and Liu (2014).
Let #(u,v) be the number of triangles that include the edge (z,y), a A b := min{a, b} and
a Vb := max{a,b}. With respect to these quantities, upper and lower bounds on ORC are
given as follows:

Theorem 4 (Unweighted case (Jost and Liu, 2014))

1. Lower bound on ORC:
. 1 1 #(u,v)
> (1-——- =T ,
Rico({u,v}) > <1 T4 dnd > X (4.6)

(11 #uw)) | #wo)
dy dy dyVvd,), dyvd,’

Note that a simpler, but less tight lower bound with respect to node degrees only is

given by
Rico({u,v}) > —2 <1 - dlv - dlu> |
2. Upper bound on ORC:
Rico ({u, v}) < d#u“v";}z . (@7)

In the following section, we will derive an extension of these results to weighted graphs.

Now, let Ricgp and Riclg“’ denote the upper and lower bounds, respectively. We propose to
approximate Rico({u,v}) as the arithmetic mean of the upper and lower bounds, i.e.,

Rico ({u, v}) = % (Rict ({u. v}) + Ricks" ({u,0})) | (4.8)

13
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Like the bounds themselves, ch; has a simple combinatorial form and can be computed in
linear time. Since the computation relies only on local structural information, the procedure
can be parallelized easily. Figure 6 demonstrates the utility of this approximation in practise
(in both the SBM and Random Geometric Graphs (short: RGG); see Appendix B for more
explanation).

4.1.3 BoOUNDS ON OLLIVIER’S CURVATURE IN WEIGHTED GRAPHS

Since our curvature-based algorithms work by modifying the edge weights in a graph ac-
cording to their curvature values, we require an analogue of Theorem 4 for weighted graphs,
in order to use a simple combinatorial approximation to the curvature as in Equation (4.8).
To do so, we make use of the dual description of the Wasserstein distance between two
measures mq, ma:

441 (m17 m2) = inf E(az,y)wﬂ'd(aja y) = Sup [ELBle [h((l?)] - Eme2 [h(y)]] )

well(m1,mz2) lhllL<1

where II(my, m2) is the set of couplings of m1,mg, and the supremum is over all functions
h : V — R which are Lipschitz with constant at most 1 (with respect to shortest path
distance). We may obtain an upper bound on Wj(mj,mg) by finding any coupling 7 of
m1, meo, and a lower bound by finding any 1-Lipschitz function h.

Upper bound on Wi(mj,mz). By constructing a transport plan taking m, to m,, we
obtain the following upper bound:

Lemma 5 Let m,, m, denote the measures on the node neighborhoods of x and y given
by taking o = 0 and p = 1 in Equation (4.2). Denote the vertices in N(z) \ N(y) with ¢,
N(y) \ N(z) with v, and N(x) N N(y) with c. Introduce the shorthands L, := ), my({),
Ly :=3%",myl), as well as X, := my(x), X, := my(x). Then

Wi(mg,my) < Z we z My (£) + Z Wy, My (1)

l
+ D Wey (ma(e) = my(e)) 1+ wea(my(c) — ma(c))+

Lo+ Ko = Xy = 3 (my () = ma(0)) | way -

Remark 6 This upper bound is exact for weighted trees.

As a computational tool, this bound is a step in the right direction: Consider the usual
procedure for calculating ORC. We need to compute m,, m,, and dg(u,v) for each pair of
vertices u,v € V. Then we need to carry out the optimization, which can be realized as
a linear program as in Equation (4.5). This lower bound still requires the first step, but
avoids the need for the optimization over couplings, which is the major bottleneck in the
curvature computation.

14
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Lower bound on Wi(mi,m3). We now provide a lower bound on Wi(mg, my):

Lemma 7 Let m,,m, be as defined above, and let P = {v € N(z) UN(y) : my(v) —
my(v) > 0}, N = {v € N(z) UN(y) : my(v) — my(v) < 0}. For S CV andv €V, let
dg(v,S) = min{dg(v,u) : u € S}. Then

Wi (1ma,my) > max {Z A6 (0, N) (s (v) = my (0)), 3 da(v, P) (my (v) m(v»} .

veEP veN

Remark 8 A lower bound for W;(mg, m,) was previously given by Jost and Liu (2014).
However, the ORC notion considered therein differed from ours in the choice of the mass
distribution imposed on node neighborhoods. In addition, we believe that the result in Jost
and Liu (2014) has a slight inaccuracy; for details, see the discussion in Remark 28.

Combinatorial bounds on ORC in the weighted case. We now utilize the combi-
natorial upper and lower bounds on W (m,, m,) to obtain combinatorial bounds on ORC
itself.

Theorem 9 (ORC bounds (weighted case)) Forz,y € V,x ~ y, we have the following
bounds:

1. Upper bound on ORC:

Wy Wy

Rico({, y}) < 1-max {Z 46N () = my ()5 3 2P (0 0) — a0+

v v

2. Lower bound on ORC:

Rico({z,y}) = 1= " ~“Emy(0) = 3 =, (1)

¢ Y r Wy
-> {;U;:,(mx(d —my(c))+ + Z;z (myl€) = mx(c))Jr}

Lo+ X = Xy =) _(my(e) —ma(e))+
C
While technical, both bounds are purely combinatorial and can be computed in linear time

without the need to solve a linear program.

4.2 Forman’s Ricci Curvature

Our second notion of discrete curvature utilizes an analogy between spectral properties of
manifolds and CW complexes to define a discrete Ricci curvature.

15
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4.2.1 FORMAL DEFINITION

Forman’s discrete Ricci curvature (short: FRC) was originally defined as a measure of
geodesic dispersion on CW complexes (Forman, 2003). In its most general form, FRC is
defined via a discrete analogue of the Bochner-Weitzenbock identity

Ug = Bg+ Fy,

which establishes a connection between the (discrete) Riemann-Laplace operator [y, the
Bochner Laplacian F; and Forman’s curvature tensor Fjy. Networks can be viewed as
polyhedral complexes, which is one instance of a CW complex. In particular, by viewing a
network’s edges as 1-cells, we can define FRC for edges e = (v1,v2) as

Ricr(e) = we wvl — — Z e (4.9)
€y ~ve \% wewevl €yy Ve V wewe”2

To arrive at this expression, we have specialized Forman’s general notion for Fj to the case
of 1-cells (see also (Weber et al., 2017a,b)). Here, e, denotes an edge that shares the vertex
v with e. Note that if G is unweighted, then this reduces to

Ricp(e) =4 — dy, — db, -

We can define FRC for vertices (i.e., O-cells) with respect to the curvature of its adjacent
edges E, (i.e., E,:={e€ E: e=(,v) ore= (v,-)):

Ricp(v Z Ricp(e (4.10)
eck,

It is well-known that higher-order structures impact the community structure in a graph,
as well as the ability of many well-known methods to detect community structure. For exam-
ple, the clustering coefficient, a well-known graph characteristic, can be defined via triangle
counts (Watts and Strogatz (1998), see also Section 8.2.1). Therefore, we additionally de-
fine an FRC notion, which takes contributions of higher-order structures into account. To
characterize such structure, we introduce the following notion: We say that two edges e, é
are parallel, denoted as e||é, if they are adjacent to either the same vertex (v ~ e, é) or the
same face (f ~ e, é), but not both. In the following, we consider the 2-complex version of
FRC (Weber et al., 2017b):

Ricp(e) = we (Z$>+°;":+ DD Ve Fe N ] . @

fre élle |f~ée wr vrve,é

Note that for each edge é parallel to e, only one of the two sums inside the absolute value
will have any terms. Here, f denotes a 2-face of order k, such as a triangle (k = 3), a
quadrangle (k = 4), a pentagon (k = 5), etc.
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4.2.2 COMPUTATIONAL CONSIDERATIONS

Notice that Equation (4.9) and Equation (4.10) give a simple, combinatorial curvature
notion, which can be efficiently computed even on large-scale graphs. To compute the
2-complex FRC of an edge e exactly, one needs to identify all higher order faces in the
neighborhood of an edge e and compute their respective contributions in Equation (4.11).
This limits the scalability of this notion significantly. However, notice that the likelihood
of finding a face of order k in the neighborhood of an edge decreases rapidly as k increases.
Figure 7 illustrates this observation with summary statistics for simulations on two popular
graph models (the SBM and RGG). We propose to approximate the 2-complex FRC by
only considering triangular faces and ignoring structural information involving k-faces with
k > 3. This choice reduces the computational burden of the 2-complex FRC significantly.
We demonstrate below that experimentally, the performance of our FRC-based clustering
algorithm does not improve if higher-order faces are taken into account for the curvature
contribution (see Table 5). Specifically, we will utilize the following augmented FRC'

w w w w w
Ricp(e) = w ( i)Jr 2 Uy )L (402
“ ( Azwe% we | we Z\/W ZW (4.12)

evy le evqlle

To be clear, the sum e,, ~ e,e,, || e considers all edges e,, which are incident on v;, hence
share a vertex in common with e, but do not form a triangle with e.

We consider the following weighting scheme for faces, which utilizes Heron’s formula to
determine face weights via edge weights: Let f = (e;, e, e;) denote a triangle in G, i.e.,
ej ~ €j, ej ~ e and e; ~ e;. Then we set

wp = \/s(s—wei)(s—wej)(s—wek) (4.13)
We; T+ We; + Wey,
2

S =

This weighting scheme was previously used in (Weber et al., 2017b).

5. Discrete Curvature on the Line Graph

In this section, we investigate the computation of discrete Ricci curvature on the line graph.
Again, we consider two notions of curvature, Ollivier’'s (ORC) and Forman’s (FRC). Specif-
ically, we want to describe the relationship between a graph’s curvature and the curvature
of its line graph.

We have seen in Section 4 that curvature can be defined on the node and edge levels.
Since nodes in the line graph correspond to edges in the underlying graph, it is natural
to study the relationship between node-level curvature in the line graph and edge-level
curvature in the original graph. In the context of the clustering applications considered in
this paper, we are further interested in the insight that curvature can provide on differences
between node clustering (based on connectivity in the original graph) and edge clustering
(based on connectivity in the line graph). In this context, it is instructive to study the
relationship between edge-level curvature in the line graph and edge-level curvature in the
underlying graph.
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Figure 7: Number of k-faces in graphs obtained from the planted SBM of size n = 100, two
equally-sized blocks, pyt = 0.02 (left), and the 2-d RGG of size n = 100 (right), where the
results are averaged over ns; = 50 realisations of each set of parameters.

Recall that, given an unweighted, undirected graph G = (V, E), its line graph is defined

as L(G) = (E,E), where an edge {{u,v},{r,s}} € £ appears in the line graph whenever

{u,v} N {r,s} = 1. We will make use of the following simple observation throughout the
section:

Lemma 10 Node degrees in the line graph are given as

d{u,v} =dy+dy—2,

where the left hand side denotes node degrees in the line graph L(G), and the right hand
side the degrees of the vertices u and v in G.

This formula follows from the fact that the edges connecting to {u, v} in L(G) are precisely
those edges of the form {u,z} € E or {v,z} € E, where z # u,v.

5.1 Numerical observations

We explore the relationship of (1) edge-level curvature in the original graph G and node-
level curvature in the corresponding line graph L numerically, as well as (2) edge-level
curvatures in the original graph G and its line graph L. Our empirical results consider the
two notions of curvature introduced above: Forman’s Ricci curvature (FRC) and Ollivier’s
Ricci curvature (ORC). Our data sets are described in Appendix B. To compute the classical
FRC and ORC notions in the original graph G and its line graph L numerically, we use the
built-in ORC computation both for edges and for nodes in GRAPHRICCICURVATURE (Ni
et al., 2019). Our implementations for augmented FRC and our ORC approximation build

on the code in this library. Results from each random graph model are obtained from
ns = 50 realizations.

5.2 Ollivier’s Ricci Curvature

In this section, we establish theoretical evidence for the observed relationship between
Ollivier’s curvature (ORC) of a graph and its line graph.
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Figure 8: Correlation of the distributions of the classical ORC (left), the approximation
of ORC from the average of the upper and lower bounds (middle left), the classical FRC
(middle right), and the augmented FRC (right) for edges in G versus that for vertices
in L where the networks are obtained from (top) the planted SBM of size n = 100, two
equally-sized blocks, poy: = 0.02 and p;, = 0.4; (middle) the 2-d RGG of size n = 100, and
radius 7 = 0.3; (bottom) the “Worm” data set. Notice that the range of curvature values
varies between curvature notions, but the shape of the distributions has a close resemblence.

5.2.1 UNWEIGHTED CASE

Consider an unweighted graph G, and denote ORC in G and L(G) by Ricg, Ricé(G),
respectively. We prove combinatorial upper and lower bounds for ORC in L(G), which can
be computed solely from structural information in the underlying graph G. These results
are the analogues of Equations (4.6), (4.7), but make use of the relationships between the
line graph L(G) and its base graph to avoid computing curvatures in the line graph.

Lemma 11 (Bounds on line graph ORC) Let d,, denote the degree of the vertexuw € V
in the graph G, and dg, ) the degree of the vertex {u,v} € E in the line graph L(G). Then
we have the following bounds on the ORC of edges in L(G):

1. Upper bound on ORC:

dy — 2+ 1p({u,w})
(dyVdy)+dy,—2 "’

Ricg ¥ ({{u, v}, {v,w}}) <
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Figure 9: Correlation of the distributions of the classical ORC (left), the approximation
of ORC from the average of the upper and lower bounds (middle left), the classical FRC
(middle right), and the augmented FRC (right) for edges in G versus that for edges
in L where the networks are obtained from (top) the planted SBM of size n = 100, two
equally-sized blocks pyy¢ = 0.02 and p;, = 0.4; (middle) the 2-d RGG of size n = 100, and
radius r = 0.3; (bottom) the “Worm” data set. Notice that the range of curvature values
varies between curvature notions, but the shape of the distributions has a close resemblance.

2. Lower bound on ORC:

. L(G) > _ B 1 B 1 B dv — 2+ lE({u,w})
Rich (o Al > = (1 5~ s~ i ).

B (1_ 1 B 1 B dv—Z—l—lE({u,w}))
dy+dy =2 dy+dy—2 (duVdy)+dy—2 ),

dy — 24+ 1p({u,w})
(du V do) + dy — 2

(5.2)

Here, 1p({u,w}) =1 if u,w are connected by an edge in G, and 1g({u,w}) = 0 otherwise.

A crucial feature of this lemma is that it does not require the computation of triangle
counts in L(G): It only requires evaluating the degrees of the constituent vertices, and the
existence of the edge {u,w} € E. The latter results in an additional triangle in the base
graph G and, since L(K3) is isomorphic to K3, an additional triangle in the line graph.
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5.2.2 WEIGHTED CASE

Importantly, we can show a version of these bounds in the weighted case, too. Let w({u, v}, {v,w})
denote the weight of the edge {{u, v}, {v,w}} € £. Then for an edge {e1,e2} € £, Theorem 9
gives us the following result, which makes use of the notation from Section 4.1.3.

1. Upper bound on ORC:
dr(ay(e,N)

w(er, e2)

drc) (e P)
w(er, e2)

Rico({e1, e2}) < 1—maX{Z (ma(e) —ma(e)+, ) (ma(e) —ml(e))+}-

2. Lower bound on ORC:
Rico({e1,e2}) > 1 — Z w(g’el))ml(ﬁ) — Z Mmg(r)
l T

w(er, eo w(er, e2)

- [uj(c’@)(rm(c) —ma(c))+ + M(mz(c) B ml(c))+]

w(er,e2) w(er, e2)

L1+ X1 — X5 — Z(mz(c) —ma(c))+

[

Note that the upper bound for ORC in the line graph still requires one to compute the
line graph. However, we can always use the trivial upper bound Ricp({e1,e2}) < 1 if an
approximation will suffice. See Section 7.4 for experimental results utilizing this approach.

Summary. In the applications discussed in the next section, we again approximate ORC
as the arithmetic mean of the upper and lower bounds for the sake of computational effi-
ciency:

Definition 12 (Approximate ORC in the Line Graph)
——L(G) 1 ) )
Rico  ({u,v}) := 5((Rlcé(G))u‘v({u, v}) + (Rlcé(a))low({u,v})) . (5.3)
In Figure 10, we compare this approximation to the original ORC for some simulated
graphs. Note that the approximations in the right two columns can be computed only from
information contained in the graph G, so that L does not need to be constructed.

5.3 Forman’s Ricci Curvature

In this section, we establish a series of relationships between Forman’s curvature of a graph
and its line graph. We further discuss how higher order structures in the line graph may
be incorporated in the curvature computation.

5.3.1 UNWEIGHTED CASE

Consider an unweighted graph G, and denote FRC in G and L(G) by Ricg, RicIL;(G), respec-

tively. At first, we only consider the 1-complex curvature notion (Equations (4.9), (4.10)),
which does not consider contributions of higher-order structures, such as triangles or quad-
rangles. We begin by investigating the relationship of edge-level Forman curvature in a
graph G and the node and edge-level curvatures in its line graph L(G).
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Figure 10: Scatter plot of the ORC on L obtained from optimization versus its approxi-
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Pout = 0.02 and p;, = 0.4 (top) and the 2-d RGG of size n = 100 and radius r = 0.4
(bottom).

Lemma 13 FEdge-level FRC in G relates to edge-level FRC in L as

. L
Ricp

D ({{u, v}, {v, w}}) = RicE({u, v}) + Ric§({v, w}) . (5.4)

FEdge-level FRC in G relates to node-level FRC in L as

. L
Ricp

(@ (fu,v}) = RicG(u) + Ric% (v) — RicG({u, v})? . (5.5)

Importantly, this lemma allows us to compute node-level FRC in the line graph with
respect to quantities in the original graph only. Specifically, the right hand side can be
computed from edge-level FRC only, utilizing Equation (4.10). See the third columns in
Figures 8 and 9 for an illustration of these relationships in a few simulated and real-data
graphs.

5.3.2 WEIGHTED CASE

When the vertex weights w,, = 1 for all v € V, and using the line graph edge weights
Wey e} = WeyWey, We get the following formula for the relationship between the edge-level
FRC in G versus the edge-level FRC in L(G):
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Lemma 14

Rich @ ({{u, v}, {v,w}}) = Wiuv} (2 — /Z{{Z’j}}(? — Ric%({u, UD))
+ Wioy (2 _ /:‘)’{{W’}}(z ~RicG({v, w}))> .

5.3.3 INCORPORATING HIGHER-ORDER STRUCTURES

Finally, we discuss how to account for contributions of higher-order structures, such as tri-
angles or quadrangles, in the computation of curvature in the line graph. As discussed in
Section 4, the curvature contributions of such structures are crucial in curvature-based clus-
tering. We have demonstrated that the successful application of the FRC-based approach
to single-membership community detection relies on the consideration of triangular faces,
such as in our 2-complex FRC notion (Equation (4.11)). In the following, we will illustrate
the necessity of including contributions of quadrangular faces in the curvature contribution
on the line graph. We first define a 2-complex FRC notion on the line graph, which accounts
for curvature contributions of triangular faces.

Let T'(v) = {v' : {v,v'} € E} denote the set of neighbors for a vertex v € V in G.
Suppose {u,v},{v,w} € E denote neighboring edges in G and ({u,v},{v,w}) € & the
corresponding edge in the line graph. We define the set of neighbors for an edge {u,v} as
follows:

T ({u,v}) = {{u, W'Yl € F(u)\{v}} U {{v,v'} o € F(v)\{u}}

The set of triangles in the line graph containing {u, v}, {v,w} is then given by

FA = {({u,v}, {v,w},e) ceel{u,v})N F({v,w})}
= {({u, v}, {v,whe) : e € {{v,v'} v € T(w)\{w,w}} U ({{w,w}}n E)} .

Hence, there are only two possible structures in GG, which give rise to triangles in its line
graph L: (i) edges incident to the common node of the two edges under consideration, or
(ii) the other endpoints of the two edges are connected with each other. The 2-complex
FRC with triangle contributions can then be written as follows:

Definition 15 (2-complex FRC in the Line Graph (k < 3))

Ricr ({{u, v}, {v,w}})

_ Wiuw}, {o,w} Wiuw} Wivw}
- W{u’v}{v’w}( 2 w +W{uv} {v,w} +W{u v} {ow}
feFa kv, whiv,

W{uw} W{v,w}
_ + .
" > )

u)\{v7w} \/w{u,v},{v,w} ’ w{uvv}v{uvx} IEF(U})\{U,U} \/w{u,v},{uw} ) w{vvw}v{wvx}
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In the special case of an unweighted network (i.e., w. = 1 for all e € V' and Wieery = 1 for
all {e,e'} € £), we have

RicF<{{u,v},{v,w}}> =2+ Z wlf — He eI({u,v}) : ({w, v}, {v,w},e) ¢ .FA}‘

fE€EFA

- {e e v, wh) s {{u, 0} {v,wh e} ¢ Faf| - (5.6)

If we assign each triangle the same weight wa, this further simplifies the above equation
as follows:

Lemma 16 (2-complex FRC in the Line Graph (triangles only))

Ricr ({{u, v}, {v, w}) = j: oy —dy 4 MQA + (:A + 2) s({uwwl).  (5.7)

The lemma implies that the triangles-only 2-complex FRC in the line graph can still be
largely determined by the degree of the nodes in the original graph G; the local triangle
count enters via the terms 1g({u,w}) (which is 1 if {u,w} € E and 0 otherwise). A simple
calculation shows that wa = v/3/4, i.e., 1/wa +2 = (4v/3+6)/3 ~ 3.309, while node degree
could be as high as O(|V]). As such, a triangle in G increases the curvature value in L by
1/wa + 2. However, our experimental results (see Table 11) demonstrate that clustering
methods based on the triangles-only 2-complex FRC can have low accuracy. While consid-
ering triangles was sufficient for FRC-based community detection on the original graph, we
need to incorporate additional higher-order information to perform community detection
on the line graph with high accuracy. Our experiments suggest that accounting for curva-
ture contributions of quadrangles leads to a significant improvement in the performance of
FRC-based mixed-membership community detection (see Table 11). We found that incor-
porating curvature contributions of k-faces with £ > 5 does not improve performance, while
significantly increasing the computational burden. This is expected, given the decreasing
frequency of such structures (see Figure 7). These design choices lead to the following 2-
complex FRC notion, which we will utilize in our FRC-based clustering method below: The
set of quadrangles in the line graph, which contains {u, v}, {v,w} is given by

JFo = {({u,v}, {v,w},{w,z},{z,u}) : z € ((w) mF(“))\{U}} :

As such, there are two ways for quadrangles to form in the line graph: First, any quadrangle
in the original graph G gives rise to one in the line graph L. Second, a quadrangle with a
single chord ({u, v, w, a2}, {{u,v},{v,w},{w,z}, {z,u}, {u, w}}) still results in a quadrangle
in L from ({u,v},{v,w}, {w,z},{z,u}), since there are no edges from {u,v} to {w,z} or
{v,w} to {z,u} in L.
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Definition 17 (2-complex FRC in the Line Graph (k < 4))

RicF<{{u,v}, {v,w}})

o Wiuw},{v,w} Wiuw},{v,w} Wiy} Wiv,w}
= Wy} {v,w} ( Z 7@ + Z wy + e} foom] + ral form]

fEFA feFn I LT
_‘ Z \/w{u,v},{v,w} * Weq,eo

wy
({“’”}v{”vw}m 762) €Fn

_ Z W{u} o Wiv,w}
sel(unLow) V2 uwvh{vw} uvkfusl  opoir) Vuvhivw}  Cowl{wa}

).

Our choice of weights for quadrangles is also based on geometric intuition utilizing Heron’s
Formula. Full details for this are given in Appendix A.4.

where I'o(z) =T'(z) U {z}.

6. Algorithms
6.1 ORC-based approach

The curvature-based community detection algorithms (Algorithm 1) are built on the fact
that bridges between communities are more negatively curved than edges within commu-
nities. We have discussed earlier that this can be observed in both graphs (in the single-
membership case) and their line graphs (in the case mixed-membership communities). In
this section, we provide a detailed discussion of Algorithm 1 with x denoting Ollivier’s Ricci
curvature (ORC). We begin by giving some intuition for the differences in curvature values
of bridges and internal edges, before formalizing the argument below. By construction, ORC
is closely linked to the behavior of two random walks starting at neighboring vertices (Ol-
livier, 2009; Jost and Liu, 2014). Informally, they are more likely to draw apart if the edge
between them has negative ORC, and to draw closer together otherwise. Random walks
that start at nodes adjacent to a bridge (bridge nodes), typically move into the communities
to which the respective nodes belong. As a consequence, they draw apart quickly. Ran-
dom walks that start at non-bridge nodes, i.e., nodes adjacent to internal edges, are more
likely to stay close to each other, as they remain within the same community. Hence, we
expect bridges to have much lower ORC than internal edges, a fact that is easily confirmed
empirically (see, e.g., Figure 4).

Remark 18 We note that an alternative notion of Ollivier’s curvature (Equation (4.3))
was given by Lin et al. (2011), where node neighborhoods are endowed with the measure

a, U=z
me(z) = b\_/ﬁ, un~z . (6.1)
0, else
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instead of the uniform measure. A weighted version of this curvature was considered in (Ni
et al., 2019). Notice that for a > 0, this curvature notion connects to lazy random walks
starting at neighboring nodes. Here, the parameter o could be seen as controlling whether
the random walk is likely to revisit a node, which in turn relates to a distinction between
exploration of node neighborhoods in the style of “breadth-first search” vs. “depths-first
search”. A suitable choice of « is highly dependent on the topology of the graph; hence,
replacing ORC with Equation (6.1) provides an additional means for incorporating side
information on the structure of the underlying graph. However, in this work we restrict
ourselves to the classical ORC notion.

6.1.1 ALGORITHM

Single-Membership Community Detection. We implement Algorithm 1 via ORC by
setting k(-) = Rico(+), i.e., the curvature is chosen to be the combinatorial ORC approx-
imation proposed in Section 4.1. Notice that as the edge weights evolve under the Ricci
flow, the graph is weighted, even if the input graph was unweighted. Consequently, we use
weighted ORC curvature, constructing the approximation from the bounds in Theorem 9.
We further choose equally-spaced cut-off points {xz}?:f 0» Where zo = maxy, ,yep wa vy T1 =
o —0, ..., Tn, = ((wo — 1) mod d + 1), and the step size for the cut-off points is set to be
§ = 0.025. Other hyperparameter choices include a constant step size v = 1, e = 10™%, drop
threshold €4 = 0.1, and stopping time T = 10, i.e., we evolve edge weights under Ricci flow
for 10 iterations. Instances of Algorithm 1 via ORC were previously considered in (Ni et al.,
2019; Sia et al., 2019; Gosztolai and Arnaudon, 2021). Both approaches computed ORC
either exactly (via the earth mover’s distance) or approximately (via Sinkhorn’s algorithm).
However, due to the higher computational cost of either variant of the ORC computation,
the approaches were limited in their scalability (see discussion Section 6.1.3 below).

Mixed-Membership Community Detection. As in the single-membership case, we
implement Algorithm 1 via our combinatorial ORC approximation (Equation (5.3)). The
input graph G is the line graph of the underlying graph, which is constructed before the
clustering procedure is started. All edge weights are initially set to 1, i.e., the input graph is
unweighted. Hyperparameter choices are analogous to the single-membership case. Instance
of Algorithm 1 via ORC were first considered in (Tian et al., 2023). Again, due to the high
computational cost of the ORC computation, the approach was limited in its scalability.

6.1.2 THEORETICAL RESULTS.

Single-Membership case. To give theoretical intuition for curvature-based community
detection algorithms in the single-membership case, we considered the following model class
of graphs with community structure:

Definition 19 Let G, (a > b > 2) be a graph constructed as follows:

1. Construct a complete graph with b vertices {v1,...,vp}.

2. For each i = 1,...,b, introduce vertices u;j, j = 1,...,a, and make all possible
connections between vertices in {v; } U{u;; }?:1, resulting in b copies of complete graphs
Koy1.
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We show examples of graphs of the form G, ; in Figure 11. Notice that in a graph G, ; we
have three types of edges:

1. bridges between communities, we denote vertices adjacent to bridges as bridge nodes
and all others as internal nodes;

2. internal edges that connect a bridge node and an internal node;
3. wnternal edges that connect two internal nodes.
As before, we consider the following mass distribution on the node neighborhoods:

1 —Wg, ~
m,=40¢ "ty (6.2)
0, else

Here, C' denotes the normalizing function. This choice follows from the more general scheme
in Equation (6.1) by setting = 0, p = 1. We assume that at initialization, all edges are
assigned weight 1.

t+1

i

t
%

t

Theorem 20 Let the edge weights in Gq evolve under the Ricci flow w;™ <« (1 — k})w!

(where k% denotes ORC for the edge type i using the weights at time t).

1. The weights of internal edges (type (3)) contract asymptotically, i.e., wh — 0 as

t — o0.

2. The weights of bridges are larger than those of internal edges of types (2) and (3),
i.e., wh > wh and wi > wh for all t > 0.

Remark 21 We note that the class of graphs G, was previously considered in (Ni et al.,
2019), which also give asymptotic guarantees for the evolution of edge weights under the
Ricci flow. However, they assume a different mass distribution, hence, their asymptotic
results are mot directly applicable to our setting.

We will present the full proof of this theorem in Appendix A.5, but we give a sketch of the
proof here. The argument proceeds by induction, first calculating the exact ORC curvatures
of the three edge types at iteration 1, and then calculating the exact ORC curvatures of the
three edge types at iteration ¢, given the weights w!. In each of these steps, we construct
transport plans, as well as 1-Lipschitz functions with equal objective function values to show
their optimality. This proves that we have the exact values of the Wasserstein distances.
We use these exact formulas to show that the evolution of the weights has the properties
given in the statement.

Mixed-Membership case. We modify the model class introduced in Definition 19 to
account for mixed-membership community structure:

Definition 22 Let L, (a > b > 2) be a graph constructed as follows:

1. Construct a star-shaped graph, consisting of a center node of degree b and b leaf nodes
of degree 1.
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2. Replace each leaf node with a star-shaped graph with a + 1 vertices.

Notice that L, consists of b blocks (communities) of size a+ 2 with one common node, i.e.,
the center node is a member of each of the b communities.

It is easy to see that the dual of a graph L, is a graph of the form G, ;. Consequently, we
recover guarantees for curvature-based clustering on the line graph from Theorem 20.

6.1.3 COMPUTATIONAL CONSIDERATIONS

The two key bottlenecks in ORC instances of

Algorithm 1 are (1) the computation of the Wi- Gab
distance in the ORC computation (both single-

and mixed-membership case), and (2) the con- I>_.<I
struction of the line graph (mixed-membership

case). Following our discussion in Section 4.1,

we can circumvent bottleneck (1) by approxi-

mating ORC with the arithmetic mean of its up-

per and lower bounds, which are given by Equa-

tion (4.8) in the original graph (use in single-

membership case) and Equation (5.3) in the line

graph (use in mixed-membership case). This re-

duces the complexity of the ORC computation

to O(|Eldmax), in comparison with previous ap-

proaches (Ni et al., 2019; Sia et al., 2019), which Figure 11: Examples of graphs of the
achieved at best O(|F|d2,,) via Sinkhorn’s ap- model classes Gy p and Lgp (top: a = b =
proximation of the Wasserstein distance. The 2, bottom: a = b = 3). For both pairs,
second bottleneck may also be circumvented in Gap is the line graph of L.

special cases. We discuss the details in Section 7.4 below.

La,b

6.2 FRC-based approach

Finally, we discuss the second instance of Algorithm 1, where x denotes Forman’s Ricci
curvature (FRC). Again, we observe that, typically, bridges have lower FRC than internal
edges in communities, which can be exploited for curvature-based community detection.
As in the previous section, we first provide some informal intuition on this observation,
before formally introducing the algorithm. Notice that bridge nodes have typically a high
node degree, as they connect not only to other nodes within the same community, but also
to nodes in other communities. It is easy to see from the definition (recall, Ricp(e) =
4 —d,, — d,,) that, as a result, bridges have usually lower curvature than internal edges in
unweighted networks. This imbalance in curvature values is iteratively reinforced as edge
weights evolve under the Ricci flow. In particular, we see that, in the case of bridges, the
2-complex FRC (Equation (4.11))

Ricp(e) := we ((Z:j;)*'tj: +%;2)_Z Z @_ Z \/c%

fre élle |f~ée f vrve,é
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is increasingly dominated by the second term, due to the high degree of the adjacent vertices
and, consequently, the large number of parallel edges. This is reinforced as the edge weight
increases under Ricci flow, which decreases the first term, resulting in negative curvature
with high absolute value. In contrast, for internal edges, the second term has a smaller
magnitude due to the smaller degrees of the adjacent vertices. This is again reinforced as
the edge weight decreases under Ricci flow.

6.2.1 ALGORITHM

Single-Membership Community Detection. We implement Algorithm 1 via FRC
by setting k(-) = Ricp(:), chosen to be the 2-complex FRC with triangle contributions
(Equation (4.12)). In the absence of given edge weights, we initialize edge weights to 1 as
before. Adaptive step sizes are chosen proportional to the inverse of the highest absolute
curvature of any edge in a given iteration, i.e., vy = 1/(1.1 x maxy, ,yep |%L ,]). In our
experiments below, we evolve edge-weights for T' = 10 iterations under the Ricci flow. To

. oy . n

infer communities, cut-off points are chosen as {z;},’,, where z¢ = max(, ,}ep wg’ vy T1 =
T — o7 — — :

MAX (e Bl , <z Wupr s Tnfp = Wo o Tpfpl = Tpf — Oy vy Tny = ((xn} — 1.1wpin)

mod § + 1.1wyy). Here, qu is the gth quantile of all weights; we set ¢ = 0.999, step
size 6 = 0.25, and win = Ming, e wav. Note that this differs from the uniformly spaced
cut-off points in the ORC case. Under FRC-based Ricci flow, the magnitude of some edge
weights grows rapidly, resulting in a fat-tailed edge weight distribution. Hence, adjusting
the spacing between cut-off points accordingly reduces the number of cut-off points needed
to achieve high accuracy in cluster assignments. We remark that a special case of Algo-
rithm 1 was previously proposed in (Weber et al., 2018), although considering the classical
FRC notion (Equation (4.9)) instead of the 2-complex FRC and utilizing a simpler scheme
to identify bridges between communities using FRC.

Mixed-Membership Community Detection. We implement Algorithm 1 via FRC on
the line graph, by setting x(-,-) = Ricg(+,+), chosen to be the 2-complex FRC with trian-
gle and quadrangle contributions (Definition 17). In the mixed-membership case, bridges
between communities appear only in the line graph. Hence, we first construct the line
graph before the actual clustering procedure is started. The input to Algorithm 1 is the
pre-computed line graph. All edge weights are initially set to 1, i.e., the input graph is un-
weighted. The adaptive step sizes, stopping time and cut-off points are chosen analogously
to the single-membership case. To the best of our knowledge, FRC-based approaches have
not been considered previously in this mixed-membership setting.

6.2.2 COMPUTATIONAL CONSIDERATIONS

Forman’s Ricci curvature for edges is given by a simple combinatorial formula, which can
be computed in linear time. The variants considered in this work (2-complex Forman
curvature with triangle and quadrangle contributions) require an additional subroutine,
which computes the number of triangles that include the respective edge. Counting the
number of triangles in the 2-hop neighborhood is linear in the node degree, hence the
overall complexity is O(|E|dpax), where dpax denotes the maximum node degree. Similarly,
computing the number of quadrangles in the same 2-hop neighborhood is quadratic in the
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2

2 ax)- Since this subroutine requires only local

degree, hence the overall complexity is O(|E|d
information, it is easily parallelizable.

7. Experiments

7.1 Network Data

Synthetic Data. In order to explore the interaction between discrete Ricci curvature and
the structure of complex networks, we have considered both Stochastic Block Model and
Random Geometric Graphs in our previous analysis. In this section, we systematically ex-
amine the performance of the algorithms on single- and mixed-membership Stochastic Block
Models, where the ground-truth community membership is available. We have introduced
the two variants of the Stochastic Block Model above in Section 2.

Real network data. To test our methods on real data, we consider two data sets, (i)
collaboration networks from DBLP (Yang and Leskovec, 2015), and (ii) ego-networks from
Facebook (Leskovec and Mcauley, 2012), for which ground truth labels are available through
SNAP (Leskovec and Krevl, 2014). Specifically, the collaboration network is constructed
by a comprehensive list of research papers in computer science provided by the DBLP
computer science bibliography. Here, an edge from one author to another indicates that
they have published at least one joint paper. There are intrinsic communities defined by
the publication venue, e.g., journals or conferences. Here, we maintain the choice of two
communities, and randomly select two venues which have at least one node of mixed mem-
bership. We report the results for two representative networks: “DBLP-1” from publication
venues no. 12 and 1654, and “DBLP-2” from publication venues no. 12 and 2592. While in
the second data set (ego-networks), all the nodes are friends of one central user, and the
friendship circles set by this user can be used as ground truth communities. We carried out
the preprocessing in a similar manner as (Zhang et al., 2020), and then select two networks
for which the modularity of the ground-truth communities is greater than 0.5: “FB-1” for
no. 414, and “FB-2” for no. 1684. To better understand the characteristics of the different
real networks, we provide the following summary statistics for each network (see Table 1):
(i) average node degree d, (ii) degree heterogeneity measured by the standard deviation of
node degrees o4 over d, (iii) the actual proportion of nodes with overlapping membership
7o, and (iv) the modularity of the ground-truth community. We note that the Facebook
networks tend to be denser, with more nodes of mixed membership, while the collaboration
networks tend to have heterogeneous degrees and communities that are not well described
by modularity.

n |E| €] k d o4/d 7, Modularity
DBLP-1 | 82 173 867 2 422 065 0.012 0.15
DBLP-2 | 54 142 956 2 526 069 0.019 0.18

3

5

FB-1 128 1593 45635 24.89 0.44 0.055 0.53
FB-2 621 12399 718267 39.93 0.69 0.004 0.52

Table 1: Summary statistics of the real networks.
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7.2 Evaluating clustering accuracy

To evaluate the accuracy of a clustering in the single- and mixed-membership settings, we
introduce the following two notions of Normalized Mutual Information (NMI). When each
node can only belong to one community, the classic NMI is defined by considering each
clustering result as a random variable and then comparing the information contained in
them (Strehl and Ghosh, 2002). Specifically, let X, Y be the random variables described by
two different cluster labels. Let I(X,Y) denote the mutual information between X and Y,
and let H(X), H(Y) denote the entropy of X,Y, respectively. Then NMI is defined as

I(X,Y)

NMI(X,Y) = mean(H(X), H(Y))’

(7.1)

where mean(H (X), H(Y)) denote the mean of the two, and we consider the arithmetic mean
in our experiments, mean(H (X),H(Y)) = (H(X) + H(Y))/2. The NMI ranges from 0 to
1, where value 1 corresponds to perfect matching, or exact recovery if one of the clustering
result is ground truth.

We note that the classic NMI is not well-defined for mixed-membership community
detection, thus we later consider the following extended NMI (Lancichinetti et al., 2009).
Specifically, for communities Cy,Co,...,Ck, we now express the community membership
of each node 7 as a binary vector of length k. (z;); = 1 if node ¢ belongs to Cj; (z;); = 0
otherwise. The I-th entry of this vector can then be viewed as a random variable Z;, whose
probability distribution is given by P(Z; = 1) = n;/nand P(Z; =0) = 1—P(Z; = 1), where
n; = |C| and n = |V|. The same holds for the random variable Y}, associated with another
set of communities C7,C5,...,C),. Both the empirical marginal probability distribution
Pz, and the joint probability distribution P(Z;,Y},) are used to further define entropy H (Z)
and H(Z;,Y). The conditional entropy of Z; given Y}, is defined as H(Z;|Y,) = H(Z;, Yy) —
H(Y}). The entropy of Z; with respect to the entire vector Y is based on the best matching
between Z; and the components of Y given by

H(Zl’Y) = he{{n;n ) H(Zl‘Yh).

The normalized conditional entropy of Z with respect to Y is

_ 1 H(Z]Y)
H(ZIY) = - it

In the same way, we can define H(Y|Z). Finally, the extended NMI for two sets of commu-
nities C1,Cy,...,Cy and C1,CY, ..., C}, is given by

NMI(Z|Y) =1-[H(Z|Y)+ H(Y|Z)]/2 .

Hence to use the extended NMI, we convert the label vector y to a binary assignment by
first normalizing it by its 2-norm and then thresholding each of its elements by 0.8/k.

7.3 Single-Membership Community Detection

Benchmarking. For the first set of experiments, we explore the performance of curvature-
based methods on planted SBMs with two blocks and various choices of parameters. We
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start with graphs of two equally sized blocks, fixed size n = 1000 and probability py,+ = 0.01,
while changing the probability p;, from 0.05 to 0.2. We then explore the critical region when
Pin is close to pyyt and the two blocks have different sizes, nq, no. For each set of parameters,
we generate n; = 10 graphs and run our algorithms for both ORC and FRC, together
with other popular community detection methods, the Louvain algorithm (“Louvain”) and
variants of Spectral clustering (“Spectra”). Specifically, for ORC, the optimal transport
can be obtained by solving the earth mover’s distance exactly (“ORC-E”) or approximately
with Sinkhorn (“ORC-S”), while we can also approximate it by the mean of the upper and
lower bounds we have developed (“ORC-A”). For FRC, we can consider the 1-d version
as in Equation (4.9) where no face information is included (“FRC-17), the augmented
version with triangular faces as in Equation (4.11) (“FRC-2") and also the one with further
quadrangular faces as in Definition 17 (“FRC-3”). For the Louvain algorithm, we run it for
100 times, construct the co-occurrence matrix of the clustering results, and then run the
algorithm one more time on the graph constructed by the co-occurrence matrix, in order
to obtain consistent communities. For Spectral Clustering, we present the results from
the following variants: (i) the highly optimized version in scikit-learn (Pedregosa et al.,
2011) together with a grid search for the number of clusters, from 2 up to 10 (“Spectra-S”),
and (ii) automatic embedding dimension selection (Zhu and Ghodsi, 2006), followed by k-
means clustering (“Spectra-A”). In Appendix C.1, we provide further details for the single-
membership community detection, where we also vary the network size, compare different
optimization methods for ORC, and explore the relationship between ORC and FRC. We
also compare the curvature-based methods with other variants of Spectral Clustering in
Appendix C.3, where instead of directly using the adjacency matrix, we can construct an
affinity by (iii) radius basis functions or (iv) nearest-neighbor techniques.

We report the mean NMI, runtime, and their standard deviations (SD) for all methods.
To maintain the detectability of the communities, we require the generated graphs to have
modularity greater than 0.4 with the ground-truth communities if possible, or choose those
with the highest modularity within 50 realizations. Our experimental results (see Table 2)
demonstrate that the ORC approach outperforms most reference methods, and successfully
recovers single-membership community structure, with an NMI greater than 0.8, as we vary
the density via p;;,. We note that, unlike the curvature-based methods, “Spectra-S” requires
the number of communities as an input parameter. This makes the problem of detecting
communities considerably easier. For a fairer comparison, we perform a grid search over
this parameter, however, since this includes the true number of communities, this can still
be considered an unfair advantage. In addition, the implementation that is used in our
experiments is highly optimized. Despite these caveats, we observe that curvature-based
methods achieve comparable performance on larger graphs with more heterogeneous com-
munity structures. On synthetic data (SBM), as pin, pour become closer to each other (i.e.,
close to the community detection threshold), we observe that the drop in performance is
less significant in the ORC approach than in the reference methods (see Table 4). This indi-
cates that curvature-based methods could be advantageous in regimes in which community
detection is challenging with existing approaches. We only show the results from ORC-E,
since ORC-S has almost the same performance as ORC-E.

Furthermore, our experiments show that leveraging our proposed combinatorial ORC
approximation is a viable alternative that can achieve performance comparable to the Lou-
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vain algorithm and the Spectral Clustering. This is especially pronounced in denser graphs,
where computing exact ORC can be prohibitively expensive. Being computationally very
efficient overall, the FRC approach can also retrieve the single-membership community
structure when the graph is sufficiently dense. Here, only the results from FRC-2 are
included for the reasons that we will discuss later. See Appendix C.1 for more results.

Din Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-2
0.05 | 0.998 (0.004) 0.997 (0.007) 0.997 (0.007) 0.997 (0.008) 0.225 (0.053) 0.176 (0.018)
0.1 (0) (0) 1 (0) 1(0) 0.993 (0.005) 0.275 (0.182)
0.15 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0.990 (0.031)
0.2 (0) 1 (0) 1 (0) 1 (0) 1 (0) 1 (0)

Table 2: Mean (SD) of NMI from different methods on planted two-block SBMs with
n1 = 500, ny = 500, pyyt = 0.01, and varying probabilities pjy,.

Din Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-2

0.05 | 38.16 (0.892) 1.203 (0.098) 0.415 (0.046) 7.537 (0.518) 6.084 (0.507) 4.100 (0.320)
0.1 | 33.85 (0.451) 1.115 (0.032) 0.385 (0.013) 13.57 (0.333) 7.496 (0.293) 4.932 (0.192)
0.15 | 37.70 (0.533) 1.111 (0.027) 0.387 (0.010) 24.85 (1.326) 11.35 (0.644) 7.526 (0.668)
0.2 | 42.97 (0.794) 1.124 (0.037) 0.395 (0.014) 41.78 (1.285) 19.32 (1.331) 14.85 (1.239)

Table 3: Mean (SD) of runtime (in seconds) from different methods on planted two-block
SBMs with ny = 500, no = 500, poyt = 0.01, and varying probabilities pj,.

Din Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-2

0.02 | 0.019 (0.010) 0.160 (0.047) 0.056 (0.042) 0.213 (0.011) 0.126 (0.006) 0.128 (0.023)
0.04 | 0.008 (0.004) 0.018 (0.007) 0.007 (0.003) 0.170 (0.007) 0.132 (0.006) 0.114 (0.023)
0.06 | 0.003 (0.002) 0.010 (0.003) 0.003 (0.002) 0.151 (0.010) 0.128 (0.005) 0.108 (0.050)
0.08 | 0.004 (0.002) 0.012 (0.003) 0.004 (0.002) 0.092 (0.049) 0.130 (0.009) 0.078 (0.045)

Table 4: Mean (SD) of NMI from different methods on planted two-block SBMs with
n1 = 250, ny = 750, and varying probabilities pin, Pour Where pi; — Pour = 0.01.

Rationale for 2-complex FRC. For FRC, one could consider including contributions
of higher-order faces in order to further improve the performance of community detection.
Our experimental results (see Table 5) suggest that, while including triangle information is
crucial, it is unclear whether encoding quadrangle leads to an improvement in accuracy. In
dense graphs, including such information may even decrease performance. An exception is
bipartite graphs, where quadrangle counts encode salient information.

In addition, the computation of quadrangle counts is expensive, resulting in a significant
computational overhead, while the drop in efficiency is significant. We further observe that
FRC-2 (which includes only triangle information) has the strongest correlation with the
clustering coefficients, compared with FRC-1 and FRC-3 (see Figure 16 in Appendix C.1).

Towards an algorithm with integrated stopping criteria. In Algorithm 1, instead
of choosing T' a priori, we can integrate the choice with intermediate modularity check. One
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FRC-1 FRC-2 FRC-3
Pin NMI runtime NMI runtime NMI runtime
0.05 | 0.107 (0.087) 10.95 (1.386) 0.177 (0.013) 11.14 (1.447) 0.220 (0.100) 18.28 (15.99)
0.1 | 0.106 (0.087) 16.73 (1.103) 0.229 (0.118) 17.48 (1.075) 0.077 (0.155) 202.7 (5.996)
0.15 | 0.073 (0.089) 23.35 (0.353) 0.990 (0.013) 27.39 (0.992) 0.019 (0.056) 101.4 (133.7)
0.2 | 0.054 (0.083) 29.91 (0.571) 1 (0) 39.79 (1.702) 0.092 (0.092) 111.9 (1.680)

Table 5: Mean (SD) of NMI and runtime (in seconds) from different FRC-based methods
on planted two-block SBMs with n; = 500, n9 = 500, pyy: = 0.01 and varying probabilities

Din-

approach is to perform the modularity check at each iteration ¢, and record the best mod-
ularity value, Q! _.,. Then we stop the process when the best modularity value converges,
where (Qf.,, — Qé;slt) / nglt < €4. With such integrated stopping criteria with intermediate
modularity check, our experiments indicate that the algorithm usually stops in 2 or 3 steps,
with comparable performance with the original version of Algorithm 1; see Table 6. Hence,
on the one hand, the choice of T' = 10 in our experiments is reasonable to provide sufficiently
good results, while not being far from the critical value for such good results. On the other
hand, fine-tuning the stopping criteria in the integrated version is a promising direction to

pursue in the future to further improve the scalability of the algorithm.

n ORC-E ORC-int iterations
100 | 0.888 (0.106) 0.875 (0.108) 3.9 (1.136)
500 1 (0) 1 (0) 2.0 (1.244)
1000 1 (0) 1 (0) 2.0 (1.110)

Table 6: Mean (SD) of results from ORC-based methods on planted SBMs with two equally-
sized blocks, pin, = 0.1, poyr = 0.01 and varying sizes n, where the first column corresponds
to the NMI from Algorithm 1, the second column corresponds to the NMI from Algorithm 1
with intermediate modularity check and integrated stopping criteria, and the third column
corresponds to the number of iterations in the integrated version.

7.4 Mixed-Membership Community Detection

Benchmarking. To demonstrate the performance of our algorithms, we generate graphs
from planted MMBs with two equally-sized blocks ny = ne and different configurations.
Here, we fix the network size of each block to be n1 = ny = 150, n, = 1 node of mixed
membership and py,+ = 0, while varying the probability p;, from 0.05 up to 0.2, and defer the
results of varying the network size to Appendix C.2. For each set of parameters, we construct
ns = 10 graphs, and run our algorithms for both ORC and FRC, together with the Louvain
algorithm and Spectral clustering, in the same way as in the single-membership setting, but
on the line graphs L(G). We report the mean NMI, runtime, and their standard deviations
(SD) of the methods. For the purposes of detectability of communities, we consider graphs
that have modularity greater than 0.4 with the ground-truth communities if possible or
the ones with the highest modularity within 50 realizations. Our experimental results (see
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Table 7 and Appendix C.2) demonstrate that the ORC-based approaches outperform most
reference methods, where the ORC approach successfully recovers the mixed-membership
community structure in almost all cases as we vary the probability p;,, while the FRC
approach can also retrieve the mixed membership when the network is sufficiently dense.
Since again the performance of ORC-S is almost the same as ORC-E, we only include the
results from ORC-E. For the reasons that we have demonstrated in Section 5.3.3 and will
discuss later, we only include the results from FRC-3.

Din Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-3

0.05 | 0.957 (0.085) 0.997 (0.006) 0.442 (0.197) 0.996 (0.007) 0.590 (0.163) 0.657 (0.213)
0.1 | 0.968 (0.064) 0.999 (0.002) 0.940 (0.099) 0.998 (0.003) 0.683 (0.267) 0.730 (0.262)
0.15 | 0.984 (0.047) 0.999 (0.002) 0.971 (0.090) 0.999 (0.002) 0.709 (0.213) 0.800 (0.165)
0.2 1(0) 1(0) 0.982 (0.053) 1 (0) 0.714 (0.140)  0.814 (0.174)

Table 7: Mean (SD) of the extended NMI from different methods on planted two-block
MMBs with ny = 150, ne = 150, n, = 1 node of mixed membership, p,,s = 0, and varying
probabilities p;,.

Din Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-3

0.05 | 73.83 (4.757) 1.267 (0.068) 0.578 (0.373) 10.96 (1.730) 9.484 (0.585) 18.56 (2.449)
0.1 | 381.9 (44.93) 5.300 (0.601) 2.244 (0.305) 44.82 (5.303) 32.88 (6.112) 49.43 (14.67)
0.15 | 909.1 (69.85) 13.17 (0.802) 5.847 (0.452) 126.4 (21.195) 73.18 (6.555) 82.58 (9.904)
0.2 | 1465 (63.71) 26.78 (1.587) 12.05 (0.621) 241.6 (36.52) 123.3 (7.045) 125.2 (18.35)

Table 8: Mean (SD) of runtime (in seconds) from different methods on planted two-block
MMBs with n; = 150, ny = 150, n, = 1 node of mixed membership, py,+ = 0, and varying
probabilities p;,.

ORC has comparable performance to spectral clustering on most datasets, and can
outperform when the network has asymmetric communities, as shown in Table 4. Further-
more, we demonstrate the performance of our algorithms on real data via the two data
sets described in Section 7.1. As in the synthetic networks, the ORC-based method outper-
forms the reference methods in most real networks, and the only case where the ORC-based
method is ranked second is “FB-1", where the community structure is better captured by
the Modularity, as implied by Table 1. Meanwhile, the FRC-based method can also out-
perform the reference methods, such as in “DBLP-2”, indicating that the FRC can better
characterize the underlying community structure in some cases. The results from the pro-
posed approximation of ORC have more variance, which is expected since the real data has
more variance in the structure of the networks and some may lie in the region where the
approximation is relatively far from the exact value. However, the approximated version
can also have comparable performance in most cases. We also observe an improvement of
runtime from computing ORC by Sinkhorn optimization in “FB-2” dataset (ORC-E: 5523s;
ORC-S: 4941s; ORC-A: 2530s), since we allocate much larger memory for the computation
(250G here instead of 25G in Appendix C.1).

Towards avoiding line graph construction. We note that only the upper bound re-
quires global information of the line graph, while local information is sufficient to compute
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Louvain Spectra-S Spectra-A ORC-E  ORC-A FRC-3

DBLP-1 0.535 0.579 0.447 0.689 0.484 0.244
DBLP-2 0.652 0.708 0.358 0.969 0.463 0.737
FB-1 0.887 0.872 0.581 0.872 0.680 0.680
FB-2 0.516 0.652 0.510 0.652 0.242 0.287

Table 9: Extended NMI from different methods on the real data.

the lower bound. Hence, one step towards avoiding the construction of line graph is to
consider an upper bound that can be obtained without the information of the whole graph
while performing sufficiently well in the clustering tasks. Specifically, here we consider 1 as
the upper bound, and denote the method using the average of 1 and the lower bound by
“ORC-A1”. Our numerical results indicate that ORC-A1 can further improve the efficiency
from ORC-A while not significantly affecting the accuracy (see Table 10, where the NMI
information is ignored because their values are close and all three methods can find the
ground-truth communities when p;, = 0.2).

pin | ORC-E ORC-A  ORC-A1l
0.1 | 426.8 182.2 144.6
0.2 | 2878 732.7 530.0

Table 10: Runtime (in seconds, including line graph construction) from different ORC-based
methods on one sample of planted two-block MMBs with n1 = ny = 250, n, = 1 node of
mixed membership, po,t = 0, and varying probabilities p;,.

Rationale for 2-complex FRC in line graph. We have shown in Section 5.3.3 that
FRC-2 in line graph can largely depend on the degree of nodes in the original graph, while
the performance of FRC-1 for the task of community detection is limited, hence the cor-
responding algorithm may not lead to satisfactory results. Our experimental results (see
Table 11) verify the above statement, where FRC-2 can have comparable performance to
FRC-3 when node degree is moderate, but the performance drops significantly and ap-
proaches FRC-1 as the network becomes denser.

Pin FRC-1 FRC-2 FRC-3

0.1 | 0.315 (0.266) 0.816 (0.231) 0.854 (0.184)
0.2 | 0.269 (0.254) 0.856 (0.162) 0.895 (0.148)
0.3 | 0.328 (0.337) 0.859 (0.183) 0.982 (0.049)
0.4 | 0.560 (0.296) 0.673 (0.136) 0.978 (0.048)

Table 11: Mean (SD) of the extended NMI from different FRC-based methods on planted
two-block MMBs with n; = ny = 50, n, = 1 node of mixed membership, py,: = 0, and
varying probabilities py,.

Rationale for detecting mixed-membership communities on the line graph. In
the mixed-membership setting, it is still possible to apply algorithms that are designed
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for the single-membership case, but the performance varies. Our experimental results (see
Table 12) indicate that the improvement from applying the algorithm on the line graph is
more significant when the graph is sparser, even while there is only a few nodes of mixed
membership, and also when there are more nodes of mixed membership. We should note
that applying algorithms directly on the original graph cannot detect mixed-membership
nodes, thus there is an upper bound on the accuracy that these methods can achieve and
how far this upper bound is from 1 depends on the number of mixed-membership nodes.

pm 1o ] ORC-E (G) / (L) ORC-A (G) / (L) FRC-2 (G)/ FRC-3 (L)
0.05 1 0.993 / 0.999 0.470 / 0.648 0.314 / 0.679
015 1 0.993 / 1 0.993 / 0.714 0.784 / 0.865
0.15 30 0.773 / 0.969 0.493 / 0.497 0.176 / 0.385

Table 12: Mean of the extended NMI from different methods on the original graph G
versus its line graph L, where the graphs are generated from planted two-block MMBs
with n; = ng = 150, poye = 0.01, and varying number of mixed-membership node(s) and
probability pi,.

8. Comparison of Curvature Notions

In this final section, we discuss differences and commonality between the two curvature
notions that we considered. Specifically, we address geometric considerations, i.e., which
structural features are best captured by which curvature notion and how this is reflected in
their performance in clustering tasks.

8.1 Relationship between 2-complex FRC and ORC.

There is already strong numerical (Pouryahya et al., 2017; Samal et al., 2018) and theoretical
evidence (Jost and Miinch, 2021) of a close relationship between the 2-complex FRC and
ORC in the prior literature. Specifically, Jost and Miinch (2021) proved the following
relationship between the two notions:

Theorem 23 (Jost and Minch (2021)) Ollivier’s and Forman®’s curvature for the edges
of a graph G are related as
Ricp(e) = max Rick(e) , (8.1)

where the maximum is taken over all complexes K that have G as a 1-skeleton.

Remark 24 The Forman* curvature considered by Jost and Miinch (2021) deviates from
Forman’s orginal notion. However, one can recover the original notion as a special case via
a specific choice of the cell weights. For details, see Jost and Miinch (2021, sec. 7.4).

Theorem 23 implies that FRC and ORC coincide on the edges, when maximizing FRC over
the choice of 2-cells whose contributions are included in curvature computation. The proof
of this result proposes a means to “translate” between the contributions of 2-cells and the
cost of transport plans.
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Our numerical results (Figure 16) confirm that the correlation between FRC and ORC
becomes stronger, if FRC is “augmented”, i.e., if the contributions of higher-order struc-
tures (triangles, quadrangles) are taking into account for the curvature computation. In this
paper, we considered a 2-complex notion of FRC in the original graph G (previously consid-
ered in (Weber et al., 2017b)) and “approximate” the contribution of k-faces, by including
curvature contribution of faces up to order K (see Figures 17, 18 and 19 in Appendix C.4).
Since the frequency of k-faces decreases sharply as k increases (illustrated in Figure 7), it
is enough to consider small values of K. In our application to mixed-membership commu-
nity detection, we considered K = 4. We found that this parameter choice balances fast
computation (complexity increases with K') and performance (accuracy increases with K).
Our numerical experiments confirmed that the performance of the FRC-based community
detection algorithm closer resembles that of the ORC-based community detection algorithm
as K increases.

We have previously noticed in Figures 8 and 9 that the range of curvature values varies
between ORC and classical FRC, while the shapes of the distributions resemble each other.
Notice that the range of curvature values between the 2-complex FRC and ORC is much
better aligned, which is in agreement with their similar performance in downstream tasks.

8.2 Differences in structural features captured by FRC and ORC.
8.2.1 RELATIONSHIP WITH CLUSTERING COEFFICIENT

The clustering coefficient, initially introduced by Watts and Strogatz (1998), is a network-
theoretic measure, which is correlated with the ability of clustering algorithms to detect
communities. Formally, it measures how close a node neighborhood is to a clique (i.e.,
a fully connected subgraph). It is defined as the ratio of the number of edges between
neighbors of a node u € V' and the number of edges in the clique, if the neighborhood of
were fully connected:

Definition 25 (Clustering coefficient) Let A = (aij)i<i j<n denote the adjacency of a

graph G and u € V the node whose connectivity is characterized by the ith row in the

adjacency. Then

) o= i) _ Ta s
dy(dy, — 1) dy(dy, — 1)

It has been previously observed empirically (Pouryahya et al., 2017; Samal et al., 2018) that
node-level ORC is highly correlated with the clustering coefficient. FRC is also correlated
with the clustering coefficient, although the degree of correlation depends significantly on
the type of higher-order structures that is included (see Figure 16). We see that FRC
correlates best with the clustering coefficient, if triangle contributions are included in the
curvature computation, i.e., for our notion of 2-complex FRC. This is also the FRC notion
that resembles ORC most closely. Importantly, the close relationship between ORC and
the clustering coefficient can also be established theoretically. In particular, Jost and Liu
(2014) showed the following result:

Theorem 26 (Jost and Liu (2014), Cor. 1)

dy, —1 dy, —1
7 C(u) > Rico(u) > -2+

(8.2)

C(u) .

dy V MaXy .y dy
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To the best of our knowledge, no theoretical connection between FRC and the clustering
coefficient is known.

8.2.2 NODE CLUSTERING VS. EDGE CLUSTERING.

Notice that Algorithm 1 when applied to the underlying graph G performs a node clustering,
whereas it performs an edge clustering when applied to the line graph L(G). Specifically, if
Algorithm 1 is applied to the line graph, then we obtain a mixed-membership label vector
y for each vertex v by computing y;(v) = ﬁ > ecE, Xai(€), where x¢, is the indicator for
the cluster C;. This assignment is based on an edge clustering in the line graph, i.e., in
Equation (2.6) above we assume that edge clusters correspond to node clusters. Hence, our
approach solves single-membership community detection via node clustering and mixed-
membership community detection via edge clustering. Both clustering approaches utilize
the implicit assumption that the underlying graph is homophilic, i.e., similar nodes are
more densely connected than dissimilar nodes. Node clustering identifies clusters of nodes
by finding densely connected subgraphs. We have seen above that dense connectivity in-
creases curvature; consequently, our curvature-based algorithm finds clusters by identifying
regions of low curvature. In contrast, edge clustering identifies groups of edges that con-
nect a set of similar nodes. Due to the higher connectivity among sets of similar nodes,
those edges have a higher number of neighboring edges (i.e., edges that are adjacent to
the same node). Consequently, those edges form a densely connected subgraph in the line
graph. Applying curvature-based clustering on the line graph allows us to identify these
densely connected subgraphs, due to their higher curvature. Throughout the paper, we
have provided empirical and theoretical evidence that all curvature notions considered here
have higher value in densely connected subgraphs of any graph. However, our study has
demonstrated that the difference of curvature values of edges between communities, which
is directly linked to the performance of curvature-based clustering, is more pronounced
for some notions. In particular, our analysis shows that ORC highlights this effect best.
Among the different FRC variants studied here, we showed that incorporating higher-order
faces (triangles in the original graph, triangles and quadrangles in the line graph) leads to
the best results. The effect of Algorithm 1 may also be interpreted as a graph coarsening
scheme. When applied to a graph G, our approach uncovers meso-scale structure, such as
communities. The interpretation of Algorithm 1 as coarsening the line graph is perhaps
less intuitive. Nevertheless, following again the homophily perspective above, we see that
curvature-based edge clustering groups edges that connect similar nodes, uncovering crucial
meso-scale structure in the original graph.

8.2.3 COMPUTATIONAL CONSIDERATIONS.

An often cited argument in the previous literature is that variants of 2-complex FRC are
preferable over ORC in applications, due to their faster computation. In particular, the
known links between the spectrum of the graph Laplacian and clustering coefficients (Jost
and Liu, 2014) mentioned above make ORC a natural choice for curvature-based cluster-
ing. Previous approaches have either computed ORC exactly via the Hungarian method
(O(|E|d2 ,.)) or approximated it via Sinkhorn’s method (O(|E|d2,,.)), both of which are
significantly more expensive than computing Forman’s curvature with triangle augmentions
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(O(|E|dmax)). We propose above an approximation via the arithmetic mean of upper and
lower curvature bounds and illustrate that this approximation is on par with, or in certain
instances, even superior to the Sinkhorn approximation. Importantly, our proposed approx-
imation can be computed in O(|E|dpnayx) operations, so it has complexity that is comparable
to that of FRC. Hence, computational considerations do not provide a clear preference for
our approximate ORC approach over FRC. In addition, we propose above a variant of Al-
gorithm 1 via ORC, which does not require the computationally expensive construction of
the line graph.

9. Discussion

In this paper, we have proposed a unifying framework for curvature-based node clustering
algorithms and systematically investigated the strength and weakness of different curva-
ture notions, specifically variants of Forman’s and Ollivier’s Ricci curvature. In addition
to single-membership community structure, which is the focus of most existing work, we
have also considered the mixed-membership setting and extended curvature-based cluster-
ing approaches to this case. To this end, we have further studied discrete curvature on the
line graph. Furthermore, we have proposed an effective approximation of Ollivier’s notion
of discrete curvature to overcome its scalability issues. This construction may be of inde-
pendent interest. We emphasize that the results derived in this paper provide insights into
the relationship of discrete curvatures on a graph and that of its dual, which may be of
independent interest.

Throughout the experiments, we observe consistently convincing performance of the curvature-
based methods. Specifically, the ORC-based approach can outperform classical community
detection methods, the Louvain algorithm and Spectral Clustering, in dense synthetic and
real networks, in both single- and mixed-memberships settings. In regimes where commu-
nity detection is challenging (e.g., close to the detectability threshold in SBMs), curvature-
based methods outperform reference methods. Although the experimental results indicate
quadratic complexity of the ORC-based method, the proposed approximation’s performance
is comparable to classical methods and, in relatively large or dense graphs, even computa-
tionally superior. The results agree with the linear complexity of the approximated ORC-
based approach, as demonstrated in Section 6.1.3. The FRC-based approach, which has a
lower complexity, can outperform or has comparable performance to the Louvain algorithm,
and to spectral clustering in dense graphs. Note that we consider different variants of For-
man’s Ricci curvature for single- and mixed-membership node clustering problems, where
we only consider triangular faces in the former while incorporating the quadrangular faces
in the latter. We also observe that FRC with triangular faces has a stronger relationship
with the clustering coefficients in SBMs, while FRC with further quadrangular faces has a
slightly stronger relationship with the ORC in MMBs. As byproduct, the results provide
some experimental evidence to relate Forman’s to Ollivier’s Ricci curvature.

Several extensions of this work could be avenues for future investigation. In the variant of
Algorithm 1 presented here, several crucial hyperparameters are chosen heuristically. Specif-
ically, we believe that the choice of cut-off points could be improved, potentially utilizing
geometric information, such as curvature gaps (Gosztolai and Arnaudon, 2021). The choice
of the stopping criterion (7") could be guided by established heuristics in the community
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detection literature. For instance, the Girvan-Newman algorithm constructs a dendrogram
to inform the stopping criterion and edge threshold A, when the number of communities
is not known a priori. Our mixed-membership approaches require the construction of the
line graph, which adds significant computational cost when applied to large-scale graphs.
Approaches that avoid the construction of the line graph, perhaps utilizing the relationship
between the Ricci curvature of a graph and its dual, could remove this bottleneck. We have
also seen that using 1 as the upper bound for ORC could already improve the efficiency in
our experiments. These approximations may prove computationally beneficial in both the
mixed-membership and single-membership settings. While Algorithm 1 allows for cluster-
ing in both unweighted and weighted networks, it cannot be applied to directed networks in
its current form. An extension to directed networks would significantly widen the range of
possible applications. Further study of the behavior of discrete curvatures in various ran-
dom graph models could serve to improve both theoretical understanding of these graphs,
as well as to inform the development of improved algorithms for certain graph distributions.
Finally, while our experiments indicate that curvature-based methods compare favorably
to community detection baselines, the question of theoretical optimality remains open and
presents an important avenue for future work.
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Appendix A. ORC on weighted graphs
A.1 Proofs of Results in Section 4.1

Proof of Lemma 5: Consider the subgraph of G given represented schematically in Fig-
ure 12.

Figure 12: Schematic of the subgraph H of G, focusing on z,y and their neighbors.
Note that typically there are several nodes f1,...,¢;, c1,...,¢j,, and 7r1,...,7j,, satis-
fying deg(z) = j1 + j2 + 1,deg(y) = jo + j3 + 1. The support of the m, measure is shown
in blue, m, in red.

Now define the following quantities:

Ly = ma(0) Ly =) my(t) (=0)
l 0

Xy = mg () Xy =my(z)
C, = me(c) Cy = Zmy(c)
Yy = ma(y) Yy = my(y)

Ry = my(r) (=0) Ry =Y my(r).

If we consider transport plans restricted to H, then all of the L, mass must be transported
to z, and all of the R, mass must be transported from y. As such, we may consider a
modified diagram as in Figure 13.

Figure 13: Schematic of the subgraph H' of H, focusing on x, y and their common neighbors.
The support of the m, measure is shown in blue, 1, in red.
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Here we define m,,m, as follows:

L, + X, ifv=u L,+X,(=X,) ifv=x
Mz (v) = < my(c) ifo=c my(v) = my(c) ifv=c
Yo+ R, (=Y,) ifv=y, Y, + Ry ifv=uy.

Then we have

Wi(mg,my) < Z (b, z)my (L) + Z (r,y)my(r) + Wi(mg, my),
L

and this is tight when z, y have no unshared neighbors. Indeed, if we only consider the sub-
graph H of G, this upper bound is the exact value of Wi (m, my). Define X, Co, Yy, Xy, Cy, Y
analogously for these new measures.

Now for each vertex of type ¢, if ms(c) — my(c) > 0, we will send this amount to y

along (c,y). Otherwise, we will send m,(c) — 4 (c) from z along (¢, z). This results in the
updated (signed) measure

X, — 2oc(my(c) —mg(c))y ifv=uw
Mg (v) = § my(c) ifv=c

Y, + Yoc(ma(c) —my(c))+  ifv=y.

Finally, if 7, (z) — X'y > 0, send this amount to y along the edge (z,y). Otherwise, send
ma(y) — Y, = —(my(z) — X)) from y to = along the (z,y) edge.
This gives the upper bound

Wi (1, 1y ) < Z y(©))rw(e,y) + (my(c) — ma(e)) yw(c, )

X = Xy = 3 (0 (€) — 1 (0)

Cc

w(z, y).

Finally, we have

Wi(me, my) < Zw(ﬂ,w)mx(ﬁ) + Zw(r, y)my ()

¢
+ Y wley)(male) —my(e)+ +wle,z)(my(e) —ma(e))+

+ w(x,y) = Uszy.

Lo+ Xo = Xy = ) (my(c) = ma(0))+

O
For completeness, we state and prove the following lower bound on the Wasserstein
distance:

Lemma 27 For any 1-Lipschitz function h(v) on G, we have

Wy (mxamy) > Eyom, [h(v)] - Evay [h(v)] = Z h(v)(mz(v) — my(v)) .
vEN (z)UN (y)
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Proof Given a coupling 7 for m, and m,, and a 1-Lipschitz function h : V — R, we have

E(u,w)wﬂ[dG(u7 w)] = Z dG(ua U})ﬂ'(u, w)
u~N(z)
w~N(y)

> (h(u) = h(w))m(u, w)
u~N (z)
wr N (y)

= h(v)(mz(v) —my(v)).
vEN (z)UN (y)

v

Since the choice of coupling was arbitrary, we conclude that W (m,, m,) satisfies the same
lower bound. |

Now we may prove Lemma 7.

Proof of Lemma 7: Let Vg = N(z) U N(y) be the set of vertices from the subgraph
H of G that we considered in the upper bound for Wi (m,, m,). A difficulty that arises in
defining a 1-Lipschitz function h on G is that there are more edges and paths in G than
just those in H. These “short-circuits” in the larger graph mean that a 1-Lipschitz function
defined on H does not necessarily extend to a 1-Lipschitz function on G. We define a
partition of Vj into three subsets P, Z, N based on whether m,(v) — my(v) is Positive,
Zero, or Negative. Observe that for a vertex v € P, the excess mass my(v) — my(v) must
be transported away from v in order to have a valid transport plan. In fact, it must be
transported at least enough to reach N, since

0= ma(v) = my(v) = 3 (mu(v) = my (@) + 3 (e (v) = my (v))

veV veEP veN

implies that my(P) — my(P) = my(N) — mg(N). In other words, all excess mass from m,
in P must be transported to vertices in A/, or we cannot have a valid transport plan.
Motivated by this observation, we define the distance from a vertex v € V to a set of
vertices S C V as dg(v, S) = minyeg dg(v, u), where dg is the shortest path distance in G.
Thus, dg(v,S) gives the distance in G from the vertex v to the nearest element in the set
S.
Consider the following 1-Lipschitz functions parameterized by A € [0, 1]:

Mg (v, N) ifveP
ha(v) = ¢ —(1 = N)dg(v, P) ifveN (A.1)
Mg(v,N) — (1 = N)dg(v,P) otherwise.

Note that the third equation works for all v € V|, since dg (v, P) = 0 for v € P and similarly
for N, but we split this into cases to show the behavior on the different sets more clearly.

These functions are all 1-Lipschitz since they are convex combinations of the two 1-
Lipschitz functions dg(-,N) and —dg(-,P). Let’s show that these are 1-Lipschitz: Let
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S CV,and let u,v € V. Let wy,w, € S be the nearest vertices in S to u, v respectively, so

that dg(u, wy,) = dg(u, S) and similarly for w,. Then

But since the objective function Eypm, [2(v)] — Eyam, [A(v)] is linear in h, we see that
the maximizer of this quantity over {hy : A € [0,1]} must be achieved at hg or h;. This

gives the following lower bound for Wy (mg, my) :

Wi(ma, my) = )\g}%ﬁ} L ha(v) (Mg (v) — my(v))
=D () (ma(v) = my(v) + Y ha(v) (ma(v) — my (v))
veP -0 vEZ -0
+ D () (ma(v) —my(v)
veN <0

We note that vertices of type £ will always belong to P, and vertices of type r will always
belong to NV. Vertices of type ¢ may fall into either set, and there will typically be some of
these vertices in both sets. When we set o = 0, then we always have z € N and y € P,

though if we choose a > 1/2, x cannot be in N, and y cannot be in P.

A.2 Note on combinatorial ORC bound by Jost-Liu

Remark 28 We note that the lower bound for Wi(mg, my) given in Jost and Liu (2014)
for weighted graphs using the measure my(v) = Wy, /dy is actually incorrect. Consider the
weighted graph G shown in Figure 14, which also summarizes the measures my,my.

C

(@\ 1/5 /CCD\ T Yy 14
me | 0 | 1/6 | 1/2

1/3

2/3

my | 1/3 | 0 0
h | -6/51|-1/5 1
Nl b Iy

4/5

Figure 14: The weighted graph G, the measures m,, m, from Jost and Liu (2014), and our

1-Lipschitz function h.
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An optimal transport plan sends 1/6 mass from y to x and from c¢ to x, and 1/2 mass
from € to ¢, for a cost of 3/5. We can verify the optimality of this transport plan with the
1-Lipschitz function h given in the table in Figure 14, since this also achieves the value 3/5.
As such, the exact ORC of the edge {x,y} in G is 1 —3/5 = 2/5. However, the upper bound
on this ORC from Jost and Liu (2014) is

wcw/\wcyzl
& "4, "3

A <

[ )

Wl N
W =

A.3 Proof of Results in Section 5.2

Here is the proof of Lemma 11.

Proof Let A(u,v) denote the number of triangles in G which include the edge {u,v},
and A({u,v}, {v,w}) the number of triangles in L(G), which include {{u, v}, {v,w}}. Both
bounds follow from a simple combinatorial computation: For the upper bound, we have

. L(G) A({uvv}7 {U, w}) _ dy —2+ 1E({u7 w})
RICO ({{u,v}, {’U’w}}) = d{u,v} V d{v,w} - (du V dw) +d, — 2 '

The lower bound follows from

1-—

RicZ @ ({{u, v}, {v, w}}) > L~ A({“’“}’{“’w})>
.

d{u 0wy ey N
1 A({u,v}, {U,U)})> n A({u, v}, {v,w})
d{u v} d{v,w} d{u,v} \ d{v,w} + d{u,v} \ d{v,w}

3
)
( 1 dv—2+1E({u,w})>
|

1—

b= dy +d —2 dy+dy—2 (dyANdy)+dy—2
1 dv2+1E({U,w})>

dy, +d —2  dy+dy—2 (dy Vdy)+dy, —2

v — 2+ 1p({u,w})

(d Vdy)+dy—2 "

1—

A.4 Proofs and Remarks from Section 5.3.1

We prove Lemma 13.
Proof The relationship arises from simple combinatorial arguments. Recalling Lemma 10,

we have

Ricp' ({{u, v}, {v, w}}) = 4 = dyy) — dpo.u)
—(dy —dy = 2) = (dy + du — 2)
=8—dy —dy —dy — dy
= Ric%({u,v}) + RicG({v, w}),
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which gives the claim.

Similarly,

Ricg“({uoh) = Y Ricgd{{uwor fow)+ Y RiefD({u v} {uw}})

{{uv},{v,w}}te€ {{u v} {u,w}}te€
Z Ric%({u,v}) + Ric%({v,w}) + Z Ric% ({u, v}) + RicG({u, w})
{vw}ekE {u,w}ekE
wH#u w#v
= dyy, U}RICF({U v}) + Z Ric%({v,w}) + Z Ric%({u, w})
e ager

= (dy + dy — 2)Ric%({u, v}) + Ric%(v) — Ric%({u,v}) + Ric%(u) — Ric%({u,v})
= Ric%(u) + Ric%(v) — Ric%({u, v})?.

|
We now prove Lemma 16.
Proof
Ricr({{u, v}, {v,w}})
_ A .
vz |{eer(fun)): ({uv) fow)e) ¢ Aall
—|[{eerttv.wh: (fu v} {v,wh e} ¢ Fal
_dy—2 +:f({“vw}) +2— (dy — 1= 1p({u, w}) + du — 1 — 1p({u, w}))
S S (+2> 1p({u, w}) .
WA WA
|

Weights for quadrangles in augmented FRC To determine the weights of quadran-
gles, we again utilize Heron’s formula: If we treat the two edges with the largest weights to
be parallel, we can compute the weight of a quadrangular face via the area of the two tri-
angles that form the trapezoid. Specifically, let f = (e;, €j, ek, ;) denote a quadrangle in G,
i.e., e; ~ ej, ej ~ ek, ex ~ ey, € ~ e; while e; 7% e and e % e, where we; > We; > We;, > we,
and we consider three different cases here: (i) we, > we;, i.e., when the two largest weights
(or lengths) are not the same, (ii) we, = we; and we, > we,, i.e., when the two largest weights
are the same while the other two are different, and (iii) we, = we, and we, = we,, i.e., when
the two largest are the same while the others are also the same. In case (i), we assume that
ei,e; are parallel to each other, and then the area of the quadrangle can be obtained via
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Heron’s formula:

o7 = 05 = Gy — o ) —a) (14 2°"w) (4.2)

We, —

(3

e we.f); Wey, ey (A.3)

In case (ii), we assume that ey, e; are parallel to each other, and similarly

o = 5 = Gy~ o — )5 =) (142 ) (A4)

We,;, — We,;

R wez); We; T e, (A.5)

Finally, in case (iii), we assume that f is a rectangle, thus

W = We,We, - (A.6)

A.5 Proof of Theorem 20

Proof Due to the homogeneity of the graphs G 3, which is preserved under the Ricci flow,
it is sufficient to analyze the evolution of one edge of types (1), (2), (3). In the following,
d;, Dj, wf, /ﬁﬁ denote the shortest-path distance, Wasserstein-1 distance, weight in iteration
t, and ORC curvature of an edge of type (i) in iteration ¢, respectively. Notice that here

D;
warl =(1- /{g)wf = w;t — (1 - ?)wf =D, (A7)

¢. Throughout the proof, x,y denote the vertices adjacent to the edge under

1
consideration.

since d; = w

Iteration 1. In the first iteration, all edges have the same weight (i.e., 1), hence, Equa-
tion (6.2) reduces to the uniform distribution.

e Edges of type (3) have symmetric neighborhoods, with uniform mass distributions of
My = % on all neighbors of x,y. Thus, the total transportation cost of moving mass
from «’s neighbors to y’s neighbors is D3 = édg and therefore wl = D3 = %, since
ds = 1.

e For edges of type (1), note that d, = dy = a + (b — 1), hence m, = ﬁ% for all
neighbors of z,y. By construction, x,y have b — 2 common neighbors; due to the
symmetry of the neighborhoods, no mass has to be moved for those neighbors. The
optimal transportation plan for the remaining mass is as follows: Move the remaining
mass from the neighbors of = (which are not neighbors of y) to z. This incurs a

da, since this mass is transported along edges of type (2). Leave a mass

a+(l§—1
cost of

of ﬁ on x and transport the remainder to y, which incurs a cost of J‘Tﬁldl, since
it is transported along an edge of type (1). Lastly, we distribute mass a75—7 from
y uniformly to its neighbors, which incurs a cost of #ﬁ_ldg, since it is transported
along edges of type (2). In total, the transportation cost amounts to

2a a—1

dy + —————dy ,

D= ==
L b —12 " -1
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To prove that this is an optimal flow, consider the following 1-Lipschitz function h:

2 ifvo~zvidy
1 fo==a
0 fv=yorv~uz,y

-1 ifv~y vt

Then

a (—1) . (—a)  3a-—1
a+b—1 a+b—1 a+b—1 a+b-—1"

Eym, [P(0)] = By, [A(v)] = 2

This implies w3 = D3 = a+b 11, since dy = dy = 1.

For edges of type (2), let x denote the internal node and y the bridge node. By
construction x,y have a — 1 common neighbors (internal nodes). We want to leave a
+b 7 on each of those nodes (corresponding to the mass distribution in the
neighborhood of ), and transport the excess mass to x and the unshared neighbors of y

mass of

in an optimal way. Observe that % > a+i71’ so we have a total of (a—1) (é — a+11771>
excess mass to move. If this exceeds Hﬁ’ we send that amount to z, and the

remaining amount to y; otherwise we send all of this mass to . We can simplify this
condition as follows:

1 1 1 (a-1)(b-1)—a
(a_l)(a_a+b—1>_a+b—1_ ala+b—1) =0

if and only if (a—1)(b—1)—a=a(b—2) —(b—1) > 0. When b = 2, this never holds,
and when b > 3, this always holds, since a(b—2) — (b—1) > a—b+1 > 0, given that
a > b. Now let us consider these cases in turn.

Case b = 2: We send all of the excess mass from the common Vertices to x, amounting

to a(“ajrll) < a}rl, meanmg that we must send an additional FCEsH] +1) mass from y to x,

and the remaining (Trl is sent to y’s single unshared neighbor. The total cost is

a—1 n 1 do + 1 d
al@+1)"° " ala+1) 7 T a+1 "

2 =
To see that this is an optimal flow, consider the following 1-Lipschitz function h:

1 fv~zx,yorov=

h(v) = Y Y
0 otherwise.

since

This achieves a dual objective function value of so wy = Dy =

dy =dy=dz=1.

_2
+1v at1>

Case b > 3: We send Wllaq of the excess mass from the common vertices to x, and
(a—1)(b—1)—a

the remainder a(atb=1)

to y. Since there is already a mass of é at y, this gives a
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3 (a—1)(b—1)—a+(a+b—-1) _  p—1
total mass of alath=1) = 151

required. The total cost is

to be sent to y’s unshared neighbors, as

1 (a—1)b—1)—a b—1
Dy = d d dy.
O L oy ) Ry

To see that this is an optimal flow, consider the following 1-Lipschitz function h:

1 ifvo~xy
h(v)=<0 ifv=uxy9y
-1 ifv~y,vode.

This achieves a dual objective function value

o la-DB-1 (-1 (2a-1)(b-1)
Bomne [M(0)] = Borvn, [M0)] = 1 =35 — Lo =1 = T b =)

which gives w% =Dy = (%la(;_}_)b(fil) = ffb_jl (bTTl), since dy = dy = dg = 1.

We summarize these calculations in the following table:

Type 1 2
_ 3a—1 2
L
Ba—1 a—1)(b—
b=3 | 31 | “a@re-D

QlRIH W

In both cases, it is easy to check that w] > wi > wi, using a > b > 2.

Iteration t+1. In round ¢ > 1, the mass distributions on the neighborhood of a bridge
node are given by

1 _,wt . .
() = oe M,y s bridge node
X y i _,wt 9
ae 2, else
b

and for an internal node by

mg(y) = 1 —wh

t . .
Ci_ e "2, gy is bridge node
o-e s, else ’

Here the normalizing constants for bridge nodes is given by
Ch = ae " + (b— 1)67“’713 ,

and for internal nodes as
t t
Cin=e"4+(a—1)e 3.

By way of induction, we suppose that w{ > w} and w! > w}, where we proved this in the
case t = 1 above.

We again consider the three edge types separately. Given w!, edge weights are updated
as follows in iteration t:
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e For edges of type (3), due to the symmetry of the neighborhoods, we again only move

t
mass from x to y at a total cost of D3 = g—;e*wé. Hence, the updated weights are
t
witt = g—;e_wé by Equation (A.7).

e For edges of type (1), the transport plan is analogous to the one in iteration 1: We

move a mass of Cﬂbe—w5 from the neighbors of = to z, leave a mass of Cibe_“ﬂi there,
and transport the remaining mass C%(f“’5 — Cibe*wi to y. Picking up a mass of Cibe*“’;E
previously on y, we distribute the mass among y’s neighbors. The total transportation
cost is ]

a t a t t a t
D1 = —e "2dy + (—6_% — —e_w1>d + —e "2dy .
1 2 c o, 1 o, 2

To prove that this is an optimal flow, consider the following 1-Lipschitz function h:

t t s
ws +w] fv~zvAdy

t .
w fvo==a
h(v) =14 ! .
0 ifv=yorv~uzy
—wh ifv~y, v
Then
a _,t (—1)_t (—a)_t
Epom. [R(0)] = By, [h(0)] = (wh + wh)—e Y2 + wl—ZLe %1 — b —ZLe W2,
vromg [1(V))] vy [R(V)] = (w5 + 1)Cb + G, 20,
C tly, the updated weight 1 _ 2awptaw] o—wh UL
onsequently, the updated weights are wi™ = ——te - oe

e For edges of type (2), let « denote the internal node and y the bridge node. At any
of the a — 1 common neighbors of x,y, we have

t
e s e W2
male) = 5 my0) = T
We define the following quantity
e_wit’rC'b — e‘wéC'i
Ct = mx(’U) - my(v) = CbCz
ae~WiTws 4 (b— 1)6_’”5_’”?’) — e 2wy (a — 1)6_“’5_“’3
B CoCin
(b—1)e Wiwh 4 e~ wh(e~Ws — e~13)

CpC;
When wh > w}, this is always positive, but if w} < w}, this could be negative.

If ¢, > 0, then as before, we want to transport the excess mass from these common
neighbors to x and the unshared neighbors of y in an optimal way. If the total excess
mass exceeds my(z), we send that amount to z, and the remaining amount to y;
otherwise we send all of this mass to x. This condition may be written as

t ot
w3

e_
—a

re = (a—1) . i

> 0.
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e~

wt
Clearly, 1, = (a — 1)¢; — Cb2 < (a—1)e.

Case ¢, ¢ > 0: We send my(:r) mass from the common neighbors to z, and the re-
maining portion to . Then we send all of the mass at y to its unshared neighbors,

for a cost of . .

Dy= sty (b 1)Cd
= + + (b — :
2 c, % reda + ( ) c, M
Consider the 1-Lipschitz function h given by
wh ifv~ay
h(v) = wh — wh %fv:a:
0 ifo=y
—w! if v~y vl
This gives a dual objective function value
—e W2 ,—(b—1)e v

wy(a — 1)ey + (wh — wh) —w

Cy Cy ’

which matches the formula for Dy above when we take into consideration that d; = wt

J
at iteration t.

Case ¢; > 0,7, < 0: We send all of the excess mass from the common neighbors to z,
and get the remaining portion from y. We then send the rest of the mass at y to its
unshared neighbors, for a total cost of

t
e "

DQ = (CL — 1)Ctd3 + (—T't)dQ + (b — 1) Cb

dy.

Consider the 1-Lipschitz function h given by

wh ifo~zy

0 fv==zx
hv) = wh ifv=

2 =Y

wh —wt ifv~y,v A
To show that this function is 1-Lipschitz, note that if v is a common neighbor of
z,y, then |h(v) — h(y)| = |wh — wh| < wh: either wh > w}, in which case |wh — w}| =
wh—wh < wh, or else wh < wh, and wi—wh < wh follows by the triangle inequality since
wh = Wi (my, my) < Wi(my, my) + Wi(my, my) = 2wh, where Wy is the Wasserstein-
1 distance, and mg, m,, m, are the measures at the vertices z,v,y with the weights
from iteration ¢ — 1 (or when t = 1, w§ =1 < 2 = w9).

This gives a dual objective function value

e W2 . o —(b— 1)6_1”5
C’in

wh(a — 1)e; + wh
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This gives the equality when we note that

e a— 1)e_w§ _q1_ (b—1)evi B (1 B e‘w3> B e (b—1)e ™

Ch C; Ch Cin |~ Cim Cy,

—Tt=a

where the second equality follows from the definitions of Cj, and Cj,.

Case ¢, < 0: If ¢, <0, then r, < (@ — 1)¢; < 0. Since m,, places more mass at the
common vertices than m,, the only vertex on which m, places more mass than m,
must be y. Thus, we send all of the needed mass from y to x, the common neighbors,

and the unshared neighbors of y, for a cost of
t

—wj

Cy

t
—w}

Cy

€ €

Dy = do + (a — 1)(—Ct)d2 + (b — 1) dy.

Consider the 1-Lipschitz function h given by

—wh ifv~ay

h(v) = —wh %fv:x
0 ifo=y
—wl ifv~y v L.

This gives a dual objective function value

—wh(a —1)c; + (—wh) (_Z%) +(b—1)(—uwh) (—ec;w1> ’

which matches the formula for Dy above.

We summarize these calculations in the following table:

Type ¢ wf“
T T T
tae "2—e ™1 t ae” "2
]. wlT + 2w207b
f-De vl | t e~
2 (¢t > 0) w5 —— + wyrt + w3
T
b—1)e~*1
2 (¢, > 0,1 <0) wﬁ% + wh (=) + wh(a — 1)
T
b—1)e "1
2 (¢, <0) wii( C)“i —}-twé(—rt)
te "3
3 w3~

We are now ready to prove the main two theorem statements. First, we show that wj
is decaying to 0. Since a > b > 2, we have that a — 1 > 2. Then since Cj, > (a — l)e*wé,

we get,

1 e 1

+1 _ .t t

Wy~ = W3 C- < w:;;.
in

t+1
3

This gives w5t < [a(a — 1) 7L, which tends to 0 exponentially quickly as t — oo.
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Now we wish to show that w! > w} and w! > w} for all ¢ > 1. From the proof above,
we know that w} < 2w}. We will also need the inequalities

(A.8)

ae™" —be~"1 > 0
which holds from a > b and the induction hypothesis w} > w}; and

t
ae” W2
> A9
c, o (A.9)
= CmCL(EﬂUé — CinCyry > 0

t t t
& 2ae7%Y2 fala —1)e 27 —

(a—1)(b—1)e "1~ > 0,

which holds since e™%2 > ¢=*1 and a > b — 1. Note that this implies

ae~Vs a—1e s e~ W3
Cy = 2 Cin = Cip
We first show wi“ > wé“.
—wt —wt —w} —w}
t+1 t+1 tae 2 —e 1 pae 2 t€ °
w —w =w + 2w —w
1 3 1 Cb 2 Cb 3 Cz
t
b—1)e ™
> wi¥ > 0,
Cy

using Equation (A.8), w} < 2w}, and the implication of Equation (A.9) just above.
Since Equation (A.8) clearly shows that the coefficient of w! in w!t* — wit! will be
nonnegative in any of the three cases (it is the same in all of them), we argue as follows:

tae_“’é t t e_w5
— — >
2w5 Cr, wyre — W3 ce, e >0
t+1 t+1 —wh
wi —wy > 2wl “ecb +whry —wh(a—1)er ¢ > 0,7 <0

t
Zt
2w} aer + whry ce,re < 0.

The quantity in the first subcase may be bounded below as follows, using w} < 2w}:

t t t t
n ae "2 t e W2 ¢ e W2 ae W2
wsy [ 2 —r | —wy > ws | (a—2) + -1
( Ch Cy Cy

Ch
This lower bound is always positive by Equation (A.9).
ot ot
For the second subcase, observe that (a — 1)¢; = ry + & Cb2 < %, so we may lower

bound the quantity there (again using w} < 2wb) by

b (g — 1)e-vh —u “9)eh (g — 1)e—vh
e = R
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The third subcase is simplest of all, since the quantity above simplifies to

t t
, [ae™™2  (a—1)e s
> 0.
Wy < Cb + CZ sl

This completes the proof.

Appendix B. Data sets

Real-world data. We consider both synthetic networks generated from the random graph
models (see Section 5), and real networks!, which characterize the connectomes of a set of
different animal species. A connectome is a specific, cell-to-cell mapping of axonal tracts
between neurons, created from cellular data obtained, for instance, via electron microscopy.
Here specfically, we consider networks constructed from mixed species of cats ((de Reus
and van den Heuvel, 2013), “Cat”), male C. elegans ((Jarrell et al., 2012), “Worm”), and
rhesus ((Harriger et al., 2012), “Macaque”). Table 13 provides summary statistics for the
real networks in our study.

n |E| I€] d oq4/d Modularity
Cat 65 730 18859 2246 0.44 0.27
Worm | 269 2902 93893 21.58 0.74 0.36
Macaque | 242 3054 114991 25.24 0.73 0.36

Table 13: Summary statistics of the real networks.

Figure 15: The real networks, “Cat” (left), “Worm” (middle) and “Macaque” (right), where
we apply the Louvain algorithm to detect communities and vertices in different communities
are shown in different colors.

Random Geometric Graphs. In our experiments, we consider Random Geometric
Graphs (RGGs) which incorporate the spatial perspective (Penrose, 2003). For complete-
ness, we define the RGG below.

1. Obtained from NeuroData’s open source data base https://neurodata.io/project/connectomes/, ac-
cessed on 2 May 2022. The database hosts animal connectomes produced using data from a multitude
of labs, across model species, using different modalities.
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Definition 29 (Random Geometric Graphs) In this model, vertices are placed in the
unit cube uniformly at random, and two vertices will be connected by an edge if the distance
between the vertices is less than a previously specified value called radius. Specifically, let
the unit cube be [0,1)™ where ng defines its dimension, the radius be r € (0,1), and the
distance function be d(x,y), Va,y € [0,1)™. Then there will be an edge between vertices v;
and vj if
d(:L’i, :Ej) <r,
where x;, x; are the positions of the vertices v;,vj, respectively, in the unit cube [0,1)".

Specifically, in our experiments, we start from the RGGs corresponding to 2-d unit cubes.

Appendix C. Experiments
C.1 Single-Membership Community Detection

Benchmarking. We report the mean NMI, runtime and their standard deviations (SD)
of the methods on SBMs with two equally-sized blocks and varying network sizes. Consis-
tent with the results in Section 7.3, the ORC-based approach outperforms most reference
methods, and successfully recovers single-membership community structure, with an NMI
greater than 0.8 in almost all cases, as we vary the network size n.

n Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-2
100 | 0.705 (0.121) 0.897 (0.081) 0.599 (0.078) 0.860 (0.117) 0.363 (0.070) 0.355 (0.112

)
200 | 0.981 (0.025) 0.980 (0.020) 0.805 (0.285) 0.986 (0.018) 0.395 (0.107) 0.263 (0.035)
1000 1 (0) 1 (0) 1 (0) 1 (0) 0.990 (0.015) 0.437 (0.263)
3000 1 (0) 1 (0) 1 (0) 1 (0) 1 (0) 0.740 (0.392)

Table 14: Mean (SD) of NMI from different methods on planted SBMs with two equally-
sized blocks, pin, = 0.1, poy: = 0.01, and varying sizes n.

n Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-2
100 | 0.828 (0.021) 0.045 (0.004) 0.132 (0.323) 0.482 (0.018) 0.419 (0.013) 0.373 (0.009)
200 | 2.767 (0.098) 0.076 (0.004) 0.037 (0.004) 1.194 (0.076) 0.991 (0.016) 0.889 (0.015)
1000 | 33.47 (0.584) 1.087 (0.043) 0.382 (0.016) 12.66 (0.168) 6.721 (0.103) 4.244 (0.086)
3000 | 265.4 (3.120) 13.44 (0.477) 4.802 (0.110) 165.8 (5.805) 85.63 (2.751) 44.27 (1.564)

Table 15: Mean (SD) of runtime (in seconds) from different methods on planted SBMs with
two equally-sized blocks, p;, = 0.1, pout = 0.01, and varying sizes n.

Rationale for ORC approximation. ORC-S has been considered in the literature in
order to improve the efficiency of ORC computation, but we notice that the improvement
is not clear when the graph is not sufficiently large or dense (see Table 16). However, the
approximation we have proposed almost always significantly improve the computational
efficiency (see also Tables 3 and 15). We also mention here that the current computations
are only allocated with moderate level of memory, while we also observed that ORC-S can
improve the efficiency when large amount of memory is available, as in the analysis of real
data in Section 7.4.
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Table 16: Runtime (in seconds) from different ORC-based methods on one sample of planted
SBMs with two equally-sized blocks, size n = 5000, py,: = 0.01, and varying probabilities

Din-

Rationale for 2-complex FRC. FRC-2 is the one of the strongest correlation with the

CURVATURE-BASED CLUSTERING ON GRAPHS

pin | ORC-E ORC-S ORC-A
0.1 2785 5859 1013
0.2 | 16876 68658 2933

clustering coefficients, among the three versions of FRC (see Figure 16).
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Figure 16: 2-d histogram of FRC-1 (left), FRC-2 (middle left), FRC-3 (middle right) and
ORC-E (right) versus the clustering coefficients of nodes in G, where ns = 10 networks are
generated from the planted SBM with two equally-sized blocks, size n = 1000, p;, = 0.1

and Py = 0.01.
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C.2 Mixed-Membership Community Detection

Benchmarking. We report the mean NMI,, runtime and their standard deviations (SD)
of the methods on MMBs with two equally-sized blocks and varying network sizes. Similar
to the results in Section 7.4, the ORC-based method outperforms most reference methods,
and successfully recovers mixed-membership community structure in almost all cases, with

0.08
Clustering

an NMI greater than 0.8, as we vary the network size n.
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n Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-3

50 | 0.401 (0.068) 0.965 (0.038) 0.463 (0.151) 0.925 (0.081) 0.791 (0.155) 0.712 (0.264)
100 | 0.469 (0.107) 0.996 (0.011) 0.453 (0.164) 0.993 (0.015) 0.664 (0.167) 0.750 (0.233)
300 | 0.999 (0.002) 1 (0) 0.834 (0.264) 1 (0) 0.724 (0.123) 0.815 (0.173)
500 1 (0) 1 (0) 1(0) 1(0) 0.769 (0.213) 0.838 (0.205)

Table 17: Mean (SD) of the extended NMI from different methods on planted two-block
MMBs with two equally-sized blocks, n, = 1 node of mixed membership, p;;, = 0.1, pout = 0,

and varying sizes n.

C.3 Comparison with spectral clustering methods

Apart from the two versions of Spectral Clustering algorithm as presented in Section 7,
we have also considered other versions of the Spectral Clustering, where instead of using
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n Louvain Spectra-S Spectra-A ORC-E ORC-A FRC-3

50 | 0.699 (0.135) 0.067 (0.016) 0.118 (0.295) 0.741 (0.121) 0.626 (0.106) 0.730 (0.121
100 | 6.405 (0.922) 0.139 (0.005) 0.051 (0.005) 2.330 (0.378) 2.051 (0.336) 3.346 (0.408
300 | 391.5 (28.44) 5.388 (0.391) 2.242 (0.168) 48.88 (4.877) 33.35 (3.868) 46.03 (8.584
500 | 2386 (107.4) 60.76 (3.543) 28.05 (1.454) 269.6 (25.12) 183.0 (11.95) 200.2 (44.79

o —
—_ O —

Table 18: Mean (SD) of runtime (in seconds) from different methods on planted two-block
MMBs with two equally-sized blocks, n, = 1 node of mixed membership, p;, = 0.1, pour = 0,
and varying sizes n.

the adjacency matrix directly, we can construct an affinity matrix by (i) radius basis func-
tions (“SC-R”) or (iv) ny nearest neighbors (“SC-N") where ny, is chosen to be 10 in the
experiments. Our experimental results (see Tables 19 and 20) demonstrate that the ORC
approach can also outperform other variants of Spectral Clustering, in both single- and
mixed-membership community detection.

n ORC-E SC-R SC-N
NMI runtime NMI runtime NMI runtime
100 | 0.860 (0.117) 0.482 (0.018) 0.417 (0.103) 0.042 (0.006) 0.619 (0.143) 0.063 (0.002)
500 | 0.986 (0.018) 1.194 (0.076) 0.615 (0.082) 0.061 (0.004) 0.889 (0.082) 0.099 (0.003)
1000 1 (0) 12.66 (0.168) 0.834 (0.276) 0.833 (0.063) 1 (0) 1.203 (0.102)
3000 1 (0) 165.8 (5.805) 1 (0) 17.28 (6.174) 1 (0) 20.13 (0.692)

Table 19: Mean (SD) of NMI and runtime (in seconds) from the ORC method and two
different Spectral Clustering methods on planted SBMs with two equally-sized blocks, pi, =
0.1, pout = 0.01, and varying sizes n.

n ORC-E SC-R SC-N

NMI runtime NMI runtime NMI runtime
50 | 0.925 (0.081) 0.741 (0.121) 0.304 (0.050) 0.077 (0.011) 0.623 (0.192) 0.086 (0.003)
100 | 0.993 (0.015) 2.330 (0.378) 0.128 (0.021) 0.183 (0.030)  0.683 (0.133) 0.159 (0.012)
300 1(0) 48.88 (4.877) 0.526 (0.333) 1984 (886.8)  0.951 (0.078) 7.360 (0.387)
500 1(0) 269.6 (25.12) 0.033 (0.029) 25332 (697.7)* 0.920 (0.079) 109.6 (4.948)

Table 20: Mean (SD) of NMI and runtime (in seconds) from the ORC method and two
different Spectral Clustering methods on planted MMBs with two equally-sized blocks,
Pin = 0.1, pour = 0, n, = 1 node of mixed membership, and varying sizes n. *The number
of clusters is chosen to be the true one (2), instead of a grid search, because the runtime is
expected to exceed a day for each graph.

Furthermore, we have also performed a detailed comparison with other spectral methods,
e.g., (Zhang, 2023). However, since the appearance of nodes of significantly larger degree
than the others is relatively rare in our datasets, the results do not change significantly in
our experiments. Therefore, we have omitted the detailed results.
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C.4 Synthetic data

In Section 7.4, we observe that the performance of the algorithm via augmented FRC is not
comparable with the performance of the algorithm via ORC, which raises the important
problem of relating FRC to ORC. We find that FRC-3 has a stronger linear relationship with
ORC as the graphs become denser; see Figures 17, 18 and 19. This is potentially because
there are more and more triangular and quadrangular faces in the graphs when more edges
are present, and these characteristics become more dominant for the ORC. Meanwhile, we
find that, when p;, is relatively small, all three variants of FRC cannot really separate the
edges in L between the nodes in the same community versus the others initially, which
might be the reason of a relatively worse performance of the algorithm via FRC in the
experiments. However, FRC-3 can separate these two types of edges when p;, is relatively
large, which indicates that the performance is expected to be better in the dense regime,
where ORC might have computational issues.

C.5 Node neighborhood measures

We give some brief computational evidence that the choice of « in the node neighborhood
measure as in Equation (4.2) has little impact on the performance of our curvature-based
algorithms. Over a range of different choices of «, and for two real-data networks, we see
that the results are highly conserved.

Data\a | 0 01 02 03 04 05 06
DBLP-1 | 0.689 0.689 0.689 0.689 0.689 0.689 0.689
DBLP-2 | 0.969 0.969 0.969 0.969 0.969 0.969 0.969

Table 21: Extended NMI of ORC-E via line graph curvature on the real data, where we
choose different values of a in Equation (4.2).
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Figure 17: 2-d histograms of the ORC-E versus the FRC-1 (left), FRC-2 (middle) and FRC-
3 (right) for edges in L, where the networks are obtained from the planted two-block MMB
of size n = 300, pip = 0.1, pour = 0, n, = 1 node of mixed membership, and we generate
ns = 10 networks for the results. (Row 1 and 2: edges between nodes within communities
1, in blue and 2, in green, respectively, in L; Row 3: edges between nodes in the different

communities, in red).

60



CURVATURE-BASED CLUSTERING ON GRAPHS

Ricci curvatures of edges in L (within community 1)

- 10000
-80
- 8000
—100
Z
-6000 5
g -120 £
= £
-4000 2
o
—140
-2000
-160
-0
—180
-0.4 -0.2 0.0 0.2
ORC
Ricci curvatures of edges in L (within community 2)
-80 8000
-1
0 6000 &
i =
2 -120 £
= -4000 £
=1
o
—140
-2000
—160
-0
—180
-0.4 -0.2 0.0 0.2
ORC
Ricci curvatures of edges in L (between communities)
- 50
-80
-40
—100 .
z
.||' 303
g -120 b E
= £
-20 2
o
—140
-10
-160
-0
180
—0.4 -02 0.0 0.2

ORC

Ricci curvatures of edges in L (within community 1)

60 - 12000
40 - 10000
i 8000 E
g =
& L6000 =
2
0 F -4000 ©
20 -2000
-0
—40
-0.4 -0.2 0.0 0.2
ORC
Ricci curvatures of edges in L (within community 2)
60
12500
40
- 10000
i
2 20 - 7500 ;;
=} E
H
0 -5000 O
20 -2500
-0
—40
-0.4 -0.2 0.0 0.2
ORC

Ricci curvatures of edges in L (between communities)

60
120
40 - 100
80 £
20 -
- 60 =
0 - g
- 40
W
20 -20
-0
—40

—0.4 -0.2 0.0 0.2

ORC

FRC

FRC

FRC

Ricci curvatures of edges in L (within community 1)
80

60
- 15000
40 £
& )
-10000 -
zZ
20 5
=]
E o
0 -5000
-20 -0
-04 -0.2 0.0 0.2
ORC
Ricci curvatures of edges in L (within community 2)
80
60 15000
40 g
& )
- 10000 =
zZ
20 S
=]
o]
-5000
0
-20 -0
-0.4 -0.2 0.0 0.2
ORC

Ricci curvatures of edges in L (between communities)
80

- 120
0 - 100
40 80 £
8
8
-60 =
20 g
" -40 5]
0 o
L -20
o
-20 -0

—0.4 -0.2 0.0 0.2

ORC

Figure 18: 2-d histograms of the ORC-E versus the FRC-1 (left), FRC-2 (middle) and
FRC-3 (right) for edges in L, where the networks are obtained from the planted two-block
MMB of size n = 300, p; = 0.2, pour = 0, n, = 1 node of mixed membership, and ns = 10.
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FRC-3 (right) for edges in L, where the networks are obtained from the planted two-block
MMB of size n = 300, p; = 0.3, pour = 0, n, = 1 node of mixed membership, and ns = 10.
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