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Abstract
We consider online statistical inference of constrained stochastic nonlinear optimization prob-
lems. We apply the Stochastic Sequential Quadratic Programming (StoSQP) method to solve
these problems, which can be regarded as applying second-order Newton’s method to the
Karush-Kuhn-Tucker (KKT) conditions. In each iteration, the StoSQP method computes the
Newton direction by solving a quadratic program, and then selects a proper adaptive stepsize
ᾱt to update the primal-dual iterate. To reduce dominant computational cost of the method,
we inexactly solve the quadratic program in each iteration by employing an iterative sketching
solver. Notably, the approximation error of the sketching solver need not vanish as iterations
proceed, meaning that the per-iteration computational cost does not blow up. For the above
StoSQP method, we show that under mild assumptions, the rescaled primal-dual sequence
1/
√
ᾱt ·(xt−x?,λt−λ?) converges to a mean-zero Gaussian distribution with a nontrivial co-

variance matrix depending on the underlying sketching distribution. To perform inference in
practice, we also analyze a plug-in covariance matrix estimator. We illustrate the asymptotic
normality result of the method both on benchmark nonlinear problems in CUTEst test set and
on linearly/nonlinearly constrained regression problems.

Keywords: constrained stochastic optimization, Newton sketching, online inference, un-
certainty quantification, randomized numerical linear algebra

1. Introduction

We consider equality-constrained stochastic nonlinear optimization problems of the form

min
x∈Rd

f(x) = EP [F (x; ξ)], s.t. c(x) = 0, (1.1)

where f : Rd → R is a stochastic objective function, F (·; ξ) : Rd → R is a realization with a
random variable ξ ∼ P, and c : Rd → Rm provides deterministic equality constraints. Prob-
lems of this form appear widely in a variety of applications in statistics and machine learning,
including constrained M -estimation (Geyer, 1991, 1994; Wets, 1999), multi-stage stochastic
optimization (Dantzig and Infanger, 1993; Veliz et al., 2014), physics-informed neural networks
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(Karniadakis et al., 2021; Cuomo et al., 2022), and algorithmic fairness (Zafar et al., 2019). In
practice, the random variable ξ corresponds to a data sample; F (x; ξ) is the loss occurred at the
sample ξ when using the parameter x to fit the model; and f(x) is the expected loss. Determin-
istic constraints are prevalent in real examples, which can encode prior model information, ad-
dress identifiability issue, and/or reduce searching complexity.

In this paper, we are particularly interested in performing statistical inference on a (local)
primal-dual solution (x?,λ?) of Problem (1.1). To that end, the classical (offline) approach
often generates N samples ξ1, . . . , ξN ∼ P iid, and then solves the corresponding empirical risk
minimization (ERM) problem:

min
x∈Rd

f̂(x) =
1

N

N∑
i=1

F (x; ξi), s.t. c(x) = 0. (1.2)

Under certain regularity conditions, we can establish the asymptotic consistency and normality
of the minimizer (x̂N , λ̂N ) of (1.2), also called constrained M -estimator, given by

√
N

(
x̂N − x?

λ̂N − λ?
)

d−→ N

((
0
0

)
,

(
∇2

xL? (G?)T

G? 0

)−1(cov(∇F (x?; ξ)) 0
0 0

)(
∇2

xL? (G?)T

G? 0

)−1
)
, (1.3)

where L(x,λ) = f(x) +λT c(x) is the Lagrangian function with λ ∈ Rm being the dual vari-
ables associated with the constraints, ∇2

xL? is the Lagrangian Hessian with respect to x eval-
uated at (x?,λ?), and G? = ∇c(x?) ∈ Rm×d is the constraints Jacobian. See (Shapiro et al.,
2014, Chapter 5) for the result of (1.3), and Duchi and Ruan (2021) and Davis et al. (2024) for
showing (1.3) attains the minimax optimality. Numerous methods can be applied to solve con-
strained ERM (1.2), including (exact) penalty methods, augmented Lagrangian methods, and
sequential quadratic programming (SQP) methods (Nocedal and Wright, 2006).

Given the prevalence of streaming datasets in modern problems, offline methods that re-
quire dealing with a large batch set in each step are less attractive. It is desirable to design fully
online methods, where only a single sample is used in each step, and to perform online statisti-
cal inference by leveraging those methods. Without constraints, one can apply stochastic gra-
dient descent (SGD) and its many variates, whose statistical properties (e.g., asymptotic nor-
mality) have been comprehensively studied from different aspects (Robbins and Monro, 1951;
Kiefer and Wolfowitz, 1952; Polyak and Juditsky, 1992; Ruppert, 1988). However, unlike solv-
ing unconstrained stochastic programs, there are limited methods proposed for constrained
stochastic programs (1.1) that enable online statistical inference. We refer to Section 2.2 for a
detailed literature review. One potential exception is the projection-based SGD recently stud-
ied in Duchi and Ruan (2021); Davis et al. (2024). Although the literature has shown that pro-
jected methods also exhibit asymptotic normality, there are two major concerns when applying
these methods for practical statistical inference.

(a) It is unclear how to online estimate the limiting covariance matrix based on the projected pri-
mal iterates. Due to the absence of dual update, the joint primal-dual normality as in (1.3) is
not (at least, immediately) achievable for projected methods. Even for the primal normality,
the covariance matrix still depends on the dual solution through the Lagrangian Hessian (cf.
(1.3)). However, due to intrinsic objective noise, simply using primal iterates and optimality
conditions to solve for the dual solution does not yield a consistent dual estimator for the un-
derlying plug-in covariance estimation. One possible resolution is to draw inspiration from
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long-run variance estimations of stationary processes, and design batch-means covariance es-
timators that utilize only the projected primal iterates themselves. That said, this approach
is highly nontrivial for projected methods (because of the non-stationarity), as studied in the
context of vanilla SGD methods (Chen et al., 2020; Zhu et al., 2021).

(b) There are prevalent scenarios where the projection operator becomes intractable. For exam-
ple, when the constraint function c(x) is nonlinear and nonconvex, as in physics-informed
neural networks (cf. Section 2.1), the projection onto the manifold {x ∈ Rd : c(x) = 0} is
generally intractable. Additionally, if we only have local information about the constraint
function c(x) (e.g., function evaluation and Jacobian) at any given point x, as in CUTEst
benchmark nonlinear problems (cf. Section 6), the projection operator is not computable ei-
ther, which requires a global characterization of the constraint set.

To perform online statistical inference of Problem (1.1) without relying on projections, we
draw inspiration from a recent growing series of literature in numerical optimization, which de-
velops various stochastic sequential quadratic programming (StoSQP) methods for (1.1). The
SQP methods can be regarded as second-order Newton’s methods applied to the Karush-Kuhn-
Tucker (KKT) conditions. In particular, the StoSQP methods compute a stochastic Newton di-
rection in each iteration by solving a quadratic program, whose objective model is estimated us-
ing the new sample. Then, the methods select a proper stepsize to achieve a sufficient reduction
on the merit function, which balances the optimality and feasibility of the iterates. We refer to
Na et al. (2022a, 2023); Berahas et al. (2021, 2023); Fang et al. (2024) and references therein for
recent StoSQP designs and their promising performance on various problems. The aforemen-
tioned literature established the global convergence of StoSQP methods, where the KKT resid-
ual ‖∇L(xt,λt)‖ converges to zero almost surely or in expectation for any initialization. How-
ever, in contrast to Duchi and Ruan (2021); Davis et al. (2024) studying projection-based meth-
ods, these literature overlooked the statistical properties and failed to quantify the uncertainty
inherent in the StoSQP methods, which is yet crucial for applying these methods on online sta-
tistical inference tasks. Thus, we pose the following question:

Can we perform online inference on (x?,λ?) based on the StoSQP iterates, while further
reducing the computational cost of existing second-order StoSQP methods?

In this paper, we answer this question by complementing the global convergence guarantees
and establishing the local asymptotic properties of existing StoSQP methods. Specifically, we
focus on an Adaptive Inexact StoSQP scheme, referred to as AI-StoSQP. By adaptive we mean
that the scheme inherits the critical merit of numerical StoSQP designs (Berahas et al., 2021;
Curtis et al., 2021; Berahas et al., 2023), allowing for an adaptive stepsize ᾱt for the Newton di-
rection. In other words, we do not compromise the adaptivity of StoSQP to establish the local
convergence guarantees. By inexact we mean that the scheme further reduces the computa-
tional cost of StoSQP methods by applying an iterative sketching solver to inexactly solve the
Newton system in each step(Strohmer and Vershynin, 2008; Gower and Richtárik, 2015; Pilanci
and Wainwright, 2016, 2017; Lacotte et al., 2020). Solving Newton systems is considered the
most computationally expensive step of second-order methods; and randomized solvers offer
advantages over deterministic solvers by requiring less flops and memory when equipped with
proper sketching matrices (e.g., sparse sketches). Notably, we perform a constant number of
sketching steps; thus, the per-iteration computational cost remains fixed even near stationarity.
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For the above sketched StoSQP scheme, we quantify its uncertainty consisting of three com-
ponents: random sampling, random sketching, and random stepsize. We establish the asymp-
totic normality of the primal-dual iterate:

1/
√
ᾱt · (xt − x?,λt − λ?)

d−→ N (0,Ξ?), (1.4)

where the limiting covariance Ξ? solves a Lyapunov equation that depends on the underlying
sketching distribution used in the sketching solver. Let Ω? denote the limiting covariance of con-
strained M -estimator in (1.3). Our result suggests that if ᾱt � 1/t, then we have two cases:

Ξ? = Ω? for the exact solver, Ξ? � Ω? for the sketching solver. (1.5)

This implies that (i) if we solve Newton systems exactly, then online StoSQP estimator (even
with adaptive stepsizes) achieves the same estimation efficiency as offlineM -estimator. In fact,
if we focus solely on the primal variables x, the marginal covariance of Ξ? = Ω? also matches the
limiting covariance of online projection-based estimators established in Duchi and Ruan (2021);
Davis et al. (2024), which is known to be asymptotic minimax optimal (see Remark 5.8). (ii) If
we solve Newton systems inexactly, then the sketching solver hurts the asymptotic optimality of
StoSQP as Ξ? � Ω?. Fortunately, the hurt is tolerable as seen from the bound (cf. Corollary 5.7)

‖Ξ? − Ω?‖ . ρτ for some ρ ∈ (0, 1),

where τ is the number of iterations we run for the sketching solver at each step. In addition to
asymptotic normality, we also present some by-product results of independent interest, includ-
ing the local convergence rate, sample complexity, and the Berry-Esseen bound that quantita-
tively measures the convergence rate in (1.4). To facilitate practical inference, we also analyze a
plug-in covariance estimator that can be computed in online fashion. We illustrate our results
on benchmark nonlinear problems in CUTEst test set and on linearly/nonlinearly constrained
regression problems.

Structure of the paper. We introduce some motivating examples of Problem (1.1) and provide a
literature review in Section 2. Then, we introduce AI-StoSQP in Section 3 and prove the global
almost sure convergence with iteration complexity in Section 4. Asymptotic normality with co-
variance estimation is established in Section 5. Experiments and conclusions are presented in
Sections 6 and 7, respectively. We defer all the proofs to the appendices.

Notation. Throughout the paper, we use ‖ · ‖ to denote `2 norm for vectors and spectral norm
for matrices. For scalars a, b, a∨b = max(a, b) and a∧b = min(a, b). We use O(·) (or o(·)) to
denote big (or small) O notation in usual almost sure sense. For a sequence of compatible ma-
trices {Ai}i, we let

∏j
k=iAk = AjAj−1 · · ·Ai if j ≥ i and I (the identity matrix) if j < i. We

use the bar notation, (̄·), to denote algorithmic quantities that are random (i.e., depending on
realized samples), except for the iterates. We reserve the notation G(x) to denote the con-
straints Jacobian, i.e., G(x) = ∇c(x) = (∇c1(x), . . . ,∇cm(x))T ∈ Rm×d.

2. Applications and Literature Review

We present two motivating examples of (1.1) in Section 2.1, and then review related literature
in Section 2.2.
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2.1 Motivating examples

Many statistical and machine learning problems can be cast into the form of Problem (1.1).

Example 1 (Constrained regression problems) Let ξt = (ξat , ξbt) be the t-th sample,
where ξat ∈ Rd is the feature vector independently drawn from some multivariate distribution
and ξbt is the response. We consider different regression models, such as

linear models: ξbt = ξTatx
? + εt with εt iid noise,

logistic models: P (ξbt | ξat) =
exp

(
ξbt · ξTatx

?
)

1 + exp
(
ξbt · ξTatx?

) with ξbt ∈ {−1, 1},

where x? ∈ Rd is the true model parameter. For the above models, we define the corresponding
loss functions at x:

linear models: F (x; ξt) =
1

2
(ξTatx− ξbt)

2,

logistic models: F (x; ξt) = log
(
1 + exp(−ξbt · ξTatx)

)
.

Then, we can verify that x? = argminx f(x) = argminx E[F (x; ξ)]. In many cases, we access
prior information about the model parameters, which is encoded as constraints. For example, in
portfolio selection, x represents the portfolio allocation vector that satisfies xT1 = 1 (total
allocation is 100%). We may also fix the target percentage on each sector or each region, which
is translated into the constraint Ax = d. See (Fan, 2007, (4.3, 4.4)), (Fan et al., 2012, (2.1)),
(Du et al., 2022, (1)) and references therein for such applications. In principle component anal-
ysis and semiparametric single/multiple index regressions, we enforce x to have a unit norm
to address the identifiability issue, leading to a nonlinear constraint ‖x‖2 = 1. We point to
Kaufman and Pereyra (1978); Kirkegaard and Eldrup (1972); Sen (1979); Nagaraj and Fuller
(1991); Dupacova and Wets (1988); Shapiro (2000); Na et al. (2019); Na and Kolar (2021)
for various examples of linearly/nonlinearly constrained estimation problems. For some con-
strained estimation problems, projecting into the feasible set can be intractable. For in-
stance, in factor analysis, researchers may estimate a covariance matrix Σ under so-called
tetrad constraints: Σi1i2Σi3i4 − Σi1i4Σi2i3 = 0 for every set of four distinct variables
{i1, i2, i3, i4} (Bollen and Ting, 2000; Drton and Xiao, 2016; Sturma et al., 2024). For
such highly nonlinear constraints, the linear-quadratic approximation performed in SQP can
be a promising resolution.

Example 2 (Physics-informed machine learning) Recent decades have seen machine
learning (ML) making significant inroads into science. The major task in ML is to learn
an unknown mapping z(·) : A → B from data that can perform well in the downstream
tasks. Since z(·) is infinite-dimensional, one key step in ML is to use neural networks (NNs)
to parameterize z(·) as zx(·), and learn the optimal weight parameters x ∈ Rd instead (called
function approximation). One of the trending topics in ML now is physics-informed ML,
where one requires z(·) to obey some physical principles that are often characterized by
partial differential equations (PDEs) (Karniadakis et al., 2021; Cuomo et al., 2022). In such
applications, we can use the squared loss function, defined for the t-th sample ξt = (ξat , ξbt) ∈
A× B as
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F (x; ξt) =
1

2
(zx(ξat)− ξbt)

2 .

Here, ξat is NN inputs that can be spatial and/or temporal coordinates; ξbt is measurements
that can be speed, velocity, and temperature, etc; and zx ∈ C∞(A,B) is NN architecture. Let
F : C∞(A,B)→ C∞(A,B) be the PDE operator, which encodes the underlying physical law
(e.g., energy conservation law). We aim to find optimal weights x? that not only minimize the
mean squared error of observed data, but also satisfy the constraints F(zx) = 0. To this end,
we select some leverage points {ξ′ai}

m
i=1 in A and impose deterministic constraints:

F(zx)(ξ′ai) = 0, ∀i = 1, 2, . . . ,m.

Here, we abuse the notation 0 to denote either a zero mapping of C∞(A,B) or a zero element of
B. For more details on this problem formulation, see (Lu et al., 2021, (2.3)), (Krishnapriyan
et al., 2021, (2)), and references therein. Due to the nonlinearity nature of NNs, projection-free
methods are desired, and SQP can achieve competitive performance compared to penalty meth-
ods and augmented Lagrangian methods (Cheng and Na, 2024).

2.2 Related literature and contribution

There are numerous methods for solving constrained optimization problems, such as projection-
based methods, penalty methods, augmented Lagrangian methods, and sequential quadratic
programming (SQP) methods (Nocedal and Wright, 2006). This paper particularly considers
solving constrained stochastic optimization problems via Stochastic SQP (StoSQP) methods,
which can be regarded as an application of stochastic Newton’s method on constrained prob-
lems. Berahas et al. (2021) designed the very first online StoSQP scheme. At each step, the
method selects a suitable penalty parameter of an `1-penalized objective; ensures the Newton
direction produces a sufficient reduction on the penalized objective; and then selects an adap-
tive stepsize βt ≤ ᾱt ≤ ηt = βt +χt based on input sequences βt and χt = O(β2

t ). An alterna-
tive StoSQP scheme was then reported in Na et al. (2022a), where ᾱt is selected by performing
stochastic line search on the augmented Lagrangian with batch sizes increasing as iteration
proceeds. Subsequently, Curtis et al. (2021); Na et al. (2023); Berahas et al. (2023); Fang et al.
(2024) proposed different variates of StoSQP to cope with inequality constraints, degenerate
constraints, etc. These works all proved the global convergence of StoSQP methods — the
KKT residual ‖∇L(xt,λt)‖ converges to zero from any initialization. However, they fall short
of uncertainty quantification and online statistical inference goals.

On the other hand, a growing body of literature leverages optimization procedures to facil-
itate online inference, starting with Robbins and Monro (1951); Kiefer and Wolfowitz (1952)
and continuing through Robbins and Siegmund (1971); Fabian (1973); Ermoliev (1983). To
study the asymptotic distribution of stochastic gradient descent (SGD), Ruppert (1988) and
Polyak and Juditsky (1992) averaged SGD iterates and established the optimal central limit
theorem rate. Toulis and Airoldi (2017) designed an implicit SGD method and showed the
asymptotics of averaged implicit SGD iterates. Li et al. (2018) designed an inference procedure
for constant-stepsize SGD by averaging the iterates with recurrent burn-in periods. Mou
et al. (2020) further showed the asymptotic covariance of constant-stepsize SGD with Ployak-
Ruppert averaging. Liang and Su (2019) designed a moment-adjusted SGD method and
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provided non-asymptotic results that characterize the statistical distribution as the batch size
of each step tends to infinity. Chen et al. (2020) and Zhu et al. (2021) proposed different covari-
ance matrix estimators constructed by grouping SGD iterates. Additionally, Chen et al. (2021)
designed a distributed method for the inference of non-differentiable convex problems; Roy
and Balasubramanian (2023) analyzed a batch-mean covariance estimator under a Markovian
sampling setup; and Duchi and Ruan (2021) and Davis et al. (2024) applied projection-based
SGD methods for the inference of inequality-constrained convex problems. The aforementioned
literature all studied first-order methods with deterministic stepsizes.

The asymptotics of second-order Newton’s methods for unconstrained problems have re-
cently been investigated. Bercu et al. (2020) designed an online Newton’s method for logistic
regression, and Boyer and Godichon-Baggioni (2023) generalized that method to general regres-
sion problems. Compared to first-order methods that often consider averaged iterates and/or
exclude the stepsize 1/t due to technical challenges, both works showed the normality of the
last iterate with 1/t stepsize. However, those analyses are not applicable to our study for two rea-
sons. First, they studied unconstrained regression problems with objectives in the form F (xT ξ),
resulting in objective Hessians owning rank-one updates that cannot be employed for our gen-
eral problem (1.1). Second, they solved Newton systems exactly and utilized 1/t deterministic
stepsize. In contrast, we use a randomized sketching solver to solve Newton systems inexactly
to reduce the computational cost associated with higher-order methods, along with an adaptive
random stepsize inspired by numerical designs in Berahas et al. (2021). Both of these compo-
nents affect the uncertainty quantification and lead to a different normality result (cf. (1.5)).
To our knowledge, this is the first work that performs online inference by taking into account
not only the randomness of samples but also the randomness of computation (i.e., sketching
and stepsize); the latter is particularly important for making second-order methods computa-
tionally promising.

We briefly review the literature on sketched Newton methods. Compared to the works below,
the sketching step in StoSQP is only a subroutine for solving linear-quadratic programs; a com-
plete method also involves merit function reduction and stepsize selection (here, stepsize refers
to that of StoSQP rather than the sketching solver). This paper focuses on uncertainty quantifi-
cation and statistical inference of online (sketched) Newton methods, which differs significantly
from the following literature that focuses on design and convergence of sketched Newton meth-
ods. In particular, for many (regression) problems, the objective Hessian can be expressed as
H = AAT ∈ Rd×d with a data matrix A ∈ Rd×n and n ≥ d. Then, one can generate a sketch
matrix S∈Rn×s and compute the approximate Hessian Ĥ=ASSTAT . Pilanci and Wainwright
(2016) developed an iterative Hessian sketch algorithm for solving least-squares problems
minx ‖Ax−b‖2 (subject to convex constraints). The authors sketched only the data matrix A
rather than both the data matrix A and vector b, and established a high-probability conver-
gence result. Lacotte et al. (2020) later extended this study by showing the optimal stepsize and
convergence rate for Haar sketches. Pilanci and Wainwright (2017) designed a sketched Newton
method that approximates the Hessian using the Johnson–Lindenstrauss transform. Building
on this, Agarwal et al. (2017); Derezinski and Mahoney (2019); Derezinski et al. (2020a,b,
2021); Lacotte et al. (2021) introduced various sketching methods to explore the trade-off be-
tween the computational cost of Ĥ and the convergence rate of the algorithm. In addition to
the above series of literature, another type of sketched Newton method is based on Sketch-and-
Project framework, where one approximates a generic Hessian inverse H−1 by S(STHS)†ST

7



Na and Mahoney

for a sketch matrix S ∈ Rd×s. See Strohmer and Vershynin (2008); Gower and Richtárik
(2015); Luo et al. (2016); Doikov et al. (2018); Gower et al. (2019); Dereziński and Rebrova
(2024) and references therein for the convergence properties of this family of methods.

Compared to deterministic methods for solving Newton systems, such as conjugate gradi-
ent and broad preconditioned Krylov (or minimal residual) methods, randomized sketching
methods may behave better in terms of improved convergence rates and range of convergence,
while requiring less computation and memory (when using suitable sketches) to be scalable and
parallelizable (Gower, 2016). We refer to Hong et al. (2023) for an empirical demonstration of
the advantages of sketching solvers over deterministic solvers in the context of SQP methods.

3. Adaptive Inexact StoSQP Method

Let L(x,λ) = f(x)+λT c(x) be the Lagrangian function of (1.1), where λ ∈ Rm is the dual vec-
tor. Under certain constraint qualifications (introduced later), a necessary condition for (x?,λ?)
being a local solution to (1.1) is the KKT conditions: ∇L? = (∇xL?,∇λL?) = (0,0).

AI-StoSQP applies Newton’s method to the equation ∇L(x,λ) = 0, involving three steps:
estimating the objective gradient and Hessian, (inexactly) solving Newton’s system, and updat-
ing the primal-dual iterate. We detail each step as follows. For simplicity, we denote ct = c(xt)
(similarly, Gt = ∇c(xt), ∇Lt = ∇L(xt,λt), etc.).

• Step 1: Estimate the gradient and Hessian. We realize a sample ξt ∼ P and estimate the
gradient ∇ft and Hessian ∇2ft of the objective as

ḡt = ∇F (xt; ξt) and H̄t = ∇2F (xt; ξt).

Then, we compute three quantities:

∇̄xLt = ḡt +GTt λt, ∇̄2
xLt = H̄t +

m∑
i=1

(λt)i∇2ci(xt), Bt =
1

t

t−1∑
i=0

∇̄2
xLi + ∆t.

Here, ∇̄xLt and ∇̄2
xLt are the estimates of the Lagrangian gradient and Hessian with respect to

x, respectively; and Bt is a regularized averaged Hessian used in the quadratic program (3.1).
We let ∆t = ∆(xt,λt) be any regularization term ensuring Bt to be positive definite in the null
space {x ∈ Rd : Gtx = 0}. Note that the average

∑t−1
i=0 ∇̄2

xLi/t can be updated online. We ex-
plain the matrix Bt in the following remark.

Remark 3.1 We note that the Lagrangian Hessian average in Bt is over samples {ξ0, . . . , ξt−1},
meaning that the Hessian estimate H̄t, which depends on the new sample ξt, will only be used in
the (t+1)-th iteration. Thus, Bt and ∆t are deterministic given (xt,λt). In addition, ∆t can sim-
ply be Levenberg-Marquardt type regularization of the form δtI with suitably large δt > 0
(Nocedal and Wright, 2006). The Hessian regularization is standard for nonlinear problems, to-
gether with linear independence constraint qualification (LICQ, Assumption 4.1), ensuring that
the quadratic program (3.1) is solvable. For convex problems, we just set ∆t = 0, ∀t. See Bert-
sekas (1982); Nocedal and Wright (2006) for various regularization approaches. Moreover, Na
et al. (2022b) showed that Hessian averaging accelerates the local rate of Newton’s method on
unconstrained deterministic problems.
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• Step 2: Solve the quadratic program. With the above estimates, we solve the quadratic
program (QP):

min
∆̃xt∈Rd

1

2
∆̃xTt Bt ∆̃xt + ḡTt ∆̃xt, s.t. ct +Gt∆̃xt = 0. (3.1)

For the above QP, the objective can be seen as a quadratic approximation of F (x; ξ) at (xt; ξt),
and the constraint can be seen as a linear approximation of c(x) at xt. It is easy to observe that
solving the above QP is equivalent to solving the following Newton system(

Bt GTt
Gt 0

)
︸ ︷︷ ︸

Kt

(
∆̃xt
∆̃λt

)
︸ ︷︷ ︸

z̃t

= −
(
∇̄xLt
ct

)
︸ ︷︷ ︸
∇̄Lt

, (3.2)

where Kt, ∇̄Lt are the Lagrangian Hessian and gradient, and z̃t is the exact Newton direction.
Instead of solving the QP (3.1) exactly, we solve it inexactly by an iterative sketching solver.

This approach proves more efficient than deterministic solvers, especially when equipped with
suitable sketching matrices (Strohmer and Vershynin, 2008; Gower and Richtárik, 2015; Pilanci
and Wainwright, 2016, 2017; Lacotte et al., 2020). In particular, we generate a random sketch-
ing matrix S ∈ R(d+m)×s, whose column dimension s ≥ 1 can also be random, and transform
the original large-scale linear system to the sketched, small-scale system as

Ktzt = −∇̄Lt =⇒ STKtzt = −ST ∇̄Lt.

Clearly, there are multiple solutions to the sketched system, and zt = z̃t is one of them. We pre-
fer the solution that is closest to the current solution approximation. That is, the j-th iteration
of the sketching solver has the form (zt,0 = 0)

zt,j+1 = arg min
z
‖z − zt,j‖2 s.t. STt,jKtz = −STt,j∇̄Lt, (3.3)

where St,j ∼ S, ∀j are independent and identically distributed and are also independent of ξt.
An explicit recursion of (3.3) is given by

zt,j+1 = zt,j −KtSt,j(S
T
t,jK

2
t St,j)

†STt,j(Ktzt,j + ∇̄Lt), (3.4)

where (·)† denotes the Moore–Penrose pseudoinverse. One can let s = 1 (i.e., using sketching vec-
tors) so that STt,jK

2
t St,j reduces to a scalar and the pseudoinverse reduces to the reciprocal.

We perform τ ≥ 1 iterations of (3.4) and use

(∆̄xt, ∆̄λt) := zt,τ

as the approximate Newton direction. We emphasize that τ is independent of t; thus, we do not
require a vanishing approximation error and blow up the computational cost as t→∞.

Remark 3.2 A significant difference between randomized solvers and deterministic solvers is
that the approximation error ‖zt,j − z̃t‖ of randomized solvers may not be monotonically
decreasing as j increases. This subtlety challenges both inference and convergence analysis. In
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Algorithm 1 Adaptive Inexact StoSQP Method
1: Input: initial iterate (x0,λ0), positive sequences {βt, ηt}, an integer τ > 0, B0 = I;
2: for t = 0, 1, 2, . . . do
3: Realize ξt and compute ḡt = ∇f(xt; ξt), H̄t = ∇2f(xt; ξt), and ∇̄2

xLt;
4: Compute the regularized Hessian average Bt = 1

t

∑t−1
i=0 ∇̄2

xLi + ∆t;
5: Generate sketching matrices St,j ∼ S, ∀j iid and iterate (3.4) for τ times;
6: Select any adaptive stepsize ᾱt with βt ≤ ᾱt ≤ ηt, and update the iterate as (3.5);
7: end for

classical optimization world, it is unanimously agreed that if the search direction is asymptot-
ically close to the exact Newton direction (here z̃t), then the algorithm will locally behave just
like Newton’s method with a similar convergence rate. A precise characterization is called the
Dennis-Moré condition (Dennis and Moré, 1974). In our study, although Lemma 4.4 shows that
the expected error E[‖zt,τ − z̃t‖ | xt, ξt] decays exponentially in τ , zt,τ can still be far from z̃t
for any t and large τ in the almost sure sense. In particular, (Patel et al., 2021, Theorem 4.2)
proved that only a subsequence of {‖zt,τ − z̃t‖}∞τ=0 would decrease monotonically with the sub-
sequence indices being also random.

• Step 3: Update the iterate with an adaptive stepsize. With the direction (∆̄xt, ∆̄λt) =
zt,τ from Step 2, we update the iterate (xt,λt) by an adaptive stepsize ᾱt:

(xt+1,λt+1) = (xt,λt) + ᾱt · (∆̄xt, ∆̄λt). (3.5)

In principle, the stepsize ᾱt may rely on the random direction (∆̄xt, ∆̄λt), so it is also random.
We allow using any adaptive stepsize selection schemes but require a safeguard condition on ᾱt:

0 < βt ≤ ᾱt ≤ ηt with ηt := βt + χt, (3.6)

where {βt, ηt} are upper and lower bound sequences and χt is the adaptivity gap. We do not re-
quire specific stepsize selection schemes beyond the condition (3.6) to achieve our online infer-
ence goals. The schemes reported in Berahas et al. (2021, 2023); Curtis et al. (2021) all adhere to
the condition (3.6). See (Berahas et al., 2021, Lemma 3.6) and (Curtis et al., 2021, (25, 28)) for
details. Their numerical experiments suggest that adaptive random stepsizes offer promising
empirical benefits over non-adaptive deterministic stepsizes (i.e., χt = 0). For sake of complete-
ness, we present a selection scheme from Berahas et al. (2021) in Appendix A.

We combine the above three steps and summarize AI-StoSQP in Algorithm 1. To end this
section, we introduce a filtration notation for later use. We let Ft = σ({ξi, {Si,j}j , ᾱi}ti=0),
∀t ≥ 0 be the σ-algebra generated by the random variables {ξi, {Si,j}j , ᾱi}ti=0. Moreover, we
let Ft−2/3 = σ({ξi, {Si,j}j , ᾱi}t−1

i=0∪ξt), Ft−1/3 = σ({ξi, {Si,j}j , ᾱi}t−1
i=0∪ξt∪{St,j}j), and have

Ft−1 ⊆ Ft−2/3 ⊆ Ft−1/3 ⊆ Ft. For consistency, F−1 is the trivial σ-algebra. With these nota-
tion, Algorithm 1 has a generating process as follows: given (xt,λt), we first realize ξt to get
the estimates of the gradient ḡt and Hessian H̄t and derive Ft−2/3; then we generate {St,j}j to
obtain the inexact Newton direction and derive Ft−1/3; then we select the stepsize ᾱt and de-
rive Ft. We also let (∆xt,∆λt) be the exact Newton direction solved from (3.2) with ∇̄xLt be-
ing replaced by ∇xLt.
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4. Global Almost Sure Convergence

In this section, we present the global almost sure convergence1 for the StoSQP method. We show
that the KKT residual ‖∇Lt‖ converges to zero from any initialization. This global convergence
serves as a preliminary result of our inference analysis in Section 5.

We use an adapted augmented Lagrangian function as the Lyapunov function to show the
convergence, which has two penalty terms of the form

Lµ,ν(x,λ) = L(x,λ) +
µ

2
‖c(x)‖2 +

ν

2
‖∇xL(x,λ)‖2, with µ, ν > 0.

The first penalty term biases the feasibility error; while, in contrast to standard augmented La-
grangian (ν = 0), the extra second penalty term biases the optimality error. We will first show
that the inner product between the exact Newton direction (∆xt,∆λt) and the augmented
Lagrangian gradient ∇Lµ,ν , with proper parameters µ and ν, is sufficiently negative (Lemma
4.6). Thus, the Newton direction is a descent direction of Lµ,ν . Then, we will show that the aug-
mented Lagrangian Lµ,ν decreases at each step even with an inexact Newton direction (Lemma
4.7). This implies that the residual ‖∇Lt‖ finally vanishes to zero (Theorem 4.8).

4.1 Assumptions and preliminary results

We state the following assumptions that are standard and proposed in the optimization litera-
ture (Kushner and Clark, 1978; Bertsekas, 1982; Nocedal and Wright, 2006; Na et al., 2022a).

Assumption 4.1 We assume the existence of a closed, bounded, convex set X ×Λ containing
the iterates {(xt,λt)}t, such that f and c are twice continuously differentiable over X . We also
assume that the Hessian ∇2L is ΥL-Lipschitz continuous over X × Λ. In other words,

‖∇2L(x,λ)−∇2L(x′,λ′)‖ ≤ ΥL‖(x− x′,λ− λ′)‖, ∀ (x,λ), (x′,λ′) ∈ X × Λ. (4.1)

Furthermore, we assume that the constraints Jacobian Gt has full row rank with GtGTt � γGI
for a constant γG > 0. Additionally, the regularization ∆t ensures that Bt satisfies ‖Bt‖ ≤ ΥB

and xTBtx ≥ γRH‖x‖2 for any x ∈ {x ∈ Rd : Gtx = 0}, for some constants γRH ,ΥB > 0.

Assumption 4.1 assumes Gt has full row rank, which is referred to as the linear indepen-
dence constraint qualification (LICQ). LICQ is a common constraint qualification ensuring the
uniqueness of the dual solution, and is also necessary for the inference analysis (see (Duchi and
Ruan, 2021, Assumption B) and (Davis et al., 2024, Example 2.1)). LICQ and conditions on Bt
are critical for SQP methods; they imply QP (3.1) has a unique solution (Nocedal and Wright,
2006, Lemma 16.1). The Lipschitz continuity of the Hessian matrix is also standard for ana-
lyzing Newton’s method.

The bounded iterates condition is commonly assumed in the literature on (stochastic) non-
linear nonconvex optimization, both for first-order gradient-based methods (Bolte et al., 2013;
Song et al., 2014; Davis et al., 2016, 2019; Atchade et al., 2017; Asi and Duchi, 2019; Liu et al.,

1Global convergence in nonlinear optimization refers to the convergence to a stationary point from any ini-
tialization, in contrast to the convergence to a global solution, which is not achievable without particular prob-
lem structures (Nocedal and Wright, 2006). However, they are equivalent for convex problems as studied for
projection-based methods in Duchi and Ruan (2021); Davis et al. (2024).
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2023a) and for second-order SQP methods ((Bertsekas, 1982, Proposition 4.15), (Nocedal and
Wright, 2006, Theorem 18.3)). This assumption ensures that all functions with their gradients
and Hessians are bounded over X ×Λ as long as they are smooth. Some literature replaces the
bounded iterates condition by directly imposing boundedness on the gradients and Hessians of
the objective and constraints, although the main use of the condition in the proof is rather sim-
ilar (Berahas et al., 2021, 2023; Curtis et al., 2021; Ramprasad et al., 2022; Liu et al., 2023b).

We provide two justifications for the boundedness condition. First, in our study, the StoSQP
iterates presumably track a deterministic feasible set {x ∈ Rd : c(x) = 0}, so we believe that
an unbounded iteration sequence is generally rare especially when the feasible set is bounded.
Second, a practical way to enforce the boundedness condition may be through adaptive trunca-
tion (Andrieu et al., 2005; Liang, 2010). Under some conditions on the Markov transition kernel
of the iteration sequence, one can show that the truncation occurs only finitely many times, en-
suring that the convergence and asymptotic behavior are finally not affected by the truncation.

We also impose bounded moment conditions on the stochastic estimates ḡt and H̄t.

Assumption 4.2 We assume E[ḡt | xt] = ∇ft, E[H̄t | xt] = ∇2ft, and assume the following
moment conditions when needed: for a constant Υm > 0,

gradient (bounded 2nd moment) : E[‖ḡt −∇ft‖2 | xt] ≤ Υm, (4.2a)

(bounded 3th moment) : E[‖ḡt −∇ft‖3 | xt] ≤ Υm, (4.2b)

(bounded 4th moment) : E[‖ḡt −∇ft‖4 | xt] ≤ Υm, (4.2c)
and

Hessian (bounded 2nd moment) : E[‖H̄t −∇2ft‖2 | xt] ≤ Υm, (4.2d)

(bounded 2nd moment) : E[sup
x∈X
‖∇2f(x; ξ)‖2] ≤ Υm. (4.2e)

We write E[· | xt] to express out the conditional variable. It can also be written as E[· | Ft−1],
meaning the expectation is taken over the randomness of sample ξt. For conditions (4.2), we do
not impose all of them at once, but impose them step by step. In this section, we only require
(4.2a) to show the convergence of∇Lt. In the next section, we require higher-order moments for
inference. In fact, (4.2c) implies (4.2b), which implies (4.2a), and (4.2e) implies (4.2d).

Assumption 4.2 is standard for uncertainty quantification of stochastic methods. We would
like to mention that (4.2e) is also required for the asymptotic analysis of averaged SGD (Chen
et al., 2020), which ensures the Lipschitz continuity of the mapping x→ E[∇f(x; ξ)∇T f(x; ξ)],
as proved in (E.11). Please refer to (Chen et al., 2020, Assumption 3.2(2) and Lemma 3.1) for
further discussions. Moreover, (4.2e) is satisfied by various objectives, such as logistic and least
squares losses in Example 1, as long as the feature variable ξa has bounded 4-th moment.

In terms of the sketching matrices, we need the following assumption.

Assumption 4.3 For t ≥ 0, we assume that the sketching matrices St,j
iid∼ S satisfy

E[KtS(STK2
t S)†STKt | xt,λt] � γSI for some γS > 0.

Assumption 4.3 is required for sketching solvers to converge in expectation (Gower and
Richtárik, 2015, Theorem 4.6). This assumption can be easily verified for various sketching ma-
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trices. For example, for randomized Kaczmarz method where S ∈ R(d+m)×s has s columns sam-
pled uniformly (without replacement) from the canonical bases {e1, . . . , ed+m} (Strohmer and
Vershynin, 2008), we have

E[KtS(STK2
t S)†STKt | xt,λt] �

E[KtSS
TKt | xt,λt]

σmax(K2
t )

=
sK2

t

(d+m)σmax(K2
t )
� sI

(d+m)κ(K2
t )
, (4.3)

where σmax(K2
t ) denotes the largest singular value (which is the same as the largest eigenvalue

in this case) of K2
t and κ(K2

t ) denotes the condition number of K2
t (it is independent of t by

Assumption 4.1). The first inequality is by the eigenvalue interlacing theorem, which leads to
σmax(STK2

t S) ≤ σmax(K2
t ), and the second equality is by the sampling mechanism:

E[SST ] =
1(

d+m
s

) ∑
A∈{sets of s indices}

IA =

(
d+m− 1
s− 1

)
(
d+m
s

) I =
s

d+m
I.

Here, IA ∈ R(d+m)×(d+m) is a diagonal matrix with [IA]i,i = 1 if the index i ∈ A and [IA]i,i = 0
otherwise. The set A contains s distinct indices. We note that a recent study (Dereziński and
Rebrova, 2024,(1.3)) showed a similar lower bound to (4.3) for Gaussian sketching. The authors
improved the denominator from (d+m)σ2

max(Kt) to ‖Kt‖2F , though the latter still grows lin-
early with the problem dimension without additional spectral decay assumptions.

Assumption 4.3 directly leads to the following result.

Lemma 4.4 (Guarantees of sketching solvers) Under Assumption 4.3, for all t ≥ 0:
(a): Let ρ = 1− γS. We have 0 ≤ ρ < 1.

(b): E[zt,τ−z̃t | Ft−2/3] = −(I−E[KtS(STK2
t S)†STKt | Ft−1])τ z̃t =: Ctz̃t, and ‖Ct‖ ≤ ρτ .

(c): E[‖zt,τ − z̃t‖2 | Ft−2/3] ≤ ρτ‖z̃t‖2.

Remark 4.5 We note that the linear convergence rate ρ of the expected error of the sketching
solver depends on the lower bound γS ∈ (0, 1] of the projection matrix, which is proportional to
the sketching dimension s and inversely proportional to the problem dimension d+m, as shown
in (4.3). The condition number κ2(Kt) is assumed to be uniformly bounded in our study.

By the above relation, and given an error threshold δ, we have ρτ = (1−γS)τ ≤ δ ⇐⇒ τ ≥
log(1/δ)/ log(1/{1−γS}) = O(1/γS) = O((d+m)/s). This implies that, to decay the expected
error below a threshold, the number of sketching steps τ is proportional to the problem dimen-
sion d+m and inversely proportional to the sketching dimension s. Certainly, a larger sketch-
ing dimension leads to a higher computational cost per step in (3.4). Using the Kacz-
marz method as an example, the flops per step are O((d+m)s2) (dominated by the compu-
tation of STK2

t S). Thus, the total flops over τ steps are O((d + m)2s), indicating that a
smaller sketching dimension is generally preferable. That said, this analysis only reflects a
worst-case scenario under the presumption that κ2(Kt) is uniformly bounded. The optimal
choice of s is often case-by-case and depends on whether Kt exhibits a particular sparsity or
eigenvalue decay structure (Dereziński and Rebrova, 2024).

13



Na and Mahoney

4.2 Almost sure convergence

We now set the stage to show global almost sure convergence. The first result shows that the ex-
act Newton direction (∆xt,∆λt) is a descent direction of Ltµ,ν = Lµ,ν(xt,λt) if µ is sufficiently
large and ν is sufficiently small.

Lemma 4.6 Under Assumption 4.1, there exists a deterministic constant Υ1 > 0, depending
only on (γG, γRH ,ΥB), such that(

∇xLtµ,ν
∇λLtµ,ν

)T (
∆xt
∆λt

)
≤ − ν

Υ1

{∥∥∥∥(∆xt
∆λt

)∥∥∥∥2

+

∥∥∥∥(∇xLtct

)∥∥∥∥2
}
,

provided µν ≥ Υ1 and ν ≤ 1/Υ1.

With Lemmas 4.4 and 4.6, we are able to show the following one-step recursion of Ltµ,ν .

Lemma 4.7 Under Assumptions 4.1, 4.2(4.2a), 4.3, we suppose that the pair (µ, ν) satisfies
the condition in Lemma 4.6 and τ satisfies ρτ ≤ ν/(µΥ1). Then, there exists a deterministic
constant Υ2 > 0, depending on (γG, γRH ,ΥB,ΥL,Υm), such that

E[Lt+1
µ,ν | Ft−1] ≤ Ltµ,ν −

ν

2Υ1
· βt‖∇Lt‖2 + Υ2(χt + η2

t ).

With Lemma 4.7, we can apply Robbins-Siegmund theorem (Robbins and Siegmund,
1971) to establish the convergence of the KKT residual ‖∇Lt‖.

Theorem 4.8 (Global convergence) Consider Algorithm 1 under Assumptions 4.1, 4.2(4.2a),
4.3. Suppose we perform the sketching solver (3.4) for τ steps with τ ≥ 4 log Υ1/ log{1/(1−
γS)}, where Υ1 is from Lemma 4.6. Also, we let {βt, ηt = βt + χt} satisfy

∞∑
t=0

βt =∞,
∞∑
t=0

β2
t <∞,

∞∑
t=0

χt <∞. (4.4)

Then, we have ‖(xt+1 − xt,λt+1 − λt)‖ → 0 and ‖∇Lt‖ → 0 as t→∞ almost surely.

Theorem 4.8 indicates that all limiting points of the primal-dual iteration sequence (xt,λt)
are stationary. Our global convergence guarantee aligns with the guarantee of deterministic SQP
methods (Nocedal and Wright, 2006, Theorem 18.3), as well as the guarantee of recent stochas-
tic SQP methods (Na et al., 2022a, 2023), despite the fact that Algorithm 1 possesses an addi-
tional source of randomness from the sketching solver at each step. The convergence of (xt,λt)
is equivalent to the convergence of ∇Lt if Problem (1.1) is convex. Furthermore, the results
‖∇Lt‖∨‖(xt+1−xt,λt+1−λt)‖

a.s.−→ 0 imply the existence of an attraction region around the
local solution (x?,λ?). Once (xt,λt) lies in the neighborhood, all subsequent iterates will
stay in the neighborhood and (xt,λt)

a.s.−→ (x?,λ?) (Bertsekas, 1982, Chapter 4.4).
Based on Theorem 4.8, we can immediately show the worst-case iteration complexity. Due

to the online nature of the method, the iteration complexity is equivalent to the sample com-
plexity, as we observe one sample in each iteration.
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Corollary 4.9 Consider Algorithm 1 under Assumptions 4.1, 4.2(4.2a), 4.3. Suppose τ
satisfies the condition in Theorem 4.8, and let βt = (t+ 1)−a, χt = (t+ 1)−b where a ∈ (0, 1)
and a < b. Also, define Tε = inft {t ≥ 1 : E[‖∇Lt‖] ≤ ε}. Then, we have

Tε = O
(
ε
− 2
a∧(1−a)∧(b−a)

)
.

In particular, Tε attains the minimum O(ε−4) with a = 1/2 and b = 1.

We should mention that a recent work Curtis et al. (2023) also showed an O(ε−4) iteration
complexity with Newton systems being exactly solved. Our result matches theirs while allow-
ing for the use of sketching solvers to inexactly solve Newton systems. We highlight that Corol-
lary 4.9 is based on a non-asymptotic convergence rate of the averaged expected KKT residual
1
t

∑t−1
i=0 E[‖∇Li‖]. This non-asymptotic result is in contrast to our main inference analysis in

Section 5, where the results hold asymptotically.

5. Statistical Inference via StoSQP

We perform online statistical inference for Problem (1.1) by leveraging StoSQP. To segue into
inference analysis, we suppose in this section that the method converges to a local solution
(x?,λ?) of (1.1); specifically, G? = ∇c? has full row rank and ∇2

xL? is positive definite in the
null space {x ∈ Rd : G?x = 0}. These optimality conditions ensure that the Lagrangian Hes-
sian K? = ∇2L? is non-singular, as necessary for M -estimators in (1.3).

5.1 Iteration recursion

From a high-level view, our method generates a stochastic sequence(
xt+1 − x?
λt+1 − λ?

)
= (1− ᾱt)

(
xt − x?
λt − λ?

)
+ ᾱt

(
θtx
θtλ

)
+ ᾱt

(
δtx
δtλ

)
, (5.1)

where (θtx,θ
t
λ) is a martingale difference with E[(θtx,θ

t
λ) | Ft−1] = 0, and (δtx, δ

t
λ) is the re-

maining error term. Compared to existing stochastic first- and second-order methods (Chen
et al., 2020; Bercu et al., 2020; Duchi and Ruan, 2021; Davis et al., 2024; Boyer and Godichon-
Baggioni, 2023), the randomness brought by the adaptivity and inexactness (AI) of the method
affects all the terms in (5.1). This includes the random stepsize ᾱt, as well as the random
approximation errors in (θtx,θ

t
λ) and (δtx, δ

t
λ) associated with the sketching solver.

We formalize the recursion (5.1) in the following lemma.

Lemma 5.1 Let ϕt = (βt+ηt)/2. The iteration sequence of Algorithm 1 can be expressed as(
xt+1 − x?
λt+1 − λ?

)
= I1,t + I2,t + I3,t

where

I1,t =

t∑
i=0

t∏
j=i+1

{I − ϕj(I + C?)}ϕi
(
θix
θiλ

)
, (5.2a)
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I2,t =
t∑
i=0

t∏
j=i+1

{I − ϕj(I + C?)} (ᾱi − ϕi)
(

∆̄xi
∆̄λi

)
, (5.2b)

I3,t =

t∏
i=0

{I − ϕi(I + C?)}
(
x0 − x?
λ0 − λ?

)
+

t∑
i=0

t∏
j=i+1

{I − ϕj(I + C?)}ϕi
(
δix
δiλ

)
, (5.2c)

and

C? = −(I − E[K?S(ST (K?)2S)†STK?])τ , (5.3a)(
θix
θiλ

)
= −(I + Ci)K

−1
i

(
ḡi −∇fi

0

)
+

{(
∆̄xi
∆̄λi

)
− (I + Ci)

(
∆̃xi
∆̃λi

)}
, (5.3b)(

δix
δiλ

)
= −(I + Ci)

{
(K?)−1

(
ψix
ψiλ

)
+
{
K−1
i − (K?)−1

}(∇xLi
ci

)}
− (Ci − C?)

(
xi − x?
λi − λ?

)
,(5.3c)(

ψix
ψiλ

)
=

(
∇xLi
ci

)
−K?

(
xi − x?
λi − λ?

)
. (5.3d)

Under Assumptions 4.2, 4.3, θi = (θix,θ
i
λ) is a martingale difference with E[θi | Fi−1] = 0.

From Lemma 5.1, we observe that the recursion consists of three terms. I1,t is a martingale
that accounts for the randomness of sampling ξt to estimate∇ft and the randomness of sketch-
ing {St,j}j to solve QP (3.1). I2,t captures the randomness of the stepsize ᾱt. I3,t contains
all the remainder terms. The asymptotic analysis of each term is provided in Appendix E.4.

Next, we establish a continuity property for the projection matrix KtS(STK2
t S)†STKt, a

critical quantity of the sketching solver appeared in Ct and C? (cf. Lemma 4.4(b) and (5.3a)).

Lemma 5.2 Suppose Kt,K
? ∈ R(d+m)×(d+m) are non-singular. For any S ∈ R(d+m)×s,

‖KtS(STK2
t S)†STKt −K?S(ST (K?)2S)†STK?‖ ≤ 2‖Kt −K?‖

σmin(K?)
· ‖S‖‖S†‖,

where σmin(·) denotes the least singular value.

Lemma 5.2 indicates that the difference between the projection matricesKtS(STK2
t S)†STKt

and K?S(ST (K?)2S)†STK? is proportional to the difference between the Hessian matrices
Kt and K?, with a random factor scaling with the condition number of the sketching matrix S.
In practice, using sketching vectors (s = 1) can reduce computational cost and result in a unit
condition number ‖S‖‖S†‖ = 1.

Lemma 5.2 leads to the following condition to ensure the convergence of Ct, which is the
expectation of the product of projection matrices.

Assumption 5.3 We assume that S satisfies E[‖S‖‖S†‖] ≤ ΥS for a constant ΥS > 0.

Corollary 5.4 Under Assumption 5.3, ‖Ct − C?‖ ≤ 2τΥS‖Kt −K?‖/σmin(K?).
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5.2 Asymptotic rate and normality

We are now ready to state inference theory. Let S1, . . . , Sτ
iid∼ S, and define a random matrix:

C̃? = −
τ∏
j=1

(I −K?Sj(S
T
j (K?)2Sj)

†STj K
?). (5.4)

Clearly, E[C̃?] = C?. Also, define the sandwich matrix that appears as the limiting covariance
of M -estimators in (1.3):

Ω? = (K?)−1cov(∇̄L?)(K?)−1 =

(
∇2
xL? (G?)T

G? 0

)−1(cov(∇F (x?; ξ)) 0
0 0

)(
∇2
xL? (G?)T

G? 0

)−1

.(5.5)

To allow for general stepsize control sequences {βt, χt}t, we define three quantities:

β := lim
t→∞

t

(
1− βt−1

βt

)
, β̃ := lim

t→∞
tβt, χ := lim

t→∞
t

(
1− χt−1

χt

)
.

The polynomial sequences 1/tω are specialized in Lemma 5.12. For sake of understanding, we
here mention that if βt = O(1/tω) for any ω > 0, then we simply have β = −ω.

Theorem 5.5 (Local convergence rate) Under Assumptions 4.1, 4.2(4.2a, 4.2e), 4.3,
we suppose {βt, χt}t satisfy

χ < β < 0, β̃ ∈ (0,∞], 1.5(1− ρτ ) + β/β̃ > 0. (5.6)

Then, for any υ > 0 and any constant p ∈ (0, 1] such that (1−ρτ )+p(χ−0.5β)/β̃ > 0, we have
(if p < 1, the second O(·) in the following results can be strengthened to o(·))

‖(xt − x?,λt − λ?)‖ = o
(√

βt{log(1/βt)}1+υ
)

+O(χpt /β
p
t ) a.s.

Furthermore, if (4.2a) is strengthened to (4.2b), then

‖(xt − x?,λt − λ?)‖ = O
(√

βt log(1/βt)
)

+O(χpt /β
p
t ) a.s.

The asymptotic convergence rate consists of two terms. The first term o(
√
βt{log(1/βt)}1+υ)

comes from the strong law of large number for the martingale I1,t, which can be strength-
ened to O(

√
βt log(1/βt)) if the stochastic gradient estimate ḡt has a bounded moment of order

higher than two (Duflo, 1997, Theorem 1.3.15). That is, the bounded 3rd moment in (4.2b) can
be directly replaced by a bounded 2+ δ moment. The second term O(χpt /β

p
t ) comes from I2,t,

which characterizes the adaptivity of the random stepsize ᾱt. This term is suppressed if we de-
grade the method to a non-adaptive one (χt = 0).

We will investigate the condition (5.6) in Lemma 5.12 and demonstrate that it is week enough
to allow for different setups of sequences {βt, χt}t. Most importantly, the condition (5.6) cov-
ers the setup of βt = 1/t, corresponding to β = −1 and β̃ = 1, which leads to the optimal
central limit theorem rate (cf. Theorem 5.6). In fact, (5.6) reveals a relationship between the
inexactness of the sketching solver (i.e., the parameter τ) and the setup of the stepsize. When
β̃ =∞ (e.g., βt = 1/tω for ω < 1), the third condition in (5.6) holds trivially.
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Furthermore, we note that (1−ρτ )+p(χ−0.5β)/β̃ > 0 is always satisfied for small p (specif-
ically, p = 1 if β̃ =∞). Thus, our condition on the adaptivity gap χt is simply χt = o(βt) (i.e.,
χ < β). We have to strengthen this condition to χt = o(β1.5

t ) to enable inference analysis in
Theorem 5.6. Even that, it’s worth mentioning that the methods proposed in Berahas et al.
(2021, 2023); Curtis et al. (2021) all set χt = O(β2

t ) (i.e., χ ≤ 2β). Our analysis relaxes these
designs to allow for a larger χt, resulting in a wider interval (3.6) for stepsize adaptivity.

Theorem 5.6 (Asymptotic normality) Under Assumptions 4.1, 4.2(4.2b, 4.2e), 4.3,
5.3, we strengthen χ < β in the condition (5.6) to χ < 1.5β. Then, we have√

1/ᾱt · (xt − x?,λt − λ?)
d−→ N (0,Ξ?), (5.7)

where Ξ? is the solution of the following Lyapunov equation:(
{1 + β/(2β̃)}I + C?

)
Ξ? + Ξ?

(
{1 + β/(2β̃)}I + C?

)
= E[(I + C̃?)Ω?(I + C̃?)T ]. (5.8)

Furthermore, let us define q = 1 if 1−ρτ +(χ−β)/β̃ > 0, otherwise q = {(1−ρτ )β̃+εβ}/(β−
χ) ∈ (0, 1) for any ε ∈ (0, 1/6]. Then, for any w = (wx,wλ) ∈ Rd+m such that wTΞ?w 6= 0,

sup
z∈R

∣∣∣∣∣P
(√

1/ᾱt ·wT (xt − x?,λt − λ?)√
wTΞ?w

≤ z

)
− P (N (0, 1) ≤ z)

∣∣∣∣∣
= o(β

1/6
t log(1/βt)) +O(χqt/β

q+0.5
t ), (5.9)

where O(·) can be strengthened to o(·) if q < 1.

We mention that, to our knowledge, (5.7) provides the first primal-dual asymptotic normal-
ity result for a constrained online estimation procedure,while existing works in Duchi and Ruan
(2021); Davis et al. (2024) have only established primal asymptotic normality. Although the un-
certainty quantification of primal variables x? has a natural meaning as they represent model
parameters, the uncertainty quantification of dual variables λ? is also significant in two ways be-
yond the technical interest.

(a) The dual variables are widely used as optimality certificates in algorithmic designs. In partic-
ular, the normality of (xt,λt) enables the construction of a confidence region for the gradi-
ent vector ∇xL(xt,λt); it suggests that the optimality residual, ‖∇xL(xt,λt)‖2, exhibits a
(generalized) chi-squared limiting distribution. See (Jones, 1983, Section 4.1) and (Shapiro
et al., 2014, Section 5.6.2) for analogous constructions. By checking whether the region con-
tains 0, we can determine whether we have sufficiently achieved the optimality condition at
the given significance level and terminate the algorithm accordingly.

(b)Methods for solving inequality-constrained problems often involve equality-constrained sub-
problems(Na et al., 2023), and constructing confidence intervals for dual variables associated
with inequality constraints is crucial for active-set identification under uncertainty. This pa-
per serves as a first step toward that goal. Specifically, let λ? ∈ Rm be the dual solution asso-
ciated with the constraints c(x) ≤ 0. By the strict complementarity condition (Davis et al.
(2024), Example 2.1), we know λ?i > 0⇔ ci(x

?) = 0 and λ?i = 0⇔ ci(x
?) < 0. Thus, if the

confidence interval for λ?i contains 0, it suggests that the i-th constraint is not identified as
active at the given significance level, and vice versa.
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The explicit form of the solution to (5.8) is given by

Ξ? = U
(
Θ ◦ UTE[(I + C̃?)Ω?(I + C̃?)T ] U

)
UT with [Θ]k,l = 1/(σk + σl + β/β̃), (5.10)

where I+C? = UΣUT with Σ = diag(σ1, . . . , σd+m) is the eigenvalue decomposition of I+C?,
and ◦ denotes the matrix Hadamard product.

From Theorem 5.6, we see that the limiting covariance Ξ? depends on the sandwich matrix
Ω? in (5.5), which is the same as the optimal one forM -estimators in (1.3), but it also depends
on the underlying sketching distribution. The sketching matrices affect both the left- and right-
hand sides of the Lyapunov equation (5.8). If we degrade the randomized sketching solver to an
exact QP solver, then τ =∞, C? = C̃? = 0, and

Ξ? =
Ω?

2 + β/β̃
. (5.11)

We present the following corollary to further connect Theorem 5.6 with the asymptotic minimax
optimality of constrained estimation problems established in (Duchi and Ruan, 2021, Theorem
1) and (Davis et al., 2024, Theorem 3.2).

Corollary 5.7 Let βt = 1/t, χt = o(β1.5
t ), and τ such that ρτ < 1/3. Then,

(a): Exact QP solver: Ξ? = Ω?,
(b): Sketching solver: Ξ? � Ω? but ‖Ξ? − Ω?‖ ≤ 3ρτ‖Ω?‖.

By Corollary 5.7, the limiting covariance of StoSQP obtained by suppressing the sketching
solver matches the asymptotic minimax optimum Ω? that is achieved by offline M -estimators
and online projection-based estimators (Duchi and Ruan, 2021; Davis et al., 2024). To the best
of our knowledge, our estimator based on StoSQP is the first online estimator that does not rely
on projection operators; we instead replace projection by employing a series of linear-quadratic
approximation of nonlinear problems. On the other hand, when employing the sketching solver
to inexactly solve QPs, the limiting covariance of our method exceeds the optimum Ω?, indi-
cating that the sketching solver (to address the computation concern of second-order methods)
indeed compromises optimality. Fortunately, this compromise is marginal since the distance
between Ξ? and Ω? decays exponentially fast with the number of iterations τ performed for the
sketching solver.

The Berry-Esseen bound in (5.9) consists of two terms. The first term is due to the random
sample and random sketching, while the second term is due to the random stepsize. Our choice
of q always guarantees that χqt/β

q+0.5
t = o(1). We note that q = 1 when β̃ =∞ (e.g., βt = 1/tω

for ω < 1).

Remark 5.8 Since existing studies in Duchi and Ruan (2021); Davis et al. (2024) heavily
used projection notation and only established the normality of the primal estimator, we further
elucidate in this remark the connection between our joint covariance Ω? (i.e., StoSQP with ex-
act QP solver) and the covariance in (Davis et al., 2024, Corollary 5.2) and (Duchi and
Ruan, 2021, Theorem 5).

Recall that G? = ∇c(x?) ∈ Rm×d is the constraints Jacobian. Let Z? ∈ Rd×(d−m) be a
matrix whose columns are orthonormal and form the bases of ker(G?). Then, using the relation
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G?T (G?G?T )−1G? + Z?Z?T = Id, we can verify that(
∇2
xL? G?T

G? 0m

)−1

=

(
A1 AT2
A2 A3

)
(5.12)

where

A1 = Z?(Z?T∇2
xL?Z?)−1Z?T , A2 = (G?G?T )−1G?(I −∇2

xL?A1),

A3 = (G?G?T )−1G?(∇2
xL?A1∇2

xL? −∇2
xL?)(G?G?

T )−1G?.

Note that all above matrix inverses are well-defined under the conditions of (Davis et al., 2024,
Example 2.1 and Section 5.1) (or, equivalently, under our conditions). Plugging the above dis-
play into (5.5), we see that the marginal covariance of x is

Ω?
x,x = A1cov(∇F (x?; ξ))A1. (5.13)

Furthermore, we note that A1 = (Z?Z?T∇2
xL?Z?Z?T )† by verifying the definition of the Moore-

Penrose pseudoinverse. Since Z?Z?T = Projker(G?) and ker(G?) is the tangent space of the
manifold c(x) at x?, we see (5.13) matches the result in (Davis et al., 2024, Corollary 5.2).

Remark 5.9 We note that Ω? is clearly singular. We investigate in this remark the support
subspace of the limiting distribution. Let us write out the expression of Ω? using the notation
in Remark 5.8. We have

Ω? =

(
A1

A2

)
cov(∇F (x?; ξ))

(
A1 AT2

)
=

(
A1cov(∇F (x?; ξ))A1 A1cov(∇F (x?; ξ))AT2
A2cov(∇F (x?; ξ))A1 A2cov(∇F (x?; ξ))AT2

)
.

Note that rank(A1) = rank(Z?(Z?T∇2
xL?Z?)−1/2) =d−m, which implies rank(A2) =m (since

the first block-column matrix [A1;A2] in (5.12) has rank d). In the following presentation, we
suppose rank(cov(∇F (x?; ξ))) = d.

• Primal covariance. Since

rank(Ω?
x,x) = rank(A1cov(∇F (x?; ξ))AT1 ) = rank(A1cov(∇F (x?; ξ))1/2) = rank(A1) = d−m,

the support subspace of Ω?
x,x has d−m dimensions. Specifically, we decompose Rd into Rd =

ker(G?)⊕span(G?T ), where the tangent space ker(G?) is a (d−m)-dimensional subspace of Rd
and the normal space span(G?T ) is an m-dimensional subspace of Rd. Then, by the definition
of A1, we know that Ω?

x,x has support in the tangent space ker(G?) and vanishes in the normal
space span(G?T ).

• Dual covariance. Since

rank(Ω?
λ,λ) = rank(A2cov(∇F (x?; ξ))AT2 ) = rank(A2cov(∇F (x?; ξ))1/2) = rank(A2) = m,

we know Ω?
λ,λ is non-degenerate along all directions in Rm and has full support over Rm.

• Joint primal-dual covariance. Since rank(Ω?) = d, we know the support subspace of Ω?

has d dimensions. Let us decompose Rd+m into Rd+m = (ker(G?)⊗Rm)⊕ (span(G?T )⊗0m).
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More clearly, ker(G?)⊗Rm is a d-dimensional subspace of Rd+m and span(G?T )⊗0m is an m-
dimensional subspace of Rd+m; there bases can be expressed as:(

Z? 0d×m
0m×(d−m) Im

)
∈ R(d+m)×d ⊕

(
G?T

0m

)
∈ R(d+m)×m.

Then, the joint covariance Ω? has support in the subspace ker(G?)⊗Rm and vanishes in the sub-
space span(G?T )⊗ 0m.

5.3 An estimator of the covariance matrix

We analyze a plug-in covariance matrix estimator. The sketch-related quantities in (5.8), C? =
E[C̃?] and P ? = E[(I+C̃?)Ω?(I+C̃?)T ], can be estimated by computing (note C̃? is defined in
(5.4) and Ωt is defined in (5.14))

C̃t := −
τ−1∏
j=0

(
I −KtSt,j(S

T
t,jK

2
t St,j)

†STt,jKt

)
,

Ĉt :=
1

t

t−1∑
i=0

C̃i, and P̂t :=
1

t

t−1∑
i=0

(I + C̃i)Ωi(I + C̃i)
T .

Since solving Lyapunov equation requires additional effort and P̂t requires matrix inverse even
if we do not perform inference at the current step, in what follows, we are motivated by
Corollary 5.7 and simply neglect the sketch-related quantities in (5.8) by estimating (5.11) in-
stead. We demonstrate that such negligence only leads to an O(ρτ ) error term, which is gen-
erally small even for a moderate τ . Specifically, our estimator of Ξ? is defined as:

Ωt = K−1
t

(
sample_cov({ḡi}t−1

i=0) 0
0 0

)
K−1
t and Ξt =

Ωt

2 + β/β̃
, (5.14)

where sample_cov({ḡi}t−1
i=0) = 1

t

∑t−1
i=0 ḡiḡ

T
i −
(

1
t

∑t−1
i=0 ḡi

)(
1
t

∑t−1
i=0 ḡi

)T
is the sample covariance.

Theorem 5.10 Consider (5.14) under the conditions of Theorem 5.6 with (4.2c). For any υ > 0,

‖Ξt − Ξ?‖ = O
(√

βt log(1/βt)
)

+ o
(√

(log t)1+υ/t
)

+O(ρτ ) a.s.

Furthermore, for any w = (wx,wλ) ∈ Rd+m such that wTΞtw 6= 0,

sup
z∈R

∣∣∣∣∣P
(√

1/ᾱt ·wT (xt − x?,λt − λ?)√
wTΞtw

≤ z

)
− P (N (0, 1) ≤ z)

∣∣∣∣∣
= o(β

1/6
t log(1/βt)) +O(χqt/β

q+0.5
t ) +O(ρτ ),

where q ∈ (0, 1] is defined in Theorem 5.6.

The second term o
(√

(log t)1+υ/t
)
can be absorbed into the first term O

(√
βt log(1/βt)

)
if β > −1, e.g., βt = 1/tω for ω ∈ (0, 1). We require condition (4.2c) for the estimation of the
limiting covariance, which ensures the convergence of the sample covariance of {ḡi}t−1

i=0. The
bounded 4-th moment of ḡt is also standard in the literature, as required for analyzing different
covariance estimators for SGD methods (Chen et al., 2020; Zhu et al., 2021) .
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Remark 5.11 (Discussion on control sequences {βt, χt = ηt − βt}) We note that the nor-
mality in (5.7) utilizes the adaptive stepsize ᾱt, which nevertheless is controlled by the sequences
{βt, χt}. We discuss their conditions in this remark.

The global convergence requires (4.4) (Theorem 4.8); the local convergence requires (5.6)
(Theorem 5.5); and the inference additionally requires χ < 1.5β (Theorem 5.6). In fact, by
Raabe’s test, (4.4) also relates to the quantities β and χ: (4.4) holds if −1 ≤ β < −0.5 and χ <
−1. We now specialize βt and χt to be polynomial in t, and demonstrate that the conditions
can be easily satisfied.

Lemma 5.12 Suppose βt = c1/t
c2 and χt = βc3t . Then,

(a): (4.4) holds if c1 > 0, c2 ∈ (0.5, 1], c3 >
1
c2

=⇒ global convergence.

(b): (4.4) and (5.6) hold if additionally c1 >
1

1.5(1−ρτ ) when c2 = 1 =⇒ local convergence.

(c): (4.4) and (5.6) hold with χ < 1.5β if additionally c3 > 1.5∨ 1
c2

=⇒ asymptotic inference.

The proof of the above lemma is immediate by noting that β = −c2, χ = −c2c3, and β̃ = c1

if c2 = 1 and ∞ if c2 < 1. Thus, we omit it.

6. Numerical Experiments

We provide experimental results in this section. We apply AI-StoSQP to both benchmark con-
strained nonlinear optimization problems in CUTEst set (Gould et al., 2014) and to linearly/
nonlinearly constrained regression problems. For regression problems, we explore both squared
loss and logistic loss. For conciseness, some of results are deferred to Appendix F.

6.1 Benchmark constrained problems

The CUTEst test set collects a number of nonlinear optimization problems with and without
constraints. We implement eight equality-constrained problems: MARATOS, ORTHREGB, HS7, HS48,
HS78, BT9, GENHS28, HS39. The solution of each problem is solved by IPOPT solver (Wächter
and Biegler, 2006) with the initialization specified by the CUTEst package. Note that the bench-
mark problems may not have unique solutions; however, we observed that by initializing at the
same point, our StoSQP method consistently converges to the same solution as IPOPT, which
is also a widely used (deterministic) SQP-based solver.

For our method, we perform 105 iterations and, at each step, we perform τ = 40 random-
ized Kaczmarz steps to approximately solve QPs. Given the iterate xt, we generate ḡt ∼
N (∇ft, σ2(I + 11T )), where 1 ∈ Rd is an all-one vector. We also generate the (i, j) and (j, i)
entries of H̄t from N ((∇2ft)i,j , σ

2). We vary σ2 ∈ {10−4, 10−2, 10−1, 1} and let βt = 1/t0.501

(power slightly larger than 0.5) and χt = β2
t . We randomly choose ᾱt ∼ Uniform([βt, ηt]) with

ηt = βt+χt. For each problem, we aim to perform inference for each individual variable {x?i }di=1

by setting the nominal coverage probability to 95%. Note from Remark 5.9 that Ω?
x,x may van-

ish along the direction in the normal space span(G?T ). Thus, we consider inferring only those
x?i such that the canonical basis ei /∈ span(G?T ). The confidence intervals are constructed by
estimating the limiting covariance using Theorem 5.10. The performance of the method is mea-
sured by the mean absolute error (MAE) ‖xt−x?‖, the average coverage rate (Avg Cov) of the
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confidence intervals among individuals x?i , the average length (Avg Len) of the confidence in-
tervals, and the computational flops per iteration. We repeat the experiments 200 times when
computing the coverage rate.

The results are summarized in Table 1. From Table 1, we have the following observations.
(a) In terms of MAE, our method achieves reasonably small MAE values across all problems.
As the noise level σ2 for the objective gradient and Hessian estimates gradually increases, the
MAE also increases. This aligns with our intuition, as noisier estimates of the objective quanti-
ties will require more samples, i.e., longer iterations, to ensure the accuracy of the estimate xt.
(b) In terms of coverage rate, we observe for the majority of cases that our constructed confi-
dence intervals cover the true solution with probability of at least 95%, and the coverage rate
is robust to the sampling variance σ2. There are scenarios, such as HS78 and ORTHREGB (σ2 =
10−4), where our confidence intervals may exhibit over- or under-coverage. This phenomenon
can be attributed to two factors: (i) our limiting covariance estimate has an O(ρτ ) bias due to
sketching techniques, which may either inflate or deflate the estimated variance for each indi-
vidual variable, and (ii) we run only a limited number of steps (i.e., the standardized sequence
may have not yet reached a stationary stage), given the problem’s scale and the challenges in-
herent in the online inference task. Nevertheless, our observation suggests that neglecting the
sketching randomness in the estimation of the limiting covariance does not obviously deterio-
rate the coverage rate. However, using (sparse) sketching vectors to solve QPs as in (3.4) is com-
putationally more efficient than exact second-order methods.
(c) In terms of confidence intervals’ length, we see that the average length gradually increases
as σ2 increases. When σ2 increases from 10−4 to 1, the length increases from 10−4 to 10−2.
This outcome is expected, as the asymptotic covariance Ξ? depends on cov(∇f(x?; ξ)) in (5.8).
(d) In terms of computational flops per iteration, it is uniform over different σ2 and inde-
pendent runs. This quantity basically reflects the problem scale.

We testify the almost sure convergence rate of our method (Theorem 5.5) in Appendix F.1.

6.2 Constrained regression problems

We implement our method on constrained regression problems, considering both linear regres-
sion and logistic regression (see Example 1). We also allow for either linear constraints Ax = d
or nonlinear constraints ‖x‖2 = b. Therefore, there are four cases in total. We compare our on-
line inference method with offline constrainedM -estimation. For fair comparisons, we solveM -
estimation problems, which are constrained finite-sum problems, using `1-penalized SQP meth-
ods with backtracking line search to select proper stepsizes (Nocedal and Wright, 2006). While
offlineM -estimators enjoy asymptotic minimax optimal performance with the least covariance
(as introduced in (1.3)), the proposed online StoSQP method is promising due to its lower per-
iteration computational complexity. (Our method also achieves optimal performance under ap-
propriate setups; cf. Corollary 5.7.)

To be specific, for each case (regression model + constraint type), we vary the parameter di-
mension d∈ {5, 20, 40, 60}, and the true solution x? is linearly spaced between 0 and 1. For each
d, our method randomly samples a covariate ξa ∼ N (0, 5I + Σa) at each step, with three dif-
ferent choices of Σa (also considered in Chen et al. (2020)). (i) Identity: Σa = I. (ii) Toeplitz:
[Σa]i,j = r|i−j|. (iii) Equi-correlation: [Σa]i,j = r for i 6= j and [Σa]i,i = 1. For linear con-
straints, we letA ∈ Rm×d withm = d

√
de and entries being independently generated from stan-
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Prob σ2 MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

MARATOS

10−4 0.04(0.03) 96.00 0.11(<0.01)

137.0010−2 0.41(0.31) 95.00 1.10(0.01)
10−1 1.42(1.07) 93.50 3.48(0.09)

1 4.44(3.29) 95.50 10.96(0.74)

ORTHREGB

10−4 1.76(1.17) 88.90 27.64(4.80)

3867.4010−2 4.44(3.51) 96.42 58.02(12.64)
10−1 9.90(17.99) 95.84 40.80(9.06)

1 38.19(44.51) 96.72 24.36(32.92)

HS7

10−4 0.02(0.01) 93.00 0.03(<0.01)

137.0010−2 0.14(0.12) 92.50 0.35(<0.01)
10−1 0.45(0.34) 95.00 1.10(0.01)

1 1.28(0.98) 97.00 3.48(0.09)

HS48

10−4 0.03(0.01) 94.50 0.02(0.01)

379.0010−2 0.25(0.11) 95.70 0.24(0.11)
10−1 0.85(0.38) 94.00 0.76(0.35)

1 2.51(1.25) 97.50 2.41(1.12)

HS78

10−4 0.01(<0.01) 97.80 0.02(<0.01)

434.0110−2 0.15(0.07) 99.10 0.17(0.04)
10−1 0.51(0.27) 96.80 0.55(0.12)

1 1.41(0.69) 99.10 1.74(0.37)

BT9

10−4 0.06(0.03) 93.00 0.05(<0.01)

308.0110−2 0.55(0.29) 96.25 0.55(0.01)
10−1 1.91(0.92) 95.50 1.76(0.07)

1 24.54(1.07) 94.50 6.58(5.57)

GENHS28

10−4 0.03(0.01) 97.75 0.04(0.04)

1244.0710−2 0.26(0.09) 98.33 0.42(0.37)
10−1 0.76(0.27) 98.17 1.34(1.18)

1 2.44(0.94) 97.83 4.22(3.73)

HS39

10−4 0.06(0.03) 93.00 0.05(<0.01)

308.0110−2 0.55(0.29) 96.25 0.55(0.01)
10−1 1.91(0.92) 95.50 1.76(0.07)

1 24.54(1.07) 94.50 6.58(5.57)

Table 1:Results of eight benchmark CUTEst problems.We measure performance using the mean
absolute error (MAE), the average coverage rate (Ave Cov) and the average length (Ave Len) of
the confidence intervals, and the computational flops per iteration. Standard errors are reported
in the bracket for MAE and Ave Len. We do not report standard errors for Ave Cov as they are
meaningless for a 0-1 indicator vector; the standard error is given by

√
r(1− r) with r being

the coverage rate. The flops/iter is uniform over different noise level σ2 and different runs (i.e.,
the standard error is 0).

dard normal distribution. For logistic models, we regularize the loss by a quadratic penalty with
unit parameter. Following Section 6.1, we perform inference for each individual variable {x?i }di=1
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by setting the nominal coverage probability to 95%. We also follow Section 6.1 to implement
our method, including the number of iterations, the setup of the stepsize, and the number of
sketching steps. In contrast to online methods, the offline M -estimation method generates all
105 samples at once and uses those fixed samples to compute the estimator. The covariance ma-
trix is also estimated by a plug-in estimator. We report the results only for r = 0.5 for Toeplitz
and r = 0.2 for Equi-correlation. The comprehensive comparisons between inexact and exact
methods with varying d, r and τ are reported in Section F.2.

We summarize the comparison results in Tables 2 and 3, including the mean absolute error
(MAE) ‖xt − x?‖, the average coverage rate (Avg Cov) of the confidence intervals among
individuals x?i , the average length (Avg Len) of the confidence intervals, and the computational
flops per iteration. From Tables 2 and 3, we summarize the following observations.

(a) In terms of MAE and Ave Len, offline constrainedM -estimators achieve results that are an
order of magnitude smaller than those of online StoSQP. This gap aligns with our analysis from
two perspectives. First, M -estimators exhibit

√
n-consistency and optimal asymptotic covari-

ance, while StoSQP estimators exhibit only
√

1/ᾱn-consistency, where ᾱn denotes the stepsize
(in this case,

√
n0.501). Clearly, as long as ᾱn 6� 1/n, the covariance of StoSQP estimators is

not comparable to that of M -estimators when the estimators are scaled by the same scalar.
Second, the randomization of the sketching solver within StoSQP introduces additional un-
certainty to the estimators, further enlarging the asymptotic covariance (cf. Corollary 5.7), al-
though this enlargement is controlled by the precision of the sketching solver and decreases
exponentially with the number of sketching steps.

(b) In terms of Ave Cov, the proposed online StoSQP method achieves promising coverage
rates that are very close to 95% for both linear and logistic models as well as for both linear and
nonlinear constraints, matching the performance of offlineM -estimators. The only potential ex-
ception occurs when d = 5, where StoSQP may exhibit undercoverage (around 90%) for linear
and logistic models. Upon closer examination of these scenarios, we find that the condition num-
ber of the Lagrangian Hessian of these problems exceeds d3 = 125, indicating that these prob-
lems are ill-conditioned and difficult to solve, particularly when using a sketching solver that
seems overkill (see (4.3)). Furthermore, SGD-based estimators are also observed to exhibit un-
dercoverage for various problems due to significant challenges of online inference tasks (Zhu
et al., 2021). To our knowledge, StoSQP is the first method capable of conducting online sta-
tistical inference for constrained model parameters. While projection-based estimators (Duchi
and Ruan, 2021; Davis et al., 2024) may demonstrate similar asymptotic normality, estimating
their limiting covariance remains unclear.

(c) In terms of computational flops per iteration, offlineM -estimation involves processing the
full batch of samples, resulting in significant computational and memory costs. In contrast, our
online method processes a single sample, requiring significantly fewer computations. Addition-
ally, the inexact sketching solver for solving Newton systems further reduces the dominant com-
putational cost of the proposed second-order method. Overall, the reduced computational flops
per iteration are a major advantage of our online StoSQP method over offline methods.

Further discussions of exact and inexact StoSQP methods are provided in Section F.2.
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Obj Cons d Design Cov MAE (10−2) Ave Cov Ave Len (10−2) Flops/iter

Lin

Lin

5

Identity 0.20(0.08) 95.40 0.19(0.03) > 1.6× 107

3.09(1.19) 89.00 2.43(0.39) 380.00
Toeplitz 0.20(0.08) 94.60 0.19(0.03) > 1.7× 107

(r = 0.5) 2.84(1.08) 90.70 2.39(0.41) 380.00
Equi-corr 0.21(0.09) 94.50 0.19(0.03) > 1.6× 107

(r = 0.2) 3.03(1.04) 90.70 2.41(0.40) 380.00

20

Identity 0.51(0.09) 94.98 0.23(0.02) > 7.1× 107

6.82(1.18) 93.67 2.87(0.22) 2340.11
Toeplitz 0.52(0.10) 94.35 0.23(0.02) > 6.5× 107

(r = 0.5) 6.83(1.07) 93.42 2.89(0.22) 2340.11
Equi-corr 0.52(0.09) 94.85 0.23(0.02) > 6.3× 107

(r = 0.2) 6.70(1.10) 94.40 2.89(0.23) 2340.11

40

Identity 0.75(0.09) 94.99 0.23(0.01) > 2.3× 108

10.02(1.15) 94.32 3.01(0.14) 7160.90
Toeplitz 0.75(0.09) 94.97 0.23(0.01) > 2.0× 108

(r = 0.5) 9.84(1.49) 94.60 3.03(0.16) 7160.90
Equi-corr 0.75(0.09) 95.35 0.24(0.01) > 1.9× 108

(r = 0.2) 9.84(1.16) 94.69 3.03(0.15) 7160.90

60

Identity 0.95(0.09) 94.47 0.24(0.01) > 4.4× 108

12.34(1.18) 94.91 3.12(0.12) 14382.86
Toeplitz 0.94(0.09) 94.81 0.24(0.01) > 3.5× 108

(r = 0.5) 12.29(1.18) 95.21 3.14(0.12) 14382.86
Equi-corr 0.94(0.10) 95.07 0.24(0.01) > 2.9× 108

(r = 0.2) 12.07(1.22) 95.66 3.14(0.13) 14382.86

Non

5

Identity 0.25(0.10) 94.90 0.22(0.03) > 9.3× 106

3.25(1.10) 93.40 2.82(0.37) 330.00
Toeplitz 0.26(0.10) 93.90 0.23(0.03) > 9.9× 106

(r = 0.5) 3.16(1.01) 95.00 2.88(0.37) 330.00
Equi-corr 0.25(0.08) 94.80 0.23(0.03) > 9.7× 106

(r = 0.2) 3.21(1.07) 93.60 2.85(0.37) 330.00

20

Identity 0.56(0.09) 94.65 0.25(0.01) > 3.4× 107

7.08(1.11) 94.55 3.14(0.09) 2100.07
Toeplitz 0.56(0.10) 94.83 0.25(0.01) > 3.7× 107

(r = 0.5) 7.15(1.11) 95.35 3.18(0.08) 2100.07
Equi-corr 0.56(0.09) 95.23 0.25(0.01) > 3.6× 107

(r = 0.2) 7.11(1.14) 94.77 3.18(0.08) 2100.07

40

Identity 0.79(0.09) 95.23 0.25(0.01) > 6.7× 107

10.32(1.15) 94.94 3.23(0.06) 6560.62
Toeplitz 0.81(0.09) 95.20 0.25(0.01) > 8.0× 107

(r = 0.5) 10.34(1.20) 95.45 3.27(0.06) 6560.62
Equi-corr 0.81(0.09) 94.94 0.25(0.01) > 8.0× 107

(r = 0.2) 10.53(1.17) 94.99 3.28(0.06) 6560.62

60

Identity 0.99(0.09) 94.89 0.25(0.01) > 1.0× 108

12.95(1.28) 95.04 3.30(0.06) 13422.14
Toeplitz 1.00(0.09) 94.82 0.25(0.01) > 1.1× 108

(r = 0.5) 12.80(1.29) 95.46 3.34(0.05) 13422.14
Equi-corr 0.99(0.09) 95.28 0.25(0.01) > 1.2× 108

(r = 0.2) 12.88(1.20) 95.63 3.35(0.05) 13422.14

Table 2: Comparison results of online StoSQP and offlineM -estimation for constrained regres-
sion problems (linear models). For each cell, the top row shows the result of the M -estimator,
while the bottom row shows the result of StoSQP.
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Obj Cons d Design Cov MAE (10−2) Ave Cov Ave Len (10−2) Flops/iter

Logit

Lin

5

Identity 0.13(0.06) 95.00 0.13(0.03) > 1.8× 107

2.14(0.86) 86.40 1.56(0.42) 380.00
Toeplitz 0.13(0.06) 95.60 0.12(0.03) > 1.2× 107

(r = 0.5) 1.97(0.77) 89.20 1.53(0.42) 380.00
Equi-corr 0.14(0.06) 93.40 0.12(0.03) > 1.3× 107

(r = 0.2) 2.03(0.81) 88.00 1.55(0.41) 380.00

20

Identity 0.31(0.05) 95.20 0.14(0.01) > 1.0× 108

4.28(0.79) 92.25 1.73(0.15) 2340.11
Toeplitz 0.30(0.05) 94.60 0.13(0.01) > 9.4× 107

(r = 0.5) 4.01(0.83) 92.28 1.65(0.15) 2340.11
Equi-corr 0.29(0.05) 95.27 0.13(0.01) > 9.8× 107

(r = 0.2) 3.86(0.73) 93.20 1.61(0.14) 2340.11

40

Identity 0.40(0.05) 95.05 0.13(0.01) > 3.6× 108

5.13(0.64) 94.94 1.59(0.09) 7160.90
Toeplitz 0.39(0.05) 94.65 0.12(0.01) > 3.5× 108

(r = 0.5) 4.89(0.68) 94.84 1.51(0.09) 7160.90
Equi-corr 0.35(0.04) 95.07 0.11(0.01) > 3.2× 108

(r = 0.2) 4.28(0.61) 95.81 1.38(0.09) 7160.90

60

Identity 0.48(0.05) 94.74 0.12(0.01) > 6.2× 108

5.85(0.66) 95.20 1.51(0.08) 14382.86
Toeplitz 0.45(0.04) 94.89 0.11(0.01) > 6.2× 108

(r = 0.5) 5.40(0.61) 95.66 1.42(0.08) 14382.86
Equi-corr 0.39(0.03) 95.00 0.10(0.01) > 5.9× 108

(r = 0.2) 4.61(0.52) 96.19 1.24(0.07) 14382.86

Non

5

Identity 0.17(0.07) 94.70 0.17(0.02) > 5.2× 106

2.74(0.91) 89.30 2.08(0.27) 330.00
Toeplitz 0.18(0.07) 94.30 0.16(0.02) > 5.0× 106

(r = 0.5) 2.45(0.85) 92.00 2.02(0.28) 330.00
Equi-corr 0.18(0.07) 94.50 0.16(0.02) > 5.4× 106

(r = 0.2) 2.47(0.93) 91.10 2.05(0.28) 330.00

20

Identity 0.34(0.06) 94.98 0.15(0.01) > 1.8× 107

4.64(0.85) 93.20 1.92(0.07) 2100.07
Toeplitz 0.33(0.05) 94.93 0.15(0.01) > 1.8× 107

(r = 0.5) 4.38(0.73) 93.52 1.83(0.07) 2100.07
Equi-corr 0.32(0.05) 94.50 0.14(0.01) > 1.7× 107

(r = 0.2) 4.31(0.72) 92.93 1.78(0.07) 2100.07

40

Identity 0.45(0.05) 94.60 0.14(0.01) > 3.6× 107

5.82(0.71) 93.62 1.72(0.06) 6560.62
Toeplitz 0.43(0.05) 94.54 0.13(0.01) > 3.7× 107

(r = 0.5) 5.47(0.77) 93.88 1.64(0.06) 6560.62
Equi-corr 0.39(0.04) 94.89 0.12(0.01) > 3.4× 107

(r = 0.2) 4.92(0.73) 94.35 1.50(0.06) 6560.62

60

Identity 0.51(0.05) 95.09 0.13(0.01) > 5.6× 107

6.48(0.71) 94.39 1.60(0.06) 13422.14
Toeplitz 0.47(0.04) 95.36 0.12(0.01) > 5.8× 107

(r = 0.5) 6.16(0.65) 93.99 1.51(0.05) 13422.14
Equi-corr 0.42(0.04) 95.13 0.11(0.01) > 5.6× 107

(r = 0.2) 5.30(0.66) 94.34 1.32(0.06) 13422.14

Table 3: Comparison results of online StoSQP and offlineM -estimation for constrained regres-
sion problems (logistic models). For each cell, the top row shows the result of the M -estimator,
while the bottom row shows the result of StoSQP.
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7. Conclusion and Future Work

We performed statistical inference of nonlinearly constrained stochastic optimization problems
using a fully online second-order method called Stochastic Sequential Quadratic Programming
(StoSQP). In each iteration, the scheme selects a proper adaptive stepsize and inexactly solves
the Newton system (a quadratic program) by a randomized sketching solver. Consequently, the
considered method is more adaptive and computationally efficient than existing exact second-
order methods. For this method, we established an almost sure convergence rate and iteration
complexity, and proved the asymptotic normality property for the last iterate. We observed that
although the limiting covariance is worse than the minimax optimum achieved by constrained
M -estimators and online projection-based estimators, the gap decays exponentially fast in
terms of the number of iterations employed for the sketching solver (e.g., the covariance matches
the optimum if using exact QP solvers). Additionally, we analyzed a plug-in covariance matrix
estimator. Our analysis precisely quantified the uncertainty of the stochastic process generated
by StoSQP methods, which encompasses the randomness of sampling as well as the computa-
tion (sketching and stepsize). The randomness of computation is particularly important for
second-order methods to be efficient in practice. With our results, one can apply AI-StoSQP to
perform online inference for constrained estimation problems.

As for future directions, it is of interest to provide a non-asymptotic analysis for StoSQP
methods. Such a result would complement our analysis by bounding the distance between the
distribution of (xt,λt) and the normal distribution for any given t. Furthermore, recent liter-
ature on online inference has explored different test statistics, whose asymptotic distributions
rely on the application of the Functional Central Limit Theorem (Lee et al., 2022; Luo et al.,
2022; Li et al., 2023; Roy and Balasubramanian, 2023; Chen et al., 2024). Establishing a func-
tional CLT for second-order methods and studying the limiting distribution of random scaling
estimators is also an interesting research direction. Finally, incorporating nonlinear inequality
constraints into the problems and developing second-order methods without projections also
deserves further study in future work.
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Appendix A. An Example of Stepsize Selection Scheme

We consider selecting a stepsize to decrease the penalized objective

φν(x; ξ) := νF (x; ξ) + ‖c(x)‖.

We note that decreasing the objective F (x; ξ) only is not reasonable for constrained problems,
since we may violate constraints arbitrarily. The local linear approximation of φν(x; ξ) at
(xt; ξt) along the direction ∆̄xt is

φloc
ν (xt; ξt, ∆̄xt) := ν(F (xt; ξt) + ḡTt ∆̄xt) + ‖ct +Gt∆̄xt‖.

We can further define the local model reduction, a negative quantity for sufficiently small ν > 0
and approximation error, as

∆φloc
ν (xt; ξt, ∆̄xt) := φloc

ν (xt; ξt, ∆̄xt)− φloc
ν (xt; ξt,0)

= νḡTt ∆̄xt + ‖ct +Gt∆̄xt‖ − ‖ct‖. (A.1)

For a given scalar κt ∈ (0, 1), we select ᾱt such that φν(xt+ ᾱt∆̄xt; ξt) decreases φν(xt; ξt) by
at least a factor of κtᾱt of the local model reduction ∆φloc

ν (so called the Armijo condition).
Specifically, we require

φν(xt + ᾱt∆̄xt; ξt) ≤ φν(xt; ξt) + κtᾱt ·∆φloc
ν (xt; ξt, ∆̄xt). (A.2)

To satisfy (A.2), we suppose∇F (x; ξt) andG(x) are local Lipschitz continuous around xt, and
suppose ᾱt ≤ 1. Then, there exists a constant Υν,t > 0, such that

φν(xt + ᾱt∆̄xt; ξt) = νF (xt + ᾱt∆̄x; ξt) + ‖c(xt + ᾱt∆̄x)‖
≤ φν(xt; ξt) + νᾱtḡ

T
t ∆̄xt + ‖ct + ᾱtGt∆̄xt‖ − ‖ct‖+ Υν,tᾱ

2
t ‖∆̄xt‖2 (since ∇F,G are Lip)

≤ φν(xt; ξt) + νᾱtḡ
T
t ∆̄xt + ᾱt‖ct +Gt∆̄xt‖ − ᾱt‖ct‖+ Υν,tᾱ

2
t ‖∆̄xt‖2 (since ᾱt ≤ 1)

(A.1)
= φν(xt; ξt) + ᾱt ·∆φloc

ν (xt; ξt, ∆̄xt) + Υν,tᾱ
2
t ‖∆̄xt‖2.

Therefore, (A.2) is satisfied as long as

ᾱt ≤
(κt − 1) ·∆φloc

ν (xt; ξt, ∆̄xt)

Υν,t‖∆̄xt‖2
∧ 1 =: ᾱt,thres. (A.3)

The Lipschitz constant Υν,t can be estimated around xt (Curtis and Robinson, 2018) or simply
prespecified as a large constant. The condition (A.3) leads us to propose ᾱt := Proj[βt,ηt](ᾱt,thres).
See Berahas et al. (2021, 2023); Curtis et al. (2021) for detailed random projections and Hong
et al. (2023) for adaptive selection of parameters of line search functions (e.g. ν).

Appendix B. Preparation Lemmas

Lemma B.1 Suppose {ϕi}i is a positive sequence that satisfies lim
i→∞

i(1 − ϕi−1/ϕi) = ϕ.

Then, for any p ≥ 0, we have lim
i→∞

i
(
1− ϕpi−1/ϕ

p
i

)
= p · ϕ.
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Lemma B.2 Let {ϕi}i be a positive sequence. If lim
i→∞

i(1−ϕi−1/ϕi) = ϕ < 0, then lim
i→∞

ϕi = 0.

Lemma B.3 Let {φi}i, {ϕi}i, {σi}i be three positive sequences. Suppose

lim
i→∞

i (1− φi−1/φi) = φ < 0, lim
i→∞

ϕi = 0, lim
i→∞

iϕi = ϕ̃ (B.1)

for a constant φ and a (possibly infinite) constant ϕ̃ ∈ (0,∞]. For any l ≥ 1, if we further have∑l
k=1 σk + pφ/ϕ̃ > 0 for some constant p ∈ (0, 1], then the following results hold as t→∞

(a): When p = 1,

1

φt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφi −→
1∑l

k=1 σk + φ/ϕ̃
,

1

φt


t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφiai + b ·
t∏

j=0

l∏
k=1

(1− ϕjσk)

 −→ 0,

(B.2)

where the second result holds for any constant b and sequence {at}t such that at → 0.

(b): When p ∈ (0, 1),

1

φpt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφi −→ 0,

1

φpt


t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφpi ai + b ·
t∏

j=0

l∏
k=1

(1− ϕjσk)

 −→ 0,

(B.3)

where the second result holds for any constant b and sequence {at}t such that at → 0.

Lemma B.4 For any scalars a, b, we have P (a < N (0, 1) ≤ b) ≤ b − a. Furthermore, if
0 < a ≤ b, then P (a < N (0, 1) ≤ b) ≤ b/a− 1.

Lemma B.5 Let At, Bt, Ct be three variables depending on the index t; also let Φ(z) =
P (N (0, 1) ≤ z) be the cumulative distribution function of standard Gaussian variable. Suppose
for the index t,

sup
z∈R
|P (At ≤ z)− Φ(z)| ≤ at, |Bt| ≤ bt, |Ct| ≤ ct almost surely (B.4)

where at, bt ≥ 0 and 0 ≤ ct < 1. Then, we have

sup
z∈R

∣∣∣∣P (At +Bt√
1 + Ct

≤ z
)
− Φ(z)

∣∣∣∣ ≤ at + bt +
ct√

1− ct
.

Appendix C. Proofs of Preparation Lemmas

C.1 Proof of Lemma B.1

By the condition, we know ϕi−1/ϕi = 1− ϕ/i+ o (1/i). Thus, we have

i
(
1− ϕpi−1/ϕ

p
i

)
= i (1− {1− ϕ/i+ o (1/i)}p) = pϕ+ o(1).

This completes the proof.
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C.2 Proof of Lemma B.2

By Lemma B.1, we know for any positive constant p, lim
i→∞

i
(
1− ϕpi−1/ϕ

p
i

)
= pϕ. Choosing p

large enough such that pϕ < −1, the Raabe’s test indicates that
∑∞

i=0 ϕ
p
i <∞. This implies

ϕi → 0 and we complete the proof.

C.3 Proof of Lemma B.3

For any scalar A, we have

1

φpt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφi −A

=
1

φpt

t∏
j=0

l∏
k=1

(1− ϕjσk)


t∑
i=0

i∏
j=0

l∏
k=1

(1− ϕjσk)−1ϕiφi −Aφpt
t∏

j=0

l∏
k=1

(1− ϕjσk)−1

 .

For the last term, we have

Aφpt

t∏
j=0

l∏
k=1

(1− ϕjσk)−1

=
t∑
i=1

Aφpi i∏
j=0

l∏
k=1

(1− ϕjσk)−1 −Aφpi−1

i−1∏
j=0

l∏
k=1

(1− ϕjσk)−1

+Aφp0

l∏
k=1

(1− ϕ0σk)
−1

=

t∑
i=1

Aφpi

i∏
j=0

l∏
k=1

(1− ϕjσk)−1

{
1−

φpi−1

φpi

l∏
k=1

(1− ϕiσk)

}
+Aφp0

l∏
k=1

(1− ϕ0σk)
−1.

Combining the above two displays, we obtain

1

φpt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφi −A

=
1

φpt

t∏
j=0

l∏
k=1

(1− ϕjσk)
{ t∑
i=1

i∏
j=0

l∏
k=1

(1− ϕjσk)−1φpi

{
ϕiφ

1−p
i −A

(
1−

φpi−1

φpi

l∏
k=1

(1− ϕiσk)

)}

+ φp0

l∏
k=1

(1− ϕ0σk)
−1
(
ϕ0φ

1−p
0 −A

)}
. (C.1)

We aim to select A such that the middle term in (C.1) is small. By (B.1), we know

φpi−1

φpi
= 1− pφ

i
+ o

(
1

i

)
= 1− pφ

ϕ̃
· ϕi + o(ϕi),

where the second equality is due to 1/(iϕi) = 1/ϕ̃+ o(1) (which is true even if ϕ̃ = ∞). Fur-
thermore, we know

l∏
k=1

(1− ϕiσk) = 1− ϕi
l∑

k=1

σk + o(ϕi).
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With these two facts, we have

ϕiφ
1−p
i −A

{
1−

φpi−1

φpi

l∏
k=1

(1− ϕiσk)
}

= ϕiφ
1−p
i −A

{
1− (1− pφ

ϕ̃
· ϕi + o(ϕi))(1− ϕi

l∑
k=1

σk + o(ϕi))
}

= ϕiφ
1−p
i −A

(
pφ

ϕ̃
+

l∑
k=1

σk

)
ϕi + o(ϕi). (C.2)

Thus, we let A = 1/(
∑l

k=1 σk + φ/ϕ̃) if p = 1 and A = 0 if p ∈ (0, 1). Noting that φ1−p
i → 0,

(C.1) leads to

1

φpt

t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφi −A

=
1

φpt

t∏
j=0

l∏
k=1

(1− ϕjσk)
{ t∑
i=1

i∏
j=0

l∏
k=1

(1− ϕjσk)−1φpi · o(ϕi)

+ φp0

l∏
k=1

(1− ϕ0σk)
−1
(
ϕ0φ

1−p
0 −A

)}
.

Comparing the above display with (B.2) and (B.3), we note that the first results in (B.2) and
(B.3) are implied by the second results. Thus, it suffices to prove the second results. We define

Ψt =
1

φpt


t∑
i=0

t∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφpi ai + b ·
t∏

j=0

l∏
k=1

(1− ϕjσk)

 , (C.3)

then

Ψt =
1

φpt

ϕtφptat +
l∏

k=1

(1− ϕtσk)

 t−1∑
i=0

t−1∏
j=i+1

l∏
k=1

(1− ϕjσk)ϕiφpi ai + b ·
t−1∏
j=0

l∏
k=1

(1− ϕjσk)


(C.3)
=

φpt−1

φpt

l∏
k=1

(1− ϕtσk)Ψt−1 + ϕtat.

By (C.2), we know that

φpt−1

φpt

l∏
k=1

(1− ϕtσk) = 1−

(
pφ

ϕ̃
+

l∑
k=1

σk

)
· ϕt + o(ϕt).

Since
∑l

k=1 σk+pφ/ϕ̃ > 0, we immediately conclude that for a constant c > 0 and for all large
enough t, |Ψt| ≤ (1− cϕt)|Ψt−1|+ ϕt|at|. Let t1 be a fixed integer. We apply this inequality
recursively and have for any t ≥ t1 + 1,

|Ψt| ≤
t∏

i=t1+1

(1− cϕi)|Ψt1 |+
t∑

i=t1+1

t∏
j=i+1

(1− cϕj)ϕi|ai|.
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For any ε > 0, since ai → 0, we select t1 such that |ai| ≤ ε, for all i ≥ t1. Then, the above
inequality leads to

|Ψt| ≤
t∏

i=t1+1

(1− cϕi)|Ψt1 |+ ε
t∑

i=t1+1

t∏
j=i+1

(1− cϕj)ϕi

=

t∏
i=t1+1

(1− cϕi)|Ψt1 |+
ε

c

{
1−

t∏
j=t1+1

(1− cϕj)
}
≤ |Ψt1 | exp

(
−c

t∑
i=t1+1

ϕi

)
+
ε

c
.

Since nϕi → ϕ̃ ∈ (0,∞], we know
∑

t ϕt →∞. Thus, for the above ε > 0, there exists t2 ≥ t1
such that |Ψt1 | exp

(
−c
∑t

i=t1+1 ϕi
)
≤ ε/c, ∀t ≥ t2, which implies |Ψt| ≤ 2ε/c. This means

|Ψt| → 0 and we complete the proof.

C.4 Proof of Lemma B.4

The first part of statement holds naturally due to the fact that the density of the standard
Gaussian satisfies exp(−t2/2)/

√
2π ≤ 1 for any t ∈ R. Moreover, for 0 < a ≤ b, we have

P (a < N (0, 1) ≤ b) =

∫ b

a

1√
2π

exp(−t2/2) dt ≤ b− a√
2π

exp(−a2/2)

=

(
b

a
− 1

)
a√
2π

exp(−a2/2) ≤ b

a
− 1,

where the last inequality uses a exp(−a2/2) ≤ 1 for all a. This completes the proof.

C.5 Proof of Lemma B.5

We only prove the result for z > 0. The result of z ≤ 0 can be shown in the same way. We know
from (B.4) that At−bt√

1+ct
≤ At+Bt√

1+Ct
≤ At+bt√

1−ct
, almost surely. Therefore, we have

P

(
At +Bt√

1 + Ct
≤ z
)
≥ P

(
At + bt√

1− ct
≤ z
)

= P (At ≤ z(1− ct)1/2 − bt)
(B.4)
≥ Φ(z(1− ct)1/2 − bt)− at

(z≥0)
= Φ(z)− P

(
z(1− ct)1/2 − bt < N (0, 1) ≤ z(1− ct)1/2

)
− P

(
z(1− ct)1/2 < N (0, 1) ≤ z

)
− at

≥ Φ(z)− bt −
(

1√
1− ct

− 1

)
− at (by Lemma B.4)

≥ Φ(z)− bt −
ct√

1− ct
− at.

On the other hand, we have

P

(
At +Bt√

1 + Ct
≤ z
)
≤ P

(
At − bt√

1 + ct
≤ z
)

= P (At ≤ z(1 + ct)
1/2 + bt)

(B.4)
≤ Φ(z(1 + ct)

1/2 + bt) + at

= Φ(z) + P
(
z < N (0, 1) ≤ z(1 + ct)

1/2
)

+ P
(
z(1 + ct)

1/2 < N (0, 1) ≤ z(1 + ct)
1/2 + bt

)
+ at

≤ Φ(z) +
{

(1 + ct)
1/2 − 1

}
+ bt + at (by Lemma B.4)

≤ Φ(z) + ct + bt + at.

Combining the above two displays completes the proof.
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Appendix D. Proofs of Section 4

D.1 Proof of Lemma 4.4

We note that γS ≤ ‖E[KtS(STK2
t S)†STKt | xt,λt]‖ ≤ E[‖KtS(STK2

t S)†STKt‖ | xt,λt] ≤ 1,
where the second inequality is by Jensen’s inequality; the third inequality is by the fact that
KtS(STK2

t S)†STKt is a projection matrix. This shows (a). Let us define for j = 1, . . . , τ ,
Ct,j = I −KtSt,j(S

T
t,jK

2
t St,j)

†STt,jKt. Then, we obtain from (3.4) that

zt,τ − z̃t = Ct,τ−1(zt,τ−1 − z̃t) =

τ−1∏
j=0

Ct,j

 (zt,0 − z̃t) = −

τ−1∏
j=0

Ct,j

 z̃t. (D.1)

Thus, (b) follows from (D.1) and the independence among {St,j}j . Moreover, (c) is proved by
(Gower and Richtárik, 2015, Theorem 4.6).

D.2 Proof of Lemma 4.6

By Assumption 4.1, there exists a constant Υu ≥ 1 such that

‖∇2L(x,λ)‖ ∨ ‖∇L(x,λ)‖ ≤ Υu, ∀(x,λ) ∈ X × Λ. (D.2)

By direct calculation, we have (the evaluation point is suppressed for simplicity)(
∇xLµ,ν
∇λLµ,ν

)
=

(
I + ν∇2

xL µGT

νG I

)(
∇xL
c

)
. (D.3)

Using (D.3) and the definition of (∆xt,∆λt), we have(
∇xLtµ,ν
∇λLtµ,ν

)T (
∆xt
∆λt

)
(D.3)
=

(
∆xt
∆λt

)T (
I + ν∇2

xLt µGTt
νGt I

)(
∇xLt
ct

)
(3.2)
= −

(
∆xt
∆λt

)T (
I + ν∇2

xLt µGTt
νGt I

)(
Bt GTt
Gt 0

)(
∆xt
∆λt

)
= −

(
∆xt
∆λt

)T (
Bt + ν∇2

xLtBt + µGTt Gt GTt + ν∇2
xLtGTt

Gt + νGtBt νGtG
T
t

)(
∆xt
∆λt

)
.

Furthermore, using (D.2) and Assumption 4.1, we obtain(
∇xLtµ,ν
∇λLtµ,ν

)T (
∆xt
∆λt

)
≤ −∆xTt Bt∆xt + νΥBΥu‖∆xt‖2 − µ‖Gt∆xt‖2 − 2∆λTt Gt∆xt + ν(Υu + ΥB)‖∆xt‖‖GTt ∆λt‖ − ν‖GTt ∆λt‖2

(3.2)
≤ −∆xTt Bt∆xt + νΥBΥu‖∆xt‖2 − µ‖ct‖2 + 2cTt ∆λt +

ν(Υu + ΥB)2

2
‖∆xt‖2 −

ν

2
‖GTt ∆λt‖2

≤ −∆xTt Bt∆xt + ν(ΥB + Υu)2‖∆xt‖2 − µ‖ct‖2 +
8

νγG
‖ct‖2 +

νγG
8
‖∆λt‖2

− νγG
4
‖∆λt‖2 −

ν

4
‖GTt ∆λt‖2 (Young’s inequality and Assumption 4.1)

(3.2)
= −∆xTt Bt∆xt + ν(ΥB + Υu)2‖∆xt‖2 −

(
µ− 8

νγG

)
‖ct‖2 −

νγG
8
‖∆λt‖2 −

ν

4
‖Bt∆xt +∇xLt‖2
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≤ −∆xTt Bt∆xt + ν(ΥB + Υu)2‖∆xt‖2 −
(
µ− 8

νγG

)
‖ct‖2 −

νγG
8
‖∆λt‖2 −

ν

8
‖∇xLt‖2 +

νΥ2
B

4
‖∆xt‖2

≤ −∆xTt Bt∆xt + 2ν(ΥB + Υu)2‖∆xt‖2 −
(
µ− 8

νγG

)
‖ct‖2 −

νγG
8
‖∆λt‖2 −

ν

8
‖∇xLt‖2, (D.4)

where the second last inequality uses ‖Bt∆xt+∇xLt‖2 ≥ ‖∇xLt‖2/2−‖Bt∆xt‖2 ≥ ‖∇xLt‖2/2
−Υ2

B‖∆xt‖2. To further simplify (D.4), we decompose the step ∆xt as

∆xt = ∆ut + ∆vt, where ∆ut ∈ span(GTt ) and Gt∆vt = 0.

Then, the first two terms of (D.4) can be simplified as

−∆xTt Bt∆xt + 2ν(ΥB + Υu)2‖∆xt‖2

= −∆uTt Bt∆ut − 2∆uTt Bt∆vt −∆vTt Bt∆vt + 2ν(ΥB + Υu)2‖∆xt‖2

≤ ΥB‖∆ut‖2 + 2ΥB‖∆ut‖‖∆vt‖ − γRH‖∆vt‖2 + 2ν(ΥB + Υu)2‖∆xt‖2 (Assumption 4.1)

≤
(

ΥB +
2Υ2

B

γRH

)
‖∆ut‖2 −

γRH
2
‖∆vt‖2 + 2ν(ΥB + Υu)2‖∆xt‖2 (Young’s inequality)

=

(
ΥB +

2Υ2
B

γRH
+
γRH

2

)
‖∆ut‖2 −

(γRH
2
− 2ν(ΥB + Υu)2

)
‖∆xt‖2

≤
(

ΥB +
2Υ2

B

γRH
+
γRH

2

)
1

γG
‖ct‖2 −

(γRH
2
− 2ν(ΥB + Υu)2

)
‖∆xt‖2,

where the last inequality uses the fact that ‖ct‖2 = ‖Gt∆xt‖2 = ‖Gt∆ut‖2 ≥ γG‖∆ut‖2. Here,
the inequality is due to Assumption 4.1. Combining the above display with (D.4), we have(
∇xLtµ,ν
∇λLtµ,ν

)T (
∆xt
∆λt

)
≤ −νγG

8

∥∥∥∥(∆xt
∆λt

)∥∥∥∥2

− ν

8

∥∥∥∥(∇xLtct

)∥∥∥∥2

−
(γRH

2
− 2ν(ΥB + Υu)2 − νγG

8

)
‖∆xt‖2

−
{
µ− 8

νγG
−
(

ΥB +
2Υ2

B

γRH
+
γRH

2

)
1

γG
− ν

8

}
‖ct‖2.

Thus, choosing Υ1 large enough (depending only on γG, γRH ,ΥB), we complete the proof.

D.3 Proof of Lemma 4.7

Let us denote zt = (∆xt,∆λt) and recall that zt,τ = (∆̄xt, ∆̄λt) and z̃t = (∆̃xt, ∆̃λt). By
Assumption 4.1 and the expression (D.3), it is straightforward to see that ∇Lµ,ν is Lipschitz
continuous with a constant ΥAL > 0 depending on (µ, ν,ΥL). Thus, using (3.5) we have

Lt+1
µ,ν ≤ Ltµ,ν + ᾱt(∇Ltµ,ν)Tzt,τ +

ΥALᾱ
2
t

2
‖zt,τ‖2

= Ltµ,ν + ᾱt(∇Ltµ,ν)T (I + Ct)zt + ᾱt(∇Ltµ,ν)T {zt,τ − (I + Ct)zt}+
ΥALᾱ

2
t

2
‖zt,τ‖2 , (D.5)

where Ct is from Lemma 4.4(b). By Lemmas 4.6 and 4.4, the second term can be bounded as

(∇Ltµ,ν)T (I + Ct)zt ≤ −
ν

Υ1

(
‖zt‖2 + ‖∇Lt‖2

)
+ ‖Ct‖

∥∥∇Ltµ,ν∥∥ ‖zt‖
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(D.3),(D.2)
≤ − ν

Υ1

(
‖zt‖2 + ‖∇Lt‖2

)
+ ρτ (1 + (2ν + µ)Υu) ‖∇Lt‖ ‖zt‖

≤ − ν

Υ1

(
‖zt‖2 + ‖∇Lt‖2

)
+ 2ρτµΥu ‖∇Lt‖ ‖zt‖

≤ −
(
ν

Υ1
− ρτµΥu

)(
‖zt‖2 + ‖∇Lt‖2

)
,

where the third inequality uses the facts that Υu ≥ 1 and 1 + 2ν ≤ µ (as long as Υ1 ≥ 2).
Thus, we can re-define Υ1 as Υ1 ← 2Υ1Υu. If ρτ ≤ ν/(µΥ1), then we have

(∇Ltµ,ν)T (I + Ct)zt ≤ −
ν

2Υ1

(
‖zt‖2 + ‖∇Lt‖2

)
. (D.6)

Now, we deal with the last two terms of (D.5). By Lemma 4.4(b), we have

E [zt,τ | Ft−1] = E
[
E
[
zt,τ | Ft−2/3

]
| Ft−1

]
= E [(I + Ct)z̃t | Ft−1]

(3.2)
= −(I + Ct)K

−1
t E

[
∇̄Lt | Ft−1

]
= −(I + Ct)K

−1
t ∇Lt (Assumption 4.2)

(3.2)
= (I + Ct)zt. (D.7)

By Lemma 4.4(b, c), we also have

E
[
‖zt,τ − (I + Ct)zt‖2 | Ft−1

]
≤ 3E

[
‖zt,τ − z̃t‖2 | Ft−1

]
+ 3E

[
‖z̃t − zt‖2 | Ft−1

]
+ 3‖Ct‖2 ‖zt‖2

≤ 3ρτE
[
‖z̃t‖2 | Ft−1

]
+ 3E

[
‖z̃t − zt‖2 | Ft−1

]
+ 3ρ2τ ‖zt‖2

= 3(ρτ + ρ2τ ) ‖zt‖2 + 3(1 + ρτ )E
[
‖z̃t − zt‖2 | Ft−1

]
(bias-variance decomposition).

By Assumption 4.1 and (Na et al., 2022a, Lemma 1), there exists a constant ΥK ≥ 1 depend-
ing on (γG, γRH ,ΥB) such that ‖K−1

t ‖ ≤ ΥK . Thus, we apply (3.2) and (D.2), and obtain

E
[
‖zt,τ − (I + Ct)zt‖2 | Ft−1

]
≤ 3(ρτ + ρ2τ )Υ2

KΥ2
u + 3(1 + ρτ )Υ2

KE[‖ḡt −∇ft‖2 | Ft−1]

≤ 3(1 + ρτ )Υ2
K(ρτΥ2

u + Υm) (Assumption 4.2(4.2a)). (D.8)

Thus, using (D.7) and (D.8), we have

E
[
ᾱt(∇Ltµ,ν)T {zt,τ − (I + Ct)zt} | Ft−1

]
(D.7)
= E

[
{ᾱt − (βt + ηt)/2} · (∇Ltµ,ν)T {zt,τ − (I + Ct)zt} | Ft−1

]
(3.6)
≤ ηt − βt

2
E
[∥∥∇Ltµ,ν∥∥ ‖zt,τ − (I + Ct)zt‖ | Ft−1

]
(D.2)
≤ ηt − βt

2
(1 + (2ν + µ)Υu)ΥuE [‖zt,τ − (I + Ct)zt‖ | Ft−1]

≤ (ηt − βt)µΥ2
u

√
E
[
‖zt,τ − (I + Ct)zt‖2 | Ft−1

]
(1 ≤ Υu and 1 + 2ν ≤ µ)
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(D.8)
≤ 2µΥKΥ2

u(1 + ρτ )(
√

Υm ∨Υu)(ηt − βt) ≤ 4µΥKΥ2
u(
√

Υm ∨Υu)(ηt − βt), (D.9)

and

E[‖zt,τ‖2 | Ft−1]
(D.7)
= ‖(I + Ct)zt‖2 + E

[
‖zt,τ − (I + Ct)zt‖2 | Ft−1

]
(3.2),(D.2)
≤ (1 + ρτ )2Υ2

KΥ2
u + E

[
‖zt,τ − (I + Ct)zt‖2 | Ft−1

]
(also use Lemma 4.4(b))

(D.8)
≤ (1 + ρτ )2Υ2

KΥ2
u + 3(1 + ρτ )Υ2

K(ρτΥ2
u + Υm) ≤ 16Υ2

K(Υ2
u ∨Υm). (D.10)

Combining (D.10) with (D.9) and (D.6), plugging into (D.5), and using (3.6), we obtain

E[Lt+1
µ,ν | Ft−1] ≤ Ltµ,ν −

νβt
2Υ1

(
‖zt‖2 + ‖∇Lt‖2

)
+ 4µΥKΥ2

u(
√

Υm ∨Υu)(ηt − βt) + 8ΥALΥ2
K(Υ2

u ∨Υm)η2
t .

Choosing Υ2 large enough that depends on (µ, ν, γG, γRH ,ΥB,Υm,ΥL), and noting that (µ, ν)
are determined by (γG, γRH ,ΥB), we complete the proof.

D.4 Proof of Theorem 4.8

Note that the condition of τ in the statement implies that we can select (µ, ν) to satisfy the
condition in Lemma 4.6 and have ρτ ≤ ν/(µΥ1) with ρ = 1− γS . Thus, Lemma 4.7 leads to

E[Lt+1
µ,ν − min

X×Λ
Lµ,ν | Ft−1] ≤ Ltµ,ν − min

X×Λ
Lµ,ν −

νβt
2Υ1
‖∇Lt‖2 + Υ2(χt + η2

t ).

By Robbins-Siegmund theorem (see Robbins and Siegmund (1971) or (Duflo, 1997, Theo-
rem 1.3.12)), we conclude that

∑
t βt‖∇Lt‖2 <∞. Since

∑
t βt =∞ from (4.4), we know that

lim inft→∞ ‖∇Lt‖ = 0. Furthermore, we note that

E
[
‖(xt+1 − xt,λt+1 − λt)‖2

]
= E

[
E
[
‖(xt+1 − xt,λt+1 − λt)‖2 | Ft−1

]]
(3.5)
≤ η2

tE
[
E
[
‖zt,τ‖2 | Ft−1

]] (D.10)
≤ 16Υ2

K(Υ2
u ∨Υm) · η2

t . (D.11)

Summing over t = 1 to ∞, exchanging the expectation and summation by applying Fubini’s
theorem (Durrett, 2019, Theorem 1.7.2), and noting that

∑
t η

2
t <∞, we obtain

E

[ ∞∑
t=1

‖(xt+1 − xt,λt+1 − λt)‖2
]
<∞.

This implies
∑∞

t=1 ‖(xt+1−xt,λt+1−λt)‖ <∞ almost surely and, thus, ‖(xt+1−xt,λt+1−
λt)‖ → 0 as t→∞ almost surely. Suppose for any run of the algorithm limt→∞ ‖∇Lt‖ 6= 0,
then we have lim supt→∞ ‖∇Lt‖ = ε > 0. Then, there exist two index sequences {t1,i}i, {t2,i}i
with t1,i+1 > t2,i > t1,i such that, for all i = 1, 2, . . .,

‖∇Lt1,i‖ ≥ ε/2, ‖∇Lj‖ ≥ ε/3 for j = t1,i + 1, . . . , t2,i − 1, ‖∇Lt2,i‖ < ε/3. (D.12)
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Since
∑

t βt‖∇Lt‖2 <∞, we know

∞ >
∞∑
i=1

t2,i−1∑
j=t1,i

βj‖∇Lj‖2
(D.12)
≥ ε2

9

∞∑
i=1

t2,i−1∑
j=t1,i

βj . (D.13)

Furthermore, by (D.11), we have

E
[∥∥(xt2,i − xt1,i ,λt2,i − λt1,i)

∥∥] (D.11)
≤ 4ΥK(Υu ∨

√
Υm)

t2,i−1∑
j=t1,i

ηj

(3.6)
= 4ΥK(Υu ∨

√
Υm)


t2,i−1∑
j=t1,i

βj +

t2,i−1∑
j=t1,i

χj

 .

Summing over i = 1 to∞, and noting that
∑

i

∑t2,i−1
j=t1,i

βj <∞ by (D.13) and
∑

i

∑t2,i−1
j=t1,i

χj ≤∑∞
j=1 χj <∞, we exchange the expectation and summation by applying Fubini’s theorem

again. We know that the sequence {(xt2,i−xt1,i ,λt2,i−λt1,i)}i converges to zero as i→ ∞ with
probability one. This contradicts with ‖∇Lt1,i‖ ≥ ε/2 and ‖∇Lt2,i‖ < ε/3 in (D.12). We com-
plete the proof.

D.5 Proof of Corollary 4.9

Applying Lemma 4.7 and taking full expectation, we know for some constants h1, h2 > 0,

E[Lt+1
µ,ν ] ≤ E[Ltµ,ν ]− h1βtE[‖∇Lt‖2] + h2(χt + η2

t ), ∀t ≥ 0.

Rearranging the inequality and summing over t = 0 to Tε − 1, we obtain

h1

Tε−1∑
t=0

E[‖∇Lt‖2] ≤
Tε−1∑
t=0

1

βt

(
(E[Ltµ,ν ]− min

X×Λ
Lµ,ν)− (E[Lt+1

µ,ν ]− min
X×Λ
Lµ,ν)

)
+ h2

Tε−1∑
t=0

χt + η2
t

βt

≤
E[L0

µ,ν ]−minX×Λ Lµ,ν
β0

+

Tε−1∑
t=1

(
1

βt
− 1

βt−1

)
(E[Ltµ,ν ]− min

X×Λ
Lµ,ν) + h2

Tε−1∑
t=0

χt + η2
t

βt
.

Denoting ∆Lµ,ν = maxX×Λ Lµ,ν −minX×Λ Lµ,ν , we further have

h1

Tε−1∑
t=0

E[‖∇Lt‖2] ≤ (∆Lµ,ν ∨ h2)

{
1

β0
+

Tε−1∑
t=1

(
1

βt
− 1

βt−1

)
+

Tε−1∑
t=0

χt + η2
t

βt

}

= (∆Lµ,ν ∨ h2)

{
1

βTε−1
+

Tε−1∑
t=0

χt + η2
t

βt

}
= (∆Lµ,ν ∨ h2)

{
T aε +

Tε−1∑
t=0

χt + η2
t

βt

}
.

For the last term on the right hand side, we have

Tε−1∑
t=0

χt + η2
t

βt
=

Tε−1∑
t=0

{
(t+ 1)a−b + (t+ 1)a

(
(t+ 1)−2a + 2(t+ 1)−(a+b) + (t+ 1)−2b

)}
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≤
Tε−1∑
t=0

(t+ 1)a−b + 4

Tε−1∑
t=0

(t+ 1)−a = 5 +

Tε−1∑
t=1

{
(t+ 1)a−b + 4(t+ 1)−a

}
≤ 5 +

∫ Tε−1

0
(t+ 1)a−b + 4(t+ 1)−adt (by the convexity of xp with p < 0)

≤


5 + T 1+a−b

ε
1+a−b + 4T 1−a

ε
1−a if 1 + a > b,

5 + log(Tε) + 4T 1−a
ε

1−a if 1 + a = b,

5 + 1
b−a−1 + 4T 1−a

ε
1−a if 1 + a < b.

Combining the above two displays, dividing Tε on both sides, and using “." to neglect
constant factors (i.e., not depending on Tε), we obtain

ε2 ≤

(
1

Tε

Tε−1∑
t=0

E[‖∇Lt‖]

)2

≤ 1

Tε

Tε−1∑
t=0

(E[‖∇Lt‖])2 ≤ 1

Tε

Tε−1∑
t=0

E[‖∇Lt‖2]

.


1
T 1−a
ε

+ 1
T b−aε

+ 1
T aε

if 1 + a > b,
1
T 1−a
ε

+ 1
T aε

if 1 + a = b,
1
T 1−a
ε

+ 1
T aε

if 1 + a < b,

(use 1/Tε ≤ 1/T aε and log(Tε)/Tε . 1/T aε ),

.


1
T b−aε

+ 1
T aε

if 1 > b,
1
T 1−a
ε

+ 1
T aε

if 1 ≤ b,
=

1

T (1∧b)−a
ε

+
1

T aε
.

1

T a∧(1−a)∧(b−a)
ε

.

This completes the proof.

Appendix E. Proofs of Section 5

E.1 Proof of Lemma 5.1

For notational brevity, we let ωt = (xt−x?,λt−λ?). By the scheme of Algorithm 1, we have

ωt+1
(3.5)
= ωt + ᾱtzt,τ = ωt + ϕtzt,τ + (ᾱt − ϕt) zt,τ
= ωt + ϕt(I + Ct)z̃t + ϕt {zt,τ − (I + Ct)z̃t}+ (ᾱt − ϕt) zt,τ

(3.2)
= ωt − ϕt(I + Ct)K

−1
t ∇̄Lt + ϕt {zt,τ − (I + Ct)z̃t}+ (ᾱt − ϕt) zt,τ

= ωt − ϕt(I + Ct)K
−1
t ∇Lt − ϕt(I + Ct)K

−1
t (∇̄Lt −∇Lt) + ϕt {zt,τ − (I + Ct)z̃t}

+ (ᾱt − ϕt) zt,τ
(5.3b)

= ωt − ϕt(I + Ct)K
−1
t ∇Lt + ϕtθ

t + (ᾱt − ϕt) zt,τ
= ωt − ϕt(I + Ct)(K

?)−1∇Lt − ϕt(I + Ct)
{
K−1
t − (K?)−1

}
∇Lt + ϕtθ

t + (ᾱt − ϕt) zt,τ
(5.3d)

= {I − ϕt(I + Ct)}ωt − ϕt(I + Ct)(K
?)−1ψt − ϕt(I + Ct)

{
K−1
t − (K?)−1

}
∇Lt

+ ϕtθ
t + (ᾱt − ϕt) zt,τ

(5.3c)
= {I − ϕt(I + C?)}ωt + ϕt(θ

t + δt) + (ᾱt − ϕt) zt,τ .
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We apply the above equation recursively and show the result. Moreover, under Assumptions 4.2
and 4.3, we know E[ḡi − ∇fi | Fi−1] = 0 and, by (D.7), E [zi,τ − (I + Ci)z̃i | Fi−1] = 0.
Thus, E[θi | Fi−1] = 0 and θi is a martingale difference.

E.2 Proof of Lemma 5.2

Let us denote rank(S) = r. Since Kt, K? have full rank, rank(KtS) = rank(K?S) = r. Let
K?S = EDF T be the truncated singular value decomposition of K?S. We have

E ∈ R(d+m)×r, F ∈ Rq×r, ETE = FTF = I, D = diag(D1, . . . , Dr) with D1 ≥ . . . ≥ Dr > 0.

Similarly, we let KtS = E′D′(F ′)T . By direct calculation, we have

‖KtS(STK2
t S)†STKt −K?S(ST (K?)2S)†STK?‖ = ‖EET − E′(E′)T ‖. (E.1)

Define the principle angles θp between span(E) and span(E′) to be θp = (θp,1, . . . , θp,r), so that
ETE′ has the singular value decomposition ETE′ = P cos(θp)Q

T , where P,Q ∈ Rr×r are or-
thonormal matrices and cos(θp) = diag(cos(θp,1), . . . , cos(θp,r)) (similar for sin(θp)). We further
let E⊥ ∈ R(d+m)×(d+m−r) be the complement of E, and express E′ as

E′ = EA+ E⊥B. (E.2)

Then, ETE′ = A = P cos(θp)Q
T and I = (E′)TE′ = ATA+BTB. By the above formulation,

‖EET − E′(E′)T ‖ (E.2)
=

∥∥∥∥(E,E⊥)

(
I −AAT −ABT

−BAT −BBT

)(
ET

(E⊥)T

)∥∥∥∥ =

∥∥∥∥(I −AAT −ABT

−BAT −BBT

)∥∥∥∥
≤
∥∥∥∥(I −AAT 0

0 −BBT

)∥∥∥∥+

∥∥∥∥( 0 ABT

BAT 0

)∥∥∥∥
≤ max{‖I −AAT ‖, ‖BBT ‖}+ ‖ABT ‖
= max{‖I −AAT ‖, ‖I −ATA‖}+ ‖ABT ‖

= ‖ sin(θp)‖2 +
√
‖P cos(θp) sin2(θp) cos(θp)P T ‖

= ‖ sin(θp)‖2 + ‖ sin(θp) cos(θp)‖ ≤ 2‖ sin(θp)‖. (E.3)

On the other hand, by Wedin’s sin(Θ) theorem (Wedin, 1972, (3.1)), we know

‖ sin(θp)‖ ≤
‖(K? −Kt)S‖

Dr
. (E.4)

We let Fr be the r-th column of F and have D2
r = F Tr S

T (K?)2SFr ≥ (σmin(K?))2F Tr S
TSFr.

Since kernel(K?S) = kernel(S) and Fr ∈ kernel⊥(K?S), we know Fr ∈ kernel⊥(S) = span(ST ).
Thus, F Tr STSFr ≥ λ+

min(STS), where λ+
min(STS) = (σ+

min(S))2 is the least positive eigenvalue
of STS. Therefore, we have

Dr ≥ σmin(K?)σ+
min(S). (E.5)

Combining all above derivations, we obtain

‖KtS(STK2
t S)†STKt −K?S(ST (K?)2S)†STK?‖ (E.1)

= ‖EET − E′(E′)T ‖
(E.3)
≤ 2‖ sin(θp)‖

(E.4)
≤ 2‖Kt −K?‖ · ‖S‖

Dr

(E.5)
≤ 2‖Kt −K?‖

σmin(K?)
· ‖S‖
σ+

min(S)
.

This completes the proof.
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E.3 Proof of Corollary 5.4

DenoteAt = I−E[KtS(STK2
t S)†STKt | xt,λt] andA? = I−E[K?S(ST (K?)2S)†STK?]. We have

‖Ct − C?‖ = ‖Aτt − (A?)τ‖ ≤
∥∥Aτ−1

t (At −A?)
∥∥+

∥∥(Aτ−1
t − (A?)τ−1)A?

∥∥
≤ ‖At −A?‖+

∥∥Aτ−1
t − (A?)τ−1

∥∥ (‖At‖ ∨ ‖A?‖ ≤ 1)

≤ τ‖At −A?‖ ≤ τE
[∥∥∥KtS(STK2

t S)†STKt −K?S(ST (K?)2S)†STK?
∥∥∥ | xt,λt]

≤ 2τ‖Kt −K?‖
σmin(K?)

E
[
‖S‖‖S†‖

]
≤ 2τΥS

σmin(K?)
‖Kt −K?‖ (by Assumption 5.3).

This completes the proof.

E.4 Proof of Theorem 5.5

We present some lemmas that bound I1,t, I2,t, and I3,t in (5.2a), (5.2b), and (5.2c), respectively.
The proofs of these lemmas are presented in Appendix E.4.1 – E.4.4.

Lemma E.1 Under Assumptions 4.1, 4.2(4.2a, 4.2e), 4.3, and (xt,λt)→ (x?,λ?), suppose

lim
t→∞

t (1− ϕt−1/ϕt) = ϕ < 0, lim
t→∞

tϕt = ϕ̃ ∈ (0,∞], 1.5(1− ρτ ) + ϕ/ϕ̃ > 0. (E.6)

Then, for any υ > 0,
I1,t = o

(√
ϕt{log(1/ϕt)}1+υ

)
a.s. (E.7)

Furthermore, if (4.2a) is strengthened to (4.2b), then we have
(a): (asymptotic rate) I1,t = O(

√
ϕt log(1/ϕt)) a.s.

(b): (asymptotic normality)
√

1/ϕt · I1,t
d−→ N (0,Ξ?) where Ξ? is from (5.10).

(c): (Berry-Esseen bound) For any vector w = (wx,wλ) ∈ Rd+m such that wTΞ?w 6= 0,

sup
z∈R

∣∣∣∣∣P
(√

1/ϕt ·wTI1,t√
wTΞ?w

≤ z

)
− P (N (0, 1) ≤ z)

∣∣∣∣∣ = O
(√
ϕt log(1/ϕt)

)
.

Lemma E.2 Under the conditions of Lemma E.1 with (4.2a) and assume for the adaptivity
gap χt that for some p, q ∈ (0, 1],

lim
t→∞

t (1− χt−1/χt) = χ < ϕ, (1−ρτ )+p(χ−0.5ϕ)/ϕ̃ > 0, (1−ρτ )+q(χ−ϕ)/ϕ̃ > 0. (E.8)

Then, for any ν > 0 (if q < 1, the second O(·) can be strengthened to o(·))

I2,t = o
(
χpt /ϕ

0.5p
t

√
{log(1/χt)}1+ν

)
+O(χqt/ϕ

q
t ) a.s.

Furthermore, if (4.2a) is strengthened to (4.2b), then we have (if p < 1, the first O(·) can also
be strengthened to o(·))

I2,t = O
(
χpt /ϕ

0.5p
t

√
log(1/χt)

)
+O(χqt/ϕ

q
t ) a.s.
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Lemma E.3 Under the conditions of Lemma E.2 with (4.2a), we have for any υ > 0,

I3,t = o
(√

ϕt{log(1/ϕt)}1+υ
)
+o
(
χpt /ϕ

0.5p
t

√
{log(1/χt)}1+ν

)
+o(χqt/ϕ

q
t ) = o(I1,t+I2,t) a.s.

If (4.2a) is strengthened to (4.2b), the above result holds with υ = 0.

We apply the above lemmas. We first check the conditions (E.6) and (E.8). Since ϕt =
(βt+ηt)/2 = βt+χt/2 and χt = o(βt) (as implied by χ < β), we know βt ≤ ϕt ≤ βt+o(βt) and
lim
t→∞

tϕt = lim
t→∞

tβt = β̃. Furthermore, we have

lim
t→∞

t

(
1− ϕt−1

ϕt

)
= lim

t→∞
t

(
1− βt−1

βt
+
βt−1

βt

{
1− 2 + χt−1/βt−1

2 + χt/βt

})
= β + lim

t→∞
t

(
1− 2 + χt−1/βt−1

2 + χt/βt

)
= β +

1

2
lim
t→∞

t

(
χt
βt
− χt−1

βt−1

)
(since χt = o(βt))

= β +
1

2
lim
t→∞

χt
βt
· t
(

1− χt−1

χt
· βt
βt−1

)
= β +

χ− β
2

lim
t→∞

χt
βt

= β.

The above derivations show that ϕ = β and ϕ̃ = β̃. Thus, (5.6) implies (E.6) holds. Moreover,
for any constant p ∈ (0, 1] such that (1−ρτ )+p(χ−0.5β)/β̃ = (1−ρτ )+p(χ−0.5ϕ)/ϕ̃ > 0, we
simply let q = p and have (1−ρτ )+q(χ−ϕ)/ϕ̃ > 0. Thus, (E.8) holds with q = p. We note that
for any ν ≥ 0,

lim
t→∞

t

(
1−

ϕ0.5p
t−1 {log(1/χt−1)}0.5(1+ν)

ϕ0.5p
t {log(1/χt)}0.5(1+ν)

)
Lem. B.1

= 0.5pϕ+ 0.5(1 + ν) lim
t→∞

t

(
1− log(1/χt−1)

log(1/χt)

)

= 0.5pϕ+ 0.5(1 + ν) lim
t→∞

t

(
log(χt−1/χt)

log(1/χt)

)
= 0.5pϕ+ 0.5(1 + ν) lim

t→∞
t

 χt−1−χt
χt

+O
(

(χt−1−χt)2
χ2
t

)
log(1/χt)


= 0.5pϕ− 0.5(1 + ν)χ lim

t→∞
1/ log(1/χt) = 0.5pϕ < 0 (by (E.6) and χt → 0).

Thus, by Lemma B.2, we know χpt /ϕ
0.5p
t

√
{log(1/χt)}1+ν = o(χpt /ϕ

p
t ). The convergence rate of

(xt,λt) comes from Lemmas 5.1, E.1, E.2, E.3, the above fact, and the fact that βt ≤ ϕt ≤ 2βt.
We complete the proof.

E.4.1 Proof of Lemma E.1

We need a preparation lemma. Recall that we suppose (x?,λ?) is a local solution of (1.1) with
G? being full row rank and ∇2

xL? being positive definite in the null space {x ∈ Rd : G?x = 0}.

Lemma E.4 Under Assumptions 4.1, 4.2(4.2d) and (xt,λt)→ (x?,λ?), we have 1
t

∑t−1
i=0 ∇̄2

xLi
→ ∇2

xL? as t→∞. Further, with a small γRH and a large ΥB, ∆t = 0 for all large enough t.

Let I+C? = UΣUT with Σ = diag(σ1, . . . , σd+m) be the eigenvalue decomposition. Then,

I1,t
(5.2a)

=

t∑
i=0

t∏
j=i+1

{I − ϕj(I + C?)}ϕiθi = U

t∑
i=0

t∏
j=i+1

{I − ϕjΣ}ϕiUTθi.
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Since E[θi|Fi−1] = 0, we aim to apply the strong law of large number (Duflo, 1997, Theorem
1.3.15), the central limit theorem (Duflo, 1997, Corollary 2.1.10), and the Berry-Esseen inequal-
ity (Fan, 2019, Theorem 2.1) to show each result in the lemma. We compute the conditional co-
variance of I1,t, which is defined as (Duflo, 1997, Proposition 1.3.7)

〈I1〉t := U
t∑
i=0

t∏
j=i+1

{I − ϕjΣ}ϕ2
iU

TE[θi(θi)T | Fi−1]U
( t∏
j=i+1

{I − ϕjΣ}
)T
UT . (E.9)

For the term E[θi(θi)T | Fi−1], we note that

E[θi(θi)T | Fi−1]
(5.3b)

= E
[ {

(I + Ci)K
−1
i (∇̄Li −∇Li)− {zi,τ − (I + Ci)z̃i}

}{
(I + Ci)K

−1
i (∇̄Li −∇Li)− {zi,τ − (I + Ci)z̃i}

}T | Fi−1

]
(D.7)
= (I + Ci)K

−1
i E

[
(∇̄Li −∇Li)(∇̄Li −∇Li)T | Fi−1

]
K−1
i (I + Ci)

+ E[{zi,τ − (I + Ci)z̃i} {zi,τ − (I + Ci)z̃i}T | Fi−1] =: J1,i + J2,i. (E.10)

For the term J1,i, we apply Assumption 4.2 and have E[(ḡi−∇fi)(ḡi−∇fi)T | Fi−1] = E[ḡiḡ
T
i |

Fi−1]−∇fi∇T fi. We also note that∥∥E[ḡiḡ
T
i −∇f(x?; ξ)∇T f(x?; ξ) | Fi−1]

∥∥
≤ 2E [‖ḡi −∇f(x?; ξ)‖ · ‖ḡi‖ | Fi−1] + E

[
‖ḡi −∇f(x?; ξ)‖2 | Fi−1

]
≤ 2
√

E [‖ḡi −∇f(x?; ξ)‖2 | Fi−1]
√
E [‖ḡi‖2 | Fi−1] + E

[
‖ḡi −∇f(x?; ξ)‖2 | Fi−1

]
,

and

E
[
‖ḡi −∇f(x?; ξ)‖2 | Fi−1

]
≤ E[sup

x∈X
‖∇2f(x; ξ)‖2] · ‖xi − x?‖2

(4.2e)
≤ Υm‖xi − x?‖2.

By Assumptions 4.1, 4.2(4.2a), we suppose ‖∇fi‖ ≤ Υu (we abuse Υu from (D.2)) and obtain

E[‖ḡi‖2 | Fi−1] = ‖∇fi‖2 + E[‖ḡi −∇fi‖2 | Fi−1] ≤ Υ2
u + Υm ≤ 2(Υ2

u ∨Υm).

Combining the above three displays, we have∥∥E[ḡiḡ
T
i −∇f(x?; ξ)∇T f(x?; ξ) | Fi−1]

∥∥
≤ 2
√

2Υm(Υu ∨
√

Υm)(‖xi − x?‖+ ‖xi − x?‖2)→ 0. (E.11)

This implies that

lim
i→∞

E[(ḡi −∇fi)(ḡi −∇fi)T | Fi−1] = E[∇f(x?; ξ)∇T f(x?; ξ)]−∇f(x?)∇T f(x?). (E.12)

Furthermore, by Lemma E.4 we know Ki → K? as i→∞. Since ‖KiS(STK2
t S)†STKi‖ ≤ 1,

we apply dominated convergence theorem (Durrett, 2019, Theorem 1.6.7) and Lemma 5.2, and
have limi→∞ E[KiS(STK2

i S)†STKi | xi,λi] = E[K?S(ST (K?)2S)†STK?]. Here, the expec-
tation is taken over randomness of S. Thus, Ci → C?. By the definition (5.5), we obtain

J1,i = (I + C?)Ω?(I + C?) +O(K1,i) (E.13)
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with K1,i → 0 as i→∞ almost surely. For the term J2,i, we apply (D.1) and define C̃i :=
−
∏τ−1
j=0 Ci,j . Then, we have

J2,i = E[(C̃i − Ci)z̃iz̃Ti (C̃Ti − CTi ) | Fi−1]
(3.2)
= E[(C̃i − Ci)K−1

i ∇̄Li∇̄
TLiK−1

i (C̃Ti − CTi ) | Fi−1]

= E[(C̃i − Ci)K−1
i (∇̄Li −∇Li)(∇̄Li −∇Li)TK−1

i (C̃Ti − CTi ) | Fi−1]

+ E[(C̃i − Ci)K−1
i ∇Li∇

TLiK−1
i (C̃Ti − CTi ) | Fi−1]

+ E[(C̃i − Ci)K−1
i (∇̄Li −∇Li)∇TLiK−1

i (C̃Ti − CTi ) | Fi−1]

+ E[(C̃i − Ci)K−1
i ∇Li(∇̄Li −∇Li)

TK−1
i (C̃Ti − CTi ) | Fi−1]. (E.14)

For the last two terms, we apply the tower property of conditional expectation by first condi-
tioning on the randomness of {Si,j}j to take expectation over the randomness of ξi, and then
taking expectation over the randomness of {Si,j}j . In particular, we have (similar for the
second last term in (E.14))

E[(C̃i − Ci)K−1
i ∇Li(∇̄Li −∇Li)

TK−1
i (C̃Ti − CTi ) | Fi−1]

= E[(C̃i − Ci)K−1
i ∇LiE[∇̄Li −∇Li | Fi−1 ∪ σ({Si,j}j)]TK−1

i (C̃Ti − CTi ) | Fi−1]

= E[(C̃i − Ci)K−1
i ∇LiE[∇̄Li −∇Li | Fi−1]TK−1

i (C̃Ti − CTi ) | Fi−1] = 0.

For the second term in (E.14), it converges to zero almost surely as i→∞ since ‖C̃i‖∨‖Ci‖ ≤
1, ‖K−1

i ‖ ≤ ΥK , and ∇Li → 0. For the first term in (E.14), we have

E[(C̃i − Ci)K−1
i (∇̄Li −∇Li)(∇̄Li −∇Li)TK−1

i (C̃Ti − CTi ) | Fi−1]

= E[(C̃i − Ci)K−1
i E

[
(∇̄Li −∇Li)(∇̄Li −∇Li)T | Fi−1 ∪ σ({Si,j}j)

]
K−1
i (C̃Ti − CTi ) | Fi−1]

= E[(C̃i − Ci)K−1
i E

[
(∇̄Li −∇Li)(∇̄Li −∇Li)T | Fi−1

]
K−1
i (C̃Ti − CTi ) | Fi−1]

(5.4)−→ E[(C̃? − C?)Ω?((C̃?)T − C?)] = E[C̃?Ω?(C̃?)T ]− C?Ω?C?.

Again, the convergence here is due to the dominated convergence theorem, (E.12), and Ki →
K?; and the expectation is taken over the randomness of τ sketch matrices S1, . . . , Sτ only.
Thus, combining the above two displays with (E.14), we have

J2,i = E[C̃?Ω?(C̃?)T ]− C?Ω?C? +O(K2,i) (E.15)

with K2,i → 0 as i→∞ almost surely. Combining (E.15), (E.13), and (E.10), we obtain

E[θi(θi) | Fi−1] = E[(I + C̃?)Ω?(I + C̃?)T ] +O(K1,i +K2,i).

By the definition of 〈I1〉t in (E.9), let us denote Γ := UTE[(I+C̃?)Ω?(I+C̃?)T ]U . For any k, l ∈
{1, . . . , d+m}, the (k, l) entry of the matrix UT 〈I1〉tU can be written as

[UT 〈I1〉tU ]k,l =
t∑
i=0

t∏
j=i+1

(1− ϕjσk)(1− ϕjσl)ϕ2
i (Γkl + ri,kl),

where ri,kl → 0 as i→∞ almost surely. By Lemma 4.4(b) and the fact that Ci → C? as i→
∞, we know ‖C?‖ ≤ ρτ . Since C? � 0, we have 0 < 1 − ρτ ≤ σi ≤ 1 for i = 1, . . . , d + m,
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which implies σk +σl ≥ 2(1−ρτ ). Using the condition (E.6), Lemmas B.2 and B.3, we obtain
[UT 〈I1〉tU ]k,l/ϕt → Γkl/(σk + σl + ϕ/ϕ̃) as t→∞ almost surely. Thus, by (5.10), we have

〈I1〉t/ϕt
a.s.−→ U(Θ ◦ Γ)UT = Ξ?. (E.16)

Then, (Duflo, 1997, Theorem 1.3.15) indicates (E.7) holds. This shows the first part of the re-
sults. For the second part of the results, we assume the condition (4.2b) and have

E[‖θi‖3 | Fi−1]
(5.3b)
≤ 4

(
E[‖(I + Ci)K

−1
i (∇̄Li −∇Li)‖3 | Fi−1] + E[‖zi,τ − (I + Ci)z̃i‖3 | Fi−1]

)
(D.1)
≤ 4

(
8Υ3

KE[‖ḡi −∇fi‖3 | Fi−1] + E[‖(C̃i − Ci)z̃i‖3 | Fi−1]
)

(‖Ci‖ ≤ 1, ‖K−1
i ‖ ≤ ΥK)

(4.2b)
≤ 4

(
8Υ3

KΥm + 8E[‖z̃i‖3 | Fi−1]
)

(‖C̃i‖ ∨ ‖Ci‖ ≤ 1)

(3.2)
≤ 4

(
8Υ3

KΥm + 8Υ3
KE[‖∇̄Li‖3 | Fi−1]

)
(‖K−1

i ‖ ≤ ΥK)

(3.2)
≤ 4

(
8Υ3

KΥm + 8Υ3
K

{
4‖∇Li‖3 + 4E[‖ḡi −∇fi‖3 | Fi−1]

})
(4.2b)
≤ 4

(
8Υ3

KΥm + 8Υ3
K

{
4Υ3

u + 4Υm

})
(also use (D.2)). (E.17)

Thus, θi has bounded third moment; and (Wang, 1995, pp. 554) together with (E.16) give the
result (a). For (b), we verify the Lindeberg’s condition. For any ε > 0, we have

1

ϕt

t∑
i=0

E
[∥∥ t∏

j=i+1

{I − ϕj(I + C?)}ϕiθi
∥∥2 · 1‖∏t

j=i+1{I−ϕj(I+C?)}ϕiθi‖≥ε√ϕt | Fi−1

]
≤ 1

εϕ
3/2
t

t∑
i=0

E
[∥∥ t∏

j=i+1

{I − ϕj(I + C?)}ϕiθi
∥∥3 | Fi−1

]
=

1

εϕ
3/2
t

t∑
i=0

E
[∥∥ t∏

j=i+1

{I − ϕjΣ}ϕiUTθi
∥∥3 | Fi−1

]
.

To show the right hand side converges to zero, it suffices to show that each entry of the vector
on the right hand side converges to zero. In particular, we show for any 1 ≤ k ≤ d+m,

1

εϕ
3/2
t

t∑
i=0

t∏
j=i+1

|1− ϕjσk|3 ϕ3
iE[|[UTθi]k|3 | Fi−1] −→ 0 as t→∞.

By (E.17) and E[|[UTθi]k|3|Fi−1] ≤ E[‖θi‖3|Fi−1], we only show
∑t

i=0

∏t
j=i+1 |1−ϕjσk|3ϕ3

i =

o(ϕ
3/2
t ). Without loss of generality, we suppose 1− ϕjσk ≥ 0 for all j ≥ 1 and show

t∑
i=0

t∏
j=i+1

(1− ϕjσk)3ϕ3
i = o(ϕ

3/2
t ). (E.18)

Otherwise, since ϕ < 0 from (E.6), Lemma B.2 shows that ϕi → 0. Thus, there exists t̃ such
that 1− ϕjσk ≥ 0, ∀j ≥ t̃. Then,
t∑
i=0

t∏
j=i+1

|1− ϕjσk|3 ϕ3
i =

t̃−2∑
i=0

t∏
j=i+1

|1− ϕjσk|3 ϕ3
i +

t∑
i=t̃−1

t∏
j=i+1

(1− ϕjσk)3ϕ3
i
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=
t∏
j=t̃

(1− ϕjσk)3
t̃−2∑
i=0

t̃−1∏
j=i+1

|1− ϕjσk|3 ϕ3
i +

t∑
i=t̃−1

t∏
j=i+1

(1− ϕjσk)3ϕ3
i

=
t∑

i=t̃−1

t∏
j=i+1

(1− ϕjσk)3(ϕ′i)
3, (E.19)

where

ϕ′
t̃−1

=

 t̃−2∑
i=0

t̃−1∏
j=i+1

|1− ϕjσk|3 ϕ3
i + ϕ3

t̃−1

1/3

, and ϕ′i = ϕi, ∀i ≥ t̃.

Note that (E.19) has the same form as (E.18), and ϕ′i differs from ϕi only at i = t̃− 1. Thus,
(E.19) and (E.18) have the same limit. For (E.18), we apply Lemma B.1 and observe that

lim
i→∞

i
(
1− ϕ2

i−1/ϕ
2
i

) (E.6)
= 2ϕ and 3σk + 2ϕ/ϕ̃

(E.6)
> 0.

Thus, Lemma B.3 suggests that

t∑
i=0

t∏
j=i+1

(1− ϕjσk)3ϕ3
i = O(ϕ2

t ).

This verifies (E.18) and further verifies the Lindeberg’s condition. Thus, the central limit theo-
rem of martingale in (Duflo, 1997, Corollary 2.1.10) leads to (b). For (c), we apply (Fan, 2019,
Theorem 2.1) with ε =

√
ϕt, δ = 0, ρ = 1 (in their notation), as proved for verifying the Lin-

deberg’s condition above, and obtain the result immediately. This completes the proof.

E.4.2 Proof of Lemma E.2

We have

I2,t
(5.2b)

=
t∑
i=0

t∏
j=i+1

{I − ϕj(I + C?)} (ᾱi − ϕi)zi,τ = U
t∑
i=0

t∏
j=i+1

{I − ϕjΣ} (ᾱi − ϕi)UTzi,τ .

Thus, for any 1 ≤ k ≤ d+m, we have [UTI2,t]k =
∑t

i=0

∏t
j=i+1(1−ϕjσk)(ᾱi−ϕi)[UTzi,τ ]k.

For the same reason as (E.18) and (E.19), we suppose for any j ≥ 0 that 1−ϕjσk ≥ 0. Then,

∣∣[UTI2,t]k
∣∣ ≤ 1

2

t∑
i=0

t∏
j=i+1

|1− ϕjσk|χi
∣∣[UTzi,τ ]k

∣∣ =
1

2

t∑
i=0

t∏
j=i+1

(1− ϕjσk)χi
∣∣[UTzi,τ ]k

∣∣
=

1

2

t∑
i=0

t∏
j=i+1

(1− ϕjσk)χiE
[∣∣[UTzi,τ ]k

∣∣ | Fi−1

]
+

1

2

t∑
i=0

t∏
j=i+1

(1− ϕjσk)χi
{ ∣∣[UTzi,τ ]k

∣∣
− E

[∣∣[UTzi,τ ]k
∣∣ | Fi−1

] }
=: J3,t,k + J4,t,k. (E.20)

We analyze J3,t,k and J4,t,k separately as follows. We first show
∣∣[UTzi,τ ]k

∣∣ has bounded vari-
ance. We have
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E
[ {∣∣[UTzi,τ ]k

∣∣− E
[∣∣[UTzi,τ ]k

∣∣ | Fi−1

]}2 | Fi−1

]
≤ E

[ ∣∣[UTzi,τ ]k
∣∣2 | Fi−1

]
≤ E

[
‖zi,τ‖2 | Fi−1

] (D.10)
≤ 16Υ2

K(Υ2
u ∨Υm). (E.21)

Thus, J4,t,k is square integrable. Its variance is bounded by

〈J4,k〉t :=
1

4

t∑
i=0

t∏
j=i+1

(1− ϕjσk)2χ2
iE
[{∣∣[UTzi,τ ]k

∣∣− E
[∣∣[UTzi,τ ]k

∣∣ | Fi−1

]}2 | Fi−1

]
(E.21)
≤ 4Υ2

K(Υ2
u ∨Υm)

t∑
i=0

t∏
j=i+1

(1− ϕjσk)2χ2
i .

Using (E.6) and (E.8), we know

lim
i→∞

i

(
1−

χ2
i−1/ϕi−1

χ2
i /ϕi

)
= lim

i→∞
i

(
1−

χ2
i−1

χ2
i

+
χ2
i−1

χ2
i

(
1− ϕi

ϕi−1

))
= lim

i→∞
i

{(
1− χi−1

χi

)(
1 +

χi−1

χi

)
−
χ2
i−1

χ2
i

ϕi
ϕi−1

(
1− ϕi−1

ϕi

)}
= 2χ− ϕ. (E.22)

Further, (E.8) implies 2σk + p(2χ−ϕ)/ϕ̃ > 0 for some constant p ∈ (0, 1]. Thus, Lemma B.3
leads to 〈J4,k〉t = O(χ2p

t /ϕ
p
t ) (when p ∈ (0, 1), O(·) can be strengthened to o(·)); and the

strong law of large number (Duflo, 1997, Theorem 1.3.15) suggests that for any ν > 0,

J4,t,k = o

(√
χ2p
t /ϕ

p
t · {log(ϕpt /χ

2p
t )}1+ν

)
= o

(√
χ2p
t /ϕ

p
t · {log(1/χt)}1+ν

)
.

If (4.2a) is strengthened to (4.2b), then we follow (E.21), (D.10), and (E.17), and can show∣∣[UTzi,τ ]k
∣∣−E

[∣∣[UTzi,τ ]k
∣∣ | Fi−1

]
has bounded third moment. Thus, (Wang, 1995, pp. 554)

suggests that J4,t,k = O(χpt /ϕ
0.5p
t

√
log(1/χt)). When p ∈ (0, 1), O(·) can be strengthened to

o(·) due to 〈J4,k〉t = o(χ2p
t /ϕ

p
t ). For the term J3,t,k, we have

J3,t,k ≤
1

2

t∑
i=0

t∏
j=i+1

(1− ϕjσk)χi
√

E[|[UTzi,τ ]k|2 | Fi−1]

(E.21)
≤ 2ΥK(Υu ∨

√
Υm)

t∑
i=0

t∏
j=i+1

(1− ϕjσk)χi.

Using (E.6), (E.8), and the facts that lim
i→∞

i(1− χi−1/ϕi−1

χi/ϕi
) = χ−ϕ and σk+q(χ−ϕ)/ϕ̃ > 0 (as

implied by (E.8)), we apply Lemma B.3 and obtain J3,t,k = O(χqt/ϕ
q
t ). When q ∈ (0, 1), O(·)

can be strengthened to o(·). Combining with (E.20) and the bound of J4,t,k, we complete the
proof.

E.4.3 Proof of Lemma E.3

Based on the definition of I3,t in (5.2c), we have the recursion

I3,t+1 = {I − ϕt+1(I + C?)} I3,t + ϕt+1δ
t+1. (E.23)
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By Assumption 4.1 and the fact that ‖Ct‖ ≤ 1, we have

∥∥δt∥∥ (5.3c)
≤ 2

(
‖(K?)−1‖‖ψt‖+ ‖K−1

t − (K?)−1‖ · ‖∇Lt‖
)

+ ‖Ct − C?‖ ·
∥∥∥∥(xt − x?λt − λ?

)∥∥∥∥
≤ 2ΥKΥL

∥∥∥∥(xt − x?λt − λ?
)∥∥∥∥2

+ (2Υ2
KΥu‖Kt −K?‖+ ‖Ct − C?‖)

∥∥∥∥(xt − x?λt − λ?
)∥∥∥∥ . (E.24)

Since Kt → K? (cf. Lemma E.4) and Ct → C?, we know

δt = o(‖(xt − x?,λt − λ?)‖). (E.25)

Using ‖C?‖ ≤ ρτ , we know for any a ∈ (0, 1), there exists an integer t1 such that for any t ≥ t1,

‖I3,t+1‖ ≤ {1− ϕt+1(1− ρτ )} ‖I3,t‖+ ϕt+1 · o (‖(xt+1 − x?,λt+1 − λ?)‖)
≤ {1− ϕt+1(1− ρτ ) + o(ϕt+1)} ‖I3,t‖+ ϕt+1 · o(‖I1,t‖+ ‖I2,t‖) (by Lemma 5.1)

≤ {1− a(1− ρτ )ϕt+1} ‖I3,t‖+ ϕt+1 · o(‖I1,t‖+ ‖I2,t‖).

We apply the above inequality recursively and obtain

‖I3,t+1‖ ≤
t+1∏

j=t1+1

{1− a(1− ρτ )ϕj} ‖I3,t1‖

+

t+1∑
i=t1+1

t+1∏
j=i+1

{1− a(1− ρτ )ϕj}ϕio(‖I1,i−1‖+ ‖I2,i−1‖). (E.26)

We apply Lemmas E.1 and E.2 for bounding ‖I1,i−1‖ and ‖I2,i−1‖. In particular, we note that
for any υ ≥ 0,

lim
i→∞

i

1−

√
ϕi−1 {log(1/ϕi−1)}1+υ√
ϕi {log(1/ϕi)}1+υ

 (E.6)
= lim

i→∞
i

(
1−
√
ϕi−1√
ϕi

)
+ lim
i→∞

i

(
1− {log(1/ϕi−1)}

1+υ
2

{log(1/ϕi)}
1+υ
2

)

(E.6)
=

ϕ

2
+ lim
i→∞

i

(
1− {log(1/ϕi−1)}

1+υ
2

{log(1/ϕi)}
1+υ
2

)
(Lemma B.1).

Furthermore, we have

lim
i→∞

i

(
1− log(1/ϕi−1)

log(1/ϕi)

)
= lim

i→∞

i log(ϕi−1/ϕi)

log(1/ϕi)
= lim

i→∞

i log (1 + (ϕi−1 − ϕi)/ϕi)
log(1/ϕi)

= lim
i→∞

i
{
ϕi−1−ϕi

ϕi
+O

(
(ϕi−1−ϕi)2

ϕ2
i

)}
log(1/ϕi)

= lim
i→∞

−ϕ
log(1/ϕi)

= 0,

where the last equality is due to ϕi → 0, as implied by Lemma B.2. Combining the above two
displays with Lemma B.1, we have

lim
i→∞

i

1−

√
ϕi−1 {log(1/ϕi−1)}1+υ√
ϕi {log(1/ϕi)}1+υ

 =
ϕ

2
for any ν ≥ 0. (E.27)
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Moreover, we have for any p, q ∈ (0, 1] and ν ≥ 0,

lim
i→∞

i

(
1−

χpi−1/ϕ
0.5p
i−1

√
{log(1/χi−1)}1+ν

χpi /ϕ
0.5p
i

√
{log(1/χi)}1+ν

) (E.27)
(E.22)

= p(χ− 0.5ϕ),

lim
i→∞

i

(
1−

χqi−1/ϕ
q
i−1

χqi /ϕ
q
i

)
(E.22)

= q(χ− ϕ).

(E.28)

For the constants p, q in (E.8), we let a be any scalar such that

0 <
−ϕ/ϕ̃

2(1− ρτ )
∨ −p(χ− 0.5ϕ)/ϕ̃

1− ρτ
∨ −q(χ− ϕ)/ϕ̃

1− ρτ
< a < 1,

which is guaranteed to exist due to (E.6) and (E.8). Then, we obtain

a(1− ρτ ) +
ϕ

2ϕ̃
> 0 a(1− ρτ ) +

p(χ− 0.5ϕ)

ϕ̃
> 0 and a(1− ρτ ) +

q(χ− ϕ)

ϕ̃
> 0.

Thus, combining (E.26), (E.27), and (E.28) with Lemma B.3, we obtain the results under either
(4.2a) or (4.2b). This completes the proof.

E.4.4 Proof of Lemma E.4

We note that∥∥∥∥∥1

t

t−1∑
i=0

∇̄2
xLi −∇2

xL?
∥∥∥∥∥ ≤

∥∥∥∥∥1

t

t−1∑
i=0

H̄i −∇2fi

∥∥∥∥∥+
1

t

t−1∑
i=0

∥∥∇2
xLi −∇2

xL?
∥∥

(4.1)
≤

∥∥∥∥∥1

t

t−1∑
i=0

H̄i −∇2fi

∥∥∥∥∥+
ΥL

t

t−1∑
i=0

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥ . (E.29)

Since (xt − x?,λt − λ?)→ 0, by the fact that at → a implies 1
t

∑t−1
i=0 ai → a (also known as

Stolz–Cesàro theorem), it suffices to show (
∑t−1

i=0 H̄i−∇2fi)/t converges to zero. In fact, by As-
sumption 4.2(4.2d) that E[H̄i | Fi−1] = ∇2fi and E[‖H̄i −∇2fi‖2 | Fi−1] ≤ Υm, we notice
(
∑t−1

i=0 H̄i −∇2fi)/t is a square integrable martingale. Thus, (Duflo, 1997, Theorem 1.3.15)
suggests that for any υ > 0,∥∥∥∥∥1

t

t−1∑
i=0

H̄i −∇2fi

∥∥∥∥∥ = o

(√
(log t)1+υ

t

)
. (E.30)

Combining (E.29) and (E.30), we obtain 1
t

∑t−1
i=0 ∇̄2

xLi → ∇2
xL? as t→∞. For the second re-

sult, we suppose ‖∇2
xL?‖ ≤ Υ?

B and xT∇2
xL?x ≥ γ?RH‖x‖2 in the space {x ∈ Rd : G?x = 0}.

Whenever γRH < γ?RH and ΥB > Υ?
B , we know ‖1

t

∑t−1
i=0 ∇̄2

xLi‖ ≤ ΥB for large enough t. In
addition, we let Zt, Z? ∈ Rd×(d−m) be the matrices whose columns are orthonormal and span
the spaces of ker(Gt), ker(G?), respectively. Since Gt → G?, Davis-Kahan sin(θ) theorem
suggests that ZtZTt → Z?(Z?)T , implying infQ ‖Zt − Z?Q‖ → 0 with Q chosen over all
(d−m)× (d−m) orthogonal matrices (Davis and Kahan, 1970). Thus, we have

λmin(ZTt (

t−1∑
i=0

∇̄2
xLi/t)Zt) = λmin(QZTt (

t−1∑
i=0

∇̄2
xLi/t)ZtQT )→ λmin((Z?)T∇2

xL?Z?),
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which implies λmin(ZTt (
∑t−1

i=0 ∇̄2
xLi/t)Zt) ≥ γRH for large enough t. This completes the proof.

E.5 Proof of Theorem 5.6

We first improve the rate of I3,t. Lemma E.5 differs from Lemma E.3 in the bound of δt. We pro-
pose a more precise bound on δt compared to (E.25). The new bound relies on the convergence
rate of the Hessian Kt in Lemma E.6 and Assumption 5.3 for applying Corollary 5.4.

Lemma E.5 Under the conditions of Theorem 5.6, for any υ > 0,

I3,t = o
(
{ϕt log(1/ϕt)}2/3 {log(1/ϕt)}ν

)
a.s.

We note that

|
√

1/ᾱt −
√

1/ϕt| = |
√
ᾱt −

√
ϕt|/
√
ᾱtϕt = |ᾱt − ϕt| /(

√
ᾱtϕt(

√
ᾱt +

√
ϕt)) ≤ χt/(4β1.5

t ).

Since χ < 1.5β, we know χt = o(β1.5
t ). By the almost sure convergence of (xt,λt), we only need

to show the normality of 1/
√
ϕt(xt − x?,λt − λ?). Let us choose p ∈ (0, 1] such that

pχ− 0.5pϕ− 2ϕ/3 < 0⇐⇒ p >
2ϕ/3

χ− 0.5ϕ
,

(1− ρτ ) + p(χ− 0.5ϕ)/ϕ̃ > 0⇐⇒ p <
(1− ρτ )ϕ̃

0.5ϕ− χ
,

(E.31)

which is guaranteed to exist due to the fact that

0 <
2ϕ/3

χ− 0.5ϕ
< 1 ∧ (1− ρτ )ϕ̃

0.5ϕ− χ
.

We also choose q as stated in the theorem, which guarantees that (by the proof of Theorem 5.5,
ϕ = β and ϕ̃ = β̃)

qχ−qϕ−0.5ϕ < 0⇔ q >
0.5ϕ

χ− ϕ
and (1−ρτ )+q(χ−ϕ)/ϕ̃ > 0⇔ q <

(1− ρτ )ϕ̃

ϕ− χ
. (E.32)

With the above choices of p and q, we know from (E.28), Lemmas E.2 and E.5 that for any ν > 0

I2,t + I3,t = O(χqt/ϕ
q
t ) + o

(
{ϕt log(1/ϕt)}2/3 {log(1/ϕt)}ν

)
.

The firstO(·) can be strengthened to o(·) when q < 1. Noting that 1/
√
ϕt(I2,t + I3,t) = o(1) a.s.,

the Slutsky’s theorem together with Lemma E.1 leads to the asymptotic normality. Further-
more, Lemma B.5 with

At =

√
1/ϕt ·wTI1,t√
wTΞ?w

, Bt =

√
1/ϕt ·wT (I2,t + I3,t)√

wTΞ?w
+

(
√

1/ᾱt −
√

1/ϕt) ·wT (xt − x?,λt − λ?)√
wTΞ?w

and Ct = 0 leads to the Berry-Esseen bound. This completes the proof.
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E.5.1 Proof of Lemma E.5

We need the following lemma to establish the convergence rate of Kt. The conditions are the
same as those for showing the convergence rate of (xt − x?,λt − λ?), which are weaker than
Theorem 5.6. The proof is provided in Appendix E.5.2.

Lemma E.6 Under Assumptions 4.1, 4.2(4.2a, 4.2e), 4.3 and suppose {βt, χt}t satisfy (5.6).
Then, for any ν > 0 and any constants p, q ∈ (0, 1] such that (1−ρτ )+p(χ−0.5β)/β̃ > 0 and
(1− ρτ ) + q(χ− β)/β̃ > 0, we have

‖Kt −K?‖ = o
(√

βt{log(1/βt)}1+υ
)

+ o
(
χpt /β

0.5p
t

√
{log(1/χt)}1+ν

)
+O(χqt/β

q
t ) a.s.

Furthermore, if (4.2a) is strengthened to (4.2b), then

‖Kt−K?‖ = O
(√

βt log(1/βt)
)
+O
(
χpt /β

0.5p
t

√
log(1/χt)

)
+O(χqt/β

q
t )+o(

√
(log t)1+υ/t ) a.s.

If p < 1 (and/or q < 1), the second (and/or third) O(·) in the above results can be strengthened
to o(·).

Applying Lemma E.6 with p, q chosen to satisfy (E.31) and (E.32), we know for any ν > 0

‖Kt −K?‖ = O
(√

ϕt log(1/ϕt)
)

+ o(
√

(log t)1+υ/t ).

Combining the above result with (E.24), Lemmas 5.1, E.1, E.2, E.3, and Corollary 5.4, we have

‖δt‖ = O(ϕt log(1/ϕt)) + o(
√
ϕt log(1/ϕt) ·

√
(log t)1+υ/t ). (E.33)

We plug the above bound into the recursion (E.23). We note that

lim
t→∞

t

(
1− ϕt−1 log(1/ϕt−1)

ϕt log(1/ϕt)

)
(E.27)

= ϕ,

lim
t→∞

t

(
1−

√
ϕt−1 log(1/ϕt−1)

√
(log(t− 1))1+υ/(t− 1)√

ϕt log(1/ϕt)
√

(log t)1+υ/t

)
=
ϕ

2
− 1

2
.

In the following proof, we consider ϕ such that 0.5ϕ−0.5 ≥ ϕ. Otherwise, the second term in
(E.33) is absorbed into the first term. Applying Lemma B.3 and noting that

1.5(1− ρτ ) + (0.5ϕ− 0.5)/ϕ̃ ≥ 1.5(1− ρτ ) + ϕ/ϕ̃ > 0,

we know

I3,t = o
(
{ϕt log(1/ϕt)}2/3

)
+ o
(
{
√
ϕt log(1/ϕt) ·

√
(log t)1+υ/t}2/3

)
= o
(
{ϕt log(1/ϕt)}2/3 {log(1/ϕt)}ν

)
,

where the second equality is due to
√

(log t)1+υ/t = O
(√

ϕt{log(1/ϕt)}1+ν
)
as implied by the

fact that tϕt → ϕ̃ ∈ (0,∞]. This completes the proof.
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E.5.2 Proof of Lemma E.6

We note from the proof of Theorem 5.5 that ϕ = β and ϕ̃ = β̃. By Lemmas 5.1, E.1, E.2, E.3,
for any ν > 0, if (4.2a) holds, then we have

‖(xt−x?,λt−λ?)‖ = o
(√

ϕt{log(1/ϕt)}1+ν
)

+ o
(
χpt /ϕ

0.5p
t

√
{log(1/χt)}1+ν

)
+O(χqt/ϕ

q
t ). (E.34)

Here, p, q ∈ (0, 1] are any constants such that (1− ρτ ) + p(χ− 0.5ϕ)/ϕ̃ > 0 and (1− ρτ ) +
q(χ−ϕ)/ϕ̃ > 0. Furthermore, if q < 1 the O(·) in the third term can be strengthened to o(·).
In the following proof, we only consider p, q such that

p(χ− 0.5ϕ) ≥ 0.5ϕ and q(χ− ϕ) ≥ 0.5ϕ. (E.35)

Otherwise, by (E.27), (E.28), Lemmas B.1 and B.2, we know the second (and/or third) term in
(E.34) can be absorbed into the first term. We now apply (4.1), combine (E.29) and (E.30), and
have for any υ > 0 and large enough t that

‖Kt −K?‖ ≤ ΥL

t

t−1∑
i=0

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥+ ΥL‖xt − x?‖+ o

(√
(log t)1+υ

t

)

=
ΥL

t

∥∥∥∥(x0 − x?
λ0 − λ?

)∥∥∥∥+ ΥL

t−1∑
i=1

t∏
j=i+1

(
1− 1

j

)
1

i

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥+ ΥL‖xt − x?‖+ o

(√
(log t)1+υ

t

)

= ΥL

t−1∑
i=1

t∏
j=i+1

(
1− 1

j

)
1

i

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥+ ΥL‖xt − x?‖+ o

(√
(log t)1+υ

t

)
. (E.36)

We claim that ϕ = β > −2. Otherwise, ϕ+ 1.5 ≤ −0.5 < 0. We apply Lemma B.1 and have

lim
t→∞

t

(
1− ϕt−1(t− 1)1.5

ϕtt1.5

)
= lim

t→∞
t

(
1− ϕt−1

ϕt
+
ϕt−1

ϕt

(
1− (t− 1)1.5

t1.5

))
(E.6)
= ϕ+ 1.5 < 0.

Then, Lemma B.2 suggests ϕtt1.5 → 0, which cannot hold under (5.6). Thus, ϕ > −2. Using
(E.27), (E.28), (E.35), and Lemma B.3, and noting that 1 + p(χ− 0.5ϕ) ≥ 1 + 0.5ϕ > 0 and 1+
q(χ− ϕ) ≥ 1 + 0.5ϕ > 0, we obtain

t−1∑
i=1

t∏
j=i+1

(
1− 1

j

)
1

i

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥

= o
(√

ϕt{log(1/ϕt)}1+ν
)

+ o
(
χpt /ϕ

0.5p
t

√
{log(1/χt)}1+ν

)
+O(χqt/ϕ

q
t ). (E.37)

Following the same derivation, we know that if (4.2b) holds, then

‖(xt − x?,λt − λ?)‖ = O
(√

ϕt log(1/ϕt)
)

+O
(
χpt /ϕ

0.5p
t

√
log(1/χt)

)
+O(χqt/ϕ

q
t )

and
t−1∑
i=1

t∏
j=i+1

(
1− 1

j

)
1

i

∥∥∥∥(xi − x?λi − λ?
)∥∥∥∥

= O
(√

ϕt log(1/ϕt)
)

+O
(
χpt /ϕ

0.5p
t

√
log(1/χt)

)
+O(χqt/ϕ

q
t ). (E.38)

Combining (E.36), (E.37), (E.38) together, and noting that βt ≤ ϕt ≤ 2βt and o(
√

(log t)1+υ/t)
can be absorbed into o

(√
ϕt{log(1/ϕt)}1+ν

)
under (4.2a) (as implied by the fact that tϕt →

ϕ̃ ∈ (0,∞]), we complete the proof.
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E.6 Proof of Corollary 5.7

The result in (a) is immediate by plugging β = −1 and β̃ = 1 into (5.11). For (b), we plug β =
−1 and β̃ = 1 into (5.8), and know that Ξ? solves the equation

(0.5I + C?)Ξ? + Ξ?(0.5I + C?) = E[(I + C̃?)Ω?(I + C̃?)T ].

Thus, we have

(0.5I + C?)(Ξ? − Ω?) + (Ξ? − Ω?)(0.5I + C?)

= E[(I + C̃?)Ω?(I + C̃?)T ]− Ω? − C?Ω? − Ω?C? = E[C̃?Ω?(C̃?)T ] � 0.

Since ‖C?‖ ≤ ρτ < 0.5, the basic Lyapunov theorem (cf. (Khalil, 2002, Theorem 4.6)) suggests
that Ξ? � Ω?. Furthermore, with the notation in (5.10), we know

Ξ? − Ω? = U
(
Θ ◦ UTE[C̃?Ω?(C̃?)T ] U

)
UT with [Θ]k,l = 1/(σk + σl − 1). (E.39)

The matrix Θ is positive semidefinite since for any vector ω,

ωTΘω =

d+m∑
k,l=1

ωkωl
σk + σl − 1

=

d+m∑
k,l=1

ωkωl

∫ ∞
0

exp(−s(σk + σl − 1))ds (since σk + σl − 1 > 0)

=

∫ ∞
0

(
d+m∑
k=1

ωk exp(−s(σk − 0.5))

)2

ds ≥ 0.

By (Horn and Johnson, 1985, 7.5.P24), we have

‖Ξ? − Ω?‖ (E.39)
= ‖Θ ◦ UTE[C̃?Ω?(C̃?)T ] U‖

≤ max
k

[Θ]k,k‖E[C̃?Ω?(C̃?)T ]‖ ≤ 1

1− 2ρτ
‖E[C̃?Ω?(C̃?)T ]‖ ≤ 3‖E[C̃?Ω?(C̃?)T ]‖,

where the second last inequality is due to σk ≥ 1−ρτ and the last inequality is due to ρτ < 1/3.
Furthermore, we have

0 � E[C̃?Ω?(C̃?)T ] � ‖Ω?‖ · E[C̃?(C̃?)T ]

= ‖Ω?‖ · E




τ∏
j=1

(I −K?Sj(S
T
j (K?)S)†STj K

?)




τ∏
j=1

(I −K?Sj(S
T
j (K?)S)†STj K

?)


T


= ‖Ω?‖ · E
[

τ∏
j=2

(I −K?Sj(S
T
j (K?)Sj)

†STj K
?)

E[(I −K?S1(ST1 (K?)S1)†STj K
?) | S2:τ ]


τ∏
j=2

(I −K?Sj(S
T
j (K?)Sj)

†STj K
?)


T ]
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� ρ‖Ω?‖ · E




τ∏
j=2

(I −K?Sj(S
T
j (K?)S)†STj K

?)




τ∏
j=2

(I −K?Sj(S
T
j (K?)S)†STj K

?)


T


� ρτ‖Ω?‖ · I, (E.40)

where the second last inequality is from Assumption 4.3 and Kt → K?; and the last inequality
applies the same reason for sketch matrices S2:τ . Combining the above two displays completes
the proof.

E.7 Proof of Theorem 5.10

We have

‖Ξt − Ξ?‖ ≤ ‖Ξ? − E[(I + C̃?)Ω?(I + C̃?)T ]/(2 + β/β̃)‖

+ ‖E[(I + C̃?)Ω?(I + C̃?)T ]− Ω?‖/(2 + β/β̃) + ‖Ω? − Ωt‖ /(2 + β/β̃). (E.41)

For the first term in (E.41), we have (Horn and Johnson, 1985, 7.7.P27)

‖Ξ? − E[(I + C̃?)Ω?(I + C̃?)T ]/(2 + β/β̃)‖
(5.10)

= ‖(Θ− 11T /(2 + β/β̃)) ◦ UTE[(I + C̃?)Ω?(I + C̃?)T ]U‖

≤ ‖Θ− 11T /(2 + β/β̃)‖ · ‖E[(I + C̃?)Ω?(I + C̃?)T ]‖ (‖A ◦B‖ ≤ ‖A‖ · ‖B‖)

≤ 4‖Θ− 11T /(2 + β/β̃)‖ · ‖Ω?‖ (‖C̃?‖ ≤ 1),

and for any 1 ≤ k, l ≤ d+m,

|Θk,l − 1/(2 + β/β̃)| = |1/(σk + σl + β/β̃)− 1/(2 + β/β̃)| = |2− σk − σl|
(σk + σl + β/β̃)(2 + β/β̃)

≤ 2ρτ

(2− 2ρτ + β/β̃)(2 + β/β̃)

(5.6)
≤ 2ρτ

(2− 2(1 + β/(1.5β̃)) + β/β̃)(2 + β/β̃)
=

6ρτ

−β/β̃(2 + β/β̃)
.

Therefore, the above two displays lead to

‖Ξ? − E[(I + C̃?)Ω?(I + C̃?)T ]/(2 + β/β̃)‖ = O(ρτ ). (E.42)

For the second term in (E.41), we have

‖E[(I + C̃?)Ω?(I + C̃?)T ]− Ω?‖ ≤ ‖C?Ω?‖+ ‖Ω?C?‖+ ‖E[C̃?Ω?(C̃?)T ]‖ (E[C̃?] = C?)

≤ 2‖Ω?‖ρτ + ‖E[C̃?Ω?(C̃?)T ]‖ (E.40)
= O(ρτ ). (E.43)

For the third term in (E.41), we have

‖Ωt − Ω?‖ (5.5)
= O(‖Kt −K?‖)

+O

∥∥∥∥∥∥1

t

t−1∑
i=0

ḡiḡ
T
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(
1

t

t−1∑
i=0

ḡi

)(
1

t

t−1∑
i=0

ḡi

)T
− E[∇f(x?; ξ)∇T f(x?; ξ)] +∇f(x?)∇T f(x?)

∥∥∥∥∥∥
 .

62



Statistical Inference of Constrained Stochastic Optimization

Furthermore, we have∥∥∥∥∥∥1

t

t−1∑
i=0

ḡiḡ
T
i −

(
1

t

t−1∑
i=0

ḡi

)(
1

t

t−1∑
i=0

ḡi

)T
− E[∇f(x?; ξ)∇T f(x?; ξ)] +∇f(x?)∇T f(x?)

∥∥∥∥∥∥
≤

∥∥∥∥∥1

t

t−1∑
i=0

ḡiḡ
T
i − E[∇f(x?; ξ)∇T f(x?; ξ)]

∥∥∥∥∥+

∥∥∥∥∥∥
(

1

t

t−1∑
i=0

ḡi

)(
1

t

t−1∑
i=0

ḡi

)T
−∇f(x?)∇T f(x?)

∥∥∥∥∥∥ .
We take the first term as an example, while the second term has the same guarantee following
the same derivations. We note that∥∥∥∥∥1

t

t−1∑
i=0

ḡiḡ
T
i − E[∇f(x?; ξ)∇T f(x?; ξ)]

∥∥∥∥∥ ≤
∥∥∥∥∥1

t

t−1∑
i=0

(ḡiḡ
T
i )− E[ḡiḡ

T
i | Fi−1]

∥∥∥∥∥
+

∥∥∥∥∥1

t

t−1∑
i=0

E[ḡiḡ
T
i | Fi−1]− E[∇f(x?; ξ)∇T f(x?; ξ)]

∥∥∥∥∥ .
By (4.2c), we know the first term on the right hand side is a square integrable martingale. The
strong law of large number (Duflo, 1997, Theorem 1.3.15) suggests that for any ν > 0∥∥∥∥∥1

t

t−1∑
i=0

(ḡiḡ
T
i )− E[ḡiḡ

T
i | Fi−1]

∥∥∥∥∥ = o
(√

(log t)1+υ/t
)
.

By (E.11), (E.38), and the choices of p, q in (E.31) and (E.32), the second term on the right hand
side can be bounded by∥∥∥∥∥1

t

t−1∑
i=0

E[ḡiḡ
T
i | Fi−1]− E[∇f(x?; ξ)∇T f(x?; ξ)]

∥∥∥∥∥ = O
(√

ϕt log(1/ϕt)
)
.

Combining the above five displays with Lemma E.6, we have

‖Ωt − Ω?‖ = O
(√

ϕt log(1/ϕt)
)

+ o
(√

(log t)1+υ/t
)
. (E.44)

Combining (E.41), (E.42), (E.43), and (E.44), we complete the first part of the proof. For the
Berry-Esseen inequality, we simply note that

wT (xt − x?,λt − λ?)√
wTΞtw

=
wT (xt − x?,λt − λ?)

√
wTΞ?w ·

√
1 + wTΞtw−wTΞ?w

wTΞ?w

.

Thus, we apply Theorem 5.6 and Lemma B.5, and complete the proof.

Appendix F. Additional Experimental Results

In this section, we provide more implementation details and show additional results. We follow
the introduction in Section 6, and implement the method on eight problems in CUTEst test set
and on linearly/nonlinearly constrained regression problems. For both implementation, we run
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105 iterations, set βt = 1/t0.501, χt = β2
t , and ᾱt ∼ Uniform([βt, ηt]) with ηt = βt + χt. Re-

garding the Hessian regularization ∆t, we let (λmin(·) denotes the least eigenvalue)

∆t := (−λmin(ZTt

t−1∑
i=0

∇̄2
xLiZt)/t+ 0.1) · I whenever λmin(ZTt

t−1∑
i=0

∇̄2
xLiZt) < 0.

Here, Zt ∈ Rd×(d−m) has orthonormal columns that span the space {x ∈ Rd : Gtx = 0}, which
is obtained from the QR decomposition.

F.1 CUTEst problems

In this section, we testify the convergence rate in Theorem 5.5. In particular, we randomly pick
one run across 200 runs, and show the convergence plots of the KKT residual ‖∇Lt‖, the mean
absolute error ‖(xt−x?,λt−λ?)‖, and the Hessian error ‖Kt−K?‖. By Theorem 5.5, Lemma
E.6, and the Lipschitz continuity of the Hessian, the theoretical convergence rate for these
three quantities is O(

√
βt log(1/βt)).

The convergence plots are shown in Figures 1 and 2. We use six problems for illustration.
From the figures, we observe that the method converges faster for small sampling variance σ2

and converges slower for large σ2. Specifically, our theoretical convergence rate precisely char-
acterizes asymptotic behavior of the method, and σ2 only affects the rate as a constant factor.

F.2 Constrained regression problems

We follow the experiments in Section 6.2, and provide comprehensive comparisons between in-
exact and exact second-order methods on linearly/nonlinearly constrained regression problems.
The coefficient matrix A in linear constraints is sampled from standard normal; the objective of
logistic loss is regularized by a quadratic penalty term with a unit parameter. We vary the pa-
rameters d, r and τ . In particular, we let d ∈ {5, 20, 40, 60}, r ∈ {0.4, 0.5, 0.6} for Toeplitz Σa

and r ∈ {0.1, 0.2, 0.3} for Equi-correlation Σa, and τ ∈ {∞, 20, 40, 60}. We mention that τ =
∞ corresponds to the exact method. For each setup, we perform 200 independent runs.

The extensive comparison results of offline M -estimation and StoSQP with different τ are
reported in Tables 4-11. Specifically, Tables 4 and 5 summarize the results of linear model +
linear constraints; Tables 6 and 7 summarize the results of linear model + nonlinear con-
straints; Tables 8 and 9 summarize the results of logistic model + linear constraints; while Ta-
bles 10 and 11 summarize the results of logistic model + nonlinear constraints. For all four
cases, we have the following observations.

For MAE, we observe that M -estimation achieves results that are an order of magnitude
smaller than those of the StoSQP methods. Among the different setups of τ of StoSQP, we find
that exact StoSQP (τ =∞) generally yields smaller MAE compared to inexact StoSQP. Fur-
thermore, a larger τ (i.e., more sketching steps) in StoSQP tends to result in smaller MAE, al-
though the differences are less evident than those observed between StoSQP andM -estimation
methods. This trend is robust across different setups of the design covariance Σa. For instance,
for d = 40 in Table 5, StoSQP with τ = 20 achieves an MAE of approximately 0.2–0.25, while
StoSQP with τ = 40, 60,∞ achieves an MAE of less than 0.1. This observation suggests that,
given problem parameters such as the condition number of the Lagrangian Hessian and prob-
lem dimension, τ = 20 may be insufficient for solving Newton systems in this scenario. Specifi-
cally, solving exact Newton systems requiresO(463) = O(97, 336) flops while a sketching solver
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(a) KKT residual (b) Iteration error (c) Hessian error

Problem MARATOS

(d) KKT residual (e) Iteration error (f) Hessian error

Problem ORTHREGB

(g) KKT residual (h) Iteration error (i) Hessian error

Problem HS7

Figure 1:Convergence plots of CUTEst problems. Each row corresponds to one problem and has
three figures in the log scale. From the left to the right, they correspond to ‖∇Lt‖ v.s. t, ‖(xt−
x?,λt−λ?)‖ v.s. t, and ‖Kt−K?‖ v.s. t. Each figure has five lines; four lines correspond to
four setups of σ2, and the red line corresponds to

√
βt log(1/βt) v.s. t, which is the theoretical

asymptotic rate.
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(a) KKT residual (b) Iteration error (c) Hessian error

Problem HS48

(d) KKT residual (e) Iteration error (f) Hessian error

Problem HS78

(g) KKT residual (h) Iteration error (i) Hessian error

Problem GENHS28

Figure 2: Convergence plots of CUTEst problems. See Figure 1 for the interpretation.
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with τ = 20 requires only O(20× 46) = O(920) flops. This substantial reduction in computa-
tional cost can result in insufficient precision for the Newton direction at each step, leading to
a larger MAE when the sample size is fixed.

For coverage rate, we observe that StoSQP with different τ generally achieves a valid cov-
erage rate that is very close to the nominal rate 95%, matching the performance of offline M -
estimation. There are two potential exceptions. The first exception occurs when d = 5, where
StoSQP exhibits undercoverage with rates ranging from 87%-92% (cf. Tables 4, 8, and 10). This
undercoverage occurs because the condition numbers of the Lagrangian Hessian in these prob-
lems are significantly larger than in other scenarios, despite the small problem dimension of 5.
Consequently, the iteration sequence of StoSQP may not have reached stationarity given the
limited sample size. As noted in Zhu et al. (2021), even SGD-based estimators require 3×105 to
4×105 samples to alleviate undercoverage issue in challenging online inference tasks for uncon-
strained problems, while we only have 105 samples for constrained problems. Furthermore, ap-
plying a sketching solver to such small-scale problems seems an overkill. We recommend using
a simple linear system solver for small-scale problems to reduce the additional uncertainty
introduced by the sketching solver. The second exception occurs when d = 40, where StoSQP
with τ = 20 exhibits undercoverage with rates ranging from 82%-86%. In contrast, StoSQP
with τ = 40, 60,∞ achieves valid coverage in this case (cf. Table 5). As explained for MAE,
this undercoverage results from insufficient sketching steps, which not only make the StoSQP
iteration sequence noisy but also make the bias of covariance matrix estimation non-negligible.
For this scenario, slightly increasing the number of sketching steps (e.g., setting τ = 40) can re-
solve the undercoverage issue while still preserving computational efficiency compared to exact
methods.

For average length of confidence intervals, we observe thatM -estimation produces intervals
that are an order of magnitude shorter than those of the StoSQP methods. Among the StoSQP
methods, the inexact settings (τ <∞) yield average lengths very similar to the exact setting
(τ =∞), indicating that the inexact methods do not lead to overly conservative intervals. For
both Toeplitz and Equi-correlation Σa, the length of the confidence intervals remains largely
unchanged across different setups of r. Moreover, for both linear and logistic models, nonlinear
constraints tend to result in wider confidence intervals for both offline and online methods, as
shown by comparisons of Tables 4, 5 with Tables 6, 7 and Tables 8, 9 with Tables 10, 11.

For computational flops per iteration, we observe that online StoSQP methods are signifi-
cantly more efficient than the offline method. A sketching solver can further reduce the compu-
tational costs of StoSQP. Choosing the sketching step τ involves a trade-off between computa-
tional and statistical efficiency. As shown in Table 5, when d = 40, τ = 20 requires fewer flops
but achieves larger MAE and lower coverage rates, whereas τ = 60 requires more flops (though
still fewer than those of M -estimation and τ =∞) but achieves lower MAE and better cover-
age rates. In this case, τ = 40 strikes a better balance between the two aspects. We should also
mention that for small-scale problems (d = 5), using a sketching solver with a large τ is coun-
terproductive, as it may cause the flops to exceed those of the exact solver.
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d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

5

Identity

M-estimation 0.20(0.08) 95.40 0.19(0.03) 16189377.50

S
to

S
Q

P τ = ∞ 2.64(1.10) 94.00 2.43(0.38) 443.00
τ = 20 3.19(1.03) 88.80 2.43(0.38) 240.00
τ = 40 3.09(1.19) 89.00 2.43(0.39) 380.00
τ = 60 2.93(0.99) 91.80 2.43(0.39) 520.00

T
o
ep

li
tz

r = 0.4

M-estimation 0.20(0.08) 95.50 0.19(0.03) 17085960.18

S
to

S
Q

P τ = ∞ 2.61(1.05) 95.00 2.40(0.40) 443.00
τ = 20 2.92(1.12) 90.70 2.40(0.40) 240.00
τ = 40 3.01(1.07) 90.30 2.40(0.40) 380.00
τ = 60 2.93(1.05) 90.80 2.40(0.40) 520.00

r = 0.5

M-estimation 0.20(0.08) 94.60 0.19(0.03) 17117046.95
S
to

S
Q

P τ = ∞ 2.58(1.02) 94.50 2.39(0.40) 443.00
τ = 20 2.93(1.05) 91.40 2.40(0.40) 240.00
τ = 40 2.84(1.08) 90.70 2.39(0.41) 380.00
τ = 60 3.00(1.06) 90.60 2.40(0.41) 520.00

r = 0.6

M-estimation 0.20(0.08) 95.60 0.19(0.03) 16699894.12

S
to

S
Q

P τ = ∞ 2.61(1.07) 94.40 2.39(0.41) 443.00
τ = 20 2.89(0.95) 92.20 2.39(0.41) 240.00
τ = 40 3.09(1.11) 89.10 2.39(0.41) 380.00
τ = 60 2.85(1.07) 92.20 2.39(0.41) 520.00

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.22(0.08) 94.10 0.19(0.03) 16591372.59

S
to

S
Q

P τ = ∞ 2.68(1.14) 94.20 2.42(0.39) 443.00
τ = 20 3.09(0.94) 89.20 2.42(0.39) 240.00
τ = 40 2.94(1.06) 90.70 2.42(0.39) 380.00
τ = 60 2.96(1.08) 91.10 2.42(0.39) 520.00

r = 0.2

M-estimation 0.21(0.09) 94.50 0.19(0.03) 16564921.51

S
to

S
Q

P τ = ∞ 2.65(1.12) 93.30 2.41(0.40) 443.00
τ = 20 3.09(1.07) 90.40 2.41(0.40) 240.00
τ = 40 3.03(1.04) 90.70 2.41(0.40) 380.00
τ = 60 2.94(1.05) 90.80 2.41(0.40) 520.00

r = 0.3

M-estimation 0.20(0.08) 96.90 0.19(0.03) 17816134.75

S
to

S
Q

P τ = ∞ 2.57(1.14) 93.20 2.40(0.41) 443.00
τ = 20 3.05(1.04) 90.60 2.41(0.41) 240.00
τ = 40 3.13(1.14) 88.70 2.40(0.41) 380.00
τ = 60 2.98(1.01) 90.90 2.41(0.41) 520.00

20

Identity

M-estimation 0.51(0.09) 94.98 0.23(0.02) 71149851.21

S
to

S
Q

P τ = ∞ 6.49(1.17) 94.60 2.87(0.22) 15203.99
τ = 20 6.85(1.09) 93.50 2.87(0.22) 1860.12
τ = 40 6.82(1.18) 93.67 2.87(0.22) 2340.11
τ = 60 6.81(1.14) 93.35 2.87(0.22) 2820.11

T
o
ep

li
tz

r = 0.4

M-estimation 0.51(0.09) 94.77 0.23(0.02) 72063611.92

S
to

S
Q

P τ = ∞ 6.43(1.15) 95.22 2.88(0.22) 15203.99
τ = 20 6.79(1.09) 93.95 2.88(0.22) 1860.12
τ = 40 6.87(1.13) 93.80 2.89(0.22) 2340.11
τ = 60 6.83(1.20) 94.00 2.88(0.22) 2820.11

r = 0.5

M-estimation 0.52(0.10) 94.35 0.23(0.02) 67237313.19

S
to

S
Q

P τ = ∞ 6.44(1.12) 95.12 2.89(0.22) 15203.99
τ = 20 6.75(1.16) 93.80 2.89(0.22) 1860.12
τ = 40 6.83(1.07) 93.42 2.89(0.22) 2340.11
τ = 60 6.86(1.04) 94.03 2.89(0.22) 2820.11

r = 0.6

M-estimation 0.51(0.09) 95.07 0.23(0.02) 69161097.88

S
to

S
Q

P τ = ∞ 6.57(1.28) 94.47 2.90(0.22) 15203.99
τ = 20 6.82(1.10) 93.83 2.90(0.22) 1860.12
τ = 40 6.79(1.15) 93.78 2.90(0.22) 2340.11
τ = 60 6.76(1.13) 94.30 2.91(0.22) 2820.11

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.51(0.09) 95.25 0.23(0.02) 71077050.43

S
to

S
Q

P τ = ∞ 6.46(1.15) 95.07 2.88(0.22) 15203.99
τ = 20 6.86(1.06) 93.03 2.88(0.23) 1860.12
τ = 40 6.82(1.13) 93.93 2.88(0.22) 2340.11
τ = 60 6.71(1.07) 94.07 2.88(0.22) 2820.11

r = 0.2

M-estimation 0.52(0.09) 94.85 0.23(0.02) 63103131.95

S
to

S
Q

P τ = ∞ 6.44(1.20) 94.95 2.89(0.23) 15203.99
τ = 20 6.78(0.98) 94.25 2.89(0.23) 1860.12
τ = 40 6.70(1.10) 94.40 2.89(0.23) 2340.11
τ = 60 6.76(1.07) 94.17 2.89(0.23) 2820.11

r = 0.3

M-estimation 0.51(0.08) 95.05 0.23(0.02) 71184473.01

S
to

S
Q

P τ = ∞ 6.78(1.12) 94.50 2.90(0.23) 15203.99
τ = 20 6.67(1.04) 94.72 2.91(0.23) 1860.12
τ = 40 6.70(1.10) 94.20 2.91(0.23) 2340.11
τ = 60 6.73(1.16) 94.05 2.91(0.23) 2820.11

Table 4: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (linear model + linear constraints).68



Statistical Inference of Constrained Stochastic Optimization

d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

40

Identity

M-estimation 0.75 (0.09) 94.99 0.23 (0.01) 230134815.43

S
to

S
Q

P τ = ∞ 9.53 (1.24) 95.30 3.00 (0.14) 102655.95
τ = 20 25.15 (65.81) 82.88 4.02 (5.33) 6240.91
τ = 40 10.02 (1.15) 94.32 3.01 (0.14) 7160.90
τ = 60 9.92 (1.24) 94.21 3.01 (0.14) 8080.89

T
o
ep

li
tz

r = 0.4

M-estimation 0.75 (0.09) 94.97 0.23 (0.01) 231495041.21

S
to

S
Q

P τ = ∞ 9.76 (1.16) 94.74 3.01 (0.15) 102655.95
τ = 20 22.55 (57.70) 83.07 3.83 (5.02) 6240.91
τ = 40 9.90 (1.23) 94.36 3.02 (0.15) 7160.90
τ = 60 9.83 (1.16) 94.47 3.02 (0.15) 8080.89

r = 0.5

M-estimation 0.75 (0.09) 94.97 0.23 (0.01) 204073927.80
S
to

S
Q

P τ = ∞ 9.61 (1.22) 95.16 3.02 (0.15) 102655.95
τ = 20 17.85 (23.63) 84.56 3.46 (1.70) 6240.91
τ = 40 9.84 (1.49) 94.60 3.03 (0.16) 7160.90
τ = 60 9.82 (1.10) 94.79 3.03 (0.15) 8080.89

r = 0.6

M-estimation 0.75 (0.09) 94.73 0.24 (0.01) 208581042.73

S
to

S
Q

P τ = ∞ 9.61 (1.14) 95.61 3.03 (0.15) 102655.95
τ = 20 25.70 (63.84) 83.76 4.11 (5.20) 6240.91
τ = 40 9.60 (1.26) 95.27 3.03 (0.15) 7160.90
τ = 60 9.78 (1.20) 94.58 3.03 (0.15) 8080.89

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.74 (0.09) 95.25 0.23 (0.01) 173820750.11

S
to

S
Q

P τ = ∞ 9.69 (1.25) 95.03 3.01 (0.14) 102655.95
τ = 20 19.61 (25.43) 84.30 3.58 (1.78) 6240.91
τ = 40 10.04 (1.19) 93.90 3.02 (0.14) 7160.90
τ = 60 9.80 (1.20) 94.55 3.02 (0.14) 8080.89

r = 0.2

M-estimation 0.75 (0.09) 95.35 0.24 (0.01) 192694961.83

S
to

S
Q

P τ = ∞ 9.81 (1.24) 94.89 3.03 (0.15) 102655.95
τ = 20 18.61 (24.12) 84.55 3.53 (1.76) 6240.91
τ = 40 9.84 (1.16) 94.69 3.03 (0.15) 7160.90
τ = 60 9.82 (1.16) 94.69 3.03 (0.15) 8080.89

r = 0.3

M-estimation 0.76 (0.10) 95.15 0.24 (0.01) 215092766.42

S
to

S
Q

P τ = ∞ 9.83 (1.20) 95.16 3.05 (0.15) 102655.95
τ = 20 14.45 (10.11) 86.52 3.25 (0.54) 6240.91
τ = 40 9.64 (1.21) 95.28 3.05 (0.15) 7160.90
τ = 60 9.83 (1.18) 95.00 3.05 (0.15) 8080.89

60

Identity

M-estimation 0.95(0.09) 94.47 0.24(0.01) 441552192.70

S
to

S
Q

P τ = ∞ 12.21(1.28) 94.97 3.11(0.12) 312462.88
τ = 20 12.56(1.67) 94.57 3.12(0.14) 13042.88
τ = 40 12.34(1.18) 94.91 3.12(0.12) 14382.86
τ = 60 12.39(1.15) 94.74 3.12(0.12) 15722.85

T
o
ep

li
tz

r = 0.4

M-estimation 0.93(0.09) 95.27 0.24(0.01) 354867730.00

S
to

S
Q

P τ = ∞ 12.41(1.23) 94.91 3.13(0.12) 312462.88
τ = 20 12.32(1.61) 94.95 3.13(0.13) 13042.88
τ = 40 12.25(1.18) 95.13 3.13(0.12) 14382.86
τ = 60 12.38(1.24) 94.76 3.13(0.12) 15722.85

r = 0.5

M-estimation 0.94(0.09) 94.81 0.24(0.01) 353760329.36

S
to

S
Q

P τ = ∞ 12.31(1.17) 95.17 3.13(0.12) 312462.88
τ = 20 12.28(1.13) 95.11 3.14(0.12) 13042.88
τ = 40 12.29(1.18) 95.21 3.14(0.12) 14382.86
τ = 60 12.32(1.25) 95.16 3.14(0.12) 15722.85

r = 0.6

M-estimation 0.95(0.09) 94.91 0.24(0.01) 353373321.65

S
to

S
Q

P τ = ∞ 12.39(1.19) 95.07 3.15(0.13) 312462.88
τ = 20 12.19(1.15) 95.36 3.15(0.13) 13042.88
τ = 40 12.21(1.25) 95.38 3.15(0.12) 14382.86
τ = 60 12.27(1.31) 95.22 3.15(0.12) 15722.85

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.94(0.09) 94.86 0.24(0.01) 299536428.06

S
to

S
Q

P τ = ∞ 12.29(1.21) 95.01 3.13(0.12) 312462.88
τ = 20 12.37(1.20) 94.84 3.13(0.12) 13042.88
τ = 40 12.31(1.23) 95.04 3.13(0.12) 14382.86
τ = 60 12.33(1.12) 94.73 3.13(0.12) 15722.85

r = 0.2

M-estimation 0.94(0.10) 95.07 0.24(0.01) 296068514.17

S
to

S
Q

P τ = ∞ 12.45(1.34) 94.77 3.15(0.12) 312462.88
τ = 20 12.14(1.21) 95.22 3.14(0.13) 13042.88
τ = 40 12.07(1.22) 95.66 3.14(0.13) 14382.86
τ = 60 12.13(1.15) 95.37 3.15(0.13) 15722.85

r = 0.3

M-estimation 0.95(0.09) 95.08 0.24(0.01) 319702105.39

S
to

S
Q

P τ = ∞ 12.48(1.17) 94.94 3.17(0.13) 312462.88
τ = 20 11.83(1.23) 96.01 3.16(0.13) 13042.88
τ = 40 12.02(1.18) 95.87 3.16(0.13) 14382.86
τ = 60 11.99(1.24) 96.00 3.16(0.13) 15722.85

Table 5: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (linear model + linear constraints)).69
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d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

5

Identity

M-estimation 0.25(0.10) 94.90 0.22(0.03) 9383817.60

S
to

S
Q

P τ = ∞ 3.09(1.13) 94.90 2.82(0.37) 306.00
τ = 20 3.33(1.13) 93.50 2.82(0.37) 210.00
τ = 40 3.25(1.10) 93.40 2.82(0.37) 330.00
τ = 60 3.11(1.05) 93.90 2.82(0.38) 450.00

T
o
ep

li
tz

r = 0.4

M-estimation 0.24(0.10) 94.90 0.23(0.03) 10077576.37

S
to

S
Q

P τ = ∞ 3.11(1.09) 94.90 2.87(0.37) 306.00
τ = 20 3.41(1.07) 92.60 2.87(0.37) 210.00
τ = 40 3.35(1.15) 92.60 2.87(0.37) 330.00
τ = 60 3.34(1.15) 92.10 2.87(0.37) 450.00

r = 0.5

M-estimation 0.26(0.10) 93.90 0.23(0.03) 9986598.34
S
to

S
Q

P τ = ∞ 3.18(1.24) 93.70 2.89(0.37) 306.00
τ = 20 3.21(1.21) 93.60 2.89(0.37) 210.00
τ = 40 3.16(1.01) 95.00 2.88(0.37) 330.00
τ = 60 3.29(1.13) 93.00 2.89(0.37) 450.00

r = 0.6

M-estimation 0.24(0.09) 94.70 0.23(0.03) 10003553.94

S
to

S
Q

P τ = ∞ 3.23(1.14) 94.30 2.90(0.37) 306.00
τ = 20 3.30(1.03) 94.10 2.91(0.36) 210.00
τ = 40 3.36(1.16) 93.20 2.90(0.37) 330.00
τ = 60 3.23(1.11) 94.20 2.90(0.36) 450.00

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.25(0.09) 95.50 0.23(0.03) 9287856.46

S
to

S
Q

P τ = ∞ 3.18(1.15) 93.10 2.83(0.37) 306.00
τ = 20 3.06(1.15) 93.70 2.83(0.37) 210.00
τ = 40 3.17(1.10) 93.00 2.84(0.37) 330.00
τ = 60 3.26(1.22) 93.60 2.83(0.37) 450.00

r = 0.2

M-estimation 0.25(0.08) 94.80 0.23(0.03) 9739704.68

S
to

S
Q

P τ = ∞ 3.07(1.19) 94.30 2.85(0.37) 306.00
τ = 20 3.36(1.00) 92.20 2.85(0.37) 210.00
τ = 40 3.21(1.07) 93.60 2.85(0.37) 330.00
τ = 60 3.11(1.18) 95.20 2.85(0.37) 450.00

r = 0.3

M-estimation 0.25(0.09) 95.00 0.23(0.03) 9545761.59

S
to

S
Q

P τ = ∞ 3.18(1.05) 95.50 2.87(0.37) 306.00
τ = 20 3.28(1.15) 93.10 2.87(0.36) 210.00
τ = 40 3.19(1.07) 94.00 2.87(0.36) 330.00
τ = 60 3.16(1.12) 95.10 2.87(0.37) 450.00

20

Identity

M-estimation 0.56(0.09) 94.65 0.25(0.01) 34394136.60

S
to

S
Q

P τ = ∞ 7.07(1.23) 95.10 3.14(0.09) 10520.99
τ = 20 7.07(1.13) 94.90 3.14(0.09) 1680.08
τ = 40 7.08(1.11) 94.55 3.14(0.09) 2100.07
τ = 60 7.09(1.16) 95.00 3.14(0.09) 2520.07

T
o
ep

li
tz

r = 0.4

M-estimation 0.55(0.09) 95.35 0.25(0.01) 36385429.73

S
to

S
Q

P τ = ∞ 7.13(1.21) 94.55 3.17(0.08) 10520.99
τ = 20 7.04(1.05) 95.10 3.17(0.08) 1680.08
τ = 40 7.21(1.05) 94.67 3.17(0.08) 2100.07
τ = 60 7.26(1.13) 94.45 3.17(0.08) 2520.07

r = 0.5

M-estimation 0.56(0.10) 94.83 0.25(0.01) 37880561.11

S
to

S
Q

P τ = ∞ 7.05(1.09) 95.43 3.18(0.08) 10520.99
τ = 20 7.19(1.16) 95.17 3.18(0.08) 1680.08
τ = 40 7.15(1.11) 95.35 3.18(0.08) 2100.07
τ = 60 7.15(1.08) 94.92 3.18(0.08) 2520.07

r = 0.6

M-estimation 0.57(0.10) 94.65 0.25(0.01) 38951806.15

S
to

S
Q

P τ = ∞ 7.15(1.08) 95.13 3.20(0.08) 10520.99
τ = 20 7.19(1.16) 95.35 3.20(0.08) 1680.08
τ = 40 7.21(1.16) 95.07 3.20(0.08) 2100.07
τ = 60 7.33(1.15) 94.75 3.20(0.08) 2520.07

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.57(0.09) 94.47 0.25(0.01) 36242778.83

S
to

S
Q

P τ = ∞ 7.01(1.17) 95.62 3.16(0.09) 10520.99
τ = 20 7.24(1.18) 95.07 3.16(0.09) 1680.08
τ = 40 7.27(1.16) 95.17 3.16(0.09) 2100.07
τ = 60 7.13(1.10) 94.97 3.16(0.09) 2520.07

r = 0.2

M-estimation 0.56(0.09) 95.23 0.25(0.01) 36865114.61

S
to

S
Q

P τ = ∞ 7.16(1.24) 94.60 3.18(0.09) 10520.99
τ = 20 7.30(1.08) 94.73 3.18(0.08) 1680.08
τ = 40 7.11(1.14) 94.77 3.18(0.08) 2100.07
τ = 60 7.12(1.17) 95.10 3.18(0.08) 2520.07

r = 0.3

M-estimation 0.56(0.10) 95.27 0.25(0.01) 36995422.08

S
to

S
Q

P τ = ∞ 7.33(1.11) 94.50 3.20(0.08) 10520.99
τ = 20 7.09(1.17) 95.12 3.20(0.08) 1680.08
τ = 40 7.14(1.14) 95.48 3.20(0.08) 2100.07
τ = 60 7.18(1.15) 95.10 3.20(0.08) 2520.07

Table 6: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (linear model + nonlinear constraints).70



Statistical Inference of Constrained Stochastic Optimization

d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

40

Identity

M-estimation 0.79(0.09) 95.23 0.25(0.01) 67887974.71

S
to

S
Q

P τ = ∞ 10.44(1.14) 94.99 3.24(0.06) 73840.95
τ = 20 10.63(1.20) 94.44 3.23(0.06) 5740.63
τ = 40 10.32(1.15) 94.94 3.23(0.06) 6560.62
τ = 60 10.34(1.21) 95.06 3.24(0.06) 7380.62

T
o
ep

li
tz

r = 0.4

M-estimation 0.80(0.09) 95.39 0.25(0.01) 72554106.22

S
to

S
Q

P τ = ∞ 10.40(1.11) 94.97 3.25(0.06) 73840.95
τ = 20 10.33(1.16) 95.11 3.26(0.06) 5740.63
τ = 40 10.26(1.11) 95.51 3.26(0.06) 6560.62
τ = 60 10.35(1.25) 95.00 3.26(0.06) 7380.62

r = 0.5

M-estimation 0.81(0.09) 95.20 0.25(0.01) 80163038.17
S
to

S
Q

P τ = ∞ 10.45(1.20) 95.09 3.27(0.06) 73840.95
τ = 20 10.16(1.21) 95.63 3.27(0.06) 5740.63
τ = 40 10.34(1.20) 95.45 3.27(0.06) 6560.62
τ = 60 10.40(1.20) 95.51 3.27(0.06) 7380.62

r = 0.6

M-estimation 0.81(0.10) 94.99 0.25(0.01) 81932666.57

S
to

S
Q

P τ = ∞ 10.42(1.17) 95.61 3.29(0.06) 73840.95
τ = 20 10.31(1.18) 95.51 3.29(0.06) 5740.63
τ = 40 10.30(1.20) 95.35 3.28(0.06) 6560.62
τ = 60 10.41(1.21) 95.06 3.28(0.06) 7380.62

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.81(0.09) 94.86 0.25(0.01) 74034192.12

S
to

S
Q

P τ = ∞ 10.45(1.17) 94.86 3.25(0.06) 73840.95
τ = 20 10.52(1.11) 95.12 3.26(0.06) 5740.63
τ = 40 10.39(1.28) 95.02 3.26(0.06) 6560.62
τ = 60 10.42(1.14) 95.17 3.26(0.06) 7380.62

r = 0.2

M-estimation 0.81(0.09) 94.94 0.25(0.01) 80720232.66

S
to

S
Q

P τ = ∞ 10.62(1.19) 94.96 3.28(0.06) 73840.95
τ = 20 10.36(1.20) 95.55 3.28(0.06) 5740.63
τ = 40 10.53(1.17) 94.99 3.28(0.06) 6560.62
τ = 60 10.38(1.17) 95.26 3.28(0.06) 7380.62

r = 0.3

M-estimation 0.82(0.10) 94.88 0.26(0.01) 82412488.17

S
to

S
Q

P τ = ∞ 10.68(1.26) 94.94 3.30(0.06) 73840.95
τ = 20 10.23(1.08) 95.90 3.30(0.06) 5740.63
τ = 40 10.28(1.10) 95.83 3.30(0.06) 6560.62
τ = 60 10.49(1.26) 94.97 3.30(0.06) 7380.62

60

Identity

M-estimation 0.99(0.09) 94.89 0.25(0.01) 103580157.11

S
to

S
Q

P τ = ∞ 13.05(1.11) 94.82 3.31(0.06) 237960.89
τ = 20 13.08(1.19) 94.69 3.31(0.06) 12202.15
τ = 40 12.95(1.28) 95.04 3.30(0.06) 13422.14
τ = 60 13.21(1.29) 94.66 3.31(0.06) 14642.12

T
o
ep

li
tz

r = 0.4

M-estimation 0.99(0.09) 95.18 0.25(0.01) 109848502.87

S
to

S
Q

P τ = ∞ 13.07(1.26) 95.22 3.33(0.05) 237960.89
τ = 20 12.92(1.22) 95.14 3.32(0.06) 12202.15
τ = 40 13.11(1.20) 94.87 3.33(0.06) 13422.14
τ = 60 12.99(1.23) 95.28 3.32(0.05) 14642.12

r = 0.5

M-estimation 1.00(0.09) 94.82 0.25(0.01) 119048067.81

S
to

S
Q

P τ = ∞ 13.12(1.32) 94.97 3.33(0.05) 237960.89
τ = 20 12.98(1.15) 95.59 3.34(0.06) 12202.15
τ = 40 12.80(1.29) 95.46 3.34(0.05) 13422.14
τ = 60 12.90(1.20) 95.69 3.34(0.05) 14642.12

r = 0.6

M-estimation 1.00(0.09) 94.91 0.25(0.01) 121269402.35

S
to

S
Q

P τ = ∞ 13.22(1.19) 94.76 3.36(0.05) 237960.89
τ = 20 12.83(1.18) 95.68 3.35(0.06) 12202.15
τ = 40 13.00(1.21) 95.22 3.35(0.05) 13422.14
τ = 60 12.82(1.24) 95.70 3.35(0.05) 14642.12

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.99(0.09) 94.90 0.25(0.01) 114985905.90

S
to

S
Q

P τ = ∞ 13.05(1.23) 95.31 3.33(0.06) 237960.89
τ = 20 12.94(1.15) 95.44 3.33(0.05) 12202.15
τ = 40 13.03(1.18) 95.16 3.33(0.06) 13422.14
τ = 60 12.91(1.21) 95.22 3.33(0.06) 14642.12

r = 0.2

M-estimation 0.99(0.09) 95.28 0.25(0.01) 123893833.21

S
to

S
Q

P τ = ∞ 13.10(1.34) 95.21 3.35(0.05) 237960.89
τ = 20 12.97(1.17) 95.33 3.35(0.06) 12202.15
τ = 40 12.88(1.20) 95.63 3.35(0.05) 13422.14
τ = 60 13.08(1.17) 94.89 3.35(0.06) 14642.12

r = 0.3

M-estimation 1.00(0.10) 95.15 0.26(0.01) 130752008.95

S
to

S
Q

P τ = ∞ 13.42(1.22) 94.51 3.38(0.05) 237960.89
τ = 20 12.46(1.29) 96.46 3.36(0.05) 12202.15
τ = 40 12.83(1.21) 95.77 3.37(0.05) 13422.14
τ = 60 12.62(1.13) 96.19 3.37(0.06) 14642.12

Table 7: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (linear model + nonlinear constraints).71



Na and Mahoney

d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

5

Identity

M-estimation 0.13(0.06) 95.00 0.13(0.03) 18631964.09

S
to

S
Q

P τ = ∞ 1.89(0.85) 91.70 1.57(0.42) 443.00
τ = 20 2.16(0.86) 86.10 1.56(0.42) 240.00
τ = 40 2.14(0.86) 86.40 1.56(0.42) 380.00
τ = 60 2.03(0.84) 89.50 1.57(0.42) 520.00

T
o
ep

li
tz

r = 0.4

M-estimation 0.14(0.06) 93.50 0.12(0.03) 12591949.55

S
to

S
Q

P τ = ∞ 1.85(0.83) 91.70 1.54(0.42) 443.00
τ = 20 2.12(0.78) 87.10 1.54(0.42) 240.00
τ = 40 2.07(0.83) 88.90 1.54(0.42) 380.00
τ = 60 1.99(0.77) 90.10 1.54(0.42) 520.00

r = 0.5

M-estimation 0.13(0.06) 95.60 0.12(0.03) 12485859.36
S
to

S
Q

P τ = ∞ 1.87(0.83) 91.80 1.53(0.42) 443.00
τ = 20 2.12(0.79) 85.60 1.53(0.42) 240.00
τ = 40 1.97(0.77) 89.20 1.53(0.42) 380.00
τ = 60 1.97(0.82) 89.10 1.54(0.42) 520.00

r = 0.6

M-estimation 0.13(0.06) 95.40 0.12(0.03) 12788454.60

S
to

S
Q

P τ = ∞ 1.82(0.85) 92.70 1.52(0.42) 443.00
τ = 20 2.06(0.87) 86.60 1.52(0.42) 240.00
τ = 40 2.08(0.84) 87.00 1.53(0.42) 380.00
τ = 60 1.92(0.78) 91.00 1.52(0.42) 520.00

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.13(0.06) 96.20 0.12(0.03) 15479121.99

S
to

S
Q

P τ = ∞ 1.96(0.88) 90.70 1.56(0.42) 443.00
τ = 20 2.11(0.79) 86.70 1.56(0.42) 240.00
τ = 40 2.10(0.77) 88.90 1.56(0.42) 380.00
τ = 60 2.04(0.79) 89.50 1.55(0.42) 520.00

r = 0.2

M-estimation 0.14(0.06) 93.40 0.12(0.03) 13563734.48

S
to

S
Q

P τ = ∞ 1.87(0.82) 91.80 1.55(0.42) 443.00
τ = 20 2.01(0.81) 88.50 1.55(0.42) 240.00
τ = 40 2.03(0.81) 88.00 1.55(0.41) 380.00
τ = 60 2.05(0.92) 89.20 1.55(0.42) 520.00

r = 0.3

M-estimation 0.13(0.06) 95.30 0.12(0.03) 13559119.41

S
to

S
Q

P τ = ∞ 1.90(0.85) 91.90 1.54(0.42) 443.00
τ = 20 2.13(0.83) 87.80 1.54(0.41) 240.00
τ = 40 2.05(0.88) 88.50 1.54(0.42) 380.00
τ = 60 1.93(0.78) 91.20 1.54(0.41) 520.00

20

Identity

M-estimation 0.31(0.05) 95.20 0.14(0.01) 102490458.22

S
to

S
Q

P τ = ∞ 4.25(0.82) 92.62 1.73(0.15) 15203.99
τ = 20 4.21(0.79) 92.68 1.73(0.15) 1860.12
τ = 40 4.28(0.79) 92.25 1.73(0.15) 2340.11
τ = 60 4.23(0.79) 92.72 1.73(0.15) 2820.11

T
o
ep

li
tz

r = 0.4

M-estimation 0.30(0.05) 94.97 0.13(0.01) 104414364.13

S
to

S
Q

P τ = ∞ 4.11(0.74) 92.77 1.67(0.15) 15203.99
τ = 20 3.99(0.75) 93.75 1.67(0.15) 1860.12
τ = 40 4.04(0.73) 93.15 1.67(0.14) 2340.11
τ = 60 4.09(0.71) 93.23 1.67(0.14) 2820.11

r = 0.5

M-estimation 0.30(0.05) 94.60 0.13(0.01) 94453742.76

S
to

S
Q

P τ = ∞ 3.99(0.75) 92.90 1.65(0.15) 15203.99
τ = 20 4.06(0.71) 92.75 1.65(0.14) 1860.12
τ = 40 4.01(0.83) 92.28 1.65(0.15) 2340.11
τ = 60 3.96(0.72) 93.33 1.65(0.15) 2820.11

r = 0.6

M-estimation 0.29(0.06) 94.50 0.13(0.01) 98941404.11

S
to

S
Q

P τ = ∞ 3.90(0.77) 93.05 1.62(0.14) 15203.99
τ = 20 3.84(0.74) 93.77 1.62(0.14) 1860.12
τ = 40 3.92(0.77) 92.65 1.62(0.14) 2340.11
τ = 60 3.93(0.76) 92.95 1.61(0.14) 2820.11

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.30(0.06) 95.30 0.13(0.01) 103331497.32

S
to

S
Q

P τ = ∞ 4.05(0.83) 93.07 1.67(0.14) 15203.99
τ = 20 3.97(0.77) 93.28 1.66(0.14) 1860.12
τ = 40 4.14(0.71) 92.48 1.67(0.14) 2340.11
τ = 60 4.08(0.74) 92.90 1.67(0.14) 2820.11

r = 0.2

M-estimation 0.29(0.05) 95.27 0.13(0.01) 98571633.30

S
to

S
Q

P τ = ∞ 3.92(0.78) 92.92 1.61(0.14) 15203.99
τ = 20 3.80(0.64) 93.77 1.61(0.14) 1860.12
τ = 40 3.86(0.73) 93.20 1.61(0.14) 2340.11
τ = 60 3.91(0.75) 93.25 1.61(0.14) 2820.11

r = 0.3

M-estimation 0.28(0.05) 95.48 0.12(0.01) 82384974.00

S
to

S
Q

P τ = ∞ 3.66(0.69) 93.67 1.56(0.13) 15203.99
τ = 20 3.82(0.61) 92.77 1.55(0.13) 1860.12
τ = 40 3.75(0.69) 93.20 1.56(0.13) 2340.11
τ = 60 3.69(0.71) 93.67 1.56(0.13) 2820.11

Table 8: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (logistic model + linear constraints).72
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d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

40

Identity

M-estimation 0.40(0.05) 95.05 0.13(0.01) 368280379.99

S
to

S
Q

P τ = ∞ 5.39(0.83) 93.46 1.59(0.09) 102655.95
τ = 20 5.11(0.68) 94.85 1.59(0.09) 6240.91
τ = 40 5.13(0.64) 94.94 1.59(0.09) 7160.90
τ = 60 5.21(0.72) 94.45 1.59(0.09) 8080.89

T
o
ep

li
tz

r = 0.4

M-estimation 0.39(0.05) 95.15 0.12(0.01) 354955718.18

S
to

S
Q

P τ = ∞ 5.13(0.83) 93.66 1.54(0.09) 102655.95
τ = 20 4.97(0.67) 94.71 1.54(0.09) 6240.91
τ = 40 4.98(0.60) 94.78 1.53(0.09) 7160.90
τ = 60 5.00(0.74) 94.60 1.53(0.09) 8080.89

r = 0.5

M-estimation 0.39(0.05) 94.65 0.12(0.01) 356017169.13
S
to

S
Q

P τ = ∞ 5.05(0.74) 94.08 1.51(0.09) 102655.95
τ = 20 4.85(0.63) 95.17 1.51(0.09) 6240.91
τ = 40 4.89(0.68) 94.84 1.51(0.09) 7160.90
τ = 60 4.88(0.70) 94.76 1.51(0.09) 8080.89

r = 0.6

M-estimation 0.38(0.05) 94.79 0.12(0.01) 330139055.54

S
to

S
Q

P τ = ∞ 4.93(0.74) 93.71 1.47(0.09) 102655.95
τ = 20 4.66(0.60) 95.40 1.47(0.09) 6240.91
τ = 40 4.83(0.65) 94.69 1.48(0.09) 7160.90
τ = 60 4.79(0.65) 94.20 1.47(0.09) 8080.89

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.37(0.04) 95.37 0.12(0.01) 340887002.09

S
to

S
Q

P τ = ∞ 4.97(0.80) 93.54 1.47(0.09) 102655.95
τ = 20 4.60(0.63) 95.75 1.47(0.09) 6240.91
τ = 40 4.75(0.56) 95.06 1.47(0.09) 7160.90
τ = 60 4.83(0.73) 94.04 1.47(0.09) 8080.89

r = 0.2

M-estimation 0.35(0.04) 95.07 0.11(0.01) 323813851.17

S
to

S
Q

P τ = ∞ 4.60(0.74) 93.80 1.38(0.09) 102655.95
τ = 20 4.40(0.66) 95.10 1.38(0.09) 6240.91
τ = 40 4.28(0.61) 95.81 1.38(0.09) 7160.90
τ = 60 4.50(0.70) 94.65 1.38(0.09) 8080.89

r = 0.3

M-estimation 0.34(0.04) 95.15 0.11(0.01) 247729814.80

S
to

S
Q

P τ = ∞ 4.47(0.77) 92.90 1.31(0.09) 102655.95
τ = 20 4.11(0.52) 95.42 1.31(0.09) 6240.91
τ = 40 4.14(0.59) 95.25 1.31(0.09) 7160.90
τ = 60 4.17(0.64) 95.02 1.31(0.09) 8080.89

60

Identity

M-estimation 0.48(0.05) 94.74 0.12(0.01) 621851092.85

S
to

S
Q

P τ = ∞ 6.15(0.79) 94.14 1.51(0.08) 312462.88
τ = 20 5.64(0.56) 95.92 1.51(0.08) 13042.88
τ = 40 5.85(0.66) 95.20 1.51(0.08) 14382.86
τ = 60 5.79(0.65) 95.71 1.51(0.08) 15722.85

T
o
ep

li
tz

r = 0.4

M-estimation 0.46(0.05) 94.85 0.12(0.01) 629594361.50

S
to

S
Q

P τ = ∞ 6.04(0.82) 93.42 1.45(0.08) 312462.88
τ = 20 5.43(0.61) 95.80 1.45(0.08) 13042.88
τ = 40 5.55(0.64) 95.71 1.45(0.08) 14382.86
τ = 60 5.60(0.68) 95.26 1.45(0.08) 15722.85

r = 0.5

M-estimation 0.45(0.04) 94.89 0.11(0.01) 625412635.60

S
to

S
Q

P τ = ∞ 5.83(0.82) 93.77 1.42(0.08) 312462.88
τ = 20 5.34(0.58) 96.02 1.43(0.08) 13042.88
τ = 40 5.40(0.61) 95.66 1.42(0.08) 14382.86
τ = 60 5.54(0.69) 95.15 1.42(0.08) 15722.85

r = 0.6

M-estimation 0.44(0.04) 95.26 0.11(0.01) 622986528.38

S
to

S
Q

P τ = ∞ 5.75(0.82) 93.65 1.39(0.07) 312462.88
τ = 20 5.19(0.54) 95.94 1.39(0.08) 13042.88
τ = 40 5.24(0.60) 95.81 1.39(0.07) 14382.86
τ = 60 5.32(0.66) 95.47 1.39(0.08) 15722.85

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.42(0.04) 95.28 0.11(0.01) 584884084.37

S
to

S
Q

P τ = ∞ 5.54(0.80) 93.85 1.35(0.07) 312462.88
τ = 20 5.04(0.57) 95.97 1.34(0.07) 13042.88
τ = 40 5.07(0.62) 95.64 1.34(0.07) 14382.86
τ = 60 5.14(0.68) 95.54 1.34(0.07) 15722.85

r = 0.2

M-estimation 0.39(0.03) 95.00 0.10(0.01) 583320213.75

S
to

S
Q

P τ = ∞ 5.04(0.79) 93.96 1.24(0.07) 312462.88
τ = 20 4.52(0.47) 96.30 1.24(0.07) 13042.88
τ = 40 4.61(0.52) 96.19 1.24(0.07) 14382.86
τ = 60 4.70(0.68) 95.47 1.24(0.07) 15722.85

r = 0.3

M-estimation 0.37(0.04) 94.97 0.09(0.01) 603554390.71

S
to

S
Q

P τ = ∞ 4.66(0.78) 94.34 1.16(0.07) 312462.88
τ = 20 4.26(0.46) 96.17 1.16(0.07) 13042.88
τ = 40 4.36(0.58) 95.83 1.16(0.07) 14382.86
τ = 60 4.30(0.58) 96.00 1.16(0.07) 15722.85

Table 9: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (logistic model + linear constraints).73



Na and Mahoney

d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

5

Identity

M-estimation 0.17(0.07) 94.70 0.17(0.02) 5284663.88

S
to

S
Q

P τ = ∞ 2.68(0.83) 91.40 2.08(0.28) 306.00
τ = 20 2.71(0.93) 90.00 2.08(0.27) 210.00
τ = 40 2.74(0.91) 89.30 2.08(0.27) 330.00
τ = 60 2.63(0.97) 90.50 2.08(0.27) 450.00

T
o
ep

li
tz

r = 0.4

M-estimation 0.18(0.06) 95.10 0.16(0.02) 5071684.79

S
to

S
Q

P τ = ∞ 2.48(0.89) 91.80 2.03(0.28) 306.00
τ = 20 2.51(0.89) 91.10 2.03(0.28) 210.00
τ = 40 2.68(0.88) 89.00 2.03(0.28) 330.00
τ = 60 2.42(0.88) 92.10 2.04(0.28) 450.00

r = 0.5

M-estimation 0.18(0.07) 94.30 0.16(0.02) 5073768.73
S
to

S
Q

P τ = ∞ 2.45(0.87) 91.50 2.02(0.28) 306.00
τ = 20 2.48(0.95) 91.20 2.02(0.28) 210.00
τ = 40 2.45(0.85) 92.00 2.02(0.28) 330.00
τ = 60 2.44(0.89) 92.40 2.02(0.28) 450.00

r = 0.6

M-estimation 0.17(0.06) 95.50 0.16(0.02) 5097272.67

S
to

S
Q

P τ = ∞ 2.42(0.96) 92.70 2.01(0.28) 306.00
τ = 20 2.56(0.92) 90.80 2.01(0.28) 210.00
τ = 40 2.45(0.87) 92.00 2.01(0.28) 330.00
τ = 60 2.48(0.84) 91.20 2.01(0.28) 450.00

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.17(0.06) 96.00 0.16(0.02) 5345830.96

S
to

S
Q

P τ = ∞ 2.40(0.91) 92.10 2.06(0.28) 306.00
τ = 20 2.56(0.94) 91.90 2.06(0.27) 210.00
τ = 40 2.58(0.94) 90.80 2.06(0.28) 330.00
τ = 60 2.62(0.98) 91.20 2.06(0.28) 450.00

r = 0.2

M-estimation 0.18(0.07) 94.50 0.16(0.02) 5466386.61

S
to

S
Q

P τ = ∞ 2.50(0.94) 91.40 2.05(0.28) 306.00
τ = 20 2.58(0.97) 90.70 2.05(0.28) 210.00
τ = 40 2.47(0.93) 91.10 2.05(0.28) 330.00
τ = 60 2.57(0.90) 90.40 2.05(0.28) 450.00

r = 0.3

M-estimation 0.18(0.06) 94.70 0.16(0.02) 5556551.22

S
to

S
Q

P τ = ∞ 2.54(0.94) 91.10 2.03(0.28) 306.00
τ = 20 2.57(0.93) 90.10 2.03(0.28) 210.00
τ = 40 2.42(0.89) 93.00 2.04(0.27) 330.00
τ = 60 2.51(0.94) 90.80 2.03(0.28) 450.00

20

Identity

M-estimation 0.34(0.06) 94.98 0.15(0.01) 18562224.33

S
to

S
Q

P τ = ∞ 4.55(0.80) 93.80 1.92(0.07) 10520.99
τ = 20 4.63(0.78) 93.13 1.92(0.07) 1680.08
τ = 40 4.64(0.85) 93.20 1.92(0.07) 2100.07
τ = 60 4.64(0.74) 93.40 1.92(0.07) 2520.07

T
o
ep

li
tz

r = 0.4

M-estimation 0.34(0.05) 94.60 0.15(0.01) 18582079.94

S
to

S
Q

P τ = ∞ 4.51(0.84) 92.72 1.86(0.07) 10520.99
τ = 20 4.29(0.77) 94.32 1.85(0.07) 1680.08
τ = 40 4.53(0.81) 93.00 1.85(0.07) 2100.07
τ = 60 4.58(0.79) 92.68 1.86(0.07) 2520.07

r = 0.5

M-estimation 0.33(0.05) 94.93 0.15(0.01) 18629501.62

S
to

S
Q

P τ = ∞ 4.49(0.82) 92.60 1.83(0.07) 10520.99
τ = 20 4.31(0.83) 93.50 1.83(0.07) 1680.08
τ = 40 4.38(0.73) 93.52 1.83(0.07) 2100.07
τ = 60 4.33(0.79) 93.82 1.83(0.07) 2520.07

r = 0.6

M-estimation 0.32(0.05) 94.97 0.14(0.01) 18907211.70

S
to

S
Q

P τ = ∞ 4.29(0.79) 93.70 1.79(0.07) 10520.99
τ = 20 4.21(0.73) 94.17 1.79(0.07) 1680.08
τ = 40 4.24(0.70) 93.87 1.80(0.07) 2100.07
τ = 60 4.31(0.84) 93.38 1.80(0.07) 2520.07

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.33(0.06) 94.98 0.15(0.01) 18557849.29

S
to

S
Q

P τ = ∞ 4.49(0.82) 92.65 1.85(0.07) 10520.99
τ = 20 4.40(0.77) 93.75 1.85(0.07) 1680.08
τ = 40 4.46(0.74) 93.00 1.85(0.07) 2100.07
τ = 60 4.41(0.86) 93.52 1.85(0.07) 2520.07

r = 0.2

M-estimation 0.32(0.05) 94.50 0.14(0.01) 17095346.92

S
to

S
Q

P τ = ∞ 4.24(0.85) 93.23 1.78(0.07) 10520.99
τ = 20 4.17(0.70) 93.13 1.79(0.07) 1680.08
τ = 40 4.31(0.72) 92.93 1.78(0.07) 2100.07
τ = 60 4.26(0.78) 93.50 1.79(0.07) 2520.07

r = 0.3

M-estimation 0.31(0.05) 95.00 0.14(0.01) 16972264.61

S
to

S
Q

P τ = ∞ 4.10(0.77) 93.93 1.73(0.07) 10520.99
τ = 20 4.08(0.69) 93.82 1.73(0.07) 1680.08
τ = 40 4.17(0.74) 93.08 1.73(0.07) 2100.07
τ = 60 4.21(0.72) 92.95 1.73(0.07) 2520.07

Table 10: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (logistic model + nonlinear constraints).74
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d Design Cov Method MAE (10−2) Ave Cov (%) Ave Len (10−2) Flops/iter

40

Identity

M-estimation 0.45(0.05) 94.60 0.14(0.01) 36407191.34

S
to

S
Q

P τ = ∞ 5.92(0.78) 92.85 1.73(0.05) 73840.95
τ = 20 5.82(0.74) 94.05 1.73(0.06) 5740.63
τ = 40 5.82(0.71) 93.62 1.72(0.06) 6560.62
τ = 60 5.86(0.79) 93.62 1.73(0.05) 7380.62

T
o
ep

li
tz

r = 0.4

M-estimation 0.42(0.05) 95.30 0.13(0.01) 36941246.80

S
to

S
Q

P τ = ∞ 5.65(0.74) 93.55 1.66(0.06) 73840.95
τ = 20 5.47(0.72) 94.61 1.67(0.06) 5740.63
τ = 40 5.63(0.78) 93.70 1.67(0.06) 6560.62
τ = 60 5.60(0.76) 93.60 1.66(0.06) 7380.62

r = 0.5

M-estimation 0.43(0.05) 94.54 0.13(0.01) 37104530.58
S
to

S
Q

P τ = ∞ 5.48(0.81) 93.99 1.63(0.06) 73840.95
τ = 20 5.39(0.69) 94.29 1.63(0.06) 5740.63
τ = 40 5.47(0.77) 93.88 1.64(0.06) 6560.62
τ = 60 5.41(0.62) 94.04 1.63(0.06) 7380.62

r = 0.6

M-estimation 0.41(0.04) 95.11 0.13(0.01) 36313253.38

S
to

S
Q

P τ = ∞ 5.36(0.75) 93.67 1.60(0.06) 73840.95
τ = 20 5.32(0.66) 94.12 1.60(0.06) 5740.63
τ = 40 5.30(0.73) 94.27 1.60(0.06) 6560.62
τ = 60 5.44(0.80) 93.26 1.60(0.06) 7380.62

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.41(0.05) 94.83 0.13(0.01) 34995599.67

S
to

S
Q

P τ = ∞ 5.34(0.82) 93.44 1.59(0.06) 73840.95
τ = 20 5.28(0.74) 94.13 1.59(0.06) 5740.63
τ = 40 5.25(0.71) 94.38 1.60(0.06) 6560.62
τ = 60 5.37(0.82) 93.56 1.60(0.06) 7380.62

r = 0.2

M-estimation 0.39(0.04) 94.89 0.12(0.01) 34765391.77

S
to

S
Q

P τ = ∞ 5.00(0.75) 93.80 1.50(0.06) 73840.95
τ = 20 4.92(0.65) 94.24 1.50(0.06) 5740.63
τ = 40 4.92(0.73) 94.35 1.50(0.06) 6560.62
τ = 60 4.88(0.70) 94.61 1.50(0.06) 7380.62

r = 0.3

M-estimation 0.36(0.04) 95.39 0.11(0.01) 34923085.62

S
to

S
Q

P τ = ∞ 4.75(0.69) 93.89 1.42(0.06) 73840.95
τ = 20 4.63(0.61) 94.44 1.42(0.06) 5740.63
τ = 40 4.68(0.68) 94.21 1.42(0.06) 6560.62
τ = 60 4.67(0.75) 94.36 1.42(0.06) 7380.62

60

Identity

M-estimation 0.51(0.05) 95.09 0.13(0.01) 56525866.64

S
to

S
Q

P τ = ∞ 6.58(0.84) 94.02 1.61(0.05) 237960.89
τ = 20 6.57(0.71) 93.93 1.61(0.05) 12202.15
τ = 40 6.48(0.71) 94.39 1.60(0.06) 13422.14
τ = 60 6.50(0.76) 94.47 1.61(0.05) 14642.12

T
o
ep

li
tz

r = 0.4

M-estimation 0.49(0.05) 94.77 0.12(0.01) 56939372.59

S
to

S
Q

P τ = ∞ 6.37(0.93) 93.73 1.54(0.06) 237960.89
τ = 20 6.26(0.72) 94.27 1.55(0.06) 12202.15
τ = 40 6.18(0.73) 94.53 1.54(0.06) 13422.14
τ = 60 6.29(0.79) 93.88 1.54(0.06) 14642.12

r = 0.5

M-estimation 0.47(0.04) 95.36 0.12(0.01) 58241815.59

S
to

S
Q

P τ = ∞ 6.18(0.96) 93.92 1.52(0.06) 237960.89
τ = 20 6.14(0.65) 94.18 1.52(0.06) 12202.15
τ = 40 6.16(0.65) 93.99 1.51(0.05) 13422.14
τ = 60 6.06(0.67) 94.73 1.52(0.06) 14642.12

r = 0.6

M-estimation 0.46(0.04) 95.05 0.12(0.01) 58496455.48

S
to

S
Q

P τ = ∞ 6.03(0.88) 93.86 1.48(0.06) 237960.89
τ = 20 6.03(0.65) 94.03 1.48(0.06) 12202.15
τ = 40 5.96(0.70) 94.53 1.48(0.06) 13422.14
τ = 60 6.01(0.78) 93.98 1.48(0.06) 14642.12

E
q
u
i-
co

rr
el

a
ti

o
n

r = 0.1

M-estimation 0.45(0.04) 94.85 0.11(0.01) 57063361.06

S
to

S
Q

P τ = ∞ 5.85(0.94) 93.83 1.43(0.06) 237960.89
τ = 20 5.74(0.63) 94.32 1.43(0.06) 12202.15
τ = 40 5.82(0.70) 93.99 1.43(0.06) 13422.14
τ = 60 5.69(0.79) 94.47 1.43(0.05) 14642.12

r = 0.2

M-estimation 0.42(0.04) 95.13 0.11(0.01) 56860272.87

S
to

S
Q

P τ = ∞ 5.30(0.84) 94.18 1.32(0.06) 237960.89
τ = 20 5.26(0.62) 94.66 1.32(0.06) 12202.15
τ = 40 5.30(0.66) 94.34 1.32(0.06) 13422.14
τ = 60 5.34(0.75) 93.77 1.32(0.06) 14642.12

r = 0.3

M-estimation 0.39(0.04) 94.83 0.10(0.01) 56511408.20

S
to

S
Q

P τ = ∞ 4.97(0.86) 93.77 1.23(0.06) 237960.89
τ = 20 4.87(0.53) 94.65 1.23(0.06) 12202.15
τ = 40 5.00(0.76) 93.87 1.24(0.06) 13422.14
τ = 60 4.90(0.74) 94.49 1.23(0.06) 14642.12

Table 11: Comparison results of online StoSQP and offline M -estimation for constrained re-
gression problems (logistic model + nonlinear constraints).75
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