
Journal of Machine Learning Research 26 (2025) 1-44 Submitted 3/24; Revised 12/24; Published 1/25

Riemannian Bilevel Optimization

Jiaxiang Li li003755@umn.edu
Department of Electrical and Computer Engineering
University of Minnesota, Twin Cities
Minneapolis, MN 55455, USA

Shiqian Ma sqma@rice.edu

Department of Computational Applied Math and Operations Research

Rice University

Houston, TX 77005, USA

Editor: Lam Nguyen

Abstract

In this work, we consider the bilevel optimization problem on Riemannian manifolds. We
inspect the calculation of the hypergradient of such problems on general manifolds and thus
enable the utilization of gradient-based algorithms to solve such problems. The calculation of
the hypergradient requires utilizing the notion of Riemannian cross-derivative and we inspect
the properties and the numerical calculations of Riemannian cross-derivatives. Algorithms
in both deterministic and stochastic settings, named respectively RieBO and RieSBO, are
proposed that include the existing Euclidean bilevel optimization algorithms as special cases.
Numerical experiments on robust optimization on Riemannian manifolds are presented to
show the applicability and efficiency of the proposed methods.

Keywords: Riemannian optimization, stochastic optimization, bilevel optimization

1. Introduction

Bilevel optimization has drawn attentions from various fields in optimization and machine
learning communities, due to its wide range of applications including meta learning (Ra-
jeswaran et al., 2019; Ji et al., 2020), hyperparameter optimization (Okuno et al., 2021; Yu
and Zhu, 2020), reinforcement learning (Konda and Tsitsiklis, 1999; Hong et al., 2023) and
signal processing (Kunapuli et al., 2008; Flamary et al., 2014). In this work, we focus on the
manifold-constrained bilevel optimization problem, which can be formulated as:

min
x∈M

Φ(x) := f(x, y∗(x))

s.t. y∗(x) = argmin
y∈N

g(x, y),
(1.1)

where M and N are m and n-dimensional complete Riemannian manifolds, respectively.
We also consider the stochastic bilevel optimization which is in the following form:

min
x∈M

Φ(x) = f (x, y∗(x)) := Eξ [F (x, y∗(x); ξ)]

s.t. y∗(x) = argmin
y∈N

g(x, y) := Eζ [G(x, y; ζ)],
(1.2)

c©2025 Jiaxiang Li and Shiqian Ma.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/24-0397.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/24-0397.html

Li and Ma

where ξ and ζ are random variables that usually represent the randomness from the data.
Such a framework allows us to utilize the stochastic gradient methods to get a desired
convergence result with only a noisy estimate of the gradients for f and g. Here we also
assume that g is a (geodesically) strongly convex function with respect to y in both (1.1)
and (1.2) so that the solution to the lower level problem y∗(x) is well-defined.

Notice that the original (Euclidean) bilevel optimization is a special case of (1.1) by
taking the manifolds as the Euclidean spaces with the same dimensions:

min
x∈Rm

Φ(x) := f(x, y∗(x))

s.t. y∗(x) = argmin
y∈Rn

g(x, y),
(1.3)

where f and g are assumed to be continuously differentiable. It is worth noticing that the
objective function Φ(x) is still nonconvex even if we impose convexity assumptions on f , which
makes such a problem hard to tackle, let alone the more complicated manifold-constraint
problems, namely (1.1) and (1.2).

There has been an extensive study on the Euclidean bilevel optimization (Ji et al., 2021;
Hong et al., 2023; Chen et al., 2021; Ghadimi and Wang, 2018). On the algorithmic sense,
the bilevel optimization seeks to obtain a first-order ε-stationary point (Definition 11 and 19
for deterministic and stochastic cases, respectively) with the access to the gradient oracle
of f and g, as well as the Jacobian- and Hessian-vector product, i.e. ∇x∇yg(x, y)v and
∇2
yg(x, y)v, respectively. To find an ε-stationary point, we denote the number of calls to

the gradient oracle of f and g as Gc(f, ε) and Gc(g, ε), correspondingly; similarly we have
the notation JV and HV for the number of oracle calls for the Jacobian- and Hessian-vector
product. In the Euclidean setting, We have Tables 1 and 2 as the summary for the oracle
calls to achieve an ε-stationary point for deterministic and stochastic cases, correspondingly
(and we denote κ as the condition number of the lower level strongly convex problem).

Algorithm BA AID-BiO ITD-BiO*

y-update GD GD GD
Gc(f, ε) O(κ4ε−1) O(κ3ε−1) O(κ3ε−1)

Gc(g, ε) O(κ5ε−5/4) O(κ4ε−1) Õ(κ4ε−1)

JV(g, ε) O(κ4ε−1) O(κ3ε−1) Õ(κ4ε−1)

HV(g, ε) O(κ4.5ε−1) O(κ3.5ε−1) Õ(κ4ε−1)
* Require explicit assumption on the sequence.

Table 1: Summary of the convergence results for different algorithms for deterministic
Euclidean bilevel optimization, including BA (Ghadimi and Wang, 2018), AID-
BiO (Ji et al., 2021) and ITD-BiO (Ji et al., 2021). We hide additional log(1/ε)
factors in Õ.

1.1 Main results

In this work, we first analyze the method of calculating and estimating the hypergradient for
bilevel problems on Riemannian manifolds. Our propositions include the Euclidean bilevel

2

Riemannian Bilevel Optimization

Algorithm BSA Stoc-BiO TTSA* ALSET STABLE*

batch size O(1) O(ε−1) O(1) O(1) O(1)
y-update O(ε−1) steps SGD SGD SGD SGD correction
Gc(F, ε) O(κ6ε−2) O(κ5ε−2) O(poly(κ)ε−2.5) O(κ5ε−2) O(poly(κ)ε−2)
Gc(G, ε) O(κ9ε−3) O(κ9ε−2) O(poly(κ)ε−2.5) O(κ9ε−2) O(poly(κ)ε−2)
JV(G, ε) O(κ6ε−2) O(κ5ε−2) O(poly(κ)ε−2.5) O(κ5ε−2) O(poly(κ)ε−2)

HV(G, ε) Õ(κ6ε−2) Õ(κ6ε−2) Õ(poly(κ)ε−2.5) Õ(κ6ε−2) O(poly(κ)ε−2)
* For algorithms that did not specify the dependence on condition number κ, we use the notation poly(κ) to

summarize the κ dependence.

Table 2: Summary of the convergence results for different algorithms for stochastic Eu-
clidean bilevel optimization, including BSA (Ghadimi and Wang, 2018), Stoc-
BiO (Ji et al., 2021), TTSA (Hong et al., 2023), ALSET (Chen et al., 2021) and
STABLE (Chen et al., 2022). For the batch size we only include the ε dependency.
We hide additional log(1/ε) factors in Õ.

problems as special cases and involve the calculation of Riemannian cross derivatives, which
are of independent interests to the Riemannian optimization field.

Our contribution also lies in proposing two algorithms (RieBO and RieSBO) for both
the problems (1.1) and (1.2) correspondingly. For the deterministic problem (1.1), our
analysis shows that with a multi-step inner loop and a single-step outer loop, one could yield
the similar gradient complexities Gc(f, ε), Gc(g, ε), Jacobian- and Hessian-vector product
complexities JV(g, ε) and HV(g, ε) same as the Euclidean counterparts in Ji et al. (2021),
as presented in Table 3, al well as for the stochastic problem (1.2) (Chen et al., 2021). It
is worth noticing that for the stochastic problem, we adopt the framework of Chen et al.
(2021) onto Riemannian manifolds so that the batch size of the hypergradient estimate can
be O(1), significantly smaller than O(ε−1) as in Ji et al. (2021).

Algorithm RieBO (Algorithm 1) RieSBO (Algorithm 2)

batch size No batch O(1)
y-update GD SGD
Gc(F, ε) O(κ3ε−1) O(κ5ε−2)
Gc(G, ε) O(κ4ε−1) O(κ9ε−2)
JV(G, ε) O(κ3ε−1) O(κ5ε−2)

HV(G, ε) Õ(κ3.5ε−1) Õ(κ6ε−2)

Table 3: Summary of the convergence results for the proposed algorithms in this paper, where
all the oracles are with respect to Riemannian gradients and Riemannian second-
order derivatives. RieBO (Algorithm 1) solves (1.1), and RieSBO (Algorithm 2)
solves (1.2). We hide additional log(1/ε) factors in Õ.

Finally, we implement the proposed method in the manifold-constrained bilevel optimiza-
tion problems, namely the distributionally robust optimization on Riemannian manifolds

3

Li and Ma

with two specific examples: robust maximum likelihood estimation and robust Karcher mean
problem on the manifold of positive definite matrices. These numerical results demonstrate
the efficiency and potential applicability of the proposed methods.

1.2 Related works

Bilevel optimization. Bilevel optimization problem, also known as nested optimization
problem, whose origin dates back to the 50s and 70s (Stackelberg and Peacock, 1952; Bracken
and McGill, 1973). Since then, extensive studies have been conducted for solving the bilevel
optimization problem (Shi et al., 2005; Moore, 2010). Recently, gradient-based algorithms
for solving bilevel optimization problems draw attention because of their applications in
machine learning and operations research, such as hyperparameter optimization (Domke,
2012; Pedregosa, 2016; Maclaurin et al., 2015; Franceschi et al., 2018; Lorraine et al., 2020),
meta learning (Franceschi et al., 2018; Ji et al., 2021), etc. The increasing attention toward
bilevel modeling result in a rich content on the discussion of optimization these bilevel
problems, see, e.g. Gould et al. (2016); Shaban et al. (2019); Liu et al. (2020); Li et al.
(2020b); Grazzi et al. (2020); Ji and Liang (2023) for some discussion on how to compute
the hypergradient (gradient of Φ) and the computational lower bounds. There has also been
discussions about the rate of convergence for specific algorithms (Ghadimi and Wang, 2018;
Hong et al., 2023; Ji et al., 2021; Chen et al., 2022, 2021). These well-established convergence
rate results are summarized in Tables 1 and 2, for deterministic and stochastic problems,
respectively. Recently, a line of work (Khanduri et al., 2021; Yang et al., 2023) which
utilizes the momentum-based stochastic algorithms can achieve a better oracle complexity of
O(ε−1.5) for the Euclidean version of the stochastic problem (1.2). We did not include this
line of work since the Riemannian counterparts of these works would rely on the utilization of
parallel/vector transport in the algorithm updates. We deliberately avoid these complicated
operations in algorithm design and postpone them for future works.

It is worth mentioning that minimax saddle point problems minx maxy f(x, y) are special
cases of bilevel optimization problems by taking g = −f . Minimax problems are of great
interests to the machine learning community (Daskalakis and Panageas, 2018; Mokhtari
et al., 2020; Yoon and Ryu, 2021; Lin et al., 2020b). The analysis of this paper relates to the
nonconvex-strongly-concave minimax problem on Riemannian manifolds as in Huang and
Gao (2023), which showed that the Riemannian gradient descent ascent (RGDA) achieves
oracle calls with orders O(κ2ε−1) for the deterministic case and O(κ3ε−2) for the stochastic
case. These results match our convergence results in terms of the order of ε, but has better
κ dependence. This makes sense because our proposed method is a multi-y step GDmax
algorithm (see Nouiehed et al. (2019); Jin et al. (2020)) when applied to the minimax
problem and naturally has a larger κ dependence. Recently, the authors of Cai et al. (2023)
considered the minimax game on Riemannian manifolds under the assumption of geodesic-
strongly-monotone (a generalization of strongly-convex-strongly-concave minimax game) and
provided a stochastic Riemannian gradient descent-ascent approach which enjoys linear rate
of convergence – similar to its Euclidean counterpart. We point out that our work considers
nonconvex upper level problems, which is different from the setting in Cai et al. (2023).

4

Riemannian Bilevel Optimization

Other bilevel-related ongoing research topics include decentralized bilevel optimiza-
tion (Chen et al., 2024, 2023b; Dong et al., 2023), federate bilevel optimization (Tarzanagh
et al., 2022), bilevel without lower strongly convexity (Chen et al., 2023a), to name a few.

Optimization on Riemannian manifolds. Optimization on Riemannian manifolds draws
lots of attention recently due to its applications in various fields, including low-rank matrix
completion (Boumal and Absil, 2011; Vandereycken, 2013), phase retrieval (Bendory et al.,
2017; Sun et al., 2018), dictionary learning (Cherian and Sra, 2016; Sun et al., 2016),
dimensionality reduction (Harandi et al., 2017; Tripuraneni et al., 2018; Mishra et al.,
2019) and manifold regression (Lin et al., 2017, 2020a). The manifold optimization usually
transforms a manifold constrained problem into an unconstrained problem by viewing the
manifold as the ambient space and using proper retraction to deal with the loss of linearity,
thus achieves better convergence results. For smooth Riemannian optimization, it can be
shown that Riemannian gradient descent method require O(1/ε) iterations to converge to an
ε-stationary point (i.e. bounding the norm square of the gradient by ε) (Boumal et al., 2018).
Stochastic algorithms were also studied for smooth Riemannian optimization (Bonnabel,
2013; Zhou et al., 2019; Weber and Sra, 2022; Zhang et al., 2016; Kasai et al., 2018).

The combination of bilevel optimization with Riemannian optimization was largely blank
prior to this work. Bonnel et al. (2015) considered a semi-vectorial bilevel optimization
model over Riemannian manifolds, which deals with the situation where the lower level
problem does not have unique solutions and necessary optimality conditions are provided for
their surrogate model. Recently, a concurrent work (Han et al., 2024) also inspect problems
in the form of (1.1) and (1.2). We have a very similar algorithm framework with Han et al.
(2024) but we would like to point out that, different from Han et al. (2024), our analysis
on the stochastic Riemannian bilevel problem (see Theorem 20) is batch-free whereas their
result requires a batch size dependent on ε (see Han et al. (2024, Theorem 2)). Moreover,
we primarily inspect the stochastic Neumann series approximation (4.13) for the stochastic
problem (1.2), whereas Han et al. (2024) primarily inspects the approximation methods for
the deterministic problem (1.1).

2. Motivating examples

In this section, we provide several motivating examples where at least one between the lower
level and the upper level problems are manifold-constrained.

The first set of examples is the robust optimization on Riemannian manifolds, which
writes:

min
y∈N

max
p∈∆n

n∑
i=1

pi` (y; ξi)− λ
∥∥∥∥p− 1

n

∥∥∥∥2

, (2.1)

where ∆n := {y ∈ Rn :
∑n

i=1 yi = 1, yi ≥ 0} is the probability simplex, and ` is geodesically
convex. This problem minimizes n loss functions by dynamically assigning different weights
to them, and making sure that the larger loss has larger weights (see Chen et al. (2017);
Huang and Gao (2023)). By minimax theorem we can exchange the min and max of the

5

Li and Ma

problem, thus it can be equivalently formulated as a bilevel optimization as follows:

min
p∈∆n

λ

∥∥∥∥p− 1

n

∥∥∥∥2

−
n∑
i=1

pi` (y; ξi)

s.t. y ∈ argmin
y∈N

n∑
i=1

pi` (y; ξi) .

(2.2)

In the numerical experiment section, we inspect two specific examples of robust optimization
on Riemannian manifolds.

We also include another example on Riemannian meta-learning (Han et al., 2024).
Consider a meta learning problem, where one has m tasks and each task i is represented
by a support and query set Dis and Diq, and the target is to learn a set of parameters w
which could quickly adapt to all the m tasks while each of the task also has its own training
parameter wi. In Riemannian meta learning, one would require the parameter w lying on
the manifold M, usually the Stiefel manifold (orthogonal constraints). This result in the
following Riemannian meta learning problem:

min
w∈M

1

m

m∑
i=1

L
(
w,w∗i (w);Diq

)
s.t. w∗i (w) = arg min

wi

1

m

m∑
i=1

L
(
w,wi;Dis

)
+R (wi)

(2.3)

where L is a certain loss function that we want to minimize and R is a regularizer to maintain
the strong convexity of the lower-level problem.

We refer to the concurrent work Han et al. (2024) for more examples.

3. Preliminaries on Riemannian Optimization

In this part, we briefly review the basic tools we use for optimization on Riemannian
manifolds (Lee, 2006a; Tu, 2011; Boumal, 2023). Suppose M is an m-dimensional differ-
entiable manifold. The tangent space TxM at x ∈ M is a linear subspace that consists
of the derivatives of all differentiable curves on M passing through x: TxM := {γ′(0) :
γ(0) = x, γ([−δ, δ]) ⊂ M for some δ > 0, γ is differentiable}. Notice that for every vector
γ′(0) ∈ TxM, it can be defined in a coordinate-free sense via the operation over smooth

functions: ∀f ∈ C∞(M) 1, γ′(0)(f) := df◦γ(t)
dt |t=0. The notion of Riemannian manifold is

defined as follows.

Definition 1 (Riemannian manifold) A manifold M is a Riemannian manifold if it is
equipped with an inner product on the tangent space. In particular, at any point x ∈M,

1. see Tu (2011, Definition 6.1). For brevity, we omit most of the basic definitions related to differential
manifolds and refer to Tu (2011) for details. A smooth mapping on a differential manifold is actually not
very different from the Euclidean smooth function since the manifold is locally diffeomorphic to Euclidean
spaces.

6

Riemannian Bilevel Optimization

we have an inner product 〈·, ·〉x : TxM× TxM → R, that varies smoothly2 on M. The
inner product 〈·, ·〉x is usually referred to as the Riemannian metric.

Throughout the paper, we assume that M and N are complete Riemannian manifolds
equipped with their corresponding Riemannian metrics 〈·, ·〉x and 〈·, ·〉y. Here the completeness
refers to the fact that the Riemannian manifold is a complete metric space such that every
Cauchy sequence converges. Note that all the matrix manifolds mentioned in this paper are
complete.

Note that for the case when M = Rd the Euclidean space, the tangent space is TM =
TRd which is isometric to Rd, and the Riemannian metric is just the common inner product.
Another commonly encountered example is the Stiefel manifold (note that p = 1 gives the
unit sphere) given by

M = St(n, p) := {X ∈ Rn×p : X>X = Ip}. (3.1)

The tangent space of St(n, p) is given by TXM = {ξ ∈ Rn×p : X>ξ+ ξ>X = 0}. One could
equip the tangent space with common inner product 〈X,Y 〉 := tr(X>Y) as the metric to
form a Riemannian manifold. For additional examples, see Absil et al. (2008, Chapter 3) or
Boumal (2023, Chapter 7).

Below, we also review the notion of differential of a mapping on manifolds.

Definition 2 (Differential and Riemannian gradients) Let F : M → N be a C∞

map (see Tu (2011, Definition 6.5)) between two differential manifolds. At each point
x ∈M, the differential of F is a linear mapping (also known as the push-forward):

DF : TxM→ TF (x)N ,

such that ∀ξ ∈ TxM, DF (ξ) ∈ TxN is given by

(DF (ξ))(f) := ξ(f ◦ F) ∈ R, ∀f ∈ C∞(M).

If N = R, i.e. f ∈ C∞(M), the differential of f is usually denoted as df . For a
Riemannian manifold with Riemannian metric 〈·, ·〉, the Riemannian gradient for f ∈
C∞(M) is the unique tangent vector gradf(x) ∈ TxM satisfying

df(ξ) = 〈gradf, ξ〉x, ∀ξ ∈ TxM.

The Riemannian gradient is the generalization of the common Euclidean gradients to
Riemannian manifolds, and it is the central concept for our algorithm design. If the manifold
is an embedded submanifold of some Euclidean space, then the Riemannian gradient is
simply the projection of the Euclidean gradient onto the tangent space. For example, if
the manifold is unit sphere M = Sd−1 = {x ∈ Rd|x>x = 1} ⊂ Rd, then the tangent space
at x ∈M is given by TxM = {ξ ∈ Rd|ξ>x = 0}, and for any smooth function f : Rd → R,
the Riemannian gradient is given by:

gradf(x) = (Id − xx>)∇f(x)

2. Mapping 〈·, ·〉x is actually a function with three inputs on TM× TM×M, and here “varies smoothly”
means that it is a smooth mapping on the product manifold TM× TM×M. See Boumal (2023,
Definition 5.2) for details.

7

Li and Ma

which is simply projecting ∇f(x) to the tangent space TxM = {ξ ∈ Rd|ξ>x = 0}.
For the convergence analysis, we also need the notions of exponential mapping and

parallel transport. To this end, we need to first recall the definition of a geodesic.

Definition 3 (Geodesic and exponential mapping) Given x ∈M and ξ ∈ TxM, the
geodesic is the curve γ : I → M, where I is an open set of R containing 0, such that
γ(0) = x, γ̇(0) = ξ and ∇γ̇ γ̇ = 0 where ∇ : TxM× TxM → TxM is the Levi-Civita
connection defined by metric g. In local coordinate sense, γ is the unique solution of the
following second-order differential equations:

d2γk

dt2
+ Γki,j

dγi

dt

dγj

dt
= 0, (3.2)

under Einstein summation convention, where Γki,j are Christoffel symbols, again defined by
metric tensor. The exponential mapping Expx is defined as a mapping from TxM to M s.t.
Expx(ξ) := γ(1) with γ being the geodesic with γ(0) = x, γ̇(0) = ξ. A natural corollary is
Expx(tξ) := γ(t) for t ∈ [0, 1]. Another useful fact is dist(x,Expx(ξ)) = ‖ξ‖x since γ′(0) = ξ
which preserves the speed. Here dist is the geodesic distance which connects the two points
by the minimum geodesic.

The definition of the geodesic can be interpreted simply as a notion of “minimum distance
curve”. For example, if we solve (3.2) on the unit sphere with Euclidean inner product
as the metric, we will simply get curves of great circles starting from one given point and
connecting all other points in the shortest distance. For the case of Euclidean space, the
Christoffel symbols Γki,j will all vanish to zero, and the geodesics are just straight lines (since
(3.2) becomes γ′′(t) = 0 and solution is the straight line γ(t) = x0 + tξ).

We want to point out that the definition of the geodesic and exponential mapping is not
the main concern of this work, as long as we assume a complete manifold and a minimum
geodesic exists between any two points on the manifold. To this end, we always assume that
M is complete throughout this paper, so that Expx is always defined for every ξ ∈ TxM
(see Lee (2006b, Chapter 6)). For any x, y ∈ M, the inverse of the exponential mapping
Exp−1

x (y) ∈ TxM is called the logarithm mapping, and we have dist(x, y) = ‖Exp−1
x (y)‖x,

which derives directly from dist(x,Expx(ξ)) = ‖ξ‖x.
Now we give an example of the geodesic and exponential mapping. Consider again

the Stiefel manifold (3.1). The geodesic on the Stiefel manifold is given by: X(t) =[
X(0) Ẋ(0)

]
exp

(
t

[
A(0) −S(0)
I A(0)

])[
I
0

]
exp(−A(0)t), for A(t) = X>(t)Ẋ(t) and

S(t) = Ẋ>(t)Ẋ(t) with initial point X(0) and initial speed Ẋ(0). The exponential mapping
is thus given by ExpX(0)(Ẋ(0)) = X(1).

With the notion of geodesic, we have the following definition of geodesic convexity and
strong convexity, which are the generalizations of their Euclidean counterparts.

Definition 4 (Geodesic (strong) convexity) A geodesic convex set Ω ⊂ M is a set
such that for any two points in the set, there exists a geodesic connecting them that lies
entirely in Ω. A function h : Ω→ R is called geodesically convex if for any p, q ∈ Ω, we have
h(γ(t)) ≤ (1−t)h(p)+th(q), where γ is a geodesic in Ω with γ(0) = p and γ(1) = q. It is called

µ-geodesically strongly convex if we have h(γ(t)) ≤ (1− t)h(p) + th(q)− µt(1−t)
2 dist(p, q)2.

8

Riemannian Bilevel Optimization

If h is a continuously differentiable function, then it is geodesically convex if and only if
(see Boumal (2023, Chapter 11)) h(y) ≥ h(x) + 〈gradh(x),Exp−1

x (y)〉x, and is geodesically
strongly convex if and only if h(y) ≥ h(x) + 〈gradh(x),Exp−1

x (y)〉x + µ
2 dist(x, y)2.

If h is a twice continuously differentiable function, then it is geodesically convex if and

only if (see Boumal (2023, Chapter 11)) d2h(γ(t))
dt2

≥ 0, and is geodesically strongly convex if

and only if d2h(γ(t))
dt2

≥ µ, where γ is a geodesic.

We also present the definition of parallel transport, which is used in the assumption and
the convergence analysis, but not explicitly used in the algorithm updates.

Definition 5 (Parallel transport) Given a Riemannian manifold (M, g) and two points
x, y ∈M, the parallel transport Px→y : TxM→ TyM is a linear operator which keeps the
inner product: ∀ξ, ζ ∈ TxM, we have 〈Px→yξ, Px→yζ〉y = 〈ξ, ζ〉x.

Notice that the existence of parallel transport depends on the curve connecting x and y,
which is not a problem for complete Riemannian manifold since we always take the unique
geodesic that connects x and y. Parallel transport is useful in our convergence proofs since
the Lipschitz condition for the Riemannian gradient requires moving the gradients in different
tangent spaces “parallel” to the same tangent space.

For the Euclidean spaces, parallel transport is simply the identity mapping, since the
tangent space remains the same at every point. Another example is the Stiefel manifold (3.1),
where there is no closed-form expression for the parallel transport, and people usually utilize
the projection onto the tangent space, given by projTXM(ξ) = (I −XX>)ξ +X skew(X>ξ),
where skew(A) := (A − A>)/2, to transport ξ ∈ TX0 St(n, p) to TX St(n, p). We refer to
Absil et al. (2008, Chapter 8) and Boumal (2023, Chapter 10) for additional examples and
more discussions on vector and parallel transports.

We also have the following definition of Lipschitz smoothness on the manifolds.

Definition 6 (Geodesic Lipschitz smoothness) A function h : Ω→ R is called geodesic-
Lipschitz smooth if we have:

‖gradh(y)− Px→ygradh(x)‖ ≤ `h dist(x, y). (3.3)

Moreover, we have (see Zhang et al. (2016))

h(y) ≤ h(x) + 〈gradh(x),Exp−1
x (y)〉x +

`h
2

dist(x, y)2. (3.4)

Geodesic Lipschitz smoothness is a generalization of the standard gradient-Lipschitz
assumption in Euclidean optimization (Nesterov et al., 2018) to the Riemannian setting, and
is made in several works (Boumal, 2023; Boumal et al., 2018). To generalize the Euclidean
notion to the Riemannian setting, due to the fact that gradf(x) and gradf(y) are not in the
same tangent space, we need to utilize parallel transports Px→y to match the two vectors in
the same tangent space.

To proceed to the bilevel hypergradient estimation, we need the notions of Riemannian
Hessian and Riemannian cross-derivatives (Jacobians) (see Han et al. (2023)).

9

Li and Ma

Definition 7 (Riemannian Hessian) For function f :M→ R, the Riemannian Hessian
is a symmetric 2-form H(f) : TM× TM→ R defined as: ∀ξ, η ∈ TM,

H(f)(ξ, η) = 〈∇ξgradf, η〉,

where ∇ here is the Levi-Civita connection (see Lee (2006a)). H can also be interpreted as
a linear map H(f) : TM→ TM, ∀ξ ∈ TxM,

H(f)(ξ) = ∇ξgradf.

Note that if f is µ-geodesic strongly convex, we have that H(f)(ξ, ξ) ≥ 0 with equality
attained if and only if ξ = 0 ∈ TM (see Boumal (2023, Chapter 11)).

Definition 8 (Riemannian cross-derivatives) For a smooth function defined on product
manifold f :M×N → R, the Riemannian cross-derivatives is defined as a linear mapping
grad2

x,y(f) : TM→ TN such that ∀ξ ∈ TxM,

grad2
x,y(f)[ξ] = Dxgradyf(x, y)[ξ],

where Dx is the differential with respect to variable x. grad2
y,x(f) is defined similarly.

A useful fact is that grad2
x,y(f) and grad2

y,x(f) are adjoint operators.

Proposition 9 grad2
x,y and grad2

y,x are adjoints, i.e.

〈η, grad2
x,yf(x, y)[ξ]〉y = 〈grad2

y,xf(x, y)[η], ξ〉x,∀ξ ∈ TxM and ∀η ∈ TyN ,

where f ∈ C1(M) is any continuously differentiable function over M.

Proof Note

〈η, grad2
x,yf(x, y)[ξ]〉y = ξ(〈η, gradyf(x, y)〉y) = ξ(η(f)),

and similarly

〈grad2
y,xf(x, y)[η], ξ〉x = η(ξ(f)).

Note that here ξ and η are actually acting on different coordinates of f . We can extend
ξ̃(x, y) = (ξ(x), 0) ∈ TxM× TyN and similarly η̃(x, y) = (0, η(y)) ∈ TxM× TyN . Now
subtracting the above equations we have

〈η, grad2
x,yf(x, y)[ξ]〉y − 〈grad2

y,xf(x, y)[η], ξ〉x = [ξ̃, η̃](f),

where [ξ̃, η̃] = ξ̃η̃− η̃ξ̃ is the Lie bracket. It is easy to verify in local coordinates that [ξ̃, η̃] is
zero since ξ̃ and η̃ act on disjoint local coordinates.

10

Riemannian Bilevel Optimization

4. Bilevel hypergradient estimation on Riemannian manifolds

We first inspect the calculation of the hypergradient for problem (1.1), namely the Riemannian
gradient gradΦ(x). Notice that y∗ is actually a map M→ N , thus we need to follow the
notion of the differential of maps between manifolds. To calculate the Riemannian gradient
gradΦ(x), we first need some basic assumptions to ensure the existence and uniqueness of
y∗ :M→N , also the existence of gradΦ(x):

Assumption 1 The manifolds M and N are complete Riemannian manifolds. Moreover,
N is a Hadamard manifold whose sectional curvature is lower bounded by ι < 0 3.

We use the notation 〈·, ·〉x and 〈·, ·〉y to represent their Riemannian metrics, for x ∈M and
y ∈ N . The corresponding norms are ‖ · ‖x and ‖ · ‖y. Note that from now on we may omit
the subscript since the corresponding manifold and tangent space can be identified by the
vector in the “·” position.

We also need the following assumptions on the lower and upper objectives:

Assumption 2 (Geodesic strong convexity) The lower level objective function g(x, y)
is second-order continuously differentiable and µ-geodesically strongly convex with respect to
y. Note that the total objective Φ(x) = f(x, y∗(x)) may still be nonconvex.

Such an assumption is necessary in most of the bilevel optimization literature (see for
example Ji et al. (2021, Assumption 1)), since we need a unique lower level minimizer y∗(x)
for any given x ∈M and the differentiability of g(x, y) will result in a calculable Riemannian
gradient gradΦ(x). The detail is provided in the proposition right below.

Proposition 10 Under Assumptions 1 and 2, the mapping y∗ :M→N is differentiable,
and the Riemannian gradient gradΦ(x) is given by:

gradΦ(x) = gradxf(x, y∗(x))− grad2
y,xg(x, y∗(x))[v∗(x)], (4.1)

where v∗(x) ∈ Ty∗(x)N is the solution of the following equation:

Hy(g(x, y∗(x)))(v) = gradyf(x, y∗(x)), (4.2)

where Hy is the Riemannian Hessian for the y variable.

Proof We first show that y∗(x) is differentiable. To do this, we first prove that y∗(x)
exists and is uniquely determined.

Based on the geodesic strong convexity of g with respect to y, we can show the existence
of the solution y∗(x) of the lower level problem by showing that the level sets of function g
with respect to y are bounded. Consider S(x) = {y ∈ N|g(x, y) ≤M} 6= ∅ and assume that
this set is not bounded, then we can find an unbounded sequence {yk} ⊂ S(x) and without
loss of generality we can assume ‖yk − y0‖ ≥ 1, ∀k ≥ 1. Denote αk = 1/d(yk, y0) so that

3. We make this assumption so that the lower function g can be geodesically strongly convex, see Zhang
and Sra (2016).

11

Li and Ma

limk αk = 04, also denote zk = γk(αk) where γk is the geodesic connecting y0 and yk with
γk(0) = y0 and γk(1) = yk. Now based on geodesic strong convexity of g, we have

g(x, zk) ≤αkg(x, yk) + (1− αk)g(x, y0)− µ(1− αk)αk
2

dist(yk, y0)2

≤M − µ(1− αk)αk
2

dist(yk, y0)2 → −∞

which contradicts to the continuity of g. This finishes the existence of the minimizer y∗(x).

Now we proceed to show that the minimizer y∗(x) is unique. For any y ∈ N and
α ∈ (0, 1), applying the geodesic strong convexity of g we get:

αg(x, y) + (1− α)g(x, y∗(x)) ≥ g(x, αx+ (1− α)y∗(x)) +
µα(1− α)

2
dist(y, y∗(x))2

≥ g(x, y∗(x)) +
µα(1− α)

2
dist(y, y∗(x))2

i.e.

g(x, y) ≥ g(x, y∗(x)) +
µ(1− α)

2
dist(y, y∗(x))2

which proves the uniqueness of the minimizer y∗(x). We now conclude that y∗ :M→N is
a well-defined function.

Next we prove that the mapping y∗ :M→N is differentiable. This is actually directly
due to implicit function theorem (see for example, Theorem C.40 in Lee (2006b)). In
particular, from the optimality of the lower level problem we know that

gradyg(x, y) = 0

and by strongly convexity of g we know the Hessian Hy(g) is non-singular. Therefore by
implicit function theorem, map y∗ will be continuously differentiable since we assume g
being continuous differentiable.

Now we proceed to calculate the Riemannian gradient gradΦ(x) directly. By chain rule,

dΦ(x) = dxf(x, y∗(x)) + dyf(x, y∗(x)) ◦ (Dy∗(x)), (4.3)

where d and D represent the differential operators for real-valued and vector-valued functions,
respectively. Notice that the above equation holds in the cotangent space. Since the
Riemannian gradients are defined as gradΦ(x) ∈ TxM s.t. ∀ξ ∈ TxM, d Φ(x)(ξ) =
〈gradΦ(x), ξ〉, we get from the above equality that

〈gradΦ(x), ξ〉 = 〈gradxf(x, y∗(x)), ξ〉+ 〈gradyf(x, y∗(x)),Dy∗(x)(ξ)〉. (4.4)

Now we have the following optimality condition from the y lower-level problem:

gradyg(x, y∗(x)) = 0.

4. If d(yk, y0) 6→ ∞, we can always pick up an subsequence {kj} such that d(ykj , y0) → ∞ due to the
unboundedness of {yk}.

12

Riemannian Bilevel Optimization

By taking the differential for x on both sides of the above formula we get: ∀ξ ∈ TxM,

grad2
x,yg(x, y∗(x))(ξ) +Hy(g(x, y∗(x)))(Dy∗(x)(ξ)) = 0. (4.5)

Now taking the inner-product of both sides of the above equation with v∗(x), we get

〈v∗(x), grad2
x,yg(x, y∗(x))(ξ)〉+ 〈gradyf(x, y∗(x)),Dy∗(x)(ξ)〉 = 0.

Therefore we get the final result by plugging back the above equation to (4.4) and applying
Proposition 9.

When both M and N are embedded submanifolds (of two different Euclidean spaces
RM and RN), and f̄ : RM × RN → R which restricts to f : M×N → R naturally. The
Riemannian gradients of f are simply projections of the Euclidean gradients onto the tangent
spaces:

gradxf(x, y) = projTxM(∇xf̄(x, y)), gradyf(x, y) = projTy N (∇yf̄(x, y)), (4.6)

and the cross-derivatives are calculated as follows as a matrix:

grad2
x,yf(x, y) = Py(∇2

x,yf̄(x, y))Px, (4.7)

where Px = projTxM ∈ RM×M and Py = projTy N ∈ RN×N are projection matrices

onto tangent spaces, and ∇2
x,yf̄(x, y) ∈ RN×M is the regular partial gradient, namely

[∇2
x,yf̄(x, y)]j,i = ∂2f̄

∂yj∂xi
.

In practice we cannot solve the inner minimization and (4.2) exactly. Suppose we have a
point y ∈ N , we can solve the approximate problem of (4.2):

Hy(g(x, y))[v] = gradyf(x, y) (4.8)

with an N -step conjugate gradient method, yielding v̂N (x, y), then we can estimate

gradΦ(x) ≈ gradxf(x, y)− grad2
y,xg(x, y)[v̂N (x, y)], (4.9)

which we further refer to as the approximate implicit differentiation (AID) estimate of (4.1).

For the rest of the paper we denote hk,tg := gradyg(xk, yk,t) and

hΦ(x, y) := gradxf(x, y)− grad2
y,xg(x, y)[v̂N (x, y)]. (4.10)

We abbreviate the notation by hkΦ := hΦ(xk, yk) in the algorithms.
For the stochastic problem (1.2), we have an estimate of the Riemannian gradient of the

hyperfunction Φ described as follows (see Hong et al. (2023); Chen et al. (2021) for the original
Euclidean setting): We first update the inner problem yt ← Expyt−1(−αgradyG(x, yt−1; ζt−1))
for t = 1, ..., T . Meanwhile the estimate for the gradient of F and the second-order gradient
of G will require us to further have independent samples ξ and ζ(q), q = 0, 1, ..., Q, so that
we define the stochastic gradient estimator as:

gradΦ (x) ≈ gradxF (x, yT ; ξ)− grad2
y,xG(x, yT ; ζ0)[vQ(x, yT)], (4.11)

13

Li and Ma

where vQ is the approximation of (4.2), defined as (see Hong et al. (2023); Liao et al. (2018)):

vQ(x, y) := ηQ

Q′∏
q=1

(I − ηHy(G(x, y; ζ(q))))[gradyF (x, y; ξ)], (4.12)

where Q′ is drawn uniformly from {0, 1, ..., Q− 1} and the extra parameter η will be later
determined to ensure a better approximation to (4.2), motivated by the Neumann series∑∞

i=0 U
i = (I − U)−1.

From now on we denote h̃k,tg = gradyG(xk, yk,t; ζk,t) and

h̃kΦ := gradxF (xk, yk; ξk)− grad2
y,xG(xk, yk; ζk,(0))[v

k
Q], (4.13)

where

vkQ := ηQ

Q′∏
q=1

(I − ηHy(G(xk, yk; ζk,(q))))[gradyF (xk, yk; ξk)].

5. Deterministic Algorithm RieBO and Its Convergence

We propose RieBO (Algorithm 1) for the deterministic bilevel manifold optimization (1.1).
The algorithm is a generalization of its Euclidean counterpart proposed in Ji et al. (2021)
where we employ conjugate gradient method to solve the hypergradient estimation problem
(4.10).

For the deterministic case, we utilize the following notion of stationarity:

Definition 11 A point x ∈M is called an ε-stationary point for (1.1) if ‖gradΦ(x)‖2 ≤ ε.

Following Zhang and Sra (2016), it is very important that the quantity τ(ι, dist(yk,t, y∗(xk)))
is bounded during the lower level update, where

τ(ι, c) :=

√
|ι|c

tanh(
√
|ι|c)

. (5.1)

Therefore we need the following assumption along with aforementioned assumptions.

Assumption 3 We assume that the quantity τ(ι, dist(yk,t, y∗(xk))) is always upper bounded
by τ for all k and t 5.

Assumption 3 is a commonly used assumption for convex optimization on Riemannian
manifolds (see e.g. Zhang and Sra (2016, Corollary 8)). Geometrically, τ quantifies how
twisted distance between the update sequence and the optimal point becomes when the
manifold has a curvature ι. For Euclidean space, this quantity τ is always zero, and the
farther the manifold is from Euclidean space, the larger this quantity becomes.

The next assumptions are standard in manifold optimization literature about the Lipschitz
smoothness.

5. Note that this assumption is satisfied if the lower level problem is conducted in a compact subset in N
and assuming that the iterates of the algorithm stay in this compact region, see Zhang and Sra (2016).

14

Riemannian Bilevel Optimization

Assumption 4 (Lipschitz Smoothness) For simplicity denote z = (x, y) and z′ =
(x′, y′), also denote dist(z, z′) =

√
dist(x, x′)2 + dist(y, y′)2 (note that these two distances

are on different manifolds). Moreover, f and g satisfy the following assumptions.

• f satisfies `f,0-Lipschitzness:

|f(z)− f(z′)| ≤ `f,0 dist(z, z′).

• gradf = [gradxf, gradyf] and gradg = [gradxg, gradyg] are `f,1 and `g,1Lipschitz, i.e.,

‖gradf(z)− Pz′→zgradf(z′)‖ ≤ `f,1 dist(z, z′)

‖gradg(z)− Pz′→zgradg(z′)‖ ≤ `g,1 dist(z, z′),

where Pz′→z is the parallel transport on the product manifold M×N and the norm
on the left hand side is also induced by the product Riemannian metric on M×N 6.

Assumption 4 is a generalization of relatively standard assumptions from bilevel optimization
(see e.g. Hong et al. (2023, Assumption 1 and 2)). Note that parallel transports reduces to
identity mapping for Euclidean spaces, and the above assumption is exactly the standard
Lipschitz continuous and Lipschitz smooth assumptions. Further, for bilevel optimization,
most of the works (see e.g. Ji et al. (2021, Assumption 3) and Hong et al. (2023, Assumption
2)) would require the Hessian of the lower level problem also being Lipschitz continuous, in
order to make sure the Riemannian hypergradient gradΦ(x) Lipschitz smooth. Therefore we
need the following assumption.

Assumption 5 (Hessian Smoothness) The second-order derivatives grad2
x,yg(z) and Hy(g(z))

are `g,2 Lipschitz (we use the same constant here for simplicity), i.e. for z = (x, y) and
z′ = (x′, y′), we have∥∥grad2

x,yg(z)− Py∗(x′)→y∗(x) ◦ grad2
x,yg(z′) ◦ Px′→x

∥∥
op
≤ `g,2 dist(z, z′)∥∥Hy(g(z))− Py∗(x′)→y∗(x) ◦Hy(g(z′)) ◦ Py∗(x)→y∗(x′)
∥∥

op
≤ `g,2 dist(z, z′).

Here the norms on the left hand side are the operator norms. We will keep the subscript op
whenever it comes to the operator norm, in order to distinguish it from the norms on the
tangent spaces.

Now we are ready to conduct our convergence analysis. We first have the following
smoothness lemma under the above assumptions.

Lemma 12 Suppose Assumptions 1, 2, 3, 4 and 5 hold, then functions y∗(x) and Φ(x) :=
f(x, y∗(x)) satisfy: ∀x, x′ ∈M

dist(y∗(x), y∗(x′)) ≤ κdist(x, x′), κ = max

{
`g,1
µ
,
`g,2
µ

}
(5.2a)

6. It is worth noticing that in our convergence result, we need τ < `g,1/2. We comment here that this
assumption is not a big issue since if g is Lipschitz smooth with parameter `g,1, then it is also Lipschitz
smooth with any parameters ` > `g,1. We could always pick up a parameter that satisfies τ < `g,1/2,
with some sacrifice of the convergence speed. Note that in the Euclidean case τ = 0 so τ < `g,1/2 holds
naturally.

15

Li and Ma

‖Dy∗(x)− Py∗(x′)→y∗(x) ◦Dy∗(x′) ◦ Px→x′‖op ≤ Ly∗ dist(x, x′) (5.2b)

‖gradΦ(x)− Px′→xgradΦ(x′)‖ ≤ LΦ dist(x, x′), (5.2c)

where

Ly∗ :=

(
1 +

`g,2
µ

)
`g,2
µ

√
1 + κ2 = O(κ3), (5.3)

and

LΦ := `f,1
√

1 + κ2 + `g,2
`f,0
µ

+ `g,1

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)
= O(κ3). (5.4)

Proof For (5.2a), by (4.5) and our Assumptions 3, 4 and 5, we have

‖Dy∗(x)‖op = ‖(Hy(g(x, y∗(x))))−1 ◦ grad2
x,yg(x, y∗(x))‖op ≤

`g,1
µ
.

We thus obtain (5.2a) by a mean value theorem argument in local coordinates (see this link
for a detailed proof).

For (5.2b), we have

‖Dy∗(x)− Py∗(x′)→y∗(x) ◦Dy∗(x′) ◦ Px′→x‖
=‖(Hy(g(x, y∗(x))))−1 ◦ grad2

x,yg(x, y∗(x))

− Py∗(x′)→y∗(x) ◦ (Hy(g(x′, y∗(x′))))−1 ◦ grad2
x,yg(x′, y∗(x′)) ◦ Px′→x‖

≤‖(Hy(g(x, y∗(x))))−1 ◦ grad2
x,yg(x, y∗(x))

− (Hy(g(x, y∗(x))))−1 ◦ Py∗(x′)→y∗(x) ◦ grad2
x,yg(x′, y∗(x′)) ◦ Px′→x‖

+ ‖(Hy(g(x, y∗(x))))−1 ◦ Py∗(x′)→y∗(x) ◦ grad2
x,yg(x′, y∗(x′))

− Py∗(x′)→y∗(x) ◦ (Hy(g(x′, y∗(x′))))−1 ◦ grad2
x,yg(x′, y∗(x′))‖

≤‖(Hy(g(x, y∗(x))))−1‖‖grad2
x,yg(x, y∗(x))− Py∗(x′)→y∗(x) ◦ grad2

x,yg(x′, y∗(x′)) ◦ Px′→x‖
+ ‖(Hy(g(x, y∗(x))))−1 − Py∗(x′)→y∗(x) ◦ (Hy(g(x′, y∗(x′))))−1 ◦ Py∗(x)→y∗(x′)‖‖grad2

x,yg(x′, y∗(x′))‖

≤`g,2
µ

√
dist(x, x′)2 + dist(y∗(x), y∗(x′))2

+ `g,1‖(Hy(g(x, y∗(x))))−1 − Py∗(x′)→y∗(x) ◦ (Hy(g(x′, y∗(x′))))−1 ◦ Py∗(x)→y∗(x′)‖

≤`g,2
µ

√
1 + κ2 dist(x, x′)

+ `g,1‖(Hy(g(x, y∗(x))))−1 − Py∗(x′)→y∗(x) ◦ (Hy(g(x′, y∗(x′))))−1 ◦ Py∗(x)→y∗(x′)‖op

where in the second last inequality we used Assumptions 3, 4 and 5, and we used (5.2a) for the
last inequality. Denote H1 = Hy(g(x, y∗(x))), P = Py∗(x′)→y∗(x) so that Py∗(x)→y∗(x′) = P−1

and H2 = Hy(g(x′, y∗(x′))), then the last term in the above formula becomes:

‖H−1
1 − PH−1

2 P‖op = ‖H−1
1 P−1(H2 − P−1H1P)H−1

2 P−1‖op

≤ 1

µ2
‖H2 − P−1H1P‖op ≤

`g,2
µ2

√
dist(x, x′)2 + dist(y∗(x), y∗(x′))2

≤`g,2
µ2

√
1 + κ2 dist(x, x′).

(5.5)

16

https://math.stackexchange.com/questions/1450725/lipschitz-maps-between-riemannian-manifolds/1450813#1450813

Riemannian Bilevel Optimization

Here we used Assumptions 3, 5, (5.2a) and the fact that the parallel transport P =
Py∗(x′)→y∗(x) is an isometry, i.e., ‖P‖op = 1. Plugging this back we get

‖Dy∗(x)− Py∗(x′)→y∗(x) ◦Dy∗(x′) ◦ Px′→x‖op ≤
(
`g,2
µ

+
`g,1`g,2
µ2

)√
1 + κ2 dist(x, x′),

which gives (5.2b).
We now show (5.2c). Using (4.1), we get

‖gradΦ(x)− Px′→xgradΦ(x′)‖ ≤ ‖gradxf(x, y∗(x))− Px′→xgradxf(x′, y∗(x′))‖
+ ‖grad2

y,xg(x, y∗(x))[v∗(x)]− Px′→xgrad2
y,xg(x′, y∗(x′))[v∗(x′)]‖.

(5.6)

For the first term on the right hand side of (5.6), by Assumption 4 and (5.2a), we have

‖gradxf(x, y∗(x))− Px′→xgradxf(x′, y∗(x′))‖

≤`f,1
√

dist(x, x′)2 + dist(y∗(x), y∗(x′))2 ≤ `f,1
√

1 + κ2 dist(x, x′).

For the second term on the right hand side of (5.6), we have

‖grad2
y,xg(x, y∗(x))[v∗(x)]− Px′→xgrad2

y,xg(x′, y∗(x′))[v∗(x′)]‖

=‖grad2
y,xg(x, y∗(x))[v∗(x)]− Px′→xgrad2

y,xg(x′, y∗(x′))

[
Px→x′Px′→x[v∗(x′)]

]
‖

≤‖grad2
y,xg(x, y∗(x))[v∗(x)]− Px′→xgrad2

y,xg(x′, y∗(x′))Px→x′ [v
∗(x)]‖

+ ‖Px′→xgrad2
y,xg(x′, y∗(x′))Px→x′ [v

∗(x)]− Px′→xgrad2
y,xg(x′, y∗(x′))Px→x′Px′→x[v∗(x′)]‖

≤‖grad2
y,xg(x, y∗(x))− Px′→xgrad2

y,xg(x′, y∗(x′))Px→x′‖op‖v∗(x)‖
+ ‖grad2

y,xg(x′, y∗(x′))‖op‖v∗(x)− Px′→xv∗(x′)‖.

Since v∗(x) is the solution of (4.2), also by Assumptions 3 and 4, we have ‖v∗(x)‖ ≤ `f,0/µ,
also

‖v∗(x)− Px′→xv∗(x′)‖
=‖(Hy(g(x, y∗(x))))−1gradyf(x, y∗(x))− Px′→x(Hy(g(x′, y∗(x′))))−1gradyf(x′, y∗(x′))‖
=‖(Hy(g(x, y∗(x))))−1gradyf(x, y∗(x))− Px′→x(Hy(g(x′, y∗(x′))))−1Px→x′Px′→xgradyf(x′, y∗(x′))‖
≤‖(Hy(g(x, y∗(x))))−1 − Px′→x(Hy(g(x′, y∗(x′))))−1Px→x′‖op‖gradyf(x, y∗(x))‖

+ ‖(Hy(g(x′, y∗(x′))))−1‖op‖gradyf(x, y∗(x))− Px′→xgradyf(x′, y∗(x′))‖

≤
(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)
dist(x, x′),

(5.7)

where we used (5.5), Assumptions 3 and 4.
Combining the above bounds and plugging it to (5.6), we get

‖gradΦ(x)− Px′→xgradΦ(x′)‖

≤`f,1
√

1 + κ2 dist(x, x′) + `g,2
`f,0
µ

dist(x, x′) + `g,1

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)
dist(x, x′),

17

Li and Ma

Algorithm 1: Algorithm for Riemannian (deterministic) Bilevel Optimization
(RieBO)

input :K, T , N(steps for conjugate gradient), stepsize {αk, βk}, initializations
x0 ∈M, y0 ∈ N

for k = 0, 1, 2, ...,K − 1 do
Set yk,0 = yk−1;
for t = 0, ..., T − 1 do

Update yk,t+1 ← Expyk,t(−βkh
k,t
g) with hk,tg := gradyg(xk, yk,t) ;

end

Set yk ← yk,T ;

Update xk+1 ← Expxk(−αkhkΦ) as in (4.10), where v̂N (xk, yk) is given by an
N -step conjugate gradient update, with v̂0(xk, yk) = Pyk−1→yk v̂

N (xk−1, yk−1);

end

which proves (5.2c).

Now we are ready to provide our convergence analysis result for RieBO (Algorithm 1).
This result is an extension of the convergence result in Ji et al. (2021) to the Riemannian
setting.

Theorem 13 Suppose Assumptions 1, 2, 3, 4 and 5 hold, and take the parameters βk =
β ≤ 1

`g,1
, αk = α ≤ 1

8LΦ
, T ≥ O(κ) and conjugate gradient iteration number N ≥ O(

√
κ).

Then RieBO (Algorithm 1) satisfies:

1

K

K−1∑
k=0

‖gradΦ(xk)‖2 ≤ O
(
LΦ

K

)
. (5.8)

The specific choice parameters are given in the proof for the simplicity of the statement. In
order to achieve an ε-accurate stationary point, the complexity is given by:

• Gradients: Gc(f, ε) = O(κ3ε−1), Gc(g, ε) = O(κ4ε−1);

• Jacobian and Hessian-vector products: JV(g, ε) = O(κ3ε−1), HV(g, ε) = O(κ3.5ε−1).

To prove this theorem, we need the following lemmas. The first lemma quantifies the
error when optimizing (4.8) with N -step conjugate gradient method, see Grazzi et al. (2020,
Equation (17))7.

7. Note that here the Hessian matrix Hy(g(x, y)) is full-rank in the tangent space. However if it is an
embedded submanifold then Hy(g(x, y)) is actually rank-deficient matrix in the ambient Euclidean space.
This is not a concern for showing the linear rate of convergence since we can always conduct CG steps
only on the tangent spaces (as Euclidean subspaces of the ambient Euclidean space). It is known that the
convergence is still linear even if Hy(g(x, y)) is rank-deficient, see Hayami (2018) for a detailed inspection.

18

Riemannian Bilevel Optimization

Lemma 14 Suppose we solve (4.8) with N -step conjugate gradient method with the initial
point v̂0(x, y) and output v̂N (x, y), then we have

‖v̂N (x, y)− ṽ‖ ≤
√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(x, y)− ṽ‖,

where ṽ is the exact solution of (4.8).

The next lemma quantifies the error of the inner loop, i.e. the T steps where we do
Riemannian gradient descent for the lower problem in RieBO (Algorithm 1).

Lemma 15 Suppose Assumptions 1, 2, 3, 4 and 5 hold, and we take βk = β = 1/`g,1 as a
constant, then RieBO satisfies:

dist(yk,T , y∗(xk))2 ≤ (1− 2µτβ2)T dist(yk,0, y∗(xk))2. (5.9)

Proof For simplicity, we denote h(y) = g(xk, y), so that y∗(xk) is the optimal solution of h.
We also omit k in this proof, i.e., the update becomes:

yt+1 ← Expyt(−βkgradh(yt)).

By the notions of geodesic smoothness and geodesic convexity, we have

h(yt+1)− h(y∗) = h(yt+1)− h(yt) + h(yt)− h(y∗)

≤〈gradh(yt),Expyt(y
t+1)〉+

`g,1
2
‖Expyt(yt+1)‖2 − 〈gradh(yt),Expyt(y

∗)〉 − µ

2
dist(yt, y∗)2

=− (β − β2`g,1
2

)‖gradh(yt)‖2 − 〈gradh(yt),Expyt(y
∗)〉 − µ

2
dist(yt, y∗)2,

i.e.,

(β − β2`g,1
2

)‖gradh(yt)‖2 − 〈gradh(yt),Expyt(y
∗)〉 ≤ −µ

2
dist(yt, y∗)2. (5.10)

Now by Zhang and Sra (2016, Corollary 8), we have,

dist(yt+1, y∗)2 ≤dist(yt, y∗)2 + 2β〈gradh(yt),Expyt(y
∗)〉+ τβ2‖gradh(yt)‖2

≤(1− 2µτβ2) dist(yt, y∗)2,

where the last inequality is by (5.10) and β = 1/`g,1. The proof is done by repeatedly
applying the above inequality from t = T − 1 back to t = 0.

The next lemma quantifies the error between our estimation hkΦ and the true upper level
gradient gradΦ(xk).

Lemma 16 Suppose Assumptions 1, 2, 3, 4 and 5 hold, then RieBO satisfies:

‖hkΦ − gradΦ(xk)‖ ≤Γ(1− 2µτβ2)T/2 dist(y∗(xk), yk−1)

+ `g,1
√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(xk, yk)− Py∗(xk)→ykv

∗(xk)‖,
(5.11)

19

Li and Ma

where hkΦ is the estimate from (4.10) and we have the parameters:

ṽk = (Hy(g(xk, yk)))−1gradyf(xk, yk)

Γ = `f,1 +
`f,0`g,2
µ

+ `g,1

(
1 +
√
κ

(√
κ− 1√
κ+ 1

)N)(
`g,2`f,0 +

`f,1
µ

)
.

(5.12)

Proof We first restate the expression (4.1) for gradΦ(x) and (4.10) for hkΦ:

gradΦ(xk) = gradxf(xk, y∗(xk))− grad2
y,xg(xk, y∗(xk))[v∗(xk)],

hΦ(xk, yk) := gradxf(xk, yk)− grad2
y,xg(xk, yk)[v̂N (xk, yk)].

Thus,

‖hkΦ − gradΦ(xk)‖ ≤ ‖gradxf(xk, y∗(xk))− gradxf(xk, yk)‖
+ ‖grad2

y,xg(xk, y∗(xk))[v∗(xk)]− grad2
y,xg(xk, yk)[v̂N (xk, yk)]‖

≤‖gradxf(xk, y∗(xk))− gradxf(xk, yk)‖
+ ‖grad2

y,xg(xk, y∗(xk))[v∗(xk)]− grad2
y,xg(xk, yk)[Py∗(xk)→ykv

∗(xk)]‖

+ ‖grad2
y,xg(xk, yk)[Py∗(xk)→ykv

∗(xk)]− grad2
y,xg(xk, yk)[v̂N (xk, yk)]‖

≤`f,1 dist(y∗(xk), yk)

+ ‖grad2
y,xg(xk, y∗(xk))− grad2

y,xg(xk, yk) ◦ Py∗(xk)→yk‖op‖v∗(xk)‖

+ ‖grad2
y,xg(xk, yk)‖op‖Py∗(xk)→ykv

∗(xk)− v̂N (xk, yk)‖

≤
(
`f,1 +

`f,0`g,2
µ

)
dist(y∗(xk), yk) + `g,1‖Py∗(xk)→ykv

∗(xk)− v̂N (xk, yk)‖.

Following Lemma 14, we have

‖Py∗(xk)→ykv
∗(xk)− v̂N (xk, yk)‖ ≤ ‖Py∗(xk)→ykv

∗(xk)− ṽk‖+ ‖ṽk − v̂N (xk, yk)‖

≤‖Py∗(xk)→ykv
∗(xk)− ṽk‖+

√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(xk, yk)− ṽk‖

≤

(
1 +
√
κ

(√
κ− 1√
κ+ 1

)N)
‖Py∗(xk)→ykv

∗(xk)− ṽk‖+
√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(xk, yk)− Py∗(xk)→ykv

∗(xk)‖.

For ‖Py∗(xk)→ykv
∗(xk)− ṽk‖, by the definitions of ṽk and v∗k, we have

‖Py∗(xk)→ykv
∗(xk)− ṽk‖

=‖Py∗(xk)→yk(Hy(g(xk, y∗(xk))))−1gradyf(xk, y∗(xk))− (Hy(g(xk, yk)))−1gradyf(xk, yk)‖

≤‖Py∗(xk)→yk(Hy(g(xk, y∗(xk))))−1gradyf(xk, y∗(xk))− (Hy(g(xk, yk)))−1Py∗(xk)→ykgradyf(xk, y∗(xk))‖

+ ‖(Hy(g(xk, yk)))−1Py∗(xk)→ykgradyf(xk, y∗(xk))− (Hy(g(xk, yk)))−1gradyf(xk, yk)‖

≤‖(Hy(g(xk, y∗(xk))))−1 − Pyk→y∗(xk)(Hy(g(xk, yk)))−1Py∗(xk)→yk‖op‖gradyf(xk, y∗(xk))‖

+ ‖(Hy(g(xk, yk)))−1‖op‖Py∗(xk)→ykgradyf(xk, y∗(xk))− gradyf(xk, yk)‖

≤
(
`g,2`f,0 +

`f,1
µ

)
dist(yk, y∗(xk)).

(5.13)

20

Riemannian Bilevel Optimization

Therefore, we get

‖hkΦ − gradΦ(xk)‖ ≤
(
`f,1 +

`f,0`g,2
µ

)
dist(y∗(xk), yk)

+ `g,1

(
1 +
√
κ

(√
κ− 1√
κ+ 1

)N)
‖Py∗(xk)→ykv

∗(xk)− ṽk‖

+ `g,1
√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(xk, yk)− Py∗(xk)→ykv

∗(xk)‖

≤
(
`f,1 +

`f,0`g,2
µ

+ `g,1

(
1 +
√
κ

(√
κ− 1√
κ+ 1

)N)(
`g,2`f,0 +

`f,1
µ

))
dist(y∗(xk), yk)

+ `g,1
√
κ

(√
κ− 1√
κ+ 1

)N
‖v̂0(xk, yk)− Py∗(xk)→ykv

∗(xk)‖.

We obtain the desired result by applying Lemma 15 to the above inequality.

The following technical lemma is needed to further bound the right hand side of the
inequality in the above lemma.

Lemma 17 Suppose Assumptions 1, 2, 3, 4 and 5 hold, then RieBO satisfies:

dist(yk,0, y∗(xk))2 + ‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2

≤
(

1

2

)k
∆0 + Ω

k−1∑
j=0

(
1

2

)k−1−j ∥∥gradΦ
(
xj
)∥∥2

,
(5.14)

with the following choice of parameters:

T ≥ log

(
2

(
7 + 8κ2α2Γ2

)(
`g,2`f,0 +

`f,1
µ

)2)
/(2 log

(
1

1− 2µτβ2

)
) = Θ(κ),

N ≥ log

(
(4 + 16κ2α2`2g,1)κ

)
/(2 log

(√
κ− 1√
κ+ 1

)
) = Θ(

√
κ),

Ω =

[
2

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)2

+ 4κ2

]
α2,

∆0 = dist(y0,0, y∗(x0))2 + ‖Py∗(x0)→y0v∗(x0)− v̂0(x0, y0)‖2.

(5.15)

Proof Since yk,0 = yk−1,T , we have

dist(yk,0, y∗(xk))2 ≤ 2 dist(yk−1,T , y∗(xk−1))2 + 2 dist(y∗(xk−1), y∗(xk))2.

Here the first term is again bounded by (1− 2µτβ2)T dist(yk−1,0, y∗(xk−1))2 by Lemma 15,
and the second term is bounded by the Lipschitzness of y∗ (Lemma 12) and by the update
in the following way:

dist(y∗(xk−1), y∗(xk))2 ≤ κ2 dist(xk−1, xk)2 = κ2α2‖hk−1
Φ ‖2.

21

Li and Ma

Thus,

dist(yk,0, y∗(xk))2 ≤ 2 dist(yk−1,T , y∗(xk−1))2 + 2 dist(y∗(xk−1), y∗(xk))2

≤2(1− 2µτβ2)T dist(yk−1,0, y∗(xk−1))2 + 2κ2α2‖hk−1
Φ ‖2

≤2(1− 2µτβ2)T dist(yk−1,0, y∗(xk−1))2 + 4κ2α2‖hk−1
Φ − gradΦ(xk−1)‖2 + 4κ2α2‖gradΦ(xk−1)‖2

≤
(

2 + 8κ2α2Γ2

)
(1− 2µτβ2)T dist(y∗(xk−1), yk−1,0)2

+ 8κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N

‖v̂0(xk−1, yk−1)− ṽk−1‖2 + 4κ2α2‖gradΦ(xk−1)‖2

≤
(

2 + 8κ2α2Γ2

)
(1− 2µτβ2)T dist(y∗(xk−1), yk−1,0)2 + 4κ2α2‖gradΦ(xk−1)‖2

+ 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N

‖v̂0(xk−1, yk−1)− Py∗(xk−1)→yk−1v∗(xk−1)‖2

+ 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N

‖Py∗(xk−1)→yk−1v∗(xk−1)− ṽk−1‖2,

where the third inequality is by Lemma 16. For the last term, by (5.13) we have

‖Py∗(xk−1)→ykv
∗(xk−1)− ṽk−1‖2 ≤

(
`g,2`f,0 +

`f,1
µ

)2

dist(yk−1, y∗(xk−1))2. (5.16)

Thus we have

dist(yk,0, y∗(xk))2

≤
(

2 + 8κ2α2Γ2

)
(1− 2µτβ2)T dist(y∗(xk−1), yk−1,0)2 + 4κ2α2‖gradΦ(xk−1)‖2

+ 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N

‖v̂0(xk−1, yk−1)− Py∗(xk−1)→yk−1v∗(xk−1)‖2

+ 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N (
`g,2`f,0 +

`f,1
µ

)2

dist(yk−1, y∗(xk−1))2

≤
[
2 + 8κ2α2Γ2 + 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N (
`g,2`f,0 +

`f,1
µ

)2]
(1− 2µτβ2)T dist(y∗(xk−1), yk−1,0)2

+ 16κ2α2`2g,1κ

(√
κ− 1√
κ+ 1

)2N

‖v̂0(xk−1, yk−1)− Py∗(xk−1)→yk−1v∗(xk−1)‖2 + 4κ2α2‖gradΦ(xk−1)‖2.

22

Riemannian Bilevel Optimization

Now we bound ‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2. We have

‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2 = ‖Py∗(xk)→ykv

∗(xk)− Pyk−1→yk v̂
N (xk−1, yk−1)‖2

≤2‖Py∗(xk)→ykv
∗(xk)− Py∗(xk−1)→ykv

∗(xk−1)‖2

+ 2‖Py∗(xk−1)→ykv
∗(xk−1)− Pyk−1→yk v̂

N (xk−1, yk−1)‖2

≤2‖Py∗(xk)→y∗(xk−1)v
∗(xk)− v∗(xk−1)‖2

+ 4‖Py∗(xk−1)→yk−1v∗(xk−1)− ṽk−1‖2 + 4‖ṽk−1 − v̂N (xk−1, yk−1)‖2

≤4κ

(√
κ− 1√
κ+ 1

)2N

‖ṽk−1 − v̂0(xk−1, yk−1)‖2

+ 2‖Py∗(xk)→y∗(xk−1)v
∗(xk)− v∗(xk−1)‖2 + 4‖Py∗(xk−1)→ykv

∗(xk−1)− ṽk−1‖2

≤4κ

(√
κ− 1√
κ+ 1

)2N

‖ṽk−1 − Py∗(xk−1)→yk−1v∗(xk−1)‖2

+ 4κ

(√
κ− 1√
κ+ 1

)2N

‖Py∗(xk−1)→yk−1v∗(xk−1)− v̂0(xk−1, yk−1)‖2

+ 2‖Py∗(xk)→y∗(xk−1)v
∗(xk)− v∗(xk−1)‖2 + 4‖Py∗(xk−1)→yk−1v∗(xk−1)− ṽk−1‖2

=4κ

(√
κ− 1√
κ+ 1

)2N

‖Py∗(xk−1)→yk−1v∗(xk−1)− v̂0(xk−1, yk−1)‖2

+ 2‖Py∗(xk)→y∗(xk−1)v
∗(xk)− v∗(xk−1)‖2

+ 4

(
κ(

√
κ− 1√
κ+ 1

)2N + 1

)
‖Py∗(xk−1)→yk−1v∗(xk−1)− ṽk−1‖2,

(5.17)

where in the second last inequality we again used Lemma 14. Now we inspect the two terms
in the last line above. Note that the last term is bounded in (5.16). For the first term, by
(5.7) we have

‖Py∗(xk)→y∗(xk−1)v
∗(xk)− v∗(xk−1)‖2 ≤

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)2

α2‖gradΦ(xk−1)‖2.

Now plugging everything back to (5.17) we get

‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2

≤4κ

(√
κ− 1√
κ+ 1

)2N

‖Py∗(xk−1)→yk−1v∗(xk−1)− v̂0(xk−1, yk−1)‖2

+ 2

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)2

α2‖gradΦ(xk−1)‖2

+ 4

(
κ(

√
κ− 1√
κ+ 1

)2N + 1

)(
`g,2`f,0 +

`f,1
µ

)2

(1− 2µτβ2)T dist(yk−1,0, y∗(xk−1))2,

(5.18)

23

Li and Ma

where we also used Lemma 15 in the last inequality. Now summing up the bound for
dist(yk,0, y∗(xk))2 and ‖Py∗(xk)→ykv

∗(xk)− v̂0(xk, yk)‖2, we get:

dist(yk,0, y∗(xk))2 + ‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2

≤C1(1− 2µτβ2)T dist(yk−1,0, y∗(xk−1))2

+ C2‖Py∗(xk−1)→yk−1v∗(xk−1)− v̂0(xk−1, yk−1)‖2

+

[
2

(
`f,0`g,2
µ2

√
1 + κ2 +

`f,1
µ

)2

+ 4κ2

]
α2‖gradΦ(xk−1)‖2,

with

C1 =

(
6 + 8κ2α2Γ2 + C2

)(
`g,2`f,0 +

`f,1
µ

)2

C2 =

(
4 + 16κ2α2`2g,1

)
κ

(√
κ− 1√
κ+ 1

)2N

.

Now consider the choice of T and N in the statement of this lemma, we can guarantee that
C1, C2 ≤ 1/2, thus

dist(yk,0, y∗(xk))2 + ‖Py∗(xk)→ykv
∗(xk)− v̂0(xk, yk)‖2

≤1

2
(dist(yk−1,0, y∗(xk−1))2 + ‖Py∗(xk)→ykv

∗(xk)− v̂0(xk, yk)‖2) + Ω‖gradΦ(xk−1)‖2.

The final result is obtained by taking the telescoping sum of the above inequality.

Combining above Lemma 16 and 17 we get the following lemma.

Lemma 18 Suppose the parameters are set the same as in Lemma 17, then we have

‖hkΦ − gradΦ(xk)‖2 ≤ δT,N
(

1

2

)k
∆0 + δT,NΩ

k−1∑
j=0

(
1

2

)k−1−j ∥∥gradΦ
(
xj
)∥∥2

, (5.19)

where

δT,N = 2Γ2(1− 2µτβ2)T `2g,1κ

(√
κ− 1√
κ+ 1

)2N

. (5.20)

Proof By Lemma 16 and ab+ cd ≤ (a+ c)(b+ d) for any positive a, b, c, d, we have

‖hkΦ − gradΦ(xk)‖2 ≤ δT,N
(

dist(y∗(xk), yk−1)2 + ‖v̂0(xk, yk)− Py∗(xk)→ykv
∗(xk)‖2

)
.

The proof is completed by applying Lemma 17.

Finally, we are ready to proceed to the proof of Theorem 13.

24

Riemannian Bilevel Optimization

Proof [Proof of Theorem 13] By Lemma 12, we have

Φ(xk+1) ≤ Φ(xk) + 〈gradΦ(xk),Exp−1
xk

(xk+1)〉xk +
LΦ

2
dist(xk, xk+1)2

= Φ(xk)− α〈gradΦ(xk), hkΦ〉xk +
LΦα

2

2
‖hkΦ‖2xk

≤ Φ(xk)− (
α

2
− α2LΦ)‖gradΦ(xk)‖2xk + (

α

2
+ α2LΦ)‖gradΦ(xk)− hkΦ‖2xk .

Now by using Lemma 18, we get

Φ(xk+1) ≤Φ(xk)− (
α

2
− α2LΦ)‖gradΦ(xk)‖2xk

+ (
α

2
+ α2LΦ)

δT,N (1

2

)k
∆0 + δT,NΩ

k−1∑
j=0

(
1

2

)k−1−j ∥∥gradΦ
(
xj
)∥∥2

 .
Now by taking the telescoping sum of the above inequality over k from 0 to K − 1, we have

(α
2
− α2LΦ

)K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2
≤ Φ (x0)− inf

x∈M
Φ(x) +

(α
2

+ α2LΦ

)
δT,N∆0

+
(α

2
+ α2LΦ

)
δT,NΩ

K−1∑
k=1

k−1∑
j=0

(
1

2

)k−1−j ∥∥gradΦ
(
xj
)∥∥2

.

By the fact that

K−1∑
k=1

k−1∑
j=0

(
1

2

)k−1−j ∥∥gradΦ
(
xj
)∥∥2 ≤

K−1∑
k=0

1

2k

K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2
≤ 2

K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2

,

we have(α
2
− α2LΦ − (α+ 2α2LΦ)δT,NΩ

)K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2
≤ Φ (x0)− inf

x∈M
Φ(x) +

(α
2

+ α2LΦ

)
δT,N∆0.

Choosing N ≥ Θ(
√
κ) and D ≥ Θ(κ) as in Lemma 17, we are able to ensure that

Ω (1 + 2αLΦ) δT,N ≤
1

4
, δT,N ≤ 1.

As a result, we get

(α
4
− α2LΦ

)K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2
≤ Φ (x0)− inf

x∈M
Φ(x) +

(α
2

+ α2LΦ

)
∆0.

Thus, with α ≤ 1
8LΦ

we get

1

K

K−1∑
k=0

∥∥∥gradΦ
(
xk
)∥∥∥2
≤ 64LΦ (Φ (x0)− infx Φ(x)) + 5∆0

K
.

25

Li and Ma

Now we inspect the oracle complexities. To ensure 1
K

∑K−1
k=0

∥∥gradΦ
(
xk
)∥∥2 ≤ ε, we need

K = O(κ3/ε) where the dependency over κ is due to LΦ = O(κ3) from (5.4), therefore
Gc(f, ε) = O(κ3/ε). Since in each outer iteration, we need D = O(κ) iterations, we have
Gc(g, ε) = O(κ4ε). The Jacobian-vector product count is the same as the iteration number K
since it is only conducted once for every iteration. The Hessian-vector product is conducted
for N = O(

√
κ) times for each iteration. Thus we have the previously described complexities.

6. Stochastic Algorithm RieSBO and Its Convergence

In this section, we propose RieSBO (Algorithm 2) for stochastic bilevel manifold optimization
(1.2). The algorithm is a generalization of its counterpart in the Euclidean space as in Hong
et al. (2023); Chen et al. (2021), where we employ the Neumann series estimation for the
hypergradient as in (4.13).

Algorithm 2: Algorithm for Riemannian Stochastic Bilevel Optimization
(RieSBO)

input :K, T , Q, stepsize {αk, βk}, initializations x0 ∈M, y0 ∈ N
for k = 0, 1, 2, ...,K − 1 do

Set yk,0 = yk−1;
for t = 0, ..., T − 1 do

Update yk,t+1 ← Expyk,t(−βkh̃
k,t
g) with h̃k,tg := gradyG(xk, yk,t; ζk,t);

end

Set yk ← yk,T ;

Update xk+1 ← Expxk(−αkh̃kΦ), where h̃kΦ is as defined in (4.13);

end

For the stochastic case, we utilize the following notion of stationarity.

Definition 19 A random point x ∈M is called an ε-stationary point for (1.2) if E‖∇Φ(x)‖2 ≤
ε.

We now proceed to the convergence analysis for the Riemannian stochastic bilevel opti-
mization (RieSBO, Algorithm 2). For RieSBO, we need the following additional assumption
over the mean and variance of the estimators.

Assumption 6 The stochastic gradients satisfy gradF (x, y; ξ) = [gradxF (x, y; ξ), gradyF (x, y; ξ)]

and gradG(x, y; ζ) = [gradxG(x, y; ζ), gradyG(x, y; ζ)]. The second order gradients grad2
x,yG(x, y; ζ),

Hy(G(x, y; ζ)) are all unbiased estimators of the corresponding deterministic quantities of f
and g. Their variances are all bounded by σ2 (in tangent space norms and operator norms,
respectively for the Riemannian gradient and Riemannian Hessian).

Note that we do not need to assume the smoothness or strong-convexity of the stochastic
functions F and G.

26

Riemannian Bilevel Optimization

Now we are ready to provide our convergence analysis result for RieSBO (Algorithm 2).
This result is an extension of the convergence result in Chen et al. (2021) to the Riemannian
setting.

Theorem 20 Suppose Assumptions 1, 3, 4, 5 and 6 hold. If we take the stepsizes αk =
α = 1

κ5/2
√
K

, βk = β = min{ 1
κ7/4
√
K
, 1
`g,1
}, also η = 1/`g,1, Q = O(κ logK) and T = O(κ4).

Also suppose that the random variables for all iterations ζtk, ζk,(q), ξk are i.i.d. samples, then
RieSBO (Algorithm 2) satisfies

1

K

K−1∑
k=0

E[‖gradΦ(xk)‖2] ≤ O
(
κ2.5

√
K

)
.

Here the expectation is taken with respect to all the random samples. In order to obtain an
ε-stationary point, i.e., 1

K

∑K−1
k=0 E[‖gradΦ(xk)‖2] ≤ ε, the oracle complexities needed are

given by:

• Gradients: Gc(f, ε) = O(κ5ε−2), Gc(g, ε) = O(κ9ε−2);

• Jacobian and Hessian-vector products: JV(g, ε) = O(κ5ε−2), HV(g, ε) = Õ(κ6ε−2).

where we hide additional log(1/ε) factors in Õ.

To prove this theorem, we need the following lemmas. For simplicity, denote Uk the
σ-algebra generated by all the random samples up to the (k − 1)-th iterate, and denote
h̄kΦ := E[h̃kΦ | Uk], i.e., the expectation only with respect to the samples of the current iterate.

Lemma 21 Suppose we estimate the hypergradient h̃kΦ via (4.13) with η ≤ 1
`g,1

, then we

have the following bounds.
E[‖h̃kΦ − h̄kΦ‖2 | Uk] ≤ σ̃2, (6.1)

and
‖gradΦ̂(xk)− h̄kΦ‖2 ≤ b2k, (6.2)

where

σ̃2 := 2σ2 + 6
(
σ2(σ2 + `2f,0) + `2g,1(σ2 + `2f,0) + `2g,1σ

2
)

max{ 1

µ2
,
d2

1

η2µ2
} = O(κ2),

bk := `f,0
`g,1
µ

(1− µ

`g,1
)Q,

(6.3)

and Φ̂(x) = f(x, yT (x)) which is the approximate function after T steps of the inner loop.
Further, we have the following bound on the second moment:

E[‖h̃kΦ‖2 | Uk] ≤ 2σ̃2 + 4b2k + 4`2f,0(1 + κ)2 =: C̃2 = O(κ2). (6.4)

Proof [Proof of Lemma 21] By the expression (4.1) for gradΦ(x) and (4.11) for h̃kΦ, we have:

gradΦ(xk) = gradxf(xk, y∗(xk))− grad2
y,xg(xk, y∗(xk))[v∗(xk)],

gradΦ̂(xk) = gradxf(xk, yk)− grad2
y,xg(xk, yk)[ṽk],

h̃kΦ = gradxF (xk, yk; ξk)− grad2
y,xG(xk, yk; ζk,(0))[v

k
Q],

27

Li and Ma

where again ṽk := (Hy(g(xk, yk,T)))−1gradyf(xk, yk,T).

For (6.1), denote

v̄kQ = E[vkQ] = η

Q∑
q=1

(I − ηHy(g(xk, yk)))q[gradyf(xk, yk)].

We have

E[‖h̃kΦ − h̄kΦ‖2 | Uk]
≤2E[‖gradxf

(
xk, yk,T

)
− gradxF

(
xk, yk,T ; ξk

)
‖2 | Uk]

+ 2E[‖grad2
y,xG(xk, yk; ζk,(0))[v

k
Q]− grad2

y,xg(xk, yk)[v̄kQ]‖2 | Uk]
≤2σ2 + 2E[‖grad2

y,xG(xk, yk; ζk,(0))[v
k
Q]− grad2

y,xg(xk, yk)[v̄kQ]‖2 | Uk].

(6.5)

We now inspect the last term above. Denote

Hk := ηQ

Q′∏
q=1

(I − ηHy(G(xk, yk; ζk,(q)))),

which is our estimation of the Riemannian Hessian at the k-th outer iteration, and we have
that

grad2
y,xG(xk, yk; ζk,(0))[v

k
Q]− grad2

y,xg(xk, yk)[v̄kQ]

=grad2
y,xG(xk, yk; ζk,(0))

[
Hk[gradyF (xk, yk; ξk)]

]
− grad2

y,xg(xk, yk)
[
E[Hk[gradyF (xk, yk; ξk)]]

]
=
{
grad2

y,xG(xk, yk; ζk,(0))− grad2
y,xg(xk, yk)

}[
Hk[gradyF (xk, yk; ξk)]

]
+ grad2

y,xg(xk, yk)
[{
Hk − E[Hk]

}
[gradyF (xk, yk; ξk)]

]
+ grad2

y,xg(xk, yk)E[Hk]
{
gradyF (xk, yk; ξk)− gradyf(xk, yk)

}
.

Since

E[‖gradyF (xk, yk; ξk)‖2]

=E[‖gradyF (xk, yk; ξk)− gradyf(xk, yk)‖2] + E[‖gradyf(xk, yk)‖2] ≤ σ2 + `2f,0,

we have that

E[‖grad2
y,xG(xk, yk; ζk,(0))[v

k
Q]− grad2

y,xg(xk, yk)[v̄kQ]‖2 | Uk]
≤3σ2(σ2 + `2f,0)E‖Hk‖2op + 3`2g,1(σ2 + `2f,0)E‖Hk − E[Hk]‖2op + 3`2g,1σ

2‖E[Hk]‖2op.

It remains to bound E‖Hk‖2op and ‖E[Hk]‖op. For E‖Hk‖2op, using Hong et al. (2023, Lemma
12), we have that

E‖Hk‖2op ≤
d1

ηµ
,

28

Riemannian Bilevel Optimization

where d1 > 0 is some absolute constant. On the other hand ‖E[Hk]‖op can be easily
calculated as (since µη < µ/`g,1 < 1)

‖E[Hk]‖op =η‖
Q∑
q=1

(I − ηHy(g(xk, yk)))q‖op

≤‖H−1‖op‖I − ηHy(g(xk, yk))‖op ≤
1

µ
.

Therefore, we finally have

E[‖grad2
y,xG(xk, yk; ζk,(0))[v

k
Q]− grad2

y,xg(xk, yk)[v̄kQ]‖2 | Uk]

≤3
(
σ2(σ2 + `2f,0) + `2g,1(σ2 + `2f,0) + `2g,1σ

2
)

max{ 1

µ2
,
d2

1

η2µ2
}.

Plugging the above equation to (6.5) we get (6.1).
Now for (6.2), since

h̄kΦ :=E
[
gradxF (xk, yk; ξk)− grad2

y,xG(xk, yk; ζk,(0))[v
k
Q]
]

= gradxf(xk, yk)− grad2
y,xg(xk, yk)[v̄kQ],

we have

‖gradΦ̂(xk)− h̄kΦ‖2 ≤ ‖grad2
y,xg(xk, yk)‖2op‖ṽk − v̄kQ‖2 ≤ `2g,1‖ṽk − v̄kQ‖2

=`2g,1‖(Hy(g(xk, yk)))−1[gradyf(xk, yk)]− η
Q∑
q=1

(I − ηHy(g(xk, yk)))q[gradyf(xk, yk)]‖2

≤`2g,1`2f,0‖(Hy(g(xk, yk)))−1 − η
Q∑
q=1

(I − ηHy(g(xk, yk)))q‖2op

≤`2f,0
`2g,1
µ2

(1− µ

`g,1
)2Q = b2k,

where the last line is by Ghadimi and Wang (2018, Lemma 3.2). Note that we take η ≤ 1
`g,1

so that the Neumann sequence converges.
Now for the moment E[‖h̃kΦ‖2 | Uk], we have

E[‖h̃kΦ‖2 | Uk] ≤2E[‖h̃kΦ − h̄kΦ‖2 | Uk] + 4‖h̄kΦ − gradΦ̂(xk)‖2 + 4‖gradΦ̂(xk)‖2

≤2σ̃2 + 4b2k + 4‖gradΦ̂(xk)‖2.

Since

‖gradΦ̂(xk)‖ =‖gradxf(xk, yk)− grad2
y,xg(xk, yk)[ṽk]‖

≤‖gradxf(xk, yk)‖+ ‖grad2
y,xg(xk, yk)‖op‖ṽk‖ ≤ `f,0 + `g,1

`f,0
µ

= `f,0(1 + κ),

we have

E[‖h̃kΦ‖2 | Uk] ≤ 2σ̃2 + 4b2k + 4`2f,0(1 + κ)2.

29

Li and Ma

This completes the proof.

The following lemma quantifies the convergence of the lower level update in RieSBO
(Algorithm 2).

Lemma 22 Suppose we have the sequence {yk,t} by RieSBO with stepsize βk = β ≤ 1
`g,1

,

then the following inequalities hold:

Edist(yk,T , y∗(xk))2 ≤ (1− 2µτβ2)T dist(yk,0, y∗(xk))2 + τβ2σ2T, (6.6)

and

E[dist(yk,T , y∗(xk+1))2]

≤2(1− 2µτβ2)T dist(yk,0, y∗(xk))2 + 2τβ2σ2T + 4τκ2α2‖h̄kΦ‖2xk + 4τκ2α2σ̃2.
(6.7)

Proof [Proof of Lemma 22] For simplicity, all the expectations are conditioned on Uk in
this proof.

First we have by Zhang and Sra (2016, Corollary 8) that

Eζk,t dist(yk,t+1, y∗(xk))2

≤dist(yk,t, y∗(xk))2 + 2β〈gradg(xk, yk),Expyk,t(y
∗(xk))〉+ τβ2Eζk,t‖h̃

k,t
g ‖2

≤dist(yk,t, y∗(xk))2 + 2β〈gradg(xk, yk),Expyk,t(y
∗(xk))〉+ τβ2‖gradg(xk, yk)‖2 + τβ2σ2

≤(1− 2µτβ2) dist(yk,t, y∗(xk))2 + τβ2σ2,

where in the last line we used the same trick as the proof of Lemma 15. Note that in the
above formulas the expectation is only taken with respect to the random variables in h̃k,tg ,
i.e., ζk,t. Repeating this for T times yields (6.6). Now for the second inequality (6.7), we
have

E[dist(yk,T , y∗(xk+1))2]

≤2E[dist(yk,T , y∗(xk))2] + 2Edist(y∗(xk), y∗(xk+1))2

≤2(1− 2µτβ2)T dist(yk,0, y∗(xk))2 + 2τβ2σ2T + 2τκ2Edist(xk, xk+1)2,

(6.8)

where the last inequality is by (6.6) and Lemma 12. For Ed(xk+1, xk)2 we have the bound:

Ed(xk+1, xk)2 = α2E‖h̃kΦ‖2xk
=α2E‖h̃kΦ − h̄kΦ + h̄kΦ‖2xk ≤ 2α2(‖h̄kΦ‖2xk + σ̃2),

which completes the proof.

Now we turn to the proof of Theorem 20.

30

Riemannian Bilevel Optimization

Proof [Proof of Theorem 20] Denote Vk := Φ(xk) + κdist(yk−1,T , y∗(xk))2. By Lemma 12
and Lemma 21, we have

E[Φ(xk+1) | Uk] ≤ Φ(xk) + E[〈gradΦ(xk),Exp−1
xk

(xk+1)〉xk | Uk] +
LΦ

2
E[dist(xk, xk+1)2 | Uk]

=Φ(xk)− αE[〈gradΦ(xk), h̃kΦ〉xk | Uk] +
LΦα

2

2
‖h̃kΦ‖2xk

=Φ(xk)− α

2
E[‖gradΦ(xk)‖2 | Uk]− (

α

2
− α2LΦ

2
)‖h̄kΦ‖2 +

α

2
‖gradΦ(xk)− h̄kΦ‖2

+
α2LΦ

2
E[‖h̃kΦ − h̄kΦ‖2 | Uk]

≤Φ(xk)− α

2
E[‖gradΦ(xk)‖2 | Uk]− (

α

2
− α2LΦ

2
)‖h̄kΦ‖2 +

α

2
‖gradΦ(xk)− h̄kΦ‖2 +

α2LΦ

2
σ̃2.

Now we decompose the bias term ‖gradΦ(xk)− h̄kΦ‖ as:

‖gradΦ(xk)− h̄kΦ‖2 =2‖gradΦ(xk)− gradΦ̂(xk)‖2 + 2‖gradΦ̂(xk)− h̄kΦ‖2

≤2Γ2
0 dist(yk,T , y∗(xk))2 + 2b2k,

(6.9)

where we use a similar process as the proof of Lemma 17 to bound ‖gradΦ(xk)− gradΦ̂(xk)‖
and Γ0 = `f,1 +

`f,0`g,2
µ + `g,1(`g,2`f,0 +

`f,1
µ) = O(κ). Thus we have

E[Φ(xk+1) | Uk] ≤Φ(xk)− α

2
E[‖gradΦ(xk)‖2 | Uk]− (

α

2
− α2LΦ

2
)‖h̄kΦ‖2

+ αΓ2
0 dist(yk,T , y∗(xk))2 + αb2k +

α2LΦ

2
σ̃2.

(6.10)

Now we have

E[Vk+1]− E[Vk] = E[Φ(xk+1)]− E[Φ(xk)] + κEdist(yk,T , y∗(xk+1))2 − κEdist(yk−1,T , y∗(xk))2

≤− α

2
E[‖gradΦ(xk)‖2 | Uk]− (

α

2
− α2LΦ

2
)E‖h̄kΦ‖2 + αb2k +

α2LΦ

2
σ̃2

+ κEdist(yk,T , y∗(xk+1))2 − κEdist(yk−1,T , y∗(xk))2 + αΓ2
0Edist(yk,T , y∗(xk))2

≤− α

2
E[‖gradΦ(xk)‖2 | Uk]− (

α

2
− α2LΦ

2
)E‖h̄kΦ‖2 + αb2k +

α2LΦ

2
σ̃2

+ κE
(

2(1− 2µτβ2)T dist(yk,0, y∗(xk))2 + 2τβ2σ2T + 4τκ2α2‖h̄kΦ‖2xk + 4τκ2α2σ̃2

)
− κEdist(yk−1,T , y∗(xk))2 + αΓ2

0

(
(1− 2µτβ2)TEdist(yk,0, y∗(xk))2 + τβ2σ2T

)
=− α

2
E[‖gradΦ(xk)‖2 | Uk]−

(
α

2
− α2LΦ

2
− 4τκ3α2

)
E‖h̄kΦ‖2

+

(
(2κ+ αΓ2

0)(1− 2µτβ2)T − κ
)
Edist(yk−1,T , y∗(xk))2

+

(
2κ+ αΓ2

0

)
τβ2σ2T + αb2k + (

LΦ

2
+ 4τκ2)α2σ̃2,

31

Li and Ma

where the first inequality is by (6.10) and the second inequality is by Lemma 22, as well as
the fact that yk+1,0 = yk,T . To make the coefficients negative, notice that by taking

α ≤ 1

LΦ + 8τκ2

T ≥ log

(
1

1− 2µτβ2

)
/ log

(
2κ+ αΓ2

0

κ

)
,

we can guarantee

α

2
− α2LΦ

2
− 4τκ3α2 ≥ 0

(2κ+ αΓ2
0)(1− 2µτβ2)T − κ ≤ 0.

Therefore, we have

E[Vk+1]− E[Vk] ≤−
α

2
E[‖gradΦ(xk)‖2 | Uk]

+

(
2κ+ αΓ2

0

)
τβ2σ2T + αb2k + (

LΦ

2
+ 4τκ2)α2σ̃2.

(6.11)

Note that here we do not need an increasing T .

Now taking the telescoping sum of the above inequality for k = 0, ...,K − 1, we get

1

K

K−1∑
k=0

E[‖gradΦ(xk)‖2] ≤ 2V0

αK
+

2

K

K−1∑
k=0

b2k +

(
4κ

α
+ 2Γ2

0

)
τβ2σ2T + (LΦ + 8τκ2)ασ̃2.

Now since b2k = `2f,0κ
2(1 − 1

κ)2Q, the term 2
K

∑K−1
k=0 b2k = O(1√

K
) if Q = O(κ log(K)),

following the inequality (1 − x)n ≤ e−nx. If we also select αk = α = 1
κ5/2
√
K

, βk = β =

min{ 1
κ7/4
√
K
, 1
`g,1
} and T = O(κ4), we are able to get:

1

K

K−1∑
k=0

E[‖gradΦ(xk)‖2] ≤ O(
κ2.5

√
K

).

Now we inspect the oracle complexities. To ensure 1
K

∑K−1
k=0 E[‖gradΦ(xk)‖2] ≤ ε, we

need K = O(κ5ε−2), thus Gc(F, ε) = O(κ5ε−2); Also Gc(G, ε) = KT = O(κ9ε−2).

Remark 23 Note that the trick for estimating the Hessian-vector product (4.12) can also
be applied to the deterministic case, without using conjugate gradient method, leading to
an easier implementation. We just need to replace the stochastic functions in (4.12) by
their deterministic versions. In the experiments, we always use (4.12) in this way instead of
solving (4.8) which uses N -step conjugate gradient method, while still achieving reasonable
results numerically.

32

Riemannian Bilevel Optimization

7. Numerical experiments

In this section we numerically verify the effectiveness of the proposed RieBO and RieSBO. Our
code is publicly available at https://github.com/JasonJiaxiangLi/Manifold_bilevel.

7.1 Numerical experiments on robust optimization on manifolds

Consider again the robust optimization on manifolds:

min
p∈∆n

λ

∥∥∥∥p− 1

n

∥∥∥∥2

−
n∑
i=1

pi` (y; ξi)

s.t. y ∈ argmin
y∈N

n∑
i=1

pi` (y; ξi) .

(7.1)

It is worth noticing that having a constraint set in the upper level problem is not covered in
our theoretical analysis due to the fact that existing constrained Riemannian optimization
techniques such as (stochastic) Riemannian Frank-Wolfe (see Weber and Sra (2022, 2023))
require a mini-batch sampling technique, i.e., using (4.13) multiple times and taking the
average of these estimators to estimate gradΦ(xk) to reduce the variance, which is not
desirable in practice. Instead, we point out that since the upper level in (7.1) is a constrained
optimization in a Euclidean space, one could utilize the analysis in Hong et al. (2023) to
achieve a similar convergence result as the unconstrained case in (1.1). Therefore we simply
add a projection step for the upper level update, and we still observed reasonable convergence
results. We present the algorithm we use for the numerical experiments in Algorithm 3,
which is a direct adaptation of Algorithm 1 to (7.1). Note that here the variables in the
upper and lower level problems are respectively denoted by y and x, which is different from
the previous algorithms. It is also worth noticing that the convergence criteria are altered
due to the existence of the projection step: in Algorithm 3, we simply measure the norm of
the quantity

Gk :=
1

αk
(pk − pk+1) =

1

αk
(pk − proj∆n

(pk − αkhkΦ)),

which we refer to as the approximate gradient mapping. This quantity can be used for
approximately measuring the stationarity since if we do not have a constraint,

Gk =
1

αk
(pk − pk+1) = hkΦ ≈ gradΦ(yk),

based on Lemma 21.

We test our proposed algorithms on two concrete examples that lie in this scope: the
robust Karcher mean problem and the robust covariance matrix estimation problems. In
both experiments we only consider the deterministic function to test the efficacy of the
proposed algorithm framework. In both experiments, we use RieBO (Algorithm 1) while
utilizing the trick in Remark 23 to estimate the Hessian-vector products.

33

https://github.com/JasonJiaxiangLi/Manifold_bilevel

Li and Ma

Algorithm 3: Bilevel algorithm for robust manifold optimization problem (7.1)

input :K, T , N(steps for conjugate gradient), stepsize {αk, βk}, initializations
p0 ∈ ∆n, y

0 ∈ N
for k = 0, 1, 2, ...,K − 1 do

Set yk,0 = yk−1;
for t = 0, ..., T − 1 do

Update yk,t+1 ← Expyk,t(−βkh
k,t
g) with hk,tg := gradyg(pk, yk,t) ;

end

Set yk ← yk,T ;

Update pk+1 ← proj∆n
(pk − αkhkΦ) as in (4.12), in the view of Remark 23;

end

7.1.1 Robust Karcher mean problem

For the robust Karcher mean problem, one seeks to solve

min
p∈∆n

∥∥∥∥p− 1

n

∥∥∥∥2

−
n∑
i=1

pi dist(S,Ai)
2

s.t. S ∈ argmin
S∈Sd++

n∑
i=1

yi dist(S,Ai)
2,

(7.2)

where Ai’s are the symmetric positive definite data matrices, and

dist(A,B) := ‖ log(A−1/2BA−1/2)‖F

is the geodesic distance of two positive definite matrices (see Bhatia (2009, Chapter 6)).
The squared geodesic distance guarantees the geodesic strong convexity of the lower level
problem (see Zhang and Sra (2016)), which further ensures that the bilevel problem (7.2) is
well-defined. For the function h(S) := dist(S,A)2, we have the Euclidean and Riemannian
gradients as (see Ferreira et al. (2019), Bhatia (2009, Chapter 6)):

∇Sh(S) = S−1/2 log(S1/2A−1S1/2)S−1/2,

gradSh(S) = S∇Sh(S)S = S1/2 log(S1/2A−1S1/2)S1/2.

The Euclidean and Riemannian Hessian of h(S) := dist(S,A)2 are less straightforward to
calculate, and to the best of our knowledge, they do not exist in the literature. Here we
propose an implementable way to calculate it: first notice that (see Bhatia (2009, Chapter
6))

∇Sh(S) = S−1/2 log(S1/2A−1S1/2)S−1/2 = S−1A1/2 log(A−1/2SA−1/2)A−1/2.

For any symmetric matrix V , we have

〈∇Sh(S), V 〉 = tr(V S−1A1/2 log(A−1/2SA−1/2)A−1/2).

34

Riemannian Bilevel Optimization

To take the derivative of this, notice that S appears twice in 〈∇Sh(S), V 〉. Denote h̃(S1, S2) =
tr(V S−1

1 A1/2 log(A−1/2S2A
−1/2)A−1/2), we know that (see Petersen et al. (2008))

∂h̃

∂S1
= −S−1

1 V A−1/2 log(A−1/2S2A
−1/2)A1/2S−1

1 .

It remains to calculate ∂h̃/∂S2, which takes a form of l(S) := tr(C log(PSQ)). Denote
Y = PSQ and L = log(Y), we have[

L dL
0 L

]
= log

([
Y dY
0 Y

])
= log

([
P 0
0 P

] [
S dS
0 S

] [
Q 0
0 Q

])
.

Therefore, we get

dl =

〈[
0 C
0 0

]
, log

([
P 0
0 P

] [
S dS
0 S

] [
Q 0
0 Q

])〉
,

where the inner product is simply the Euclidean inner product. We can plug dS as standard
Euclidean basis to obtain an representation of dl/dS, which will take O(d2) number of times
to cover all the entries. Nevertheless, this provides an implementable way to calculate the
Euclidean and Riemannian Hessian.

To summarize, the Euclidean and Riemannian Hessian of h can be calculated as follows.

∇2
Sh(S)[V] = −S−1V A−1/2 log(A−1/2SA−1/2)A1/2S−1 + L,

HS(h(S))[V] = S∇2
Sh(S)[V]S + sym(S∇Sh(S)V),

(7.3)

where each entry of matrix L is calculated as follows:

Li,j =

〈[
0 C
0 0

]
, log

([
P 0
0 P

] [
S Ei,j
0 S

] [
Q 0
0 Q

])〉
,

Here the (i, j)-th entry of Ei,j ∈ Rd×d is one, and all other entries are zeros. Moreover,

P = A−1/2,

Q = A−1/2,

C = A−1/2V S−1A1/2.

In the experiment, we test RieBO (Algorithm 1) with d ∈ {10, 20} and n = 5. We repeat
each dimension settings for 5 times and plot the average. The algorithm is terminated with
K = 200 rounds of outer iterations, and the inner iteration is also taken to be T = 200
(the value which we observe a good inner iteration convergence). We take αk = 10−2 and
βk = 10−1. Figure 1 shows the results of the robust Karcher mean problem (7.2). It can be
seen from Figure 1 that Algorithm 3 can efficiently decrease both the function values and
the norm of gradient mappings. We point out here that the computation of the Riemannian
Hessian is time consuming by (7.3) (which is also the reason why we cannot try larger
dimensions), yet we remind the reader that this is currently the only formula for calculating
it.

35

Li and Ma

0 2000 4000 6000 8000 10000
CPU time

0.60

0.55

0.50

0.45

0.40

St
oc

ha
st

ic
fu

nc
tio

n
va

lu
e

(10, 5)
(20, 5)

(a) Function value

0 2000 4000 6000 8000 10000
CPU time

10 3

10 2

10 1

No
rm

 o
f g

ra
d

m
ap

pi
ng

(10, 5)
(20, 5)

(b) Norm of the approximate gradient mapping

Figure 1: The convergence curve of applying Algorithm 3 to the robust Karcher mean
problem (7.2). The CPU time is in seconds.

7.1.2 Robust maximum likelihood estimation

For the robust maximum likelihood estimation of the covariance matrix, one seeks to solve:

min
p∈∆n

∥∥∥∥p− 1

n

∥∥∥∥2

−
n∑
i=1

piL(S;xi)

s.t. S ∈ argmin
S∈Sd++

n∑
i=1

piL(S;xi),

(7.4)

where L(S;x) is the log likelihood of the Gaussian distribution, namely

L(S;D) :=
1

2
logdet(S) +

x>S−1x

2
. (7.5)

Note that this lower level problem is geodesically strictly convex (see Sra and Hosseini (2015)),
and thus has a unique solution. The calculations of the Riemannian gradient, Hessian-vector
product and cross-derivatives all have closed form solutions (following Petersen et al. (2008)).

In the experiment, we test our algorithm with d ∈ {10, 30, 50} and n = 100. We repeat
each dimension settings for 5 times and plot the average. The algorithm is terminated with
K = 1000 rounds of outer iterations, and the inner iteration is still taken to be T = 200
(again a value which we observe a good inner iteration convergence). We take αk = 10−2

and βk = 10−1. Figure 2 shows the results when applying RieBO to the above robust MLE
problem with different choices of dimensions. It can be seen from Figure 2 that Algorithm 3
can efficiently decrease both the function values and the norm of gradient mappings. Also,
here we are able to test and present the results for a much larger dimension due to much
faster calculations of Riemannian gradients, Hessian-vector products and cross-derivatives.

36

Riemannian Bilevel Optimization

0 1000 2000 3000 4000 5000
CPU time

90

80

70

60

50

40

30

20

10

St
oc

ha
st

ic
fu

nc
tio

n
va

lu
e

(10, 100)
(30, 100)
(50, 100)

(a) Function value

0 1000 2000 3000 4000 5000
CPU time

10 11

10 9

10 7

10 5

10 3

10 1

101

No
rm

 o
f g

ra
d

m
ap

pi
ng

(10, 100)
(30, 100)
(50, 100)

(b) Norm of the approximate gradient mapping

Figure 2: The convergence curve of Algorithm 3 applying to the robust covariance matrix
maximum likelihood estimation problem (7.4) with different choice of (d, n). The
CPU time is in seconds.

7.2 Numerical experiments on Riemannian meta learning

We conduct experiment on the Riemannian meta learning problem (2.3) with M being the
Grassmannian manifold Gr(n, p), which is the manifold of p dimensional subspaces in n
dimensional Euclidean space. Such a manifold can be interpreted as the quotient manifold
of Stiefel manifold over the orthogonal group, namely Gr(n, p) = St(n, p)/O(p) where each
element [X] in Gr(n, p) is an equivalent class [X] = {XQ|Q ∈ O(p)} for an X ∈ St(n, p).
Usually people use this element X ∈ St(n, p) to represent the Grassmannian and employ the
projection π : St(n, p)→ Gr(n, p) : X 7→ π(X) , [X] = {XQ : Q ∈ O(p)} to correspond it
to the Grassmannian. For Grassmannian Gr(n, p), the retraction operator would be different
from that of Stiefel manifold. To keep the conciseness of this work, we refer to Boumal
(2023, Chapter 9) for more details on Grassmannian.

We employ our RieSBO (Algorithm 2) and compare it with a naive projection-based
stochastic bilevel algorithm (Denoted Projected SBO in our plots), which is basically
Algorithm 1 in Ji et al. (2021), with an extra projection onto the Grassmannian Gr(n, p) at
the end of each update step.

Following Li et al. (2020a); Han et al. (2024), we consider 5-ways 5-shots meta learning
over the MiniImageNet dataset with four-layer CNN and with the kernels setting to be on
the Grassmannian manifold, and test the accuracy over 200 tasks. The result is included in
Figure 3, where the RieSBO algorithm is showing better performance in terms of both the
training loss and the test accuracy.

37

Li and Ma

0 200 400 600 800
CPU time

1.1

1.2

1.3

1.4

1.5

1.6

tra
in

_lo
ss

Projected SBO
RieSBO

(a) Training loss

0 200 400 600 800
CPU time

40.0

42.5

45.0

47.5

50.0

52.5

55.0

te
st

_a
cc

Projected SBO
RieSBO

(b) Testing accuracy

Figure 3: The convergence curve of Algorithm 2 on the meta learning problem.

8. Conclusion

We introduced the Riemannian bilevel optimization, a generalization of the traditional
Euclidean bilevel optimization. We show that the Riemannian counterparts of Euclidean
algorithms in Chen et al. (2021); Ji et al. (2021) can achieve the same rate of convergence.

Our work raises several open questions. The first is how we can make the convergence
independent of the sectional curvature of the manifold, similar to the results in Cai et al.
(2023). It is also worth exploring the last iterate convergence of Riemannian bilevel problem.
Last, it still needs investigation to see if there are efficient algorithms that can overcome
the difficulty we mentioned in the numerical experiment part to efficiently calculate the
Riemannian Hessian-vector product thus enabling large-scale implementation of algorithms
for solving the Riemannian bilevel optimization problems.

Acknowledgments

JL is supported by NSF grant ECCS-2426064. SM is supported in part by ONR grant N00014-
24-1-2705, NSF grants DMS-2243650, CCF-2308597, CCF-2311275 and ECCS-2326591, and
a startup fund from Rice University.

38

Riemannian Bilevel Optimization

References

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2008.

Tamir Bendory, Yonina C Eldar, and Nicolas Boumal. Non-convex phase retrieval from
STFT measurements. IEEE Transactions on Information Theory, 64(1):467–484, 2017.

Rajendra Bhatia. Positive definite matrices. Princeton university press, 2009.

Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Transactions
on Automatic Control, 58(9):2217–2229, 2013.

Henri Bonnel, Léonard Todjihoundé, and Constantin Udrişte. Semivectorial bilevel opti-
mization on Riemannian manifolds. Journal of Optimization Theory and Applications,
167(2):464–486, 2015.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University
Press, 2023.

Nicolas Boumal and Pierre Absil. RTRMC: A Riemannian trust-region method for low-rank
matrix completion. In Advances in neural information processing systems, pages 406–414,
2011.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. Global rates of convergence for
nonconvex optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33,
2018.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems
in the constraints. Operations Research, 21(1):37–44, 1973.

Yang Cai, Michael I Jordan, Tianyi Lin, Argyris Oikonomou, and Emmanouil-Vasileios
Vlatakis-Gkaragkounis. Curvature-independent last-iterate convergence for games on
Riemannian manifolds. arXiv preprint arXiv:2306.16617, 2023.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On bilevel optimization without lower-level strong
convexity. arXiv preprint arXiv:2301.00712, 2023a.

Robert Chen, Brendan Lucier, Yaron Singer, and Vasilis Syrgkanis. Robust optimization for
non-convex objectives. arXiv preprint arXiv:1707.01047, 2017.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternat-
ing stochastic gradient methods for bilevel problems. Advances in Neural Information
Processing Systems, 34:25294–25307, 2021.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for
stochastic bilevel optimization. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel
Valera, editors, Proceedings of The 25th International Conference on Artificial Intelligence
and Statistics, volume 151 of Proceedings of Machine Learning Research, pages 2466–2488.
PMLR, 28–30 Mar 2022. URL https://proceedings.mlr.press/v151/chen22e.html.

39

https://proceedings.mlr.press/v151/chen22e.html

Li and Ma

Xuxing Chen, Minhui Huang, Shiqian Ma, and Krishna Balasubramanian. Decentralized
stochastic bilevel optimization with improved per-iteration complexity. In International
Conference on Machine Learning, pages 4641–4671. PMLR, 2023b.

Xuxing Chen, Minhui Huang, and Shiqian Ma. Decentralized bilevel optimization. Opti-
mization Letters, pages 1–65, 2024.

Anoop Cherian and Suvrit Sra. Riemannian dictionary learning and sparse coding for
positive definite matrices. IEEE transactions on neural networks and learning systems, 28
(12):2859–2871, 2016.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient
descent in min-max optimization. Advances in Neural Information Processing Systems,
31, 2018.

Justin Domke. Generic methods for optimization-based modeling. In Artificial Intelligence
and Statistics, pages 318–326. PMLR, 2012.

Youran Dong, Shiqian Ma, Junfeng Yang, and Chao Yin. A single-loop algorithm for
decentralized bilevel optimization. arXiv preprint arXiv:2311.08945, 2023.

Orizon P Ferreira, Mauricio S Louzeiro, and LF4018420 Prudente. Gradient method for
optimization on Riemannian manifolds with lower bounded curvature. SIAM Journal on
Optimization, 29(4):2517–2541, 2019.

Rémi Flamary, Alain Rakotomamonjy, and Gilles Gasso. Learning constrained task similari-
ties in graph regularized multi-task learning. Regularization, Optimization, Kernels, and
Support Vector Machines, 103, 2014.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. In International
Conference on Machine Learning, pages 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz,
and Edison Guo. On differentiating parameterized argmin and argmax problems with
application to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration
complexity of hypergradient computation. In International Conference on Machine
Learning, pages 3748–3758. PMLR, 2020.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, Pawan Kumar, and Junbin Gao. Rieman-
nian Hamiltonian methods for min-max optimization on manifolds. SIAM Journal on
Optimization, 33(3):1797–1827, 2023.

Andi Han, Bamdev Mishra, Pratik Jawanpuria, and Akiko Takeda. A Framework for Bilevel
Optimization on Riemannian Manifolds. arXiv preprint arXiv:2402.03883, 2024.

40

Riemannian Bilevel Optimization

Mehrtash Harandi, Mathieu Salzmann, and Richard Hartley. Dimensionality reduction on
SPD manifolds: The emergence of geometry-aware methods. IEEE transactions on pattern
analysis and machine intelligence, 40(1):48–62, 2017.

Ken Hayami. Convergence of the conjugate gradient method on singular systems. arXiv
preprint arXiv:1809.00793, 2018.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic
algorithm framework for bilevel optimization: Complexity analysis and application to
actor-critic. SIAM Journal on Optimization, 33(1):147–180, 2023.

Feihu Huang and Shangqian Gao. Gradient descent ascent for minimax problems on
riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(7):8466–8476, 2023.

Kaiyi Ji and Yingbin Liang. Lower bounds and accelerated algorithms for bilevel optimization.
Journal of machine learning research, 24(22):1–56, 2023.

Kaiyi Ji, Jason D Lee, Yingbin Liang, and H Vincent Poor. Convergence of meta-learning
with task-specific adaptation over partial parameters. Advances in Neural Information
Processing Systems, 33:11490–11500, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and
enhanced design. In International Conference on Machine Learning, pages 4882–4892.
PMLR, 2021.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-
nonconcave minimax optimization? In International Conference on Machine Learning,
pages 4880–4889. PMLR, 2020.

Hiroyuki Kasai, Hiroyuki Sato, and Bamdev Mishra. Riemannian stochastic recursive
gradient algorithm. In International Conference on Machine Learning, pages 2516–2524,
2018.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran
Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum.
Advances in neural information processing systems, 34:30271–30283, 2021.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

Gautam Kunapuli, Kristin P Bennett, Jing Hu, and Jong-Shi Pang. Classification model
selection via bilevel programming. Optimization Methods & Software, 23(4):475–489, 2008.

John M Lee. Riemannian manifolds: an introduction to curvature, volume 176. Springer
Science & Business Media, 2006a.

John M Lee. Introduction to smooth manifolds, 2006b.

41

Li and Ma

Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel man-
ifold via the cayley transform. In International Conference on Learning Representations,
2020a. URL https://openreview.net/forum?id=HJxV-ANKDH.

Junyi Li, Bin Gu, and Heng Huang. Improved bilevel model: Fast and optimal algorithm
with theoretical guarantee. arXiv preprint arXiv:2009.00690, 2020b.

Renjie Liao, Yuwen Xiong, Ethan Fetaya, Lisa Zhang, KiJung Yoon, Xaq Pitkow, Raquel
Urtasun, and Richard Zemel. Reviving and improving recurrent back-propagation. In
International Conference on Machine Learning, pages 3082–3091. PMLR, 2018.

Lizhen Lin, Brian St. Thomas, Hongtu Zhu, and David B Dunson. Extrinsic local regression
on manifold-valued data. Journal of the American Statistical Association, 112(519):
1261–1273, 2017.

Lizhen Lin, Drew Lazar, Bayan Sarpabayeva, and David B. Dunson. Robust optimization
and inference on manifolds. arXiv preprint arXiv:2006.06843, 2020a.

Tianyi Lin, Chi Jin, and Michael Jordan. On gradient descent ascent for nonconvex-concave
minimax problems. In International Conference on Machine Learning, pages 6083–6093.
PMLR, 2020b.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-
order algorithmic framework for bi-level programming beyond lower-level singleton. In
International Conference on Machine Learning, pages 6305–6315. PMLR, 2020.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters
by implicit differentiation. In International Conference on Artificial Intelligence and
Statistics, pages 1540–1552. PMLR, 2020.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter
optimization through reversible learning. In International conference on machine learning,
pages 2113–2122. PMLR, 2015.

Bamdev Mishra, Hiroyuki Kasai, Pratik Jawanpuria, and Atul Saroop. A Riemannian gossip
approach to subspace learning on Grassmann manifold. Machine Learning, pages 1–21,
2019.

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-
gradient and optimistic gradient methods for saddle point problems: Proximal point
approach. In International Conference on Artificial Intelligence and Statistics, pages
1497–1507. PMLR, 2020.

Gregory M Moore. Bilevel programming algorithms for machine learning model selection.
Rensselaer Polytechnic Institute, 2010.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Razaviyayn.
Solving a class of non-convex min-max games using iterative first order methods. Advances
in Neural Information Processing Systems, 32, 2019.

42

https://openreview.net/forum?id=HJxV-ANKDH

Riemannian Bilevel Optimization

Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On lp-
hyperparameter learning via bilevel nonsmooth optimization. Journal of Machine Learning
Research, 22(245):1–47, 2021.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International
conference on machine learning, pages 737–746. PMLR, 2016.

Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning
with implicit gradients. Advances in neural information processing systems, 32, 2019.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723–1732. PMLR, 2019.

Chenggen Shi, Jie Lu, and Guangquan Zhang. An extended Kuhn–Tucker approach for
linear bilevel programming. Applied Mathematics and Computation, 162(1):51–63, 2005.

Suvrit Sra and Reshad Hosseini. Conic geometric optimization on the manifold of positive
definite matrices. SIAM Journal on Optimization, 25(1):713–739, 2015.

Heinrich von Stackelberg and Alan T Peacock. The theory of the market economy. (No
Title), 1952.

Ju Sun, Qing Qu, and John Wright. Complete dictionary recovery over the sphere ii:
Recovery by Riemannian trust-region method. IEEE Transactions on Information Theory,
63(2):885–914, 2016.

Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131–1198, 2018.

Davoud Ataee Tarzanagh, Mingchen Li, Christos Thrampoulidis, and Samet Oymak. Fednest:
Federated bilevel, minimax, and compositional optimization. In International Conference
on Machine Learning, pages 21146–21179. PMLR, 2022.

Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I Jordan. Averaging
stochastic gradient descent on Riemannian manifolds. In Conference On Learning Theory,
pages 650–687, 2018.

Loring W Tu. An Introduction to Manifolds. Springer Science & Universitext, 2011.

Bart Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM
Journal on Optimization, 23(2):1214–1236, 2013.

Melanie Weber and Suvrit Sra. Projection-free nonconvex stochastic optimization on
Riemannian manifolds. IMA Journal of Numerical Analysis, 42(4):3241–3271, 2022.

Melanie Weber and Suvrit Sra. Riemannian optimization via Frank-Wolfe methods. Mathe-
matical Programming, 199(1-2):525–556, 2023.

43

Li and Ma

Yifan Yang, Peiyao Xiao, and Kaiyi Ji. Achieving O(ε−1.5) complexity in Hessian/Jacobian-
free stochastic bilevel optimization. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=OzjBohmLvE.

TaeHo Yoon and Ernest K Ryu. Accelerated algorithms for smooth convex-concave minimax
problems with O(1/k2) rate on squared gradient norm. In International Conference on
Machine Learning, pages 12098–12109. PMLR, 2021.

Tong Yu and Hong Zhu. Hyper-parameter optimization: A review of algorithms and
applications. arXiv preprint arXiv:2003.05689, 2020.

Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Conference on Learning Theory, pages 1617–1638. PMLR, 2016.

Hongyi Zhang, Sashank J Reddi, and Suvrit Sra. Riemannian SVRG: Fast stochastic
optimization on Riemannian manifolds. Advances in Neural Information Processing
Systems, 29:4592–4600, 2016.

Pan Zhou, Xiaotong Yuan, Shuicheng Yan, and Jiashi Feng. Faster first-order methods
for stochastic non-convex optimization on Riemannian manifolds. IEEE transactions on
pattern analysis and machine intelligence, 2019.

44

https://openreview.net/forum?id=OzjBohmLvE

	Introduction
	Main results
	Related works

	Motivating examples
	Preliminaries on Riemannian Optimization
	Bilevel hypergradient estimation on Riemannian manifolds
	Deterministic Algorithm RieBO and Its Convergence
	Stochastic Algorithm RieSBO and Its Convergence
	Numerical experiments
	Numerical experiments on robust optimization on manifolds
	Robust Karcher mean problem
	Robust maximum likelihood estimation

	Numerical experiments on Riemannian meta learning

	Conclusion

