
Journal of Machine Learning Research 26 (2025) 1-67 Submitted 3/24; Revised 10/24; Published 1/25

Adaptive Client Sampling in Federated Learning via
Online Learning with Bandit Feedback

Boxin Zhao boxinz@uchicago.edu
University of Chicago Booth School of Business
Chicago, IL, 60637, USA

Lingxiao Wang lw324@njit.edu
New Jersey Institute of Technology Department of Data Science
Newark, NJ, 07106, USA

Ziqi Liu ziqiliu@antfin.com
Zhiqiang Zhang lingyao.zzq@antfin.com
Jun Zhou jun.zhoujun@antfin.com
Ant Financial Group
Hangzhou, Zhejiang, China

Chaochao Chen zjuccc@zju.edu.cn
College of Computer Science and Technology
Zhejiang University
Hangzhou, Zhejiang, China

Mladen Kolar mkolar@marshall.usc.edu

University of Southern California Marshall School of Business

Los Angeles, CA, 90089, USA

Editor: Francesco Orabona

Abstract

Due to the high cost of communication, federated learning (FL) systems need to sample
a subset of clients that are involved in each round of training. As a result, client sampling
plays an important role in FL systems as it affects the convergence rate of optimization
algorithms used to train machine learning models. Despite its importance, there is limited
work on how to sample clients effectively. In this paper, we cast client sampling as an
online learning task with bandit feedback, which we solve with an online stochastic mirror
descent (OSMD) algorithm designed to minimize the sampling variance. We then theo-
retically show how our sampling method can improve the convergence speed of federated
optimization algorithms over the widely used uniform sampling. Through both simulated
and real data experiments, we empirically illustrate the advantages of the proposed client
sampling algorithm over uniform sampling and existing online learning-based sampling
strategies. The proposed adaptive sampling procedure is applicable beyond the FL prob-
lem studied here and can be used to improve the performance of stochastic optimization
procedures such as stochastic gradient descent and stochastic coordinate descent.

Keywords: federated learning, client sampling, online learning, optimization,
variance reduction

. Correspondence: Mladen Kolar (mkolar@marshall.usc.edu) and Jun Zhou (jun.zhoujun@antfin.com).

c©2025 Boxin Zhao, Lingxiao Wang, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Chaochao Chen, and Mladen Kolar.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/24-0385.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/24-0385.html

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

1. Introduction

Modern edge devices, such as personal mobile phones, wearable devices, and sensor systems
in vehicles, collect large amounts of data that are valuable for training of machine learning
models. If each device only uses its local data to train a model, the resulting generaliza-
tion performance will be limited due to the number of available samples on each device.
Traditional approaches where data are transferred to a central server, which trains a model
based on all available data, have fallen out of fashion due to privacy concerns and high
communication costs. Federated Learning (FL) has emerged as a paradigm that allows for
collaboration between different devices (clients) to train a global model while keeping data
locally and only exchanging model updates (McMahan et al., 2017).

In a typical FL process, we have clients that contain data and a central server that
orchestrates the training process (Kairouz et al., 2021). The following process is repeated
until the model is trained: (i) the server selects a subset of available clients; (ii) the server
broadcasts the current model parameters and sometimes also a training program (e.g., a
Tensorflow graph (Abadi et al., 2016)); (iii) the selected clients make updates to the model
parameters based on their local data; (iv) the local model updates are uploaded to the
server; (v) the server aggregates the local updates and makes a global update of the shared
model. In this paper, we focus on the first step and develop a practical strategy for selecting
clients with provable guarantees.

To train a machine learning model in a FL setting with M clients, we would like to
minimize the following objective1:

min
w
F (w) :=

∑
m∈[M]

λmφ (w;Dm) , (1)

where φ(w;Dm) is the loss function used to assess the quality of a machine learning model
parameterized by the vector w based on the local data Dm on the client m ∈ [M]. The
parameter λm denotes the weight for client m. Typically, we have λm = nm/n, where
nm = |Dm| is the number of samples on the client m, and the total number of samples
is n =

∑M
m=1 nm. At the beginning of the t-th communication round, the server uses the

sampling distribution pt = (pt1, . . . , p
t
M)> to choose K clients by sampling with replacement

from [M]2. Let St ⊆ [M] denote the set of chosen clients with |St| = K. The server
transmits the current model parameter vector wt to each client m ∈ St. The client m
computes the local update gtm

3 and sends it back to the server4. After receiving local

1. We use [M] to denote the set {1, . . . ,M}.
2. In this paper, we assume that all clients are available in each round and the purpose of client sampling

is to reduce the communication cost, which is also the case considered by some previous research (Chen
et al., 2022). However, in practice, it is possible that only a subset of clients are available at the
beginning of each round due to physical constraint. In Appendix D.2, we discuss how to extend our
proposed methods to deal with such situations. Analyzing such an extension is highly non-trivial and
we leave it for further study. See detailed discussion in Appendix D.2.

3. Here by model update, we actually mean the negative direction of model update. For example, when
applying gradient descent, we refer the gradient as the model update, while the model parameter makes
an update at the direction of the negative gradient. We stick with the term model update since it is
more commonly used.

4. Throughout the paper, except in Section 4, we do not specify how gtm is obtained. One possibility that the
reader could keep in mind for concreteness is the LocalUpdate algorithm (Charles and Konečnỳ, 2020),
which covers well-known algorithms such as mini-batch SGD and FedAvg (McMahan et al., 2017).

2

Adaptive Client Sampling in Federated Learning

updates from clients in St, the server constructs a stochastic estimate of the global gradient
as

gt =
1

K

∑
m∈St

λm
ptm

gtm, (2)

and makes the global update of the parameter wt using gt. For example, wt+1 = wt− µtgt,
if the server is using stochastic gradient descent (SGD) with the stepsize sequence {µt}t≥1

(Bottou et al., 2018). However, the global update can be obtained using other procedures
as well.

The sampling distribution in FL is typically uniform over clients, that is, pt = punif =
(1/M, . . . , 1/M)>. However, nonuniform sampling (also called importance sampling) can
lead to faster convergence, both in theory and practice, as has been illustrated in stochastic
optimization (Zhao and Zhang, 2015; Needell et al., 2016). While the sampling distribution
can be designed based on prior knowledge (Zhao and Zhang, 2015; Johnson and Guestrin,
2018; Needell et al., 2016; Stich et al., 2017), we cast the problem of choosing the sampling
distribution as an online learning task and need no prior knowledge about (1).

Existing approaches to designing a sampling distribution using online learning takes a
stationary online learning framework and focus on matching the best sampling distribution
that does not change over the training process. As a result, the obtained algorithms up-
date the sampling distribution by treating all history information equally. However, as the
training proceeds, the best sampling distribution changes with iterations. To address this
problem, we take a non-stationary online learning framework and use an online stochas-
tic mirror descent (OSMD) algorithm that puts more emphasize on recent feedback and
learns to ’forget’ the history. Consequently, our method shows empirical advantages over
the previous methods. Besides, we derive a dynamic regret upper bound that allows the
comparators to change with iterations, which generalizes the theoretical results on static
regret of previous research. Moreover, we provably show how our sampling method im-
proves the convergence guarantee of federated optimization methods over uniform sampling
by reducing the dependency on the heterogeneity of the problem, which is also new to the
best of our knowledge.

1.1 Notation

Let RM+ = [0,∞)M and RM++ = (0,∞)M . For M ∈ N+, let PM−1 := {x ∈ RM+ :
∑M

i=1 xi = 1}
be the (M − 1)-dimensional probability simplex. We use p = (p1, . . . , pM)> to denote a
sampling distribution with support on [M] := {1, . . . ,M}. We use p1:T to denote a sequence
of sampling distributions {pt}Tt=1. We use ‖ · ‖p to denote the Lp-norm for 1 ≤ p ≤ ∞.
For x ∈ Rn, we have ‖x‖p = (

∑n
i=1 x

p
i)

1/p when 1 < p < ∞, ‖x‖1 =
∑n

i=1 |xi|, and
‖x‖∞ = max1≤i≤n |xi|. Given any Lp-norm ‖ · ‖, we define its dual norm as ‖z‖? :=
sup{z>x : ‖x‖ ≤ 1}. We use |B| to denote the cardinality of the index set |B|.

Let Φ : D ⊆ RM 7→ R be a differentiable convex function defined on D, where D is a
convex open set, and we use D̄ to denote the closure of D. The Bregman divergence between
any x, y ∈ D with respect to the function Φ is given as DΦ (x ‖ y) = Φ(x)−Φ(y)−〈∇Φ(y), x−
y〉. The unnormalized negative entropy is denoted as Φ(x) =

∑M
m=1 xm log xm−

∑M
m=1 xm,

x = (x1, . . . , xM)> ∈ D = RM+ , with 0 log 0 defined as 0.

3

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

For two positive sequences {an} and {bn}, we use an = O(bn) to denote that there exists
C > 0 such that an/bn ≤ C for all n large enough. Similarly, we use an = Ω(bn) to denote
that there exists c > 0 such that an/bn ≥ c for all n large enough. We denote an = Θ(bn) if
an = O(bn) and an = Ω(bn) simultaneously. Besides, we use an = o(bn) if limn an/bn = 0.
In addition, an = Õ(bn) if an = O(bn logk bn) for some k ≥ 0.

1.2 Organization of the Paper

We summarize the related work in Section 2. We motivate importance sampling in FL
and introduce an adaptive client sampling algorithm in Section 3. We develop optimization
guarantees of mini-batch SGD and FedAvg using our sampling scheme in Section 4. In
Section 5, we discuss regret analysis which serves as a key component for optimization
analysis. In Section 6, we propose an extension of the sampling method that is adaptive to
the unknown problem parameters. We provide the experimental results on simulated data
in Section 7 and real-world data in Section 8. We conclude our paper with Section 9. We
leave all the technical proofs and additional discussions in Appendix. Code to replicate the
results in this paper is available at

https://github.com/boxinz17/FL-Client-Sampling.

2. Related Work

Our paper is related to client sampling in FL, importance sampling in stochastic optimiza-
tion, and online convex optimization. We summarize only the most relevant literature,
without attempting to provide an extensive survey.

For client sampling, Chen et al. (2022) proposed to use the theoretically optimal sam-
pling distribution to choose clients. However, their method requires all clients to compute
local updates in each round, which is impractical due to stragglers. Ribero and Vikalo (2020)
modelled the parameters of the model during training by an Ornstein-Uhlenbeck process,
which was then used to derive an optimal sampling distribution. Cho et al. (2020b) devel-
oped a biased client selection strategy and analyzed its convergence property. As a result,
the algorithm has a non-vanishing bias and is not guaranteed to converge to optimum.
Moreover, it needs to involve more clients than our method and is thus communication and
computational more expensive. Kim et al. (2020); Cho et al. (2020a); Yang et al. (2021)
considered client sampling as a multi-armed bandit problem, but provided only limited the-
oretical results. Wang et al. (2020) used reinforcement learning for client sampling with the
objective of maximizing accuracy, while minimizing the number of communication rounds.

Our paper is also closely related to importance sampling in stochastic optimization. Zhao
and Zhang (2015); Needell et al. (2016) illustrated that by sampling observations from a
nonuniform distribution when using a gradient-based stochastic optimization method, one
can achieve faster convergence. They designed a fixed sampling distribution using prior
knowledge on the upper bounds of gradient norms. Csiba and Richtárik (2018) extended
the importance sampling to mini-batches. Stich et al. (2017); Johnson and Guestrin (2018);
Gopal (2016) developed adaptive sampling strategies that allow the sampling distribution to
change over time. Nesterov (2012); Perekrestenko et al. (2017); Zhu et al. (2016); Salehi et al.
(2018) discussed importance sampling in stochastic coordinate descent methods. Namkoong

4

https://github.com/boxinz17/FL-Client-Sampling

Adaptive Client Sampling in Federated Learning

et al. (2017); Salehi et al. (2017); Borsos et al. (2018, 2019); Hanchi and Stephens (2020)
illustrated how to design the sampling distribution by solving an online learning task with
bandit feedback. Namkoong et al. (2017); Salehi et al. (2017) designed the sampling dis-
tribution by solving a multi-armed bandit problem with the EXP3 algorithm (Lattimore
and Szepesvári, 2020, Chapter 11). Borsos et al. (2018) used the follow-the-regularized-
leader algorithm (Lattimore and Szepesvári, 2020, Chapter 28) to solve an online convex
optimization problem and make updates to the sampling distribution. Borsos et al. (2019)
restricted the sampling distribution to be a linear combination of distributions in a prede-
fined set and used an online Newton step to make updates to the mixture weights. The
above approaches estimate a stationary distribution, while the best distribution is changing
with iterations and, therefore, is intrinsically dynamic. In addition to having suboptimal
empirical performance, these papers provide theoretical results that only establish a regret
relative to a fixed sampling distribution in hindsight. To address this problem, Hanchi and
Stephens (2020) took a non-stationary approach where the most recent information for each
client was kept. A decreasing stepsize sequence is required to establish a regret bound. In
comparison, we establish a regret bound relative to a dynamic comparator—a sequence of
sampling distributions—without imposing assumptions on the stepsize sequence, and this
bound includes the dependence on the total variation term characterizing how strong the
comparator is.

Our paper also contributes to the literature on online convex optimization. We cast the
client sampling problem as an online learning problem (Hazan, 2016) and adapt algorithms
from the dynamic online convex optimization literature to solve it. Hall and Willett (2015);
Yang et al. (2016); Daniely et al. (2015) proposed methods that achieve sublinear dynamic
regret relative to dynamic comparator sequences. In particular, Hall and Willett (2015)
used a dynamic mirror descent algorithm to achieve sublinear dynamic regret with total
variation characterizing the intrinsic difficulty of the environment. Compared with the
problem settings in the above studies, there are two key new challenges that we need to
address. First, we only have partial information—bandit feedback—instead of the full
information about the loss functions. Second, the loss functions in our case are unbounded,
which violates the common boundedness assumption in the online learning literature. To
overcome the first difficulty, we construct an unbiased estimator of the loss function and its
gradient, which are then used to make an update to the sampling distribution. We address
the second challenge by first bounding the regret of our algorithm when the sampling
distributions in the comparator sequence lie in a region of the simplex for which the loss
is bounded, and subsequently analyze the additional regret introduced by projecting the
elements of the comparator sequence to this region.

3. Adaptive Client Sampling

We show how to cast the client sampling problem as an online learning task. Subsequently,
we solve the online learning problem using the OSMD algorithm.

3.1 Client Sampling as an Online Learning Problem

Recall that at the beginning of the t-th communication round, the server uses a sampling
distribution pt to choose a set of clients St, by sampling with replacementK clients from [M],

5

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

to update the parameter vector wt. For a chosen client m ∈ St, the local update is denoted
as gtm. For example, the local update gtm = ∇φ(wt;Dm) may be the full gradient; when

mini-batch SGD/FedSGD is used, then gtm = (1/B)
∑B

b=1∇φ(wt; ξt,bm), where ξt,bm
i.i.d.∼ Dm

and B is the batch size; when FedAvg (McMahan et al., 2017) is used, then gtm = wt−wt.Bm ,

where wt,bm = wt,b−1
m − µtl∇f

(
wt,b−1
m ; ξt,b−1

m

)
, b = 0, . . . , B − 1, wt,0m = wt, ξt,bm

i.i.d.∼ Dm, and

µtl is the local stepsize at t-th communication round.
The randomness comes from two sampling processes. The first sampling happens on

clients level, and the second sampling happens locally when computing local updates. Client
sampling is dealing with the first randomness. Since the two sampling process are indepen-
dent, we may treat gtm as deterministic in this section to ease the understanding. We will
include the second randomness when analyzing regret and specific optimization algorithms
in following sections.

We define the aggregated oracle update at the t-th communication round as

J t =

M∑
m=1

λmg
t
m.

The oracle update J t is constructed only for theoretical purposes and is not computed in
practice. The stochastic estimate gt, defined in (2), is an unbiased estimate of J t, that is,
ESt

[
gt
]

= J t. The variance of gt is

VSt [gt] =
1

K

(
M∑
m=1

λ2
m‖gtm‖22
ptm

−
∥∥J t∥∥2

2

)
. (3)

Our goal is to design the sampling distribution pt, used to sample St, to minimize the
variance in (3). In doing so, we can ignore the second term, as it is independent of pt.
Minimizing variance is our goal in designing the sampling distribution because we require
gt to be an unbiased estimate of J t. Allowing gt to be biased, as in the biased client
selection literature (Cho et al., 2020b; Qu et al., 2022; Ribero and Vikalo, 2020), may
render minimizing variance ineffective. Our focus is on unbiased client selection, leaving
biased client selection for future research.

Let atm = λ2
m‖gtm‖22. For any sampling distribution q = (q1, . . . , qM)>, the variance

reduction loss5 is defined as

lt(q) =
1

K

M∑
m=1

atm
qm

. (4)

Then for St sampled via q, we have

VSt [gt] = lt(q)−
1

K

∥∥J t∥∥2

2
.

Given a sequence of sampling distributions q1:T , the cumulative variance reduction loss
is defined as L(q1:T) :=

∑T
t=1 lt(q

t). When the choice of q1:T is random, the expected
cumulative variance reduction loss is defined as L̄(q1:T) := E

[
L(q1:T)

]
.

5. The variance reduction loss lt(·) should be distinguished from the training loss φ(·). While the former is
always convex, φ(·) can be non-convex.

6

Adaptive Client Sampling in Federated Learning

The variance reduction loss appears in the bound on the sub-optimality of a stochastic
optimization algorithm. As a motivating example, suppose F (·) in (1) is ν-strongly convex.
Furthermore, suppose the local update gtm = ∇φ(wt;Dm) is the full gradient of the local
loss and the global update is made by SGD with stepsize µt = 2/(νt). Theorem 3 of Salehi
et al. (2017) then states that for any T ≥ 1:

E

[
F

(
2

T (T + 1)

T∑
t=1

t · wt
)]
− F (w?) ≤ 2

νT (T + 1)
L̄(p1:T), (5)

where w? is the minimizer of the objective in (1). Therefore, by choosing the sequence of
sampling distributions p1:T to make the L̄(p1:T) small, one can achieve faster convergence.
This observation holds in other stochastic optimization problems as well. We develop an
algorithm that creates a sequence of sampling distributions p1:T to minimize L̄(p1:T) using
only the norm of local updates, and without imposing assumptions on the loss functions or
how the local and global updates are made. As a result, the proposed sampling algorithm
is agnostic to both optimization algorithms and optimization problems. In Section 4, we
show how our sampling method improves over uniform sampling by providing tighter upper
bounds on mini-batch SGD and FedAvg with non-convex objective φ(·).

Suppose that at the beginning of the t-th communication round we know all {atm}Mm=1.
Then the optimal sampling distribution

pt? = (pt?,1, . . . , p
t
?,M)> = arg min

p∈PM−1

lt(p)

is obtained as pt?,m =
√
atm/(

∑M
m=1

√
atm). Computing the distribution pt? is impractical as

it requires local updates of all clients, which eradicates the need for client sampling. From
the form of pt?, we observe that clients with a large atm are more “important” and should
have a higher probability of being selected. Since we do not know {atm}Mm=1, we will need
to explore the environment to learn about the importance of clients before we can exploit
the best strategy. Finally, we note that the relative importance of clients will change over
time, which makes the environment dynamic and challenging.

Based on the above discussion, we cast the problem of creating a sequence of sampling
distributions as an online learning task with bandit feedback, where a game is played be-
tween the server and environment. Let p1 be the initial sampling distribution. At the
beginning of iteration t, the server samples with replacement K clients from [M], denoted
by St, using pt. The environment reveals {atm}m∈St to the server, where atm = λ2

m‖gtm‖22.
The environment also computes lt(p

t); however, this loss is not revealed to the server. The
server then updates pt+1 based on the feedback {{aum}m∈Su}tu=1 and sampling distributions
{pu}tu=1. Note that in this game, the server only gets information about the chosen clients
and, based on this partial information, or bandit feedback, needs to update the sampling
distribution. On the other hand, we would like to be competitive with an oracle that can
calculate the cumulative variance reduction loss. We will design pt in a way that is agnostic
to the generation mechanism of {at}t≥1, and will treat the environment as deterministic,
with randomness coming only from {St}t≥1 when designing pt. We describe an OSMD-based
approach to solve this online learning problem.

7

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Algorithm 1 OSMD Sampler

1: Input: Learning rate η, parameter α ∈ (0, 1], and number of iterations T .
2: Output: p̂1:T .
3: Initialize: p̂1 = punif .
4: for t = 1, 2, . . . , T − 1 do
5: Sample St by p̂t.
6: Compute ∇l̂t(p̂t; p̂t) via (7).
7: p̂t+1 = arg min

p∈A
η〈p,∇l̂t(p̂t; p̂t)〉+DΦ

(
p ‖ p̂t

)
.

8: end for

3.2 OSMD Sampler

Note that the variance-reduction loss function lt is a convex function on PM−1 and

∇lt(q) = − 1

K

(
at1

(q1)2
, . . . ,

atM
(qM)2

)>
∈ RM for all q = (q1, . . . , qM)> ∈ RM++.

Since we do not observe at, we cannot compute lt(·) or ∇lt(·). Instead, we can construct
unbiased estimates of them. For any q ∈ PM−1, let l̂t(q; p

t) be an estimate of lt(q) defined
as

l̂t(q; p
t) =

1

K2

M∑
m=1

atm
qmptm

N
{
m ∈ St

}
, (6)

and ∇l̂t(q; pt) ∈ RM has the m-th entry defined as[
∇l̂t(q; pt)

]
m

= − 1

K2
· atm
q2
mp

t
m

N
{
m ∈ St

}
. (7)

The set St is sampled with replacement from [M] using pt and N
{
m ∈ St

}
denotes the

number of times that a client m is chosen in St. Thus, 0 ≤ N
{
m ∈ St

}
≤ K. Given q and

pt, l̂t(q; p
t) and ∇l̂t(q; pt) are random variables in R and RM that satisfy

ESt

[
l̂t(q; p

t) | pt
]

= lt(q), ESt

[
∇l̂t(q; pt) | pt

]
= ∇lt(q).

When St and pt ∈ RM++ are given, l̂t(q; p
t) is a convex function with respect to q on RM++ and

satisfies l̂t(q; p
t)− l̂t(q′; pt) ≤ 〈∇l̂t(q; pt), q − q′〉, for q, q′ ∈ RM++. The constructed estimates

l̂t(q; p
t) and ∇l̂t(q; pt) are crucial for designing updates to the sampling distribution.

OSMD Sampler is an online stochastic mirror descent algorithm for updating the sam-
pling distribution, detailed in Algorithm 1. The sampling distribution is restricted to lie
in the space A = PM−1 ∩ [α/M,∞)M , α ∈ (0, 1], to prevent the server from assign-
ing too small probabilities to devices. The learning rates {ηt}t≥1 are positive6. Φ(x) =∑M

m=1 xm log xm −
∑M

m=1 xm, x = (x1, . . . , xM)> ∈ D = RM+ , with 0 log 0 defined as 0, is
the unnormalized negative entropy. The Bregman divergence between any x, y ∈ D with

6. We use the term learning rate when discussing an online algorithm that learns a sampling distribution,
while the term stepsize is used in the context of an optimization algorithm.

8

Adaptive Client Sampling in Federated Learning

Algorithm 2 Solver of Step 7 of Algorithm 1

1: Input: p̂t, St, {atm}m∈St , and A = PM−1 ∩ [α/M,∞)M .
2: Output: p̂t+1.
3: Let p̃t+1

m = ptm exp
{
N
{
m ∈ St

}
ηta

t
m/(K

2(ptm)3)
}

for m ∈ [M].
4: Sort {p̃t+1

m }Mm=1 in a non-decreasing order: p̃t+1
π(1) ≤ p̃

t+1
π(2) ≤ · · · ≤ p̃

t+1
π(M).

5: Let vm = p̃t+1
π(m)

(
1− m−1

M α
)

for m ∈ [M].

6: Let um = α
M

∑M
j=m p̃

t+1
π(j) for m ∈ [M].

7: Find the smallest m such that vm > um, denoted as mt
?.

8: Let p̂t+1
m =

{
α/M if π(m) < mt

?(
(1− ((mt

? − 1)/M)α)p̃t+1
m

)
/
(∑M

j=mt
?
p̃t+1
π(j)

)
otherwise.

respect to the function Φ is given as DΦ (x ‖ y) = Φ(x) − Φ(y) − 〈∇Φ(y), x − y〉. Line 7
of Algorithm 1 provides an update to the sampling distribution using the mirror descent
update. The available feedback is used to construct an estimate of the loss, while the
Bregman divergence between the current and next sampling distribution is used as a reg-
ularizer, ensuring that the updated sampling distribution does not change too much. The
update only uses the most recent information, while forgetting the history, which results in
nonstationarity of the sequence of sampling distributions.

An efficient algorithm to solve the mirror descent update in Line 7 of Algorithm 1 is
shown in Algorithm 2, justified by Proposition 12 in Appendix B.2. The main cost comes
from sorting the sequence {p̃t+1

m }Mm=1, which can be done with the computational complexity
of O(M logM). However, note that we only update a few entries of p̂t to get p̃t+1 and p̂t

is sorted. Therefore, most entries of p̃t+1 are also sorted. Using this observation, we can
usually achieve a much faster running time, for example, by using an adaptive sorting
algorithm (Estivill-Castro and Wood, 1992).

4. Application of OSMD Sampler on Federated Optimization Algorithms

We illustrate how OSMD Sampler can be used to provably improve the convergence rates of
federated optimization algorithms by reducing the heterogeneity. We choose two algorithms
that are most commonly used in federated learning as our illustrative examples, namely the
SGD mini-batch and FedAvg (McMahan et al., 2017). We use these two algorithms as
motivational examples to show how adaptive sampling improves the convergence guaran-
tees of optimization algorithms. However, the analysis here could be generalized to other
optimization algorithms as well.

To simplify the notation, we denote Fm(w) := φ (w;Dm) and let λm = 1/M for all
m ∈ [M] in problem (1). We assume that the client objectives are differentiable and L-
smooth functions.

Assumption 1 For all m ∈ [M], Fm(·) is differentiable and L-smooth, that is,

‖∇Fm(x)−∇Fm(y)‖2 ≤ L‖x− y‖2, for all x, y ∈ Rd.

9

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Note that we allow Fm(·) to be non-convex. We also assume that the objective function
F (·) is lower-bounded.

Assumption 2 We assume that infw F (w) > −∞. We then denote F ? := infw F (w).

In addition, we make the following assumption about the local stochastic gradient.

Assumption 3 We assume that

Eξ∼Dm [∇φ(w; ξ)] = ∇Fm(w) and Eξ∼Dm

[
‖∇φ(w; ξ)−∇Fm(w)‖22

]
≤ σ2

for all w and m ∈ [M]; besides, ‖∇φ(w; ξ)‖2 ≤ G for all w and ξ.

While bounded gradient variance is often assumed in federated learning literature (Patel
et al., 2022), bounded gradient norm is less common. We use this assumption to simplify
regret analysis, making the loss in (4) bounded. Removing it is feasible but complex, di-
verging from the main focus of this paper. From a practical viewpoint, many loss functions,
like logistic regression loss, naturally satisfy this assumption. For others, one can project
the gradient into a bounded norm subspace. If any minimizer w? has a bounded gradient
norm ‖∇φ(w?; ξ)‖2 and is within this subspace, the projection will not increase the distance
to the minimizer. However, while the projection step can provide a slightly stronger theo-
retical guarantee, it brings few practical benefits and makes the algorithm harder to follow.
Therefore, we adopt a stronger assumption to simplify the presentation.

We start our analysis by building the connection between the heterogeneity and client
sampling. We first introduce quantities that characterize the heterogeneity of the opti-
mization problem. Specifically, heterogeneity characterizes how the objective functions of
different clients differ from each other. In a federated learning problem, heterogeneity can
be large and it is important to understand its effect on the convergence of algorithms. Let

ζ2
unif := sup

w

1

M

M∑
m=1

‖∇Fm(w)−∇F (w)‖22 = sup
w

{
1

M

M∑
m=1

‖∇Fm(w)‖22 − ‖∇F (w)‖22

}
. (8)

The quantity ζunif has been commonly used to quantify the first-order heterogeneity in the
literature (Karimireddy et al., 2020a,b). To understand the relationship between hetero-
geneity and client sampling, let m̃ be a random index drawn from [M], with P{m̃ = m} = pm
for all m ∈ [M]. Then a natural unbiased estimator of ∇F (w) is ∇Fm̃(w)/(Mp̃m). We de-
fine

V (p, w) := Em̃

[∥∥∥∥ 1

Mpm̃
∇Fm̃(w)−∇F (w)

∥∥∥∥2

2

]
,

to be the variance of the estimator at parameter w, where Em̃[·] denotes the expectation
taken with respect to the random index m̃. Note that we have

V (p, w) =
1

M2

M∑
m=1

1

pm
‖∇Fm(w)‖22 − ‖∇F (w)‖22 . (9)

Thus, it is clear that ζ2
unif = supw V (punif , w). In other words, the common definition of

heterogeneity can be viewed as the worst-case variance of uniform client sampling.

10

Adaptive Client Sampling in Federated Learning

When we use adaptive sampling to do client sampling, there are two sources of flexibility
that allow us to reduce the heterogeneity: (i) we can use non-uniform sampling that may
depend on parameter w; (ii) we allow the sampling distribution to change over iterations. To
reflect the consequential effect, we introduce a new concept termed dynamic heterogeneity.
Let TV(q1:T) =

∑T−1
t=1 ‖qt+1 − qt‖1 be the total variation of any sequence of sampling

distributions q1:T ∈ PTM−1. The dynamic heterogeneity is defined as

ζ2
T (α, β) =

1

T
sup
w1

min
p1∈A

· · · sup
wT

min
pT∈A

T∑
t=1

V (pt, wt) subject to TV
(
p1:T

)
≤ β,

where V (p, w) is defined in (9) and β ≥ 0 is the total variation budget. The dynamic
heterogeneity ζ2

T (α, β) can be regarded as the worst-case variance of dynamic samplings in
AT with the total variation budget β. To see how ζ2

T (α, β) improves over ζ2
unif, let

ζ2
fix(α) = min

p∈A
sup
w
V (p, w). (10)

The quantity ζ2
fix(α) can be regarded as the minimum heterogeneity by using the best fixed

sampling distribution in A that does not depend on parameter w. Let pf be the solution
of p to the min-max problem (10), that is, supw V (pf , w) = ζ2

fix(α). Since punif ∈ A for all
α ≥ 0, it is easy to see that

ζ2
fix(α) = min

p∈A
sup
w
V (p, w) ≤ sup

w
V (punif , w) = ζ2

unif.

Note that ζ2
T (α, β) is a non-increasing function of β with any given α. Thus, we have

ζ2
T (α, β) ≤ ζ2

fix(α) ≤ ζ2
unif ∀ 0 ≤ α ≤ 1, β ≥ 0. (11)

See the proof in Appendix B.1. Note that the above inequality also implies that dynamic
sampling distribution may potentially improve over a fixed sampling distribution. As we
will see shortly, when ζ2

unif > ζ2
fix(α), OSMD Sampler can always improve over uniform

sampling asymptotically.

When β ≥ 2(T − 1) and α is small enough such that

p?m(w) :=
‖∇Fm(w)‖2∑M

m′=1 ‖∇Fm′(w)‖2
≥ α

M
for all w and m ∈ [M],

we have

ζ2
T (α, β) = sup

w
min
p∈A

V (w, p) = sup
w

(

1

M

M∑
m=1

‖∇Fm(w)‖2

)2

− ‖∇F (w)‖22

 ∆
= ζ2

min,

which is the smallest heterogeneity possibly achievable.

11

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Algorithm 3 Mini-batch SGD with OSMD Sampler

1: Input: Number of communication rounds T , number of clients chosen in each round
K, local batch size B, initial model parameter w1, stepsizes {µt}Tt=1, learning rate η
and parameter α ∈ (0, 1].

2: Output: The final model parameter wR.
3: Initialize: p̂1 = punif .
4: for t = 1, . . . , T do
5: Sample St with replacement from [M] with probability p̂t, such that |St| = K.
6: for m ∈ St do
7: Download the current model parameter wt.
8: Locally sample a mini-batch Btm = {ξt,1m , . . . , ξt,Bm } i.i.d. uniformly random from

[nm], where |Btm| = B.

9: Locally compute and upload gtm = (1/B)
∑B

b=1∇φ(wt; ξt,bm) to the server.
10: end for
11: Server computes atm = λ2

m‖gtm‖2 for m ∈ St and

gt =
1

K

∑
m∈St

λm
p̂tm

gtm. (12)

12: Server makes update of the model parameter wt+1 ← wt − µtgt.
13: Server obtains updated sampling distribution p̂t+1 by Algorithm 1.
14: end for

4.1 Convergence Analysis of Mini-batch SGD with OSMD Sampler

We introduce the convergence analysis of mini-batch SGD with OSMD Sampler. The de-
tailed algorithm is given in Algorithm 3. Compared to the classical mini-batch SGD, the
key ingredients of Algorithm 3 are Line 13, where the server updates the sampling distribu-
tion by OSMD Sampler, and Line 5, where the server samples clients from a non-uniform
sampling distribution. In (12), we use a weighted average to compute the global gradient.

Recall that B is the local batch size in Algorithm 3 and K = |St|. Let DF := F (w1)−F ?.
We then have the following convergence guarantee for Algorithm 3.

Theorem 4 Assume Assumption 1—3 holds. Let {w1, . . . , wT } be the sequence of iterates
generated by Algorithm 3 and let wR denote an element of that sequence chosen uniformly
at random. Let

η =
Kα3

MG2

√
2 logM + 4β log(M/α)

T
, (13)

and µt ≡ µ for all t ∈ [T], where

µ = min

 1

L
,

1

σ

√
DFKBα

LT
,

1

ζT (α, β)

√
DFK

LT
,

√
DFKα

3
2

√
LMT

1
4G
(

1
2 logM + β log (M/α)

) 1
4

 ,

12

Adaptive Client Sampling in Federated Learning

we then have

E
[∥∥∇F (wR)∥∥2

]
.
DFL

T
+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

.

(14)

Proof The key proof technique is the construction of a ghost subset S̃t in each round
that is sampled from a carefully designed comparator sampling distribution. In this way,
the regret can be compared with the difference between the convergence rate under OSMD
Sampler and the convergence rate under the comparator sampling distribution. Note that
S̃t is only constructed for theoretical analysis, and does not need to be actually computed
in practice. The rest of the proof then follows the regret analysis as in Theorem 6. See
detailed proof in Appendix B.3.

To see how the convergence rate in Theorem 4 is better than the rate of uniform sam-
pling, recall that the convergence rate of mini-batch SGD under uniform sampling (Ghadimi
and Lan, 2013) is

RMB
unif :=

DFL

T
+
σ
√
DFL√
TKB

+
ζunif

√
DFL√
TK

.

Denote the right hand side of (14) as RMB
osmd, then to have RMB

osmd . RMB
unif, we only need that

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

.
(ζunif − ζT (α, β))

√
DFL√

TK
,

which is equivalent to a requirement that

M
1
2G

α
3
2

(
1
2 logM + β log (M/α)

T

) 1
4

. ζunif − ζT (α, β).

By treating all the other quantities except for T , ζunif, and ζT (α, β) as constants and setting
β = o(T), we have the left hand side of the above inequality as o(1). On the other hand,
note that ζT (α, β) ≤ ζfix ≤ ζunif for any β ≥ 0 and 0 < α ≤ 1, where ζfix is defined in (10),
so whenever ζunif > ζfix, we have ζunif − ζT (α, β) ≥ ζunif − ζfix = Ω(1). In conclusion, when
ζunif > ζfix and by setting β = o(T), the OSMD Sampler can achieve a better convergence
rate than uniform sampling for mini-batch SGD.

4.2 Convergence Analysis of FedAvg with OSMD Sampler

We introduce the convergence guarantee for FedAvg with OSMD Sampler. The detailed
algorithm is given in Algorithm 4. Compared to FedAvg in McMahan et al. (2017), the
differences between Algorithm 4 are Line 15, where the server updates the sampling distri-
bution by OSMD Sampler, and Line 5, where the server samples clients from a non-uniform
sampling distribution. In addition, in (15), we use a weighted average to update the global
model parameter. Besides, note that when defining atm, we rescale ‖gtm‖22 by (µtl)

2B, this is
to ensure that E[‖gtm‖22/(µtl)2B] = Θ(1) as µtl → 0 and B →∞.

We have the following result about FedAvg with OSMD Sampler (Algorithm 4).

13

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Algorithm 4 FedAvg with OSMD Sampler

1: Input: Communication rounds T , clients per round K, local steps B, initial model
parameter w1, global stepsizes {µt}Tt=1, local stepsizes {µtl}Tt=1, learning rate η, and
parameter α ∈ (0, 1].

2: Output: The final model parameter wR.
3: Initialize: p̂1 = punif .
4: for t = 1, . . . , T do
5: Sample St with replacement from [M] with probability p̂t, such that |St| = K.
6: for m ∈ St do
7: Download the current model parameter wt and let wt,0m = wt.
8: for b = 0, 1, . . . , B − 1 do
9: Sample ξt,bm from [nm] uniformly random.

10: Compute wt,b+1
m = wt,bm − µtl∇φ(wt,bm ; ξt,bm).

11: end for
12: Locally compute gtm = wt − wt,Bm and upload it to the server.
13: end for
14: Server computes

atm =
λ2
m‖gtm‖22
(µtl)

2B
=
λ2
m

B

∥∥∥∥∥
B−1∑
b=0

∇φ(wt,bm ; ξt,bm)

∥∥∥∥∥
2

2

for m ∈ St and let

wt+1 = wt − µt

K

∑
m∈St

λm
p̂tm

gtm. (15)

15: Server obtains updated sampling distribution p̂t+1 by Algorithm 1.
16: end for

Theorem 5 Recall that B is the local batch size in Algorithm 3 and K = |St|. Let DF :=
F (w1)− F ?. Assume Assumption 1—3 holds. Let {w1, . . . , wT } be the sequence of iterates
generated by Algorithm 4 and let wR denote an element of that sequence chosen uniformly
at random. Let

η =
Kα3

MBG2

√
2 logM + 4β log(M/α)

T
, (16)

µt = µ ≥ 1 and µtl = µl for all t ∈ [T], where

µl = min

 1

4µBL

√
1

2 + 1/α
,

(DF)
1
3(

4 + 2
α

) 1
3 µBL

2
3

(
ζ2
unif + σ2

2B

) 1
3
T

1
3

,

√
2DF

µB
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T

√
T

 ,

14

Adaptive Client Sampling in Federated Learning

we then have

E
[∥∥∇F (wR)

∥∥2
]
.
DFL

√
2 + 1

α

T
+

(
4 + 2

α

) 1
3 (DFL)

2
3 ζ

2
3
unif

T
2
3

+

(
4 + 2

α

) 1
3 (DFL)

2
3σ

2
3

B
1
3T

2
3

+

√
DFLζT (α, β)√

TK
+

√
DFLσ√
TKBα

+

√
DFL√
T

(
1
2 logM + β log(M/α)

T

) 1
4

.

(17)

Proof See proof in Appendix B.4. Similar to the proof of Theorem 4, the key technique is
to construct a novel ghost subset sampled from the comparator sampling distribution. The
rest of the proof then follows the regret analysis as in Theorem 6.

To see how OSMD Sampler improves over uniform sampling, note that the convergence
rate of FedAvg under uniform sampling (Karimireddy et al., 2020b) is

RAvg
unif :=

DFL

T
+

(DFL)
2
3 ζ

2
3
unif

T
2
3

+
(DFL)

2
3σ

2
3

B
1
3T

2
3

+

√
DFLζunif√
TK

+

√
DFLσ√
TKB

.

Denote the right hand side of (17) as RAvg
osmd. By treating all the other quantities except for

T , ζunif and ζT (α, β) as constants, to have RAvg
osmd . RAvg

unif , we only need that

√
K

(
1
2 logM + β log(M/α)

T

) 1
4

. ζunif − ζT (α, β).

Similar to the argument in Section 4.1, by setting β = o(T), we have the left hand side of
the above inequality as o(1). On the other hand, when ζunif > ζfix, we have ζunif−ζT (α, β) ≥
ζunif − ζfix = Ω(1). Thus, when ζunif > ζfix and by setting β = o(T), we have shown that
OSMD Sampler can achieve a better convergence rate than uniform sampling for FedAvg.

5. Regret Analysis of OSMD Sampler

In this section, we provide the regret analysis that serves as a key component of the op-
timization analysis in Section 4. We first describe the dynamic regret used to measure
the performance of an online algorithm that generates a sequence of sampling distributions
{p̂}t≥1 in a non-stationary environment. Given any comparator sequence q1:T ∈ PTM−1, the
dynamic regret is defined as

D-RegretT (q1:T) = L̄
(
p̂1:T

)
− L̄

(
q1:T

)
. (18)

In contrast, the static regret measures the performance of an algorithm relative to the best
fixed sampling distribution, that is, it restricts q1 = · · · = qT (Namkoong et al., 2017; Salehi
et al., 2017; Borsos et al., 2018, 2019). When using a fixed comparator q1 = · · · = qT = q,
we write the regret as D-RegretT (q).

Recall that the total variation of a comparator sequence q1:T is TV
(
q1:T

)
=
∑T−1

t=1 ‖qt+1−
qt‖1. The total variation measures how variable a sequence is. The larger the total variation
TV(q1:T), the more variable q1:T is, and such a comparator sequence is harder to match.

15

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

We also need the following quantities that quantify how far qt is from A. Given qt ∈
PM−1 and α ∈ (0, 1], let

ψ(qt, α) :=

M∑
m=1

(α
M
− qtm

)
1
{
qtm <

α

M

}
, ω(qt, α) :=

∑M
m=1

(
α
M − q

t
m

)
1
{
qtm < α

M

}∑M
m=1

(
qtm − α

M

)
1
{
qtm ≥ α

M

} ,
φ(qt, α) :=

ω(qt, α)

1− ω(qt, α)
(
1− α

M

) .
(19)

We will use these quantities to characterize the projection error in the following theorem,
which is the main result of this section.

Theorem 6 Let ηt ≡ η for all t and p̂1:T be a sequence generated by Algorithm 1. For any
comparator sequence q1:T , where qt is allowed to be random, we have

D-RegretT (q1:T) ≤ logM

η
+

2 log(M/α)

η
E
[
TV

(
q1:T

)]
+

ηM6

2K2α6

T∑
t=1

E
[(
atmax

)2]
︸ ︷︷ ︸

Intrinsic Regret

+

8 log(M/α)

η

T∑
t=1

E
[
ψ(qt, α)

]
+

1

K

T∑
t=1

E
[
φ(qt, α)lt(q

t)
]

︸ ︷︷ ︸
Projection Error

,

where atmax := max1≤m≤M atm = max1≤m≤M λ2
m‖gtm‖22 for all t ∈ [T].

Proof The major challenge of the proof is to construct a projection of any comparator
sequence q1:T onto AT and bound the projection error. To the best of our knowledge, this
bound on the projection error of a dynamic sequence is novel. Since the comparator se-
quence can be arbitrary, thus analyzing the projection error is nontrivial. Another challenge
is to deal with the dynamic comparator, which requires us to connect the cumulative regret
with the total variation of the comparator sequence. See Appendix B.5 for more details.

From Theorem 1, we see that the bound on the dynamic regret consists of two parts. The
first part is the intrinsic regret, quantifying the difficulty of tracking a comparator sequence
in AT ; the second part is the projection error, arising from projecting the comparator se-
quence onto AT . As shown in Appendix B.5, we have 0 ≤ ω(qt, α) ≤ 1 for all α ∈ [0, 1],
which implies that φ(qt, α) ≤M/α. Besides, ψ(qt, α) ≤

∑M
m=1(α/M)1

{
qtm < (α/M)

}
≤ α,

and the projection error can be upper bounded by (8Tα log(M/α))/η+(M/α)
∑T

t=1 E[lt(q
t)].

More importantly, when qtm ∈ A, we have ψ(qt, α) = ω(qt, α) = φ(qt, α) = 0. Thus, when
the comparator sequence belongs to AT , the projection error vanishes and we only have the
intrinsic regret. As α decreases from one to zero, the intrinsic regret gets larger, while we
are allowing a larger class of comparator sequences; on the other hand, the projection error
decreases to zero, since the gap between A and PM−1 vanishes with α. An optimal choice
of α balances the two sources of regret.

16

Adaptive Client Sampling in Federated Learning

6. Adaptive-OSMD Sampler

In this section, we discuss an extension of OSMD Sampler that can automatically choose
the learning rate η and is agnostic to the optimization method. There are two main tuning
parameters in OSMD Sampler, namely α and η. As we show empirically in Section 7.3, the
performance of the algorithm is relatively robust to the choice of α. However, the choice of
η may have a large effect on the performance of OSMD Sampler. One way to choose η is
by minimizing the regret in Theorem 6, which is stated in the following corollary.

Corollary 7 Let ηt ≡ η for all t and p̂1:T be a sequence generated by Algorithm 1. Assume
that there exists Amax > 0 such that atmax ≤ Amax for all t, where atmax = max1≤m≤M atm =
max1≤m≤M λ2

m‖gtm‖22. For any comparator sequence q1:T , where qt is allowed to be random,
such that qt ∈ A for all t ∈ [T] and E[TV(q1:T)] ≤ β, let

η =
Kα3

M3Amax

√
2 logM + 4β log(M/α)

T
, (20)

then

D-RegretT (q1:T) ≤ M3Amax

Kα3

√
T

[
1

2
logM + β log (M/α)

]
. (21)

The proof of Corollary 7 follows directly from Theorem 6. Note that under Assump-
tion 1—3 and when λm = 1

M for all m ∈ [M], we have Amax = G2

M2 for Mini-batch SGD (Al-

gorithm 3) and Amax = BG2

M2 for FedAvg (Algorithm 4.2)7, thus (20) recovers (13) and (16).

In practice, since the gradient norm is usually decreasing, we can estimate Amax by
adding a pre-training phase where we broadcast the initial model parameter w0 to all
devices before the start of the training, and collect the returned ‖g0

m‖22 from all responsive
devices, which we denote as S0. Then we can estimate Amax by Âmax = maxm∈S0 λm‖g0

m‖22.

On the other hand, the optimal choice of β in (20) depends on specific problems, and
is hard to estimate before training starts. Thus, it is preferable to have a tuning strategy
that is adaptive to any β > 0, which we describe in the following.

The main idea is to run a set of expert algorithms, each with a different learning rate
for Algorithm 1. We then use a prediction-with-expert-advice algorithm to track the best
performing expert algorithm.8 More specifically, we define the set of expert learning rates
as

E :=

{
2e−1 · Kα3

M3Amax

√
2 logM

T

∣∣∣∣∣ e = 1, 2, . . . , E

}
, (22)

where

E =

⌈
1

2
log2

(
1 +

4 log(M/α)

logM
(T − 1)

)⌉
+ 1. (23)

Then for each ηe ∈ E , Adaptive-OSMD Sampler algorithm runs an expert algorithm to gen-
erate a sequence of sampling distributions p̂1:T

e . Meanwhile, it also runs a meta-algorithm

7. See Appendix B.3 and Appendix B.4 for proof.
8. We refer the reader to Cesa-Bianchi and Lugosi (2006, Chapter 2) for an overview of prediction-with-

expert-advice algorithms.

17

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Algorithm 5 Adaptive-OSMD Sampler

1: Input: Meta learning rate γ; the set of expert learning rates E = {η1 ≤ η2 ≤ · · · ≤ ηE}
with E = |E|; parameter α ∈ (0, 1], A = PM−1 ∩ [α/M,∞)M ; number of iterations T ;
initial distribution pinit.

2: Output: p̂1:T .
3: Set θ1

e = (1 + 1/E)/(e(e+ 1)) and p̂1
e = pinit, ∀e ∈ [E].

4: for t = 1, 2, . . . , T − 1 do
5: Compute p̂t =

∑E
e=1 θ

t
ep̂
t
e.

6: Sample St by p̂t.
7: for e = 1, 2, . . . , E do
8: Compute l̂t(p̂

t
e; p̂

t) via (6) and ∇l̂t(p̂te; p̂t) via (7).
9: Solve p̂t+1

e = arg minp∈A ηe〈p,∇l̂t(p̂te; p̂t)〉+DΦ

(
p ‖ p̂te

)
via Algorithm 2.

10: end for
11: Update the weight of each expert:

θt+1
e =

θte exp
{
−γl̂t(p̂te; p̂t)

}
∑E

e=1 θ
t
e exp

{
−γl̂t(p̂te; p̂t)

} , ∀e ∈ [E].

12: end for

that uses exponentially-weighted-average strategy to aggregate {p̂1:T
e }Ee=1 into a single out-

put p̂1:T , which achieves performance close to the best expert.

Algorithm 5 details Adaptive-OSMD Sampler. Note that since we can compute l̂t(p̂
t
e; p̂

t)
and ∇l̂t(p̂te; p̂t) directly, there is no need to use a surrogate loss as in van Erven and Koolen
(2016) and Zhang et al. (2018).

From the computational perspective, the major cost comes from solving step 9 of Algo-
rithm 5, which needs to be run for a total number of T |E| = O(T log2 T) times. Compared
with Algorithm 1, the computational complexity only increases by log2 T times.

We have the following regret guarantee on Algorithm 5.

Theorem 8 Assume that there exists Amax > 0 such that atmax ≤ Amax for all t, where
atmax = max1≤m≤M atm = max1≤m≤M λ2

m‖gtm‖22. Let p̂1:T be the output of Algorithm 5 with

γ = α
M

√
8K

TAmax
, pinit = punif and E as in (22). Then for any comparator sequence q1:T ,

where qt is allowed to be random, such that qt ∈ A for all t ∈ [T] and E[TV(q1:T)] ≤ β, we
have

D-RegretT (q1:T) ≤ 3M3Amax

Kα3

√
T

[
1

2
logM + β log (M/α)

]
+
M

α

√
TAmax

8K
(1 + 2 logE) .

Proof See Appendix B.6.

Since the additional regret term is Õ((M/α)
√
T/K), which is no larger than the first term

asymptotically in its dependency on T except for log terms, the bound on the regret is of
the same order as in (21). However, we do not need to specify β to set the learning rate.

18

Adaptive Client Sampling in Federated Learning

Following Theorem 8 and the proofs of Theorem 4 and Theorem 5, we then have the
following optimization guarantees on the Adaptive-OSMD Sampler.

Theorem 9 Assume Assumption 1—3 holds and λm = 1
M for all m ∈ [M].

• Mini-batch SGD with Adaptive-OSMD Sampler. Let {w1, . . . , wT } be the sequence
of iterates generated by Algorithm 3, where in Line 13, the sampling distribution is
updated by Algorithm 5 with Amax = G2

M2 . Let wR denote an element of that sequence
chosen uniformly at random. Besides, let µt = µ for all t ∈ [T], where

µ = min

{
1

L
,

1

σ

√
DFKBα

LT
,

1

ζT (α, β)

√
DFK

LT
,

√
DFKα

3
2

√
LMT

1
4G
(

1
2 logM + β log (M/α)

) 1
4

,

√
αDF

LG

(
K

T

) 1
2
√

1

1 + 2 logE

 ,

we then have

E
[∥∥∇F (wR)∥∥2

]
.
DFL

T
+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

+

√
DFLG

α

(
1

K

) 1
4
(

1

T

) 3
4 √

1 + 2 logE.

(24)

• FedAvg with Adaptive-OSMD Sampler. Let {w1, . . . , wT } be the sequence of iterates
generated by Algorithm 4, where in Line 13, the sampling distribution is updated by
Algorithm 5 with Amax = BG2

M2 . Let wR denote an element of that sequence chosen
uniformly at random. Besides, let µt = µ ≥ 1 and µtl = µl for all t ∈ [T], where

µl = min

 1

4µBL

√
1

2 + 1/α
,

(DF)
1
3(

4 + 2
α

) 1
3 µBL

2
3

(
ζ2
unif + σ2

2B

) 1
3
T

1
3

,

√
2DF

µB
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T

√
T

,

1

µ

√
2αDF

LG (1 + 2 logE)

(
1

B

) 3
4
(

8K

T

) 1
4

}
,

19

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

we then have

E
[∥∥∇F (wR)

∥∥2

2

]
.
DFL

√
2 + 1

α

T
+

(
4 + 2

α

) 1
3 (DFL)

2
3 ζ

2
3
unif

T
2
3

+

(
4 + 2

α

) 1
3 (DFL)

2
3σ

2
3

B
1
3T

2
3

+

√
DFLζT (α, β)√

TK
+

√
DFLσ√
TKBα

+

√
DFL√
T

(
1
2 logM + β log(M/α)

T

) 1
4

+

√
DFLG

α

(
1

KB

) 1
4
(

1

T

) 3
4 √

1 + 2 logE. (25)

Compare (14) with (24) (respectively, (17) with (25)), there is an additional error term
in (24) (respectively, (25)). However, this additional error term is no larger than the previous
error term when considering its dependency on T . Furthermore, when we let β = T c with
0 < c < 1 and treat all the other parameters except for β and T to be constants, we then
have the last term dominated by the penultimate term. On the other hand, in exchange to
the additional error, we do not need to specify β when setting the learning rate η.

Note that Adaptive-OSMD Sampler still requires the number of iterations T as an input;
however, in some applications, T is not available before the training starts. For example,
one may use some stopping criterion to determine when to stop. To deal with such cases,
in Appendix A.1, we introduce an extension of Adaptive-OSMD Sampler that does not
need T as input by using doubling trick. The extension algorithm enjoys similar regret and
optimization guarantees as Adaptive-OSMD Sampler. See Appendix A.1 for more details.

7. Simulation Experiments

In this section, we use simulated data to demonstrate the performance of Adaptive-OSMD
Sampler (Algorithm 5). We compare our method against uniform sampling in Section 7.1
and compare against other bandit feedback online learning samplers in Section 7.2. In
addition, we examine the robustness of Adaptive-OSMD Sampler to the choice of α in
Section 7.3, while in Section 7.4, we compare Adaptive-OSMD Sampler with the Lipschitz
constant based importance sampling.

We generate data as follows. We set the number of clients as M = 100, and each client
has nm = 100 samples, m ∈ [M]. Samples on each client are generated as

ym,i = 〈w?, xm,i〉+N(0, 0.12), i ∈ [nm], (26)

where the coefficient vector w? ∈ Rd has elements generated as i.i.d. N(10, 3), and the
feature vector xm,i ∈ Rd is generated as xm,i ∼ N(0,Σm), where Σm = sm · Σ, Σ is a
diagonal matrix with Σjj = κ(j−1)/(d−1)−1, ∀j ∈ [d] and κ > 0 is the condition number of Σ.

We generate {sm}Mm=1 i.i.d. from eN(0,σ2) and rescale them as sm ← (sm/maxm∈[M] sm) ×
10 so that sm ≤ 10 for all m ∈ [M]. In this setting, κ controls the difficulty of each
problem when solved separately, while σ controls the level of heterogeneity across clients.
In all experiments, we fix κ = 25, which corresponds to a hard problem, and change σ to
simulate different heterogeneity levels. We expect that uniform sampling suffers when the

20

Adaptive Client Sampling in Federated Learning

0 250 500 750 1000
2

0

2

4

lo
g(

lo
ss

)

= 1.0

0 250 500 750 1000

0

2

4

= 3.0

0 250 500 750 1000

0

2

4

6
= 10.0

0 250 500 750 1000
t

9

10

11

12

lo
g(

re
gr

et
)

0 250 500 750 1000
t

8

10

12

0 250 500 750 1000
t

10

15

Uniform Ada-OSMD with = 0.4 Optimal

Figure 1: The training loss (top row) and cumulative regret (bottom row) are compared
for the Adaptive-OSMD Sampler, Uniform Sampler, and Optimal Sampler, under
σ = 1.0, σ = 3.0, and σ = 10.0. Solid lines represent the mean values, while the
shaded regions indicate mean± standard deviation across independent runs.

heterogeneity level is high. The dimension d of the problem is set as d = 10. The results
are averaged over 10 independent runs.

We use the mean squared error loss defined as

L(w) =
1

M

M∑
m=1

Lm(w), where Lm(w) =
1

2nm
(ym,i − 〈w?, xm,i〉)2.

We use the stochastic gradient descent to make global updates. At each round t, we choose
a subset of K = 5 clients, denoted as St. For each client m ∈ St, we choose a mini-batch
of samples, Btm, of size B̄ = 10, and compute the mini-batch stochastic gradient. The
parameter w is updated as

wt+1 = wt +
µSGD

MKB̄

∑
m∈St

1

ptm

∑
i∈Btm

(ym,i − 〈w?, xm,i〉) · xm,i,

where µSGD is the learning rate, set as µSGD = 0.1 in simulations.
In all experiments, we set α in Adaptive-OSMD Sampler as α = 0.4. The tuning

parameters for MABS, VRB and Avare are set as in their original papers.

7.1 Adaptive-OSMD Sampler vs Uniform Sampling

The results of the training process and the cumulative regret are shown in Figure 1. For the
training loss, we see that when the heterogeneity level is low (σ = 1.0), the uniform sampling
performs as well as Adaptive-OSMD Sampler and theoretically optimal sampling; however,
as the heterogeneity level increases, the performance of uniform sampling gradually suffers;

21

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

0 250 500 750 1000
2.5

0.0

2.5

5.0

7.5

lo
g(

lo
ss

)

= 1.0

0 250 500 750 10002

0

2

4

6
= 3.0

0 250 500 750 10002

0

2

4

6
= 10.0

0 250 500 750 1000
t

8

10

12

14

16

lo
g(

re
gr

et
)

0 250 500 750 1000
t

8

10

12

14

0 250 500 750 1000
t

8

10

12

14

Ada-OSMD MABS VRB Avare Optimal

Figure 2: The training loss (top row) and cumulative regret (bottom row) are compared
across the Adaptive-OSMD Sampler, MABS, VRB, and Avare methods for σ =
1.0, σ = 3.0, and σ = 10.0. Solid lines represent the mean values, while shaded
regions indicate mean± standard deviation across independent runs.

when σ = 10.0, uniform sampling performs poorly. On the other hand, Adaptive-OSMD
Sampler performs well across all levels of heterogeneity and is very close to the theoretically
optimal sampling. Similarly, for the cumulative regret, when the heterogeneity level is low,
the cumulative regret of uniform sampling is close to Adaptive-OSMD Sampler; however,
when the heterogeneity level increases, the cumulative regret of uniform sampling gets much
larger than Adaptive-OSMD Sampler. Based on the above results, we can conclude that
while the widely used choice of uniform sampling may be reasonable when heterogeneity is
low, our proposed sampling strategy is robust across different levels of heterogeneity, and
thus should be considered as the default option.

7.2 Adaptive-OSMD Sampler vs MABS vs VRB vs Avare

We compare Adaptive-OSMD Sampler to other bandit feedback online learning samplers:
MABS (Salehi et al., 2017), VRB (Borsos et al., 2018) and Avare (Hanchi and Stephens,
2020). Training loss and cumulative regret are shown in Figure 2. We see that while VRB
and Avare perform better when the heterogeneity level is low and MABS performs better
when the heterogeneity level is high, Adaptive-OSMD Sampler always achieves the best in
both training loss and cumulative regret across all different levels of heterogeneity. Thus,
we conclude that Adaptive-OSMD is a better choice than other online learning samplers.

7.3 Robustness of Adaptive-OSMD Sampler to the Choice of α

We examine the robustness of Adaptive-OSMD Sampler to the choice of α. We run
Adaptive-OSMD Sampler separately for each α ∈ {0.01, 0.1, 0.4, 0.7, 0.9, 1.0}. Note that
when α = 1.0, the Adaptive-OSMD Sampler outputs a uniform distribution. Training loss

22

Adaptive Client Sampling in Federated Learning

0 250 500 750 1000
2

0

2

4

6

lo
g(

lo
ss

)

= 1.0

0 250 500 750 1000
2

0

2

4

= 3.0

0 250 500 750 1000

0

2

4

6

= 10.0

0 250 500 750 1000
t

8
9

10
11
12

lo
g(

re
gr

et
)

0 250 500 750 1000
t

8

10

12

14

0 250 500 750 1000
t

10

15

= 0.01 = 0.1 = 0.4 = 0.7 = 0.9 = 1.0 Optimal

Figure 3: The training loss (top row) and cumulative regret (bottom row) are shown for the
Adaptive-OSMD Sampler with different values of α under σ = 1.0, σ = 3.0, and
σ = 10.0. Solid lines represent the mean values, while shaded regions indicate
mean± standard deviation across independent runs.

and cumulative regret are shown in Figure 3. We observe that Adaptive-OSMD Sampler
is robust to the choice of α, and performs well as long as α is not too close to zero or too
close to one.

7.4 Dynamic Sampling Distribution v.s. Fixed Sampling Distribution

In this paper, we allow both our sampling distribution and competitor sampling distribution
to change over time, while previous studies either use a fixed sampling distribution (Zhao
and Zhang, 2015; Needell et al., 2016) or they compare against a fixed sampling distribu-
tion (Namkoong et al., 2017; Salehi et al., 2017; Borsos et al., 2018, 2019). In this section,
we show that under certain settings, a dynamic sampling distribution can achieve a sig-
nificant advantage over a fixed sampling distribution. More specifically, we compare the
Adaptive-OSMD Sampler with the Lipschitz constant-based importance sampling distribu-
tion proposed by Zhao and Zhang (2015); Needell et al. (2016), which we denote as pIS.

We still use the same model as in (26) to generate data. but we generate w? and xm,i
differently. Motivated by Zhao et al. (2023), for each m ∈ [M], we choose uniformly at
random one dimension among Rd, denoted as supp(m) ∈ [d], as the support of xm,i for all
i ∈ [nm], while the remaining dimensions of xm,i are set to be zero. The nonzero dimension

of xm,i is generated from N(1.0, 0.12). The entries of w? are generated i.i.d. from eN(0,ν2).
Therefore, ν controls the variance of entries of w?.

Besides, we choose the optimal stepsize from the set {1.0, 0.5, 0.1, 0.05, 0.01} for each
method separately. The final result is shown in Figure 4. We see that Adaptive-OSMD
Sampler performs better than pIS across all levels of ν. Note that in practice, in order
to implement pIS, we need prior information about Lipschitz constants of Lm(·)’s, while

23

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

0 250 500 750 1000

4

2

0

lo
g(

lo
ss

)

= 1.0

0 250 500 750 1000
5

0

5

10
= 3.0

0 250 500 750 1000
0

10
20
30
40

= 10.0

0 250 500 750 1000
t

2

4

6

lo
g(

re
gr

et
)

0 250 500 750 1000
t

10.0
12.5
15.0
17.5
20.0

0 250 500 750 1000
t

44

46

48

50

Ada-OSMD IS

Figure 4: The training loss (top row) and cumulative regret (bottom row) are compared
between the Adaptive-OSMD Sampler and pIS for ν = 1.0, ν = 3.0, and ν = 10.0.
Solid lines represent the mean values, while shaded regions illustrate mean ±
standard deviation across independent runs.

Adaptive-OSMD Sampler does not need prior information. This way, our proposed method
does not only have better practical performance, but also requires less prior information.

8. Real Data Experiment

We compare Adaptive-OSMD Sampler with uniform sampling and other online learning
samplers including MABS (Salehi et al., 2017), VRB (Borsos et al., 2018) and Avare (Hanchi
and Stephens, 2020) on real data. We use three commonly used computer vision data sets:
MNIST (LeCun and Cortes, 2010)9, KMINIST (Clanuwat et al., 2018)10, and FMINST (Xiao
et al., 2017)11. We set the number of devices to be M = 500. To better simulate the sit-
uation where our method brings significant convergence speed improvement, we create a
highly skewed sample size distribution of the training set among clients: 65% of clients have
only one training sample, 20% of clients have 5 training samples, 10% of clients have 30
training samples, and 5% of clients have 100 training samples. This setting tries to illustrate
a real-life situation where most of the data come from a small fraction of users, while most
of the users have only a small number of samples. The skewed sample size distribution is
common in other FL data sets, such as LEAF (Caldas et al., 2018). The sample size dis-

9. Yann LeCun and Corinna Cortes hold the copyright of MNIST data set, which is a derivative work from
original NIST data sets. MNIST data set is made available under the terms of the Creative Commons
Attribution-Share Alike 3.0 license.

10. KMNIST data set is licensed under a permissive CC BY-SA 4.0 license, except where specified within
some benchmark scripts.

11. FMNIST data set is under The MIT License (MIT) Copyright c© [2017] Zalando SE,
https://tech.zalando.com

24

Adaptive Client Sampling in Federated Learning

0 20 40 60 80 100
number of samples

0

100

200

300

nu
m

b
er

of
us

er
s

Sample size distribution

Figure 5: The sample size distribution in the training set across clients.

tribution in the training set is shown in Figure 5. In addition, each client has 10 validation
samples used to measure the prediction accuracy of the model over the training process.

We use a multi-class logistic regression model. For a given gray scale picture with the
label y ∈ {1, 2, . . . , C}, we unroll its pixel matrix into a vector x ∈ Rp. Given a parameter
matrix W ∈ RC×p, the training loss function defined in (1) is

φ(W ;x, y) := lCE (ς(Wx) ; y) ,

where ς(·) : RC → RC is the softmax function defined as

[ς(x)]i =
exp(xi)∑K
j=1 exp(xj)

, for all x ∈ RC ,

and lCE(x ; y) =
∑C

i=1 1(y = i) log xi, x ∈ RC , y ∈ {1, . . . , C}, is the cross-entropy function.
We use the same algorithms and tuning parameters as in Section 7. Learning rate in

SGD is set to 0.075 for MNIST and KMNIST, and is set to 0.03 for FMNIST. The total
number of communication rounds is to 1, 000. In each round of communication, we choose
K = 10 clients to participate (2% of total number of clients). For a chosen client m, we
compute its local mini-batch gradient with the batch size equal to min{5, nm}, where nm is
the training sample size on the client m.

Figure 6 shows both the training loss and validation accuracy. Each figure shows the
average performance over 5 independent runs. We use the same random seed for both
Adaptive-OSMD Sampler and competitors, and change random seeds across different runs.
The main focus is on minimizing the training loss, and the validation accuracy is only
included for completeness. We observe that Adaptive-OSMD Sampler performs better than
uniform sampling and other online learning samplers across all data sets.

9. Conclusion

We studied the client sampling problem in FL. We proposed an online learning with bandit
feedback approach to tackle client sampling. We used online stochastic mirror descent
to solve the online learning problem and applied the online ensemble method to choose

25

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

0 250 500 750 1000

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

lo
g(

L
os

s)

MNIST

0 250 500 750 1000

-2.50

-2.00

-1.50

-1.00

-0.50

lo
g(

L
os

s)

KMNIST

0 250 500 750 1000

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0.50

lo
g(

L
os

s)

FMNIST

0 250 500 750 1000
Communication Rounds

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0 250 500 750 1000
Communication Rounds

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

0 250 500 750 1000
Communication Rounds

0.00

0.25

0.50

0.75

1.00

A
cc

ur
ac

y

Uniform Ada-OSMD MABS VRB Avare

Figure 6: Comparison of Adaptive-OSMD Sampler, Uniform Sampler, and Other Online
Learning Samplers The comparison is based on real data, evaluating training loss
(top row) and validation accuracy (bottom row). Each column represents a differ-
ent data set. The Adaptive-OSMD Sampler demonstrates superior performance,
being both faster and more stable. The results represent the average performance
over five independent runs.

the tuning parameters. We established an upper bound on the dynamic regret relative to
any sequence of sampling distributions. Besides, we provide optimization guarantees for
our sampling method when used with mini-batch SGD and FedAvg. Extensive numerical
experiments demonstrated the benefits of our approach over both widely used uniform
sampling and other competitors.

In this paper, we have focused on sampling with replacement. However, sampling with-
out replacement would ideally be a more efficient approach. In Section A.2, we discussed
a natural extension of Adaptive-OSMD Sampler to a setting where sampling without re-
placement is used. However, this approach does not directly minimize the variance of the

26

Adaptive Client Sampling in Federated Learning

gradient gt. When sampling without replacement is used, the variance function becomes
more complicated and the design of an algorithm to directly minimize the variance is an
interesting future direction.

Besides, in federated learning, privacy is a major concern. In this paper, the non-
uniform sampling distribution may make the protection of clients’ privacy more challenging
than uniform sampling. One possible solution is to add noise to the gradient feedback and
protect the clients’ privacy under the Differential Privacy (DP) concept (Dwork, 2008).
However, the added noise may hurt the performance of our sampling design and increase
the regret. Studying the trade-off between privacy protection and regret is an important
direction for addressing societal concerns in real-world applications.

Other fruitful future directions include the design of sampling algorithms for minimizing
personalized FL objectives and sampling with physical constraints in the FL system, which
we discuss in Appendix D.

Acknowledgments

This work was completed in part with resources provided by the University of Chicago
Booth Mercury Computing Cluster. The research of MK is supported in part by NSF
Grant ECCS-2216912.

27

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Appendix A. Extensions of Adaptive-OSMD Sampler

In this section, we discuss additional extensions of Adaptive-OSMD Sampler. In Section A.1,
we discuss how to choose η without knowing T in advance. In Section A.2, we discuss how
to extend Adaptive-OSMD Sampler to sample without replacement setting.

A.1 Adaptive-OSMD Sampler with Doubling Trick

Algorithm 5 requires the total number of iterations T as input, which is not always available
in practice. In those cases, we use doubling trick (Cesa-Bianchi and Lugosi, 2006, Section
2.3) to avoid this requirement. The basic idea is to restart Adaptive-OSMD Sampler at
exponentially increasing time points Tb = 2b−1, b ≥ 1. The learning rates of experts
in Algorithm 5 are reset at the beginning of each time interval, and the meta-algorithm
learning rate γ is chosen optimally for the interval length.

More specifically, let Amax > 0 such that atmax ≤ Amax for all t, where atmax =
max1≤m≤M atm = max1≤m≤M λ2

m‖gtm‖22. At the time point Tb, we let

Eb :=

{
2e−

b
2
− 1

2 · Kα
3
√

2 logM

M3Amax

∣∣∣∣ e = 1, 2, . . . , Eb

}
, (27)

where

Eb =

⌈
1

2
log2

(
1 +

4 log(M/α)

logM
(2b−1 − 1)

)⌉
+ 1, (28)

and γb = α
M

√
8K

2b−1Amax
, b ≥ 1.

In a practical implementation, at the time point t = Tb, instead of initializing all
expert algorithms using uniform distribution, we can initialize them with the output of
the meta-algorithm for t = Tb − 1. Besides, since the gradient norm is usually decreas-
ing, we can estimate Amax by adding a pre-training phase where we broadcast the initial
model parameter w0 to all devices before the start of the training, and collect the returned
‖g0
m‖22 from all responsive devices, which we denote as S0. Then we can estimate Amax by

Âmax = maxm∈S0 λm‖g0
m‖22.

Adaptive-Doubling-OSMD Sampler is detailed in Algorithm 6. From the computational
perspective, by the proof of Theorem 10, Algorithm 6 needs to run Step 9 of Algorithm 5 for
a total number of O(T |E|2) = O(T blog2 T c) times. Therefore, the computational complex-
ity of Adaptive-Doubling-OSMD Sampler is asymptotically the same as that of Adaptive-
OSMD Sampler, while it increases by only a log(T) factor compared to OSMD Sampler. The
following theorem provides a bound on the dynamic regret for Adaptive-Doubling-OSMD
Sampler.

Theorem 10 Suppose the training is stopped after T iterations. Let p̂1:T be the output of
Algorithm 6, where punif is used in Step 6. Then for any comparator sequence q1:T , where
qt is allowed to be random, such that qt ∈ A for all t ∈ [T] and E[TV(q1:T)] ≤ β, we have

D-RegretT (q1:T) ≤ 6M3Amax

(
√

2− 1)Kα3

√
T

[
1

2
logM + β log (M/α)

]
+

2M

(
√

2− 1)α

√
TAmax

8K
(1 + 2 logE).

28

Adaptive Client Sampling in Federated Learning

Algorithm 6 Adaptive-OSMD Sampler with Doubling Trick (Adaptive-Doubling-OSMD)

1: Input: Paramter α and Amax.
2: Output: p̂t for t = 1, . . . , T .
3: while True do
4: Set Eb as in (27).

5: Let γb = α
M

√
8K

2b−1Amax
.

6: Obtain {p̂t}2b−1
t=2b−1 from Algorithm 5 with parameters: γb, Eb, α, the number of itera-

tions 2b−1, and the initial distribution punif or p̂2b−1−1 (when b > 1).
7: if Training Process is Converged then
8: Break.
9: end if

10: Let b← b+ 1.
11: end while

Proof See Appendix B.8.

Compare Theorem 10 with Theorem 8, we see that the regret bound of Adaptive-
Doubling-OSMD has the same order as that of Adaptive-OSMD Sampler. However, Adaptive-
Doubling-OSMD Sampler does not need to know T in advance. Mimicking the proof of The-
orem 9, we can also show the optimization guarantees on Adaptive-Doubling-OSMD with
mini-batch SGD and FedAvg, which is basically the same as Theorem 9, thus is omitted
here.

A.2 Adaptive Sampling Without Replacement

In the discussion so far, we have assumed that the set St is obtained by sampling with
replacement from pt. When K is relatively large compared to M and pt is far from uniform
distribution, sampling without replacement can be more efficient than sampling with re-
placement. However, when sampling without replacement using pt, the variance reduction
loss does not have a clean form as in (4). As a result, an online design of the sampling distri-
bution is more challenging. In this section, we discuss how to use the sampling distribution
obtained by Adaptive-OSMD Sampler to sample clients without replacement, following the
approach taken in Hanchi and Stephens (2020).

The detailed sampling procedure is described in Algorithm 7. We still use Adaptive-
OSMD Sampler to update the sampling distribution. However, we use the designed sampling
distribution in a way that no client is chosen twice. Furthermore, Step 18 of Algorithm 7
constructs the gradient estimate with the following properties.

Proposition 11 (Proposition 3 of Hanchi and Stephens (2020)) Let p̂t = p and let
g̃t be as in Step 18 of Algorithm 7. Note that g̃t = g̃t(p) depends on p. Recall that J t =∑M

m=1 λmg
t
m. We have

ESt

[
g̃t
]

= J t and arg min
p∈PM−1

ESt

[
‖g̃t − J t‖22

]
= arg min

p∈PM−1

lt(p),

29

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Algorithm 7 Adaptive sampling without replacement

1: Input: w1 and p̂1.
2: for t = 1, 2, . . . , T − 1 do
3: Let p̂t(1) = p̂t and sample mt

1 from [M] by p̂t(1).
4: for k = 2, · · · ,K do

5:
/* Design the sampling distribution for sampling the k-th client
in the t-th round */

6: Construct p̂t(k) by letting

p̂t(k),m =

{ (
1−

∑k−1
l=1 p̂

t
mt

l

)−1
p̂tm if m ∈ [M]\{mt

1, . . . ,m
t
k−1}

0 otherwise.

7: /* Sample the k-th client */
8: Sample mt

k from [M]\{mt
1, . . . ,m

t
k−1} by p̂t(k).

9: end for
10: Let St = {mt

1, · · · ,mt
K}.

11: The server broadcasts the model parameter wt to clients in St.

12: The clients in St compute and upload the set of local gradients
{
gt
mt

1
, · · · , gt

mt
K

}
.

13: /* Construct global gradient estimate */
14: Let gt(1) = λt

mt
1
gt
mt

1
/p̂t

(1),mt
1
.

15: for k = 2, · · · ,K do
16: Let gt(k) = λt

mt
k
gt
mt

k
/p̂t

(k),mt
k

+
∑k−1

l=1 λ
t
mt

l
gt
mt

l
.

17: end for
18: Let g̃t = K−1

∑K
k=1 g

t
(k).

19: /* Update the model weight based on the global gradient estimate */
20: Obtain the updated model parameter wt+1 using wt and g̃t.
21: /* Update sampling distribution */
22: Let atm = λ2

m‖gtm‖2 for m ∈ St.
23: Input {atm}m∈St into Adaptive-OSMD Sampler to get p̂t+1.
24: end for

where lt(·) is defined in (4) and the expectation is taken over St.

From Proposition 11, we see that g̃t is an unbiased stochastic gradient. Furthermore, the
variance of g̃t is minimized by the same sampling distribution that minimizes the variance
reduction loss in (4). Therefore, it is reasonable to use the sampling distribution generated
by Adaptive-OSMD Sampler to design g̃t.

Following the same simulation setup as in Section 7, we empirically compare sampling
with replacement and sampling without replacement when used together with Adaptive-
OSMD sampler. Training loss and cumulative regret are shown in Figure 7. We observe
that using sampling with replacement results in a slightly smaller cumulative regret and a
slightly better training loss. However, these differences are not significant.

30

Adaptive Client Sampling in Federated Learning

0 250 500 750 1000
2

0

2

4

6

lo
g(

lo
ss

)

= 1.0

0 250 500 750 1000

0

2

4
= 3.0

0 250 500 750 1000

0

2

4
= 10.0

0 250 500 750 1000
t

9

10

11

lo
g(

re
gr

et
)

0 250 500 750 1000
t

8

10

12

0 250 500 750 1000
t

8

10

12

Ada-OSMD with = 0.4 Ada-OSMD-woReplace with = 0.4 Optimal

Figure 7: The training loss (top row) and cumulative regret (bottom row) are compared for
the Adaptive-OSMD Sampler with replacement and without replacement, across
σ = 1.0, σ = 3.0, and σ = 10.0. Solid lines represent the mean values, while
shaded regions indicate mean± standard deviation across independent runs.

Appendix B. Technical proofs

B.1 Proof of (11)

Note that

ζ2
T (α, β) =

1

T
sup
w1

min
p1∈A

· · · sup
wT

min
pT∈A

T∑
t=1

V (pt, wt) subject to TV
(
p1:T

)
≤ β

≤ 1

T
sup
w1

min
p1∈A

· · · sup
wT

min
pT∈A

T∑
t=1

V (pt, wt) subject to TV
(
p1:T

)
= 0

=
1

T
sup
w1

min
p∈A

sup
w2

· · · sup
wT

T∑
t=1

V (p, wt)

≤ 1

T
min
p∈A

sup
w1

· · · sup
wT

T∑
t=1

V (p, wt)

≤ 1

T
sup
w1

· · · sup
wT

T∑
t=1

V (pf , w
t) = sup

w
V (pf , w) = ζ2

fix(α) ≤ ζ2
unif.

B.2 Proposition 12 and Its Proof

Proposition 12 Let

p̃t+1
m = ptm exp

{
N
{
m ∈ St

}
ηta

t
m/(K

2(ptm)3)
}
, m ∈ [M].

31

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Let π : [M] 7→ [M] be a permutation such that p̃t+1
π(1) ≤ p̃t+1

π(2) ≤ · · · ≤ p̃t+1
π(M). Let mt

? be the
smallest integer m such that

p̃t+1
π(m)

(
1− m− 1

M
α

)
>

α

M

M∑
j=m

p̃t+1
π(j).

Then

p̂t+1
m =

{
α/M if π(m) < mt

?(
(1− ((mt

? − 1)/M)α)p̃t+1
m

)
/
(∑M

j=mt
?
p̃t+1
π(j)

)
otherwise.

Proof First, we show that the solution p̂t+1 in Step 7 of Algorithm 1 can be found as

p̃t+1 = arg min
p∈D

ηt〈p,∇l̂t(p̂t; p̂t)〉+DΦ

(
p ‖ p̂t

)
,

p̂t+1 = arg min
p∈A

DΦ

(
p ‖ p̃t+1

)
.

The optimality condition for p̃t+1 implies that

ηt∇l̂t(p̂t; p̂t) +∇Φ(p̃t+1)−∇Φ(p̂t) = 0. (29)

By Lemma 14, the optimality condition for p̂t+1 implies that

〈p− p̂t+1,∇Φ(p̂t+1)−∇Φ(p̃t+1)〉 ≥ 0, for all p ∈ A.

Combining the last two displays, we have

〈p− p̂t+1, ηt∇l̂t(p̂t; p̂t) +∇Φ(p̂t+1)−∇Φ(p̂t)〉 ≥ 0, for all p ∈ A.

By Lemma 14, this is the optimality condition for p̂t+1 to be the solution in Step 7 of
Algorithm 1.

Note that (29) implies that

− ηt
K2
· atm

(ptm)3
N
{
m ∈ St

}
+ log(p̃t+1

m)− log(p̂tm) = 0, m ∈ [M].

Therefore,

p̃t+1
m = p̂tm exp

(
ηta

t
m

K2 (p̂tm)3N
{
m ∈ St

})
, m ∈ [M],

and the final result follows from Lemma 19.

32

Adaptive Client Sampling in Federated Learning

B.3 Proof of Theorem 4

Our proof follows the similar technique used in the proof of Theorem 2.1 of Ghadimi and
Lan (2013) except for the novel technique of construction of a ghost subset that is drawn
from [M] from the comparator sampling distribution. Note that the ghost subset is only
constructed for theoretical purpose and does not need to be computed in practice.

Given any {wt}Tt=1
∆
= w1:T , let q1:T

s be the solution of the problem

ζ̃(w1:T) =
1

T
min
p1

. . .min
pT

T∑
t=1

V (pt, wt),

subject to TV
(
p1:T

)
≤ β and pt ∈ σ(w1, . . . , wt),

(30)

where σ(w1, . . . , wt) is the σ-algebra generated by {w1, . . . , wt}. We then have

ζ̃(w1:T) =
1

T

T∑
t=1

V (qts(w
t), wt) and TV(q1:T

s) ≤ β.

Note that by the definition of ζ2
T (α, β), we have

1

T
sup
w1

· · · sup
wT

T∑
t=1

V (qts, w
t) = ζ2

T (α, β). (31)

Let δt = gt −∇F (wt). Under Assumption 1, by Lemma 15, we have

F
(
wt+1

)
≤ F

(
wt
)

+
〈
∇F

(
wt
)
, wt+1 − wt

〉
+
L

2
µ2
∥∥gt∥∥2

2

= F
(
wt
)
− µ

〈
∇F

(
wt
)
, gt
〉

+
L

2
µ2
∥∥gt∥∥2

2

= F
(
wt
)
− µ

∥∥∇F (wt)∥∥2

2
− µ

〈
∇F

(
wt
)
, δt
〉

+
L

2
µ2
[∥∥∇F (wt)∥∥2

2
+ 2

〈
∇F

(
wt
)
, δt
〉

+
∥∥δt∥∥2

2

]
= F

(
wt
)
−
(
µ− L

2
µ2

)∥∥∇F (wt)∥∥2

2
−
(
µ− Lµ2

) 〈
∇F

(
wt
)
, δt
〉

+
L

2
µ2
∥∥δt∥∥2

2
.

(32)

We use the notation ESt [·] to denote the expectation taken with respect to St. Note that
ESt

[
gt | wt, p̂t

]
= ∇F (wt), thus we have E

[
δt | wt, p̂t

]
= 0, and

E
[〈
∇F

(
wt
)
, δt
〉]

= E
[
E
[〈
∇F

(
wt
)
, δt
〉
| wt, p̂t

]]
= 0. (33)

On the other hand, conditioned on w1, . . . , wt, qts is a deterministic sampling distribution.
We can then assume that there is a ghost subset of clients S̃t with |S̃t| = K, which is drawn
from [M] with sampling distribution qts. Recall that J t = (1/M)

∑M
m=1 g

t
m. Besides, we let

g̃t :=
1

MK

∑
m∈S̃t

gtm
qts,m

.

33

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Then we have

ESt

[∥∥δt∥∥2

2
| w1, . . . , wt, p̂t

]
= ESt

[∥∥gt − J t + J t −∇F (wt)
∥∥2

2
| w1, . . . , wt, p̂t

]
= ESt

[∥∥gt − J t∥∥2

2
| w1, . . . , wt, p̂t

]
+
∥∥J t −∇F (wt)

∥∥2

2

= lt
(
p̂t
)
− 1

K

∥∥J t∥∥2

2
+
∥∥J t −∇F (wt)

∥∥2

2

= lt
(
qts
)
− 1

K

∥∥J t∥∥2

2
+
∥∥J t −∇F (wt)

∥∥2

2
+ lt

(
p̂t
)
− lt

(
qts
)

= ES̃t

[∥∥g̃t −∇F (wt)
∥∥2

2
| w1, . . . , wt, p̂t

]
+ lt

(
p̂t
)
− lt

(
qts
)
.

Since

E
[∥∥g̃t −∇F (wt)

∥∥2

2
| w1, . . . , wt, p̂t

]
= E

∥∥∥∥∥∥ 1

MK

∑
m∈S̃t

gtm
qts,m

−∇F (wt)

∥∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

≤ 2E

∥∥∥∥∥∥ 1

MK

∑
m∈S̃t

gtm
qts,m

− 1

MK

∑
m∈S̃t

∇Fm(wt)

qts,m

∥∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

+ 2E

∥∥∥∥∥∥ 1

MK

∑
m∈S̃t

∇Fm(wt)

qts,m
−∇F (wt)

∥∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

=

2

M2K2
E

∑
m∈S̃t

E

[∥∥gtm −∇Fm(wt)
∥∥2

2

(qts,m)2

]
| w1, . . . , wt, p̂t

+

2

K

(
1

M2

M∑
m=1

∥∥∇Fm(wt)
∥∥2

2

qts,m
−
∥∥∇F (wt)

∥∥2

2

)

=
2σ2

M2KB

M∑
m=1

1

qts,m
+

2

K
V (qts, w

t) ≤ 2σ2

KBα
+

2

K
V (qts, w

t),

where the penultimate line follows that E
[∥∥gtm −∇Fm(wt)

∥∥2

2

]
≤ σ2/B and the definition

of V (p, w), and the last line follows that qts,m ≥ α/M since qts ∈ A.

Thus, we have

E
[∥∥δt∥∥2

2
| w1, . . . , wt, p̂t

]
≤ 2σ2

KBα
+

2

K
V (qts, w

t) + lt
(
p̂t
)
− lt

(
qts
)
,

34

Adaptive Client Sampling in Federated Learning

which implies that

T∑
t=1

E
[∥∥δt∥∥2

2

]
≤ 2Tσ2

KBα
+

2

K
E

[
T∑
t=1

V (qts, w
t)

]
+ E

[
T−1∑
t=0

lt
(
p̂t
)
−
T−1∑
t=0

lt
(
qts
)]

=
2Tσ2

KBα
+

2

K
E

[
T∑
t=1

V (qts, w
t)

]
+ D-RegretT (q1:T

s).

≤ 2Tσ2

KBα
+

2Tζ2
T (α, β)

K
+ D-RegretT (q1:T

s), (34)

where the last inequality follows the fact that

E

[
1

T

T∑
t=1

V (qts, w
t)

]
=

1

T
Ew1,...,wT

[
T∑
t=1

V (qts, w
t)

]
≤ 1

T
sup
w1

· · · sup
wT

T∑
t=1

V (qts, w
t) = ζ2

T (α, β),

and the last equality is by (31). Combine (32), (33) and (34), we have(
µ− L

2
µ2

) T∑
t=1

E
[∥∥∇F (wt)∥∥2

2

]
≤ F (w1)− F (wT) +

L

2
µ2

(
2Tσ2

KBα
+

2Tζ2
T (α, β)

K
+ D-RegretT (q1:T

s)

)
≤ DF +

L

2
µ2

(
2Tσ2

KBα
+

2Tζ2
T (α, β)

K
+ D-RegretT (q1:T

s)

)
.

Since µ ≤ 1/L, thus (µ− L
2µ

2) = µ(1− L
2µ) ≥ µ/2, thus

1

T

T∑
t=1

E
[∥∥∇F (wt)∥∥2

2

]
≤ 2DF

Tµ
+ Lµ

(
2σ2

KBα
+

2ζ2
T (α, β)

K
+

D-RegretT (q1:T
s)

T

)
. (35)

Next we bound D-RegretT (q1:T
s). Note that

atmax =
1

M2
max

1≤m≤M
‖gtm‖22 =

1

M2
max

1≤m≤M

∥∥∥∥∥ 1

B

B∑
b=1

∇φ(wt; ξt,bm)

∥∥∥∥∥
2

2

≤ G2

M2

since ‖∇φ(w; ξ)‖2 ≤ G for all w and ξ, then by Theorem 6 and the fact that qts ∈ A for all
t ∈ [T] and TV(q1:T

s) ≤ β, we have

D-RegretT (q1:T
s) ≤ logM

η
+

2 log(M/α)

η
E
[
TV

(
q1:T

)]
+

ηM6

2K2α6

T∑
t=1

E
[(
atmax

)2]
≤ logM

η
+

2β log(M/α)

η
+
ηTM2G4

2K2α6
.

Let

η =
Kα3

MG2

√
2 logM + 4β log(M/α)

T
,

35

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

we then have

D-RegretT (q1:T
s) ≤

√
TMG2

Kα3

√
1

2
logM + β log (M/α).

Plug the above inequality into (35), we have

1

T

T∑
t=1

E
[∥∥∇F (wt)∥∥2

2

]

≤ 2DF

Tµ
+ Lµ

 2σ2

KBα
+

2ζ2
T (α, β)

K
+
MG2

Kα3

√
1
2 logM + β log (M/α)

T

 .

Finally, let

µ = min

 1

L
,

1

σ

√
DFKBα

LT
,

1

ζT (α, β)

√
DFK

LT
,

√√√√ DFKα3

L
√
TMG2

√
1
2 logM + β log (M/α)

 ,

(36)
then we have

E
[∥∥∇F (wR)∥∥2

2

]
=

1

T

T∑
t=1

E
[∥∥∇F (wt)∥∥2

2

]

.
DF

T
max

L, σ
√

LT

DFKBα
, ζT (α, β)

√
TL

DFK
,

√√√√L
√
TMG2

√
1
2 logM + β log (M/α)

DFKα3

+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

.
DF

T

L+ σ

√
LT

DFKBα
+ ζT (α, β)

√
TL

DFK
+

√√√√L
√
TMG2

√
1
2 logM + β log (M/α)

DFKα3

+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

.
DFL

T
+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

.

B.4 Proof of Theorem 5

Similar to the proof in Appendix B.3, the key novel technique is the construction of a ghost
subset that is drawn from [M] by the comparator sampling distribution. The ghost subset
is only constructed for theoretical purpose and does not need to be computed in practice.
Similar to Appendix B.3, given any {wt}Tt=1, let q1:T

s be the solution of the problem (30).

36

Adaptive Client Sampling in Federated Learning

By Assumption 1 and Lemma 15, we have

F
(
wt+1

)
≤ F

(
wt
)

+
〈
∇F

(
wt
)
, wt+1 − wt

〉
+
L

2

∥∥wt+1 − wt
∥∥2

2
,

where

wt+1 − wt = − µ

MK

∑
m∈St

1

p̂tm
gtm, gtm = µl

B−1∑
b=0

∇φ(wt,bm ; ξt,bm).

Let Btm = {ξt,0m , . . . , ξt,B−1
m } and ESt [·] denote the expectation taken with respect to St. We

then have

ESt

[
F
(
wt+1

)
| w1, . . . , wt, p̂t

]
≤ F

(
wt
)
− µ

〈
∇F

(
wt
)
,

1

M

M∑
m=1

gtm

〉

+
Lµ2

2
ESt

∥∥∥∥∥ 1

K

∑
m∈St

1

Mp̂tm
gtm

∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

 .
Recall that J t = (1/M)

∑M
m=1 g

t
m, then we have

ESt

[
F
(
wt+1

)]
≤ F

(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2
ESt

∥∥∥∥∥ 1

K

∑
m∈St

1

Mp̂tm
gtm − J t + J t

∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

= F

(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2

∥∥J t∥∥2

2

+
Lµ2

2
ESt

∥∥∥∥∥ 1

K

∑
m∈St

1

Mp̂tm
gtm − J t

∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

 .
Recall that in Algorithm 4, we let atm = ‖gtm‖2

B(Mµl)2
, thus we have

ESt

∥∥∥∥∥ 1

K

∑
m∈St

1

Mp̂tm
gtm − J t

∥∥∥∥∥
2

2

| w1, . . . , wt, p̂t

 =
1

K

M∑
m=1

∥∥gtm∥∥2

2

M2p̂tm
− 1

K

∥∥J t∥∥2

2

= Bµ2
l

1

K

M∑
m=1

∥∥gtm∥∥2

2

B(µlM)2p̂tm
− 1

K

∥∥J t∥∥2

2

= Bµ2
l

1

K

M∑
m=1

atm
p̂tm
− 1

K

∥∥J t∥∥2

2

= Bµ2
l lt
(
p̂t
)
− 1

K

∥∥J t∥∥2

2
, (37)

which then implies that

ESt

[
F
(
wt+1

)
| w1, . . . , wt, p̂t

]
≤ F

(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2

∥∥J t∥∥2

2
+
Lµ2

2

(
Bµ2

l lt(p̂
t)− 1

K

∥∥J t∥∥2

2

)
,

(38)

37

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

where lt(·) is the variance reduction loss defined in (4).

Conditioned on w1, . . . , wt, qts is a deterministic sampling distribution. We assume that
there is a ghost subset of clients S̃t with |S̃t| = K, which is drawn from [M] with replacement
by sampling distribution qts. Besides, we let

g̃t :=
1

K

∑
m∈S̃t

gtm
Mqts.m

,

then similar to (37), we have

ES̃t

[∥∥g̃t − J t∥∥2

2
| w1, . . . , wt, p̂t

]
= Bµ2

l lt(q
t
s)−

1

K

∥∥J t∥∥2

2
.

Combine the above equation with (38), we have

ESt

[
F
(
wt+1

)
| w1, . . . , wt, p̂t

]
≤ F

(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2

∥∥J t∥∥2

2
+
Lµ2

2

(
Bµ2

l lt(q
t
s)−

1

K

∥∥J t∥∥2

2

)
+
BLµ2µ2

l

2

(
lt(p̂

t)− lt(qts)
)

= F
(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2

∥∥J t∥∥2

2
+
BLµ2µ2

l

2

(
lt(p̂

t)− lt(qts)
)

+
Lµ2

2
ES̃t

[∥∥g̃t − J t∥∥2

2
| w1, . . . , wt, p̂t

]
= F

(
wt
)
− µ

〈
∇F

(
wt
)
, J t
〉

+
Lµ2

2
ES̃t

[∥∥g̃t∥∥2

2
| w1, . . . , wt, p̂t

]
+
BLµ2µ2

l

2

(
lt(p̂

t)− lt(qts)
)
.

Let Et[·] denote E[· | w1, . . . , wt, p̂t]. We thus have

Et
[
F
(
wt+1

)]
≤ F

(
wt
)
− µµl

M
Et

[〈
∇F

(
wt
)
,
M∑
m=1

B−1∑
b=0

∇Fm(wt,bm)

〉]

+
Lµ2

2
Et
[∥∥g̃t∥∥2

2

]
+
BLµ2µ2

l

2
Et
[
lt(p̂

t)− lt(qts)
]
.

(39)

38

Adaptive Client Sampling in Federated Learning

Note that for any u, v ∈ Rd, we have −〈u, v〉 = −1
2‖u‖

2 + 1
2‖u− v‖−

1
2‖v‖

2 ≤ −1
2‖u‖

2 +
1
2‖u− v‖. Thus we have

Et

[
−µµl
M

M∑
m=1

B−1∑
b=0

〈
∇F

(
wt
)
,∇Fm(wt,bm)

〉]

= Et

[
−µµl

B−1∑
b=0

〈
∇F

(
wt
)
,

1

M

M∑
m=1

∇Fm(wt,bm)

〉]

≤ −µµlB
2

∥∥∇F (wt)∥∥2

2
+
µµl
2

B−1∑
b=0

∥∥∥∥∥∇F (wt)− 1

M

M∑
m=1

∇Fm(wt,bm)

∥∥∥∥∥
2

2

= −µµlB
2

∥∥∇F (wt)∥∥2

2
+
µµl
2

B−1∑
b=0

∥∥∥∥∥ 1

M

M∑
m=1

(
∇Fm

(
wt
)
−∇Fm(wt,bm)

)∥∥∥∥∥
2

2

≤ −µµlB
2

∥∥∇F (wt)∥∥2

2
+
µµl
2M

Et

[
M∑
m=1

B−1∑
b=0

∥∥∥∇Fm (wt)−∇Fm(wt,bm)
∥∥∥2

2

]

≤ −µµlB
2

∥∥∇F (wt)∥∥2

2
+
µµlL

2

2M
Et

[
M∑
m=1

B−1∑
b=0

∥∥∥wt − wt,bm ∥∥∥2

2

]
. (40)

Besides, we also have

Et
[∥∥g̃t∥∥2

2

]
= Et

∥∥∥∥∥∥ 1

K

∑
m∈S̃t

gtm
Mqts,m

∥∥∥∥∥∥
2

2

 = µ2
l Et

∥∥∥∥∥∥ 1

K

∑
m∈S̃t

1

Mqts,m

B−1∑
b=0

∇φ(wt,bm ; ξt,bm)

∥∥∥∥∥∥
2

2

= µ2

l Et

∥∥∥∥∥∥ 1

K

∑
m∈S̃t

1

Mqts,m

B−1∑
b=0

(
∇φ(wt,bm ; ξt,bm)−∇Fm(wt,bm

)∥∥∥∥∥∥
2

2

︸ ︷︷ ︸

I1

+ µ2
l Et

∥∥∥∥∥∥ 1

K

∑
m∈S̃t

1

Mqts,m

B−1∑
b=0

∇Fm(wt,bm)

∥∥∥∥∥∥
2

2

︸ ︷︷ ︸

I2

. (41)

To bound I1, note that

I1 =
1

K

M∑
m=1

1

M2qts,m
Et

∥∥∥∥∥
B−1∑
b=0

∇φ(wt,bm ; ξt,bm)−∇Fm(wt,b)

∥∥∥∥∥
2

2

=

1

K

M∑
m=1

1

M2qts,m

B−1∑
b=0

Et
[∥∥∥∇φ(wt,bm ; ξt,bm)−∇Fm(wt,b)

∥∥∥2

2

]

≤ σ2B

M2K

M∑
m=1

1

qts,m
.

39

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Since we have qts,m ≥ α/M , we then have I1 ≤ σ2B
Kα . We then give an upper bound on I2.

Note that

I2 ≤ 2Et

 M∑
m=1

1

M2qts,m

∥∥∥∥∥
B−1∑
b=0

(
∇Fm(wt,bm)−∇Fm(wt)

)∥∥∥∥∥
2

2

+ 2B2Et

∥∥∥∥∥∥ 1

K

∑
m∈S̃t

1

Mqts,m
∇Fm(wt)−∇F (wt)

∥∥∥∥∥∥
2

2

+ 2B2
∥∥∇F (wt)

∥∥2

2

≤ 2BEt

[
M∑
m=1

1

M2qts,m

B−1∑
b=0

∥∥∥∇Fm(wt,bm)−∇Fm(wt)
∥∥∥2

2

]
+ 2B2

∥∥∇F (wt)
∥∥2

2

+
2B2

K

(
1

M2

M∑
m=1

1

qts,m

∥∥∇Fm(wt)
∥∥2

2
−
∥∥∇F (wt)

∥∥2

2

)

≤ 2BL2Et

[
M∑
m=1

1

M2qts,m

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]
+ 2B2

∥∥∇F (wt)
∥∥2

2
+

2B2

K
Et
[
V (qts, w

t)
]
,

(42)

where the first three inequalities follow Jensen’s inequality and Lemma 16, the fourth in-
equality follows the definition of V (p, w) in (9), and the final inequality follows Assump-
tion 1. Finally, since qts,m ≥ α/M , we have

I2 ≤
2BL2

Mα
Et

[
M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]
+ 2B2

∥∥∇F (wt)
∥∥2

2
+

2B2

K
Et
[
V (qts, w

t)
]
. (43)

Combine (41)—(43), we then have

Lµ2

2
Et
[∥∥g̃t∥∥2

2

]
≤
µ2µ2

lLσ
2B

2Kα
+
µ2µ2

lL
3B

Mα
Et

[
M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]

+ µ2µ2
lB

2L
∥∥∇F (wt)

∥∥2

2
+
µ2µ2

lLB
2

K
Et
[
V (qts, w

t)
]
.

Combine the above equation with (39) and (40), we have

Et
[
F
(
wt+1

)]
≤ F

(
wt
)
− µµlB

2
(1− 2µµlBL)

∥∥∇F (wt)
∥∥2

2

+
µµlL

2

M

(
1

2
+
µµlLB

α

)
Et

[
M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]

+
µ2µ2

lLσ
2B

2Kα
+
µ2µ2

lLB
2

K
Et
[
V (qts, w

t)
]

+
BLµ2µ2

l

2
Et
[
lt(p̂

t)− lt(qts)
]
.

40

Adaptive Client Sampling in Federated Learning

By letting µ̃ = µµl and µ̃ ≤ 1
4BL , we have

Et
[
F
(
wt+1

)]
≤ F

(
wt
)
− µ̃B

4

∥∥∇F (wt)
∥∥2

2

+ µ̃L2

(
1

2
+

1

4α

)
Et

[
1

M

M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]

+
µ̃2BLσ2

2Kα
+
µ̃2B2L

K
Et
[
V (qts, w

t)
]

+
BLµ2µ2

l

2
Et
[
lt(p̂

t)− lt(qts)
]
.

(44)

Following Lemma 8 of Karimireddy et al. (2020b), we then show the following claim

Et

[
1

M

M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]
≤ 8B3µ2

l ζ
2
unif + 8B3µ2

l

∥∥∇F (wt)
∥∥2

2
+ 4B2µ2

l σ
2. (45)

To show the above inequality, first note that when b = 0, we have wt,0m = wt, thus we have
Et[‖wt,0m − wt‖22] = 0. Besides, for 1 ≤ b ≤ B − 1, we have

Et
[∥∥∥wt,bm − wt∥∥∥2

2

]
= Et

[∥∥∥wt,b−1
m − µl∇φ

(
wt,b−1
m ; ξt,b−1

m

)
− wt

∥∥∥2

2

]
= Et

[∥∥∥wt,b−1
m − µl∇Fm

(
wt,b−1
m

)
− wt

∥∥∥2

2

]
+ µ2

l Et
[∥∥∥∇φ(wt,b−1

m ; ξt,b−1
m

)
−∇Fm

(
wt,b−1
m

)∥∥∥2

2

]
≤
(

1 +
1

B − 1

)
Et
[∥∥∥wt,b−1

m − wt
∥∥∥2

2

]
+Bµ2

l Et
[∥∥∥∇Fm (wt,b−1

m

)∥∥∥2

2

]
+ µ2

l σ
2

≤
(

1 +
1

B − 1

)
Et
[∥∥∥wt,b−1

m − wt
∥∥∥2

2

]
+ 2Bµ2

l

∥∥∥∇Fm (wt,b−1
m

)
−∇Fm(wt)

∥∥∥2

2

+ 2Bµ2
l

∥∥∇Fm(wt)
∥∥2

2
+ µ2

l σ
2

≤
(

1 +
1

B − 1
+ 2Bµ2

lL
2

)
Et
[∥∥∥wt,b−1

m − wt
∥∥∥2

2

]
+ 2Bµ2

l

∥∥∇Fm(wt)
∥∥2

2
+ µ2

l σ
2,

where the first inequality follows Assumption 3 and Lemma 16, the second inequality follows
Jensen’s inequality, the third inequality follows Assumption 1. Let µl ≤ 1√

2BL
, then we have

2Bµ2
lL

2 ≤ 1
B ≤

1
B−1 and

Et
[∥∥∥wt,bm − wt∥∥∥2

2

]
≤
(

1 +
2

B − 1

)
Et
[∥∥∥wt,b−1

m − wt
∥∥∥2

2

]
+ 2Bµ2

l

∥∥∇Fm(wt)
∥∥2

2
+ µ2

l σ
2.

By induction, we then have

Et
[∥∥∥wt,bm − wt∥∥∥2

2

]
≤
(

2Bµ2
l

∥∥∇Fm(wt)
∥∥2

2
+ µ2

l σ
2
) b−1∑
τ=0

(
1 +

2

B − 1

)τ

41

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Since

b−1∑
τ=0

(
1 +

2

B − 1

)τ
=

(
1 + 2

B−1

)b
− 1(

1 + 2
B−1

)
− 1

=
B − 1

2

{(
1 +

2

B − 1

)b
− 1

}

≤ B − 1

2

{(
1 +

2

B − 1

)B−1

− 1

}
≤ B − 1

2
(e2 − 1) ≤ 4(B − 1) ≤ 4B.

thus we have

Et
[∥∥∥wt,bm − wt∥∥∥2

2

]
≤ 8B2µ2

l

∥∥∇Fm(wt)
∥∥2

2
+ 4Bµ2

l σ
2,

which then implies that

1

M

M∑
m=1

B−1∑
b=0

Et
[∥∥∥wt,bm − wt∥∥∥2

2

]

≤ 8B3µ2
l

1

M

M∑
m=1

∥∥∇Fm(wt)
∥∥2

2
+ 4B2µ2

l σ
2

≤ 8B3µ2
l

(
1

M

M∑
m=1

∥∥∇Fm(wt)−∇F (wt)
∥∥2

2
+
∥∥∇F (wt)

∥∥2

2

)
+ 4B2µ2

l σ
2

≤ 8B3µ2
l ζ

2
unif + 8B3µ2

l

∥∥∇F (wt)
∥∥2

2
+ 4B2µ2

l σ
2,

where the last inequality follows the definition of ζ2
unif. We thus have proved (45).

Besides, we have

µ̃L2

(
1

2
+

1

4α

)
Et

[
1

M

M∑
m=1

B−1∑
b=0

∥∥∥wt,bm − wt∥∥∥2

2

]

≤
(

4 +
2

α

)
µ̃µ2

lB
3L2ζ2

unif +

(
4 +

2

α

)
µ̃µ2

lB
3L2

∥∥∇F (wt)
∥∥2

2
+

(
2 +

1

α

)
µ̃µ2

lB
2L2σ2.

Combine the above result with (44), we have

Et
[
F
(
wt+1

)]
≤ F

(
wt
)
− µ̃B

4

(
1− 4

(
4 +

2

α

)
µ2
lB

2L2

)∥∥∇F (wt)
∥∥2

2

+

(
4 +

2

α

)
µ̃µ2

lB
2L2

(
Bζ2

unif +
σ2

2

)
+
µ̃2BL

K

(
σ2

2α
+BEt

[
V (qts, w

t)
])

+
BLµ2µ2

l

2
Et
[
lt(p̂

t)− lt(qts)
]
.

Let µl ≤ 1
4BL

√
1

2+1/α , we then have

Et
[
F
(
wt+1

)]
≤ F

(
wt
)
− µ̃B

8

∥∥∇F (wt)
∥∥2

2
+

(
4 +

2

α

)
µ̃µ2

lB
2L2

(
Bζ2

unif +
σ2

2

)
+
µ̃2BL

K

(
σ2

2α
+BEt

[
V (qts, w

t)
])

+
BLµ̃2

2
Et
[
lt(p̂

t)− lt(qts)
]
,

42

Adaptive Client Sampling in Federated Learning

which then implies that∥∥∇F (wt)
∥∥2

2
≤ 8

µ̃B

(
F
(
wt
)
− Et

[
F
(
wt+1

)])
+ 8

(
4 +

2

α

)
µ2
lB

2L2

(
ζ2

unif +
σ2

2B

)
+

8µ̃BL

K

(
σ2

2Bα
+ Et

[
V (qts, w

t)
])

+ 4Lµ̃Et
[
lt(p̂

t)− lt(qts)
]
.

Taking full expectation on both sides, summing over t = 0 to t = T − 1 and taking average,
we then have

1

T

T∑
t=1

E
[∥∥∇F (wt)

∥∥2

2

]
≤ 8

µ̃B

(
F (w0)− E

[
F (wT)

])
+ 8

(
4 +

2

α

)
µ2
lB

2L2

(
ζ2

unif +
σ2

2B

)

+
8µ̃BL

K

(
σ2

2Bα
+

1

T

T∑
t=1

Et
[
V (qts, w

t)
])

+ 4Lµ̃×
D-RegretT

(
q1:T

)
T

≤ 8

µ̃B

(
F (w0)− F ?

)
+ 8

(
4 +

2

α

)
µ2
lB

2L2

(
ζ2

unif +
σ2

2B

)
+

8µ̃BL

K

(
σ2

2Bα
+

1

T

T∑
t=1

Et
[
V (qts, w

t)
])

+ 4Lµ̃×
D-RegretT

(
q1:T

)
T

≤ 8

µ̃B

(
F (w0)− F ?

)
+ 8

(
4 +

2

α

)
µ2
lB

2L2

(
ζ2

unif +
σ2

2B

)
+

8µ̃BL

K

(
σ2

2Bα
+ ζ2

T (α, β)

)
+ 4Lµ̃×

D-RegretT
(
q1:T

)
T

,

where the last inequality follows the fact that

E

[
1

T

T∑
t=1

V (qts, w
t)

]
=

1

T
Ew1,...,wT

[
T∑
t=1

V (qts, w
t)

]
≤ 1

T
sup
w1

· · · sup
wT

T∑
t=1

V (qts, w
t) = ζ2

T (α, β),

and the last equality is by (31).

In summary, when µ̃ ≤ 1
4BL and µl ≤ 1

4BL

√
1

2+1/α , we have

E
[∥∥∇F (wR)

∥∥2

2

]
=

1

T

T∑
t=1

E
[∥∥∇F (wt)

∥∥2

2

]
≤ 8

µ̃BT

(
F (w0)− F ?

)
+ 8

(
4 +

2

α

)
µ2
lB

2L2

(
ζ2

unif +
σ2

2B

)
+ 4µ̃BL

(
2ζ2
T (α, β)

K
+

σ2

KBα
+

D-RegretT
(
q1:T
s

)
BT

)
.

By letting µ ≥ 1, µ̃ ≤ 1
4BL

√
1

1+1/(2α) and recall that DF = F (w1)− F ?, we then have

E
[∥∥∇F (wR)

∥∥2

2

]
≤ 8DF

µ̃BT
+ 8

(
4 +

2

α

)
µ̃2B2L2

(
ζ2

unif +
σ2

2B

)
+ 4µ̃BL

(
2ζ2
T (α, β)

K
+

σ2

KBα
+

D-RegretT
(
q1:T
s

)
BT

)
.

(46)

43

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

We then turn to bound the regret, note that

gtm = µl

B−1∑
b=0

∇φ(wt,bm ; ξt,bm),

thus by Assumption 3, we have
‖gtm‖22 ≤ B2µ2

lG
2,

which then implies that

atm =
‖gtm‖22

B(Mµl)2
≤ BG2

M2
and atmax ≤

BG2

M2
.

Thus, by Theorem 6 and note that qts ∈ A for all t ∈ [T] and TV(q1:T
s) ≤ β, we have

D-RegretT (q1:T
s) ≤ logM

η
+

2β log(M/α)

η
+
ηTM2B2G4

2K2α6
.

Let

η =
Kα3

MBG2

√
2 logM + 4β log(M/α)

T
,

we then have

D-RegretT (q1:T
s) ≤

√
T
MBG2

Kα3

√
1

2
logM + β log(M/α).

Putting the above inequality to (46), we have

E
[∥∥∇F (wR)

∥∥2

2

]
≤ 8DF

µ̃BT
+ 8

(
4 +

2

α

)
µ̃2B2L2

(
ζ2

unif +
σ2

2B

)

+ 4µ̃BL

2ζ2
T (α, β)

K
+

σ2

KBα
+
MG2

Kα3

√
1
2 logM + β log(M/α)

T

 .

(47)
When letting

8DF

µ̃BT
= 8

(
4 +

2

α

)
µ̃2B2L2

(
ζ2

unif +
σ2

2B

)
,

we have

µ̃ =
(DF)

1
3(

4 + 2
α

) 1
3 BL

2
3

(
ζ2

unif + σ2

2B

) 1
3
T

1
3

,

which implies that

8DF

µ̃BT
+ 8

(
4 +

2

α

)
µ̃2B2L2

(
ζ2

unif +
σ2

2B

)
≤

16
(
4 + 2

α

) 1
3 (DF)

2
3L

2
3

(
ζ2

unif + σ2

2B

) 1
3

T
2
3

≤
16
(
4 + 2

α

) 1
3 (DF)

2
3L

2
3

(
ζ

2
3
unif + σ

2
3

(2B)
1
3

)
T

2
3

44

Adaptive Client Sampling in Federated Learning

On the other hand, when letting

8DF

µ̃BT
= 4µ̃BL

2ζ2
T (α, β)

K
+

σ2

KBα
+
MG2

Kα3

√
1
2 logM + β log(M/α)

T

 ,

we have

µ̃ =

√
2DF

B
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T

√
T

,

which implies that

8DF

µ̃BT
+ 4µ̃BL

(
2ζ2
T (α, β)

K
+

σ2

KBα
+

D-RegretT (q?)

BT

)

≤
8
√

2
√
DF
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T√
T

≤ 8
√

2
√
DF
√
L√

T

√2ζT (α, β)√
K

+
σ√
KBα

+

(
1
2 logM + β log(M/α)

T

) 1
4

 .

Thus, when µ ≥ 1 and

µ̃ = min

 1

4BL

√
1

2 + 1/α
,

(DF)
1
3(

4 + 2
α

) 1
3 BL

2
3

(
ζ2

unif + σ2

2B

) 1
3
T

1
3

,

√
2DF

B
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T

√
T

 ,

we then have

E
[∥∥∇F (wR)

∥∥2

2

]
.
DFL

√
2 + 1

α

T
+

(
4 + 2

α

) 1
3 (DF)

2
3L

2
3

(
ζ

2
3
unif + σ

2
3

B
1
3

)
T

2
3

+

√
DF
√
L√

T

ζT (α, β)√
K

+
σ√
KBα

+

(
1
2 logM + β log(M/α)

T

) 1
4

.
DFL

√
2 + 1

α

T
+

(
4 + 2

α

) 1
3 (DFL)

2
3 ζ

2
3
unif

T
2
3

+

(
4 + 2

α

) 1
3 (DFL)

2
3σ

2
3

B
1
3T

2
3

+

√
DFLζT (α, β)√

TK
+

√
DFLσ√
TKBα

+

√
DFL√
T

(
1
2 logM + β log(M/α)

T

) 1
4

.

45

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

B.5 Proof of Theorem 6

We first state a proposition that will be used to prove Theorem 6. The key difference
between Theorem 6 and Proposition 13 is that in Proposition 13 the comparator sequence
lies in A, and, as a result, there is no projection error.

Proposition 13 Suppose the conditions of Theorem 6 hold. For any comparator sequence
q1:T with qt ∈ A, t ∈ [T], we have

D-RegretT (q1:T) ≤ logM

η
+

2 log(M/α)

η
E
[
TV

(
q1:T

)]
+

ηM6

2K2α6

T∑
t=1

E
[(
atmax

)2]
.

Proof By Lemma 14 and the definition of p̂t+1 in Step 7 of Algorithm 1, we have

〈p̂t+1 − qt,∇l̂t(p̂t; p̂t)〉 ≤
1

η
〈∇Φ(p̂t)−∇Φ(p̂t+1), p̂t+1 − qt〉. (48)

By the convexity of l̂t(·; p̂t), we have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤ 〈∇l̂t(p̂t; p̂t), p̂t − qt〉 = 〈∇l̂t(p̂t; p̂t), p̂t+1 − qt〉+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉.

Then, by (48), we further have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤

1

η
〈∇Φ(p̂t)−∇Φ(p̂t+1), p̂t+1 − qt〉+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉.

From the definition of D, we have

DΦ (x1 ‖x2) = DΦ (x3 ‖x2)+DΦ (x1 ‖x3)+〈∇Φ(x2)−∇Φ(x3), x3−x1〉, x1, x2, x3 ∈ D.

Then

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t)

≤ 1

η

[
DΦ

(
qt‖p̂t

)
−DΦ

(
qt‖p̂t+1

)
−DΦ

(
p̂t+1‖p̂t

)]
+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉

=
1

η

[
DΦ

(
qt‖p̂t

)
−DΦ

(
qt+1‖p̂t+1

)]
+

1

η

[
DΦ

(
qt+1‖p̂t+1

)
−DΦ

(
qt‖p̂t+1

)]
− 1

η
DΦ

(
p̂t+1‖p̂t

)
+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉. (49)

We bound the second term in (49) as

DΦ

(
qt+1‖p̂t+1

)
−DΦ

(
qt‖p̂t+1

)
= Φ(qt+1)− Φ(qt)− 〈∇Φ(p̂t+1), qt+1 − qt〉
(a)

≤ 〈∇Φ(qt+1)−∇Φ(p̂t+1), qt+1 − qt〉
(b)

≤ ‖∇Φ(qt+1)−∇Φ(p̂t+1)‖∞‖qt+1 − qt‖1
(c)

≤ 2 log(M/α)‖qt+1 − qt‖1, (50)

46

Adaptive Client Sampling in Federated Learning

where (a) follows from the convexity of Φ(·), (b) follows from the fact that the dual norm
of ‖ · ‖1 is ‖ · ‖∞, and (c) follows from the following fact that

‖∇Φ(p)‖∞ = max
1≤m≤M

| log(pm)| ≤ log(M/α) for all p ∈ A.

Besides, by Pinsker’s inequality, we have DΦ (p ‖ q) ≥ 1
2‖p − q‖

2
1 for all p, q ∈ PM−1.

Thus, Φ(·) is 1-strongly convex, we can bound the third and fourth term in (49) as

−1

η
DΦ

(
p̂t+1‖p̂t

)
+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉 ≤ − 1

2η
‖p̂t+1 − p̂t‖21 + ‖∇l̂t(p̂t; p̂t)‖∞‖p̂t − p̂t+1‖1.

Since ab ≤ a2/(2ε) + b2ε/2, a, b, ε > 0, we further have

−1

η
DΦ

(
p̂t+1‖p̂t

)
+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉 ≤ η

2
‖∇l̂t(p̂t; p̂t)‖2∞.

Let
Qt = M3atmax/(Kα

3),

we then have∣∣∣[∇l̂t(q; pt)]
m

∣∣∣ =
1

K2
· atm
q2
mp

t
m

N
{
m ∈ St

}
≤ 1

K2
· atmax

α3/M3
·K ≤ M3atmax

Kα3
= Qt

for all m ∈ [M], thus we have ‖∇l̂t(q; pt)‖∞ ≤ Qt, which then implies that

− 1

η
DΦ

(
p̂t+1‖p̂t

)
+ 〈∇l̂t(p̂t; p̂t), p̂t − p̂t+1〉 ≤ η

2
Q2
t . (51)

Combining (49)-(51), we have

l̂t(p̂
t; p̂t)− l̂t(qt; p̂t) ≤

DΦ

(
qt‖p̂t

)
η

−
DΦ

(
qt+1‖p̂t+1

)
η

+
2 log(M/α)

η
‖qt+1 − qt‖1 +

η

2
Q2
t .

This implies that

T∑
t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(q
t; p̂t)

≤
DΦ

(
q1‖p̂1

)
η

−
DΦ

(
qT+1‖p̂T+1

)
η

+
2 log(M/α)

η

T∑
t=1

‖qt+1 − qt‖1 +
η

2

T∑
t=1

Q2
t

≤
DΦ

(
q1‖p̂1

)
η

+
2 log(M/α)

η

T∑
t=1

‖qt+1 − qt‖1 +
η

2

T∑
t=1

Q2
t .

Since p̂1 is the uniform distribution, we have that

DΦ(q ‖ punif) = logM +

M∑
m=1

qm log qm ≤ logM for all q ∈ PM−1.

47

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Thus, we have

T∑
t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(q
t; p̂t) ≤ logM

η
+

2 log(M/α)

η
TV

(
q1:T

)
+
η

2

T∑
t=1

Q2
t (52)

Finally, note that

E

[
T∑
t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(q
t; p̂t)

]
=

T∑
t=1

E
[
ESt

[
l̂t(p̂

t; p̂t)
]
− ESt

[
l̂t(q

t; p̂t)
]]

=
T∑
t=1

E
[
lt(p̂

t)− lt(qt)
]

= D-RegretT (q1:T).

The conclusion follows by taking expectation on right hand side of (52).

We are now ready to prove Theorem 6.

Proof [Proof of Theorem 6] For any comparator sequence q1:T with qt ∈ PM−1, t ∈ [T], we
prove Theorem 6 by first constructing a suitable sequence q̃1:T that is defined as

q̃tm =

{
α/M if qtm < α/M,

qtm − ω(qt, α)
(
qtm − α

M

)
if qtm ≥ α/M,

(53)

where ω(qt, α) is defined in (19). We now show that q̃t ∈ A, t ∈ [T], by showing that
q̃tm ≥ α/M , m ∈ [M], and

∑
m∈[M] q̃

t
m = 1. For m ∈ [M] such that qtm < α/M , we

have from (53) that q̃tm = α/M . For m ∈ [M] such that qtm ≥ α/M , by (53), we have
q̃tm − α/M =

(
1− ω(qt, α)

) (
qtm − α/M

)
. Thus, we proceed to show that ω(qt, α) ≤ 1.

Since

M∑
m=1

qtm1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
= 1

≥ α =

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

α

M
1
{
qtm ≥

α

M

}
,

we have

M∑
m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
≥

M∑
m=1

(α
M
− qtm

)
1
{
qtm <

α

M

}
.

48

Adaptive Client Sampling in Federated Learning

Therefore, 0 ≤ ω(qt, α) ≤ 1. Furthermore, ω(qt, 0) = 1 and ω(qt, 1) = 1. Finally, we show
that

∑M
m=1 q̃

t
m = 1. By (53) and the definition of ω(qt, α) in (19), we have

M∑
m=1

q̃tm =

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
− ω(qt, α)

M∑
m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
=

M∑
m=1

α

M
1
{
qtm <

α

M

}
+

M∑
m=1

qtm1
{
qtm ≥

α

M

}
−

M∑
m=1

(α
M
− qtm

)
1
{
qtm <

α

M

}
=

M∑
m=1

qtm1
{
qtm ≥

α

M

}
+

M∑
m=1

qtm1
{
qtm <

α

M

}
= 1.

Therefore, q̃t ∈ A for any t ∈ [T].
Note that we then have

D-RegretT (q1:T) = E

[
T∑
t=1

lt(p̂
t)−

T∑
t=1

lt(q̃
t) +

T∑
t=1

lt(q̃
t)−

T∑
t=1

lt(q
t)

]
. (54)

By Proposition 13, we further have that

E

[
T∑
t=1

lt(p̂
t)−

T∑
t=1

lt(q̃
t)

]
≤ logM

η
+

2 log(M/α)

η
E
[
TV

(
q1:T

)]
+

ηM6

2K2α6

T∑
t=1

E
[(
atmax

)2]
+

2 log(M/α)

η
E
[
TV

(
q̃1:T

)
− TV

(
q1:T

)]
. (55)

Therefore, to prove Theorem 6, we need to bound the terms
∑T

t=1 lt(q̃
t) −

∑T
t=1 lt(q

t) and
TV

(
q̃1:T

)
− TV

(
q1:T

)
.

We first bound
∑T

t=1 lt(q̃
t)−

∑T
t=1 lt(q

t). When qtm < α/M , then 1/q̃tm− 1/qtm < 0; and
when qtm ≥ α/M , then

1

q̃tm
− 1

qtm
=

1

qtm
·

 1

1− ω(qt, α)
(

1− α
Mqtm

) − 1

 =
1

qtm
·

ω(qt, α)
(

1− α
Mqtm

)
1− ω(qt, α)

(
1− α

Mqtm

) .
Since

ω(qt, α)

(
1− α

Mqtm

)
≤ ω(qt, α) and 1−ω(qt, α)

(
1− α

Mqtm

)
≥ 1−ω(qt, α)+

ω(qt, α)α

M

as qtm ≤ 1, we have

1

q̃tm
− 1

qtm
≤ 1

qtm
· ω(qt, α)

1− ω(qt, α)
(
1− α

M

) =
φ(qt, α)

qtm
.

49

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Thus,

T∑
t=1

lt(q̃
t)−

T∑
t=1

lt(q
t) =

1

K

T∑
t=1

M∑
m=1

atm

(
1

q̃tm
− 1

qtm

)

≤ 1

K

T∑
t=1

M∑
m=1

atm

(
1

q̃tm
− 1

qtm

)
1
{
qtm ≥

α

M

}
≤ 1

K

T∑
t=1

φ(qt, α)
M∑
m=1

atm
qtm

1
{
qtm ≥

α

M

}
≤ 1

K

T∑
t=1

φ(qt, α)lt(q
t). (56)

Next, we bound TV
(
q̃1:T

)
− TV

(
q1:T

)
. Note that

TV
(
q̃1:T

)
=

T∑
t=2

∥∥q̃t − q̃t−1
∥∥

1

=
T∑
t=2

∥∥q̃t − qt + qt − qt−1 + qt−1 − q̃t−1
∥∥

1

≤
T∑
t=2

∥∥q̃t − qt∥∥
1

+
T∑
t=2

∥∥qt − qt−1
∥∥

1
+

T∑
t=2

∥∥qt−1 − q̃t−1
∥∥

1

≤ TV
(
q1:T

)
+ 2

T∑
t=1

∥∥q̃t − qt∥∥
1
.

We now upper bound
∑T

t=1

∥∥q̃t − qt∥∥
1
. If qtm < α/M , then |q̃tm − qtm| = α/M − qtm. If

qtm ≥ α/M , by (53), we have
∣∣q̃tm − qtm∣∣ = ω(qt, α)

(
qtm − α/M

)
. Therefore, recalling the

definition of ψ(qt, α) in (19), we have

∥∥q̃t − qt∥∥
1

=

M∑
m=1

(α
M
− qtm

)
1
{
qtm <

α

M

}
+ ω(qt, α)

M∑
m=1

(
qtm −

α

M

)
1
{
qtm ≥

α

M

}
= 2

M∑
m=1

(α
M
− qtm

)
1
{
qtm <

α

M

}
= 2ψ(qt, α)

and

TV
(
q̃1:T

)
− TV

(
q1:T

)
≤ 4

T∑
t=1

ψ(qt, α). (57)

Combining (54), (55), (56), and (57), and taking expectation on both sides, we obtain
the final result.

50

Adaptive Client Sampling in Federated Learning

B.6 Proof of Theorem 8

Given a comparator sequence q1:T , where qt is allowed to be random, such that qt ∈ A for
all t ∈ [T] and E[TV(q1:T)] ≤ β, let

η? =
Kα3

M3Amax

√
2 logM + 4β log(M/α)

T
. (58)

The proof proceeds in two steps. First, we show that there exists an expert learning rate
ηe ∈ E such that the regret bound for p̂1:T

e is close to (21). That is, we show that there
exists ηe ∈ E such that

E

[
T∑
t=1

l̂t(p̂
t
e; p̂

t)−
T∑
t=1

lt(q
t)

]
≤ 3M3Amax

Kα3

√
T

[
1

2
logM + β log (M/α)

]
. (59)

Note that St ∼ p̂t. Second, we show that the output of meta-algorithm can track the best
expert with small regret. That is, we show that

E

[
T∑
t=1

lt(p̂
t)

]
− E

[
T∑
t=1

l̂t(p̂
t
e; p̂

t)

]
≤ M

α

√
TAmax

8K
(1 + 2 logE), e ∈ [E]. (60)

The theorem then follows by combining (59) and (60).

We first prove (59). Since 0 ≤ β ≤ 2(T − 1), we have

min E =
Kα3

M3Amax

√
2 logM

T
≤ η? ≤ Kα3

M3Amax

√
2 logM + 8 log(M/α)(T − 1)

T
≤ max E ,

where η? is defined as in (58). Thus, there exists ηe ∈ E , such that ηe ≤ η? ≤ 2ηe. Repeating
the proof of (52), we can show that

T∑
t=1

l̂t(p̂
t
e; p̂

t)−
T∑
t=1

l̂t(q
t; p̂t) ≤ logM

ηe
+

2 log(M/α)

ηe
TV

(
q1:T

)
+

ηeM
6

2K2α6

T∑
t=1

(
atmax

)2
,

which then implies that

E

[
T∑
t=1

l̂t(p̂
t
e; p̂

t)−
T∑
t=1

l̂t(q
t; p̂t)

]
≤ logM

ηe
+

2 log(M/α)

ηe
E
[
TV

(
q1:T

)]
+

ηeM
6

2K2α6

T∑
t=1

E
[(
atmax

)2]
≤ logM

ηe
+

2β log(M/α)

ηe
+
ηeM

6TA2
max

2K2α6
.

51

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Since η?/2 ≤ ηe ≤ η?, we further have

E

[
T∑
t=1

l̂t(p̂
t
e; p̂

t)−
T∑
t=1

l̂t(q
t; p̂t)

]

≤ 2 logM

η?
+

4β log(M/α)

η?
+
η?M6TA2

max

2K2α6

=
3M3Amax

Kα3

√
T

[
1

2
logM + β log (M/α)

]
.

Now, (59) follows, since

E

[
T∑
t=1

l̂t(q
t; p̂t)

]
=

T∑
t=1

E
[
ESt

[
l̂t(q

t; p̂t)
]]

=
T∑
t=1

E
[
lt(q

t)
]
.

We prove (60) next. Let

L̂et =
t∑

s=1

l̂s(p̂
s
e; p̂

s) e ∈ [E], t ∈ [T].

Recall the update for θte in Step 11 of Alg 5. We have

θte =
θ1
e exp

(
−γL̂et−1

)
∑E

b=1 θ
1
b exp

(
−γL̂bt−1

) , t = 2, . . . T.

Let Θt =
∑E

b=1 θ
1
b exp

{
−γL̂bt

}
. Then

log Θ1 = log

(
E∑
b=1

θ1
b exp

{
−γL̂b1

})

and, for t ≥ 2,

log

(
Θt

Θt−1

)
= log

∑E
b=1 θ

1
b exp

{
−γL̂bt−1

}
exp

{
−γl̂t(p̂tb; p̂t)

}
∑E

b=1 θ
1
b exp

{
−γL̂bt−1

}

= log

(
E∑
b=1

θtb exp
{
−γl̂t(p̂tb; p̂t)

})
.

52

Adaptive Client Sampling in Federated Learning

We have

log ΘT = log Θ1 +

T∑
t=1

log

(
Θt

Θt−1

)

=
T∑
t=1

log

(
E∑
b=1

θtb exp
{
−γl̂t(p̂tb; p̂t)

})

≤
T∑
t=1

(
−γ

E∑
b=1

θtb l̂t(p̂
t
b; p̂

t) +
γ2M2atmax

8Kα2

)
(Lemma 18)

≤ −γ
T∑
t=1

l̂t(p̂
t; p̂t) +

γ2M2
(∑T

t=1 a
t
max

)
8Kα2

(Jensen’s inequality)

and

log (ΘT) = log

(
E∑
b=1

θ1
b exp

{
−γL̂bT

})

≥ log

(
max

1≤b≤E
θ1
b exp

{
−γL̂bT

})
= −γ min

1≤b≤E

{
L̂bT +

1

γ
log

1

θ1
b

}
.

Combining the last two displays, we have

−γ min
1≤b≤E

{
L̂bT +

1

γ
log

1

θ1
b

}
≤ −γ

T∑
t=1

l̂t(p̂
t; p̂t) +

γ2M2
(∑T

t=1 a
t
max

)
8Kα2

,

which implies that

T∑
t=1

l̂t(p̂
t; p̂t)− L̂eT ≤

γM2
(∑T

t=1 a
t
max

)
8Kα2

+
1

γ
log

1

θ1
e

≤ γM2TAmax

8Kα2
+

1

γ
log

1

θ1
e

, e ∈ [E].

Taking expectation on both sides, we then have

E

[
T∑
t=1

l̂t(p̂
t; p̂t)− L̂eT

]
≤ γM2TAmax

8Kα2
+

1

γ
log

1

θ1
e

.

Since θ1
e ≥ 1

E2 , log 1/θ1
e ≤ 2 logE. Let γ =

√
8Kα2/(TM2Amax) to minimize the right

hand side of the above inequality with log 1/θ1
e substituted by 1. Then

E

[
T∑
t=1

l̂t(p̂
t; p̂t)− L̂eT

]
= E

[
T∑
t=1

l̂t(p̂
t; p̂t)−

T∑
t=1

l̂t(p̂
t
e; p̂

t)

]

≤ M

α

√
TAmax

8K
(1 + 2 logE) , e ∈ [E].

53

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

B.7 Proof of Theorem 9

For Mini-batch SGD, following (35) and Theorem 8, we have

E
[∥∥∇F (wR)∥∥2

2

]
≤ 2DF

Tµ
+ Lµ

 2σ2

KBα
+

2ζ2
T (α, β)

K
+
MG2

Kα3

√
1
2 logM + β log (M/α)

T

+
G

α

√
1

8KT
(1 + 2 logE)

)
.

Let
2DF

Tµ
=
µLG

α

√
1

8KT
(1 + 2 logE) ,

we have

µ =

√
2αDF

LG

(
8K

T

) 1
2
√

1

1 + 2 logE
,

and

2DF

Tµ
+
µLG

α

√
1

8KT
(1 + 2 logE) ≤

√
2DFLG

α

(
1

8K

) 1
4
(

1

T

) 3
4 √

1 + 2 logE.

Then follow the same argument as in the proof of Theorem 4, when

µ = min

{
1

L
,

1

σ

√
DFKBα

LT
,

1

ζT (α, β)

√
DFK

LT
,

√
DFKα

3
2

√
LMT

1
4G
(

1
2 logM + β log (M/α)

) 1
4

,

√
αDF

LG

(
K

T

) 1
2
√

1

1 + 2 logE

 ,

we have

E
[∥∥∇F (wR)∥∥2

]
.
DFL

T
+
σ
√
DFL√

TKBα
+
ζT (α, β)

√
DFL√

TK
+

√
DFLM

1
2G

T
3
4K

1
2α

3
2

(
1

2
logM + β log (M/α)

) 1
4

+

√
DFLG

α

(
1

K

) 1
4
(

1

T

) 3
4 √

1 + 2 logE.

For FedAvg, following (46) and Theorem 8, we have

E
[∥∥∇F (wR)

∥∥2

2

]
≤ 8DF

µ̃BT
+ 8

(
2 +

1

α

)
µ̃2B2L2

(
ζ2

unif +
σ2

2B

)

+ 4µ̃BL

2ζ2
T (α, β)

K
+

σ2

KBα
+

3MG2

Kα3

√
1
2 logM + β log(M/α)

T

+
G

α

√
1

8KBT
(1 + 2 logE)

)
.

54

Adaptive Client Sampling in Federated Learning

Let

8DF

µ̃BT
= 4µ̃BL× G

α

√
1

8KBT
(1 + 2 logE) ,

we have

µ̃ =

√
2αDF

LG (1 + 2 logE)

(
1

B

) 3
4
(

8K

T

) 1
4

,

and

8DF

µ̃BT
+ 4µ̃BL× G

α

√
1

8KBT
(1 + 2 logE) = 8

3
4

√
2

√
DFLG

α

(
1

KB

) 1
4
(

1

T

) 3
4 √

1 + 2 logE.

Then follow the same argument as in the proof of Theorem 5, when µ ≥ 1 and

µ̃ = min

 1

4BL

√
1

1 + 1/(2α)
,

(DF)
1
3(

2 + 1
α

) 1
3 BL

2
3

(
ζ2

unif + σ2

2B

) 1
3
T

1
3

,

√
2DF

B
√
L

√
2ζ2T (α,β)

K + σ2

KBα +

√
1
2

logM+β log(M/α)

T

√
T

,

√
2αDF

LG (1 + 2 logE)

(
1

B

) 3
4
(

8K

T

) 1
4

}
,

we have

E
[∥∥∇F (wR)

∥∥2

2

]
.
DFL

√
1 + 1

2α

T
+

(
2 + 1

α

) 1
3 (DFL)

2
3 ζ

2
3
unif

T
2
3

+

(
2 + 1

α

) 1
3 (DFL)

2
3σ

2
3

B
1
3T

2
3

+

√
DFLζT (α, β)√

TK
+

√
DFLσ√
TKBα

+

√
DFL√
T

(
1
2 logM + β log(M/α)

T

) 1
4

+

√
DFLG

α

(
1

KB

) 1
4
(

1

T

) 3
4 √

1 + 2 logE.

B.8 Proof of Theorem 10

Recall that Tb = 2b−1. Let B = dlog2(T + 1)e, we then have TB ≤ T ≤ TB+1 − 1, which
implies that 1 ≤ T − TB + 1 ≤ TB+1 − TB = 2B.

Note that p̂Tb is reinitialized as the uniform distribution. Let

D-Regretb = E

Tb+1−1∑
t=Tb

lt(p̂
t)−

Tb+1−1∑
t=Tb

lt(q
t)

 .
55

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Similar to the proof of (59) and (60), we have

D-Regretb

≤ 3M3Amax

Kα3

√[
1

2
logM + log (M/α)E

[
TV

(
qTb:(Tb+1−1)

)]]
(Tb+1 − Tb)

+
M

α

√
(Tb+1 − Tb)Amax

8K
(1 + 2 logEb)

=
3M3Amax

Kα3

√[
1

2
logM + log (M/α)E

[
TV

(
qTb:(Tb+1−1)

)]] (√
2
)b−1

+
M

α

√
Amax

8K
(1 + 2 logEb)

(√
2
)b−1

≤ 3M3Amax

Kα3

√[
1

2
logM + log (M/α)β

](√
2
)b−1

+
M

α

√
Amax

8K
(1 + 2 logE)

(√
2
)b−1

,

where Eb is defined in (28) and E is defined in (23). We can similarly obtain

E

 T∑
t=TB

lt(p̂
t)−

T∑
t=TB

lt(q
t)

 ≤ 3M3Amax

Kα3

√[
1

2
logM + log (M/α)β

](√
2
)B

+
M

α

√
Amax

8K
(1 + 2 logE)

(√
2
)B

.

Combine the last two displays, we have

D-RegretT (q1:T) = E

[
T∑
t=1

lt(p̂
t)−

T∑
t=1

lt(q
t)

]

=
B−1∑
b=1

E

Tb+1−1∑
t=Tb

lt(p̂
t)−

Tb+1−1∑
t=Tb

lt(q
t)

+ E

 T∑
t=TB

lt(p̂
t)−

T∑
t=TB

lt(q
t)

≤ 3M3Amax

Kα3

√[
1

2
logM + log (M/α)β

](B−1∑
b=1

(√
2
)b−1

+
(√

2
)B)

+
M

α

√
Amax

8K
(1 + 2 logE)

(
B−1∑
b=1

(√
2
)b−1

+
(√

2
)B)

=
3M3Amax

Kα3

√[
1

2
logM + log (M/α)β

](√
2
)B+1 −

√
2

√
2− 1

+
M

α

√
Amax

8K
(1 + 2 logE)

(√
2
)B+1 −

√
2

√
2− 1

≤ 3M3Amax

Kα3

√[
1

2
logM + log (M/α)β

]
2√

2− 1

√
T

56

Adaptive Client Sampling in Federated Learning

+
M

α

√
Amax

8K
(1 + 2 logE)

2√
2− 1

√
T .

Appendix C. Useful Lemmas

Lemma 14 Suppose that f is a differentiable convex function defined on domf , and X ⊆
domf is a closed convex set. Then x is the minimizer of f on X if and only if

∇f(x)>(y − x) ≥ 0 for all y ∈ X .

Proof See Section 4.2.3 of Boyd et al. (2004).

Lemma 15 Let f :W → R be defined on W ⊆ Rd, where W is a convex set. Suppose that
f is continuously differentiable and first-order L-smooth, that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ for all x, y ∈ W,

then we have

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖x− y‖22 for all x, y ∈ W.

Proof We follow Theorem 2.1.5 of Nesterov et al. (2018). Note that

|f(y)− f(x)− 〈∇f(x), y − x〉|

=

∣∣∣∣∫ 1

0
〈∇f (x+ t(y − x)) , y − x〉 dt− 〈∇f(x), y − x〉

∣∣∣∣
=

∣∣∣∣∫ 1

0
〈∇f (x+ t(y − x))−∇f(x), y − x〉 dt

∣∣∣∣
≤
∫ 1

0
‖∇f (x+ t(y − x))−∇f(x)‖ ‖y − x‖ dt

≤
∫ 1

0
Lt ‖y − x‖22 dt

=
L

2
‖y − x‖22 ,

which then implies the conclusion.

Lemma 16 (Relaxed Triangle Inequality) This is Lemma 3 of Karimireddy et al. (2020b).
Let {v1, . . . , vτ} be τ vectors in Rd. Then the following are true:

‖vi + vj‖2 ≤ (1 + a)‖vi‖2 +

(
1 +

1

a

)
‖vj‖2 for any a > 0,∥∥∥∥∥

τ∑
i=1

vi

∥∥∥∥∥
2

2

≤ τ
τ∑
i=1

‖vi‖22 .

57

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Proof See Lemma 3 of Karimireddy et al. (2020b).

Lemma 17 For q ∈ PM−1 we have DΦ(q ‖ punif) ≤ logM , where Φ is the unnormalized
negative entropy.

Proof Since Φ(q) =
∑M

m=1 qm(log qm − 1) ≤ 0, Φ(punif) = − logM , and

〈∇Φ(punif), q − punif〉 =
M∑
m=1

(qm −
1

M
) log

1

M
= 0,

we have DΦ(q ‖ p) ≤ logM .

Lemma 18 (Hoeffding’s Inequality) Let X be a random variable with a ≤ X ≤ b for
a, b ∈ R. Then for all s ∈ R, we have

logE
[
esX
]
≤ sE[X] +

s2(b− a)2

8
.

Proof See Section 2 of Wainwright (2019).

Lemma 19 (Based on Exercise 26.12 of Lattimore and Szepesvári (2020)) Let α ∈
[0, 1], A = PM−1 ∩ [α/M, 1]M , D = [0,∞)M , and Φ is the unnormalised entropy on D. For
y ∈ [0,∞)M , let x = arg minv∈ADΦ(v‖y). Suppose y1 ≤ y2 ≤ · · · ≤ yM . Let m? be the
smallest value such that

ym?

(
1− m? − 1

M
α

)
>

α

M

M∑
m=m?

ym.

Then

xm =

α
M if m < m?

(1−m?−1
M

α)ym∑M
n=m? yn

otherwise.

Proof Consider the following constrained optimization problem:

min
u∈[0,∞)M

M∑
m=1

um log
um
ym

,

s.t.
M∑
m=1

um = 1,

um ≥
α

M
, m ∈ [M].

58

Adaptive Client Sampling in Federated Learning

Since x is the solution to this problem, by the optimality condition, there exists λ, ν1, . . . , νM ∈
R such that

log
xm
ym

+ 1− λ− νm = 0, m ∈ [M], (61)

M∑
m=1

xm = 1, (62)

xm −
α

M
≥ 0, m ∈ [M], (63)

νm ≥ 0, m ∈ [M], (64)

νm

(
xm −

α

M

)
= 0, m ∈ [M]. (65)

By (61), we have xm = ym exp(−1 + λ + νm). By (64) and (65), when xm = α/M , we
have xm = ym exp(−1 + λ + νm) ≥ ym exp(−1 + λ); when xm > α/M , we have xm =
ym exp(−1 + λ). Assume that x1 = · · · = xm?−1 = α/M < xm? ≤ · · · ≤ xM . Then

1 =
M∑
m=1

xm = (m? − 1)
α

M
+ exp(−1 + λ) ·

M∑
m=m?

ym,

which implies that

exp(−1 + λ) =
1− (m? − 1) αM∑M

m=m? ym
. (66)

Thus, we have

xm? = ym? exp(−1 + λ) = ym?
1− (m? − 1) αM∑M

m=m? ym
>

α

M
,

which implies that

ym?

(
1− m? − 1

M
α

)
>

α

M

M∑
m=m?

ym. (67)

To complete the proof, we then only need to show that

ym′

(
1− m′ − 1

M
α

)
≤ α

M

M∑
m=m′

ym (68)

for all 1 ≤ m′ ≤ m?−1. The result then follows from (67) and (68). To prove(68), recall that
for any 1 ≤ m′ ≤ m?−1, we have α/M = ym′ exp(−1+λ+νm′), and because y1 ≤ · · · ≤ yM ,
we have ν1 ≥ · · · ≥ νm?−1. This way, we have

(
m? −m′

) α
M

=

m?−1∑
m=m′

ym exp (−1 + λ+ νm) ≤ exp (−1 + λ+ νm′)

m?−1∑
m=m′

ym. (69)

On the other hand, by (66), we have

1− (m? − 1)
α

M
= exp(−1 + λ)

M∑
m=m?

ym ≤ exp (−1 + λ+ νm′)

M∑
m=m?

ym. (70)

59

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Combining (69) and (70), we have

1− (m′ − 1) αM∑M
m=m′ ym

=
1− (m? − 1) αM + (m? −m′) αM∑M

m=m′ ym

≤
exp (−1 + λ+ νm′)

(∑m?−1
m=m′ ym +

∑M
m=m? ym

)
∑M

m=m′ ym

= exp (−1 + λ+ νm′)

=
α
M

ym′
,

which then implies (68).

Appendix D. Additional Future Directions

In this section, we discuss two additional future directions. In Section D.1, we discuss
the design of sampling algorithms for minimizing personalized FL objectives. Besides, in
Section D.2, we discuss sampling with physical constraint in FL system.

D.1 Client Sampling with Personalized FL Objective

Data distributions across clients are often heterogeneous. Personalized FL has emerged
as one effective way to handle such heterogeneity (Kulkarni et al., 2020). Hanzely et al.
(2023) illustrated how many existing approaches to personalization can be studied through a
unified framework, and, in this section, we discuss a natural extension of Adaptive-OSMD
Sampler to this personalized objective. Specifically, we study the following optimization
problem

min
w,β

F (w, β) :=

M∑
m=1

λmφ(w, βm;Dm), (71)

where w ∈ Rd0 corresponds to the shared parameter and β = (β1, . . . , βM) with βm ∈ Rdm
corresponds to the local parameters. The objective in (71) coves a wide range of personalized
federated learning problems (Hanzely et al., 2023). We further generalize the approach and
study the following bilevel optimization problem:

min
w

h(w) :=
M∑
m=1

λmFm(w, β̂m(w)) :=
M∑
m=1

λmφ(w, β̂m(w);Dm)

subject to β̂m(w) = arg min
βm

Gm(w, βm) := φ(w, βm; D̄m).

(72)

When Dm = D̄m, then (72) recovers (71). When D̄m 6= Dm, we then optimize the shared
and local parameters on different data sets, which may prevent overfitting. The formulation
in (72) is closely related to the implicit MAML (Rajeswaran et al., 2019).

In the following, we use ∇w to denote a partial derivative with respect to w with
βm fixed, ∇βm to denote a partial derivative with respect to βm with w fixed, and ∇

60

Adaptive Client Sampling in Federated Learning

to denote a derivative with respect to w where βm(w) is treated as a function of w. Let
∇2
βmβ>m

Gm(w, βm) ∈ Rdm×dm be the Hessian matrix of Gm with respect to βm where w is

fixed, and ∇2
wβ>m

Gm(w, βm) ∈ Rd0×dm be the Hessian matrix of Gm with respect to w and

βm, that is,[
∇2
βmβ>m

Gm(w, βm)
]
i,j

=
∂Gm(w, βm)

∂βm,iβm,j
for all i, j = 1, 2, . . . , dm,[

∇2
wβ>m

Gm(w, βm)
]
i,j

=
∂Gm(w, βm)

∂wiβm,j
for all i = 1, 2, . . . , d0, j = 1, 2, . . . , dm.

By the implicit function theorem, we have

∇h(w) =
1

M

M∑
m=1

λm∇1Fm(w, β̂m(w))︸ ︷︷ ︸
∇1h(w)

+
1

M

M∑
m=1

λm∇2Fm(w, β̂m(w))︸ ︷︷ ︸
∇2h(w)

(73)

where

∇1Fm(w, β̂m(w)) := ∇wFm(w, β̂m(w)),

∇2Fm(w, β̂m(w)) := −∇2
wβ>m

Gm(w, β̂m(w))
[
∇2
βmβ>m

Gm(w, β̂m(w))
]−1
∇βmFm(w, β̂m(w)).

There are two parts to ∇h(wt) and, therefore, instead of choosing a single subset of clients
for computing both parts, we decouple St into two subsets St1 and St2, St = St1 ∪ St2. We
use clients in St1 to compute local updates of the first part, and clients in St2 to compute the
local updates of the second part. To get an estimate of ∇h(w), we can estimate ∇1h(w) and
∇2h(w) separably and then combine. Assume that gt1,m is an estimate of ∇1Fm(w, β̂m(w))

and gt2,m is an estimate of ∇2Fm(w, β̂m(w)), we can then construct estimates of ∇1h(w)
and ∇2h(w) as

gt1 =
1

K1

∑
m∈St

1

λm
gt1,m
pt1,m

, gt2 =
1

K2

∑
m∈St

2

λm
gt2,m
pt2,m

,

where K1 = |St1| and K2 = |St2|. Then gt = gt1 + gt2 is an estimate of ∇h(w).
We design pt1 and pt2 to choose St1 and St2 by minimizing the variance of the gradients.

Note that

min
pt1

E1

[
ESt

1

[∥∥gt1 −∇1h(wt)
∥∥2
]]

+ min
pt2

E2

[
ESt

2

[∥∥gt2 −∇2h(wt)
∥∥2
]]

≤ min
pt1=pt2=pt

E
[
ESt

[∥∥gt1 −∇1h(wt) + gt2 −∇2h(wt)
∥∥2
]]
,

so that the decomposition allows us to better minimize the variance. We term this approach
as doubly variance reduction for personalized Federated Learning. The first part minimizes
the variance of updates to the shared global parameter, when the best local parameters are
fixed; and the second part minimizes the variance of updates to local parameters, when the

61

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

global part is fixed. While these two parts are related, any given machine will have different
contributions to these two tasks.

Adaptive-OSMD Sampler can be used to minimize the variance for both parts of the
gradient. We note that this is a heuristic approach to solving the client sampling problem
when minimizing a personalized FL objective. Personalized FL objectives have additional
structures that should be used to design more efficient sampling strategies. Furthermore,
designing sampling strategies that improve the statistical performance of trained models,
rather than improving computational speed, is important in the heterogeneous setting.
Addressing these questions is an important area for future research.

D.2 Sampling with Physical Constraint in FL System

In this paper, we assume that all clients are available in each round. However, in practical
FL applications, a subset of the clients may be inactive due to physical constraints, thus we
have to assign zero probabilities to them. In this section, we propose a simple extension of
our proposed sampling method to such case.

Specifically, denote the subset of clients that are active at the beginning of round t as
It ⊆ [M]. If we have |It| ≤ K, we can then use all clients in It to make updates in round
t; otherwise, we would like to choose a smaller subset St ⊆ It to participate. This can
be achieved by rescaling the output sampling distribution of any of our proposed methods,
which we denote as p̂t. We let p̃tm = p̂tm/(

∑
i∈It p̂

t
i) and p̃tm = 0 for all m /∈ It. We can then

use p̃tm to choose St from It.
However, analyzing such a method in terms of convergence and regret guarantee is

highly non-trivial. Typically, for general active clients sequence {It}Tt=1, the optimization
algorithms are not guaranteed to converge even if we involve all clients in It in each round.
This can happen, for example, if a client is active for only once in the whole training process.
Thus, to ensure convergence, we need additional assumptions about {It}Tt=1. Moreover,
deriving regret bound is also very challenging, as assigning zero probability to any client
will make the variance-reduction loss unbounded and thus the regret can be arbitrarily
large. To achieve such theoretical result, one may need to appropriately redefine the regret
concept. Such an analysis is beyond the scope of this paper and we leave it for future
research.

Appendix E. Application of OSMD Sampler on SCAFFOLD

We explore the potential of implementing our proposed sampler in more sophisticated feder-
ated learning optimization techniques. Beyond merely utilizing gradients, numerous state-
of-the-art algorithms incorporate additional auxiliary variables to achieve a faster rate of
convergence. These auxiliary variables complicate the process of constructing the appro-
priate surrogate variance reduction loss as outlined in (4), thus making the extension of
our proposed sampling method to these algorithms challenging. Although a thorough ex-
ploration in this area is essential for future studies, in this section, we aim to provide
insight by focusing on one of the most widely adopted state-of-the-art algorithms, SCAF-
FOLD (Karimireddy et al., 2020b), as a case in point. We propose a straightforward strategy
to incorporate our OSMD sampler into SCAFFOLD. Through simulation experiments, we
validate our approach, with the results offering encouraging evidence of its effectiveness.

62

Adaptive Client Sampling in Federated Learning

0 200 400 600 800 1000
t

2

1

0

1

2

3

4

5

lo
g(

lo
ss

)
= 1.0

0 200 400 600 800 1000
t

1

0

1

2

3

4

= 3.0

0 200 400 600 800 1000
t

1

0

1

2

3

4

= 10.0

SCAFFOLD-uniform SCAFFOLD-OSMD

Figure 8: The training loss is compared between SCAFFOLD with uniform sampling and
SCAFFOLD with the OSMD sampler. Solid lines represent the mean values,
while shaded regions indicate mean±standard deviation across independent runs.

In addition to utilizing gradients, SCAFFOLD incorporates control variates on both the
server and client sides to mitigate client-side heterogeneity. When implementing the OSMD
sampler as described in Algorithm 1 within the SCAFFOLD framework, it is essential
to define environment feedback {atm}m∈St . For our experiments, we chose to set atm =

λ2
m

∥∥wt+m − wt∥∥2
, where wt denotes the global model parameter at the start of round t, and

wt+m represents the updated local model parameter for client m after performing local mini-
batch SGD during round t. The learning rate for the OSMD sampler was set as 10−3. For
all additional aspects of the SCAFFOLD algorithm, such as hyperparameter selection and
tuning methodology, we adhered to the guidelines in the original paper.

Our experimental setup mirrors that of Section 7.1. Figure 8 presents the results,
indicating that the OSMD sampler performs marginally better when the heterogeneity is
high. This observation implies that utilizing adaptive sampling could potentially enhance
SCAFFOLD’s effectiveness. A more detailed investigation into this possibility is reserved
for subsequent studies.

63

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

References

Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. ArXiv Preprint
ArXiv:1603.04467, 2016.

Zalan Borsos, Andreas Krause, and Kfir Y. Levy. Online variance reduction for stochastic
optimization. In Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors,
Conference On Learning Theory (COLT), 2018.

Zalán Borsos, Sebastian Curi, Kfir Yehuda Levy, and Andreas Krause. Online variance
reduction with mixtures. In International Conference on Machine Learning (ICML),
2019.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223–311, 2018.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex Optimization. Cam-
bridge university press, 2004.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Bren-
dan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated
settings. ArXiv Preprint ArXiv:1812.01097, 2018.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge uni-
versity press, 2006.

Zachary Charles and Jakub Konečnỳ. On the outsized importance of learning rates in local
update methods. ArXiv preprint ArXiv:2007.00878, 2020.

Wenlin Chen, Samuel Horváth, and Peter Richtárik. Optimal client sampling for federated
learning. Transactions on Machine Learning Research, 2022.

Yae Jee Cho, Samarth Gupta, Gauri Joshi, and Osman Yagan. Bandit-based
communication-efficient client selection strategies for federated learning. In Asilomar
Conference on Signals, Systems, and Computers (ACSCC), 2020a.

Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated learning: Conver-
gence analysis and power-of-choice selection strategies. ArXiv Preprint ArXiv:2010.01243,
2020b.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. Deep learning for classical japanese literature. ArXiv Preprint
ArXiv:1812.01718, 2018.

Dominik Csiba and Peter Richtárik. Importance sampling for minibatches. Journal of
Machine Learning Research, 19(27):1–21, 2018.

Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In
International Conference on Machine Learning (ICML), 2015.

64

Adaptive Client Sampling in Federated Learning

Cynthia Dwork. Differential privacy: A survey of results. In Theory and Applications of
Models of Computation (TAMC), 2008.

Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms. ACM
Computing Surveys (CSUR), 24(4):441–476, 1992.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM journal on optimization, 23(4):2341–2368, 2013.

Siddharth Gopal. Adaptive sampling for SGD by exploiting side information. In Interna-
tional Conference on Machine Learning (ICML), 2016.

Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments.
IEEE Journal of Selected Topics in Signal Processing, 9(4):647–662, 2015.

Ayoub El Hanchi and David A. Stephens. Adaptive importance sampling for finite-sum
optimization and sampling with decreasing step-sizes. In Advances in Neural Information
Processing Systems (NeurIPS), 2020.

Filip Hanzely, Boxin Zhao, and mladen kolar. Personalized federated learning: A unified
framework and universal optimization techniques. Transactions on Machine Learning
Research, 2023.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends R© in
Optimization, 2(3-4):157–325, 2016.

Tyler B. Johnson and Carlos Guestrin. Training deep models faster with robust, ap-
proximate importance sampling. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cum-
mings, et al. Advances and open problems in federated learning. Foundations and trends R©
in machine learning, 14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri, Sashank J Reddi,
Sebastian U Stich, and Ananda Theertha Suresh. Mime: Mimicking centralized stochastic
algorithms in federated learning. ArXiv Preprint ArXiv:2008.03606, 2020a.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U.
Stich, and Ananda Theertha Suresh. SCAFFOLD: stochastic controlled averaging for
federated learning. In International Conference on Machine Learning (ICML), 2020b.

Taehyeon Kim, Sangmin Bae, Jin-woo Lee, and Seyoung Yun. Accurate and fast federated
learning via combinatorial multi-armed bandits. ArXiv Preprint ArXiv:2012.03270, 2020.

Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques
for federated learning. In World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), 2020.

65

Zhao, Wang, Liu, Zhang, Zhou, Chen and Kolar

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. CoRR, 2010.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Hongseok Namkoong, Aman Sinha, Steve Yadlowsky, and John C. Duchi. Adaptive sam-
pling probabilities for non-smooth optimization. In International Conference on Machine
Learning (ICML), 2017.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted
sampling, and the randomized kaczmarz algorithm. Mathematical Programming, 1(155):
549–573, 2016.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Kumar Kshitij Patel, Lingxiao Wang, Blake E Woodworth, Brian Bullins, and Nati Sre-
bro. Towards optimal communication complexity in distributed non-convex optimization.
Advances in Neural Information Processing Systems (NeurIPS), 2022.

Dmytro Perekrestenko, Volkan Cevher, and Martin Jaggi. Faster coordinate descent via
adaptive importance sampling. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2017.

Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online
client selection for hierarchical federated learning. IEEE Transactions on Parallel and
Distributed Systems, 33(12):4353–4367, 2022.

Aravind Rajeswaran, Chelsea Finn, Sham M. Kakade, and Sergey Levine. Meta-
learning with implicit gradients. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Monica Ribero and Haris Vikalo. Communication-efficient federated learning via optimal
client sampling. ArXiv Preprint ArXiv:2007.15197, 2020.

Farnood Salehi, L Elisa Celis, and Patrick Thiran. Stochastic optimization with bandit
sampling. ArXiv Preprint ArXiv:1708.02544, 2017.

Farnood Salehi, Patrick Thiran, and L. Elisa Celis. Coordinate descent with bandit sam-
pling. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Sebastian U. Stich, Anant Raj, and Martin Jaggi. Safe adaptive importance sampling. In
Advances in Neural Information Processing Systems (NeurIPS), 2017.

Tim van Erven and Wouter M. Koolen. Metagrad: Multiple learning rates in online learning.
In Advances in Neural Information Processing Systems (NeurIPS), 2016.

66

Adaptive Client Sampling in Federated Learning

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge University Press, 2019.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-
iid data with reinforcement learning. In IEEE Conference on Computer Communications
(INFOCOM), 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. ArXiv Preprint ArXiv:1708.07747, 2017.

Miao Yang, Ximin Wang, Hongbin Zhu, Haifeng Wang, and Hua Qian. Federated learning
with class imbalance reduction. In European Signal Processing Conference (EUSIPCO),
2021.

Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant:
Optimal dynamic regret of online learning with true and noisy gradient. In International
Conference on Machine Learning (ICML), 2016.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environ-
ments. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

Boxin Zhao, Boxiang Lyu, and Mladen Kolar. L-svrg and l-katyusha with adaptive sampling.
Transactions on Machine Learning Research, 2023.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for reg-
ularized loss minimization. In International Conference on Machine Learning (ICML),
2015.

Zeyuan Allen Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. In International Conference on Machine
Learning (ICML), 2016.

67

	Introduction
	Notation
	Organization of the Paper

	Related Work
	Adaptive Client Sampling
	Client Sampling as an Online Learning Problem
	OSMD Sampler

	Application of OSMD Sampler on Federated Optimization Algorithms
	Convergence Analysis of Mini-batch SGD with OSMD Sampler
	Convergence Analysis of FedAvg with OSMD Sampler

	Regret Analysis of OSMD Sampler
	Adaptive-OSMD Sampler
	Simulation Experiments
	Adaptive-OSMD Sampler vs Uniform Sampling
	Adaptive-OSMD Sampler vs MABS vs VRB vs Avare
	Robustness of Adaptive-OSMD Sampler to the Choice of
	Dynamic Sampling Distribution v.s. Fixed Sampling Distribution

	Real Data Experiment
	Conclusion
	Extensions of Adaptive-OSMD Sampler
	Adaptive-OSMD Sampler with Doubling Trick
	Adaptive Sampling Without Replacement

	Technical proofs
	Proof of (11)
	Proposition 12 and Its Proof
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 10

	Useful Lemmas
	Additional Future Directions
	Client Sampling with Personalized FL Objective
	Sampling with Physical Constraint in FL System

	Application of OSMD Sampler on SCAFFOLD

