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Abstract
Various methods in statistical learning build on kernels considered in reproducing kernel
Hilbert spaces. In applications, the kernel is often selected based on characteristics of the
problem and the data. This kernel is then employed to infer response variables at points,
where no explanatory data were observed.

The data considered here are located in compact sets in higher dimensions and
the paper addresses approximations of the kernel itself. The new approach considers
Taylor series approximations of radial kernel functions. For the Gauss kernel on the
unit cube, the paper establishes an upper bound of the associated eigenfunctions, which
grows only polynomially with respect to the index. The novel approach substantiates
smaller regularization parameters than considered in the literature, overall leading to better
approximations. This improvement confirms low rank approximation methods such as the
Nyström method.
Keywords: statistical learning, kernel methods, reproducing kernel Hilbert spaces,
Nyström method

1. Introduction

This paper contributes to statistical methods building on reproducing kernel Hilbert spaces.
These methods have become popular in statistical learning, in inference and in support vector
machines due to the kernel trick. They constitute powerful tools in different scientific areas
such as geostatistics (cf. Honarkhah and Caers 2010), stochastic optimization (cf. Dommel
and Pichler 2023, Park et al. 2022), digit recognition (cf. Schölkopf 1997), computer vision
(cf. Zhang et al. 2007) and bio informatics (cf. Schölkopf et al. 2004).

The approach presented here approximates the kernel function by elements in the range
of the associated Hilbert–Schmidt integral operator. We choose these elements so that its
Taylor series expansion matches the initial coefficients. The method applies for general radial
kernels with variable bandwidth. Special emphasize is given to the Gaussian kernel, which is
of major importance in practical applications.

Fundamental in statistical approximation is the regularization parameter. Standard
results suggest regularization parameters decreasing as O(1/n), where n is the sample size.

c©2025 Paul Dommel and Alois Pichler.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/24-0270.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/24-0270.html


Dommel and Pichler

This paper, in contrast, justifies significantly smaller regularization parameters, often close
to machine precision. This leads to enhanced approximation quality.

An additional consequence of our approach, not sufficiently addressed in the literature
yet, are the magnitudes of the eigenfunctions of the related Hilbert–Schmidt operator. We
demonstrate that this magnitude grows only polynomially in the index. Exploiting this
crucial property, we present an interpolation inequality, which allows bounding the uniform
error by the much weaker L2-error.

The approximation of the kernel function builds on the function wxm(·), smallest in
L2([0, 1])-norm, satisfying the moment constraints∫ 1

0
z`wxm(z) dz = x`, ` = 0, . . . ,m− 1. (1.1)

We provide the explicit solution, which is a polynomial with coefficients involving the Hilbert
matrix.

The results have consequences for low rank kernel methods. For these methods, they
ensure a stable approximation quality by building only on few supporting points. Prominent
examples of these methods include the Nyström algorithms and kernel principal component
analysis.

Related literature. Our results address the approximation of randomly located kernel
functions. This is of particular importance for low rank kernel methods, which build on an
approximation of the kernel matrix itself. The Nyström method, introduced in Williams
and Seeger (2000), is a prominent example for this technique. Drineas and Mahoney (2005)
analyze the error of the matrix approximation in the Nyström method and relate it to the
best approximating matrix, while Bach (2013) studies the precision of predictions directly.
The excellent work of Rudi et al. (2015) relates the rank of the approximating matrix
to the approximation of kernel functions. The result is then employed to develop a low
rank regression approach, which is significantly cheaper in computations than kernel ridge
regression while maintaining stable prediction accuracy, cf. Rudi et al. (2017). Kernel
principal component analysis builds on these results as well, cf. Sterge and Sriperumbudur
(2021).

The approximation of kernel functions is the core research question of this paper, for
which we present new bounds. The second main result of this work addresses the eigensystem
of Mercer’s decomposition associated with the Gaussian kernel. Shi et al. (2009) address this
issue for an unbounded domain, building on the normal distribution as underlying design
measure. The authors provide an explicit expression of the eigenvalues and eigenfunctions by
involving the Hermite polynomials in an unbounded domain. In compact domains, Diaconis
et al. (2008) consider the eigensystem for the Laplacian kernel.

The analysis of the divide and conquer approach relies on properties of the eigenfunctions
as well, cf. Zhang et al. (2013), but the paper builds on unverified assumptions. The analysis
of the regression error in different norms (cf. Fischer and Steinwart 2020 and Steinwart et al.
2009) can be related to bounded eigenfunctions as well. This paper presents explicit bounds
of the maximum value the eigenfunction may attain.

Outline of the paper. Section 2 addresses polynomial approximations of kernel functions.
Section 3 addresses the Gaussian kernel specifically and presents bounds of the eigenfunctions
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on bounded domains. This section contains the main results, which are considered in Section 4
in applications. Section 5 concludes the paper.

2. The minimal moment function

Reproducing kernel Hilbert spaces (RKHS) build on a kernel function, denoted k. The
approximations considered here build on the point evaluation function kx(·) := k(x, ·). This
section resumes the minimal moment function wxm from (1.1), for which the image Lkwxm is a
suitable estimate of kx. We first derive the function wxm for the simple design space X = [0, 1],
and then extend it to the d-dimensional case with some non-uniform design measure P .
Using the moment property (1.1), we derive an error bound for the approximation quality of
kx(·) by Lkwxm, which is based on the Taylor coefficients of the kernel.

2.1 The minimal moment function

The central element of this paper is the function with smallest L2-norm, satisfying the
moment properties (1.1). There are infinitely many functions fulfilling the condition (1.1).
We refer to the function with smallest L2-norm as the minimal moment function, where the
inner product is 〈f, g〉L2 :=

∫
X f(z)g(z)p(z) dz with the density p of the underlying measure

P . Throughout this section, we consider the design space X = [0, 1] equipped with the
uniform measure P ∼ U [0, 1].

In what follows we provide an explicit representation of the minimal moment function.
We demonstrate that it is a polynomial of degree m− 1, with coefficients originating from a
Hilbert matrix.

Theorem 1 (Explicit minimal moment function). For x ∈ [0, 1] fixed, the optimization
problem

ϑ∗ := min

{
‖w‖2L2 :

∫ 1

0
z`w(z)dz = x`, ` = 0, 1, . . . ,m− 1

}
(2.1)

has the unique solution

wxm(z) =
m∑
i=1

αx,iz
i−1, z ∈ (0, 1), (2.2)

where αx satisfies the equations Hmαx = x̄ for the Hilbert matrix Hm :=
(

1
i+j−1

)n,n
i=1,j=1

and

the vector x̄ := (1, x, . . . , xm−1) ∈ Rm.

Proof The Lagrangian L of (2.1) is

L(w, µ) = 〈w(z), w(z)〉L2 +
m∑
i=1

µi
(〈
zi−1, w(z)

〉
L2 − xi−1

)
,

where w ∈ L2 and µ = (µ1, . . . , µm) ∈ Rm are Lagrange multipliers. The first order condition
reads

(∇wL)(w∗µ, µ) = 2w∗µ +

m∑
i=1

µiz
i−1 = 0,
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which is equivalent to w∗µ(z) = −1
2

∑m
i=1 µiz

i−1. For µ = (µ1, . . . , µm) fixed, the Lagrangian
function L is convex and w∗µ thus a minimizer. Hence, the Lagrangian dual function is

g(µ) := min
w∈L2

L(w, µ) = L(w∗µ, µ) =
〈
w∗µ, w

∗
µ

〉
L2 +

m∑
i=1

µi

(〈
zi−1, w∗µ

〉
L2 − xi−1

)
,

depending only on the multipliers µ. As
〈
zi−1, zj−1

〉
L2 = 1

i+j−1 , we further have that

〈
zi−1, w∗µ

〉
L2 − xi−1 = −1

2

m∑
i=1

µ∗i
1

j + i− 1
− xj−1 = 0

by setting µ∗ = −2H−1m x̄. It follows that

g(µ∗) =
〈
w∗µ∗ , w

∗
µ∗
〉
L2 ≥ ϑ∗,

as w∗µ∗ is feasible in (2.1). This implies strong duality as well as the optimality of w∗µ∗ = wxm,
which is the assertion.

A minimal moment function of particular interest is the optimizer of (2.1) associated with the
point x = 1. In contrast to the general case x ∈ [0, 1], the L2-norm of w1

m can be computed
explicitly. Indeed, it holds that∫ 1

0
w1
m(z)2dz =

∫ 1

0

m∑
i=1

m∑
j=1

α1,iα1,jz
i+j−2dz

=

m∑
i=1

m∑
j=1

α1,iα1,j
1

i+ j − 1

=
m∑
i=1

α1,i1 = α>1 e = e>H−1m e = m2, (2.3)

as
∑n

i,j=1(H
−1
m )i,j = m2.

In what follows we bound the norm of the remaining moment functions. For that we
relate wxm with a specific linear transformation of w1

m.

Theorem 2 (Upper bound of the weight function). The weight function wxm satisfies the
bound

‖wxm‖
2
L2 ≤ m2 (2.4)

for any x ∈ [0, 1].

Proof Note first that, for x = 0,∫ 1

0
w0
m(z)2dz = e>1 H

−1
m e1 =

(
H−1m

)
1,1

= m2,

where e1 = (1, 0, . . . .0) is the first vector in the canonical basis. To verify the bound for
the remaining points x ∈ (0, 1) we relate wxm with an auxiliary function w̃xm for which we
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are able to calculate the norm more easily. Setting gx(z) := w1
m( zx)1[0,x](z) we define the

auxiliary function

w̃xm(z) :=

{
gx(z) if z ≤ x,
g1−x(1− z) if z > x,

with x ∈ (0, 1). To relate wxm with w̃xm, we demonstrate first that w̃xm satisfies the moment
constraints (1.1) and bound its norm afterwards. It holds that∫ 1

0
zhgx(z)dz =

∫ x

0
zhw1

m

( z
x

)
dz = x

∫ 1

0
(yx)hw1

m(y)dy = xxh (2.5)

for the first part of the integral. We further have that∫ 1

0
zhg1−x(1− z)dz = −

∫ 0

1−x
(1− y)hg1−x(y)dz =

∫ 1−x

0
(1− y)hg1−x(y)dy

after changing the variables. By the binomial theorem,

∫ 1−x

0
(1− y)hg1−x(y)dy =

h∑
p=0

(
h

p

)
(−1)h−p

∫ 1−x

0
yh−pg1−x(y)dy

=
h∑
p=0

(
h

p

)
(−1)h−p(1− x)(1− x)h−p

= (1− x)(1− (1− x))h = (1− x)xh,

as
∫ 1−x
0 yh−pg1−x(y)dy = (1 − x)(1− x)h−p by (2.5). Connecting both identities, we have

that ∫ 1

0
zhw̃xm(z)dz =

∫ x

0
zhgx(z)dz +

∫ 1−x

0
(1− y)hg1−x(y)dy = xh,

and thus the moment property (1.1) of w̃xm. It is now evident by (2.1) that ‖w̃xm‖L2 is an
upper bound of ‖wxm‖L2 . Employing the same substitutions as above, we get that

∫ 1

0
w̃xm(z)2dz =

∫ x

0
gx(z)2dz +

∫ 1

x
g1−x(1− z)2dz

= x

∫ 1

0
w1
m(y)2dy + (1− x)

∫ 1

0
w1
m(y)2dz

=

∫ 1

0
w1
m(y)2dy = m2

by (2.3), concluding the proof.

The squared norm of the moments functions at the boundary points is m2. However, the
norm of the minimal moment functions associated with the interior points x ∈ (0, 1) might
be significantly smaller.
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2.2 Extensions and error estimates

The results of the preceding Section 2.1 crucially rely on the proposed setting, i.e., the design
space [0, 1] equipped with the uniform distribution. These assumptions are quite restrictive
and need to be relaxed for situations of practical application. To this end we investigate a
more general setting throughout this section.

We consider the multivariate case where X = [0, 1]d, with some underlying design measure
P . This measure has a strictly positive density with

∞ > C > sup
z∈[0,1]d

p(z) ≥ inf
z∈[0,1]d

p(z) > c > 0,

giving rise to the inner product

〈f, g〉L2 =

∫
[0,1]d

f(z)g(z)p(z)dz.

In what follows we specify the minimal moment functions for this more general setting.
Building on the univariate moment property of the functions (2.2), we demonstrate that their
product satisfies a multivariate version of (1.1). The next proposition reveals the precise
statement.

Proposition 1 (Upper bound of the weight function in higher dimensions). Let x =
(x1, . . . , xd) ∈ [0, 1]d and consider the function

W x
m(z1, . . . , zd) :=

(
d∏
i=1

wxim(zi)

)
p(z1, . . . , zn)−1, (2.6)

where wxim are the functions defined in (2.2). The function W x
m satisfies the general moment

property ∫
[0,1]d

(
‖y − z‖22

)`
W x
m(z)p(z)dz =

(
‖y − x‖22

)`
(2.7)

for all integers ` ≤ m
2 . Its norm is bounded by ‖W x

m‖
2
L2 ≤ cpm2d with cp = supz∈[0,1]d p(z)−1.

Proof The moment property (2.7) follows from

∫
[0,1]d

(
‖y − z‖22

)`
W x
m(z)p(z)dz =

∫ 1

0
· · ·
∫ 1

0

(
d∑
i=1

(yi − zi)2
)` d∏

i=1

wxim(zi)dz1 . . . dzd

=
∑

h1+···+hd=`

(
`

h1, . . . , hd

) d∏
i=1

∫ 1

0
(yi − zi)2hiwxim(zi)dzi

=
∑

h1+···+hd=`

(
`

h1, . . . , hd

) d∏
i=1

(yi − xi)2hi

=
(
‖y − x‖22

)`
,

as
∫ 1
0 z

`i
i w

xi
m(zi) = x`ii holds for all integers `i ≤ m− 1. This is the first assertion.
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For the second assertion note that ‖wxim‖
2
L2 ≤ m2 holds by (2.4). Hence, we get that∫

[0,1]d
(W x

m(z))2p(z)dz =

∫ 1

0
· · ·
∫ 1

0

(
n∏
i=1

wxim(zi)

)2

p(z1, . . . , zn)−1dz1 . . . dzd

≤ sup
z∈[0,1]d

∣∣p(z)−1∣∣ d∏
i=1

∫ 1

0
(wxim(zi))

2dzi = cpm
2d,

which concludes the proof.

Remark 1. The function W x
m(·) might not be the norm minimal function satisfying (2.7).

Indeed, the product structure of (2.6) leads to an exponentially (with respect to the dimension)
increasing norm of W x

m. However, the construction of the norm minimal moment function
satisfying (2.7) might require a significantly more involved representation, which is out of
the scope of this paper.

Continuing the general setting considered above, we now provide the first error estimate.
To this end we consider a radial kernel

k(x, y) = φ(‖x− y‖2) (2.8)

as well as the corresponding integral operator Lk : L2(X , P )→ L2(X , P ) defined as

(Lkf)(y) =

∫
X
k(z, y)f(z)p(z)dz. (2.9)

Here, φ is a smooth function with Taylor series expansion

φ(x) =
∞∑
`=0

α`
`!
x`. (2.10)

Building on the moment property (2.7), we utilize that the `th moment of kx − LkW x
m

vanishes. The subsequent theorem reveals the precise bound.

Theorem 3 (Uniform bound in d-dimensions). With the function W x
m defined in (2.6), the

error estimate

sup
x∈[0,1]d

‖(LkW x
m)(y)− kx‖∞ ≤ (1 + c

1/2
p md)

∞∑
`=bm−1

2 c+1

|a`|
`!
d`, (2.11)

holds true. Here, b·c denotes the floor function.

Proof Employing the series representation (2.10) of φ, we have the decomposition

(LkW
x
m)(y) =

∫
X
φ
(
‖y − z‖22

)
W x
m(z)p(z)dz

=

∫
X

bm−1
2 c∑
`=0

a`
`!

(‖y − z‖22)
`W x

m(z)p(z)dz

+

∫
X

∞∑
`=bm−1

2 c+1

a`
`!

(‖y − z‖22)
`W x

m(z)p(z)dz.
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For the first part, it follows from the moment property (2.7) of W x
m that

∫
X

bm−1
2 c∑
`=0

a`
`!

(‖y − z‖22)
`W x

m(z)p(z)dz =

bm−1
2 c∑
`=0

a`
`!

(
‖y − x‖22

)`
,

as the 2
⌊
m−1
2

⌋
≤ m− 1. Hence, we have that

|k(y, x)− (LkW
x
m)(y)|

=

∣∣∣∣∣∣∣k(y, x)−
bm−1

2 c∑
`=0

a`
`!

(‖y − x‖22)
` +

∫
X

∞∑
`=bm−1

2 c+1

a`
`!

(‖y − z‖22)
`W x

m(z)p(z)dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑

`=bm−1
2 c+1

a`
`!

(‖y − x‖22)
` +

∫
X

∞∑
`=bm−1

2 c+1

a`
`!

(‖y − z‖22)
2`W x

m(z)p(z)dz

∣∣∣∣∣∣∣
≤

∞∑
`=bm−1

2 c+1

|a`|
`!
d` +

∞∑
`=bm−1

2 c+1

|a`|
`!
d` ‖W x

m‖L2

≤
∞∑

`=bm−1
2 c+1

|a`|
`!
d` + c

1/2
p md

∞∑
`=bm−1

2 c+1

|a`|
`!
d`.

The assertion follows, as the result holds for each x ∈ [0, 1]d.

The statement of Theorem 3 above applies for general translation invariant kernels of the
shape k(x, y) = φ(‖x− y‖2). To further specify the associated error bound, one needs to
include knowledge about the decay of the Taylor coefficients of φ. To this end we now
consider a fixed kernel for which these coefficients and their behavior are known.

3. The Gaussian kernel

The following results build on reproducing kernel Hilbert spaces (RKHS). For these spaces,
point evaluations are continuous linear functionals, and this property is the decisive characteristic
of RKHS. Each kernel function addressed above is associated with the corresponding space(
Hk, 〈·|·〉k

)
, for which 〈f | k(x, ·)〉k = f(x) whenever f ∈ Hk. For a detailed review of these

spaces we refer to Berlinet and Thomas-Agnan (2004) or Steinwart and Christmann (2008).
This section addresses the most popular kernel in machine learning, the Gaussian kernel

k(x, y) := e−σ‖x−y‖
2
2 = φ

(
σ · ‖x− y‖22

)
, (3.1)

where σ > 0 is a width parameter. We approximate the point evaluation function in the
range of the Hilbert–Schmidt operator and analyze its error with respect to different norms.
Building on these estimates, we derive essential properties of the problem

inf
w∈Hk

λ‖w‖2L2 + ‖Lkw − kx‖2k, (3.2)

which will be used in what follows. We employ these results to establish polynomial bounds
on the magnitude of the eigenfunctions of the Gaussian kernel.
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3.1 Approximation of the point evaluation function

In this section we investigate the approximation of the point evaluation function kx for the
Gaussian kernel. We relate the function kx with an approximation from the image of the
corresponding integral operator Lk and provide bounds with respect to the infinity norm as
well as the norm of the RKHS. The following theorem provides the result for the uniform
norm first.

Theorem 4 (Uniform approximation of kx in ‖·‖∞). Let k be the d-dimensional Gaussian
kernel with width parameter σ. Setting cσ := max {1, 2eσd}, cp = supz∈[0,1]d p(z)

−1 and

C(σ,m) :=
1

1− σed

bm2 c
,

the uniform bound

sup
x∈[0,1]d

‖LkW x
m − kx‖∞ ≤ (1 + c

1/2
p md)C(σ,m)

(⌊m
2

⌋ 1

σed

)bm2 c
holds for W x

m defined in (2.6) for m > cσ + 1.
Specifically, for m(s) := 3cσs+ 2, we have that

sup
x∈[0,1]d

∥∥∥LkW x
m(td) − kx

∥∥∥
∞
≤ 3(t d)−3t d (3.3)

whenever t ≥ max
{

ln(3)+(d−1) ln(2)+ 1
2
ln(cp)+d ln(3cσd)

2d ln(3) , 1
}
.

Proof We defer the proof to Appendix A.

The uniform bound (3.3) relates LkW x
m and kx for all points x ∈ [0, 1]d. However, the

uniform norm is slightly too weak when studying the objective (3.2), which relies on the
approximation in RKHS norm. To overcome this issue we extend the result obtained and
establish a dedicated bound, similar to (3.3), but with respect to the stronger norm ‖ · ‖k.
The next proposition reveals the desired bound.

Proposition 2 (Uniform approximation of kx in the norm ‖·‖k). Let m = m(s) = 3cσs+ 2
and t ≥ c := max{c0, c1, c2, 1}, where

c0 =
ln(3) + (d− 1) ln(2) + 1

2 ln(cp) + d ln(3cσd)

2d ln(3)
.

c1 =
(2d− 1) ln(2) + d ln(3cσ) + 1

2 ln(cp)

d
+ 1,

c2 =
(2d− 1) ln(2) + 1

2 ln(cp)

d
.

In the setting of Theorem (4), the uniform bound in ‖ · ‖k-norm,

sup
x∈[0,1]d

∥∥∥LkW x
m(td) − kx

∥∥∥2
k
≤ 9(td)−2td, (3.4)

holds true.
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Proof Let x ∈ [0, 1]d and observe from (3.3) and the reverse triangle inequality that

(LkW
x
m)(x) ≥ k(x, x)− ‖LkW x

m − kx‖∞ ≥ k(x, x)− 3(td)−3td, (3.5)

whenever m and t are chosen appropriately (see Theorem 4). Hence, setting m = d3cσtde+ 2,
it follows from (3.5) that

‖LkW x
m − kx‖

2
k = 〈LkW x

m, LkW
x
m〉k − 2 〈LkW x

m, kx〉k + k(x, x)

= 〈LkW x
m, LkW

x
m〉k − 2 (LkW

x
m) (x) + k(x, x)

≤ 〈LkW x
m,W

x
m〉L2 − (LkW

x
m) (x) + 3(td)−3td,

as 〈LkW x
m, kx〉k = (LkW

x
m) (x) holds by the reproducing property. Furthermore, we have

that

〈LkW x
m,W

x
m〉L2 = 〈LkW x

m − kx,W x
m〉L2 + 〈kx,W x

m〉L2 = 〈LkW x
m − kx,W x

m〉L2 + (LkW
x
m) (x).

Employing the bound
〈LkW x

m − kx,W x
m〉L2 ≤ 6(dt)−2dt

from Lemma A.7 in the appendix and combining the estimates above, we get

‖Lkwxm − kx‖
2
k ≤ 6(td)−2td + 3(td)−3td ≤ 9(td)−2td,

and thus the assertion.

Remark 2. The bound (3.4) depends only on the magnitude of the product td. Substituting
s = td gives the more convenient bound

sup
x∈[0,1]d

‖LkW x
m − kx‖

2
k ≤ 9s−2s, (3.6)

where m = m(s) = 3cσs+ 2 and s ≥ d · c.

3.2 Implications for the weight function

Building on the bound (3.4) of Section 3.1, we now examine the optimal weight function wxλ
solving the optimization problem

inf
w∈L2

λ ‖w‖2L2 + ‖Lkw − kx‖2k ,

cf. (3.2). This optimal solution wxλ , and its norm, determine the approximation quality of
the point evaluation kx in the range of Lk. Moreover, they relate the continuous operator Lk
with discrete versions, which we address and discuss in the following sections.

By Mercer’s theorem, the kernel k enjoys the representation k(x, y) =
∑∞

`=1 µ` ϕ`(x)ϕ`(y),
where µ` are the eigenvalues (in non-increasing order) and ϕ` the eigenfunctions, ` = 1, 2, . . . ,
of the operator Lk introduced in (2.9). The explicit representation

wxλ(y) =
(
(λ+ Lk)

−1Lkkx
)
(y) =

∞∑
`=1

µ`
λ+ µ`

ϕ`(x)ϕ`(y)

10
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of the optimal solution involves the regularization parameter λ and the components of
Mercer’s decomposition of the kernel k (cf. Cucker and Zhou 2007, Proposition 8.6).

The next theorem provides a bound on the magnitude of the worst case norm, more
specifically, a bound for supx∈[0,1]d ‖wxλ‖L2 .

Theorem 5 (Uniform bound of the weight function). Let k be the Gaussian kernel. The
weight function wxλ satisfies the bound

sup
x∈[0,1]d

‖wxλ‖
2
L2 ≤ 9cp (3cσs(λ) + 2)2d + 1 (3.7)

with s(λ) := max
{
−1

2 ln
(
λ
9

)
, d · c, e

}
and cσ, c from Proposition 2.

Proof The function wxλ minimizes (3.2) and thus

sup
x∈[0,1]d

λ ‖wxλ‖
2
L2 ≤ sup

x∈[0,1]d
λ ‖W x

m‖
2
L2 + ‖LkW x

m − kx‖
2
k ≤ sup

x∈[0,1]d
λcpm

2d + ‖LkW x
m − kx‖

2
k ,

(3.8)
as ‖W x

m‖
2
L2 ≤ cpm2d (see Theorem 1).

Choosing s(λ) := max
{
−1

2 ln
(
λ
9

)
, d · c, e

}
and m = 3cσ s(λ) + 2 we derive from (3.6)

that
‖LkW x

m − kx‖
2
k ≤ 9s−2s ≤ λ

(as s ≥ e and s ≥ −1
2 ln

(
λ
9

)
), and thus

sup
x∈[0,1]d

λ ‖wxλ‖
2
L2 ≤ sup

x∈[0,1]d
λcpm

2d + ‖LkW x
m − kx‖

2
k ≤ λcp(3cσs(λ) + 2)2d + λ

by (3.8). Multiplying with λ−1 gives the assertion.

The bound (3.7) characterizes the asymptotic growth of the norm ‖wxλ‖L2 . Indeed, letting
λ ↓ 0, the bound (3.7) implies that ‖wxλ‖L2 grows at most as

(
ln(λ−1)

)d. The subsequent
sections heavily exploit this asymptotic behavior.

3.3 Eigenvalues and eigenfunctions

This section studies the elements in Mercer’s decomposition of the kernel, k(x, y) =∑∞
`=1 µ`ϕ`(x)ϕ`(y), specifically for the Gaussian kernel. We first relate the maximal value of

any eigenfunction with its associated eigenvalue, demonstrating that ‖ϕ`‖∞ is bounded by(
ln(µ−1` )

)d. This bound is significantly sharper than the standard bound maxx∈X ϕ`(x) ≤
k(x, x)1/2µ

−1/2
` derived from the Cauchy–Schwartz inequality, 〈ϕ, kx〉k ≤ ‖ϕ‖k k(x, x).

We next describe the decay of the eigenvalues µ` and derive a bound on ‖ϕ`‖∞, which turns
out to be quadratic in `. The results of this section enable us to infer convergence in uniform
norm from convergence in L2. Generally, this approach leads to faster convergence rates
compared to results, which are derived from convergence in the norm ‖·‖k (see Section 4.2).

Our approach builds on the following observation. For the regularization λ = µ`, the
series

‖wxλ‖
2
L2 =

∞∑
h=1

(
µh

λ+ µh

)2

ϕ2
h(x)

11
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involves the term 1
4ϕ

2
`(x). To bound the maximum of |ϕ`|, it is sufficient to assess

supx∈[0,1]d ‖wxλ‖
2
L2 , which is bounded by the inequality (3.7). The following result summarizes

these relations.

Theorem 6. For the eigenfunctions of the Gaussian kernel, the inequality

sup
x∈[0,1]d

|ϕ`(x)| ≤ 6
√
cp (3cσs(µ`) + 2)d + 2 (3.9)

holds for every ` ∈ N, where s(µ`) = max
{
−1

2 ln
(µ`

9

)
, e, d · c

}
is as in Theorem 5.

Proof For ` ∈ N, it holds that

1

4
|ϕ`(x)|2 =

(
µ`

µ` + µ`

)2

ϕ`(x)2 ≤
∞∑
h=1

(
µh

µ` + µh

)2

ϕh(x)2 = ‖wxλ∗‖
2
L2 ,

with λ∗ = µ`. Taking the maximum on both sides, we deduce from the latter inequality
and (3.7) that

1

4
‖ϕ`‖2∞ ≤ sup

x∈[0,1]d
‖wxλ∗‖

2
L2

≤ 9cp (3cσs(λ
∗) + 2)2d + 1 = 9cp (3cσs(µ`) + 2)2d + 1.

Reformulating this inequality as well as using the subadditivity of the square root gives the
assertion.

The bound (3.9) relates the eigenfunctions and the eigenvalues of the operator Lk. In what
follows, we analyze the decay of (µ`)

∞
`=1 to get a more concrete characterization of the bound

in (3.9).
The next lemma provides a lower bound of the eigenvalues (µ`)

∞
`=1.

Lemma 1 (Maximal decay of eigenvalues). Set pmin := infx∈X p(x) and pmax := supx∈X p(x).
For the eigenvalues of the Gaussian kernel it holds that

µ` ≥
p2min

p2max

C(d, σ)e−cσ,d(`+d)
2
d , ` = 1, 2, . . . , (3.10)

where the constants cd,σ and C(d, σ) depend on the dimension d and the bandwidth σ.

Proof See Appendix B.

The subsequent theorem combines the inequalities (3.9) and (3.10) and provides an explicit
bound on the maximal absolute value of the eigenfunctions (ϕ`)

∞
`=1.

Theorem 7 (Eigenfunctions). The eigenfunctions of the d-dimensional Gaussian kernel
satisfy the bound

max
x∈[0,1]d

|ϕ`(x)| ≤ 6
√
cp max

{
h(`), (3cσe+ 2)d , (3cσ(d · c) + 2)d

}
+ 2 (3.11)

with

h(`) :=

(
3cσ

((
1

2
ln (9)− 1

2
ln

(
p2min

p2max

C(d, σ)

)
+

1

2
cd,σ(`+ d)

2
d

))
+

+ 2

)d
and the constants from the preceding Lemma 1.

12
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Proof For the assertion note first that

s(λ) = max

{
−1

2
ln

(
λ

9

)
, e, d · c

}
= max

{(
−1

2
ln

(
λ

9

))
+

, e, d · c
}
,

where x+ := max {x, 0} is the positive part of x. Hence, employing (3.10) in (3.9), we have
the bound

|ϕ`(x)| (3.12)

≤ 6
√
cp (3cσs(µ`) + 2)d + 2

= 6
√
cp

3cσ max

−1

2
ln

p2minC(d, σ)e−cσ,d(`+d)
2
d

9p2max

 , e, d · c

+ 2

d

+ 2

= 6
√
cp

(
3cσ max

{(
1

2
ln (9)− 1

2
ln

(
p2min

p2max

C(d, σ)

)
+

1

2
cd,σ(`+ d)

2
d

)
+

, e, d · c
}

+ 2

)d
(3.13)

+ 2.

Note now that x 7→ xd is an increasing function on [0,∞) and thus max {a, b}d = max{ad, bd},
provided that a, b ≥ 0. Using this property in (3.13) provides the assertion (3.11).

Remark 3. The right-hand side of (3.11) deserves additional attention. While h(`) grows
with ` increasing, the other terms do not depend on `. For sufficiently large `, the
inequality (3.11) thus reads

max
x∈[0,1]d

|ϕ`(x)| ≤ 6c
1/2
p h(`) + 2.

The function h itself grows at most as a polynomial with degree 2. That is, there exists a
constant b > 0 with quadratic bound

max
x∈[0,1]d

|ϕ`(x)| ≤ b `2, ` = 1, 2, . . . . (3.14)

To the best of our knowledge, this is the first non-exponential bound of ϕ′`s absolute
maximum. The following section addresses various consequences of this main result.

Remark 4. The approach chosen in this Section 3 is not limited to the Gaussian kernel. All
steps extend to general kernels of the form φ(‖x− y‖2) (cf. (2.8)), provided that a lower
bound on the decay of its eigenvalues is available.

4. Main results

This section connects the results of the preceding sections for general statistical learning
settings. We present improved concentration bound inequalities, an interpolation inequality
relating to uniform convergence, and the Nyström method.

13
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We adopt the well-established notation (cf. Rudi et al. 2015) and introduce

N∞(λ) := sup
x∈[0,1]d

‖wxλ‖
2
L2 + λ−1 ‖Lkwxλ − kx‖

2
k . (4.1)

As established above in (3.8), it holds that

N∞(λ) = O
(
ln(λ−1)2d

)
for λ→ 0.

Building on the results of Section 3, we provide the results for the Gaussian kernel.

4.1 Concentration bounds

Standard kernel ridge regression minimizes the regularized squared error at the sample points.
To infer the related error at other locations, one needs to connect the discrete setting with the
continuous setting from Section 3. This is commonly done by relating the discrete operator

LDk : C(X )→ Hk with (LDk f)(y) :=
1

n

n∑
i=1

f(xi)k(y, xi)

with its continuous version Lk, as demonstrated in Caponnetto and De Vito (2006) as well
as in Fischer and Steinwart (2020). However, the underlying concentration results in these
references generally require regularization sequences not faster than λn = O(1/n), which is
too restrictive for many tasks including the analysis of low rank kernel methods (cf. Zhang
et al. 2013, Bach 2013).

This section addresses this issue. We provide the following result, which allows significantly
higher flexibility in choosing the regularization sequence λn. Specifically, the regularizing
sequence may be chosen to decay faster than any polynomial.

The following proposition collects the detailed result for the concentration inequality.

Proposition 3. Assume that λ satisfies

4

3
τ g(λ)

N∞(λ)

n
+

√
2τ g(λ)

N∞(λ)

n
≤ 1

2
(4.2)

with

g(λ) = ln

(
2e

(λ+ µ1)N (λ)

µ1

)
, N (λ) =

∞∑
`=1

µ`
λ+ µ`

and τ > 0. Then the inequality∥∥∥(Lk + λ)
1/2(λ+ LDk )−1(Lk + λ)

1/2
∥∥∥
Hk→Hk

≤ 2 (4.3)

holds with probability at least 1− 2e−τ .

Proof For the proof we refer to Appendix C.

The condition (4.2) deserves some additional commentary. The term N∞(λ) is asymptotically
bounded by O

(
ln(λ−1)2d

)
, and the function g(λ) does not grow faster than O

(
ln(λ−1)

)
. The

14
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condition (4.2) is asymptotically satisfied, provided that the regularization parameter λ does
not decay faster than c exp

(
−n

1
2d+1

)
. This is a significant improvement compared to the

common regularization choice n−1.
The conclusion of Proposition 3 can be given more general, not necessarily involving the

Gaussian kernel. Moreover, the bound (3.7) of N∞(λ) only relies on the decay of the Taylor
coefficients associated with the kernel. The same method thus may be applied to derive
concentration inequalities for any other radial kernel functions.

4.2 Interpolation inequality

This section establishes results on the uniform approximation quality for smooth functions.
The following interpolation inequality ensures that the uniform norm of smooth functions
is comparable its norm in L2, although this norm is much weaker in general. We measure
smoothness with reference to the norm ‖ · ‖s introduced below.

Theorem 8 (Interpolation of norm). For f =
∑∞

`=1 c`ϕ` ∈ L2 with ‖f‖2s :=
∑∞

`=1
c2`
`−2s <∞

it holds that
‖f‖∞ ≤

π√
6
b ‖f‖

3
s
s · ‖f‖

1− 3
s

2 , (4.4)

where s > 3 and maxx∈X |ϕ`(x)| ≤ b `2 for all ` = 1, 2, . . . (cf. (3.14)).

Proof Building on the bound maxx∈X |ϕ`(x)| ≤ b`2 we have with the Cauchy–Schwarz
inequality that

f(x) =

∞∑
`=1

c`ϕ`(x) ≤ b
∞∑
`=1

c`

`
− s
p

· `2−
s
p

≤ b

√√√√ ∞∑
`=1

c2`

`
− 2s
p

√√√√ ∞∑
`=1

`
(2− s

p
)2

= b

√√√√√ ∞∑
`=1

c
2
p

`

`
− 2s
p

c
2− 2

p

`

√
ζ
(2s

p
− 4
)
,

where ζ(·) is the Riemann zeta function and p ∈ [1, 2s]. Employing Hölder’s inequality, it
follows for the first term that√√√√√ ∞∑

`=1

c
2
p

`

`
− 2s
p

c
2− 2

p ≤

( ∞∑
`=1

c2`
`−2s

) 1
2p
( ∞∑
`=1

c
(2− 2

p
)( p
p−1

)

`

) 1
2
(1− 1

p
)

=

( ∞∑
`=1

c2`
`−2s

) 1
2p
( ∞∑
`=1

c2`

) 1
2
(1− 1

p
)

.

Choosing p = s
3 , we finally have that

b

( ∞∑
`=1

c2`
`−2s

) 1
2p
( ∞∑
`=1

c2`

) 1
2
(1− 1

p
)√

ζ
(2s

p
− 4
)

= b ‖f‖
1
p
s ‖f‖

1− 1
p

2

√
ζ
(2s

p
− 4
)

=
π√
6
b ‖f‖

3
s
s ‖f‖

s−3
s

2
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by involving Euler’s famous formula ζ(2) = π2

6 . This is the assertion.

Convergence in L2 implies convergence in L∞: Specifically, consider a sequence of
functions fn with slowly increasing norm ‖fn‖s and limit ‖f‖s <∞. Then, for ‖fn−f‖L2 → 0
sufficiently fast, it follows from Theorem 8 that ‖fn − f‖∞ → 0.

Remark 5. Fischer and Steinwart (2020) study convergence in an interpolation space between
Hk and L2, which the authors call power spaces. The norm considered in Fischer and
Steinwart (2020), however, is stronger than the norm ‖ · ‖s considered above.

4.3 Nyström method

The main result in Rudi et al. (2015, Theorem 1) relates the function N∞(λ) to the
Nyström method. Their paper ensures that the Nyström method does not require more than
O
(
N∞(λ) lnλ−1

)
supporting points.

The results established in Section 3 above provides explicit access to the function N∞(λ),
so that their main result can be refined and enhanced to the following form.

Theorem 9 (Cf. Rudi et al. 2015, Theorem 1). Let E(f) :=
∫∫
X×R

(
f(x)− y

)2
ρ(dx, dy) be

the common error function. Given the assumptions of Theorem 1 in (Rudi et al., 2015), it
holds that the Nyström-approximation f̂λ,m with regression parameter λ satisfies

E(f̂λ,m)− E(fH) ≤ q2n
2ν+1

2nu+γ+1

for at least

m ≥ (67 ∨ 5
(

9cp (3cσs(λ) + 2)2d + 1
)

lnλ−1 (4.5)

supporting points. The reference provides the constant q and ν explicitly.

Proof Invoking the bound (3.7) for N∞(λ), the result is immediate from Rudi et al. (2015,
Theorem 1).

The adapter result (4.5) gives an explicit selection criterion for the critical number of support
points in the Nyström method.

5. Summary

The novel approach of this paper considers an explicit approximation of the kernel function
in the range of the associated integral operator. To this end we provide an explicit weight
function by matching the initial Taylor coefficients of the kernel.

The approach has numerous consequences in theory and in applications. We provide
bounds for the eigenfunctions, which grow only quadratic in the enumeration index. An
interpolation inequality provided relates convergence in uniform norm and the weaker
convergence in L2 for smooth functions. The methods established justify smaller regression
parameters for regression problems, which is of particular importance for low-rank approximation
techniques.
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Appendix A. Gaussian approximation

This section provides the proof of the formula (3.3), which is of fundamental importance for
every other bound provided in Section 3. The proof of the bound (3.3) builds on the error
estimate (2.11), which involves the Taylor remainder of the exponential series. To this end
we utilize the formula

∞∑
`=n

α` =
αn

1− α
(A.1)

of the truncated geometric series as well as Stirling’s approximation

√
2πn

(n
e

)n
< n!, (A.2)

which relates the factorial with the exponential function. For future reference convenience of
the reader, we restate Theorem 4.

Theorem 10. Let k be the d-dimensional Gaussian kernel with width parameter σ. Setting
cσ := max {1, 2eσd}, cp = supz∈[0,1]d p(z)

−1 and

C(σ,m) :=
1

1− σed

bm2 c
,

the uniform bound

sup
x∈[0,1]d

‖LkW x
m − kx‖∞ ≤ (1 + c

1/2
p md)C(σ,m)

(⌊m
2

⌋ 1

σed

)bm2 c
holds for W x

m defined in (2.6) for m > cσ + 1.
Specifically, for m(s) := 3cσs+ 2, we have that

sup
x∈[0,1]d

∥∥∥LkW x
m(td) − kx

∥∥∥
∞
≤ 3(t d)−3t d (A.3)

whenever t ≥ max
{

ln(3)+(d−1) ln(2)+ 1
2
ln(cp)+d ln(3cσd)

2d ln(3) , 1
}
.

Proof Employing the inequality (2.11) involving the Taylor coefficients, we have that

sup
x∈[0,1]d

‖LkW x
m − kx‖∞ ≤ (1 + c

1/2
p md)

∞∑
`=bm−1

2 c+1

σ`

`!
d` ≤ (1 + c

1/2
p md)

∞∑
`=bm2 c

σ`

`!
d`, (A.4)

as
⌊
m
2

⌋
≤
⌊
m−1
2

⌋
+ 1. Further, invoking Stirling’s approximation (A.2) for the right-hand

side of (A.4), it follows that

(1 + c
1/2
p md)

∞∑
`=bm2 c

σ` (`!)−1 d` ≤ (1 + c
1/2
p md)

∞∑
`=bm2 c

(
√

2π`

(
`

σed

)`)−1
.
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Now assume thatm satisfies the inequality 1 <
⌊
m
2

⌋
(σed)−1, then we have from identity (A.1)

of the truncated geometric series that

sup
x∈[0,1]d

‖LkW x
m − kx‖∞ ≤ (1 + c

1/2
p md)

∞∑
`=bm2 c

(
`

σed

)−`

≤ (1 + c
1/2
p md)

1

1− σed

bm2 c

(⌊m
2

⌋ 1

σed

)−bm2 c
(A.5)

= (1 + c
1/2
p md)C(σ,m)

(⌊m
2

⌋ 1

σed

)−bm2 c
, (A.6)

which is the first assertion.
For the second assertion let m = m(td) = 6cσtd+ 2 and observe for the constant C(σ,m)

that

C(σ,m) =
1

1− σed

bm2 c
≤ 1

1− σed
3(σed)td

≤ 1

1− 1
3td

≤ 3

2

holds for every t ≥ 1. Furthermore, employing m(td), as well as C(σ,m) ≤ 3
2 , and arguing

as above, we get for (A.6) that

(1 + c
1/2
p md)C(σ,m)

(⌊m
2

⌋ 1

σed

)−bm2 c
≤ 3

2
(1 + c

1/2
p m(t)d)

(
3σed2t

σed

)−bm2 c
≤ 3

2
(1 + c

1/2
p (3cσtd+ 2)d) (3td)−3dt

≤ 3

2
(3td)−3dt +

3

2
2d−1c

1/2
p (3cσtd)d (3td)−3dt +

3

2
22d−1 (3td)−3dt ,

where we utilize (a+ b)d ≤ 2d−1(ad + bd) for the last inequality. The latter is bounded by

3

2
22d−1 (3td)−3dt ≤ (td)−3dt

as well as the middle term by

2d−1c
1/2
p (3cσtd)d3−3td(td)−3td

=
1

2
(eln(3)+(d−1) ln(2)+ln(c

1/2
p )+d ln(3cσtd)−ln(3)3td)(td)−3td

≤ 1

2
(eln(3)+(d−1) ln(2)+ln(c

1/2
p )+d ln(3cσd)−ln(3)2td)(dt)−3td

≤ 1

2
(td)−3td

20



On the Approximation of Kernel functions

whenever t ≥ ln(3)+(d−1) ln(2)+ln(c
1/2
p )+d ln(3max{cσ ,1}d)

2d ln(3) . Hence, choosing

t ≥ max

{
ln(3) + (d− 1) ln(2) + ln(c

1/2
p ) + d ln(3 max {cσ, 1} d)

2d ln(3)
, 1

}
,

we have that

(1 + c
1/2
p md)C(σ,m)

(⌊m
2

⌋ 1

σed2

)bm2 c
≤ 3

2
(3dt)−3dt +

3

2
(dt)−3dt ≤ 3(dt)−3dt,

which is the assertion.

Building on the bound (3.3) in the uniform norm, we establish a bound in the RKHS norm
in Proposition 2. To this end the following technical Lemma is of crucial importance.

Lemma 2. Given the assumptions of Theorem 4, the bound

sup
x∈[0,1]d

〈LkW x
m − kx,W x

m〉L2 ≤ 6(td)−2td (A.7)

holds whenever t ≥ max {c0, c1, c2} with constants

c1 =
(2d− 1) ln(2) + d ln(3cσ) + 1

2 ln(cp)

d
+ 1 and

c2 =
(2d− 1) ln(2) + 1

2 ln(cp)

d
.

Proof Employing the Cauchy–Schwarz inequality, we have from (3.3) that

〈LkW x
m − kx,W x

m〉2 ≤ ‖LkW
x
m − kx‖L2 ‖W x

m‖L2 ≤ 3(td)−3tdc
1/2
p md

whenever m (and t) are chosen with respect to the constraints Theorem 4. Involving
m = m(td) we further observe that

3(td)−3tdc
1/2
p (3cσtd+ 2)d ≤ 2d−13(td)−3tdc

1/2
p (3cσtd)d + 22d−13(td)−3tdc

1/2
p . (A.8)

For the second term in (A.8) it follows that

22d−13(td)−3tdc
1/2
p = 22d−1(td)−tdc

1/2
p 3(td)−2td ≤ 3(td)−2td

whenever t ≥ (2d−1) ln(2)+ 1
2
ln(cp)

d
:= c2. Reformulating the first term in (A.8) to

2d−13(td)−3tdc
1/2
p (3cσtd)d = 3e−td ln(td)+(2d−1) ln(2)+ 1

2
ln(cp)+d ln(3cσtd)(td)−2td

we get for the exponent that

− td ln(td) + (d− 1) ln(2) +
1

2
ln(cp) + d ln(3cσtd)

=− d(t− 1) ln(td) + (d− 1) ln(2) +
1

2
ln(cp) + d ln(3cσ)

≤− d(t− 1) ln(2) + (d− 1) ln(2) +
1

2
ln(cp) + d ln(3cσ).
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Thus, for

t ≥
(2d− 1) ln(2) + d ln(3cσ) + 1

2 ln(cp)

d
+ 1 =: c1

it follows that
2d−13(td)−3tdc

1/2
p (3cσtd)d ≤ 3(td)−2td.

Combining the estimates of the terms in (A.8), we have for t ≥ max {c1, c2} that

〈LkW x
m − kx,W x

m〉2 ≤ 6(td)−2td

and thus the assertion.

Appendix B. Decay of eigenvalues

This section provides a lower bound on the eigenvalues (µ`)
∞
`=1 of the operator Lk associated

with the Gaussian kernel. We address the univariate case first, which is then extended to
the multivariate case. As a starting point we consider the most elementary setting, i.e.,
X = [0, 1], equipped with the uniform measure P = U [0, 1]. The following lemma provides
the precise eigenvalue bound.

Lemma 3 (Maximal decay of eigenvalues). Let k be the Gaussian kernel, X = [0, 1] as well
as P = U [0, 1]. For every ` ∈ N it holds that

µ` ≥
1

`
C(σ)e−aσ(`−1)

2
, (B.1)

where aσ = 8 · 4π2

16σ and C(σ) is a constant depending on the width parameter σ.

Proof Let x1, . . . , x` be independent random variables following the uniform measure U [0, 1].
Let K = (k(xi, xj))

`
i,j=1 be the Gramian matrix and invoking Shawe-Taylor et al. (2002,

Proposition A), it follows that

µ` ≥
1

`
Eλmin(K),

where λmin(K) is the smallest eigenvalue of the matrix K and the expectation is with respect
to the samples. Further, employing the result of Diederichs and Iske (2019, Example 2.6), we
get with M := mini,j≤`,i 6=j |xi − xj | and (D.4) in the auxiliary Lemma 9 below (Appendix D)
that

Eλmin(K) ≥ EM−1C̃(σ)e−
4π2

16M2σ ≥ C̃(σ)E e−
4π2

16M2σ ≥ C(σ)e−aσ(`−1)
2
,

as M < 1, and where C(σ) = C · C̃(σ) with C from as in (D.4). This is the assertion.

Extending the univariate case to the multivariate setting builds on the product structure of
the Gaussian kernel, that is, on

∏d
i=1 e

−σ(xi−yi)2 = e−σ
∑n
i=1(xi−yi)2 . Indeed, provided that

the underlying measure is U [0, 1]d, the spectrum of the corresponding operator Lk is{
d∏
i=1

µ`i : `1, . . . , `d ∈ N

}
,
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where µ`i is the `ith eigenvalue in the univariate setting. This is immediate, as every
eigenfunction in the multivariate case is a product of elementary eigenfunctions,

∏d
i=1 ϕ`i(xi).

We may assume the multivariate eigenvalues µ(d)` arranged in non-increasing order such that

(
µ
(d)
`

)∞
`=1

=

(
d∏
i=1

µ`i : `i ∈ N

)
(B.2)

and µ(d)1 ≥ µ
(d)
2 ≥ . . . .

The subsequent auxiliary and combinatorial lemmata utilize the structure of the spectrum
to infer the maximal decay rate of the sequence µ(d)` . The first is a general combinatorial
result, with which we assess the eigenvalue decay in the second.

Lemma 4. It holds that ∑
i1+···+id≤n,

ij∈N

1 ≥ (n− 1)d

(d− 1)d−1
− d (B.3)

for n ≥ d ≥ 2.

Proof We proof the assertion by employing on the stars and bars formula∑
i1+···+id=i

1 =

(
i− 1

d− 1

)
,

where ij ≥ 1 are positive integers (cf. Feller 1968, p. 38) and i ∈ N. We have that∑
i1+···+id≤n

1 =
n∑
i=d

∑
i1+···+id=i

1 =
n∑
i=d

(
i− 1

d− 1

)
≥

n∑
i=d

(
i− 1

d− 1

)d−1
≥

n∑
i=1

(
i− 1

d− 1

)d−1
− d,

(B.4)

where we utilize that(
i− 1

d− 1

)
=

(i− 1)(i− 2) · · · (i− d+ 1)

(d− 1)(d− 2) · · · 1
=

d−1∏
j=1

i− j
d− j

≥
d−1∏
j=1

i− 1

d− 1
=

(
i− 1

d− 1

)d−1
.

Furthermore, employing
nd

d
=

∫ n

0
xd−1dx ≤

n∑
i=1

kd−1

in (B.4), it follows that
n∑
i=1

(
i− 1

d− 1

)d−1
− d =

1

(d− 1)d−1

n∑
i=1

(i− 1)d−1 − d

=
1

(d− 1)d−1

n−1∑
k=0

kd−1 − d ≥ (n− 1)d

d(d− 1)d−1
− d

and thus the assertion.
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Lemma 5. Let µ` ≥ e−ρ`
2 for every ` ∈ N. Then the sequence µ(d)` from (B.2) satisfies

µ
(d)
` ≥ C exp(−cρ(`+ d)

2
d ) (B.5)

for all ` ∈ N and d ≥ 2 for some c > 0 and C > 0.

Proof We first determine the number of combinations of µi1 , . . . , µid for which the product∏d
k=1 µik is larger than exp(−ρ(λ+ 2)2) for some threshold parameter λ > 0. It holds that∏d
i=1 µ`i ≥ e−ρ i

2
1−...−ρ i2d ≥ e−ρ(i1+···+id)

2 ≥ e−ρ(λ+2)2 , provided that i1 + · · · + id ≤ λ + 2.
From (B.3) we deduce that

∑
i1+···+id≤λ+2

1 ≥ bλ+ 1cd

d(d− 1)(d−1)
− d

and thus
µ
(d)
` ≥ e

−ρ(λ+2)2

for all ` ≤ bλ+1cd

d(d−1)(d−1) − d. Choosing λ :=
(
d(d− 1)d−1(`+ d)

)1/d and employing (a+ b)2 ≤
2a2 + 2b2, we get that

µ
(d)
` ≥ e

−ρ
(
(d(d−1)d−1(`+d)

)1/d
+2

)2

≥ e−ρ23e−ρ2d
2/d(d−1)

2(d−1)
d (`+d)

2/d
.

The assertion follows by setting C := exp(−8ρ) and c := 2d2/d(d− 1)
2(d−1)
d .

The bound (B.5) already implies (3.10), provided that the underlying measure is uniform,
i.e, the Lebesgue measure. The following lemma extends the assertion for more general
probability measures.

Lemma 6. Let X = [0, 1]d and consider the operators Lk : L2(X , λ) → L2(X , λ) and
Lpk : L2(X , P )→ L2(X , P ) with

(Lkf)(y) =

∫
X
k(x, y)f(x)dx (LPk f)(y) =

∫
X
k(x, y)f(x)p(x)dx.

Here, λ is the Lebesgue (uniform) measure and P is a probability measure, satisfying the
condition 0 < pmin := infx∈X p(x) ≤ pmax := supx∈X p(x) < ∞. The eigenvalues (µ

(d)
` )` of

Lk ((µ(d)`,p )` of L
p
k, resp.), satisfy the relation

µ
(d)
`,p ≥

p2min

p2max

µ
(d)
` (B.6)

for all ` ∈ N.
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Proof By the Courant–Fischer–Weyl min-max principle it holds that

µ
(d)
`,p = max

dim(Sk)=k
min
x∈Sk

‖x‖L2(P )=1

〈
Lpkx, x

〉
L2(P )

= max
dim(Sk)=k

min
x∈Sk

(
‖x‖L2(λ)

‖x‖L2(P )

)2〈
Lpk

x

‖x‖L2(λ)
,

x

‖x‖L2(λ)

〉
L2(P )

≥ max
dim(Sk)=k

min
x∈Sk

‖x‖L2(λ)=1

p−2max

〈
Lpkx, x

〉
L2(P )

.

It follows further that

µ
(d)
`,p ≥ max

dim(Sk)=k
min
x∈Sk

‖x‖L2(λ)=1

p−2max

〈
Lpkx, x

〉
L2(P )

≥ max
dim(Sk)=k

min
x∈Sk

‖x‖L2(λ)=1

p−2maxp
2
min 〈Lkx, x〉L2(λ) =

p2min

p2max

µ
(d)
` ,

as 0 ≤ p(x)p(y)− p2min. Hence, the assertion.

We now combine the results of the preceding lemmata to bound the eigenvalues of the
d-dimensional Gaussian kernel for general measures.

Lemma 7 (Maximal decay of eigenvalues). For every ` ∈ N it holds that

µ
(d)
` ≥

p2min

p2max

C(d, σ)e−cσ,d(`+d)
2
d , (B.7)

where cd,σ and C(d, σ) are constants depending on the dimension d and the bandwidth σ.

Proof We show the assertion only for the uniform measure U [0, 1]d, as the result for more
general design measures follows immediately by (B.6). For the eigenvalues µ` in the univariate
setting, we have from (B.1) that

µ` ≥
1

`
C(σ)e−aσ(`−1)

2 ≥ C(σ)e−ãσ`
2

(B.8)

where ãσ is chosen such that

ãσ`
2 ≥ ln(`) + aσ(`− 1)2, ` = 1, 2, . . . .

Combining (B.8) with (B.5) (cf. Lemma 5), it follows that

µ
(d)
` ≥ C(σ)dC exp(−ãσc(`+ d)

2
d )

as C(σ) appears in every factor of the product
∏d
i=1 µ`i . Setting cσ,d := ãc reveals the

assertion.
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Appendix C. Concentration

This section provides a proof of the operator bound (4.3). To this end, we restate the following
concentration bound for random operators on Hilbert spaces, which we then subsequently.

Proposition 4 (See Fischer and Steinwart 2020, Theorem A.3). Let (Ω,B, P ) be a probability
space, H a separable Hilbert space, and ξ : Ω→ L2(H) be a random variable with values in the
set of self-adjoint Hilbert-Schmidt operators. Furthermore, let the operator norm be uniformly,
i.e., ‖ξ‖H→H ≤ B P -a.s. and V be a self-adjoint positive semi-definite trace class operator with
EP ξ

2 4 V , i.e. V − EP ξ2 is positive semi-definite. Then, for g(V ) := ln(2e tr(V ) ‖V ‖−1H→H),
τ ≥ 1 and n ≥ 1, the following concentration inequality is satisfied:

Pn
(∥∥∥∥∥ 1

n

n∑
i=1

ξi − EP ξ

∥∥∥∥∥
H→H

≥ 4τ B · g(V )

3n
+

√
2τ ‖V ‖H→H g(V )

n

)
≤ 2e−τ . (C.1)

To demonstrate the desired bound (4.3), we show first that (Lk + λ)−
1/2 Lk (Lk + λ)−

1/2

and (Lk + λ)−
1/2 LDk (Lk + λ)−

1/2 are close in operator norm. To this end we rephrase the
operator LDk in terms of simple operators. Letting x1, . . . , xn ∼ P , independently distributed
with respect to the design measure, and defining the operators

Tz : Hk → Hk with (Tzf)(y) = f(z)k(y, z) (C.2)

gives the representation

LDk =
1

n

n∑
i=1

Txi ,

which fits the setting of Proposition 4. With this we have the subsequent concentration
bound.

Proposition 5. For N∞(λ) as in (4.1) it holds∥∥∥(Lk + λ)−
1/2 (Lk − LDk ) (Lk + λ)−

1/2
∥∥∥
Hk→Hk

≤ 4τN∞(λ)g(λ)

3n
+

√
2τN∞(λ)g(λ)

n
(C.3)

with probability at least 1− 2e−τ , where

g(λ) := ln

(
2e
λ+ µ1
µ1

N (λ)

)
(C.4)

and τ ≥ 1.

Proof For x ∼ P and Tx as in (C.2) we consider the operator-valued random variable
ξ(ω) := (Lk + λ)−1/2Tx(ω)(Lk + λ)−1/2. We have from

E(Txf)(y) = Ex f(x)k(y, x) =

∫
X
f(x)k(y, x)p(x)dx = (Lkf)(y)

that

1

n

n∑
i=1

ξi = (Lk + λ)−
1/2LDk (Lk + λ)−

1/2 and E ξ = (Lk + λ)−
1/2Lk(Lk + λ)−

1/2,
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and thus the setting of Proposition 4. It is thus sufficient to show that ξ satisfies the
requirements of Proposition 4, provided that there is an appropriate constant B as well as
dominating operator V .

We bound the norm ‖ξ‖Hk→Hk first. It holds that

‖ξf‖2k =
∥∥∥(Lk + λ)−

1/2kx(ω)((Lk + λ)−
1/2f)(x(ω))

∥∥∥2
k

=
∥∥∥(Lk + λ)−

1/2kx(ω)

∥∥∥2
k
〈(Lk + λ)−

1/2f, kx(ω)〉2k ≤ ‖f‖
2
kN

2
∞(λ)

and thus ‖ξ‖Hk→Hk ≤ N∞(λ) P -almost surely. This discloses the constant B = N∞(λ).
To bound the second moment, note first that ξ is a positive definite operator. Hence, we

have that

E ξ2 4 ‖ξ‖Hk→Hk E ξ = ‖ξ‖Hk→Hk (Lk + λ)−1Lk ≤ N∞(λ)(Lk + λ)−1Lk =: V

by employing the bound for ‖ξ‖Hk→Hk . The operator norm of V is bounded by

‖V ‖Hk→Hk =
∥∥N∞(λ)(Lk + λ)−1Lk

∥∥
Hk→Hk

= N∞(λ)
µ1

λ+ µ1
≤ N∞(λ)

as well as

g(V ) = ln
(
2e tr(V ) · ‖V ‖−1Hk→Hk

)
= ln

(
2eN∞(λ)N (λ) · 1

N∞(λ) µ1
λ+µ1

)
= ln

(
2e
λ+ µ1
µ1

N (λ)

)
corresponding to g(λ) in (C.4). The desired inequality (C.3) follows from Proposition 4.

Building on the bound (C.3) above, the assertion of Proposition 3 follows from the subsequent
considerations. Note first the operator identity

(I − (Lk + λ)−
1/2(Lk − LDk )(Lk + λ)−

1/2)−1 = (Lk + λ)
1/2(LDk + λ)−1(Lk + λ)

1/2,

from which we conclude that∥∥∥(Lk + λ)
1/2(LDk + λ)−1(Lk + λ)

1/2
∥∥∥
Hk→Hk

=
∥∥∥(I − (Lk + λ)−

1/2(Lk − LDk )(Lk + λ)−
1/2)−1

∥∥∥
Hk→Hk

≤ 1

1−
∥∥(Lk + λ)−1/2(Lk − LDk )(Lk + λ)−1/2

∥∥
Hk→Hk

by involving the Neumann series. Assuming the condition (4.2), we have by (C.3) that∥∥∥(Lk + λ)−
1/2(Lk − LDk )(Lk + λ)−

1/2
∥∥∥
Hk→Hk

≤ 4

3
τ g(λ)

N∞(λ)

n
+

√
2τ g(λ)

N∞(λ)

n
≤ 1

2

with probability at least 1− 2e−τ . Therefore, the bound∥∥∥(Lk + λ)
1/2(LDk + λ)−1(Lk + λ)

1/2
∥∥∥
Hk→Hk

≤ 1

1−
∥∥(Lk + λ)−1/2(Lk − LDk )(Lk + λ)−1/2

∥∥
Hk→Hk

≤ 1

1− 1
2

= 2

holds also with probability at least 1− 2e−τ . This is the desired inequality (4.3).
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Appendix D. Auxiliary lemmata

The following two lemmata provide a crucial element for the proof of Lemma 3. That is, a
bound on the expectation

E e−
1
M2 ,

where
M := min

i,j=1,...,n
i 6=j

|Ui − Uj |

is the minimal gap between n independently chosen uniforms.
The first lemma provides the density of M explicitly, the other bounds the associated

expectation.

Lemma 8. Let U1, . . . , Un ∼ U [0, 1] be independent uniforms. The random variable M has
the density

pM (m) =

{
n(n− 1)(1− (n− 1)m)n−1 form ∈

[
0, 1

n−1

]
0 else

. (D.1)

Proof Let U1, . . . , Un be independent uniforms on [0, 1] and denote the corresponding
minimal absolute difference by M := mini,j=1,...,n,i 6=j |Ui − Uj |. Note here that M ≤ 1

n−1 ,
and M = 1

n−1 if all U1, . . . , Un are equidistant. Therefore, let m ∈ [0, 1
n−1 ] and observe that

P (M > m) = n!P (M > m,U1 ≤ U2 · · · ≤ Un) (D.2)

as there are n! possible rearrangements of the random variables U1, . . . , Un. For the latter
probability we have that

P (M > m, U1 ≤ U2 ≤ . . . ≤ Un)

= P (U1 ≤ U2 −m, U2 ≤ U3 −m, . . . , Un−1 ≤ Un −m, U1 ≤ . . . ≤ Un)

= λ (Um) ,

where λ (Um) is the Lebesgue measure of the set

Um = {(u1, . . . , un) ∈ [0, 1]n : u1 ≤ u2 −m, . . . , un−1 ≤ un −m, u1 ≤ u2 · · · ≤ un} .

We next present a measure persevering bijection between Um and

Ym := {(y1, . . . , yn) ∈ [0, 1− (n− 1)m]n : y1 ≤ y2 ≤ · · · ≤ yn} .

To this end, define T : Um → Ym with Tu = u − (0,m, 2m, . . . , (n − 1)m). For u =
(u1, . . . , un) ∈ Um and y = Tu = u − (0,m, 2m, . . . , (n − 1)m) it is evident that yi ≥ 0 as
well as y1 ≤ · · · ≤ yn. Furthermore, it holds that ui ≤ 1−m (n− i) as the distance between
the ui and ui+1 is at least m, for every i = 1, . . . , n. With this we have the inequality

yi = ui − (i− 1)m ≤ 1−m (n− i)− (i− 1)m = 1− (n− 1)m

and therefore y ∈ Ym. Conversely, let y ∈ Ym and set u = y+(0,m, 2m, . . . , (n−1)m) = T−1y.
It is again immediate that ui ≥ 0 as well as

ui = yi + (i− 1)m ≤ 1− (n− 1)m+ (i− 1)m ≤ 1.
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From y1 ≤ · · · ≤ yn we further get that

ui+1 −m = yi+1 + im−m = yi+1 + (i− 1)m ≥ yi + (i− 1)m = ui

for all i = 1, . . . , n− 1 and thus u ∈ Um. Hence, T is a bijection, from which we conclude
that λ(Um) = λ(Ym). The latter measure is

λ(Ym) = λ ({(y1, . . . , yn) ∈ [0, 1− (n− 1)m]n : y1 ≤ y2 ≤ · · · ≤ yn})

=
1

n!
λ ({(y1, . . . , yn) ∈ [0, 1− (n− 1)m]n}) =

1

n!
(1− (n− 1)m)n. (D.3)

Combining (D.2) with (D.3), we get that

P (M > m) = n!
1

n!
(1− (n− 1)m)n = (1− (n− 1)m)n

and hence the density

p(m) =
d

dm
(1− P (M > m)) = n(n− 1)(1− (n− 1)m)n−1.

This is the assertion.

Lemma 9. Let U1, . . . , Un ∼ U [0, 1] be independent uniforms and M the minimum gap as
in Lemma 8. For any c > 0 it holds that

E e−cM
−2 ≥ 4e−c

2
a2 ≥ Ce−8c(n−1)2 , (D.4)

with a = min{13c
− 2

3 , 1
2(n−1)}.

Proof We employ the density (D.1) of M . As 1
n−1 ≤

1
2(n−1) and e−cM−2 ≥ 0, we have that

E e−cM
−2

=

∫ 1
n−1

0
e−c

1
m2 n(n− 1)

(
1− (n− 1)m

)n−1
dm

>

∫ 1
2(n−1)

0
e−c

1
m2 n(n− 1)(1− (n− 1)m)n−1dm

≥ e−(n−1)
∫ 1

2(n−1)

0
e−c

1
m2 dm.

To bound the latter integral term, note that

x3

c
e−

x2

c ≤ 1

whenever x ≥ 3c
2
3 , as

ln
x3

c
e−

x2

c = 3 ln
x

c
1
3

− x2

c
≤ 3

x

c
1
3

− x2

c
≤ 0
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is satisfied for all x ≥ 3c
2
3 . Thus, choosing a = min{13c

− 2
3 , 1

2(n−1)} we get that

∫ 1
2(n−1)

0
e−c

1
x2 dx ≥

∫ a

0

c

x3
e−c

2
x2 dx =

[
4e−c

2
x2

]a
0

= 4e−c
2
a2 ,

which is the assertion.
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