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Abstract
This work presents a comprehensive understanding of the estimation of a planted low-
rank signal from a general spiked tensor model near the computational threshold. Relying
on standard tools from the theory of large random matrices, we characterize the large-
dimensional spectral behavior of the unfoldings of the data tensor and exhibit relevant
signal-to-noise ratios governing the detectability of the principal directions of the signal.
These results allow to accurately predict the reconstruction performance of truncated mul-
tilinear SVD (MLSVD) in the non-trivial regime. This is particularly important since it
serves as an initialization of the higher-order orthogonal iteration (HOOI) scheme, whose
convergence to the best low-multilinear-rank approximation depends entirely on its initial-
ization. We give a sufficient condition for the convergence of HOOI and show that the
number of iterations before convergence tends to 1 in the large-dimensional limit.
Keywords: random tensors, random matrix theory, spiked tensor model, truncated
MLSVD, higher-order orthogonal iteration

1. Introduction

Information retrieval from large amounts of data has become a common task of signal
processing and machine learning in the past decades. Often, these data have several modes
as they may come from various sources, modalities, domains, and so on. Tensors (multi-way
arrays) are therefore a natural representation for such datasets — they appear in multiple
areas such as brain imaging (Zhou et al., 2013), neurophysiological measurements (Seely
et al., 2016), community detection (Anandkumar et al., 2013), compression of hyperspectral
images (Li and Li, 2010), spatio-temporal gene expression (Liu et al., 2022), recommender
systems (Karatzoglou et al., 2010; Rendle and Schmidt-Thieme, 2010; Frolov and Oseledets,
2017) and topic modeling (Anandkumar et al., 2014). Indeed, tensors as multi-way arrays
provide a more detailed representation of data than mere matrices (two-way arrays) as they
convey a structural information. For instance, the modes of a data tensor can represent pixel
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× pixel × wavelength × sample in hyperspectral imaging (Zhang et al., 2013; Kanatsoulis
et al., 2018), time × spatial scale × electrode in the EEG analysis by Acar et al. (2007) or
neuron × time × stimuli in the study of the visual cortex by Rabinowitz et al. (2015).

In an information retrieval context, it is common to make use of tensor decompositions
in order to estimate a sought signal. In their fMRI study, Hunyadi et al. (2017) perform
a blind source separation via a joint tensor decomposition on a channel × time × patient
array, whereas Williams et al. (2018) use a low-rank tensor approximation on a neuron ×
time × trial array as a dimensionality reduction technique to study neural dynamics. In
fact, supposing that the signal has a low-rank structure is a natural sparsity assumption
(Kadmon and Ganguli, 2018; Anandkumar et al., 2014), and low-rank tensor approximations
are key tools to extract information from multi-way data.

In the present work, we propose a random matrix analysis of a general low-rank infor-
mation + noise tensor model and precisely quantify the amount of information which can
be recovered with a low-rank tensor approximation depending on the signal-to-noise ratio
(SNR). For a general introduction to tensors, we refer the reader to Comon (2014, 2009);
Landsberg (2011); Hackbusch (2012) and, for an emphasis on statistical learning applica-
tions, Bi et al. (2021); Sun et al. (2021). In the remainder of the introduction, the main
concepts and challenges behind low-rank tensor estimation are presented in Section 1.1.
Then, Section 1.2 introduces some important related works. Our main results are finally
summarized in Section 1.3. All the notations are properly defined in Section 2.

1.1 Low-Rank Tensor Estimation

What is meant by a low-rank approximation of a tensor? And how is the rank of a tensor
actually defined? Let us start with a familiar matrix case: a matrix M ∈ Rn1×n2 is a two-
way array (or order-2 tensor). A singular value decomposition (SVD) allows us to write
M in a compact way as the sum of R rank-1 terms, M =

∑R
i=1 σiuiv

>
i = UΣV > where

U , V are respectively n1 × R and n2 × R matrices with orthonormal columns and Σ is
the R×R diagonal matrix of singular values. The rank of M is here the minimal number
of rank-1 terms in which it can be exactly decomposed. Extending this notion to tensors
therefore seems straightforward: a tensor1 T ∈ Rn1×n2×n3 has rank R if it is the minimal
number of rank-1 terms in which it can be exactly decomposed, T =

∑R
i=1 σiai ⊗ bi ⊗ ci.

What we have just described is the canonical polyadic decomposition (CPD) of T, it dates
back to Hitchcock (1927) and is unique under very mild conditions (Kolda and Bader, 2009).
However, we have lost an important property in this process: the unit vectors ai (resp. bi, ci)
are, in general, no longer orthonormal. Conversely, retaining the orthonormality property
inevitably results in the loss of the diagonality property, T =

∑r1
i=1

∑r2
j=1

∑r3
k=1 Gi,j,kui ⊗

vj ⊗ wk. This latter decomposition is called a Tucker decomposition and dates back to
Tucker (1966). In fact, the best way to represent T with a Tucker decomposition is to
choose the ui (resp. vi, wi) as the left singular vectors of the unfolding of T along mode
1 (resp. 2, 3)2. This is called the multilinear SVD (MLSVD, De Lathauwer et al., 2000b)
and gives rise to a new definition of rank: the multilinear-rank (r1, r2, r3). Note that, in
the matrix case, r1 = r2 = R since both the diagonality and orthonormality properties are

1. It is chosen of order 3 for simplicity of exposure.
2. This is properly defined in Section 2.2.
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verified. However, r1, r2, r3 are, in general, not equal in the tensor case, but max(r1, r2, r3) 6
R 6 min(r1r2, r2r3, r1r3). See, e.g., Sidiropoulos et al. (2017) for details. Other relevant
references for the reader interested in tensor decompositions are Kolda and Bader (2009);
Cichocki et al. (2015); Rabanser et al. (2017).

Given an order-d tensor T ∈ Rn1×...×nd of possibly very high rank, we are interested in
finding a low-rank approximation, i.e., an n1×. . .×nd tensorX which minimizes the distance
‖T −X‖F on a set of low-rank tensors. Yet, the problem of the best rank-R approximation
of a tensor is ill-posed as soon as R > 1 because the set of rank-R tensors is not closed
(Kolda and Bader, 2009). Instead, we shall consider the best low-multilinear-rank problem,
which is always well-posed,

min
rank(X)6(r1,...,rd)

‖T −X‖2F. (1)

It is well known in the matrix case that the best rank-R approximation can be easily
computed by truncating the SVD to its R most energetic terms (Eckart and Young, 1936;
Mirsky, 1960). Could this also be true for the MLSVD? Unfortunately, counter-examples
exist (Kolda, 2003), showing that there is no tensor equivalent of the Eckart-Young-Mirsky
theorem. Worse still, Problem (1) is in fact NP-hard (Hillar and Lim, 2013). Nevertheless,
despite not being the best low-multilinear-rank approximation, the truncated MLSVD T̂

remains a very good “first guess” as it verifies ‖T−T?‖F 6 ‖T− T̂‖F 6
√
d‖T−T?‖F where

T? denotes a solution to Problem (1) and d is the order of the tensor (Grasedyck et al.,
2013; Hackbusch, 2012). It is a cheap (it consists only in d standard matrix SVDs) and
quasi-optimal low-multilinear-rank approximation of T. Moreover, it is often used as an
initialization of numerical methods which estimate a solution to Problem (1), among which
the most common is the higher-order orthogonal iteration (HOOI) algorithm (Kroonenberg
and de Leeuw, 1980; Kapteyn et al., 1986; De Lathauwer et al., 2000a).

Another motivation for the analysis of the low-multilinear-rank approximation problem
is that it has also a practical interest for the numerical computation of the canonical polyadic
decomposition (CPD). Indeed, when dealing with large tensors, it is computationally more
efficient to first compress the tensor with a low-multilinear-rank approximation and then
compute the CPD on the smaller core tensor rather than computing the CPD of the large
tensor directly (Bro and Andersson, 1998). This is done, e.g., by the cpd function of the
MATLAB toolbox Tensorlab (Vervliet et al., 2016).

1.2 Related Work

Multilinear SVD (MLSVD) has a wide range of applications and is often used to extract
relevant information from multi-way arrays. For instance, it has been used in human motion
recognition (Vasilescu, 2002), face recognition (Vasilescu and Terzopoulos, 2003), handwrit-
ten digit classification (Savas and Eldén, 2007) but also genomics (Omberg et al., 2007,
2009; Muralidhara et al., 2011) and syndromic surveillance (Fanaee-T and Gama, 2015).

The analysis of spiked tensor models — i.e., low-rank perturbations of large random
tensors — has started with the introduction by Montanari and Richard (2014) of the rank-
1 symmetric spiked tensor model, T = βx⊗d + N with ‖x‖ = 1, N Gaussian noise and
β a parameter controlling the signal-to-noise ratio (SNR). They show that estimation of
x from T is theoretically possible as soon as β is above a certain threshold βc behaving
like
√
d log d, which is reminiscent of the now well-known spiked matrix model where signal
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reconstruction is only possible above a critical threshold (Péché, 2006) — a phenomenon
called the BBP phase transition (Baik et al., 2005). The behavior of singular values and
singular vectors of spiked matrix models is comprehensively studied by Benaych-Georges
and Nadakuditi (2012). Contrary to the matrix case however, Montanari and Richard (2014)
make the disturbing observation that none of the polynomial-time estimation algorithms
among tensor unfolding, power iteration and approximate message passing (AMP) succeed
unless β diverges as the dimensions of the tensor grow large. The results of Hopkins et al.
(2015, 2017) suggest that no polynomial-time algorithm can succeed unless β & N

d−2
4 ,

where N scales as the dimensions of the data tensor. While Perry et al. (2020) show that the
information-theoretic threshold is of order 1, this indicates the existence of a computational-
to-statistical gap in spiked tensor estimation, as in a myriad of other problems (Bandeira
et al., 2018; Zdeborová and Krzakala, 2016).

The landscape of the rank-1 symmetric spiked tensor model is studied by Ben Arous
et al. (2019), who show that the number of local optima to Problem (1) grows exponentially
with the size of the tensor, but all lie close to a subspace orthogonal to the sought solution,
except for one if β exceeds a critical threshold βc. Completing this analysis, Jagannath
et al. (2020) show3 the existence of two close but different thresholds βs < βc such that the
solution aligned with the underlying signal is a local minimum of Problem (1) as soon as
β > βs but becomes a global one only if β > βc. Relying on the Kac-Rice method, Ros
et al. (2019) thoroughly study such high-dimensional landscapes and classify the different
behaviors and phase transitions which can occur.

So far, we have only referred to works dealing with the rank-1 symmetric case, but
there are also some studies on higher-(low-)rank spiked models. Chevreuil and Louba-
ton (2018) give a sufficient (but not necessary) condition for the non-detectability of a
rank-R asymmetric signal perturbed by an additive Gaussian noise. Chen et al. (2021)
also discuss signal detectability in the rank-R symmetric case. The statistical inference
of finite rank tensors is studied by Chen et al. (2022) who identify the limit free energy
of the model in terms of a variational formula. Zhang and Xia (2018) consider a gen-
eral low-multilinear-rank signal P + Gaussian noise N model and bring to light the same
statistical-to-computational gap: if ‖P‖F is above a statistical threshold of order 1 then
Problem (1) has a solution which is aligned with the signal but is computationally in-
tractable unless ‖P‖F is above a computational threshold of order N

d−2
4 . In this strong

SNR regime, the higher-order orthogonal iteration (HOOI) algorithm (De Lathauwer et al.,
2000a) is minimax-optimal. In fact, it is also proved by Ben Arous et al. (2020) that,
with Langevin dynamics and gradient descent, the algorithmic threshold behaves like Nα

with α > 0. Other algorithmic thresholds have been shown as well for semi-definite and
spectral relaxations of the maximum likelihood problem (Hopkins et al., 2015, 2016; Kim
et al., 2017). AMP and tensor power iteration algorithms achieve N

d−1
2 (Lesieur et al.,

2017; Huang et al., 2022) while tensor unfolding methods (truncated MLSVD and HOOI
algorithm) achieve N

d−2
4 as already conjectured by Montanari and Richard (2014) and later

proven by Hopkins et al. (2015); Ben Arous et al. (2023) in the rank-1 case. The conver-

3. The setting considered by Jagannath et al. (2020) is more general than the one of Ben Arous et al.
(2019) because the noise in their model is not necessarily symmetric but the perturbation is still a
rank-1 symmetric tensor.
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gence of the HOOI algorithm towards a local maximum for a sufficiently close initialization
is proven by Xu (2018) and Feldman and Donoho (2023) show that it achieves exact recov-
ery of a rank-1 perturbation in the large N regime when it is initialized with the dominant
singular vectors of the unfoldings.

Recently, a new approach relying on tools from random matrix theory has broaden the
understanding of spiked tensor models. In particular, Goulart et al. (2022) study the rank-1
symmetric case and are able to recover explicitly the same βs threshold as Jagannath et al.
(2020) as well as to precisely quantify the alignment between a solution to Problem (1) and
the signal. A similar analysis is carried out by Seddik et al. (2022) for the more general
asymmetric case, relying solely on classical techniques from random matrix theory. Such
tools show promise for the theoretical understanding of learning from tensor data (Seddik
et al., 2023). In particular, the results of Ben Arous et al. (2023) and Feldman (2023) on
long random matrices, similar to those considered in this work, provide instructive insight
into the recovery performance of tensor unfolding methods.

1.3 Summary of Contributions

In low-rank tensor approximation, tensor unfolding methods achieve the best known per-
formance among polynomial-time algorithms. Motivated by several works suggesting that
such method could actually reach the computational threshold (Hopkins et al., 2015, 2017;
Zhang and Xia, 2018; Wein et al., 2019), we propose a thorough random matrix analysis of
the low-multilinear-rank tensor approximation problem.

Consider the general spiked tensor model,

T = P + 1√
N

N ∈ Rn1×...×nd , Ni1,...,id
i.i.d.∼ N (0, 1), (2)

where d > 3 is the order of the tensor, N is an additive Gaussian noise, N is a parameter
controlling the size of the tensor such that the ratio n`/N is constant4 (at least for N above
a certain threshold value N0) for all ` ∈ {1, . . . , d} (for instance, N = n1 or N =

∑d
`=1 n`)

and P is a low-multilinear-rank deterministic tensor, i.e., which can be decomposed as

P =
r1∑
q1=1

. . .
rd∑
qd=1

Hq1,...,qd [x
(1)
q1 ⊗ . . .⊗ x(d)

qd
] def=

r
H; X(1), . . . ,X(d)

z
, (3)

with H ∈ Rr1×...×rd and X(`) an n` × r` matrix with orthonormal columns x
(`)
q` . The

range of X(`) is the `-th singular subspace of P. This decomposition is illustrated for the
case d = 3 in Figure 1. Model (2) with P as in Equation (3) is the most general spiked
tensor model — i.e., low-rank perturbation of a large random tensor. Indeed, any of the
models referred to in the previous Section 1.2 fall into this definition since decomposition
(3) always exists and low CPD-rank is equivalent to low multilinear rank thanks to the
inequality max`{r`} 6 R 6 min`{

∏
`′ 6=` r`′} (Sidiropoulos et al., 2017).

In the regime where N → +∞— representing the fact that, in practice, the dimensions
of the tensor are large compared to its rank —, we study the estimation of P from T with
a truncated MLSVD, which serves as initialization of the HOOI algorithm. In particular,

4. This ensures that the spectral norm of 1√
N
N is of order 1 (Tomioka and Suzuki, 2014).

5



Lebeau, Chatelain and Couillet

n1

n2

n3

P =
r1
r2

r3

Hr1

n1X(1)

r2
n2

X(2)

r3

n3 X(3)

Figure 1: Illustration of the Tucker decomposition (3) of an n1 × n2 × n3 tensor P with
multilinear rank (r1, r2, r3). H is the r1×r2×r3 core tensor and X(1),X(2),X(3)

are matrices with orthonormal columns spanning the singular subspaces of P.

we reveal that the interesting non-trivial regime is characterized by the Θ(N
d−2

2 ) quantity5

σN = 1
N

∏d
`=1
√
n`.

• If ‖P‖2F/σN −−−−−→N→+∞
0, then the noise completely masks the signal, and truncated

MLSVD fails to recover P.

• If ‖P‖2F/σN −−−−−→N→+∞
+∞, then the signal clearly stands out from the noise, and

reconstruction of P with a truncated MLSVD is easy.

• If ‖P‖2F/σN = Θ(1) as N → +∞, then we are precisely in the non-trivial regime
between the two previous situations, and truncated MLSVD may partially recover P.

It is the analysis of this last regime which is of practical interest. Given the low-multilinear-
rank approximation T̂ = JĜ; Û (1), . . . , Û (d)K obtained with a truncated MLSVD of T, we
quantify how well T̂ reconstructs P in this non-trivial regime. To do so, we study the spectral
properties of the unfoldings (i.e., matricizations) of the tensor T, i.e., the n` ×

∏
`′ 6=` n`′

matrices T (`) whose columns are mode-` fibers of T and the columns of Û (`) are its dominant
left singular vectors. Such long matrices (the second dimension grows faster than the first
one) have already been studied by Ben Arous et al. (2023) in order to analyze the properties
of tensor-unfolding methods in the particular setting of a rank-1 spike. Here, we tackle this
problem with a highly different approach relying solely on classical tools from random
matrix theory (Couillet and Liao, 2022) and give very general results on the spiked tensor
model that go beyond the specific rank-1 one case. Moreover, we justify the practical use
of truncated MLSVD as an initialization of the HOOI algorithm by showing its optimality
in the large N regime.

5. Note that this corresponds to the regime of the algorithmic threshold but, here, our measure of the signal
power is ‖P‖2

F (and not ‖P‖F) hence the Θ(N
d−2

2 ) instead of Θ(N
d−2

4 ).
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Figure 2: Alignments between singular subspaces (see Section 3.2) of the observation T =
√
ωP◦ + 1√

N
N and of the signal P◦, with ‖P◦‖2F =

√
n1n2n3
N , as a function of

the signal-to-noise ratio ω. Theoretical alignments (Theorem 9) achieved with
truncated MLSVD are compared with simulations and those achieved with the
HOOI algorithm. Empirical results are averaged over 10 trials, with error bars
representing standard deviation. Experimental setting: d = 3, (n1, n2, n3) =
(100, 200, 300), N = n1 + n2 + n3 and (r1, r2, r3) = (3, 4, 5).

Although the spectrum of T (`)T (`)>, ` ∈ {1, . . . , d}, diverges as N → +∞, we show that
its eigenvalues (i.e., the squared singular values of T (`)) gather in an interval [µ(`)

N ± 2σN ]
with µ(`)

N = 1
N

∏
`′ 6=` n`′ = Θ(Nd−2). More precisely, the empirical spectral distribution of

the centered-and-scaled matrix 1
σN

[T (`)T (`)> − µ(`)
N In` ] converges weakly to the semicircle

distribution on [−2,+2] (see Figure 3, Theorem 5 and Corollary 6). Furthermore, we
show that a BBP phase transition phenomenon occurs: for each singular value of P (`) (the
unfolding of P along mode `) which is above the threshold √σN , an eigenvalue of T (`)T (`)>

isolates itself on the right side of the bulk (see Figure 3) and its corresponding eigenvector
(i.e., left singular vector of T (`)) is aligned with the corresponding singular subspace of
P. The position of the isolated eigenvalue and this alignment are efficiently predicted by
Theorem 9 (see also Figure 3).

As a result, Figure 2 plots, for an order-3 tensor, as a function of the signal-to-noise
ratio (SNR) ω = ‖P‖2F/σN , the alignments between the singular subspace of the signal P
spanned by X(`) and the dominant singular subspace of the observation T spanned by Û (`).
Solid curves are the alignments predicted by Theorem 9 while dotted curves are empirical
alignments computed on a 100× 200× 300 tensor with signal-rank (3, 4, 5). If the SNR ω is
too small, there is no alignment, meaning that truncated MLSVD fails to recover P — the
signal is masked by the noise. When it exceeds a critical value (see Theorem 9 and Section
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3.2 for details), a phase transition phenomenon occurs6: the alignment starts to grow —
i.e., truncated MLSVD now partially recovers P — and converges to 1 as ω → +∞.

Besides, Figure 2 also plots the empirical alignments between the singular subspaces
of P and those estimated with the HOOI algorithm (De Lathauwer et al., 2000a) given
in Algorithm 1, whose truncated MLSVD serves as initialization. This yields much better
alignments, especially close to the phase transition. In fact, we show in Theorem 15 that
the HOOI algorithm converges to a solution to Problem (2) as soon as its initialization suf-
ficiently preserves the underlying signal. This provides new insight into the computational
barrier: initialization is the limiting factor here. Had one prior information on the solution,
one could initialize the HOOI algorithm in the right basin of attraction and still be able to
perfectly (i.e., with alignment 1) reconstruct the signal in the regime 1 � ‖P‖F � N

d−2
4 ,

which is computationally hard but statistically easy (see details in Section 4.1 and discussion
in Section 4.2).

In a nutshell, our contributions can be summarized as follows.

• We characterize, in the large N limit, the behavior of the singular values of the
unfoldings of the tensor T — denoted T (`), ` ∈ {1, . . . , d} — when it follows the
general spiked tensor model (2) (Theorem 5 and Corollary 6). This is performed
through the analysis of the limiting spectral distribution of the symmetric matrix
T (`)T (`)> using standard tools from the theory of large random matrices.

• We give a precise condition, depending on a Θ(N
d−2

4 ) threshold on the signal, for
the detectability of a principal direction of the `-th singular subspace of P from the
unfolding T (`). This corresponds to the presence of an isolated eigenvalue in the
spectrum of T (`)T (`)> with associated eigenvector aligned with the sought singular
subspace. We find similar formulae as Feldman (2023)7 for the asymptotic position
of this isolated eigenvalue, as well as the quality of the alignment (Theorem 9).

• Relying on our random matrix analysis, we characterize the performance of truncated
MLSVD in the reconstruction of the signal P from the observation T (Section 3.2).

• We show that exact reconstruction of P from T is possible in the large N regime
with the HOOI algorithm (De Lathauwer et al., 2000a) as long as ‖P‖F � 1 and it is
initialized in the right bassin of attraction (Theorem 15). Without prior information,
this depends on the detectability of P in the truncated MLSVD of T, which is only
possible above the Θ(N

d−2
4 ) computational threshold. Moreover, as N → +∞, the

number of iterations needed for the convergence of the algorithm converges to 1.

In section 2, we introduce our notations, tensor-related operations and decompositions
and useful tools from random matrix theory. Section 3 presents the random matrix analysis
of long matrices emerging from the unfoldings of tensors following the general spiked tensor

6. In fact, we will see in Section 3.2 that there is one phase transition for each principal direction of the
singular subspaces of P, resulting in

∑d

`=1 r` phase transitions. Their positions corresponds to sudden
changes of slope in the solid curves of Figure 2.

7. Feldman (2023) studies the spiked model associated with long random matrices within a similar frame-
work as Benaych-Georges and Nadakuditi (2011). Our approach is different in that it mostly relies on a
deterministic equivalent which is introduced in Theorem 5.

8



A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation

model (2). These results are presented in the context of truncated MLSVD and exploited
to quantitatively explain its reconstruction performances. Then, relying on these results,
Section 4 deals with the numerical estimation of a solution to Problem (1) with the HOOI
algorithm. We show its asymptotic optimality and provide insight into the limiting factors
for numerical estimation below the computational threshold. We conclude and discuss our
results in Section 5. Most proofs are deferred to the appendix.

2. Preliminaries on Tensors and Random Matrix Theory

We start by introducing some notation and the main tools which are needed to expose the
results of the next sections.

2.1 General Notations

a, a, A and A respectively denote a scalar, a vector, a matrix and a tensor. ai, Ai,j and
Ai1,...,id are their entries. For x ∈ R, [x]+ = max(0, x). The imaginary part of z ∈ C is
=[z]. The set {1, . . . , n} of positive integers smaller or equal to n is denoted [n]. δx is
the Dirac measure at point x. The support of a probability measure µ is denoted Suppµ.
The notation X ∼ L means that the random variable X is distributed according to the
law L. Given a sequence of random variables (Xn)n>0, its convergence in distribution to
L is denoted Xn

D−−−−−→
n→+∞

L and its almost sure convergence to L is denoted Xn
a.s.−−−−−→

n→+∞
L.

The normal distribution with mean µ and variance σ2 is denoted N (µ, σ2). The span of an
n1 × n2 matrix A is Span A = {Ax | x ∈ Rn2} ⊂ Rn1 . The singular values of A in non-
increasing order are denoted s1(A) > s2(A) > . . . > 0. Given an n× n matrix B, its trace
is Tr B =

∑n
i=1Bi,i and its spectrum, Sp B, is the set of all its eigenvalues. ‖·‖ denotes the

standard Euclidean norm for vectors and the corresponding operator norm (spectral norm)
for matrices.

Given two real sequences (un)n>0 and (vn)n>0, we write un = On→+∞(vn) if there
exists a constant C > 0 and an integer n0 such that |un| 6 C|vn| as soon as n > n0. If
un = On→+∞(vn) and vn = On→+∞(un)8, then we write un = Θn→+∞(vn). We also write
un �n→+∞ vn (or vn �n→+∞ un) if, for all ε > 0, there exists an integer n0 such that
|un| 6 ε|vn| as soon as n > n0. When it is clear from context that n → +∞, we simply
write un = Θ(vn), un = O(vn), un � vn or un � vn.

Unless stated otherwise, d represents the order of a tensor; ` is an index ranging from 1
to d and i`, q` range from 1 to n`, r` respectively.

2.2 Tensors, Related Operations and Decompositions

For our purposes, tensors are considered as multi-way arrays: T ∈ Rn1×...×nd is a collection
of elements Ti1,...,id ∈ R with i` ∈ [n`], ` ∈ [d]. An `-fiber of T is the vector of Rn` obtained
by fixing all the indices of T but the `-th. This is the generalization of columns and rows of
matrices, which are respectively 1- and 2-fibers. Unfolding (or matricization) is the process

8. I.e., if there exist two constants c, C > 0 and an integer n0 such that c|vn| 6 |un| 6 C|vn| as soon as
n > n0.
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by which a matrix is built from a tensor — T (`) is the unfolding of T along mode `, i.e.,
the n` ×

∏
`′ 6=` n`′ matrix whose columns are `-fibers of T9.

Given two n1 × . . .× nd tensors A,B, their scalar product is

〈A,B〉F
def=

n1∑
i1=1
· · ·

nd∑
id=1

Ai1,...,idBi1,...,id .

The Frobenius norm of A is ‖A‖F
def=
√
〈A,A〉F.

Just as a matrix is said to have rank 1 if it can be expressed as the outer product of two
vectors, xy>

def= x⊗y, an order-d tensor is said to have rank 1 if it can be expressed as the
outer product of d vectors, i.e., Ti1,...,id = x

(1)
i1
. . . x

(d)
id
⇐⇒ T

def=
⊗d

`=1 x(`).
Given two matrices A and B of respective sizes n1 × n2 and p1 × p2, their Kronecker

product, denoted A�B, is the n1p1×n2p2 matrix such that [A�B]p1(i1−1)+j1,p2(i2−1)+j2 =
Ai1,i2Bj1,j2 for all (i1, i2) ∈ [n1]×[n2], (j1, j2) ∈ [p1]×[p2]. It is also defined for n-dimensional
vectors, seen as n×1 matrices. This product is useful to express unfoldings of tensors defined
as outer products. For instance,

[x⊗y⊗z](1) = x(y�z)>, [x⊗y⊗z](2) = y(x�z)>, [x⊗y⊗z](3) = z(x�y)>. (4)

Among the various properties of the Kronecker product (Abadir and Magnus, 2005, Chapter
10), we highlight that it is bilinear, associative, non-commutative, (A �B)> = A> �B>

and (A�B)(C�D) = (AC)� (BD) when the matrix products AC and BD are defined.
Because of their multidimensional nature, tensors can be very large and cause compu-

tational and storage difficulties. Hence, tensor decompositions are an appropriate way to
provide a sparse representation of these objects and reveal relevant knowledge from multi-
way data arrays. We briefly present two of the most common decompositions, namely CPD
and MLSVD, although many others exist (see, e.g., Kolda and Bader, 2009; Vervliet et al.,
2014).

Canonical Polyadic Decomposition (CPD). T is decomposed as a sum of R rank-1
terms, T =

∑R
i=1 σi

⊗d
`=1 a

(`)
i , with a

(`)
i of unit norm, σi > 0 and minimal R. Introduced

by Hitchcock (1927), and also called CANDECOMP or PARAFAC, this decomposition is,
up to permutation, essentially unique under mild conditions (Kolda and Bader, 2009).

Multilinear Singular Value Decomposition (MLSVD). T is written as the multi-
linear tensor-matrix product of an r1 × . . . × rd core tensor G with d factors U (`), ` ∈ [d],
of respective sizes n` × r` and orthonormal columns u

(`)
q` ,

T =
r1∑
q1=1
· · ·

rd∑
qd=1

Gq1,...,qd

d⊗
`=1

u(`)
q`

def=
r
G; U (1), . . . ,U (d)

z
.

The integer r` is the dimension of the subspace spanned by the `-fibers of T, whose an
orthonormal basis is formed by the columns of U (`). This decomposition, introduced by
Tucker (1966), is also called higher-order SVD (HOSVD, De Lathauwer et al., 2000b).

9. The order of the columns does not matter, as long as other operations, such as the Kronecker product,
are defined in a consistent manner.
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From this decomposition, the unfoldings of T can be expressed with matrix and Kronecker
products between the factor matrices and the unfoldings of the core tensor G. For instance,
if T = JG; U ,V ,W K,

T (1) = UG(1)(V �W )>, T (2) = V G(2)(U �W )>, T (3) = W G(3)(U � V )>.

Note how these expressions generalize (4).

The contraction of T on A(1), . . . ,A(d) with A(`) ∈ Rn`×p` , ` ∈ [d], is the p1 × . . . × pd
tensor T(A(1), . . . ,A(d)) whose (j1, . . . , jd)-entry is

∑n1
i1=1 · · ·

∑nd
id=1 Ti1,...,id

∏d
`=1A

(`)
i`,j`

. If
T = JG; U (1), . . . ,U (d)K then G = JT; U (1)>, . . . ,U (d)>K = T(U (1), . . . ,U (d)). The tensor
contraction generalizes the matrix operation A(1)>MA(2) = M(A(1),A(2)).

Remark 1 (Uniqueness of the MLSVD up to isometries) For all r`× r` orthogonal
matrices O(`), ` ∈ [d], we have the equivalent decomposition

r
G; U (1), . . . ,U (d)

z
=

r
Ğ; U (1)O(1), . . . ,U (d)O(d)

z

where Ğ = G(O(1), . . . ,O(d)) is the contraction of G on O(1), . . . ,O(d). Nevertheless, up
to isometries, the multilinear singular value decomposition is unique (De Lathauwer et al.,
2000b, Property 4).

The actual rank of a tensor is usually understood as its CPD-rankR whereas its MLSVD-
rank (r1, . . . , rd) is called multilinear rank. These two ranks are constrained by the following
inequalities,

max
16`6d

r` 6 R 6 min
16`6d

∏
`′ 6=`

r`′ , (5)

which implies one can generally speak of a “low-rank tensor” without having to mention
the rank to which it refers.

2.3 Tools from Random Matrix Theory

The results presented in this work rely on tools from the theory of large random matrices.
Given a certain n × n matrix M whose entries are random variables, one is interested
in the behavior its eigenvalues and eigenvectors as n → +∞. Common questions are, in
this regime, how does the empirical spectral distribution (ESD) of M , i.e., 1

n

∑
λ∈Sp M δλ,

behave? Does it (weakly) converge to a limiting spectral distribution (LSD)? Are there
any isolated eigenvalues? If so, are the corresponding eigenvectors aligned with a relevant
subspace?

In case M is symmetric, its eigenvalues and eigenvectors are real and a key tool to
answer the preceding questions is its resolvent, QM (z) = (M − zIn)−1, defined for all
z ∈ C \ Sp M . Indeed, 1

n Tr QM (z) = 1
n

∑
λ∈Sp M

1
λ−z is the Stieltjes transform of its

empirical spectral distribution.

Definition 2 (Stieltjes transform) The Stieltjes transform of a real probability measure
µ is defined for all z ∈ C \ Suppµ as mµ(z) =

∫
R

1
t−zdµ(t).

11
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The knowledge ofmµ is equivalent to the knowledge of µ thanks to the inversion formula
µ([a, b]) = 1

π limη↓0
∫ b
a =[mµ(x+iη)] dx for any continuity points a, b of µ (Couillet and Liao,

2022, Theorem 2.1). Hence, following the behavior of 1
n Tr QM (z) as n→ +∞ gives insight

into the limiting spectral distribution of M via its Stieltjes transform. To do so, we seek
first a deterministic equivalent of QM .

Definition 3 (Deterministic equivalent) Let X be a random n×n matrix and X̄ be a
deterministic n× n matrix. We write X ↔ X̄ if, for all deterministic matrices A ∈ Rn×n
and vectors a, b ∈ Rn of bounded norms (spectral and Euclidean norms respectively)10,

1
n

Tr A
(
X − X̄

) a.s.−−−−−→
n→+∞

0 and a>
(
X − X̄

)
b

a.s.−−−−−→
n→+∞

0.

The matrix Y is called a deterministic equivalent of X. For more details on this notion,
see Couillet and Liao (2022, §2.1.4).

The following lemma will be extensively used to derive such equivalents.

Lemma 4 (Stein, 1981) Let Z ∼ N (0, 1) and f : R→ C be a continuously differentiable
function. When the following expectations exist, E[Zf(Z)] = E[f ′(Z)].

Once a deterministic equivalent Q̄M of QM is found, the limiting spectral distribution
of M is accessible through the limit of 1

n Tr Q̄M as n→ +∞. In the study of spiked models,
eigenvalues are usually gathered in a bulk, described by the limiting spectral distribution
(LSD), with a finite number of isolated eigenvalues, which do not appear in the LSD (see
Figure 3 for example). The position of these isolated eigenvalues are singular points of the
resolvent QM . Hence, the asymptotic analysis of the resolvent provides equations yielding
their almost sure asymptotic position. Moreover, thanks to Cauchy’s integral formula, for
all a ∈ Rn, |a>u|2 = −1

2iπ
∮
γ a>QM (z)a dz where γ is a positively-oriented simple closed

complex contour circling around an isolated eigenvalue (assuming it has multiplicity 1) with
all other eigenvalues left outside and u is the eigenvector associated to the corresponding
eigenvalue. The almost sure asymptotic value of this contour integral can be computed
with our deterministic equivalent, thus yielding formulae for the alignments of the spike
eigenvectors with relevant directions of the model.

This briefly summarizes the main techniques we use in our proofs, see Appendix A for
an extension. A complete presentation of these tools can be found in Couillet and Liao
(2022). Other valuable references for the reader interested in random matrix theory are
Potters and Bouchaud (2020); Bai and Silverstein (2010); Pastur and Shcherbina (2011);
Tao (2012).

3. Analysis of Truncated MLSVD under the General Spiked Tensor
Model

This section presents a random matrix analysis of the general spiked tensor model intro-
duced in Equation (2) using tools presented in Section 2.3. We give precise results on the

10. Strictly speaking, we refer to sequences of matrices and vectors whose size grow with the index n.
Yet, this mathematical aspect is made implicit in order to simplify notation and be closer to practical
considerations where these sequences, in fact, do not exist — the assumption n→ +∞ models the fact
that n is large but remains finite.
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spectral behavior of the unfoldings of the observed tensor T, and specify the achievable per-
formance in the estimation of the underlying signal P with a truncated MLSVD. Although,
as explained in Section 1.1, this approach is only quasi-optimal, it is very easy to implement
and represents an excellent “first guess” to initialize a numerical scheme converging to a
solution to Problem (1), which is discussed in Section 4.

3.1 Random Matrix Results on the Model

Under the general spiked tensor model (2), we consider an n1 × . . . × nd tensor T = P +
1√
N
N of order d > 3, modeling a low-rank deterministic signal P corrupted by an additive

Gaussian noise tensor N whose entries are independent N (0, 1) random variables11. We
denote by (r1, . . . , rd) the multilinear rank of P and study this model in the asymptotic
regime where N → +∞ with n` = Θ(N) and r` = Θ(1), ` ∈ [d].

The estimation of P with a truncated MLSVD on T is simply the computation of the
dominant singular subspaces of T. Specifically, Û (`) ∈ Rn`×r` gathers the r` dominant left
singular vectors of T (`) — and thus, Û (`)>Û (`) = Ir` . Then, a low-multilinear-rank approxi-
mation of T is T̂ = JĜ; Û (1), . . . , Û (d)K with an r1×. . .×rd core tensor Ĝ = T(Û (1), . . . , Û (d)).
An equivalent expression is T̂ = JT; Û (1)Û (1)>, . . . , Û (d)Û (d)>K, which explicitly shows
that T̂ is the projection of T on its dominant singular subspaces12. Thus, the quality
of this estimation hinges upon the alignments between the singular subspaces of P and the
dominant singular subspaces of T. Namely, denoting û

(`)
q` , for q` ∈ [r`], the columns of

Û (`) =
[
û

(`)
1 . . . û

(`)
r`

]
and given that P = JH; X(1), . . . ,X(d)K, the quantities of interest

are ‖X(`)>û
(`)
q` ‖2 since they represent how much of û

(`)
q` is in the `-th singular subspace of

the signal P.
In order to understand how the singular subspaces of P are perturbed by the addition of

noise, we study the spectral properties of the unfoldings T (`) = P (`)+ 1√
N

N (`). In fact, since
we are only interested in the left singular vectors of T (`), it is more convenient to consider
the n` × n` symmetric matrix T (`)T (`)>. Note that this is different from standard spiked
matrix models (Benaych-Georges and Nadakuditi, 2011) because the second dimension of
T (`) grows at a faster polynomial rate than the first one (Θ(Nd−1) versus Θ(N)). Hence, it
is easy to see that the spectrum of T (`)T (`)> should diverge as N → +∞: set P = 0n1×...×nd
for simplicity and consider the expected mean of the eigenvalues,

1
n`

E

 ∑
λ∈Sp(T (`)T (`)>)

λ

 = 1
n`

E
[
Tr
( 1
N

N (`)N (`)>
)]

= 1
N

∏
`′ 6=`

n`′ −−−−−→
N→+∞

+∞.

11. We highlight the fact that the Gaussian noise assumption is not restrictive. Firstly, the universality result
of Gurau (2014) shows that, as N → +∞, the distribution of a random tensor with i.i.d. entries has the
same limit than that of a tensor with i.i.d. Gaussian entries. Moreover, our results can be extended to
non-Gaussian noise up to a control on the moments of the distribution with the “interpolation trick” of
Lytova and Pastur (2009, Corollary 3.1). These are technical aspects which go beyond the scope of our
work. Examples of results relying on this method are Pastur and Shcherbina (2011, Theorems 18.4.2
and 19.2.1); Merlevède et al. (2015); Banna et al. (2015).

12. In the more familiar matrix case (d = 2), the expression JT ; Û (1)Û (1)>, Û (2)Û (2)>K is equivalent to
Û (1)Û (1)>T Û (2)Û (2)>.
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Hence, we need to consider instead a centered-and-scaled version of our random matrix
T (`)T (`)> to properly study the behavior of its spectrum. The quantities µ(`)

N and σN

introduced in Theorem 5 below are such that the eigenvalues of 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
neither diverge nor vanish but stay at a Θ(1) scale as N → +∞.

Theorem 5 (Deterministic equivalent) For ` ∈ [d], define the following quantities,

µ
(`)
N = 1

N

∏
`′ 6=`

n`′ , σN = 1
N

√∏
`∈[d]

n`.

As N → +∞, if the ratio ‖P‖2F/σN is bounded, then the resolvent of the centered-and-scaled
matrix 1

σN

[
T (`)T (`)> − µ(`)

N In`

]
has the following deterministic equivalent (Definition 3),

defined for all z̃ ∈ C \ R,

Q̃(`)(z̃) def=
( 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
− z̃In`

)−1

←→ Q̄(`)(z̃) def=
( 1
σN

P (`)P (`)> + 1
m̃(z̃)In`

)−1

where m̃(z̃) def= lim
N→+∞

1
n`

Tr Q̃(`)(z̃) does not depend on ` ∈ [d] and satisfies the following
equation,

m̃2(z̃) + z̃m̃(z̃) + 1 = 0. (6)

Proof See Appendix B.

This theorem is fundamental. It gives a deterministic equivalent Q̄(`)(z̃) of the resolvent
of the centered-and-scaled matrix 1

σN

[
T (`)T (`)> − µ(`)

N In`

]
, which is our entry point into the

precise characterization of its spectral behavior, following the approach presented in Section
2.3. First of all, notice that the “scaling parameters” µ(`)

N and σN are respectively Θ(Nd−2)
and Θ(N

d−2
2 ), meaning that the eigenvalues of T (`)T (`)> grow at a speed Nd−2 and spread

over an interval whose length grows as
√
Nd−2 and does not depend on the mode `.

Moreover, the relation given in Equation (6) characterizes m̃, the Stieltjes transform
of the limiting spectral distribution (LSD) of 1

σN

[
T (`)T (`)> − µ(`)

N In`

]
. We see that this

LSD is the same regardless of the low-rank perturbation P (`)P (`)>, as it is expected that
the perturbation should only cause the presence of a finite number of isolated eigenvalues
in the empirical spectral distribution. Notice that, if P (`) = 0n1×...×nd , we simply have
Q̄(`)(z̃) = m̃(z̃)In` . As a corollary, we recover the limiting spectral distribution of long
random matrices, which was first characterized by Bai and Yin (1988).

Corollary 6 (Limiting spectral distribution) As N → +∞, the empirical spectral dis-
tribution of the centered-and-scaled matrix 1

σN

[
T (`)T (`)> − µ(`)

N In`

]
converges weakly almost

surely to µSC, the semicircle distribution on [−2,+2],

dµSC(x) def= 1
2π

√
[4− x2]+dx.
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Figure 3: Top: empirical spectral distribution (ESD) of T (`)T (`)>. The orange curve is the
density of the stretched semicircle on [µ(`)

N ± 2σN ] (Corollary 6). Green dashed
lines represent asymptotic positions of spikes µ(`)

N + σN ξ̃
(`)
q` (Theorem 9). Bot-

tom: Observed alignments between the dominant eigenvectors of T (`)T (`)> and
P (`)P (`)> (purple bars) with their predicted asymptotic values [ζ(`)

q` ]+ (red curve,
Theorem 9). Experimental setting: d = 3, (n1, n2, n3) = (300, 500, 700),
N = n1 + n2 + n3, (r1, r2, r3) = (3, 4, 5) and ‖P‖2F/σN = 15.

Proof Following Equation (6), m̃(z̃) = 1
2

[
−z ±

√
z2 − 4

]
where the ± sign is chosen so

that m̃ satisfies the properties of a Stieltjes transform, in particular =[z̃]=[m̃(z̃)] > 0 for all
z̃ ∈ C\R. Then, the result follows from the Stieltjes transform inversion formula introduced
in Section 2.3 (see also Couillet and Liao, 2022, §2.1.2).

This result states that the limiting spectral distribution of 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
is,

in fact, the very-well-known semicircle distribution, first observed by Wigner (1955, 1958)
in the study of certain special classes of random matrices arising in quantum mechanics. It
indicates that, as N → +∞, the density of eigenvalues of T (`)T (`)> is a stretched semicircle
on [µ(`)

N ± 2σN ]. This phenomenon is illustrated in the first row of Figure 3, where the
empirical spectral distribution (ESD) of T (`)T (`)> is represented with the corresponding
stretched semicircle for every mode ` of an order-3 tensor of size 300× 500× 700 following
the general spiked tensor model (2).

Remark 7 (From Marčenko-Pastur to Wigner) Given a random matrix X ∈ Rp1×p2

with i.i.d. N (0, 1
p2

) entries, it is well known that the empirical spectral distribution of XX>

converges weakly to the Marčenko-Pastur distribution as p1, p2 → +∞ with p1/p2 → c > 0
(Marčenko and Pastur, 1967; Pastur and Shcherbina, 2011, Corollary 7.2.5; Couillet and
Liao, 2022, Theorem 2.4; Potters and Bouchaud, 2020, Chapter 4). On the other hand,
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the standard semicircle distribution µSC is known to be the limiting spectral distribution
of symmetric p × p random matrices with i.i.d. (up to symmetry) N (0, 1

p) entries (Pastur
and Shcherbina, 2011, Corollary 2.2.8; Couillet and Liao, 2022, Theorem 2.5; Potters and
Bouchaud, 2020, Chapter 2). Here, Corollary 6 shows that if p2 grows at a faster polyno-
mial rate than p1, the matrix XX> behaves asymptotically (up to a deterministic rescaling
and shift) like a Wigner matrix, even if its entries are not independent. Experimentally,
we observe that, if n2 and n3 are chosen small compared to n1 (in contradiction with our
assumption n1, n2, n3 = Θ(N)), e.g., (n1, n2, n3) = (1000, 40, 40), then the empirical spec-
tral distribution of T (1)T (1)> is better modeled by a Marčenko-Pastur distribution than by
a Wigner semicircle.

Remark 8 (Confinement of the spectrum) The weak convergence of the empirical
spectral distribution to µSC stated in Corollary 6 could allow for a negligible amount of
eigenvalues to stay outside the support of the limiting spectral distribution. In fact, in Ap-
pendix B, we show an even more precise statement on the global behavior of the eigenvalues
of 1

NN (`)N (`)> (the model without signal): for all ε > 0, there exists an integer N0 such
that Dist( 1

σN
[λ − µ

(`)
N ], [−2, 2]) 6 ε almost surely for all λ ∈ Sp 1

NN (`)N (`)> as soon as
N > N0. This means that no eigenvalue of 1

σN

[
1
NN (`)N (`)> − µ(`)

N In`

]
stays outside the

support of the semicircle distribution [−2, 2] almost surely as N → +∞.

The empirical spectral distributions of Figure 3 also show isolated eigenvalues on the
right side of each semicircle. They are caused by the low-rank perturbation P which, in
this setting, has multilinear rank (3, 4, 5). The estimate of P given by a truncated MLSVD
on T has its singular subspaces spanned by the dominant eigenvectors of T (`)T (`)>, i.e.,
precisely those associated with these isolated eigenvalues. Hence, a precise characterization
of the behavior of these spikes is needed to plainly understand the recovery performance
of this estimate. As explained in Section 2.3, this can be achieved with the deterministic
equivalent given in Theorem 5.

Theorem 9 (Spike behavior) For ` ∈ [d] and q` ∈ [r`], define the following quantities13,

ρ(`)
q`

=
s2
q`

(P (`))
σN

, ξ̃(`)
q`

= ρ(`)
q`

+ 1
ρ

(`)
q`

and ζ(`)
q`

= 1− 1[
ρ

(`)
q`

]2 .
As N → +∞, if the ratio ‖P‖2F/σN is bounded and ρ(`)

q` > 1, then

1
σN

[
s2
q`

(T (`))− µ(`)
N

] a.s.−−→ ξ̃(`)
q`

and
∥∥∥X(`)>û(`)

q`

∥∥∥2 a.s.−−→ ζ(`)
q`

where û
(`)
q` is the q`-th dominant left singular vector of T (`).

Proof See Appendix C.

13. We recall that the notation si(A) denotes the i-th singular value of A in non-increasing order.
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The first quantity defined in this theorem, ρ(`)
q` , should be understood as a signal-to-noise

ratio (SNR). Indeed, the squared q`-th singular value of P (`) (i.e., the q`-th eigenvalue of
P (`)P (`)>), s2

q`
(P (`)), measures the “strength” of the signal in its q`-th principal direction,

whereas σN measures the spread of the noise, as seen in Theorem 5. The two quantities ξ̃(`)
q`

and ζ(`)
q` depend only on the value of this SNR and indicate respectively the position of an

isolated eigenvalue in the sprectrum of T (`)T (`)> and the alignment of the corresponding
eigenvector with the sought signal. In fact, we observe a phase transition phenomenon: if
the SNR is large enough, i.e., if ρ(`)

q` > 1, an eigenvalue of T (`)T (`)> isolates itself from the
semicircle14 around µ

(`)
N + σN ξ̃

(`)
q` . Moreover, recalling that P = JH; X(1), . . . ,X(d)K, the

eigenvector associated with this isolated eigenvalue is aligned with the subspace spanned
by X(`), which is the `-th singular subspace of P. The quality of this alignment is given by
0 < ζ

(`)
q` 6 1.

Most importantly, this result reveals the non-trivial regime for the estimation of P with
a truncated MLSVD. Since σN = Θ(N

d−2
2 ), it shows that ‖P‖2F =

∑r`
q`=1 s

2
q`

(P (`)) must
also be of the same order. Indeed, if ‖P‖2F � N

d−2
2 , then ρ(`)

q` → 0, the SNR is too small
and no signal can be recovered, whereas if ‖P‖2F � N

d−2
2 , then ρ

(`)
q` → +∞, the SNR

is very high and recovery of P is easy. It is precisely between these two regimes, i.e.,
‖P‖F = Θ(N

d−2
4 ), that the recovery is non-trivial. Note that this observation is in line

with the results of Ben Arous et al. (2023) and Zhang and Xia (2018). In this non-trivial
regime, the quantities ζ(`)

q` given in Theorem 9 precisely quantify how well the dominant
eigenvectors of T (`)T (`)> are aligned with the sought signal, i.e., the singular subspaces
of P. In section 3.2 below, this result is used to study the reconstruction performance of
truncated MLSVD.

Remark 10 (Spiked Wigner model) The reader familiar with the spiked Wigner model
may have recognized the expressions of ξ̃(`)

q` and ζ
(`)
q` given in Theorem 9. Indeed, given

a symmetric p × p random matrix W with i.i.d. (up to symmetry) N (0, 1
p) entries, the

spectrum of [ρxx> + W ] with ‖x‖ = 1 follows a semicircle distribution as p → +∞ with
an isolated eigenvalue at ρ+ 1

ρ if, and only if, ρ > 1 (Féral and Péché, 2007; Edwards and
Jones, 1976; Füredi and Komlós, 1981). Moreover, the corresponding eigenvector u is such
that |x>u|2 → 1− 1

ρ2 almost surely as p→ +∞ (Benaych-Georges and Nadakuditi, 2011).
As discussed in Remark 7, up to a deterministic rescaling and shift, T (`)T (`)> asymptotically
behaves like a spiked Wigner matrix.

Theorem 9 is illustrated in Figure 3. In the first row, asymptotic positions of isolated
eigenvalues µ(`)

N + σN ξ̃
(`)
q` are represented by the green dashed lines. In our experiment, P

has multilinear rank (3, 4, 5). Hence 3, 4 and 5 isolated eigenvalues are expected in the
spectrum of T (`)T (`)> for ` = 1, 2 and 3 respectively. This is indeed the case for ` = 1
and ` = 2 but not ` = 3 where there are only 4 spike eigenvalues. In fact, s5(P (3)) is
not “energetic enough” to extricate itself from the bulk of eigenvalues, i.e, the SNR ρ

(3)
5 is

below the phase transition threshold. Hence the 5-th dominant left singular vector of T (`)

is not informative as it is not aligned with the 3-rd singular subspace of P, spanned by

14. Indeed, note that ρ(`)
q` > 1 =⇒ ξ̃

(`)
q` > 2.
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X(3). The second row of Figure 3 depicts the alignments of the spiked eigenvectors û
(`)
q`

with the corresponding singular subspaces of P as well as the asymptotic alignment given
by Theorem 9 as a function of the position of the associated eigenvalue. It appears that
the higher is the SNR ρ

(`)
q` , the farther is the isolated eigenvalue from the bulk and the

more is the corresponding eigenvector aligned with the span of X(`). This assertion can be
intuitively understood in terms of “energy” s2

q`
(P (`)) of a given principal direction. More

energy pushes the eigenvalue farther from the bulk and aligns the corresponding eigenvector
with the corresponding singular subspace of P.

3.2 Reconstruction Performance of Truncated MLSVD

Our random matrix results allow to accurately study the reconstruction performance of
truncated MLSVD. Given a data tensor T following the general spiked tensor model (2), we
consider its low-rank approximation T̂ = JĜ; Û (1), . . . , Û (d)K where Û (`) is the n`×r` matrix
whose columns are the r` dominant singular vectors of T and Ĝ = T(Û (1), . . . , Û (d)). T̂ is
the projection of T on its dominant singular subspaces, hence the name truncated MLSVD
as it generalizes the truncated SVD of matrices. Given Model (2), the underlying signal
estimated by T̂ is P = JH; X(1), . . . ,X(d)K. The reconstruction performance of T̂ hence
depends on how well the subspace15 spanned by Û (`) estimates the one spanned by X(`).

Metrics between singular subspaces are often expressed in terms of principal angles
(Björck and Golub, 1973; Stewart and Sun, 1990, II.4), which generalize the concept of
angle between lines. Given two subspaces (here, Span X(`) and Span Û (`)), one can define
a set of mutual angles which are invariant under isometric transformation.

Definition 11 (Principal angles) The principal angles θ(`)
q` ∈ [0, π2 ] between the subspaces

spanned by X(`) and Û (`) are recursively defined for q` = 1, . . . , r` by

cos θ(`)
q`

= x>q`uq` with (xq` ,uq`) ∈ arg max
(x,u)∈Span X(`)×Span Û (`)

x>xq′
`
=0, u>uq′

`
=0, 16q′`<q`

x>u.

Moreover, we have the following useful property.

Proposition 12 (Björck and Golub, 1973) The q`-th singular value of X(`)>Û (`) in
non-increasing order equals the cosine of the q`-th principal angle,

sq`(X
(`)>Û (`)) = cos θ(`)

q`
, ` ∈ [d], q` ∈ [r`].

In fact, information about the alignment between the subspaces induced by X(`) and
Û (`) are contained entirely in the r` × r` matrix X(`)>Û (`). Following Definition 11, we
know from Theorem 9 that, as N → +∞, cos2 θ

(`)
q` → [ζ(`)

q` ]+ almost surely16, where we

15. The object of importance is indeed the subspace and not the matrix Û (`) since any other matrix Û (`)O(`),
with O(`) an r` × r` orthogonal matrix, would span the same subspace and therefore give the same
approximation.

16. Indeed, since ζ(`)
1 > . . . > ζ

(`)
r` , observe that, in Definition 11, |x>q`

uq` |
2 is asymptotically bounded by

[ζ(`)
q` ]+.
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have used the handy notation [·]+ = max(·, 0) since ρ(`)
q` > 1 ⇐⇒ ζ

(`)
q` > 0. Hence, using

Proposition 12,

1
r`

∥∥∥X(`)>Û (`)
∥∥∥2

F
= 1
r`

r∑̀
q`=1

cos2 θ(`)
q`

a.s.−−−−−→
N→+∞

1
r`

r∑̀
q`=1

[
ζ(`)
q`

]+
. (7)

Therefore, the quantity 1
r`
‖X(`)>Û (`)‖2F ∈ [0, 1] appears as a relevant measure of alignment

between the singular subspaces of P and T̂ and does not depend on the chosen orthonormal
bases X(`) and Û (`). More details on metrics between subspaces can be found in Stewart
and Sun (1990, II.4).

In Figure 2 are represented the alignments between the singular subspaces of T̂ and
P =

√
ωP◦ with ‖P◦‖2 = σN as a function of the signal-to-noise ratio ω. The fact that

‖P◦‖2 = σN ensures that the estimation problem is non-trivial (neither too easy nor too
hard) as ρ(`)

q` = Θ(1). Plain curves are the alignments given by Theorem 9 as N → +∞
(right-hand side of Equation (7)) whereas dotted curves are simulation results at finite N
(left-hand side of Equation (7)). In this setting, P◦ has multilinear rank (3, 4, 5). Hence, its
“energy” ‖P◦‖2 is spread among 3, 4 and 5 directions along modes 1, 2 and 3 respectively.
Each break in the plain curves correspond to a value of ω such that ρ(`)

q` = 1, that is,
ω = σN/s

2
q`

(P (`)
◦ ). In other words, there are r` phase transitions along mode ` whose

positions depend on the singular values of P
(`)
◦ . If ω is too small (here, ω . 2), truncated

MLSVD fails to recover any direction of the singular subspaces of P◦. As ω passes the
first phase transition (here, at ω = σN/s

2
1(P (1)
◦ ) ≈ 2), a first principal direction is partially

reconstructed. Then, more and more phase transitions occur, corresponding to more and
more principal directions being recovered as ω grows. Simultaneously, the reconstruction
of previous directions keeps improving. Eventually, as ω is large, subspace alignments
approach 1, indicating that truncated MLSVD accurately recovers the singular subspaces
of P◦.

The reader has not missed the dashed lines in Figure 2 showing much better subspace
alignments than truncated MLSVD. They result from the numerical estimation of the best
rank-(3, 4, 5) approximation of T with the HOOI algorithm, which is discussed in the next
section.

Remark 13 (Reconstruction of H from T) Guarantees on the recovery of the core ten-
sor H can be deduced from Theorem 9 as well. Without loss of generality, we can assume
that X(`)>Û (`) is, up to an almost-surely vanishing additive term, a diagonal matrix with
entries ζ(`)

1 , . . . , ζ
(`)
r` (otherwise replace Û (`) by Û (`)O(`) for a well-chosen orthogonal matrix

O(`)). Then, Ĝ = T(Û (1), . . . , Û (d)) is the corresponding estimator of H and

Ĝ = Ĥ + 1√
N

N(Û (1), . . . , Û (d)) with Ĥ =
r
H; Û (1)>X(1), . . . , Û (d)>X(d)

z
.

We will see in Lemma 14 below that ‖ 1√
N
N(Û (1), . . . , Û (d))‖F = O(1) almost surely as

N → +∞. On the other hand, we know that ‖H‖F = ‖P‖F = Θ(N
d−2

4 ) � O(1) as soon
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as d > 3 and the entries of Ĥ are proportional to those of H:

Ĥq1,...,qd = Hq1,...,qd

d∏
`=1

ζ(`)
q`

+ εq1,...,qd , ` ∈ [d], q` ∈ [r`],

up to an almost-surely vanishing additive term εq1,...,qd as N → +∞.
Moreover, regarding the reconstruction of T, we know from De Lathauwer et al. (2000b,

Property 10) that

∥∥∥T − T̂
∥∥∥2

F
6

d∑
`=1

n∑̀
i`=r`+1

s2
i`

(T (`)) =
d∑
`=1

‖T‖2F − r∑̀
q`=1

s2
q`

(T (`))


and the asymptotic behavior of s2

q`
(T (`)) is given by Theorem 9.

4. Numerical Estimation of the Best Low-Multilinear-Rank
Approximation

In search of an efficient estimator of the planted signal P, one naturally considers the best
low-multilinear-rank approximation of T, that is, a solution to Problem (1). As explained
in the introduction, this is NP-hard in general but numerical schemes can compute it in
polynomial time above the computational threshold (Montanari and Richard, 2014; Zhang
and Xia, 2018). In this section, we examine the most standard of these numerical schemes,
namely the Higher Order Orthogonal Iteration (HOOI) algorithm (De Lathauwer et al.,
2000a; Kroonenberg and de Leeuw, 1980; Kapteyn et al., 1986), and discuss the numerical
difficulties faced in the computation of a solution to Problem (1).

4.1 Higher-Order Orthogonal Iteration

Following De Lathauwer et al. (2000a, Theorem 4.2), the maximum likelihood estimation
formulated in Problem (1) is equivalent to

(
U

(1)
? , . . . ,U

(d)
?

)
∈ arg max

U (`)∈Vr` (R
n` ), `∈[d]

1
2

∥∥∥T(U (1), . . . ,U (d))
∥∥∥2

F
(8)

where Vr`(Rn`)
def= {U (`) ∈ Rn`×r` | U (`)>U (`) = Ir`} is the set of r` × n` matrices with

orthonormal columns, known as the Stiefel manifold (Chikuse, 2003; Absil et al., 2009).
Then, since the Frobenius norm of T(U (1), . . . ,U (d)) is equal to the Frobenius norm of any
of its unfoldings,

∥∥∥T(U (1), . . . ,U (d))
∥∥∥

F
=

∥∥∥∥∥∥U (`)>T (`)�̀
′ 6=`

U (`′)

∥∥∥∥∥∥
F

, ` ∈ [d].

And we see from Problem (8) that U
(`)
? is the matrix gathering the r` dominant left singular

vectors of T (`)�`′ 6=` U
(`′)
? . This is precisely what motivates the HOOI algorithm presented
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Algorithm 1: Higher-Order Orthogonal Iteration (De Lathauwer et al., 2000a)

for ` = 1, . . . , d do U
(`)
0 ← r` dominant left singular vectors of T (`)

repeat
for ` = 1, . . . , d do U

(`)
t+1 ← r` dominant left singular vectors of T (`)�`′ 6=` U

(`′)
t

until convergence at t = T

GHOOI ← T(U (1)
T , . . . ,U

(d)
T )

in Algorithm 1. It performs fixed-point iterations to compute a solution U
(1)
? , . . . ,U

(d)
?

satisfying the previous property17.
The HOOI algorithm is initialized with U

(1)
0 , . . . ,U

(d)
0 , the truncated MLSVD18 of T.

Given the results of Section 3, this is indeed a very good and easily computable first guess.
Then, fixed-point iterations are repeated in order to find a solution U

(1)
? , . . . ,U

(d)
? such

that U
(`)
? spans the left r`-dimensional dominant singular subspace of T (`)�`′ 6=` U

(`′)
? for

all ` ∈ [d], which corresponds to a solution to Problem (8). In practice, the stopping
criterion can be chosen as a negligible change in the norm of the estimated core tensor,
‖T(U (1)

t , . . . ,U
(d)
t )‖F.

Xu (2018) showed that the convergence of this algorithm towards a local minimum of
Problem (8) is guaranteed as long as its initialization is sufficiently close to this local min-
imum. In light of our previous results, we can provide further insight into this “sufficiently
close” property. Indeed, in Theorem 15 below, we show that an initialization with non-
zero alignment with the signal P is sufficient to ensure that the HOOI algorithm perfectly
reconstructs it after a single iteration.

Before introducing Theorem 15, we formulate an important preliminary result which
essentially states that, given A(`) ∈ Vr`(Rn`), ` ∈ [d], the quantity 1√

N
‖N(A(1), . . . ,A(d))‖F

is almost surely bounded as N → +∞.

Lemma 14 With probability at least 1− δ,

sup
A(`)∈Vr` (R

n` ), `∈[d]

∥∥∥N(A(1), . . . ,A(d))
∥∥∥2

F

6 16
[(

d∑
`=1

r`

(
n` −

r` + 1
2

))
log Cd

log 3
2

+ log
(1
δ

max
(

1, e
1
2
∏d

`=1 r`−1
))]

where C > 0 is a universal constant.

Proof See Appendix D.

This result is crucial to handle the behavior of the noise in our analysis of Algorithm 1
(Appendix E), which leads to the following result on the alignment between the singular
subspaces of the signal P (spanned by X(`)) and those estimated from the observation T

after the first iteration of HOOI (spanned by U
(`)
1 ).

17. In fact, this property corresponds to first-order optimality conditions of Problem (8), with the squared
singular values as Lagrange multipliers.

18. Consistently with the notations of Section 3, this is Û (1), . . . , Û (d).

21



Lebeau, Chatelain and Couillet

Theorem 15 (Asymptotic optimality of HOOI) As N → +∞, if ‖P‖F � 1 and

min
`∈[d], q`∈[r`]

∥∥∥P(U (1)
0 , . . . ,x(`)

q`
, . . . ,U

(d)
0 )

∥∥∥
F

def= LN � ‖P‖1/2F

where x
(`)
q` is the q`-th column of X(`), then,

1
r`

∥∥∥X(`)>U
(`)
1

∥∥∥2

F
= 1 +O

(
‖P‖F
L2
N

)
almost surely.

Proof See Appendix E.

It is important to carefully understand the assumptions of Theorem 15. Firstly, it
assumes that ‖P‖F � 1 as N → +∞, that is, the signal is not necessarily in the non-trivial
regime Θ(N

d−2
4 ) but can be smaller or bigger as long as ‖P‖F → +∞, regardless its speed.

Then, the second assumption ‖P(U (1)
0 , . . . ,x

(`)
q` , . . . ,U

(d)
0 )‖F � ‖P‖1/2F means that each

principal directions of the `-th singular subspace are sufficiently preserved after contraction
on {U (`′)

0 }`′ 6=`. When these assumptions are verified, Theorem 15 states that the matrices
U

(1)
1 , . . . ,U

(d)
1 computed after the first iteration of HOOI perfectly reconstruct the singular

subspaces of the sought signal P as the dimensions of the tensor, n1, . . . , nd, grow large.
More formally, as N → +∞, the alignment 1

r`
‖X(`)>U

(`)
1 ‖2F approaches 1 almost surely.

Furthermore, the speed of this convergence behaves like ‖P‖F/L2
N .

Theorem 15 does not assume a particular choice of initialization U
(1)
0 , . . . ,U

(d)
0 and gives

a sufficient condition for it to ensure the convergence of the algorithm. Nevertheless, as it is
presented in Algorithm 1, truncated MLSVD is a standard choice of initialization. In this
case, the assumption LN = Θ(‖P‖) is verified as soon as enough principal directions are
recovered. According to Theorem 9, this is only possible if ‖P‖F >

√
σN = Θ(N

d−2
4 ) since

a necessary condition is ρ(`)
1 > 1 for all ` ∈ [d], while a sufficient condition is ρ(`)

q` > 1 for all
` ∈ [d] and q` ∈ [d]. In other words, convergence at speed ‖P‖−1

F as assured above a critical
signal-to-noise ratio lying between the first and the last phase transition of each mode, and
which depends on the particular structure of the core tensor H. Yet, in most cases, this
happens quite early, right after the first phase transitions, see for example Figure 2.

We emphasize the fact that the assumption of Theorem 15 can already be verified as soon
as min` ρ

(`)
1 > 1. That is, there is no need for all the principal directions to be reconstructed

at initialization. In fact, it could very well be that max` ρ
(`)
2 < 1. If the singular subspaces

of P are sufficiently preserved with the initialization U
(1)
0 , . . . ,U

(d)
0 — i.e., if LN � ‖P‖1/2

—, then the other principal directions still emerge after the first iteration.
In the simpler rank-1 case, these technical considerations vanish and we recover the

result of Feldman and Donoho (2023, Theorem 4.2): if P = βN
⊗
`∈[d] x(`) then a necessary

and sufficient condition for LN = Θ(‖P‖F) is simply β2
N > σN . Indeed, ρ(`)

1 = β2
N/σN for

all ` ∈ [d]. Moreover, when this assumption if verified, Theorem 15 ensures the asymptotic
exact reconstruction of x(1), . . . ,x(d) in a single iteration with a ‖P‖−1

F = β−1
N speed of

convergence.
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Figure 4: Alignments between singular subspaces of the observation T = P + 1√
N
N and of

the signal P, with ‖P‖2F/σN = 10, at initialization of Algorithm 1 (i.e., truncated
MLSVD) and after the first iteration, as a function of the size of the tensor given
by the parameter N . Left: 1

r`
‖X(`)>U

(`)
0 ‖2F. Middle: 1

r`
‖X(`)>U

(`)
1 ‖2F. Right:

(1 − 1
r`
‖X(`)>U

(`)
1 ‖2F) × √σN . Experimental setting: d = 3, (n1

N ,
n2
N ,

n3
N ) =

(1
6 ,

2
6 ,

3
6), N = n1 + n2 + n3 and (r1, r2, r3) = (3, 4, 5).

Remark 16 (Practical implications) In practice, one should still run several iterations
of Algorithm 1 until a certain stopping criterion is verified as this effectively improves
the final estimate and converges to a solution to the maximum likelihood estimation (1)
(Xu, 2018). Theorem 15 states that the reconstruction performance of HOOI after the first
iteration increases as we consider larger tensors, until it reaches perfect recovery in the
large N limit. In other words, the number of iterations required to achieve a specific level
of accuracy in maximum likelihood estimation tends to 1 as N → +∞.

Theorem 15 is illustrated in Figure 4. As a function of N — the size of the tensor —
we represent the subspace alignments observed at initialization and after the first iteration
for a fixed signal-to-noise ratio ‖P‖2F/σN = 10. The left panel compares the observed align-
ments achieved with truncated MLSVD (initialization of Algorithm 1) with the asymptotic
alignments predicted by Theorem 9. As N grows, the observed alignments remain around
their asymptotic values, with only a decrease in variance. The middle panel presents the
alignments after the first iteration. Here, as N increases, we observe an increase in the
values of the alignments, which approach 1, consistently with Theorem 15. This is specified
in the right panel where the value (1 − 1

r`
‖X(`)>U

(`)
1 ‖2F) × √σN is plotted. According to

Theorem 15, this value should be O(1) since LN = Θ(‖P‖F) = Θ(√σN ) here. The observed
behavior confirms the ‖P‖−1

F speed of convergence asserted in Theorem 15.

4.2 Discussion on Signal Reconstructibility

Our results on truncated MLSVD (Section 3) and HOOI (Section 4.1) bring insight into
the computational-to-statistical gap observed in the low-multilinear-rank approximation
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problem. Truncated MLSVD can only work efficiently if ‖P‖F is at least Θ(N
d−2

4 ) and
its reconstruction performance has been discussed in Section 3.2. However, Theorem 15
suggests that it is possible to perfectly reconstruct the signal P from the observation T as
long as ‖P‖F � 1 and HOOI is accurately initialized. Yet, it is known that, without prior
information on P, maximum likelihood estimation (1) is NP-hard below the Θ(N

d−2
4 ) com-

putational threshold (Zhang and Xia, 2018), which lies precisely in the non-trivial regime
of truncated MLSVD.

In fact, what can be understood from Theorem 15 is that it suffices to have an initial-
ization U

(`)
0 , ` ∈ [d], slightly aligned with the underlying signal P to be in the right basin

of attraction and allow the convergence of Algorithm 1 towards a solution to Problem (1).
This complements the results of Xu (2018) on the conditions of convergence of HOOI. Fur-
thermore, a solution to Problem (1) is aligned with P as soon as ‖P‖F = Θ(1) (Ben Arous
et al., 2019; Jagannath et al., 2020; Zhang and Xia, 2018). Hence, as the HOOI algorithm is
meant to compute a maximum likelihood estimator, with the assumption ‖P‖F � 1 made in
Theorem 15, it is expected that these iterations allow to perfectly recover the signal asymp-
totically. Maximum likelihood estimation is indeed (theoretically) trivial if ‖P‖F → +∞.
It is more surprising however that this already happens at the first iteration.

As said previously, the choice of initialization U
(`)
0 , ` ∈ [d], does not matter in Theorem

15. In fact, without prior information, a truncated MLSVD is the best choice as it allows
to partially reconstruct the signal at the Θ(N

d−2
4 ) computational threshold. Nevertheless,

had one prior information allowing such a reconstruction in the regime 1� P� N
d−2

4 —
where truncated MLSVD would not be fruitful —, HOOI would still be able to perfectly
reconstruct the signal P given this initialization.

Hence, HOOI initialized with a truncated MLSVD, as it is presented in Algorithm 1,
allows to numerically compute a maximum likelihood estimator (solution to Problem (1))
but only above the phase transition of truncated MLSVD. Indeed, its initialization plays a
determining role: it must place U

(`)
0 , ` ∈ [d], in the right basin of attraction, which, without

prior information, is only possible above the Θ(N
d−2

4 ) computational threshold.
Finally, we highlight the fact that these results concern the large N limit. In practice,

it makes no sense to talk about Θ(1) or Θ(N
d−2

4 ) regimes at finite N . Figure 2 also depicts
the subspace alignments achieved with the maximum likelihood estimator computed with
Algorithm 1 on T =

√
ωP◦ + 1√

N
N. Although ‖P◦‖F = √σN = Θ(N

d−2
4 ), HOOI does

not achieve perfect recovery of P as one might expect from Theorem 15 (even if several
iterations were performed here). In fact, at finite N , perfect recovery is not feasible. But,
as N grows, the dashed line would approach 1 above the (computational) phase transition
determined by the truncated MLSVD and stay close to 0 below.

5. Concluding Remarks

The analysis presented in this work yields theoretical and practical insights into the esti-
mation of a low-rank signal from an observation T = P + 1√

N
N following the most general

spiked tensor model. While Zhang and Xia (2018) gave a general overview of the differ-
ent regimes governing the estimation of P with a low-multilinear-rank approximation of
T — thereby confirming the existence of a computational-to-statistical gap —, our results
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shed light on the non-trivial aspects at stake around the Θ(N
d−2

4 ) computational thresh-
old. This is of particular importance as practical applications lie in this non-trivial regime
where signal and noise have the same magnitude and must be decoupled. In particular,
truncated MLSVD and HOOI are very standard and efficient algorithms to compute low-
multilinear-rank approximations. Performances of the latter rely strongly on the quality of
its initialization, which is usually performed with a truncated MLSVD in the absence of
prior information. This approach allows the detection of the underlying signal as early as
the computational threshold contrary to other methods such as AMP or tensor power iter-
ation, which are efficient above a Θ(N

d−1
2 ) algorithmic threshold (Montanari and Richard,

2014).
Relying on standard tools and methods from the theory of large random matrices, we

have characterized the spectral behavior of the unfoldings of T in the large N limit. Specifi-
cally, our first main result shows that, when properly centered and scaled, the eigenvalues of
T (`)T (`)> asymptotically follow a semicircle distribution. The rescaling exhibits their mean
µ

(`)
N = Θ(Nd−2) and a quantity σN = Θ(N

d−2
2 ) governing their spread. From our denois-

ing perspective, σN indicates the strength of the noise. Indeed, while the global behavior
of the eigenvalues is controlled by the noise, the addition of a low-rank signal causes the
presence of a finite number of eigenvalues outside the limiting semicircle distribution with
corresponding eigenvectors aligned with the singular subspaces of the sought signal P. Yet,
the existence of these outlier eigenvalues hinges on the values of the signal-to-noise ratios
ρ

(`)
q` = s2

q`
(P (`))/σN , manifesting a BBP phase transition phenomenon. When they exist,

the positions of these isolated eigenvalues and the quality of the corresponding alignments
are completely determined by ρ

(`)
q` . These results justify the use of a truncated MLSVD

to estimate P from the observation T and allow the precise characterization of the achiev-
able reconstruction performances in the non-trivial regime, i.e., close to the computational
threshold. In particular, we have seen that each singular value of P (`) determines the posi-
tion of a phase transition corresponding to the detectability of the corresponding principal
direction.

Although truncated MLSVD does not yield the best low-multilinear-rank approximation
— i.e., a maximum likelihood solution —, it serves as an excellent initialization for the HOOI
algorithm, which converges to such an estimator if it is initialized sufficiently close to it (Xu,
2018). In fact, we precise this last assertion by showing that, as long as the initialization
preserves the singular subspaces of P in a sense precised in Theorem 15, HOOI converges
to a maximum likelihood solution in a number of iterations which tends to 1 as N → +∞.
Hence, when it is initialized with a truncated MLSVD, it shares the same phase transition,
whose position depends on the singular values s(`)

q` (P (`)) of the unfoldings of P. Yet, given
prior information, HOOI can still reconstruct the maximum likelihood solution below the
computational threshold ‖P‖F = Θ(N

d−2
4 ), where its success depends entirely on the quality

of its initialization.
This work gives a comprehensive understanding of the low-multilinear-rank approxima-

tion problem near the computational threshold, which has both practical and theoretical
implications. Besides, from a theoretical perspective, the behavior of the maximum likeli-
hood estimator is still unclear near the statistical threshold — that is, in the regime where
‖P‖F = Θ(1). Several works have studied the rank-1 symmetric case (Ben Arous et al.,
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2019; Jagannath et al., 2020) and the approach developed by Seddik et al. (2022) in their
analysis of the rank-1 asymmetric case may be an attractive direction to consider. Relying
solely on classical tools from random matrix theory, they bring the study of the best rank-1
tensor approximation down to that of a structured matrix defined from the contractions of
the data tensor on its dominant singular vectors. Extending this procedure to our general
spiked tensor model (2) presents no conceptual difficulty, despite being computationally
cumbersome due to the multiple dimensions of the singular subspaces. It is an interesting
line of investigation to refine our understanding of the statistical limits to low-rank tensor
estimation from spiked models.
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Appendix A. More Random Matrix Tools

In this appendix we state a few useful results for our proofs in Appendices B and C. This
completes the basic tools given in Section 2.3. Let us also recall valuable references for the
interested reader: Bai and Silverstein (2010); Pastur and Shcherbina (2011); Tao (2012);
Potters and Bouchaud (2020); Couillet and Liao (2022).

A.1 Stieltjes Transforms

Following the definition of Stieltjes transform (Definition 2), we state a few of its properties.
They can be found in Pastur and Shcherbina (2011, Proposition 2.1.2).

Proposition 17 (Properties of Stieltjes transforms) Let m be the Stieltjes transform
of a real probability measure µ.

1. m is analytic on C \ R and m(z̄) = m(z);

2. if =z 6= 0 then =[m(z)]=z > 0;

3. for all z ∈ C \ R, |m(z)| 6 1/|=z|;

4. if µ has a density at x ∈ R then dµ
dx (x) = limy↓0=[m(x+ iy)].

Note that the resolvent QS(z) def= (S − zIn)−1 of a symmetric matrix S also satisfies
‖QS(z)‖ 6 1/|=z|.

In order to take into account the potential divergence of m(z) or ‖QS(z)‖ near the real
axis, we introduce the following notation.

Definition 18 We write un(z) = Oz(vn) whenever there exist two polynomials P,Q with
nonnegative coefficients and an integer n0 such that |un(z)| 6 P (|z|)

|=z|Q(|=z|) |vn| as soon as
n > n0.

In particular, m(z) = Oz(1) and ‖QS(z)‖ = Oz(1).
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A.2 Concentration Tools

In order to prove the concentration around its expectation of a scalar quantity, we will rely
on the two following lemmas.

Lemma 19 (Poincaré-Nash inequality) Let z ∼ N (0p, Ip) and f : Rp → C be a differ-
entiable function with polynomially bounded partial derivatives ∂1f, . . . , ∂pf . Then,

Var(f(z)) 6 E
[
‖∇f(z)‖2

]
where ∇ =

[
∂1 . . . ∂p

]>
.

Proof See Pastur and Shcherbina (2011, Proposition 2.1.6).

Lemma 20 Let (Xn)n>0 be a sequence of random variables on C. If E[Xn] → X̄ ∈ C as
n → +∞ and there exists an integer k > 1 such that

∑
n>0 E[|Xn − E[Xn]|k] < +∞, then

Xn → X̄ almost surely as n→ +∞.

Proof Let ε > 0. By Markov’s inequality (Billingsley, 2012, equation 5.31),

∑
n>0

P(|Xn − E[Xn]| > ε) 6 1
εκ

∑
n>0

E[|Xn − E[Xn]|κ] < +∞.

Thus, by the first Borel-Cantelli lemma19 (Billingsley, 2012, Theorem 4.3),

P
(

lim sup
n→+∞

|Xn − E[Xn]| > ε
)

= 0.

This implies the almost sure convergence of (Xn)n>0 to X̄:

P
(

lim sup
n→+∞

∣∣∣Xn − X̄
∣∣∣ > ε) 6 P

(
lim sup
n→+∞

[
|Xn − E[Xn]|+

∣∣∣E[Xn]− X̄
∣∣∣] > ε) = 0.

A.3 The Helffer-Sjöstrand Formula

A basic property of Stieltjes transforms is that, if f : R → R is a bounded continuous
function and m is the Stieltjes transform of a real probability measure, then

∫
fdµ =

limy↓0
1
π

∫
f(x)m(x + iy)dx. Yet, this formula is not always satisfying because m(x + iy)

may diverge as y ↓ 0. The following powerful result gives a more pleasing formula when f
is smooth and compactly supported.

19. Given a sequence of events (An)n>0 in a probability space (Ω,A,P), if
∑

n>0 P(An) converges then
P(lim supn>0 An) = 0.
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Proposition 21 (Helffer-Sjöstrand formula) Let µ be a probability measure on R and
m be its Stieltjes transform. Let f : R→ R be a compactly supported function which has a
continuous (k + 1)-th derivative (k > 1). We define Φk[f ], the quasi-analytic extension of
f on C+ def= {z ∈ C | =z > 0} as

Φk[f ](z) =
k∑
l=0

(i=z)l

l! f (l)(<z)χ(=z)

where χ : R → [0, 1] is an infinitely differentiable even function such that20 χ(y) = 0 if
|y| > 1 and χ(y) = 1 if |y| 6 δ for some δ ∈]0, 1[. Then,∫

R
f dµ = 2

π
<
∫
C+

∂Φk[f ]
∂z̄

(z)m(z) dz

where ∂

∂z̄
= 1

2

(
∂

∂<z
+ i ∂

∂=z

)
is the Wirtinger derivative.

Proof The support of Φk[f ] is compact therefore an integration by parts gives

2
π
<
∫
C+

∂Φk[f ]
∂z̄

(z)m(z) dz

= 2
π
<
[1

2

∫ +∞

0

(∫ +∞

−∞

∂Φk[f ]
∂x

(x+ iy)m(x+ iy) dx
)

dy

+ i
2

∫ +∞

−∞

(∫ +∞

0

∂Φk[f ]
∂y

(x+ iy)m(x+ iy) dy
)

dx
]

= 2
π
<
[−i

2

∫
R

lim
y↓0
{Φk[f ](x+ iy)m(x+ iy)} dx−

∫
C+

Φk[f ](z)∂m
∂z̄

(z) dz
]
.

Since m is an analytic function, the Cauchy-Riemann equations give ∂m/∂z̄ = 0 and the
second integral of the right-hand side is zero. Then, as the limit of a product is the product
of the limits and limy↓0 Φ[f ](x+ iy) = f(x), we have

2
π
<
∫
C+

∂Φk[f ]
∂z̄

(z)m(z) dz = <
[−i
π

∫
R
f(x)

(
lim
y↓0

m(x+ iy)
)

dx
]
.

Finally, observing that <[−iz] = =z and dx
π limy↓0=[m(x + iy)] = dµ(x) (Proposition 17)

concludes the proof.

Since χ is constant on ]0, δ], 0 < =z 6 δ =⇒ ∂Φk[f ]
∂z̄ (z) = 1

2
(i=z)k
k! f (k+1)(<z). The

greater k, the faster the convergence to zero of ∂Φk[f ]
∂z̄ as =z ↓ 0. This is particularly

useful to evaluate quantities such as
∫
fdµ1−

∫
fdµ2 from the knowledge that the Stieltjes

transforms m1,m2 of µ1, µ2 (respectively) satisfy |m1(z)−m2(z)| = O(|=z|−k) as =z ↓ 0:∫
f dµ1 −

∫
f dµ2 = 2

π
<
∫
C+

∂Φk[f ]
∂z̄

(z)(m1(z)−m2(z))︸ ︷︷ ︸
=O(1) as =z↓0

dz.

20. An example of such function is χ : y 7→ g
( 1+y

1−δ

)
g
( 1−y

1−δ

)
with g(u) = f(u)

f(u)+f(1−u) and f(u) ={
exp(−1/u) if u > 0
0 if u 6 0 .
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The smoothness of f compensates for the divergence of m1(z)−m2(z) near the real axis.
The next lemma is a handy result to evaluate some integrals which appear after using

the Helffer-Sjöstrand formula.

Lemma 22 Let K be a compact subset of R and h be an analytic function on C \ K such
that

1. lim|z|→+∞ h(z) = 0,

2. h(z̄) = h(z) for all z ∈ C \ K,

3. there exist an integer n0 > 1 and a constant CK > 0 such that

|h(z)| 6 CKmax(Dist(z,K)−n0 , 1) for all z ∈ C \ K.

Then, limy↓0
1
π

∫
R=[h(x+ iy)] dx = limy→+∞−iyh(iy).

Proof According to Theorem 5.4 of Schultz (2005) (see also Capitaine et al., 2009, Theo-
rem 4.3; Loubaton, 2016, Lemma 9.1), h is the Stieltjes transform of a compactly-supported
Schwartz distribution (Rudin, 1991, Chapter 6) and therefore satisfies the stated result.

Appendix B. Proof of Theorem 5

The resolvent of T (`)T (`)> is defined for all z ∈ C \ Sp T (`)T (`)> as

Q(`)(z) def=
(
T (`)T (`)> − zIn`

)−1
.

We will often drop the dependence in z to simplify notations.
Since Q(`)−1Q(`) = In` and T (`) = P (`) + 1√

N
N (`), we have,

P (`)T (`)>Q(`) + 1√
N

N (`)T (`)>Q(`) − zQ(`) = In` . (9)

B.1 Expressions with Stein’s Lemma

Using Stein’s lemma (Lemma 4), we find the following expressions.

E
[
P (`)T (`)>Q(`)

]
= E

[
P (`)P (`)>Q(`)

]
− 1
N

E
[
P (`)T (`)>Q(`) Tr Q(`) + P (`)T (`)>Q(`)2

]
,

(10)

E
[
N (`)T (`)>Q(`)

]
=
∏
`′ 6=` n`′√
N

E
[
Q(`)

]
− 1√

N
E
[
(n` + 1)Q(`) + z

(
Q(`)2 + Q(`) Tr Q(`)

)]
.

(11)
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Derivatives of Q(`) Firstly, we need to show that

∂Q
(`)
a,b

∂N
(`)
c,d

= − 1√
N

(
Q(`)
a,c

[
T (`)>Q(`)

]
d,b

+
[
Q(`)T (`)

]
a,d
Q

(`)
c,b

)
. (12)

Indeed, using the fact that ∂Q(`) = −Q(`)∂(T (`)T (`)>)Q(`), we have,

∂Q
(`)
a,b

∂N
(`)
c,d

= −

Q(`) ∂T (`)

∂N
(`)
c,d

T (`)>Q(`)


a,b

−

Q(`)T (`)∂T (`)>

∂N
(`)
c,d

Q(`)


a,b

and, since T (`) = P (`) + 1√
N

N (`),

Q(`) ∂T (`)

∂N
(`)
c,d

T (`)>Q(`)


a,b

= 1√
N
Q(`)
a,c

[
T (`)>Q(`)

]
d,b
,

Q(`)T (`)∂T (`)>

∂N
(`)
c,d

Q(`)


a,b

= 1√
N

[
Q(`)T (`)

]
a,d
Q

(`)
c,b.

Proof of Equation (10) Since T (`) = P (`) + 1√
N

N (`), we have,

E[P (`)T (`)>Q(`)] = E[P (`)P (`)>Q(`)] + 1√
N

E[P (`)N (`)>Q(`)].

To deal with the rightmost term, we successively use Stein’s lemma (Lemma 4) and Equation
(12).

E
[
P (`)N (`)>Q(`)

]
i,j

=

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
P

(`)
i,kN

(`)
l,kQ

(`)
l,j

]

=

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E

P (`)
i,k

∂Q
(`)
l,j

∂N
(`)
l,k


= − 1√

N

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
P

(`)
i,kQ

(`)
l,l

[
T (`)>Q(`)

]
k,j

]

− 1√
N

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
P

(`)
i,k

[
Q(`)T (`)

]
l,k
Q

(`)
l,j

]
= − 1√

N
E
[
P (`)T (`)>Q(`) Tr Q(`) + P (`)T (`)>Q(`)2

]
i,j
.
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Proof of Equation (11) We proceed similarly with Stein’s lemma (Lemma 4) and Equa-
tion (12).

E
[
N (`)T (`)>Q(`)

]
i,j

=

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
N

(`)
i,k T

(`)
l,k Q

(`)
l,j

]

=

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E

 ∂T (`)
l,k

∂N
(`)
i,k

Q
(`)
l,j + T

(`)
l,k

∂Q
(`)
l,j

∂N
(`)
i,k


=
∏
`′ 6=` n`′√
N

E
[
Q(`)

]
i,j
− 1√

N

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
T

(`)
l,k Q

(`)
l,i

[
T (`)>Q(`)

]
k,j

]

− 1√
N

∏
`′ 6=` n`′∑
k=1

n∑̀
l=1

E
[
T

(`)
l,k

[
Q(`)T (`)

]
l,k
Q

(`)
i,j

]

=
∏
`′ 6=` n`′√
N

E
[
Q(`)

]
i,j
− 1√

N
E
[
Q(`)T (`)T (`)>Q(`) + Q(`) Tr T (`)T (`)>Q(`)

]
i,j
.

Since T (`)T (`)>Q(`) − zQ(`) = In` , we find the result stated in Equation (11).

B.2 Asymptotic Behavior of the Resolvent

Taking the expectation of Equation (9) and injecting Equation (11) yields

E
[
P (`)T (`)>Q(`)

]
+
∏
`′ 6=` n`′

N
E
[
Q(`)

]
− 1
N

E
[
(n` + 1)Q(`) + z

(
Q(`)2 + Q(`) Tr Q(`)

)]
− zE

[
Q(`)

]
= In` .

We rearrange this expression into the more convenient following form,

z
n`
N

E
[
Q(`) Tr Q(`)

n`

]
+
(
z +

n` −
∏
`′ 6=` n`′

N

)
E
[
Q(`)

]
+ In`

= − 1
N

E
[
Q(`) + zQ(`)2

]
+ E

[
P (`)T (`)>Q(`)

]
.

Here, the divergence of the spectrum of T (`)T (`)> becomes problematic: its resolvent Q(`)

vanishes asymptotically, allowing the presence of the diverging coefficient 1
N

∏
`′ 6=` n`′ in the

previous equation. To bypass this difficulty, we proceed to a rescaling,

z̃
def= z − µ(`)

N

σN
, Q̃(`)(z̃) def=

(
T (`)T (`)> − µ(`)

N In`
σN

− z̃In`

)−1

= σNQ(`)(z),

with µ
(`)
N = 1

N

∏
`′ 6=`

n`′ , σN = 1
N

√∏
`∈[d]

n`.
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This changes our equation into

µ
(`)
N + σN z̃

σ2
N

n`
N

E
[
Q̃(`) Tr Q̃(`)

n`

]
+
(
µ

(`)
N

σN
+ z̃ +

n` −
∏
`′ 6=` n`′

σNN

)
E
[
Q̃(`)

]
+ In`

= − 1
σNN

E
[
Q̃(`) +

(
µ

(`)
N

σN
+ z̃

)
Q̃(`)2

]
+ 1
σN

E
[
P (`)T (`)>Q̃(`)

]
.

Let us define m̃(`)
N : z̃ 7→ 1

n`
Tr Q̃(`)(z̃), the Stieltjes transform of the empirical spectral distri-

bution of 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
. With this definition, and using the fact that µ

(`)
N

σ2
N

n`
N = 1,

we can rewrite the previous relation as

E
[
m̃

(`)
N (z̃)Q̃(`)

]
+ z̃E

[
Q̃(`)

]
+ In` −

1
σN

E
[
P (`)T (`)>Q̃(`)

]
= − 1

σN

n`
N

E
[(
z̃m̃

(`)
N (z̃) + 1

)
Q̃(`)

]
− 1
N

(
µ

(`)
N

σ2
N

+ z̃

σN

)
E
[
Q̃(`)2

]
− 1
σN

1
N

E
[
Q̃(`)

]
(13)

where we have kept only the non-vanishing terms on the left-hand side.

B.3 Concentration of Bilinear Forms and Traces

B.3.1 Overview

Let us show that E[Q̃(`)] is a deterministic equivalent of Q̃(`) (Definition 3). That is, for all
bounded (sequences of) vectors a, b ∈ Rn` and matrices A ∈ Rn`×n` ,

a>
(
Q̃(`) − E

[
Q̃(`)

])
b

a.s.−−−−−→
N→+∞

0 and 1
n`

Tr A
(
Q̃(`) − E

[
Q̃(`)

]) a.s.−−−−−→
N→+∞

0.

This result is derived with the Poincaré-Nash inequality (Lemma 19) and Lemma 20. Indeed,
relying on Lemma 19 and Equation (12), we find below that

E
[∣∣∣Tr A

(
Q̃(`)(z̃)− E

[
Q̃(`)(z̃)

])∣∣∣2] = Oz̃(N−2),

E
[∣∣∣a>(Q̃(`)(z̃)− E

[
Q̃(`)(z̃)

])
b
∣∣∣4] = Oz̃(N−2)

for all deterministic matrix A ∈ Rn`×n` and vectors a, b ∈ Rn` of bounded norms (spectral
and Euclidean norms respectively). By Lemma 20, this implies that

Tr A
(
Q̃(`)(z̃)− E

[
Q̃(`)(z̃)

]) a.s.−−−−−→
N→+∞

0 and a>
(
Q̃(`)(z̃)− E

[
Q̃(`)(z̃)

])
b

a.s.−−−−−→
N→+∞

0.

Hence, E[Q̃(`)(z̃)] is a deterministic equivalent of Q̃(`)(z̃) according to Definition 3.
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B.3.2 Proof of the Concentration

Concentration of Traces Let A ∈ Rn`×n` be a deterministic matrix with bounded
norm. The Poincaré-Nash inequality (Lemma 19) yields

E
[( 1

n`
Tr A

(
Q̃(`) − E

[
Q̃(`)

]))2
]

= Var
( 1
n`

Tr AQ̃(`)
)

6
1
n2
`

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∂ Tr AQ̃(`)

∂N
(`)
i,j

2
.

With Equation (12), we have,

∂ Tr AQ̃(`)

∂N
(`)
i,j

=
n∑̀
k=1

n∑̀
l=1

Ak,l
∂Q̃

(`)
l,k

∂N
(`)
i,j

= − 1
σN
√
N

n∑̀
k=1

n∑̀
l=1

Ak,l
[
Q̃

(`)
l,i [T (`)>Q̃(`)]j,k + [Q̃(`)T (`)]l,jQ̃

(`)
i,k

]
= − 1

σN
√
N

[
Q̃(`)A>Q̃(`)T (`) + Q̃(`)AQ̃(`)T (`)

]
i,j
.

Thus, using the fact that (a+ b)2 6 2(a2 + b2), we have,

1
n2
`

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∂ Tr AQ̃(`)

∂N
(`)
i,j

2


6
2

σ2
NNn

2
`

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E
[
[Q̃(`)A>Q̃(`)T (`)]2i,j + [Q̃(`)AQ̃(`)T (`)]2i,j

]
= 2
σ2
NNn

2
`

E
[∥∥∥Q̃(`)A>Q̃(`)T (`)

∥∥∥2

F
+
∥∥∥Q̃(`)AQ̃(`)T (`)

∥∥∥2

F

]
6

4
σ2
NNn

2
`

‖A‖2FE
[∥∥∥Q̃(`)

∥∥∥4∥∥∥T (`)
∥∥∥2
]

where the last inequality is obtained using the property ‖AB‖F 6 ‖A‖‖B‖F and the
sub-multiplicative property ‖AB‖ 6 ‖A‖‖B‖. Since ‖A‖2F 6 n`‖A‖2 = O(N) (because
n` = Θ(N) and ‖A‖ is bounded), ‖Q̃(`)‖ = Oz̃(1) and 1

σ2
N
‖T (`)‖2 = O(1), we find that

Var( 1
n`

Tr AQ̃(`)) = Oz̃(N−2); Q.E.D.

Concentration of Bilinear Forms Let a, b ∈ Rn` be two deterministic vectors with
bounded norms. The Poincaré-Nash inequality (Lemma 19) yields

E
[(

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2
]

= Var
(
a>Q̃(`)b

)
6

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∂a>Q̃(`)b

∂N
(`)
i,j

2
.
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With Equation (12), we have,

∂a>Q̃(`)b

∂N
(`)
i,j

=
n∑̀
k=1

n∑̀
l=1

ak
∂Q̃

(`)
k,l

∂N
(`)
i,j

bl

= − 1
σN
√
N

n∑̀
k=1

n∑̀
l=1

ak
[
Q̃

(`)
k,i[T

(`)>Q̃(`)]j,l + [Q̃(`)T (`)]k,jQ̃
(`)
i,l

]
bl

= − 1
σN
√
N

[
Q̃(`)ab>Q̃(`)T (`) + Q̃(`)ba>Q̃(`)T (`)

]
i,j
.

Thus, using the fact that (a+ b)2 6 2(a2 + b2), we have,

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∂a>Q̃(`)b

∂N
(`)
i,j

2


6
2

σ2
NN

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E
[
[Q̃(`)ab>Q̃(`)T (`)]2i,j + [Q̃(`)ba>Q̃(`)T (`)]2i,j

]
= 2
σ2
NN

E
[∥∥∥Q̃(`)ab>Q̃(`)T (`)

∥∥∥2

F
+
∥∥∥Q̃(`)ba>Q̃(`)T (`)

∥∥∥2

F

]
6

2
σ2
NN
‖a‖2‖b‖2E

[∥∥∥Q̃(`)
∥∥∥2∥∥∥T (`)

∥∥∥2
]

= Oz̃(N−1)

where the last line is obtained similarly to the previous case. Hence, Var(a>Q̃(`)b) =
Oz̃(N−1), which is not enough to apply Lemma 20. We must therefore evaluate the moment
of order 4,

E
[(

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)4
]

= Var
((

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2
)

+ E
[(

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2
]2
.

Since we already known that the rightmost term is O(N−2), we use the Poincaré-Nash
inequality (Lemma 19) on the variance of (a>(Q̃(`) − E[Q̃(`)])b)2,

Var
((

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2
)

6
∑
i,j

E


a>

∂

∂N
(`)
i,j

[
Q̃(`)ba>Q̃(`) − Q̃(`)ba>E

[
Q̃(`)

]
− E

[
Q̃(`)

]
ba>Q̃(`)

]
b

2
.
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Similarly, injecting the expression of ∂Q̃(`)/∂N
(`)
i,j , straightforward computations yield

Var
((

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2
)

6
∑
i,j

E
[(
− 2
σN
√
N

(
a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)[

Q̃(`)
(
ab> + ba>

)
Q̃(`)T (`)

]
i,j

)2
]

6
8

σ2
NN

∑
i,j

E
[(

a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2(

[Q̃(`)ab>Q̃(`)T (`)]2i,j + [Q̃(`)ba>Q̃(`)T (`)]2i,j
)]

6
16
σ2
NN
‖a‖2‖b‖2E

[(
a>
(
Q̃(`) − E

[
Q̃(`)

])
b
)2∥∥∥Q̃(`)

∥∥∥4∥∥∥T (`)
∥∥∥2
]
.

Since we have shown that E[(a>(Q̃(`) − E[Q̃(`)])b)2] = Oz̃(N−1), we have Var((a>(Q̃(`) −
E[Q̃(`)])b)2) = Oz̃(N−2); Q.E.D.

B.4 Expansion of the Mean Empirical Stieltjes Transform

Let Q̃
(`)
0 denote the resolvent of 1

σN

[
1
NN (`)N (`)> − µ(`)

N In`

]
. Using the resolvent identity

A−1 −B−1 = A−1(B −A)B−1, we can see that 1
n`

Tr(Q̃(`)
0 − Q̃(`)) = Oz̃(N−1) therefore

the low-rank perturbation P (`) does not change the limiting spectral distribution and we
can consider P (`) = 0n`×

∏
`′ 6=` n`′

from now on.

Applying 1
n`

Tr to Equation (13) and using the fact that 1
n`

Tr Q̃(`)2 = m̃
(`)′
N as well as

E[m̃(`)2
N (z̃)] = E[m̃(`)

N (z̃)]2 + Var(m̃(`)
N (z̃)) with Var(m̃(`)

N (z̃)) = Oz̃(N−2), we find

E
[
m̃

(`)
N (z̃)

]2
+ z̃E

[
m̃

(`)
N (z̃)

]
+ 1

= − 1
σN

n`
N

E
[
z̃m̃

(`)2
N (z̃) + m̃

(`)
N (z̃)

]
− 1
N

µ
(`)
N

σ2
N

E
[
m̃

(`)′
N (z̃)

]
+Oz̃(N−min( d2 ,2)) (14)

where the Oz̃(N−min( d2 ,2)) stems from σN = Θ(N
d−2

2 ). We know that the Stieltjes transform
mSC of the Wigner semicircle distribution on [−2, 2] satisfies m2

SC(z̃) + z̃mSC(z̃) + 1 = 0
for all z̃ ∈ C \ [−2, 2] (see, e.g., Pastur and Shcherbina, 2011, Corollary 2.2.8). Let us
subtract this relation to Equation (14) and factorize by E[m̃(`)

N (z̃)] − mSC(z̃) using the
relation a2 − b2 = (a− b)(a+ b).

(
E
[
m̃

(`)
N (z̃)

]
−mSC(z̃)

)(
E
[
m̃

(`)
N (z̃)

]
+mSC(z̃) + z̃

)
= − 1

σN

n`
N

E
[
z̃m̃

(`)2
N (z̃) + m̃

(`)
N (z̃)

]
− 1
N

µ
(`)
N

σ2
N

E
[
m̃

(`)′
N (z̃)

]
+Oz̃(N−min( d2 ,2)).
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Let g(`)
N : z̃ 7→ −1

z̃+mSC(z̃)+E[m̃(`)
N (z̃)]

. Since, mSC and E[m̃(`)
N ] are Stieltjes transforms21, we

have |g(`)
N (z̃)| 6 |=[z̃ +mSC(z̃) + E[m̃(`)

N (z̃)]]|−1 6 |=z̃|−1 therefore

E
[
m̃

(`)
N (z̃)

]
−mSC(z̃)

= g
(`)
N (z̃)

[
1
σN

n`
N

E
[
z̃m̃

(`)2
N (z̃) + m̃

(`)
N (z̃)

]
+ 1
N

µ
(`)
N

σ2
N

E
[
m̃

(`)′
N (z̃)

]]
+Oz̃(N−min( d2 ,2)) (15)

= g
(`)
N (z̃) 1

σN

n`
N

E
[
z̃m̃

(`)2
N (z̃) + m̃

(`)
N (z̃)

]
+Oz̃(N−1) (16)

= Oz̃(N−min( d−2
2 ,1)). (17)

Notice that the dominant term in the difference E[m̃(`)
N (z̃)] −mSC(z̃) differs depending on

whether d = 3, d = 4 or d > 5 because σN = Θ(N
d−2

2 ). The higher d, the faster the
convergence of the empirical spectral distribution to the semicircle distribution. Indeed,
at this point, Equation (17) already shows the pointwise convergence of E[m̃(`)

N (z̃)] to mSC
and therefore the weak convergence of the corresponding distributions (Geronimo and Hill,
2003). Yet, in order to show the confinement of the spectrum below, we need an explicit
expansion of E[m̃(`)

N (z̃)] with all the terms not dominated by N−1, which we state in the
following lemma.

Lemma 23 E[m̃(`)
N (z̃)] = mSC(z̃) + h

(`)
N (z̃) +Oz̃(N−min( d2 ,2)) with

h
(`)
N (z̃) = τ

(`)
N (z̃)

(
1
σN

n`
N

(
z̃t

(`)2
N (z̃) + t

(`)
N (z̃)

)
− 1
N

µ
(`)
N

σ2
N

mSC(z̃)
z̃ + 2mSC(z̃)

)

where τ
(`)
N (z̃) = −1

z̃ + 2mSC(z̃)

(
1 + 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)

(z̃ + 2mSC(z̃))2

)

and t
(`)
N (z̃) = mSC(z̃)− 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)
z̃ + 2mSC(z̃) .

Proof Firstly, with the Poincaré-Nash inequality (Lemma 19), we can show that

Var(m̃(`)′
N (z̃)) 6

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∣∣∣∣∣∣ 1
n`

∂ Tr Q̃(`)2

∂N
(`)
i,j

∣∣∣∣∣∣
2
 6 16E

[∥∥∥Q̃(`)
∥∥∥6∥∥∥N (`)

∥∥∥2
]

n`σ
2
NN

2 = Oz̃(N−2).

Taking 1
n`

Tr of Equation (13) with P (`) = 0n`×
∏
`′ 6=` n`′

and differentiating with respect
to the complex variable z̃ under E (which is possible because the integrand can be upper

21. m̃(`)
N is obviously a Stieltjes transform and it can be shown that its expectation is also a Stieltjes transform

with Herglotz theorem (Weidmann, 1980, Theorem B3).
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bounded on every compact subset of C \ R), we find

E
[(

2m̃(`)
N (z̃) + z̃

)
m̃

(`)′
N (z̃) + m̃

(`)
N (z̃)

]
= E

[
− 1
σN

n`
N

(
m̃

(`)2
N (z̃) + 2z̃m̃(`)

N (z̃)m̃(`)′
N (z̃) + m̃

(`)′
N (z̃)

)
− 1
N

(
µ

(`)
N

σ2
N

+ z̃

σN

)
m̃

(`)′′
N (z̃)− 2m̃(`)′(z̃)

σNN

]
. (18)

Then, since Var m̃(`)
N (z̃) = Oz̃(N−2) and Var m̃(`)′

N (z̃) = Oz̃(N−2), we have E[m̃(`)2
N (z̃)] =

E[m̃(`)
N (z̃)]2 + Oz̃(N−2) and E[m̃(`)

N (z̃)m̃(`)′
N (z̃)] = E[m̃(`)

N (z̃)]E[m̃(`)′
N (z̃)] + Oz̃(N−2) (using

the Cauchy-Schwarz inequality to upper bound the covariance). And, with the fact that
E[m̃(`)

N (z̃)] = mSC(z̃) + Oz̃(N−min( d−2
2 ,1)) (Equation (17)), we obtain from Equation (18)

that

E
[
m̃

(`)′
N (z̃)

]
= −mSC(z̃)
z̃ + 2mSC(z̃) +Oz̃(N−min( d−2

2 ,1))

since |z̃ + 2mSC(z̃)|−1 6 |z̃|−1 6 |=z̃|−1. Moreover, using Equation (17) in Equation (16),
we find

E
[
m̃

(`)
N (z̃)

]
= mSC(z̃) + g

(`)
N (z̃) 1

σN

n`
N

(
z̃m2

SC(z̃) +mSC(z̃)
)

+Oz̃(N−1). (19)

We can now inject the last two relations into Equation (15):

E
[
m̃

(`)
N (z̃)

]
= mSC(z̃) + g

(`)
N (z̃) z̃

σN

n`
N

(
mSC(z̃) + g

(`)
N (z̃) 1

σN

n`
N

(
z̃m2

SC(z̃) +mSC(z̃)
))2

+ g
(`)
N (z̃) 1

σN

n`
N

(
mSC(z̃) + g

(`)
N (z̃) 1

σN

n`
N

(
z̃m2

SC(z̃) +mSC(z̃)
))

− g(`)
N (z̃) 1

N

µ
(`)
N

σ2
N

mSC(z̃)
z̃ + 2mSC(z̃) +Oz̃(N−min( d2 ,2)). (20)

We only need to handle the asymptotic behavior of g(`)
N (z̃) to conclude the proof. With

Equation (17) and the fact that |z̃ + 2mSC(z̃)|−1 6 |=z̃|−1, we have g(`)
N (z̃) = −1

z̃+2mSC(z̃) +
Oz̃(N−min( d−2

2 ,1)). We can then use this relation in Equation (19):

E
[
m̃

(`)
N (z̃)

]
−mSC(z̃) = − 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)
z̃ + 2mSC(z̃) +Oz̃(N−1).
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Therefore, we have

g
(`)
N (z̃) = −1

z̃ +mSC(z̃) + E
[
m̃

(`)
N (z̃)

]
= −1
z̃ + 2mSC(z̃)

1 +
E
[
m̃

(`)
N (z̃)

]
−mSC(z̃)

z̃ + 2mSC(z̃)

−1

= −1
z̃ + 2mSC(z̃)

1−
E
[
m̃

(`)
N (z̃)

]
−mSC(z̃)

z̃ + 2mSC(z̃) +Oz̃(N−min(d−2,2))


= −1
z̃ + 2mSC(z̃)

(
1 + 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)

(z̃ + 2mSC(z̃))2

)
+Oz̃(N−1).

Eventually, Equation (20) becomes

E
[
m̃

(`)
N (z̃)

]
= mSC(z̃) + τ

(`)
N (z̃) z̃

σN

n`
N

(
mSC(z̃)− 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)
z̃ + 2mSC(z̃)

)2

+ τ
(`)
N (z̃) 1

σN

n`
N

(
mSC(z̃)− 1

σN

n`
N

z̃m2
SC(z̃) +mSC(z̃)
z̃ + 2mSC(z̃)

)

− τ (`)
N (z̃) 1

N

µ
(`)
N

σ2
N

mSC(z̃)
z̃ + 2mSC(z̃) +Oz̃(N−min( d2 ,2)).

with τ (`)
N : z̃ 7→ −1

z̃+2mSC(z̃)

(
1 + 1

σN
n`
N

z̃m2
SC(z̃)+mSC(z̃)

(z̃+2mSC(z̃))2

)
.

B.5 Confinement of the Spectrum

We have just found, in Lemma 23, the following expansion: E[m̃(`)
N (z̃)] = mSC(z̃)+h

(`)
N (z̃)+

Oz̃(N−min( d2 ,2)). Note that this shows that the limiting spectral distribution of
1
σN

[
1
NN (`)N (`)> − µ(`)

N In`

]
(and therefore that of 1

σN

[
T (`)T (`)> − µ(`)

N In`

]
) is the semicir-

cle distribution on [−2, 2]. We will now use this expansion to prove that, almost surely, no
eigenvalue of 1

σN

[
1
NN (`)N (`)> − µ(`)

N In`

]
stays outside [−2, 2] as N → +∞. That is, for all

ε > 0, there exists an integer N0 such that, for all λ ∈ Sp
(

1
σN

[
1
NN (`)N (`)> − µ(`)

N In`

])
,

Dist(λ,SuppµMP) 6 ε as soon as N > N0.
Let ε > 0, ϕ : R 7→ [0, 1] be an infinitely differentiable function which equals 1 on [−2, 2]

and 0 on R \ [−2− ε, 2 + ε] and ψ = 1− ϕ. We want to show that

Tr
(
ψ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

]))
→ 0 almost surely as N → +∞.
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First of all, we show the convergence in mean with the Helffer-Sjöstrand formula (Propo-
sition 21).

E
[ 1
n`

Tr
(
ϕ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

]))]
= 2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)E
[
m̃

(`)
N (z̃)

]
dz̃

= 2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)mSC(z̃) dz̃ + 2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)h(`)
N (z̃) dz̃

+ 2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)×Oz̃(N−min( d2 ,2)) dz̃.

where we have used the expression of E[m̃(`)
N (z̃)] given by Lemma 23. The first integral is∫

R ϕ dµSC = 1 while the last one is O(N−min( d2 ,2)) with q chosen sufficiently large so that
∂Φq [ϕ]
∂ ¯̃z (z̃) cancels the divergence of Oz̃(N−min( d2 ,2)) near the real axis. In order to evaluate

the second integral, we perform an integration by parts:

2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)h(`)
N (z̃) dz̃

= 2
π
<
[1

2

∫ +∞

0

(∫ +∞

−∞

∂Φq[ϕ]
∂x

(x+ iy)h(`)
N (x+ iy) dx

)
dy

+ i
2

∫ +∞

−∞

(∫ +∞

0

∂Φq[ϕ]
∂y

(x+ iy)h(`)
N (x+ iy) dy

)
dx
]

= 2
π
<
[−i

2

∫
R

lim
y↓0

{
Φq[ϕ](x+ iy)h(`)

N (x+ iy)
}

dx−
∫
C+

Φq[ϕ](z̃)∂h
∂ ¯̃z

(z̃) dz̃
]
.

Since h(`)
N is an analytic function (as sums and products of Stieltjes transforms), we have

∂h/∂ ¯̃z = 0 by the Cauchy-Riemann equations. Moreover, we have limy↓0 Φq[ϕ](x + iy) =
ϕ(x) and, from the definition of h(`)

N , limy↓0=[h(`)
N (x + iy)] = 0 for all x ∈ R \ [−2, 2].

Therefore,
2
π
<
∫
C+

∂Φq[ϕ]
∂ ¯̃z

(z̃)h(`)
N (z̃) dz̃ = lim

y↓0

1
π

∫ 2

−2
=[h(`)

N (x+ iy)] dx.

We use Lemma 22 to show that this integral equals limy→+∞−iyh(`)
N (iy) = 0. The function

h
(`)
N is analytic on C \ [−2, 2], lim|z̃|→+∞ h(z̃) = 0 and h(`)

N (¯̃z) = h(z̃) for all z̃ ∈ C \ [−2, 2].
Thus, we just need to show that there exist an integer n0 and a constant C > 0 such that
|h(`)
N (z̃)| 6 C max(Dist(z̃, [−2, 2])−n0 , 1) for all z̃ ∈ C \ [−2, 2]. Firstly, we find an upper

bound for t(`)N (z̃). Since z̃ 7→ −1
z̃+2mSC(z̃) is the Stieltjes transform of a probability measure

on [−2, 2] and −(z̃mSC(z̃) + 1) = m2
SC(z̃), we have∣∣∣t(`)N (z̃)

∣∣∣ = |mSC(z̃)|
∣∣∣∣1− 1

σN

n`
N

z̃mSC(z̃) + 1
z̃ + 2mSC(z̃)

∣∣∣∣
6

1
Dist(z̃, [−2, 2])

(
1 + 1

σN

n`
N

1
Dist(z̃, [−2, 2])3

)
6
(

1 + 1
σN

n`
N

)
max(Dist(z̃, [−2, 2])−4, 1).
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Moreover, since |z̃| 6 Dist(z̃, [−2, 2]) + 2, we also have

∣∣∣z̃t(`)N (z̃)
∣∣∣ 6 (1 + 2

Dist(z̃, [−2, 2])

)(
1 + 1

σN

n`
N

1
Dist(z̃, [−2, 2])3

)
6 3

(
1 + 1

σN

n`
N

)
max(Dist(z̃, [−2, 2])−4, 1).

Similarly,

∣∣∣τ (`)
N (z̃)

∣∣∣ =
∣∣∣∣ −1
z̃ + 2mSC(z̃)

∣∣∣∣
∣∣∣∣∣1 + 1

σN

n`
N

mSC(z̃)(z̃mSC(z̃) + 1)
(z̃ + 2mSC(z̃))2

∣∣∣∣∣
6
(

1 + 1
σN

n`
N

)
max(Dist(z̃, [−2, 2])−6, 1).

Hence, we can upper bound |h(`)
N (z̃)|:

∣∣∣h(`)
N (z̃)

∣∣∣ 6 ∣∣∣τ (`)
N (z̃)

∣∣∣( 1
σN

n`
N

∣∣∣t(`)N (z̃)
∣∣∣(∣∣∣z̃t(`)N (z̃)

∣∣∣+ 1
)

+ 1
N

µ
(`)
N

σ2
N

∣∣∣∣ mSC(z̃)
z̃ + 2mSC(z̃)

∣∣∣∣
)

6
(

1 + 1
σN

n`
N

)[ 1
σN

n`
N

(
1 + 1

σN

n`
N

)[
3
(

1 + 1
σN

n`
N

)
+ 1

]
+ 1
N

µ
(`)
N

σ2
N

]
×max(Dist(z̃, [−2, 2])−14, 1).

Therefore we can conclude that 2
π<

∫
C+

∂Φq [ϕ]
∂ ¯̃z (z̃)h(`)

N (z̃) dz̃ = 0 (Lemma 22) and

E
[ 1
n`

Tr
(
ϕ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

]))]
= 1 +O(N−min( d2 ,2)),

i.e., E
[
Tr
(
ψ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

]))]
= O(N−min( d−2

2 ,1)).

Secondly, we prove the almost sure convergence of Tr
(
ψ
(

1
σN

[
1
NN (`)N (`)> − µ(`)

N In`

]))
to 0 by showing that its variance is O(N−min( d2 ,2)) (and Lemma 20 implies the result). With
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the Poincaré-Nash inequality (Lemma 19), we have

Var
(

Tr
(
ψ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])))
= Var

(
Tr
(
ϕ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])))

6
n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∣∣∣∣∣∣
∂ Tr

(
ϕ
(

1
σN

[
1
NN (`)N (`)> − µ(`)

N In`

]))
∂N

(`)
i,j

∣∣∣∣∣∣
2

=
n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E


∣∣∣∣∣∣Tr

ϕ′( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])
∂

∂N
(`)
i,j

[ 1
σN

1
N

N (`)N (`)>
]∣∣∣∣∣∣

2


= 1
σ2
N

1
N2

n∑̀
i=1

∏
`′ 6=` n`′∑
j=1

E

∣∣∣∣∣
[
2ϕ′
( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])
N (`)

]
i,j

∣∣∣∣∣
2


= 1
σN

4
N

E
[
Tru

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])]

+ 4
N

µ
(`)
N

σ2
N

E
[
Trϕ′2

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])]

where u : x 7→ xϕ′2(x) and ϕ′2 are infinitely differentiable functions with compact support
which equal 0 on [−2, 2]. Hence, applying similarly the Helffer-Sjöstrand formula (Proposi-
tion 21), we find

1
σN

4
N

E
[
Tru

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])]
= 4
σN

n`
N

2
π
<
∫
C+

∂Φq[u]
∂ ¯̃z

(z̃)E
[
m̃

(`)
N (z̃)

]
dz̃

= O(N−min(d−1, d+2
2 ))

and

4
N

µ
(`)
N

σ2
N

E
[
Trϕ′2

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])]

= 4n`
N

µ
(`)
N

σ2
N

2
π
<
∫
C+

∂Φq[ϕ′]
∂ ¯̃z

(z̃)E
[
m̃

(`)
N (z̃)

]
dz̃ = O(N−min( d2 ,2))

for q chosen sufficiently large. Thus,

Var
(

Tr
(
ψ

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

])))
= O(N−min( d2 ,2))

and we can conclude on the almost sure convergence with Lemma 20.
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B.6 Deterministic Equivalent

With the rescaling (z,Q(`)(z)) y (z̃, Q̃(`)(z̃)), Equation (10) becomes

1
σN

E
[
P (`)T (`)>Q̃(`)

]
= 1
σN

E
[
P (`)P (`)>Q̃(`)

]
− 1
σ2
N

E
[
n`
N
m̃

(`)
N (z̃)P (`)T (`)>Q̃(`) + 1

N
P (`)T (`)>Q̃(`)2

]

where
∥∥∥∥ 1
σ2
N
E
[
n`
N m̃

(`)
N (z̃)P (`)T (`)>Q̃(`) + 1

NP (`)T (`)>Q̃(`)2
]∥∥∥∥→ 0 as N → +∞ since ‖P (`)‖ =

O(N
d−2

4 ) and ‖T (`)‖ = O(N
d−2

2 ). Hence, with Equation (13) and Equation (17), we have∥∥∥∥mSC(z̃)E
[
Q̃(`)

]
+ z̃E

[
Q̃(`)

]
+ In` −

1
σN

P (`)P (`)>E
[
Q̃(`)

]∥∥∥∥ −−−−−→N→+∞
0

and, since mSC(z̃) + z̃ = −1
mSC(z̃) , we can define the following deterministic equivalent (Defi-

nition 3):

Q̃(`)(z̃)←→ Q̄(`)(z̃) def=
( 1
σN

P (`)P (`)> + 1
mSC(z̃)In`

)−1
.

Appendix C. Proof of Theorem 9

Recall that Q̃(`) is the resolvent of 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
while Q̃

(`)
0 denotes the resolvent

of the same model without signal, 1
σN

[
1
NN (`)N (`)> − µ(`)

N In`

]
.

C.1 Convergence of Bilinear Forms

First of all, we must show the almost sure convergence a>Q̃
(`)
0 b − mSC(z̃)〈a, b〉 → 0 for

all bounded (sequences of) vectors a, b ∈ Rn` . Given the concentration result proven in
Section B.3, we just need to show that a>E[Q̃(`)

0 ]b−mSC(z̃)〈a, b〉 → 0 as N → +∞.
Let us multiply Equation (13) when P (`) = 0n`×

∏
`′ 6=` n`′

by a> on the left and b on the
right.

E
[
m̃

(`)
N (z̃)a>Q̃

(`)
0 b

]
+ z̃E

[
a>Q̃

(`)
0 b

]
+ 〈a, b〉 = Oz(N−min( d−2

2 ,1)).

Then, using the fact that E[m̃(`)
N (z̃)] = mSC(z̃)+Oz̃(N−min( d−2

2 ,1)) andmSC(z̃)+z̃ = −1
mSC(z̃) ,

we obtain the desired result: E[a>Q̃
(`)
0 b] = mSC(z̃)〈a, b〉+Oz̃(N−min( d−2

2 ,1)).

C.2 Isolated Eigenvalues

We seek eigenvalues of 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
which stay outside the support of the semi-

circle distribution [−2, 2]. That is, we seek ξ̃ ∈ R \ [−2, 2] such that

det
( 1
σN

[
T (`)T (`)> − µ(`)

N In`

]
− ξ̃In`

)
= 0.
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Using the expansion T (`) = P (`) + 1√
N

N (`), this is equivalent to

det
( 1
σN

(
P (`)P (`)> + 1√

N
P (`)N (`)> + 1√

N
N (`)P (`)>

)
Q̃

(`)
0 (ξ̃) + In`

)
× det

( 1
σN

[ 1
N

N (`)N (`)> − µ(`)
N In`

]
− ξ̃In`

)
= 0

where the second determinant is non-zero for N large enough from the confinement of the
spectrum proven in Section B.5. Then, we know that P = JH; X(1), . . . ,X(d)K therefore
P (`) = X(`)L(`) with L(`) = H(`)

(⊗
`′ 6=` X(`′)>

)
and we can write

1
σN

(
P (`)P (`)> + 1√

N
P (`)N (`)> + 1√

N
N (`)P (`)>

)

as the matrix product
[

X(`) X(`) 1
σN
√
N

N (`)L(`)>
] 1

σN
H(`)H(`)>X(`)>

1
σN
√
N

L(`)N (`)>

X(`)>

. Thus, with Sylvester’s

identity (det(In + AB) = det(Ik + BA)), we are left to evaluate a 3r` × 3r` determinant:

det(I3r` + M) = 0

where M is the following matrix


1
σN

H(`)H(`)>X(`)>Q̃
(`)
0 (ξ̃)X(`) 1

σN
H(`)H(`)>X(`)>Q̃

(`)
0 (ξ̃)X(`) 1

σ2
N

√
N

H(`)H(`)>X(`)>Q̃
(`)
0 (ξ̃)N (`)L(`)>

1
σN
√
N

L(`)N (`)>Q̃
(`)
0 (ξ̃)X(`) 1

σN
√
N

L(`)N (`)>Q̃
(`)
0 (ξ̃)X(`) 1

σ2
N
N

L(`)N (`)>Q̃
(`)
0 (ξ̃)N (`)L(`)>

X(`)>Q̃
(`)
0 (ξ̃)X(`) X(`)>Q̃

(`)
0 (ξ̃)X(`) 1

σN
√
N

X(`)>Q̃
(`)
0 (ξ̃)N (`)L(`)>

.

From the convergence of bilinear forms and the orthonormality of the columns of X(`),
we have X(`)>Q̃

(`)
0 (ξ̃)X(`) → mSC(ξ̃)Ir` almost surely. Moreover, we can see that the

matrix 1
σN
√
N

L(`)N (`)>Q̃
(`)
0 (ξ̃)X(`) vanishes almost surely as N → +∞ since ‖L(`)‖ =

O(N
d−2

4 ) and ‖N (`)a‖ = O(
√
N) almost surely22 for all bounded (sequences of) vectors

22. This fact is not so easy to see (note that it does not depend on d!). If we naively upper bound ‖N (`)a‖2

by ‖N (`)‖2‖a‖2 = O(N
d−1

2 ), we do not find the desired upper bound. Instead, we can remark that
‖N (`)a‖2 = a>N (`)>N (`)a = a>V DV >a where D = Diag(λ1(N (`)>N (`)), . . . , λn` (N (`)>N (`))) (we
assume N large enough so that

∏
`′ 6=` n`′ > n` thus λi(N (`)>N (`)) = 0 for i > n`) and V follows a

uniform distribution on the Stiefel manifold Vn` (R
∏

`′ 6=`
n`′ ) (Chikuse, 2003, Theorem 2.2.1). Therefore

1
N
‖N (`)a‖2 6 (µ(`)

N + 2σN )a>V V >a. Without loss of generality, we can assume that ai = ‖a‖δ1,i
(replace a and V by Oa and OV for a well-chosen orthogonal matrix O). From Mardia and Khatri

(1977), we know that [V V >]1,1 follows a beta distribution with parameters n`
2 ,

∏
`′ 6=`

n`′−n`

2 so its
moments are given by E[[V V >]k1,1] =

∏k−1
r=0

n`+2r∏
`′ 6=`

n`′+2r
for all k > 1. This is enough to see that (µ(`)

N +

2σN )E[[V V >]1,1] = (µ(`)
N + 2σN ) n`∏

`′ 6=`
n`′

= O(1) and (µ(`)
N + 2σN )4E[([V V >]1,1 − E[[V V >]1,1])4] =

O(N−2), whence the almost sure statement 1
N
‖N (`)a‖2 = O(1).
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a ∈ R
∏
`′ 6=` n`′ . The only term which remains to evaluate is the block (2, 3):

1
σ2
NN

∥∥∥L(`)N (`)>Q̃
(`)
0 (ξ̃)N (`)L(`)>

∥∥∥
6

1
σN

∥∥∥H(`)
∥∥∥2

σN

∥∥∥N (`)
(⊗

`′ 6=` X(`′)
)∥∥∥2

N

∥∥∥Q̃(`)
0 (ξ̃)

∥∥∥ a.s.−−−−−→
N→+∞

0.

Eventually, as the determinant is a continuous function in the entries of the matrix, we
have, in the large N limit,

det


mSC(ξ̃)
σN

H(`)H(`)> + Ir`
mSC(ξ̃)
σN

H(`)H(`)> 0r`×r`
0r`×r` Ir` 0r`×r`

mSC(ξ̃)Ir` mSC(ξ̃)Ir` Ir`

 = 0.

Using twice the relation det
[

A B
C D

]
= det(AD−1 −BD−1CD) when D is invertible, this

simplifies into

det
(
mSC(ξ̃)
σN

H(`)H(`)> + Ir`

)
= 0

Thus, we seek ξ̃(`)
q` ∈ R \ [−2, 2] such that

mSC(ξ̃(`)
q` )

σN
s2
q`

(P (`)) + 1 = 0, q` ∈ [r`].

Injecting the expression mSC(ξ̃(`)
q` ) = − σN

s2
q`

(P (`)) into the equation m2
SC(ξ̃(`)

q` )+ ξ̃(`)
q` mSC(ξ̃(`)

q` )+
1 = 0 yields

σ2
N

s4
q`

(P (`))
− ξ̃(`)

q`

σN
s2
q`

(P (`))
+ 1 = 0 ⇐⇒ ξ̃(`)

q`
=
s2
q`

(P (`))
σN

+ σN
s2
q`

(P (`))
.

As ξ̃(`)
q` > 0 by definition, it must be strictly greater than 2 (the right edge of the semicircle).

This is true only if ρ(`)
q`

def= s2
q`

(P (`))
σN

> 1.

C.3 Eigenvector Alignments

Let û
(`)
i`
, i` ∈ [n`], denote the i`-th left singular vector of T (`) (sorted in non-increasing

order of its corresponding singular value). From the spectral decomposition T (`)T (`)> =∑n`
i`=1 s

2
i`

(T (`))û(`)
i`

û
(`)>
i`

, we have,

Q̃(`)(z̃) =
n∑̀
i`=1

û
(`)
q` û

(`)>
q`

1
σN

[
s2
i`

(T (`))− µ(`)
N

]
− z̃

.

If ρ(`)
q` > 1, q` ∈ [r`], then s2

q`
(T (`)) is an isolated eigenvalue in the spectrum of T (`)T (`)> and

1
σN

[
s2
q`

(T (`))− µ(`)
N

] a.s.−−−−−→
N→+∞

ξ̃
(`)
q` . Hence, for any positively-oriented simple closed complex
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contour γ(`)
q` circling around ξ̃(`)

q` , leaving all the other ξ̃(`)
q′
`
, q′` 6= q`, outside and not crossing

[−2, 2], Cauchy’s integral formula yields, for N large enough and any a ∈ Rn` ,∣∣∣a>û(`)
q`

∣∣∣2 = − 1
2iπ

∮
γ

(`)
q`

a>Q̃(`)(z̃)a dz̃ a.s.−−−−−→
N→+∞

− 1
2iπ

∮
γ

(`)
q`

a>Q̄(`)(z̃)a dz̃

by the dominated convergence theorem since, for all z̃ ∈ γ(`)
q` , a>Q̃(`)(z̃)a → a>Q̄(`)(z̃)a

almost surely as N → +∞ by definition of the deterministic equivalent (Definition 3) and
z̃ ∈ γ(`)

q` 7→ |a>Q̃(`)(z̃)a| is almost surely bounded for N large enough because we can choose
γ

(`)
q` such that Dist(ξ̃(`)

q` , γ
(`)
q` ) > ε > 0 and therefore |a>Q̃(`)(z̃)a| 6 ‖a‖2‖Q̃(`)(z̃)‖ 6 ‖a‖2/ε

almost surely.
Using residue calculus, we can compute,

− 1
2iπ

∮
γ

(`)
q`

a>Q̄(`)(z̃)a dz̃ = − lim
z̃→ξ̃(`)

q`

(
z̃ − ξ̃(`)

q`

)
a>
( 1
σN

P (`)P (`)> + 1
mSC(z̃)In`

)−1
a.

Note that P (`)P (`)> = X(`)H(`)H(`)>X(`)> and there exist an r` × r` orthogonal ma-
trix O(`) such that H(`)H(`)> = O(`)Λ(`)O(`)> with Λ(`) = Diag(s2

1(P (`)), . . . , s2
r`

(P (`))).
Hence,

a>
( 1
σN

P (`)P (`)> + 1
mSC(z̃)In`

)−1
a

= a>X(`)O(`)
( 1
σN

Λ(`) + 1
mSC(z̃)In`

)−1
O(`)>X(`)>a.

Let us therefore compute the following quantity,

− lim
z̃→ξ̃(`)

q`

(
z̃ − ξ̃(`)

q`

)s2
q′
`
(P (`))
σN

+ 1
mSC(z̃)

−1

=
{

0 if q′` 6= q`

ζ
(`)
q` if q′` = q`

, q′` ∈ [r`],

where we have used the fact thatmSC(ξ̃(`)
q′
`

) = − σN
s2
q′
`

(P (`)) . In order to handle the case q′` = q`,

we use L’Hôpital’s rule,

ζ(`)
q`

= −

 d
dz̃

[
s2
q`

(P (`))
σN

+ 1
mSC(z̃)

]
z̃=ξ̃(`)

q`

−1

= m2
SC(ξ̃(`)

q` )
m′SC(ξ̃(`)

q` )

= σ2
N

s4
q`

(P (`))m′SC(ξ̃(`)
q` )

.

In order to compute m′SC(ξ̃(`)
q` ), let us differentiate the relation m2

SC(z̃) + z̃mSC(z̃) + 1 = 0,

2m′SC(z̃)mSC(z̃) +mSC(z̃) + z̃m′SC(z̃) = 0,

m′SC(z̃) = − mSC(z̃)
2mSC(z̃) + z̃

.
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Hence,

m′SC(ξ̃(`)
q`

) = −
− σN
s2
q`

(P (`))

−2 σN
s2
q`

(P (`)) + s2
q`

(P (`))
σN

+ σN
s2
q`

(P (`))

= 1
s4
q`

(P (`))
σ2
N

− 1
.

Back to our previous expression of ζ(`)
q` , we now have,

ζ(`)
q`

= 1− σ2
N

s4
q`

(P (`))
.

Therefore, for all a ∈ Rn` ,

− 1
2iπ

∮
γ

(`)
q`

a>Q̄(`)(z̃)a dz̃ = a>X(`)O(`)Z(`)
q`

O(`)>X(`)>a

where Z
(`)
q` is an r`× r` matrix with all its entries equal to 0 except [Z(`)

q` ]q`,q` = ζ
(`)
q` . Thus,

summing the alignments of û
(`)
q` with each column of X(`) yields∥∥∥X(`)>û(`)

q`

∥∥∥2 a.s.−−−−−→
N→+∞

ζ(`)
q`

r∑̀
q′
`
=1
O

(`)2
q′
`
,q`

= ζ(`)
q`
.

Appendix D. Proof of Lemma 14

Our proof of Lemma 14 uses the notion of ε-covering. An ε-covering of a compact set K
for the norm ‖·‖ is a finite set C ⊂ K such that for all x ∈ K, there exists x̄ ∈ C such
that ‖x− x̄‖ 6 ε. We also define the covering number N(ε,K, ‖·‖) as the smallest possible
number of elements in C.

Moreover, we recall the definition of the Gamma function Γ(s) =
∫+∞

0 ts−1e−tdt and
the (upper) incomplete Gamma function Γ(s, x) =

∫+∞
x ts−1e−tdt for s > 0 and x > 0.

For our proof, we need to introduce a few preliminary results which are stated and
proven below (except Lemma 26 for which a reference is given).

Lemma 24 For ` ∈ [d] and ε > 0, let ∆(`) ∈ Rn`×r` be such that ‖∆(`)‖ 6 ε and V (`) ∈
Vr`(Rn`) be the matrix of its left singular vectors. For all A(`′) ∈ Rn`′×r`′ , `′ 6= `,∥∥∥N(A(1), . . . ,∆(`), . . . ,A(d))

∥∥∥
F
6 ε

∥∥∥N(A(1), . . . ,V (`), . . . ,A(d))
∥∥∥

F
.

Proof Let V (`)Σ(`)W (`)> be the singular value decomposition of ∆(`). We have,

∥∥∥N(A(1), . . . ,∆(`), . . . ,A(d))
∥∥∥

F
=

∥∥∥∥∥∥∆(`)>N (`)�̀
′ 6=`

A(`′)

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥W (`)>Σ(`)V (`)>N (`)�̀
′ 6=`

A(`′)

∥∥∥∥∥∥
F

6
∥∥∥W (`)>Σ(`)

∥∥∥︸ ︷︷ ︸
=ε

∥∥∥∥∥∥V (`)>N (`)�̀
′ 6=`

A(`′)

∥∥∥∥∥∥
F︸ ︷︷ ︸

=‖N(A(1),...,V (`),...,A(d))‖F
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using the fact that ‖AB‖F 6 ‖A‖‖B‖F.

Lemma 25 Given A(`) ∈ Vr`(Rn`), ` ∈ [d],

∥∥∥N(A(1), . . . ,A(d))
∥∥∥2

F
∼ χ2

∏
`∈[d]

r`

.
Proof Firstly, observe that, for all (q1, . . . , qd) ∈×`∈[d][r`],

[N(A(1), . . . ,A(d))]q1,...,qd =
n1,...,nd∑
i1,...,id=1

Ni1,...,idA
(1)
i1,q1

. . . A
(d)
id,qd
∼ N (0, 1)

since
∑n`
i`=1A

(`)2
i`,q`

= 1 for all ` ∈ [d]. Then, we show that all the entries of N(A(1), . . . ,A(d))
are independent because their covariance is identity,

E
[
[N(A(1), . . . ,A(d))]q1,...,qd [N(A(1), . . . ,A(d))]q′1,...,q′d

]
=

n1,...,nd∑
i1,...,id=1

n1,...,nd∑
i′1,...,i

′
d
=1

E
[
Ni1,...,idNi′1,...,i

′
d

]
A

(1)
i1,q1

A
(1)
i′1,q
′
1
. . . A

(d)
id,qd

A
(d)
i′
d
,q′
d

=
n1,...,nd∑
i1,...,id=1

A
(1)
i1,q1

A
(1)
i1,q′1

. . . A
(d)
id,qd

A
(d)
id,q
′
d

=
{

1 if (q1, . . . , qd) = (q′1, . . . , q′d)
0 otherwise .

Hence, the result follows from the fact that ‖N(A(1), . . . ,A(d))‖2F is the sum of
∏
`∈[d] r`

squared independent N (0, 1) variables.

Lemma 26 (Hinrichs et al., 2017, Lemma 4.1) For 0 < ε < 1, we have the following
upper bound on the ε-covering number of the Stiefel manifold Vr(Rn) for the spectral norm
‖·‖,

N(ε, Vr(Rn), ‖·‖) 6
[
C

ε

]r(n− r+1
2 )

.

where C > 0 is a universal constant.

Lemma 27 Γ(s, x) 6 max(1, es−1)Γ(s)e−x/2 for all x > 0 and s > 0.

Proof Given s > 0, consider the function f : x ∈ [0,+∞[ 7→ Γ(s,x)
Ce−x/2 with C > 0. Our goal

is to show that 0 < f 6 1 when C is well chosen. f is continuously differentiable on [0,+∞[
and

f ′(x) = 1
Ce−x/2

(
−xs−1e−x + 1

2Γ(s, x)
)
> 0 ⇐⇒ Γ(s, x)− 2xs−1e−x > 0.
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Consider the function g : x ∈ [0,+∞[ 7→ Γ(s, x)− 2xs−1e−x. g is also continuously differen-
tiable on [0,+∞[ and

g′(x) = xs−1e−x − 2(s− 1)xs−2e−x > 0 ⇐⇒ x > 2(s− 1).

We distinguish two cases.

1. If 0 < s 6 1, then g increases monotonically on [0,+∞[. Since limx→+∞ g(x) = 0, we
necessarily have g(x) 6 0 for all x ∈ [0,+∞[. Hence, f(x) 6 f(0) = Γ(s)

C and we can
choose C = Γ(s).

2. If s > 1, our conclusion stems from the following table.

x

g′(x)

g(x)

0 2(s− 1) +∞
− 0 +

Γ(s)Γ(s)

g(2(s− 1))g(2(s− 1))

00

Since g is strictly increasing on [2(s− 1),+∞[ and limx→+∞ g(x) = 0, we necessarily
have g(2(s− 1)) < 0. Hence, since Γ(s) > 0, the equation g(x) = 0 has a unique
solution on [0,+∞[ and it lies between 0 and 2(s− 1). Let x0(s) ∈ [0, 2(s− 1)] be
this unique solution. Then,

sup
[0,+∞[

f = f(x0(s)) = Γ(s, x0(s))
Ce−x0(s)/2

and we can choose C = Γ(s, x0(s))ex0(s)/2. The final result follows from Γ(s, x0(s)) 6
Γ(s) and ex0(s)/2 6 es−1.

We are now ready to prove Lemma 14.
Let ε > 0 and C` be an ε-covering of Vr`(Rn`) for the spectral norm ‖·‖, ` ∈ [d]. Since

×`∈[d] Vr`(Rn`) is compact, it contains an element (A(1)
? , . . . ,A

(d)
? ) such that

sup
A(`)∈Vr` (R

n` ), `∈[d]

∥∥∥N(A(1), . . . ,A(d))
∥∥∥

F
=
∥∥∥N(A(1)

? , . . . ,A
(d)
? )
∥∥∥

F
.

Let Ā(`) ∈ C` be such that A
(`)
? = Ā(`) + ∆(`) with ‖∆(`)‖ 6 ε. Then, using the triangle

inequality, Lemma 24 and the optimality of (A(1)
? , . . . ,A

(d)
? ), we have,∥∥∥N(Ā(1) + ∆(1), . . . , Ā(d) + ∆(d))

∥∥∥
F
6
∥∥∥N(Ā(1), . . . , Ā(d))

∥∥∥
F

+ S
∥∥∥N(A(1)

? , . . . ,A
(d)
? )
∥∥∥

F

with S def=
∑d
k=1

(d
k

)
εk 6

∑d
k=1 ε

k dk

k! 6 e
εd − 1. Hence, choosing ε = 1

d log 3
2 , we get,∥∥∥N(A(1)

? , . . . ,A
(d)
? )
∥∥∥

F
6 2

∥∥∥N(Ā(1), . . . , Ā(d))
∥∥∥

F
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and, from the union bound, for any t > 0,

P
(∥∥∥N(A(1)

? , . . . ,A
(d)
? )
∥∥∥

F
> t
)
6 P

 ⋃
A(`)∈C`, `∈[d]

{∥∥∥N(A(1), . . . ,A(d))
∥∥∥

F
>
t

2

}
6

∑
A(`)∈C`, `∈[d]

P
(∥∥∥N(A(1), . . . ,A(d))

∥∥∥
F
>
t

2

)
.

Thus, combining Lemma 25 and 26, we have,

P
(∥∥∥N(A(1)

? , . . . ,A
(d)
? )
∥∥∥

F
> t
)
6

[
Cd

log 3
2

]∑d

`=1 r`
(
n`−

r`+1
2

)
P
(
X >

t2

4

)

where X is a random variable following a χ2(
∏
`∈[d] r`) distribution. Eventually, the proba-

bility on the right-hand side can be bounded using Lemma 27,

P
(
X >

t2

4

)
=

Γ
(

1
2
∏
`∈[d] r`,

t2

8

)
Γ
(

1
2
∏
`∈[d] r`

) 6 max(1, e
1
2
∏
`∈[d] r`−1)e−t2/16.

We get the result stated in Lemma 14 with

t2 = 16
[(

d∑
`=1

r`

(
n` −

r` + 1
2

))
log Cd

log 3
2

+ log
(1
δ

max
(

1, e
1
2
∏d

`=1 r`−1
))]

.

Appendix E. Proof of Theorem 15

Recall the decomposition P = JH; X(1), . . . ,X(d)K. We use the following lemma whenever
we state that ‖P(U (1), . . . ,U (d))‖F = O(‖P‖F) as N → +∞.

Lemma 28 For all (A(1), . . . ,A(d)) ∈×`∈[d] Vr`(Rn`),

∥∥∥P(A(1), . . . ,A(d))
∥∥∥

F
6 ‖P‖F

∏
`∈[d]

∥∥∥X(`)>A(`)
∥∥∥.
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Proof The proof relies on the property ‖AB‖F 6 ‖A‖‖B‖F.

∥∥∥P(A(1), . . . ,A(d))
∥∥∥

F
=
∥∥∥∥∥A(1)>X(1)H(1)

d

�̀
=2

X(`)>A(`)
∥∥∥∥∥

F

6
∥∥∥A(1)>X(1)

∥∥∥∥∥∥∥∥H(1)
d

�̀
=2

X(`)>A(`)
∥∥∥∥∥

F

=
∥∥∥A(1)>X(1)

∥∥∥∥∥∥∥∥A(2)>X(2)H(2)
(

Ir1 �
d

�̀
=3

X(`)>A(`)
)∥∥∥∥∥

F

6
∥∥∥A(1)>X(1)

∥∥∥∥∥∥A(2)>X(2)
∥∥∥∥∥∥∥∥H(2)

(
Ir1 �

d

�̀
=3

X(`)>A(`)
)∥∥∥∥∥

F
. . .

6

(
d∏
`=1

∥∥∥A(`)>X(`)
∥∥∥)∥∥∥∥∥H(d)

d

�̀
=1

Ir`

∥∥∥∥∥
F︸ ︷︷ ︸

=‖H‖F=‖P‖F

.

Given ` ∈ [d], U
(`)
1 gathers the r` dominant left singular vectors of T (`)�`′ 6=` U

(`′)
0 , i.e.,

it is solution to

max
U (`)∈Vr` (R

n` )

∥∥∥∥∥∥U (`)>T (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

. (21)

Consider also a solution Ũ
(`)
1 to the following related problem

max
U (`)∈Vr` (R

n` )

∥∥∥∥∥∥U (`)>P (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

. (22)

Observe that, using the property ‖AB‖F 6 ‖A‖‖B‖F, we have,

∥∥∥∥∥∥U (`)>P (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U (`)>X(`)H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

6
∥∥∥U (`)>X(`)

∥∥∥2
∥∥∥∥∥∥H(`)�̀

′ 6=`
X(`′)>U

(`′)
0

∥∥∥∥∥∥
2

F

6

∥∥∥∥∥∥H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

and this upper bound is only reached with U (`) = X(`)O(`), for any r`×r` orthogonal matrix
O(`). Hence, Ũ

(`)
1 = X(`)O(`). The strategy of our proof is to show that, as N → +∞,

Problem (21) has the same solutions as Problem (22), which are known.
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With the decomposition T = P + 1√
N
N, we have,

∥∥∥∥∥∥U (`)>T (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U (`)>P (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

+ 1
N

∥∥∥∥∥∥U (`)>N (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

+ 2√
N

〈
U (`)>P (`)�̀

′ 6=`
U

(`′)
0 ,U (`)>N (`)�̀

′ 6=`
U

(`′)
0

〉
F

.

From Lemma 14, 1
N ‖U

(`)>N (`)�`′ 6=` U
(`′)
0 ‖2F = O(1) almost surely and

2√
N

∣∣∣∣∣∣
〈

U (`)>P (`)�̀
′ 6=`

U
(`′)
0 ,U (`)>N (`)�̀

′ 6=`
U

(`′)
0

〉
F

∣∣∣∣∣∣
6

2√
N

∥∥∥∥∥∥U (`)>P (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
F︸ ︷︷ ︸

=O(‖P‖F)

∥∥∥∥∥∥U (`)>N (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
F︸ ︷︷ ︸

=O(
√
N)

.

Therefore, for all U (`) ∈ Vr`(Rn`),∥∥∥∥∥∥U (`)>T (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U (`)>P (`)�̀
′ 6=`

U
(`′)
0

∥∥∥∥∥∥
2

F

+O(‖P‖F) almost surely. (23)

In particular,

∥∥∥∥∥∥U (`)>
1 T (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U (`)>
1 P (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

+O(‖P‖F) almost surely,

∥∥∥∥∥∥U (`)>
1 T (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥Ũ (`)>
1 P (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

+O(‖P‖F) almost surely,

where the first equation is simply Equation (23) with U (`) = U
(`)
1 and the second equation

stems from the maximum over U (`) ∈ Vr`(Rn`) of both sides of Equation (23)23. Hence,

∥∥∥∥∥∥U (`)>
1 P (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥Ũ (`)>
1 P (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

+O(‖P‖F) almost surely. (24)

23. max{‖U (`)>T (`)�`′ 6=` U
(`′)
0 ‖2

F} 6 max{‖U (`)>P (`)�`′ 6=` U
(`′)
0 ‖2

F} + max{O(‖P‖F)} where each max
is over U (`) ∈ Vr` (Rn` ). Thus, ‖U (`)>

1 T (`)�`′ 6=` U
(`′)
0 ‖2

F−‖Ũ
(`)>
1 P (`)�`′ 6=` U

(`′)
0 ‖2

F = O(‖P‖F) almost
surely.
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Then, consider the singular value decomposition X(`)>U
(`)
1 =

∑r`
q`=1 s

(`)
q` v

(`)
q` w

(`)>
q` .

∥∥∥∥∥∥U (`)>
1 P (`)�̀

′ 6=`
U

(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥U (`)>
1 X(`)H(`)�̀

′ 6=`
X(`′)>U

(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
r∑̀
q`=1

s(`)
q`

w(`)
q`

v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

=
r∑̀
q`=1

s(`)2
q`

∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

=
r∑̀
q`=1

∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

−
r∑̀
q`=1

(
1− s(`)2

q`

)∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

−
r∑̀
q`=1

(
1− s(`)2

q`

)∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

.

Therefore, because ‖H(`)�`′ 6=` X(`′)>U
(`′)
0 ‖2F = ‖Ũ (`)>

1 P (`)�`′ 6=` U
(`′)
0 ‖2F, Equation (24)

yields,

r∑̀
q`=1

(
1− s(`)2

q`

)∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

= O(‖P‖F) almost surely.

Using the decomposition v
(`)
q` =

∑r`
q′
`
=1[v(`)

q` ]q′
`
X(`)>x

(`)
q′
`
, we can see that

∥∥∥∥∥∥v(`)>
q`

H(`)�̀
′ 6=`

X(`′)>U
(`′)
0

∥∥∥∥∥∥
2

F

=
r∑̀
q′
`
=1

[v(`)
q`

]2q′
`

∥∥∥P(U (1)
0 , . . . ,x

(`)
q′
`
, . . . ,U

(d)
0 )

∥∥∥2

F
= Θ(L2

N ).

Hence,
r∑̀
q`=1

(
1− s(`)2

q`

)
= O

(
‖P‖F
L2
N

)
almost surely,

which is the result stated in Theorem 15:

1
r`

∥∥∥X(`)>U
(`)
1

∥∥∥2

F
= 1
r`

r∑̀
q`=1

s(`)2
q`

= 1 +O
(
‖P‖F
L2
N

)
almost surely.
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