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Abstract
Stochastic optimization methods face new challenges in the realm of streaming data,
characterized by a continuous flow of large, high-dimensional data. While first-order
methods, like stochastic gradient descent, are the natural choice for such data, they often
struggle with ill-conditioned problems. In contrast, second-order methods, such as Newton’s
method, offer a potential solution but are computationally impractical for large-scale
streaming applications. This paper introduces adaptive stochastic optimization methods
that effectively address ill-conditioned problems while functioning in a streaming context.
Specifically, we present adaptive inversion-free stochastic quasi-Newton methods with
computational complexity matching that of first-order methods, O(dN), where d represents
the number of dimensions/features and N the number of data points. Theoretical analysis
establishes their asymptotic efficiency, and empirical studies demonstrate their effectiveness
in scenarios with complex covariance structures and poor initializations. In particular, we
demonstrate that our adaptive quasi-Newton methods can outperform or match existing
first- and second-order methods.
Keywords: stochastic optimization, stochastic gradient methods, second-order methods,
online learning, large-scale

1. Introduction

This paper focuses on the stochastic optimization problem, where the objective is to minimize
a convex function F : Rd → R with d ∈ N. Formally, the goal is to estimate

min
θ∈Rd
{F (θ) := Eξ[f(θ; ξ)]}, (1)

where f is a loss function, ξ is a random variable following an unknown distribution Ξ,
and θ is the parameter of interest. This formulation is common in many machine learning
applications (Kushner and Yin, 2003; Bottou et al., 2018; Sutton and Barto, 2018). For
instance, when ξ = (X,Y ) represents an input-output pair, the function f typically takes the
form f(θ; ξ) = l(hθ(X), Y ), where l is a loss function onto R and hθ is a prediction model
parameterized by θ.
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We tackle the stochastic optimization problem in (1) within a streaming context, where
data are large in size, high in dimensionality, and arrive continuously as time-varying mini-
batches. Following the framework studied in Godichon-Baggioni et al. (2023b,a), we consider
an infinite sequence of independent and identically distributed (i.i.d.) samples of the random
variable ξ, denoted as (ξt). Each ξt represents a block of nt data points, {ξt,1, . . . , ξt,nt}. This
setup mirrors the incremental and block-based nature of real-world streaming data.

Our adaptive stochastic optimization methods advance beyond the conventional stochastic
gradient-based methods by incorporating a Hessian matrix approximation, At, at each step
to refine the descent direction. These methods can be expressed recursively as:

θt+1 = θt − γt+1At∇θf(θt; ξt+1), θ0 ∈ Rd, (2)

where ∇θf(θt; ξt+1) = n−1
t+1

∑nt+1

i=1 ∇θf(θt; ξt+1,i). Here, (γt) is the learning rate, (At) is the
sequence of random matrices in Rd×d, and (∇θf(θt; ξt+1,i)) is unbiased gradient estimates.

The update in (2) reduces to the classical Robbins-Monro method (Robbins and Monro,
1951), commonly known as Stochastic Gradient Descent (SGD), if we set At = Id and
nt = 1. When At = Id and nt ∈ N, (2) forms a streaming version of SGD with time-varying
mini-batches (Godichon-Baggioni et al., 2023b,a). For AdaGrad (Duchi et al., 2011), At
serves as an estimate of the inverse square root of the diagonal of the variance of the gradients
(∇θf(θt; ξt+1)). Furthermore, the update in (2) transforms into a stochastic quasi-Newton
method, when At serves as an approximation of the inverse Hessian matrix ∇2

θF (θt).
Given the streaming nature of the data, it is essential that At is updated directly (i.e.,

inversion-free) and sparsely to preserve low computational complexity. However, these
infrequent updates could potentially degrade convergence. To counteract this, we incorporate
acceleration techniques that enhance convergence. Specifically, we consider an iterative
weighted Polyak-Ruppert averaging scheme initialized at θ0,w = θ0, defined recursively by

θt+1,w = θt,w +
nt+1 ln(t+ 1)w∑t
i=0 ni+1 ln(i+ 1)w

(θt − θt,w), w ≥ 0. (3)

Setting w = 0 results in the usual Polyak-Ruppert averaging scheme (Ruppert, 1988;
Polyak and Juditsky, 1992; Godichon-Baggioni et al., 2023b). However, this standard Polyak-
Ruppert averaging scheme can be prone to bad initializations. Instead, the iterative weighted
version in (3) assigns more weight to the newer estimates of (2), which limits the effect of
poor initializations (Mokkadem and Pelletier, 2011; Boyer and Godichon-Baggioni, 2023).

Our goal is to develop adaptive stochastic optimization methods for streaming data
that are: i) computationally efficient, ii) robust to ill-conditioned problems, and iii) exhibit
optimal convergence in both theory and practice. Thus, the central question of this paper is:

Can we construct a sequence of Hessian approximations (At) that are both com-
putationally efficient and ensure that our adaptive methods are robust to ill-
conditioned problems while exhibiting optimal convergence properties?

Contributions Our paper makes several contributions to the field of stochastic optimiza-
tion within a streaming context. Firstly, we introduce adaptive stochastic optimization
methods that effectively manage ill-conditioned problems while maintaining computational
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efficiency. These methods dynamically adjust learning rates on a per-dimension basis by lever-
aging historical gradient and Hessian information. Secondly, we propose iterative weighted
average versions of these adaptive methods, which provide variance reduction during learning
and accelerated convergence. Our theoretical analysis establishes their strong consistency,
rate of convergence, and asymptotic efficiency.

A key contribution of our work is our adaptive inversion-free stochastic quasi-Newton
methods, which match the computational complexity of first-order methods, O(dNt), where
Nt =

∑t
i=1 ni is the total quantity of data up to time t. Specifically, our adaptive quasi-

Newton methods: i) use second-order information to better handle ill-conditioned problems,
ii) maintain the computational efficiency of first-order methods, and iii) incorporate ac-
celeration techniques. By leveraging acceleration techniques, our adaptive quasi-Newton
method mitigate the need for frequent updates of the Hessian approximation, ensuring that
performance/convergence rates are not compromised despite the lower computational costs.

In addition to this adaptive quasi-Newton method, we also apply our methodology to
develop a streaming version of AdaGrad along with its iterative weighted average version.

Our adaptive methods can be applied to a wide range of models, e.g., linear, logistic,
softmax, ridge, and non-linear regression, as well as the estimation of the geometric median
and optimal transport (Bercu et al., 2020; Boyer and Godichon-Baggioni, 2023; Godichon-
Baggioni et al., 2024; Cénac et al., 2020; Godichon-Baggioni and Lu, 2024; Bercu et al., 2023).
To demonstrate the effectiveness of our methods, we provide several examples, specifically
focusing on linear and logistic regression, as well as the estimation of the geometric median.

Organization In Section 2, we briefly review related work. Section 3 presents the the-
oretical framework for our adaptive methods. In Section 4, we establish their asymptotic
efficiencies. Section 5 details our adaptive quasi-Newton methods and application examples.
Finally, Section 6 demonstrates the efficiency of our proposed methods on both synthetic
and real-world datasets.

Notations We use ‖·‖ for the Euclidean norm and ‖·‖op for the operator norm. M � 0
denotes thatM is positive definite, andM � 0 indicates positive semi-definite. The minimum
and maximum eigenvalues of matrix M are λmin(M) and λmax(M), respectively.

2. Related Work

Stochastic optimization and adaptive methods have been extensively researched, as evident
in works such as Bottou et al. (2018); Chau et al. (2024). Theoretical investigations into
SGD cover a wide range of topics, from in-depth non-asymptotic analysis to its asymptotic
efficiency (Moulines and Bach, 2011; Kushner and Yin, 2003; Toulis and Airoldi, 2017;
Pelletier, 1998; Fabian, 1968; Pelletier, 2000; Gadat and Gavra, 2022; Nemirovski et al., 2009;
Lacoste-Julien et al., 2012; Nocedal and Wright, 1999; Boyd and Vandenberghe, 2004). A
noteworthy extension of SGD is the concept of averaging, known for its role in accelerating
convergence. This technique, known as Polyak-Ruppert averaging or averaged SGD (ASGD),
was introduced by Ruppert (1988); Polyak and Juditsky (1992). They demonstrated that
using a learning rate with slower decay rates, combined with uniform averaging, robustly leads
to information-theoretically optimal asymptotic variance. While these estimates are known
to be asymptotically efficient (Pelletier, 2000), their non-asymptotic properties have been
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thoroughly investigated (Moulines and Bach, 2011; Needell et al., 2014; Gadat and Panloup,
2023). However, it’s important to note that this method can be sensitive to ill-conditioned
problems, leading to sub-optimal performance in practice (Leluc and Portier, 2023; Boyer
and Godichon-Baggioni, 2023).

To address this practical challenge, recent strategies have emerged to enhance the
performance of stochastic optimization methods, focusing on adaptive approaches. These
methods involve tuning the learning rate, also known as the step-size sequence, through
strategies that adapt to the gradient. One of the most well-known adaptive techniques
is AdaGrad (Duchi et al., 2011), which incorporates an estimation of the square root of
the inverse of the gradient’s covariance into the step-size. Subsequently, this method has
undergone various modifications and improvements (Tieleman and Hinton, 2012; Kingma
and Ba, 2015; Zeiler, 2012; Dozat, 2016; Reddi et al., 2018). Nevertheless, these adaptive
methods do not fully tackle the challenge of poor conditioning. Another limitation of these
methods is their reliance on information solely from the diagonal of the gradient covariance
estimator. Consequently, in scenarios with strong correlations, this restricted information
may lead to sub-optimal outcomes in practice.

To address these issues, an alternative approach involves considering stochastic (inversion-
free) Newton methods (Bercu et al., 2020; Boyer and Godichon-Baggioni, 2023; Leluc and
Portier, 2023), where an estimate of the inverse of the Hessian is integrated into the step-size.
Alternatively, stochastic Gauss-Newton methods (Cénac et al., 2020; Bercu et al., 2023) can
be employed. These stochastic Newton methods, relying on the Sherman-Morrison formula
(Sherman and Morrison, 1950),1 require a specific form of the Hessian. Nevertheless, they
find applications in various scenarios, including linear, logistic, softmax, and ridge regressions
(Bercu et al., 2020; Boyer and Godichon-Baggioni, 2023; Godichon-Baggioni et al., 2024), as
well as tasks such as estimation of the geometric median (Godichon-Baggioni and Lu, 2024),
non-linear regression (Cénac et al., 2020), and optimal transport (Bercu et al., 2023).

Our adaptive stochastic optimization methods integrate the strengths of first-order adap-
tive methods, acceleration techniques such as iterative weighted Polyak-Ruppert averaging,
and second-order methods. This novel combination allows us to develop methods that are
computationally efficient, robust to ill-conditioned problems, and achieve optimal convergence
both in theory and practice.

3. Underlying Theoretical Framework

In this section, we provide the theoretical framework that forms the basis of our analysis. Our
objective is to solve the stochastic optimization problem in (1) within a streaming context.
As a reminder, we consider stochastic optimization problems of the form:

min
θ∈Rd
{F (θ) := Eξ∼Ξ[f(θ; ξ)]}.

Our theoretical framework relies on three key assumptions. These assumptions, which
depend on the differentiability of the function F , are standard in the realms of stochastic
optimization, stochastic approximation, and adaptive methods (Bottou et al., 2018; Leluc

1. Sherman-Morrison’s formula is also known as Riccati’s equation for matrix inversion (Duflo, 2013).

4



On Adaptive Stochastic Optimization for Streaming Data

and Portier, 2023; Boyer and Godichon-Baggioni, 2023; Kushner and Yin, 2003; Godichon-
Baggioni, 2019b,a; Benveniste et al., 1990; Duflo, 2013; Godichon-Baggioni and Tarrago,
2023).

Assumption 1 For almost any ξ, the function f(·; ξ) is differentiable and there exists
non-negative constants C and C ′ such that

E[‖∇θf(θ; ξ)‖2] ≤ C + C ′(F (θ)− F (θ∗)), ∀θ ∈ Rd. (4)

In addition, there exists θ∗ ∈ Rd such that ∇θF (θ∗) = 0, and the functional Σ : θ →
E[∇θf(θ; ξ)∇θf(θ; ξ)>] is continuous at θ∗.

In Assumption 1, E[‖∇θf(θ; ξ)‖2] is not confined by a constant or the squared errors
‖θ − θ‖2. Instead, we use the functional error F (θ)− F (θ∗), a condition known as expected
smoothness (Gower et al., 2019; Gazagnadou et al., 2019; Gower et al., 2021). Moreover,
when C = 0, (4) is known as the weak growth condition (Vaswani et al., 2019; Nguyen et al.,
2018). Notably, in the context of µ-strong convexity of the function F , the squared errors
condition implies the functional error condition, as ‖θ − θ∗‖2 ≤ 2/µ(F (θ)− F (θ∗)) for any
θ ∈ Rd.

To establish the strong consistency of our method’s estimates, we introduce a second
assumption that enables the use of a second-order Taylor expansion to the functional F .

Assumption 2 The functional F is twice-continuously differentiable with uniformly bounded
Hessian, i.e., there exists L∇F such that ‖∇2

θF (θ)‖op ≤ L∇F for any θ ∈ Rd.

Note that this implies, among other things, that the gradient of F is L∇F -Lipschitz. The
third assumption pertains to the uniqueness of the minimizer θ∗ of the functional F .

Assumption 3 The functional F is convex and λmin := λmin(∇2
θF (θ∗)) > 0.

Note that this convexity assumption is important when using stochastic (quasi-)Newton
methods, particularly to ensure the positivity of each adaptive step, which aims to estimate
the inverse of the Hessian.

4. Theoretical Analysis

In this section, we present the theoretical analysis of our adaptive stochastic optimization
methods and their iterated weighted averaged versions, as described in equations (2) and
(3), respectively. Specifically, we demonstrate strong consistency, rate of convergence, and
asymptotic normality. For clarity, this section focuses on constant mini-batches of size n,
leaving the discussion of time-varying mini-batches nt to Appendix A.

Focusing on constant mini-batches provides a more clear presentation of the foundational
properties of our methods, such as computational efficiency, robustness to ill-conditioned
problems, and optimal convergence. Readers seeking a deeper understanding, particularly
of extensions to time-varying mini-batches, are encouraged to refer to Appendix A and
Appendix C, which provide detailed proofs and adaptations. The consideration of time-
varying mini-batches builds on recent work by Godichon-Baggioni et al. (2023a), which
highlights their potential to accelerate convergence and mitigate both long- and short-term
dependence structures.
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4.1 Adaptive Stochastic Optimization Methods

From this point forward, we focus on constant mini-batches of size n. At each time t, a
mini-batch of n i.i.d. samples of ξ, represented by ξt = {ξt,1, . . . , ξt,n}, arrives, and the total
number of data points processed, Nt, is tn. Thus, the updates of our adaptive stochastic
optimization methods, as described in (2), are given by:

θt+1 = θt − γt+1At∇θf(θt; ξt+1), θ0 ∈ Rd,

where ∇θf(θt; ξt+1) = n−1
∑n

i=1∇θf(θt; ξt+1,i). Let (Ft) be the filtration such that θt and
At are Ft-measurable, and the incoming mini-batch ξt+1 is independent of Ft.

Our goal is to recursively update θt at each time step t to integrate the most recent
information ξt+1. Since the stochastic gradient estimates are approximations of the gradient
of (1), it is essential to control the step lengths (γt+1At) to guarantee convergence. For the
subsequent discussion, we assume that the learning rate (γt) and the sequence of random
matrices (At) satisfy the following conditions:∑

t≥1

γtλmin(At−1) = +∞ a. s., and
∑
t≥1

γ2
t λmax(At−1)2 < +∞ a. s. (5)

In Section 5, we will discuss the modifications needed to ensure these conditions are met.
For example, if At = Id the conditions in (5) reduces to the usual conditions on the learning
rate (γt), e.g., see Robbins and Monro (1951). Additional details about (5) can be found in
works such as Boyer and Godichon-Baggioni (2023); Godichon-Baggioni and Tarrago (2023).

For simplicity, we set γt = Cγt
−γ with Cγ > 0 and γ ∈ (1/2, 1). However, one can also

take γt = Cγ(t+ t0)−γ with t0 ∈ N, and all the theoretical results remain valid.
The following theorem establishes the strong consistency of our adaptive stochastic

gradient estimates (θt).

Theorem 1 Suppose Assumptions 1 to 3 hold, along with the conditions in (5). Then, θt
converges almost surely to θ∗.

The proof is given in Appendix C.1. To ascertain the rate of convergence of our adaptive
stochastic gradient estimates (θt), we assume that the sequence of random matrices (At)
converges to some A � 0.

Assumption 4 The random matrix At converges almost surely to a positive definite matrix
A.

For instance, in Newton’s methods, the matrix A represents the inverse Hessian, and
in the case of AdaGrad, A corresponds to the inverse of the square root of the diagonal of
the gradient’s variance. Note that once Theorem 1 is fulfilled, the strong consistency of (θt)
often implies the consistency of (At). For more details, see Boyer and Godichon-Baggioni
(2023); Leluc and Portier (2023) or the proofs of Corollaries 1 to 3.

Theorem 2 Suppose Assumptions 1 to 4 hold, along with the conditions in (5). In addition,
assume there exist positive constants Cη and η > 1

γ − 1 such that

E
[
‖∇θf(θ; ξ)‖2+2η

]
≤ Cη (1 + F (θ)− F (θ∗))1+η , ∀θ ∈ Rd. (6)

Then, ‖θt − θ∗‖2 = O
(

ln(Nt)N
−γ
t

)
a. s.
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The proof is provided in Appendix C.2. Observe that this type of inequality is usual to
establish asymptotic rate of convergence of stochastic gradient algorithms (see, for example,
Pelletier (1998, Theorem 2) among others) and it is satisfied as soon as ∇θf admits fourth-
order moment.

4.2 Weighted Averaged Adaptive Stochastic Optimization Methods

For constant mini-batches, the weighted average of our adaptive stochastic optimization
methods in (3) simplifies to:

θt+1,w = θt,w +
ln(t+ 1)w∑t
i=0 ln(i+ 1)w

(θt − θt,w), w ≥ 0,

with θ0,w = θ0. The case involving time-varying mini-batches are discussed in Appendix A.
To establish the convergence rate and the optimal asymptotic normality, we make the

following assumption about the Hessian of F .

Assumption 5 There exist positive constants Lη and η such that

‖∇θF (θ)−∇2
θF (θ∗)(θ − θ∗)‖ ≤ Lη‖θ − θ∗‖2, ∀θ ∈ B(θ∗, η).

Assumption 5 is satisfied as soon as the Hessian of F is locally Lipschitz on a neighborhood
around θ∗. Coupled with Assumption 2, this implies the existence of a positive constant Lδ
such that

‖∇θF (θ)−∇2
θF (θ∗)(θ − θ∗)‖ ≤ Lδ‖θ − θ∗‖2, ∀θ ∈ Rd.

Theorem 3 Suppose Assumptions 1 to 5 hold, along with the conditions in (5) and (6). In
addition, assume there exists a positive constant ν such that

‖At −A‖op = O
(
t−ν
)

a. s. (7)

Then, θt,w converges almost surely to θ∗, and

‖θt,w − θ∗‖2 =

 O
(

ln(Nt)

Nγ+2ν
t

)
a. s. if 2ν + γ ≤ 1,

O
(

ln(Nt)
Nt

)
a. s. if 2ν + γ > 1.

Moreover, if 2ν + γ > 1, then
√
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

The proof can be found in Appendix C.3. To establish strong results, such as the asymptotic
efficiency of the weighted average estimates (θt,w), the sequence of random matrices (At)
should exhibit a (weak) rate of convergence, as outlined in (7). In simpler terms, achieving
a satisfactory rate of convergence of (At) ensures the asymptotic efficiency of the weighted
average estimates (θt,w).

Alternatively, to establish asymptotic efficiency without relying on a (weak) rate of
convergence of (At), one can consider the following theorem:

7



Godichon-Baggioni and Werge

Theorem 4 Suppose Assumptions 1 to 5 hold, along with the conditions in (5) and (6). In
addition, assume there exists a positive constant v′ > 1/2 such that

1∑t−1
i=0 ln(i+ 1)w

t−1∑
i=0

ln(i+ 1)w+1/2+δ‖A−1
i+1 −A

−1
i ‖op(i+ 1)

γ
2 = O

(
t−v

′
)

a. s., (8)

for some δ > 0. Then, θt,w converges almost surely to θ∗, ‖θt,w−θ∗‖2 = O
(
ln(Nt)N

−1
t

)
a. s.,

and
√
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

See Appendix C.4 for a proof. Note that, although the condition in (8) may seem unusual, it
is straightforward to verify in practice. For example, the proofs of Theorems B.6 and B.9
provide insights into practical methods for verifying this condition.

5. Applications to quasi-Newton’s methods

In this section, we apply our adaptive stochastic optimization methodology from Section 4 to
quasi-Newton’s methods. Specifically, in Section 5.1, we introduce an adaptive inversion-free
stochastic quasi-Newton method and its iterative weighted average version, both designed to
match the computational efficiency of first-order stochastic optimizations methods.

Next, in Section 5.2, we provide three specific examples: linear regression, logistic
regression, and geometric median estimation. Nonetheless, our methods are also applicable
to other models, such as softmax regression (Boyer and Godichon-Baggioni, 2023), ridge
regression (Godichon-Baggioni et al., 2024), non-linear regression (Cénac et al., 2020), and
optimal transport (Bercu et al., 2023).

In Appendix B, we present additional applications of our methodology to Newton’s
method and AdaGrad, with corresponding proofs in Appendix C. In particular, we introduce
a novel streaming variant of AdaGrad, along with its iterative weighted Polyak-Ruppert
average counterpart, in Appendix B.3.

5.1 Adaptive Inversion-Free Stochastic Quasi-Newton Methods with O(dNt)
Operations

To overcome the computational challenges associated with Hessian inversion, we propose a
variant of the stochastic quasi-Newton’s method that entirely avoids Hessian inversion, as
seen in Bercu et al. (2020); Boyer and Godichon-Baggioni (2023). We further enhance this
approach to develop Streaming Stochastic quasi-Newton (SSN) methods, which operate with
only O(dNt) operations.

The SSN and the Weighted Averaged SSN (WASSN) methods are defined recursively for
all t ≥ 0 as follows:

θt+1 =θt − γt+1S̄
−1
t,w′∇θf(θt; ξt+1), θ0 ∈ Rd, (9)

θt+1,w =θt,w +
ln(t+ 1)w∑t
i=0 ln(i+ 1)w

(θt − θt,w), θ0,w = θ0 and w ≥ 0, (10)
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where St,w′ is a recursive estimate of the Hessian. Specifically, we suppose that there is a
natural recursive estimate of the Hessian H̄t = N−1

t Ht of the form:

Ht = H0 +
t∑
i=1

n∑
j=1

αi,jΦi,jΦ
>
i,j ,

with H0 symmetric and positive definite, αi,j ∈ R+ and Φi,j ∈ Rd, which may depend on
θi−1 or θi−1,w.

Remark 1 We would like to emphasize that this type of Hessian estimation is applicable to
many machine learning problems, including linear, logistic, softmax, and ridge regressions
(Bercu et al., 2020; Boyer and Godichon-Baggioni, 2023; Godichon-Baggioni et al., 2024).
Additionally, these methods are employed in tasks such as geometric median estimation
(Godichon-Baggioni and Lu, 2024), nonlinear regression (Cénac et al., 2020), and optimal
transport (Bercu et al., 2023). In Section 5.2, we provide some examples in detail.

To develop the Hessian estimate S̄t,w′ for SSN and WASSN with the same computational
complexity as first-order stochastic gradient methods, we first need to derive a computa-
tionally efficient estimate of H−1

t using the Riccati/Sherman-Morrison formula (Duflo, 2013;
Sherman and Morrison, 1950), applied n times. Updating of H−1

t requires O(d2n) operations.
Nevertheless, the total computation cost at time t would be of order O(d2Nt) operations,
instead of O(dNt) for first-order stochastic gradient methods.

In addition, to apply Theorem 1, it is necessary to control the eigenvalues of the Hessian
estimates. Therefore, we propose a modified version of Ht given by S̄t,w′ = N−1

t,ZSt,w′ , where

St,w′ = S0,w′ +
t∑
i=1

ln(i+ 1)w
′
n∑
j=1

Zi,j

(
ιi,jei,je

>
i,j + αi,jΦi,jΦ

>
i,j

)
, w′ ≥ 0, (11)

with

• S0,w′ symmetric and positive definite,

• Nt,Z = 1 +
∑t

i=1 ln(i+ 1)w
′∑n

j=1 Zi,j , where w
′ ≥ 0 and Zi,j are i.i.d. with Zi,j ∼ B(p)

for some p ∈ (0, 1],

• ιi,j = cιN
−ι
i,j,Z where ι ∈ (0, γ−1/2), cι ≥ 0 andNt,k,Z = 1+

∑t−1
i=1

∑n
j=1 Zi,j+

∑k
j=1 Zt,j ,

• ei,j is the (Ni,j,Z modulo d)-th component of the canonical basis.

Observe that the term ιi,j enables to control the smallest eigenvalue of S̄t,w′ while ln(t+ 1)w
′

enables us to give more weights to the latest updates αt,jΦt,jΦ
>
t,j , which are supposed to be

better since they often depends on θt which should converge to θ∗ almost surely.
The random variables (Zi,j) enables us to adjust the computational cost. More precisely,

observe that with the help of Riccati’s formula (Duflo, 2013), one can update the inverse of
St+1,w′ as follows: for all j = {1, , . . . , n}

S−1

t+ j
2n
,w′

= S−1

t+ j−1
2n

,w′
− Zt+1,jιt+1,j

1 + ιt+1,jeTt+1,jS
−1

t+ j−1
2n

,w′
et+1,j

S−1

t+ j−1
2n

,w′
et+1,je

T
t+1,jS

−1

t+ j−1
2n

,w′
,
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and for all j = {n+ 1, . . . , 2n}

S−1

t+ j
2n
,w′

= S−1

t+ j−1
2n

,w′
− αt,j−nZt+1,j−n

1 + αt,j−nΦ>t,j−nS
−1

t+ j−1
2n

,w′
Φt,j−n

S−1

t+ j−1
2n

,w′
Φt,j−nΦ>t,j−nS

−1

t+ j−1
2n

,w′
.

Thus, as each update is only made if Zt+1,j = 1 (or Zt+1,j−n = 1), the update of S−1
t+1,w only

costs, on average, O(pd2n) operations, leading to a total number of operations of order (on
average):

pd2Nt︸ ︷︷ ︸
estimating the inverse Hessian

+ dNt︸︷︷︸
estimating the gradient

+
d2Nt

n︸ ︷︷ ︸
multiplication of Hessian and gradient estimates

.

Hence, adjusting the value of p can help reduce the computational cost of updating the
inverse of the Hessian. Indeed, one can obtain an average computational cost at time t of
order O(dNt) operations taking p = d−1 and n = d. In other words, it is possible to obtain
an adaptive stochastic quasi-Newton method with only O(dNt) operations.

Next, we can ensure that these adaptive stochastic quasi-Newton methods are asymptoti-
cally efficient. For this, let us consider the σ-algebra F ′t−1 = σ(ξ1,1, . . . , ξt−1,n, Zt,1, . . . , Zt,n).

Theorem 5 Suppose Assumptions 1 to 3 and 5 hold and that cι > 0. In addition, assume
that there exist positive constants Cη′ and η′ > 1 such that for any t ≥ 1 and j ∈ {1, . . . , n},

E[‖αt,jΦt,jΦ
>
t,j‖η

′ |F ′t−1] ≤ Cη
′

η′ .

Then, θt and θt,w converges almost surely to θ∗. Moreover, if St,w′ converges almost surely to
H, then

‖θt − θ∗‖2 = O
(

ln(Nt)

Nγ
t

)
a. s., ‖θt,w − θ∗‖2 = O

(
ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

The details of the proof are included in Appendix C.7. To suppose that St,w′ converges to H
may seem unrealistic, but it is often the case in practice when θt converges to θ∗ (see, for
example, Cénac et al. (2020, Corollary 3.1), Boyer and Godichon-Baggioni (2023, Theorem
A.1 to A.3), or the proofs of Corollaries 1 to 3). Indeed, these proofs are often constructed as
follows: (i) demonstrate that θt converges almost surely to θ∗, (ii) deduce the consistency of
St,w, (iii) infer the convergence rates of the estimators θt and θt,w, and (iv) derive asymptotic
normality.

At last, note that for Newton methods, the asymptotic efficiency of the estimates can be
achieved without averaging by setting the learning rate γt = 1/t, e.g., see Leluc and Portier
(2023); Bercu et al. (2020); Boyer and Godichon-Baggioni (2023). A streaming version of
this approach, with potentially O(dNt) operations, is detailed in Appendix B as well.

In the following sections, we provide three examples of applications; linear regression,
logistic regression and the estimation of the median. Nevertheless, there are still many
applications where our methodology works as highlighted in Remark 1.

10
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5.2 Examples

5.2.1 Linear Regression

Consider the linear regression problem, where ξ = (X,Y ) ∈ Rd ×R such that Y = X>θ∗ + ε,
with θ∗ ∈ Rd and ε a centered random variable independent of X with variance σ2. Then,
θ∗ minimizes the convex function F : Rd → R+ defined as F (θ) = 1

2E[(Y − X>θ)2]. Let
{(Xt,1, Yt,1), . . . , (Xt,n, Yt,n)}t≥1 be i.i.d. pairs of variables arriving sequentially in blocks.
Then, the SSN and WASSN methods are defined by (9) and (10), with

∇θf(θt;Xt+1, Yt+1) = − 1

n

n∑
i=1

(Yt+1,i −X>t+1,iθt)Xt+1,i,

and St,w′ defined by (11) with cι = 0, αt,j = 1, and Φt,j = Xt,j for j ∈ {1, . . . , n}.

Corollary 1 Suppose that X and ε have moments of order 4 and 2, respectively, and
H = E[XX>] is positive definite. Then, for any p ∈ (0, 1], we have

‖θt − θ∗‖2 = O
(

ln(Nt)

Nγ
t

)
a. s., ‖θt,w − θ∗‖2 = O

(
ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0, σ2H−1).

The proof is given in Appendix C.9.

5.2.2 Logistic Regression

Consider the logistic regression problem, where ξ = (X,Y ) ∈ Rd × {0, 1} such that Y |X ∼
Ber(π(X>θ∗)), with θ∗ ∈ Rd and π(x) = ex/(1 + ex). Here, the parameter θ∗ minimizes
the convex function F : Rd → R defined as F (θ) = E[log(1 + exp(X>θ)) − Y X>θ]. Let
{(Xt,1, Yt,1), . . . , (Xt,n, Yt,n)}t≥1 be i.i.d. pairs of variables arriving sequentially in blocks.
Then, the SSN and WASSN methods are defined by (9) and (10), with

∇θf(θt;Xt+1, Yt+1) = − 1

n

n∑
i=1

(Yt+1,i − π(X>t+1,iθt))Xt+1,i,

and St,w′ is defined by (11) with αt,j = π(X>t,jθt−1)[1 − π(X>t,jθt−1)] and Φt,j = Xt,j for
j ∈ {1, . . . , n}.
Corollary 2 Suppose that X have moment of order 4 and H = E[π(X>θ∗)[1−π(X>θ∗)]XX>]
is positive definite. Then, if cι > 0, we have for any p ∈ (0, 1] that

‖θt − θ∗‖2 = O
(

ln(Nt)

Nγ
t

)
a. s., ‖θt,w − θ∗‖2 = O

(
ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0, H−1).

The proof is given in Appendix C.10. Observe that the results in Corollary 2 also holds
when using θt−1,w in αt,j instead of θt−1. Note that assumption of the positivity of H is
not unrealistic, as it is satisfied, for instance, when X is elliptic (Gadat and Panloup, 2023,
Proposition 3).
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5.2.3 Geometric Median

Consider a random variable ξ = X ∈ Rd. The geometric median of X is defined by
θ∗ = arg minθ∈Rd E[‖X − θ‖ − ‖X‖]. Let {Xt,1, . . . , Xt,n}t≥1 be i.i.d variables arriving
sequentially in blocks. Then, the SSN and WASSN methods are defined by (9) and (10),
with

∇θf(θt;Xt+1) = − 1

n

n∑
i=1

Xt+1,i − θt
‖Xt+1,i − θt‖

,

and St,w′ is defined by (11) with

αt,j =
‖Xt,j − θt−1‖

v2
t

and Φt,j =
Xt,j + vtUt,j − θt−1

‖Xt,j + vtUt,j − θt−1‖
− Xt,j − θt−1

‖Xt,j − θt−1‖

for j ∈ {1, . . . , n}, where vt = 1
t log(t+1) and Ut,j are zero-mean i.i.d vectors, with moments of

any orders and simulated independently from Xi,j′ and with covariance equal to the identity
(Godichon-Baggioni and Lu, 2024). Typically, Ut,j are standard Gaussian vectors.

Corollary 3 Suppose Godichon-Baggioni and Lu (2024, Assumption 1 and 2) hold and let

H = E

[
1

‖X − θ∗‖

(
Id −

(X − θ∗) (X − θ∗)T

‖X − θ∗‖2

)]
, and Σ = E

[
(X − θ∗) (X − θ∗)T

‖X − θ∗‖2

]
.

Then,

‖θt − θ∗‖2 = O
(

ln(Nt)

Nγ
t

)
a. s., ‖θt,w − θ∗‖2 = O

(
ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0, H−1ΣH−1).

The proof as well as the assumptions are given in Appendix C.11. Similarly to Corollary 2,
the results in Corollary 3 remains true when using θt−1,w in αt,j and Φt,j instead of θt−1.

6. Experiments

In this section, we empirically evaluate our adaptive stochastic optimization methods, fo-
cusing on three fundamental problems: linear regression (Section 5.2.1), logistic regression
(Section 5.2.2), and the estimation of the geometric median (Section 5.2.3). First, in Sec-
tion 6.1, we explore our methods under complex covariance structures and bad initializations
using synthetic data. In particular, in Section 6.1.1 we compare the computational costs
of our adaptive methods with both first- and second-order methods, demonstrating that
the computational efficiency of our adaptive methods aligns closely with that of first-order
methods. Next, in Section 6.2, we evaluate and compare the methods on classification tasks
using UCI datasets.
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6.1 Synthetic Experiments

We generate samples of d-dimensional Gaussian random vectors X ∼ N (0,Σ). We consider
two structures for the covariance matrix Σ: (1) simple covariance, where Σ is the identity
matrix Id, implying no correlations, and (2) complex covariance, where Σii = i and Σij =
0.9|i−j| for i, j = 1, . . . , d. These choices of covariance structures allow us to explore the
adaptability of our methods under diverse conditions, including strong correlations between
the coordinates of X.

For our experiments, we set d = 100 to emphasize the challenges posed by moderately
high dimensionality. This choice serves to highlight the scalability and robustness of our
proposed methods. Within this setting, the Hessian associated with the model exhibits a
wide range of eigenvalues, with the largest eigenvalue being several hundred times larger
than the smallest one.

We imposed several restrictions on hyperparameters to theoretically derive the convergence
rates of the algorithms. However, in our experiments, we set γt = Cγ(t+ t0)−γ with Cγ = 1
for the linear and logistic regression, and Cγ =

√
d for the geometric median, t0 = d, and

γ = 3/4. The weight parameters for both the estimates and Hessian approximations are set to
2, i.e., w = w′ = 2. The initial Hessian for SSN and WASSN are set to λId with λ = 0.001 for
linear regression and logistic regression, and λ = 0.05 for the geometric median. While these
settings serve as a proof-of-concept, one could fine-tune these parameters further; for instance,
higher values of w (and w′) would enhance adaptability. In the figures, the SSN algorithm
corresponds to the case where Cγ = 1 and γ = 1 without averaging (Appendix B.2).

We set the mini-batch size n equal to the dimension d, which allows our adaptive quasi-
Newton’s method to maintain the same computational cost of first-order methods while
incorporating second-order information. Notable, our results clearly demonstrate that this
approach significantly improves performance compared to AdaGrad and SGD. Specifically,
when dealing with highly correlated data, the AdaGrad algorithm’s adaptive step size
becomes less effective, whereas quasi-Newton’s methods excel. Particularly, in scenarios
involving less-than-ideal initializations (as depicted on the right side of the figures), both
quasi-Newton’s methods show outstanding performance.

Leveraging this setup, we demonstrate the adaptability of our methods when dealing with
moderately high-dimensional datasets with complex covariance structures. Our experiments
underscore the efficiency of our adaptive quasi-Newton’s method compared to first-order
gradient methods and highlight its state-of-the-art performance in terms of both convergence
speed and accuracy.

6.1.1 Computational Efficiency

In our experiments, we investigate various optimization methods, including SGD, AdaGrad,
our streaming AdaGrad detailed in Appendix B.3, along with their iterated weighted Polyak-
Ruppert averages. Additionally, we explore previous quasi-Newton algorithm (SN) and
(WASN) (Boyer and Godichon-Baggioni, 2023), our streaming stochastic quasi-Newton (SSN)
and our weighted Polyak-Ruppert averaged streaming stochastic quasi-Newton (WASSN) from
Section 5.1. For SNN and WASSN, we set p = 1 (i.e., O(d2Nt) computations) and p = 1/d
(i.e., O(dNt) computations) to explore the loss of not updating the whole Hessian at each step.
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Figure 1: Running times (in
seconds) for the algorithms con-
sidered. These running times are
based on processing one million
samples (i.e., Nt = 1, 000, 000),
with a dimension of d = 100, and
a mini-batch size of n = 100.

In Figure 1, we present the running times of the vari-
ous algorithms considered. Here, we can see that Ada-
Grad, streaming AdaGrad, SSN (p = 1/d), and WASSN
(p = 1/d) all have similar running times to SGD. This
indicates that the more sophisticated algorithms incorpo-
rating second-order information and adaptive step sizes
do not incur significant additional computational costs
compared to the simpler SGD. Furthermore, the iterative
weighted average does not add any significant computa-
tional overhead, maintaining efficiency while enhancing
performance.

6.1.2 Linear Regression

In the context of linear regression, we aim to evaluate
the performance of our adaptive stochastic optimization
methods for fitting linear models to the data. This entails
modeling a linear relationship where the dependent vari-
able y is expressed as a linear combination of the feature
vector x and a parameter vector θ∗. We follow the approach
Boyer and Godichon-Baggioni (2023) and set θ∗ = (−d/2,−(d− 1)/2, . . . , (d− 1)/2, d/2)>.
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Figure 2: Linear regression. Each curve shows ‖θt − θ∗‖ averaged over 50 epochs with
different initial points and one million samples. Initial points θ0 are generated as θ0 = θ∗+rU ,
where U is a random variable on the unit sphere of Rd and r ∈ {1, 5}. Left: simple covariance
with r = 1; middle: complex covariance with r = 1; right: complex covariance with r = 5.

In Figure 2, we observe that all algorithms perform well in the well-posed setting with
no correlation and good initialization. However, introducing correlations causes SGD to
diverge, while both AdaGrad and quasi-Newton’s methods still manage to converge. This
can be attributed to their innate capability to handle the diagonal structure of the Hessian
matrix, which comprises eigenvalues at different scales. It’s important to note that while the
AdaGrad algorithm adapts its step size, it may be less effective when confronted with highly
correlated data and less-than-ideal initializations (as depicted on the right side of the figure).
In contrast, our adaptive Quasi-Newton’s methods demonstrate outstanding performance in
all cases. Notably, the WASSN, with only O(dNt) computational costs, performs close to
the full Hessian versions (streaming, SN and WASN).
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6.1.3 Logistic Regression

In logistic regression, our focus shifts to evaluating the performance of our adaptive stochastic
optimization methods within the realm of binary classification. Logistic regression models
the probability of a data point belonging to one of two classes based on predictor variables.
We utilize a sigmoid function to transform a linear combination of the feature vector X and
the parameter vector θ∗ into class probabilities. Inspired by Boyer and Godichon-Baggioni
(2023), we choose θ∗ ∈ Rd with all components equal to 0.1. Unlike the linear regression
setting, logistic regression exhibits intrinsic non-linearity, which makes the impact of the
covariance structures less clear.
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Figure 3: Logistic regression. Each curve shows ‖θt − θ∗‖ averaged over 50 epochs with
different initial points and one million samples. Initial points θ0 are generated as θ0 = θ∗+rU ,
where U is a random variable on the unit sphere of Rd and r ∈ {1, 5}. Left: simple covariance
with r = 1; middle: complex covariance with r = 1; right: complex covariance with r = 5.

In Figure 3, our adaptive quasi-Newton methods consistently perform well across all
configurations. The streaming AdaGrad algorithm also performs well as long as the initial
point is not too far from the solution. In scenarios involving less-than-ideal initializations, as
depicted on the right side of the figure, the best performance is achieved by the SSN/WASSN.
This exceptional asymptotic behavior is enabled by the incorporation of weighted estimates,
assigning greater significance to the most recent ones, distinguishing it from the usual
Polyak-Ruppert averaging quasi-Newton’s method, as elaborated in Cénac et al. (2020).

6.1.4 Geometric Median

In the context of geometric median estimation, we aim to evaluate the performance of
our adaptive stochastic optimization methods for estimating the geometric median of a
distribution with median θ∗ = (−d/2,−(d− 1)/2, . . . , (d− 1)/2, d/2)>.

In Figure 4, we observe our adaptive quasi-Newton methods, particularly the averaged
versions, demonstrate superior performance, especially in scenarios with suboptimal ini-
tializations. Similar to the previous experiments, our adaptive Quasi-Newton methods
show remarkable robustness and efficiency. The SSN method, with its weighted estimates,
WASSN, stands out by maintaining high performance even when starting points are far from
the solution. This is particularly evident under complex covariance structures and larger
initialization offsets, as shown on the right side of the figure. These results highlight the
advantages of incorporating second-order information and adaptive weighting in optimization
algorithms.
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Figure 4: Geometric median. Each curve shows ‖θt − θ∗‖ averaged over 50 epochs with
different initial points and one million samples. Initial points θ0 are generated as θ0 = θ∗+rU ,
where U is a random variable on the unit sphere of Rd and r ∈ {1, 5}. Left: simple covariance
with r = 1; middle: complex covariance with r = 1; right: complex covariance with r = 5.

6.2 Real-World Experiments

In this section, we evaluate the performance of our methods on logistic regression for binary
classification tasks using three UCI datasets (Kelly et al.): Adult, Higgs, and Statlog. For
consistency, we used the same hyperparameters as outlined in Section 6.1.

Figure 5 presents the averaged loss curves for each dataset under different initialization
conditions. The columns, from left to right, correspond to the Adult, Higgs, and Statlog
datasets. The top row represents narrow initializations, while the bottom row illustrates
wider initializations, simulating more challenging starting points.

Across all datasets and initialization configurations, our methods, SSN and WASSN,
consistently demonstrate strong performance, comparable to full Hessian Newton methods.
In particular, the weighted averaged streaming stochastic quasi-Newton method (WASSN)
closely matches the performance of the full Hessian method (p = 1), even under more difficult
initialization conditions. Our streaming AdaGrad method also exhibits strong convergence
behavior. Under wider initializations, while its performance falls short of the quasi-Newton
methods, it remains superior to both standard AdaGrad and SGD.

Conclusion and Future Work

In this work, we addressed the unique challenges posed by streaming data in the context of
stochastic optimization. The continuous influx of large, high-dimensional data necessitates
adaptive approaches that can effectively handle ill-conditioned problems while maintaining
computational efficiency. Our contributions lie in the development of adaptive stochastic
optimization methods, particularly an inversion-free adaptive Quasi-Newton’s method with a
computational complexity matching that of first-order methods, O(dNt), where d represents
the number of dimensions/features, and Nt denotes the quantity of data up to time t.

Theoretical analyses have confirmed the asymptotic efficiency of our proposed methods.
By dynamically adjusting learning rates per-dimension and incorporating historical gradient
or Hessian information, our methods exhibit adaptability and efficiency in navigating through
the complexities of ill-conditioned problems. Notably, the introduction of a weighted averaged
version enhances the adaptability and robustness of our methods, particularly in scenarios
involving complex covariance structures and challenging initializations.
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Figure 5: Logistic regression for classification. Each curve shows the loss averaged over ten
epochs with different initial points. Initial points θ0 are generated as θ0 = rU , where U is a
random variable on the unit sphere of Rd and r ∈ {1, 5}. The first row represents r = 1, and
the bottom row corresponds to r = 5. The columns, from left to right, correspond to the
Adult, Higgs, and Statlog datasets.

One significant contribution is the inversion-free adaptive Quasi-Newton’s method in
Section 5.1, which strikes a balance between addressing ill-conditioned problems and meeting
the computational demands of streaming data. This innovation allows us to harness the
advantages of second-order information while aligning with the computational complexity
of first-order methods. Empirical evidence demonstrates the effectiveness of our adaptive
methods, showcasing superior performance, especially in challenging scenarios.

In conclusion, our adaptive stochastic optimization methods offer a versatile solution
for streaming data settings, providing an efficient and adaptive framework for handling
ill-conditioned problems. The inversion-free adaptive Quasi-Newton’s method, in particular,
stands out as a computationally efficient alternative that bridges the gap between first-order
and second-order methods. As we look ahead, further exploration of real-world applications,
theoretical advancements, and extensions to non-convex settings will be key directions for
future research in this evolving field.

Future work Looking ahead, there are several promising directions for future research:
(a) Non-convex analysis. Extending our methodologies to non-convex optimization problems
is a crucial next step. Analyzing the behavior and convergence properties of our stream-
ing AdaGrad algorithm in non-convex scenarios will contribute to a more comprehensive
understanding of their applicability across diverse optimization landscapes such as Neural
Networks. (b) Dimensionality effects. Although it is obvious that considering the case where
the dimension is larger than the sample size in our streaming setting is unrealistic, an other
important perspective would be to quantify theoretically the impact of the dimension on
the quality of the estimates. (c) Time-dependent observations. The streaming context often
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involves time-dependent observations, and our current work assumes independence among the
data points. Investigating extensions of our methods to handle dependent observations will
be essential for real-world applications where temporal or spatial dependencies are prevalent.
Recently, Godichon-Baggioni et al. (2023a) showed that increasing mini-batches can break
both short- and long-term dependence structures. These future research directions aim
to refine the versatility and robustness of our adaptive stochastic optimization methods,
ensuring their effectiveness across a broader spectrum of optimization challenges.
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Appendix

Appendix A contains the theoretical analysis of Section 4 with increasing mini-batches.
Appendix B presents additional applications of our methodology; for example, AdaGrad
and stochastic quasi-Newton methods under different learning rates, both with and without
weighted averaging. Appendix C contains the proofs of the theoretical analysis in Section 4
and Appendix A

Appendix A. Theoretical Analysis with Increasing Mini-Batches

In this appendix, we examine our adaptive methods in the context of increasing mini-batches
and provide the corresponding translations of the various theorems. The motivation for
considering increasing mini-batches comes from recent work by Godichon-Baggioni et al.
(2023a), which demonstrated that this approach can accelerate convergence and break long-
and short-term dependence structures.

Following, Godichon-Baggioni et al. (2023a,b), we consider mini-batches of the form
nt = bCρtρc with Cρ ∈ N. Moreover, we suppose that the learning rate γt = Cγn

β
t t
−γ , which

roughly means that γt ∼ CγCβρ t−γ+βρ. Adding the term nβt to the learning rate enables us
to put more weight on (presumably) more precise gradient steps, as they are estimated with
larger mini-batches nt. We suppose that γ − βρ ∈ (1/2, 1) and γ > ρ(2β−1)+1

2 .

A.1 Adaptive Stochastic Optimization Methods

This section presents the results for increasing mini-batches corresponding to Section 4.1.
When considering increasing mini-batches, our adaptive stochastic optimization methods are
defined as in (2), namely as

θt+1 = θt − γt+1At∇θf(θt; ξt+1), θ0 ∈ Rd,

18



On Adaptive Stochastic Optimization for Streaming Data

where ∇θf(θt; ξt+1) = n−1
t+1

∑nt+1

i=1 ∇θf(θt; ξt+1,i). In this case, the conditions in (5) should
be modified to∑
t≥1

γtλmin(At−1) = +∞ a. s.,
∑
t≥1

γ2
t

nt
λmax(At−1)2 < +∞ a. s.,

λmax(At)
2γt+1

λmin(At)

a.s.−−−−→
t→+∞

0.

(A.1)

Under these conditions outlined in (A.1), we have the strong consistency of the estimates
derived from (2), similar to the results in Theorem 1.

Theorem A.1 Suppose Assumptions 1 to 3 hold, along with the conditions in (A.1). Then
θt converges almost surely to θ.

Similarly, we have the rate of convergence for (2) as in Theorem 2:

Theorem A.2 Suppose Assumptions 1 to 4 hold, along with the conditions in (A.1). In
addition, assume there exists positive constants Cη and η > 1

γ−βρ − 1 such that for all θ ∈ Rd,

E
[
‖∇θf(θ; ξ)‖2+2η

]
≤ Cη(1 + F (θt)− F (θ∗))1+η. (A.2)

Then,

‖θt − θ∗‖2 = O
(

ln(Nt)N
−ρ−γ+βρ

1+ρ

t

)
a. s.

Note that the rate of convergence in Theorem A.2 reproduce the results of the constant
mini-batch case in Theorem 2 when nt = n = Cρ, β = 0, and ρ = 0.

A.2 The Weighted Averaged Version

As in Section 4.2, we consider the weighted averaged version of our adaptive stochastic
optimization methods. The weighted estimates of (3) (with time-varying mini-batches) are
defined as follows:

θt,w =
1∑t−1

i=0 ni+1 ln(i+ 1)w

t−1∑
i=0

ni+1 ln(i+ 1)wθi, w ≥ 0,

which can be written recursively as θt+1,w = θt,w + nt+1 ln(t+1)w∑t
i=0 ni+1 ln(i+1)w

(θt − θt,w).
Similarly to Theorem 3, we have the rate of convergence and the optimal asymptotic

normality of these weighted estimates:

Theorem A.3 Suppose Assumptions 1 to 5 hold, along with inequality (A.2). In addition,
assume there exists a positive constant ν such that

‖At −A‖op = O
(

1

tν

)
a. s.

Then,

‖θt,w − θ∗‖2 =


O

 ln(Nt)

1
2+1{

ν+
ρ(1−β)+γ

2 =1

}

N

2ν+ρ(1−β)+γ
1+ρ

t

 a. s., if 2ν + ρ(1− β) + γ ≤ 1 + ρ,

O
(

ln(Nt)
Nt

)
a. s., if 2ν + ρ(1− β) + γ > 1 + ρ.
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Moreover, if 2ν + ρ(1− β) + γ > 1 + ρ, then√
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

Similarly to Theorem 4, we can establish the asymptotic efficiency without relying on a
(weak) rate of convergence of At:

Theorem A.4 Suppose Assumptions 1 to 5 hold, along with inequality (A.2). In addition,
assume there exists a positive constant v′ > 1/2 such that

1∑t−1
i=0 ni+1 ln(i+ 1)w

t−1∑
i=0

ni+1 ln(i+1)w+1/2+δ‖A−1
i+1−A

−1
i ‖op(i+1)

γ−ρ(β+1)
2 = O

(
1

t(1+ρ)v′

)
a. s.,

(A.3)
for some δ > 0. Then,

‖θt,w−θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s., and

√
Nt(θt,w−θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

Appendix B. Applications to Newton’s method and AdaGrad

As in Section 5, we apply our adaptive stochastic optimization methodology to (stochastic)
Newton’s methods (but with increasing mini-batches). In particular, we consider the Newton’s
methods with the possibly O(dNt) operations, analogues to Appendix B.2 and Section 5.1.

B.1 Direct Streaming Stochastic Newton’s Method

In the special case of stochastic Newton’s methods, one can obtain the asymptotic efficiency
without averaging by taking a step sequence of the form γt = 1/t.2 The streaming stochastic
Newton algorithm is defined by the update:

θt+1 = θt −
1

t+ 1
H̄−1
t ∇θf(θt; ξt+1), θ0 ∈ Rd, (B.4)

where ∇θf(θt; ξt+1) = n−1
∑n

i=1∇θf(θt; ξt+1,i) and H̄t is an approximation of the Hessian
of F .

The asymptotic efficiency of the streaming version of the stochastic Newton’s method
can now be articulated as follows:

Theorem B.5 Suppose Assumptions 1, 2, 3, and 5 hold, along with inequality (6). Then, θt
converges almost surely to θ∗. In addition, assume H̄−1

t converges almost surely to ∇2
θF (θ∗)−1.

Then,

‖θt − θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s.

Moreover, assume there exists a positive constant ν such that ‖H̄−1
t − ∇2

θF (θ∗)−1‖op =
O(1/tν) a. s.. Then √

Nt(θt − θ∗)
L−−−−→

t→+∞
N (0,∇2

θF (θ∗)−1Σ∇2
θF (θ∗)−1).

2. Observe, in the increasing batch-size case in Appendix A, one should take γt = nt/Nt.
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Remark B.1 Observe that assuming the convergence of H−1
t could be considered unrealistic.

However, at this point, the strong consistency of θt is already established. Then, the consistency
of Ht is verified, for example, if E

[
αi,jΦi,jΦ

T
i,j |F ′i,j−1

]
converges to H−1 when i goes to

infinity, and if for all i, j

E
[
α2
i,j ‖Φi,j‖4 |F ′i,j−1

]
1{‖θi−θ∗‖≤M1} ≤M2,

for some M1,M2 > 0. This is satisfied, for instance (under weak conditions), for the case of
linear and logistic regression and the estimation of the geometric median; see the proofs of
Corollaries 1 to 3.

B.2 Direct Streaming Stochastic Newton’s methods with possibly O(dNt)
operations

The direct stochastic Newton’s method presented in Appendix B.1 is associated with com-
putational costs of O(d2Nt), which can be computationally expensive, especially in high-
dimensional streaming settings. To address this challenge and following the idea given in
Section 5.1. Specifically, we consider Hessian estimates H̄t = N−1

t Ht of the form

Ht = H0 +

t∑
i=1

n∑
j=1

αi,jΦi,jΦ
>
i,j ,

with H0 symmetric and positive, αi,j ∈ R+ and Φi,j ∈ Rd. Observe that these quantities
may depend on θi−1 or θi−1,w. We now introduce the direct streaming stochastic Newton’s
method using weighted Hessian estimates:

θt+1 = θt −
1

t+ 1
H̄−1
t,w′∇θf(θt; ξt+1), θ0 ∈ Rd, (B.5)

where ∇θf(θt; ξt+1) = n−1
∑n

i=1∇θf(θt; ξt+1,i) and H̄t,w′ = N−1
t,ZHt,w′ with

Ht,w′ = H0,w′ +
t∑
i=1

ln(i+ 1)w
′
n∑
j=1

Zi,j

(
ιi,jei,je

>
i,j + αi,jΦi,jΦ

>
i,j

)
, (B.6)

with Nt,Z = 1 +
∑t

i=1 ln(i+ 1)w
′∑n

j=1 Zi,j , H0 symmetric and positive, w′ ≥ 0, and Zi,j are
i.i.d with Zi,j ∼ B(p) for some p ∈ (0, 1]. In addition, let Nt,k,Z = (1 +

∑t−1
i=1

∑n
j=1 Zi,j +∑k

j=1 Zt,j), ιi,j = cιN
−ι
i,j,Z for ι ∈ (0, 1/2), and ei,j be the (Ni,j,Z modulo d+ 1)-th component

of the canonical basis.
Let us recall that with the help of Riccati’s formula (Duflo, 2013), one can update the

inverse of Ht+1,w′ as follows: for all j = {1, , . . . , n}

H−1
t+ j

2n ,w′
= H−1

t+ j−1
2n ,w′

− Zt+1,jιt+1,j

1 + ιt+1,jeTt+1,jH̃
−1
t+ j−1

2n ,w′
et+1,j

H−1
t+ j−1

2n ,w′
et+1,je

T
t+1,jH

−1
t+ j−1

2n ,w′

and for all j = {n+ 1, . . . , 2n}

H−1
t+ j

2n ,w′
= H−1

t+ j−1
2n ,w′

− αt,j−nZt+1,j−n

1 + αt,j−nΦ>t,j−nH
−1
t+ j−1

2n ,w′
Φt,j−n

H−1
t+ j−1

2n ,w′
Φt,j−nΦ>t,j−nH

−1
t+ j−1

2n ,w′
.
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We now ensure that this method is still asymptotically efficient. In this aim, let us the
following σ algebra: F ′t−1 = σ (ξ1,1, . . . , ξt−1,n, Zt,1, . . . , Zt,n) .

Theorem B.6 Suppose Assumptions 1 to 3 and 5 hold and cι > 0. In addition, assume that
there exist positive constants Cη′ and η′ ≥ 2 such that for any t ≥ 1 and j ∈ {1, . . . , n},

E[‖αt,jΦt,jΦ
>
t,j‖η

′ |F ′t−1] ≤ Cη
′

η′ .

Then, θt and θt,w converges almost surely to θ∗. Suppose also that E
[
αt,jΦt,jΦt,j |F ′t−1

]
converges almost surely to H, then

‖θt − θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s.

Finally, assuming also that
∥∥E [αt,jΦt,jΦt,j |F ′t−1

]
−H

∥∥ = O(t−v) for some v > 0, then√
Nt(θt − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).

Observe that contrary to Theorem 3, no restriction on ν is necessary.

B.2.1 Streaming Stochastic Newton’s Methods with possibly O(dNt)
operations

Expanding the mini-batch scenario from Appendix B.2 leads to the formulation of the
streaming variant of stochastic Newton’s method, as defined by:

θt+1 = θt −
1

Nt+1
H̄−1
t,w′

nt+1∑
i=1

∇θf(θt; ξt+1,i), (B.7)

where H̄t,w′ = N−1
t,ZHt,w′ with

Ht,w′ = H0,w′ +

t∑
t′=1

ln(t′ + 1)w
′
n′t∑
i=1

Zt′,i

(
ιt′,iẽt′,iẽ

T
t′,i + αt′,iΦt′,iΦ

>
t′,i

)
,

with NZ,t = 1 +
∑t

t′=1 ln(t′+ 1)w
′∑nt′

i=1 Zt′,i. In addition, let NZ,t,i = (1 +
∑t−1

t′=1

∑nt′
j=1 Zt′,j +∑i

j=1 Zt,j), ιt′,i = cιN
−ι
Z,t′,i, ι ∈ (0 1−ρ

2(1+ρ)), et′,i is the (NZ,t′−1,i modulo d +1)-th componant
of the canonical basis.

As in Theorem B.6, we can establish the rate of convergence and the asymptotic normality
of (B.7). In this aim, let us the following σ algebra: F ′t−1 = σ

(
ξ1,1, . . . , ξt−1,nt−1 , Zt,1, . . . , Zt,nt

)
.

Theorem B.7 Suppose Assumptions 1 to 3 and 5 hold.In addition, assume that there exist
positive constants Cη′ and η′ ≥ 2 such that for any t ≥ 1 and j ∈ {1, . . . , n},

E[‖αt,jΦt,jΦ
>
t,j‖η

′ |Ft−1] ≤ Cη
′

η′ .
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Then, θt and θt,w converge almost surely to θ∗. Suppose also that E
[
αt,jΦt,jΦt,j |F ′t−1

]
converges almost surely to H, then

‖θt − θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s.

Finally, assuming also that
∥∥E [αt,jΦt,jΦt,j |F ′t−1

]
−H

∥∥ = O(t−v) for some v > 0, then

‖θt − θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s.

Moreover, suppose that the Hessian of F is locally Lipschitz on a neighborhood around θ∗

and that η′ ≥ 2. Then,√
Nt (θt − θ∗)

L−−−−→
t→+∞

N
(
0,∇2

θF (θ∗)−1Σ∇2
θF (θ∗)−1

)
.

B.2.2 Weighted Averaged Version of Streaming Stochastic Newton’s
Methods with possibly O(dNt) operations

The weighted averaged version outlined in Section 5.1 can similarly be adapted to the
increasing mini-batch case. The weighted averaged streaming stochastic Newton’s method is
defined as

θt+1 = θt − γt+1S̄
−1
t,w′

1

nt+1

nt+1∑
i=1

∇θf(θt; ξt+1,i),

θt+1,w = θt,w +
nt+1 ln(t+ 1)w∑t
i=0 ni+1 ln(i+ 1)w

(θt − θt,w), (B.8)

where γt = Cγn
β
t t
−γ and S̄t,w′ = N−1

t,ZSt,w′ with

St,w′ = S0,w′ +
t∑

t′=1

ln(t′ + 1)w
′
nt′∑
i=1

Zt′,i

(
ιt′,iet′,ie

T
t′,i + αt′,iΦt′,iΦ

>
t′,i

)
,

with S0 symmetric and positive, ιt′,i = CιN
−ι
Z,t′,i with ι ∈

(
0, min{γ−ρβ,2γ−2ρβ−1+ρ}

2(1+ρ)

)
, which

is possible since γ − ρβ ∈ (1/2, 1).
Like in Theorem 5, we have the following asymptotic optimality:

Theorem B.8 Suppose Assumptions 1 to 3 and 5 hold, along the condition (A.2). In
addition, assume that there exist positive constants Cη′ and η′ ≥ 2 such that for any t ≥ 1
and j ∈ {1, . . . , n},

E[‖αt,jΦt,jΦ
>
t,j‖η

′ |F ′t−1] ≤ Cη
′

η′ .

Then θt and θt,w converge almost surely to θ∗. Suppose also that St,w′ converges almost surely
to H, then

‖θt − θ∗‖2 = O

 ln(Nt)

N
γ+ρ(1−β)

1+ρ

t

 a. s. and ‖θt,w − θ∗‖2 = O
(

ln(Nt)

Nt

)
.

In addition, √
Nt (θt,w − θ∗)

L−−−−→
t→+∞

N
(
0,∇2

θF (θ∗)−1Σ∇2
θF (θ∗)−1

)
.
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B.3 Streaming AdaGrad and its Weighted Averaged Version

In this section, we apply our adaptive stochastic optimization methodology to AdaGrad
(Duchi et al., 2011). Our adaptation results in a streaming version of AdaGrad, specifically
tailored for efficient handling of evolving data streams. Additionally, we introduce the
weighted averaged version of streaming AdaGrad, enhancing adaptability and accelerating
convergence.

B.3.1 Streaming AdaGrad with constant mini-batches

The recursive definitions for streaming AdaGrad and its weighted averaged version are as
follows:

θt+1 =θt − γt+1Gt∇θf(θt; ξt+1), θ0 ∈ Rd, (B.9)

θt+1,w =θt,w +
ln(t+ 1)w∑t
i=0 ln(i+ 1)w

(θt − θt,w), (B.10)

where ∇θf(θt; ξt+1) = n−1
∑n

i=1∇θf(θt; ξt+1,i) and Gt is a diagonal matrix with k-th element
G

(k)
t for k = 1, . . . , d, given as

G
(k)
t =

 1

Nt

G(k)
0 +

t∑
i=1

n∑
j=1

∂

∂k
f(θt−1; ξi,j)

2

−1/2

,

with ∇θ(k) denoting the partial derivative with respect to k-th element of θ, i.e., θ(k).
To mitigate the potential divergence of the eigenvalues of Gt, we employ a technique

introduced by Godichon-Baggioni and Tarrago (2023), resulting in a mild modification of
the standard random matrix Gt. The modification is expressed as:

G
(k)
t = max

Cβ′′tβ′′ ,min

Cβ′tβ′ ,
 1

Nt

G(k)
0 +

t∑
i=1

n∑
j=1

∂

∂k
f(θt−1; ξi,j)

2

−1/2

 ,

with Cβ′ , Cβ′′ > 0. In this formulation, the addition of the min-term in Gt aids in controlling
the potential divergence of its largest eigenvalue, while the max-term ensures a lower bound for
the smallest eigenvalue. Precisely, selecting γ ∈ (1/2, 1), β′ ∈ (0, γ− 1/2), and β′′ ∈ (γ− 1, 0)
satisfies 2β′ − γ − β′′ < 0, which ensures the conditions in (5) are satisfied.

With these modifications in place, we can now establish the rate of convergence and
asymptotic normality.

Theorem B.9 Suppose Assumptions 1 to 3 and 5 hold, along with inequality (6). In addition,
assume that the variance V[ ∂∂kf(θ∗; ξ)] > 0 for k = 1, . . . , d. Then,

‖θt − θ∗‖2 = O
(

ln(Nt)

Nγ
t

)
a. s., ‖θt,w − θ∗‖2 = O

(
ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N (0,∇2
θF (θ∗)−1Σ∇2

θF (θ∗)−1).
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B.3.2 Streaming AdaGrad with increasing mini-batches

For the increasing mini-batch case, the streaming AdaGrad variant and its weighted averaged
version is defined recursively by

θt+1 = θt − γt+1Gt∇θf(θt; ξt+1), θ0 ∈ Rd,

θt+1,w = θt,w +
nt+1 ln(t+ 1)w∑t
i=0 ni+1 ln(i+ 1)w

(θt − θt,w),

where ∇θf(θt; ξt+1) = n−1
t+1

∑nt+1

i=1 ∇θf(θt; ξt+1,i) and Gt is a diagonal matrix with, denoting
by G(k)

t the k-th element of the diagonal of Gt,

G
(k)
t = max

Cβ′′tβ′′ ,min

Cβ′tβ′ ,
 1

Nt

G(k)
0 +

t∑
i=1

nt∑
j=1

(
∂

∂k
f(θt−1; ξi,j)

)2
−1/2


 .

Remark that the add of the minimum in the expression of Gt enables to control the possible
divergence of the larges eigenvalue of Gt while the max term enables to lower bound the
smallest eigenvalue. More precisely, taking γ − βρ ∈ (1/2, 1), β′ ∈ (0, γ + ρ(1

2 − β)− 1/2)
and β′′ ∈ (γ − βρ− 1, 0) satisfying 2β′ − γ + βρ− β′′ < 0 enables to verify the conditions in
(A.1). To simplify it, one can take β′ < γ − βρ− 1/2. Then, Theorem B.9 can be written as
follows:

Theorem B.10 Suppose Assumptions 1 to 3 and 5 hold, along with the conditions in (A.2).
In addition, assume that the variance V

[
∂
∂kf(θ∗; ξ)

]
> 0 for k = 1, . . . , d. Then,

‖θt − θ∗‖2 = O

 ln(Nt)

N
γ+ρ(1−β)

1+ρ

t

 a. s., ‖θt,w − θ∗‖2 = O
(

ln(Nt)

Nt

)
a. s.,

and √
Nt(θt,w − θ∗)

L−−−−→
t→+∞

N
(
0,∇2

θF (θ∗)−1Σ∇2
θF (θ∗)−1

)
.

Appendix C. Proofs

The proof are solely presented for the increasing mini-batch case outlined in Appendix A, as
the constant mini-batch case corresponds to nt = n = Cρ, β = 0, and ρ = 0.

For the sake of simplicity, in all the sequel, since nt ∼ Cρtρ, we will make the abuse that
nt = Cρt

ρ. To lighten the notation, we let H denote ∇2
θF (θ∗). In addition, let f ′t+1 and

f ′t+1,i denote ∇θf(θt; ξt+1) and ∇θf(θt; ξt+1,i), respectively.

C.1 Proof of Theorems 1 and A.1

Let Vt denote F (θt) − F (θ∗). Observe that with the help of a Taylor’s expansion of the
objective function F and since the Hessian is uniformly bounded (Assumption 2), then one
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has

Vt+1 ≤ Vt +∇θF (θt)
>(θt+1 − θt) +

L∇F
2
‖θt+1 − θt‖2

≤ Vt − γt+1∇θF (θt)
>Atf

′
t+1 +

L∇F
2

γ2
t+1λmax(At)

2‖f ′t+1‖2.

Before taking the conditional expectation, recall from Godichon-Baggioni et al. (2023b) that

E[‖f ′t+1‖2|Ft] =
1

nt+1
E[‖f ′t+1,i‖2|Ft]+‖∇∇F (θt)‖2 ≤

1

nt+1
C(1+F (θt)−F (θ∗))+‖∇θF (θt)‖2.

Thus, we obtain that

E[Vt+1|Ft] ≤Vt − γt+1∇θF (θt)
>At∇θF (θt)

+
L∇F

2
γ2
t+1λmax(At)

2

(
C

nt+1
(1 + F (θt)− F (θ∗)) + ‖∇θF (θt)‖2

)
≤
(

1 +
L∇FC

2

γ2
t+1λmax(At)

2

nt+1

)
Vt

− γt+1‖∇∇F (θt)‖2
(
λmin(At)−

L∇F
2

γt+1λmax(At)
2

)
+
L∇FC

2

γ2
t+1λmax(At)

2

nt+1
.

Observe that as γt+1λmax(At)2

λmin(At)
converges almost surely to zero for any constant C ∈ (0, 1) due

to the conditions in (A.1). Then, 1{L∇F
2

γt+1λmax(At)
2≥Cλmin(At)

} converges almost surely to

zero as well. Thus, we have that

E[Vt+1|Ft] ≤
(

1 +
L∇FC

2

γ2
t+1λmax(At)

2

nt+1

)
Vt − (1− C)γt+1λmin(At)‖∇θF (θt)‖2

+
L∇FC

2

γ2
t+1λmax(At)

2

nt+1

+
L∇FC

2
γ2
t+1λmax(At)

2‖∇θF (θt)‖21{L∇F
2

γt+1λmax(At)2≥Cλmin(At)
}.

Next, since 1{L∇F
2

γt+1λmax(At)2≥Cλmin(At)
} converges almost surely to zero and by the condi-

tions in (A.1); ∑
t≥0

γ2
t+1λmax (At)

2

nt+1
< +∞ a. s.,

and ∑
t≥0

γ2
t+1λmax (At)

2
1{L∇FC

2
γt+1‖∇F (θt)‖2λmax(At)

2≥cλmin(At)
} < +∞ a. s.,

then, applying Robbins-Siegmund’s theorem gives that Vt converges almost surely to a finite
random variable and ∑

t≥0

γt+1λmin(At)‖∇θF (θt)‖2 < +∞ a. s.,
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meaning, that lim inft‖∇θF (θt)‖2 = 0 a.s., such that lim inft Vt = 0 a.s., i.e., Vt converges
almost surely to zero, which concludes the proof.

C.2 Proof of Theorems 2 and A.2

Following the reasoning of Antonakopoulos et al. (2022, page 11), AH and A1/2HA1/2 have
the same eigenvalues. Indeed, for any λ ∈ R,

det
(
A1/2HA1/2 − λId

)
= det

(
A−1/2

(
AHA1/2 − λA1/2

))
= det

(
A−1/2 (AH − λId)A1/2

)
= det (AH − λId) .

Then, there exists matrix Q and a positive diagonal matrix D, such that AH = Q−1DQ.
Thus,

Q(θt+1 − θ∗) = Q(θt − θ∗)− γt+1QAtf
′
t+1 = Q(θt − θ∗)− γt+1QAt∇θF (θt) + γt+1QAtΞt+1,

where Ξt+1 = ∇θF (θt)− f ′t+1. By linearizing the gradient one has

Q(θt+1 − θ∗) = Q(θt − θ∗)− γt+1QAtH(θt − θ∗) + γt+1QAtΞt+1 − γt+1QAtδt,

where δt = ∇θF (θt) − H(θt − θ∗) is the remainder term of the Taylor’s expansion of the
gradient. Next, we have

Q (θt+1 − θ∗) =Q (θt − θ∗)− γt+1QAH (θt − θ∗)− γt+1Q (At −A)H (θt − θ∗)
+ γt+1QAtΞt+1 − γt+1QAtδt

= (Id − γt+1D)Q (θt − θ∗)− γt+1Q (At −A)H (θt − θ∗)
+ γt+1QAtΞt+1 − γt+1QAtδt. (C.11)

Observe that in the case where A = H−1, i.e., in the stochastic Newton’s method, one has
D = Q = Id. With the help of induction, one has by (C.11) that

Q (θT − θ∗) =

R1,T :=︷ ︸︸ ︷
βT,0Q (θ0 − θ∗)

R2,T :=︷ ︸︸ ︷
−
T−1∑
t=0

βT,t+1γt+1Q (At −A)H (θt − θ∗)−
T−1∑
t=0

βT,t+1γt+1QAtδt

+

T−1∑
t=0

βT,t+1γt+1QAtΞt+1︸ ︷︷ ︸
MT :=

, (C.12)

where βT,t =
∏T
j=t+1 (Id − γjD) and βT,T = Id. The rest of the proof consists in giving the

rate of convergence of each term on the right-hand side of decomposition (C.12) for both
cases, i.e., for the constant mini-batches and increasing mini-batches.
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Rate of convergence for R1,T Since D is a positive diagonal matrix, and since γt is
decreasing, there is a rank t0 such that for all t ≥ t0, ‖Id − γtD‖op ≤ 1− λmin(D)γt. Then,
for all T ≥ t0,

‖βT,0‖op ≤
t0−1∏
t=1

(1 + γtλmax(D))
T∏
t=t0

(1− γtλmin(D))

≤ exp

(
2λmax(D)

cγC
β
ρ

1 + βρ− γ
t1+βρ−γ
0

)
exp

(
−λmin(D)

cγC
β
ρ

1 + βρ− γ
T 1+βρ−γ

)
.

With NT denoting
∑T

t=1 nt, one has T = NT
n in the case of the constant mini-batch size, and

T ∼
(

1+ρ
Cρ
NT

) 1
1+ρ for the increasing mini-batch size. Then, one has

‖βT,0‖op =


O
(

exp
(
−λmin(D)

cγnγ−1

1−γ N1−γ
T

))
if nt = n,

O

(
exp

(
−λmin(D)

cγC
β−1+γ
1+ρ

ρ

1+βρ−γ N
1+βρ−γ

1+ρ

T

))
if nt = bCρtρc .

(C.13)

Then, in both cases, this term converges exponentially fast to zero.

A first rate of convergence of MT First, remark that

E
[
‖Ξt+1‖2 |Ft

]
≤ E

[∥∥f ′t+1

∥∥2 |Ft
]
≤ 1

nt+1
C (1 + F (θt)− F (θ∗)) + ‖∇F (θt)‖2 . (C.14)

Then, applying Cénac et al. (2020, Theorem 6.1), one has, since At converges almost surely
to A, that

‖MT ‖2 = O
(

ln(T )T βρ−γ
)

a. s. (C.15)

Observe that for the constant mini-batch size, we already have the good rate of convergence
for this term, but not for the increasing case. We will come back later to this term below
when we find the first rate of convergence of θT .

A first rate of convergence ofM2,T As ‖δt‖ = o (‖θt − θ∗‖) a.s and ‖At −A‖op converge
almost surely to 0, there exists a sequence of random positive variables rt which converges to
0 almost surely, such that for all t ≥ t0,

‖R2,t+1‖ ≤ (1− γt+1) ‖R2,t‖+ γt+1rt+1 ‖θt − θ∗‖

≤ (1− γt+1) ‖R2,t‖+ 2γt+1rt+1

(
‖R2,t‖2 + ‖Mt +R1,t‖

)
.

Then, with the help of (C.13) and (C.15), there exists a positive random variable C1, such
that

‖R2,t+1‖2 ≤ (1− γt+1) ‖R2,t‖+ 2γt+1rt+1

(
‖R2,t‖+ C1 ln(t+ 1)(t+ 1)

βρ−γ
2

)
, (C.16)

so that
‖R2,T ‖2 = O

(
ln(T )T βρ−γ

)
a. s.

This concludes the proof for the constant mini-batch size case. For the non constant case,
we need to return to the martingale term.
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A good rate of convergence for MT and R2,T Let k0 = inf {k, k (γ − βρ) > ρ}. Then,
let us prove by induction that for any non negative integer k ≤ k0,

‖θT − θ∗‖2 = O
(

ln(T )kT−k(γ−βρ)
)

a. s.

If k0 = 0, this is satisfied. Let us suppose from now on that k0 ≥ 1 and prove this result by
induction: Suppose it is true for k − 1. Then, thanks to inequality (C.14), one has

E
[
‖Ξt+1‖2 |Ft

]
= O

(
ln(T )k−1T−(k−1)(γ−βρ)

)
a. s.,

and with the help of Cénac et al. (2020, Theorem 6.1), we have

‖MT ‖2 = O
(

ln(T )kT−k(γ−βρ)
)

a. s.,

and ‖R2,T ‖2 = O
(
ln(T )kT−k(γ−βρ)

)
a.s., which concludes the induction proof.

As a particular case, one has

‖θT − θ∗‖2 = O
(

ln(T )k0T−k0(γ−βρ)
)

a. s.,

so that by definition of k0, E[‖Ξt+1‖2|Ft] = O (t−ρ) a.s., and we obtain with the help of
Cénac et al. (2020, Theorem 6.1), that

‖MT ‖2 = O
(

ln(T )T−ρ−γ+βρ
)

a. s. and ‖R2,T ‖2 = O
(

ln(T )T−ρ−γ+βρ
)

a. s.

Then, since T ∼
(

1+ρ
Cρ
NT

) 1
1+ρ , one has

‖θT − θ∗‖2 = O

(
ln (NT )N

−ρ−γ+βρ
1+ρ

T

)
a. s.

C.3 Proof of Theorems 3 and A.3

Observe that one has for all t ≥ 0,

θt+1 − θ∗ = θt − θ∗ − γt+1AH (θt − θ∗)− γt+1 (At −A)H (θt − θ∗) + γt+1AtΞt+1 − γt+1Atδt,

which can be written as

θt − θ∗ = H−1A−1ut − ut+1

γt+1
+H−1A−1AtΞt+1 −H−1A−1Atδt −H−1A−1 (At −A)H (θt − θ∗) ,

(C.17)
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where ut = θt − θ∗. Summing these equalities and dividing by sT =
∑T−1

t=0 nt+1 ln(t+ 1)w,
we have

θT,w − θ∗ = H−1A−1 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w
ut − ut+1

γt+1

+H−1A−1 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wAtΞt+1

−H−1A−1 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wAtδt

− 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1A−1 (At −A)H (θt − θ∗) .

The rest of this proof consists in giving the rate of convergence of each term on the right-hand
side of previous decomposition.

Rate of convergence of H−1A−1 1
sT

∑T−1
t=0 nt+1 ln(t + 1)wAtΞt+1 Remark that M ′T =∑T−1

t=0 nt+1 ln(t+ 1)wAtΞt+1 is a martingale term and that

〈
M ′T
〉

=
T−1∑
t=0

n2
t+1 ln(t+ 1)2wAtE

[
Ξt+1ΞTt+1|Ft

]
At

=
T−1∑
t=0

nt+1 ln(t+ 1)2wAtE
[
f ′t+1,if

′>
t+1,i|Ft

]
At

−
T−1∑
t=0

n2
t+1 ln(t+ 1)2wAt∇θF (θt)∇θF (θt)

T At.

Since
nt+1 ‖∇F (θt)‖2 = O

(
ln t

tγ−βρ

)
a. s.,

then this converges to 0. Next, since θt and At converge to θ∗ and A, we have

1∑T−1
t=0 nt+1 ln(t+ 1)2ω

〈
M ′T
〉 a.s.−−−−−→
T→+∞

AΣA.

Then, with the help of a law of large numbers for martingales, we obtain that

1

s2
T

∥∥M ′T∥∥2
= O

∑T−1
t=0 nt+1 ln(t+ 1)2ω ln

(∑T−1
t=0 nt+1 ln(t+ 1)2ω

)
s2
T

 a. s.,

which can be written as

1

s2
T

∥∥M ′T∥∥2
= O

(
ln(T + 1)

T ρ+1

)
a. s. .
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This, can also be written as

1

s2
T

∥∥M ′T∥∥2
= O

(
ln(NT )

NT

)
a. s.

In addition, Central Limit Theorem for martingales yields,

1√∑T−1
t=0 nt+1 ln(t+ 1)2ω

M ′T
L−−−−−→

T→+∞
N (0, AΣA) .

Thus, as
√
NT

√∑T−1
t=0 nt+1 ln(t+ 1)2ω

sT

a.s.−−−−−→
T→+∞

1,

we have √
NT

1

sT
H−1A−1M ′T

L−−−−−→
T→+∞

N
(
0, H−1ΣH−1

)
.

Rate of convergence of H−1A−1 1
sT

∑T−1
t=0 nt+1 ln(t+1)w ut−ut+1

γt+1
With the help of Abel’s

transformation, one have

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w
ut − ut+1

γt+1

= −uTnT ln(T )w

γT sT
+
u0n11{w=0}

γ1sT
+

1

sT

T−1∑
t=1

ut

(
nt+1 ln(t+ 1)w

γt+1
− nt ln(t)w

γt

)
.

One has thanks to Theorems 2 and A.2, we have∥∥∥∥uTnT ln(T )w

γT sT

∥∥∥∥ = O

( √
lnT

T
2+ρ−γ+βρ

2

)
a. s.,

which can be written as ∥∥∥∥uTnT ln(T )w

γT sT

∥∥∥∥ = O

 √
lnNT

N
2+ρ−γ+βρ

2(1+ρ)

T

 a. s.,

which is negligible as soon as γ − βρ < 1. In addition, it is obvious that u0n11{w=0}
γ1sT

is
negligible too. Furthermore, observe that∣∣∣∣nt+1 ln(t+ 1)w

γt+1
− nt ln(t)w

γt

∣∣∣∣
≤ Cρ max {ρ(1− β) + γ,w}max

{
tρ(1−β)+γ−1, (t+ 1)ρ(1−β)+γ−1

}
ln(t+ 1)w,

which with the help of Theorems 2 and A.2 yields,∥∥∥∥∥
T−1∑
t=0

(
nt+1 ln(t+ 1)w

γt+1
− nt ln(t)w

γt

)
(θt − θ∗)

∥∥∥∥∥ = O
(

ln(T )w+1/2T
ρ(1−β)+γ

2

)
a. s.
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From this, we have

1

sT

∥∥∥∥∥
T−1∑
t=0

(
nt+1 ln(t+ 1)w

γt+1
− nt ln(t)w

γt

)
(θt − θ∗)

∥∥∥∥∥ = O
(√

ln(T )T
−2+γ−ρ(1+β)

2

)
a. s.,

which can be written as

1

sT

∥∥∥∥∥
T−1∑
t=0

(
nt+1 ln(t+ 1)w

γt+1
− nt ln(t)w

γt

)
(θt − θ∗)

∥∥∥∥∥ = O
(√

ln (NT )N
−2+γ−ρ(1+β)

2(1+ρ)

T

)
a. s.,

(C.18)
which is negligible as soon as γ − βρ < 1.

Rate of convergence of H−1A−1 1
sT

∑T−1
t=0 nt+1 ln(t+1)w (At −A)H (θt − θ∗) Since ‖At −A‖op =

O (t−ν) a.s and with the help of Theorem 2, we have∥∥∥∥∥ 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w (At −A)H (θt − θ∗)

∥∥∥∥∥
=


O

 (lnT )

1
2+1

ν+
ρ(1−β)+γ

2 =1

T ν+
ρ(1−β)+γ

2

 a. s. if ν + ρ(1−β)+γ
2 ≤ 1

O
(

1
T 1+ρ

)
a. s. else

which can be written as∥∥∥∥∥ 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w (At −A)H (θt − θ∗)

∥∥∥∥∥
=


O

 ln(NT )

 1
2+1

ν+
ρ(1−β)+γ

2 =1



N

2ν+ρ(1−β)+γ
2(1+ρ)

T

 a. s. if ν + ρ(1−β)+γ
2 ≤ 1

O
(

1
NT

)
a. s. else

Rate of convergence of H−1A−1 1
sT

∑T−1
t=0 nt+1 ln(t + 1)wAtδt As ‖δt‖ ≤ Lδ ‖θt − θ∗‖2

and with the help of Theorem 2, we have∥∥∥∥∥H−1A−1 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wAtδt

∥∥∥∥∥ = O

(
lnT

T ρ(1−β)+γ

)
a. s.,

which can be written as∥∥∥∥∥H−1A−1 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wAtδt

∥∥∥∥∥ = O

 lnNT

N
ρ(1−β)+γ

1+ρ

T

 a. s.,

which is negligible as soon as γ > ρ(2β−1)+1
2 .
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C.4 Proof of Theorems 4 and A.4

First, remark that one can rewrite decomposition (C.17) to

θt − θ∗ = H−1A−1
t

ut − ut+1

γt+1
+H−1Ξt+1 −H−1δt,

meaning that

θT,w − θ∗ =
1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1A−1
t

ut − ut+1

γt+1
+

1

ST

T−1∑
t=0

nt+1 ln(t+ 1)wH−1Ξt+1

− 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1δt.

Analogously to the proof of Theorem 3, one can easily check that∥∥∥∥∥ 1

ST

T−1∑
t=0

nt+1 ln(t+ 1)wH−1Ξt+1

∥∥∥∥∥
2

= O
(

lnNT

NT

)
a. s.,

and √
NT

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1Ξt+1
L−−−−−→

T→+∞
N
(
0, H−1ΣH−1

)
.

In the same way, we have∥∥∥∥∥ 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1δt

∥∥∥∥∥ = O

 lnNT

N
ρ(1−β)+γ

1+ρ

T

 a. s.

In addition, note that

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1A−1
t

ut − ut+1

γt+1
=

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1A
−1
t ut −A−1

t+1ut+1

γt+1

+
1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1
(
A−1
t+1 −A

−1
t

) ut+1

γt+1
.

With the help of Abel’s transformation and since At converges almost surely to the positive
matrix A (Assumption 4), following the lines of the proof for Theorem 3 (e.g., see (C.18)),
one can show that∥∥∥∥∥ 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1A
−1
t ut −A−1

t+1ut+1

γt+1

∥∥∥∥∥ = O

 √
ln (NT )

N
2+γ−ρ(1+β)

2(1+ρ)

T

 a. s.

In addition, since ‖θt − θ∗‖2 = O
(

ln(t)
tγ−βρ+ρ

)
a.s., with Et denoting the event {‖θt − θ‖2 ≤

(ln(t))1+δ

tγ+ρ(1−β)
, ‖θt,w − θ‖2 ≤ (ln(t))1+δ

tγ+ρ(1−β)
}, 1{ECt } converges almost surely to 0, then, we have

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1
∥∥A−1

t+1 −A
−1
t

∥∥
op

‖ut+1‖
γt+1

1{ECt+1}
= O

(
1

NT

)
a. s.,
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and

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)wH−1
∥∥A−1

t+1 −A
−1
t

∥∥
op

‖ut+1‖
γt+1

1{Et+1}

≤ 1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δH−1
∥∥A−1

t+1 −A
−1
t

∥∥
op
c−1
γ (t+ 1)

γ−ρ(β+1)
2 .

At last, one can conclude the proof with the help of equality (A.3).

C.5 Proof of Theorem B.5

Observe that the convergence of θT is obtained with the same calculus as in the proof of
Theorem 1. We now give the proof here for a non-decreasing streaming batch size. Remark
that decomposition (C.11) can now be written as

θt+1−θ∗ =

(
1− nt+1

Nt+1

)
(θt − θ∗)−

nt+1

Nt+1

(
H
−1
t −H−1

)
H (θt − θ∗)+

nt+1

Nt+1
H
−1
t Ξt+1−

nt+1

Nt+1
H
−1
t δt.

Then, with the help of induction, one has

θT − θ∗ =
1

NT
(θ0 − θ∗)−

1

NT

T−1∑
t=0

nt+1

(
H
−1
t −H−1

)
H (θt − θ∗)−

1

NT

T−1∑
t=0

nt+1H
−1
t δt︸ ︷︷ ︸

=:∆T

+
1

NT

T−1∑
t=0

nt+1H
−1
t Ξt+1︸ ︷︷ ︸

=:MT

.

Convergence of the martingale term MT Observe that MT is a martingale term and
that

〈M〉T =
T−1∑
t=0

n2
t+1H

−1
t E

[
Ξt+1ΞTt+1|Ft

]
H
−1
t

=
T−1∑
t=0

nt+1H
−1
t E

[
∇θf (ξt+1,1, θt)∇θf (ξt+1,1, θt)

T |Ft
]
H
−1
t

−
T−1∑
t=0

nt+1H
−1
t ∇F (θt)∇F (θt)

T H
−1
t .

Then, since θt and H
−1
t converge almost surely to θ∗ and H−1 and by continuity (Assump-

tion 1), one obtain that
1

NT
〈M〉T

a.s.−−−−−→
T→+∞

H−1ΣH−1.

Thus, with the help of a law of large numbers for martingales, we have∥∥∥∥ 1

NT
MT

∥∥∥∥2

= O
(

lnNT

NT

)
a. s.,
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and with the help of Central Limit Theorem for martingales,

1√
NT

MT
L−→
T
N
(
0, H−1ΣH−1

)
.

Convergence of the rest terms Since H−1
t converges to H−1 and ‖δt‖ = o (‖θt − θ∗‖)

a.s., there is a sequence of positive random variables (r′t) converging to 0, such that

‖∆T+1‖ ≤
(

1− nT+1

NT+1

)
‖∆T ‖+

nT+1

NT+1
r′T ‖θT − θ∗‖

≤
(

1− nT+1

NT+1

)
‖∆T ‖+

nT+1

NT+1
r′T

∥∥∥∥ 1

NT
(θ0 − θ∗) +

1

NT
MT + ∆T

∥∥∥∥ .
Then, there is a positive random variable CM , such that

‖∆T+1‖ ≤
(

1− nT+1

NT+1

)
‖∆T ‖+

nT+1

nT+1
r′T

(
‖∆T ‖+ CM

√
lnT

T
1+ρ
2

)
,

which can also be written for any c ∈ (0, 1) as

‖∆T+1‖ ≤
(

1− c nT+1

NT+1

)
‖∆T ‖+

nT+1

nT+1
CM

√
ln(T + 1)

(T + 1)
1+ρ
2

+ r′′T ,

with r′′T =
nT+1

nT+1
r′T

(
‖∆T ‖+ CM

√
ln(T+1)

(T+1)
1+ρ
2

)
1r′T>c

. Then, with the help of an induction, one

has

‖∆T ‖ ≤ β̃T,0 ‖∆0‖+
T−1∑
t=0

β̃T,t+1
nt+1

Nt+1
CM

√
ln(t+ 1)

(t+ 1)
1+ρ
2

+
T−1∑
t=0

β̃T,t+1r
′′
t ,

with β̃T,t =
∏T
j=t+1

(
1− c njNj

)
and βT,T = 1. In addition, since for any t, one has Nt ≤

Cρ
1+ρ

(
(t+ 1)1+ρ − 1

)
, one has for any t ≤ T ,

β̃T,t ≤ exp

−c T∑
j=t+1

nj
Nj

 ≤ exp

−c(1 + ρ)

T∑
j=t+1

jρ

(j + 1)1+ρ


≤ exp

−c(1 + ρ)

(
t+ 1

t+ 2

)ρ T∑
j=t+1

1

j + 1

 ≤ ( t+ 1

T + 1

)ct
,

with ct = c(1 +ρ)
(
t+1
t+2

)ρ
≥ c(1 +ρ)2−ρ. Taking 1 > c > 2ρ−1 and denoting cρ = c2−ρ > 1/2,

one has

β̃T,t ≤
(
t+ 1

T + 1

)cρ(1+ρ)

.

35



Godichon-Baggioni and Werge

Then, as a particular case, β̃T,0 ≤ 1
(T+1)cρ(1+ρ)

and this term is so negligible. In addition,
since

T−1∑
t=0

β̃T,t+1r
′′
t = β̃T,0

T−1∑
t=0

β̃−1
t+1,0r

′′
t ,

and since 1{r′T>c} converges almost surely to 0, one has

T−1∑
t=0

β̃T,t+1r
′′
t = O

(
β̃T,0

)
= O

(
1

(T + 1)cρ(1+ρ)

)
a. s.,

and this term is so negligible as cρ > 1/2. Finally,

T−1∑
t=0

β̃T,t+1
nt+1

Nt+1
CM

√
ln(t+ 1)

(t+ 1)
1+ρ
2

≤
T−1∑
t=0

(
t+ 1

T + 1

)cρ(1+ρ) nt+1

Nt+1
CM

√
ln(t+ 1)

(t+ 1)
1+ρ
2

= O

(√
lnT

T
1+ρ
2

)
a. s.,

leading to ‖∆T ‖ = O
(√

lnT
T 1+ρ

)
a.s., and

‖θT − θ∗‖2 = O

(
lnT

T 1+ρ

)
a. s., and ‖θT − θ∗‖2 = O

(
lnNT

NT

)
a. s.

Asymptotic efficiency In order to get the asymptotic normality, we now have to give a
better rate of convergence of ‖∆T ‖. First, since H̄−1

t converges to H−1, ‖δt‖ ≤ Lδ ‖θt − θ∗‖2,
and with the help of the rate of convergence of θt, one has

1

NT

∥∥∥∥∥
T−1∑
t=0

nt+1H̄
−1
t δt

∥∥∥∥∥ ≤ Lδ
NT

T−1∑
t=0

nt+1

∥∥H̄−1
t

∥∥
op
‖θt − θ∗‖2 = O

(
(lnT )2

T 1+ρ

)
a. s.,

which is a negligible term. In addition, since ‖H̄−1
t −H−1‖op = O (t−ν) a.s., one has

1

NT

∥∥∥∥∥
T−1∑
t=0

nt+1

(
H̄−1
t −H−1

)
H (θt − θ∗)

∥∥∥∥∥ ≤ 1

NT
‖H‖op

T−1∑
t=0

nt+1

∥∥H̄−1
t −H−1

∥∥
op
‖θt − θ∗‖

= O

(
ln(T )1/2+1{(1+ρ)/2+ν=1}

T ρ+min{1,(1−ρ)/2+ν}

)
a. s.

Hence, as ν > 0, this term is negligible, which thereby concludes the proof.

C.6 Proof of Theorems B.6 and B.7

Let us first check that the assumptions on the learning rate (step-sequence) are satisfied:
First, since for all t ≥ 1 and i = 1, . . . , nt,

NZ,t,i

Nt

a.s.−−−−→
t→+∞

p,
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we can observe that3

d(1− ι)
p ln(t+ 1)w′N1−ι

t

t∑
t′=1

ln(t′ + 1)w
′
nt′∑
i=1

Zt′,iιt′,iet′,ie
T
t′,i

a.s.−−−−→
t→+∞

Id,

such that
1 +

∑t
t′=1 ln(t′ + 1)w

′∑n′t
i=1 Zt′,i

ln(t+ 1)w′Nt

a.s.−−−−→
t→+∞

p,

Next, by definition of ι, we have

λmax

(
H̄−1
t,w′

)
= O

(
tι(1+ρ)

)
a. s., and

∑
t≥1

γ2
t

nt
λmax

(
H̄−1
t−1,w′

)2
< +∞ a. s.

In addition, with NZ,T := 1 +
∑T

t=1 ln(t+ 1)w
′∑nt′

i=1 Zt,i, one has

1

NZ,T

T∑
t=1

ln(t+ 1)w
′
nt∑
i=1

Zt,iαt,iΦt,iΦ
>
t,i =

1

NZ,T

T∑
t=1

ln(t+ 1)w
′
E
[
αt,iΦt,iΦ

>
t,i|F ′t−1

] nt∑
i=1

Zt,i

+
1

NZ,T

T∑
t=1

ln(t+ 1)w
′
ΞZ,t,

where ΞZ,t :=
∑nt

i=1 Zt,iαt,iΦt,iΦ
>
t,i−

∑nt
i=1 Zt,iE

[
αt,iΦt,iΦ

>
t,i|F ′t−1

]
is a sequence of martingale

differences for the filtration F ′t−1 = σ
(
ξ1,1, . . . , ξt−1,nt−1 , Zt,1, . . . , Zt,nt

)
. Thus,

E
[
‖ΞZ,t‖η

′

F |F
′
t−1

]
≤ 2η

′−1

(
nt∑
i=1

Zt,iE
[∥∥∥αt,iΦt,iΦ

>
t,i

∥∥∥η′ |F ′t−1

] 1
η′
)η′
≤ 2η

′−1Cη
′

η′

(
nt∑
i=1

Zt,i

)η′
,

and with the help of a law of large numbers for martingales, one has∥∥∥∥∥
T∑
t=1

ln(t+ 1)w
′
ΞZ,t

∥∥∥∥∥
F

= o (NZ,T ) a. s.

In addition ∥∥∥∥∥ 1

NZ,T

T∑
t=1

ln(t+ 1)w
′
nt∑
i=1

Zt,i

∥∥∥∥∥
op

E
[
αt,iΦt,iΦ

>
t,i|F ′t−1

]
≤ C1/η′

η′ .

Then, λmax

(
H̄t,w′

)
= O(1) a.s., such that

∑
t≥1

γtλmin

(
H̄−1
t−1,w′

)
= +∞ a. s., and

λmax

(
H̄−1
t,w′

)2
γt+1

λmin

(
H̄−1
t,w′

) = O
(
t2ι(1+ρ)−1

)
a. s.,

3. E.g., see Godichon-Baggioni et al. (2024); Bercu et al. (2023) for more details.

37



Godichon-Baggioni and Werge

and the conditions in (A.1) are satisfied as soon as i < 1−ρ
2(1+ρ) . Then, according to Theorem B.5,

θT converges almost surely to θ∗. Supposing that E
[
αt,iΦt,iΦ

>
t,i|F ′t−1

]
converges almost surely

to H, one has

1

NZ,T

T∑
t=1

ln(t+ 1)w
′
nt∑
i=1

Zt,iE
[
αt,iΦt,iΦ

>
t,i|F ′t−1

]
a.s.−−−−−→

T→+∞
∇2
θF (θ∗),

meaning that H̄T,w′ and H̄−1
T,w′ converge almost surely to H and H−1. Then, thanks to

Theorem B.5, one has that

‖θT − θ∗‖2 = O
(

lnNT

NT

)
a. s.

Since
∥∥∥E [αt,iΦt,iΦ

>
t,i|F ′t−1

]
−H

∥∥∥ = O(tv) a.s., taking v < 1;

∥∥∥∥∥ 1

NZ,T

T∑
t=1

ln(t+ 1)w
′
nt∑
i=1

Zt,iE
[
αt,iΦt,iΦ

>
t,i|F ′t−1

]
−H

∥∥∥∥∥
op

= O

(√
ln(NT )

T v

)
a. s.

In addition, since η′ ≥ 2 and

E
[
‖ΞZ,t‖2F |Ft−1

]
≤

nt∑
i=1

Z2
t,iE

[∥∥a (Xt,i, θt−1) Φt,iΦ
T
t,i

∥∥2

F
|F ′t−1

]
≤ ntC

2
η′

η′ ,

one has, with the help of a law of large numbers for martingales, that for all δ > 0,∥∥∥∥∥ 1

NZ,T

T∑
t=1

ln(t+ 1)w
′
ΞZ,t

∥∥∥∥∥
2

F

= O
(

(lnNT )1+δ

NT

)
a. s.

In addition ∥∥∥∥∥ 1

NZ,T

T∑
t=1

ln(t+ 1)w
′
nt∑
i=1

Zt,iιt,iet,ie
T
t,i

∥∥∥∥∥
op

= O
(

1

T ι(1+ρ)

)
a. s. .

Then, there is ν > 0 such that

∥∥H̄T,w′ −H
∥∥2

= O
(

1

T ν

)
a. s.

Then, with the help of Theorem B.5, one has√
NT (θT − θ∗)

L−−−−−→
T→+∞

N
(
0, H−1ΣH−1

)
.
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C.7 Proof of Theorems 5 and B.8

As in the proof of Theorems B.6 and B.7, one can easily check that the conditions in (A.1)
are satisfied, such that Theorem A.1 hold, i.e., θT and θT,w converges almost surely to θ∗.
In a same way, as in the proof of Theorem B.6, one can easily get the consistency of S̄T,w′ ,
leading with the help of Theorem A.2 to

‖θT − θ∗‖2 = O

 ln(NT )

N
γ+ρ(1−β)

1+ρ

T

 a. s., and ‖θT,w − θ∗‖2 = O

 lnNT

N
γ+ρ(1−β)

1+ρ

T

 a. s.

In order to conclude the proof, we will now check that equality (8) is satisfied, i.e., that

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δ
(
rt+1 + r′t+1

)
t
γ−ρ(β+1)

2 = O
(

1

T (1+ρ)v′

)
a. s.,

with

r′t+1 =
ln(t+ 1)w

′

NZ,t+1

nt+1∑
i=1

Zt+1,iιt+1,i and rt+1 =
ln(t+ 1)w

′

NZ,t+1

nt+1∑
i=1

Zt+1,i ‖αt+1,iΦt+1,i‖ .

First, since
∑nt+1

i=1 ιt+1,i = O
(
t−ι(1+ρ)+ρ

)
, and since ι < γ−ρβ

2(1+ρ) , one has

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δr′t+1t
γ−ρ(β+1)

2 = O

(
ln(T + 1)3/2+δ

T ι(1+ρ)+1+
β(1+ρ)−γ

2

)
a. s.,

and since γ−βρ < 1, it comes that ι(1+ρ)+1+ β(1+ρ)−γ
2 > 1+ρ

2 . Considering the sequence of
martingale differences ΞZ,t+1 =

∑nt+1

i=1 Zt+1,iαt+1,i ‖Φt+1,i‖2−
∑nt+1

i=1 Zt+1,iE[αt+1,i ‖Φt+1,i‖2 |F ′t−1],
one has

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δrt+1t
γ−ρ(β+1)

2 ≤C
1
η′

η′

T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1

nt+1∑
i=1

Zt+1,i

+
T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1
ΞZ,t+1.

Furthermore,

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1

nt+1∑
i=1

Zt+1,i = O

(
ln(T + 1)3/2+δ

T
min

{
1+

ρ(β+1)−γ
2

,1+ρ
}
)

a. s.,

and since γ − βρ < 1, one has that 1 + ρ(β+1)−γ
2 > 1+ρ

2 . In addition, since

E
[
‖ΞZ,t+1‖η

′

F

]
≤

(
nt+1∑
i=1

Zt+1,i

)η′
Cη
′

η′ ,
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and with the help of a law of large numbers for martingales,∣∣∣∣∣
T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1
ΞZ,t+1

∣∣∣∣∣
= o

(
T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1

nt+1∑
i=1

Zt+1,i

)
a. s.,

such that

1∑T−1
t=0 nt+1 ln(t+ 1)w

∣∣∣∣∣
T−1∑
t=0

nt+1 ln(t+ 1)w+w′+1/2+δt
γ−ρ(β+1)

2

NZ,t+1
ΞZ,t+1

∣∣∣∣∣
= o

(
ln(T + 1)3/2+δ

T
min

{
1+

ρ(β+1)−γ
2

,1+ρ
}
)

a. s.,

which concludes the proof.

C.8 Proof of Theorems B.9 and B.10

First, since the conditions in (5) (or in (A.1)) are satisfied, one has that θt and θt,w converge
almost surely to θ∗. Let us now prove that it implies the convergence of Gt.

Convergence of Gt For all coordinate j, let us now consider

G̃
(j)
T :=

1

NT

T∑
t=1

nt∑
i=1

(
∂

∂j
f (θt−1,w; ξt,i)

)2

.

Then, denoting

Vj := E

[(
∂

∂j
f (θ∗; ξ)

)2
]

= V
[
∂

∂j
f (θ∗; ξ)

]
,

one has

G̃
(j)
T − Vj =

1

NT

T∑
t=1

nt

(
E

[(
∂

∂j
f (θt−1,w; ξt,1)

)2

|Ft−1

]
− Vj

)
+

1

NT

T∑
t=1

Ξt

where Ξt =
∑nt

i=1

(
∂
∂j f (θt−1,w;Xt,i)

)2
− ntE

[(
∂
∂j f (θt−1,w, ξ)

)2
]
is a martingale difference.

Then, thanks to (A.2) coupled with Duflo (2013, Proposition 1.III.19), we have

1

NT

T∑
t=1

Ξt
a.s.−−−−−→

T→+∞
0.

In addition, since the functional θ 7−→ E
[
∇θf(θ; ξ)∇θf(θ; ξ)>

]
is continuous at θ∗, one has

for all j
1

NT

T∑
t=1

nt

(
E

[(
∂

∂j
f (θt−1,w, ξt,1)

)2

|Ft−1

]
− Vj

)
a.s.−−−−−→

T→+∞
0,
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such that, for all j,

G̃
(j)
T =

1

NT

T∑
t=1

nt∑
i=1

(
∂

∂j
f (θt−1,w; ξt,i)

)2
a.s−−−−−→

T→+∞
V
[
∂

∂j
f (θ∗; ξ)

]
> 0.

Then, Gt converges almost surely to the diagonal matrix G, whose diagonal elements are

given by G(j) = V
[
∂
∂j f(θ∗; ξ)

]−1/2
.

Rate of convergence of θT With the help of Theorem A.2, one has that

‖θT − θ∗‖2 = O
(

ln(T )

T γ+ρ(1−β)

)
a. s., and ‖θT,w − θ∗‖2 = O

(
ln(T )

T γ+ρ(1−β)

)
a. s.,

which can also be written as

‖θT − θ∗‖2 = O

 ln(NT )

N
γ+ρ(1−β)

1+ρ

T

 a. s., and ‖θT,w − θ∗‖2 = O

 ln(NT )

N
γ+ρ(1−β)

1+ρ

T

 a. s.

Rate of convergence of θT,w Let us consider the event:

Et =

∃j,G(j)
t 6=

(
1

NT

(
G

(j)
0 +

T∑
t=1

nt∑
i=1

(
∂

∂j
ft,i (θt−1,w)

)2
))−1/2

 ,

where ft,i (θt−1,w) := f (θt−1,w; ξt,i). Observe that since Gt converges to G, 1{Et} converges
almost surely to 0, such that

1

sT

T−1∑
t=0

nt+1 ln(t+1)w+1/2+δ
∥∥G−1

t+1 −G
−1
t

∥∥
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⋃
Et+1}(t+1)

γ−ρ(β+1)
2 = O

(
1

T (1+ρ) ln(T )w

)
a. s.

In addition, on {ECt
⋂
ECt+1}, one has(

G−1
t+1 −G

−1
t

)
1{ECt

⋂
ECt+1}

=
(
G−1
t+1 +G−1

t

)−1 (
G−2
t+1 −G

−2
t

)
1ECt

⋂
ECt+1

=
(
G−1
t +G−1

t+1

)−1 1

Nt+1
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(
nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)
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)
j=1,...,d

− nt+1G
−2
t

1{ECt
⋂
ECt+1}

,

where diag
(∑nt+1

i=1

(
∂
∂j ft+1,i (θt,w)

)2
)
j=1,...,d

is the diagonal matrix whose elements are∑nt+1

i=1

(
∂
∂j ft+1,i (θt,w)

)2
. Observe that since Gt converges almost surely to a positive matrix,

there are positive constants cada, Cada such that 1{Et,1} converges almost surely to 1, where
Et,1 := {cada < λmin (Gt) ≤ λmax (Gt) < Cada}. Then,

‖(G−1
t+1 −G

−1
t )−1‖op1{ECt

⋂
ECt+1}

≤ ‖G−1
t+1 +G−1

t ‖op
1

Nt+1

∥∥∥∥∥diag
(
nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2
)
− nt+1G

−2
t

∥∥∥∥∥
op

1{ECt,1
⋃
ECt+1,1}

+ 2Cada
1

Nt+1

 d∑
j=1

nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2

+ nt+1c
−2
ada

 .
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In addition, since 1{ECt,1} converges almost surely to 0, one can easily check that

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δ(t+ 1)
γ−(β+1)ρ

2

×
∥∥G−1

t +G−1
t+1

∥∥
op

1

Nt+1

∥∥∥∥∥diag
(
nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2
)
− nt+1G

−2
t

∥∥∥∥∥
op

1{ECt,1
⋃
ECt+1,1}

= O
(

1

T (1+ρ) ln(T )w

)
a. s.

In addition,

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δ(t+ 1)
γ−(β+1)ρ

2 2Cadac
−2
ada

nt+1

Nt+1
= O

(
ln(T )δ+1/2−w

T
2−γ+(β+1)ρ

2

)
a. s.,

which is negligible as soon as γ − βρ < 1. In addition, remark that

1

Nt+1

d∑
j=1

nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2

=
1

Nt+1

d∑
j=1

E

[
nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2
∣∣∣∣∣Ft
]

+
nt+1

Nt+1
ξ̃t+1,

with ξ̃t+1 =
∑d

j=1

(∑nt+1

i=1

(
∂
∂j ft+1,i (θt,w)

)2
− E

[∑nt+1

i=1

(
∂
∂j ft+1,i (θt,w)

)2
∣∣∣∣Ft]). Since θt,w

converges almost surely to θ∗ and with the help of inequality (6), one has

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δ(t+ 1)
γ−(β+1)ρ

2
1

Nt+1

d∑
j=1

E

[
nt+1∑
i=1

(
∂

∂j
ft+1,i (θt,w)

)2

|Ft

]

= O

(
ln(T )δ+1/2−w

T
2−γ+(β+1)ρ

2

)
a. s.,

while with the help of a law of large numbers for martingales (e.g., see Duflo (2013)), one has

1

sT

T−1∑
t=0

nt+1 ln(t+ 1)w+1/2+δ(t+ 1)
γ−(β+1)ρ

2
nt+1

Nt+1
ξ̃t+1 = o

(
ln(T )δ+1/2−w

T
2−γ+(β+1)ρ

2

)
a. s.,

which concludes the proof.

C.9 Proof of Corollary 1

Since X and ε admit moments of order 4 and 2, and since E[XXT ] is positive, Assumptions
1, 2, 3 and 5 hold (see Boyer and Godichon-Baggioni (2023) amoung others). Furthermore,
one has, considering the filtration Ft = (X1,1, Xt,n, Y1,1, . . . , Yt,n, , Zt,1, . . . , Zt,n),

E
[∥∥αt,jXt,jX

T
t,j

∥∥2 |F ′t−1

]
≤ E

[
‖X‖4

]
.
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Then, thanks to Theorem 5, θt and θt,w converge almost surely to θ∗. In addition, one has

St,w =
1

Nt,Z

t∑
i=1

ln(i+ 1)w
′
n∑
j=1

Xi,jX
T
i,j

with Nt,Z := 1 +
∑t

i=1 ln(i+ 1)w
′∑n

j=1 Zt,i. One has, since p > 0,

Nt,Z
a.s.−−−−→

t→+∞
+∞,

so that one can use a law of large number to check that St,w converges almost surely to
E[XXT ], which concludes the proof.

C.10 Proof of Corollary 2

Since X admits a moment of order 4 and since in this case, for all θ ∈ Rd,

∇2F (θ) = E
[
π
(
XT θ

) (
1− π

(
XT θ

))
XXT

]
and ∇2Fθ∗) is supposed to be positive, Assumptions 1, 2, 3 and 5 hold (see Boyer and
Godichon-Baggioni (2023) amoung others). Furthermore, one has,

E
[∥∥αt,jXt,jX

T
t,j

∥∥2 |F ′t−1

]
≤ 1

16
E
[
‖X‖4

]
.

Then, thanks to Theorem 5, θt and θt,w converge almost surely to θ∗. In addition, one has

St,w =
1

Nt,Z

t∑
i=1

ln(i+ 1)w
′
n∑
j=1

αi,jXi,jX
T
i,j +

1

Nt,Z

t∑
i=1

ln(i+ 1)w
′
n∑
j=1

ιi,jZi,jei,je
T
i,j ,

where αi,j = π
(
XT
i,jθt−1

)(
1− π

(
XT
i,jθ
))

. Since for all t ≥ 1 and i = 1, . . . , nt,

NZ,t,i

Nt

a.s.−−−−→
t→+∞

p,

we can observe that4

d(1− ι)
p ln(t+ 1)w′N1−ι

t

t∑
t′=1

ln(t′ + 1)w
′
nt′∑
i=1

Zt′,iιt′,iet′,ie
T
t′,i

a.s.−−−−→
t→+∞

Id,

i.e that
1

Nt,Z

t∑
i=1

ln(i+ 1)w
′
n∑
j=1

ιi,jZi,jei,je
T
i,j −−−−→

t→+∞
0 a.s.

4. See, e.g. Godichon-Baggioni et al. (2024); Bercu et al. (2023) for more details.
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In addition,

1

Nt,Z

t∑
i=1

ln(t+ 1)w
′
n∑
j=1

Zi,jαi,jΦi,jΦ
>
i,j =

1

Nt,Z

T∑
i=1

ln(i+ 1)w
′∇2

θF (θi−1)
n∑
j=1

Zi,j

+
1

Nt,Z

t∑
i=1

ln(i+ 1)w
′
ξi,Z ,

where ξi,Z :=
∑n

j=1 Zi,jαi,jXi,jX
>
i,j −

∑n
j=1 Zi,j∇2

θF (θi−1) is a sequence of martingale differ-
ences for the filtration F ′i−1 = σ (X1,1, . . . , Xi−1,n, Zi,1, . . . , Zi,n). Thus, since

E
[
‖ξt,Z‖2F |F

′
t−1

]
≤ 2

 n∑
j=1

Zt,jE
[∥∥∥αt,jXt,jX

>
t,j

∥∥∥2
|F ′t−1

] 1
2

2

≤ 2−3n2E
[
‖X‖4

]
,

and with the help of a law of large numbers for martingales, it comes that∥∥∥∥∥
t∑
i=1

ln(i+ 1)w
′
ξi,Z

∥∥∥∥∥
F

= o (Nt,Z) a. s.

In addition, by continuity of the Hessian and since Nt,Z tends to infinity almost surely,
one has

1

Nt,Z

T∑
i=1

ln(i+ 1)w
′∇2

θF (θi−1)
n∑
j=1

Zi,j
a.s−−−−→

t→+∞
∇F (θ∗) ,

which concludes the proof.

C.11 Proof of Corollary 3

Before giving the proof, let us recall assumptions from Godichon-Baggioni and Lu (2024):

• Assumption 1’. The random variable X is absolutely continuous and is not concen-
trated around single points. There exists C6 > 0 such that for all θ ∈ Rd,

E
[

1

‖X − θ‖6

]
≤ C6.

• Assumption 2’. The random variable X is not concentrated on a straight line. For
all θ ∈ Rd, there exists θ′ ∈ Rd such that 〈θ, θ′〉 6= 0 and

V
[
〈X, θ′〉

]
> 0.

The proof construction can be made by adapting the calculus in Godichon-Baggioni
and Lu (2024) to our context. If Assumptions 1’ and 2’ are fulfilled, then Assumptions
1 to 3 and 5 hold. In addition, thanks to Assumption 1 in Godichon-Baggioni and Lu
(2024), and denoting by F ′t = σ (X1,1, . . . Xt,n, U1,1, . . . , Ut+1,n, Zt,1, . . . , Zt,n) and Ft =
σ (X1,1, . . . Xt,n, U1,1, . . . , Ut,n, Zt,1, . . . , Zt,n), we have

E
[∥∥αt,jΦt,jΦ

T
t,j

∥∥ |Ft−1

]
≤ E

[
‖Ut,j‖2 E

[
1

‖Xt,j − θt−1‖
|F ′t−1

]
|Ft−1

]
≤ C1/6

6 E
[
‖U‖2

]
,
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so that θt−1 converges almost surely to θ∗.
Let us now prove the convergence of the estimate of the Hessian. First, remark that for

all θ ∈ Rd,

∇2F (θ) = E

[
1

‖X − θ‖

(
Id −

(X − θ) (X − θ)T

‖X − θ‖2

)]
=: E

[
∇2f(X, θ)

]
.

For all j = 1, . . . , n and t ∈ [0, 1], let us denote Xt,j,u = Xt,j − (θt−1 + tvtUt,j) and

wt,j,u =
1

‖Xt,j,u‖

(
Id −

Xt,j,uX
T
t,j,u

‖Xt,j,u‖2

)
= ∇2f (Xt,j,u, θt−1) ,

and let us remark that

Φt,j = ∇f (Xt,j,1, θt−1)−∇f (Xt,j,0) =

∫ 1

0
wt,j,uduvtUt,j .

Then,

αt,jΦt,jΦ
T
t,j =

‖Xt,j − θt−1‖
v2
t

∫ 1

0
wt,j,uduv

2
tUt,jU

T
t,j

∫ 1

0
wt,j,udu

= ‖Xt,j − θt−1‖
∫ 1

0
wt,j,u − wt,j,0duUt,jUTt,j

∫ 1

0
wt,j,udu

+ ‖Xt,j − θt−1‖wt,j,0Ut,jUTt,j
∫ 1

0
wt,j,u − wt,j,0du

+ ‖Xt,j − θt−1‖wt,j0Ut,jUTt,jwt,j,0.

Remark that since Ut,j is independent fromXt,j and θt−1, and considering the filtration Ft−1 =
σ (X1,1, . . . , Xt−1,n, . . . , U1,1, . . . , Ut−1,n, Z1,1, . . . , Zt,n), and since w2

t,j,0 = 1
‖Xt,j,0−θt−1‖wt,j,0,

it comes that

E
[
‖Xt,j − θt−1‖wt,j0Ut,jUTt,jwt,j,0|Ft−1

]
= E [wt,j,0|Ft−1] = ∇2F (θt−1) .

Since Zi,j is Fi−1-measurable, one has

1

Nt,Z

t∑
i=1

log(i+ 1)w
′
n∑
j=1

Zi,j ‖Xi,j − θi−1‖wi,j0Ui,jUTi,jwi,j,0

=
1

Nt,Z

t∑
i=1

log(i+ 1)w
′
n∑
j=1

Zi,j∇2F (θi−1) +
1

Nt,Z

t∑
i=1

log(i+ 1)w
′
n∑
j=1

Zi,jΞi,j ,

where Ξi,j := ‖Xi,j − θi−1‖wi,j0Ui,jUTi,jwi,j,0 −∇2F (θi−1). Denoting, for all δ > w′, Mt =

1
Nt,Z log(Nt,Z)1+δ

∥∥∥∑t
i=1 log(i+ 1)w

′∑n
j=1 Zi,jΞi,j

∥∥∥2
, one have

E [Mt+1|Ft] =
Nt,Z log(Nt,Z)1+δ

Nt+1,Z log(Nt,Z)1+δ
Mt +

1

Nt+1,Z log(Nt+1,Z)1+δ
E

∥∥∥∥∥∥log(i+ 1)w
′
n∑
j=1

Zi,jΞt+1,j

∥∥∥∥∥∥
2

|Ft


≤Mt +

1

Nt+1,Z log(Nt+1,Z)1+δ
log(t+ 1)2w′

n∑
j=1

E
[
‖Ξt+1,j‖2 |Ft

]
.
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Then, thanks to Assumption 1 in Godichon-Baggioni and Lu (2024) (see the Proof of
Theorems 1 and 2 for more details), one has

E
[
‖Ξt+1,j‖2 |Ft

]
≤ C1/2

6 E
[
‖U‖4

]
.

Then, remarking that log(t + 1)w
′
t/Nt,Z = O(1) a.s. and applying Robbins Siegmund

Theorem, Mt converges almost surely to a random finite variable, i.e.,∥∥∥∥∥∥ 1

Nt,Z

t∑
i=1

log(i+ 1)w
′
n∑
j=1

Zi,jΞi,j

∥∥∥∥∥∥
2

= O
(

ln(1 +Nt,Z)1+δ

Nt,Z

)
a. s.,

which means that this term converges to zero. In addition, since θt−1 converges almost surely
to θ∗ and by continuity of the Hessian of F , one can easily prove that

1

Nt,Z

t∑
i=1

log(i+ 1)w
′
n∑
j=1

Zi,j∇2F (θi−1)
a.s.−−−−→

t→+∞
∇2F (θ∗) .

At last, observe that thanks to Godichon-Baggioni and Lu (2024, Lemma 1), for any
q ≤ 3, we have

E [‖wt,j,u − wt,j,0‖q |Ft−1] ≤ 6qC
q/3
6 vqt ‖Ut,j‖

q

and this term converges fastly to zero. Then, following the proof in Godichon-Baggioni and
Lu (2024), one can easily prove that

1

Nt,Z

t∑
i=1

log(i+ 1)w
′ ‖Xi,j − θi−1‖

∫ 1

0
wi,j,u − wi,j,0duUi,jUTi,j

∫ 1

0
wi,j,udu

a.s.−−−−→
t→+∞

0

1

Nt,Z

t∑
i=1

log(i+ 1)w
′ ‖Xi,j − θt−1‖wt,j,0Ut,jUTt,j

∫ 1

0
wt,j,u − wt,j,0du

a.s.−−−−→
t→+∞

0,

which concludes the proof.
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