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Abstract
Local differential privacy is a differential privacy paradigm in which individuals first apply a
privacy mechanism to their data (often by adding noise) before transmitting the result to a
curator. The noise for privacy results in additional bias and variance in their analyses. Thus
it is of great importance for analysts to incorporate the privacy noise into valid inference.
In this article, we develop methodologies to infer causal effects from locally privatized
data under randomized experiments. First, we present frequentist estimators under various
privacy scenarios with their variance estimators and plug-in confidence intervals. We show a
naïve debiased estimator results in inferior mean-squared error (MSE) compared to minimax
lower bounds. In contrast, we show that using a customized privacy mechanism, we can
match the lower bound, giving minimax optimal inference. We also develop a Bayesian
nonparametric methodology along with a blocked Gibbs sampling algorithm, which can be
applied to any of our proposed privacy mechanisms, and which performs especially well in
terms of MSE for tight privacy budgets. Finally, we present simulation studies to evaluate
the performance of our proposed frequentist and Bayesian methodologies for various privacy
budgets, resulting in useful suggestions for performing causal inference for privatized data.
Keywords: Rubin Causal Model, Local Differential Privacy, Minimax Optimal Estimation,
Debiased Estimators, Dirichlet Process Mixture, Data Augmentation

1. Introduction

Causal inference is a fundamental consideration across a wide range of domains in science,
technology, engineering, and medicine. Researchers study experimental or observational
data to unveil the causal effects of treatment assignment in an unbiased manner with valid
uncertainty quantification. A traditional gold standard for performing causal inference is
the classical randomized experiment (Imbens and Rubin, 2015). In this type of experiment,
a great deal of control and precautions can be taken so as to eliminate events that would
introduce instabilities and biases in causal inferences.

On the other hand, differential privacy (DP), introduced by Dwork et al. (2006), is another
growing domain in science and business, as privacy protection has become a core concern
for many organizations in the modern data-rich world. DP is a mathematical framework
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that provides a probabilistic guarantee that protects private information about individuals
when publishing statistics about a dataset. This probabilistic guarantee is often achieved by
adding random noise to the data. One DP model is the central differential privacy model,
in which the data curators have access to the sensitive data and apply a DP mechanism
to the data to produce the published outputs. A weakness of this model is that users are
required to trust the data curators with their sensitive data. Another DP model is local
differential privacy (LDP). In this model, the users do not directly provide their data to the
data curator; instead, users apply the DP mechanism to their data locally before sending it
to the curator. LDP is a preferable model if the data curators are not trusted by users. The
LDP model has been adopted by various organizations, e.g., Google (Erlingsson et al., 2014)
and Apple (Apple, 2017), for more stringent privacy protection.

Drawing causal conclusions from privatized data can be challenging. While the added
random noise helps in safeguarding individuals’ privacy, it distorts the patterns in the
data. This distortion can lead to biased conclusions even in randomized experiments.
This issue becomes even more pronounced in the LDP setting, where each data point is
individually altered before it is compiled. Therefore, when trying to understand cause-and-
effect relationships using this protected data, researchers must exercise extra caution to
ensure their interpretations remain accurate and unbiased.

In this article, we propose statistically valid causal inferential methodologies under three
distinct local privacy scenarios. The first scenario, which we refer to as a “joint scenario,”
assumes that all accessible variables are separately privatized. In the second and third
scenarios, which we term as “custom scenarios,” we are allowed to select the variables we
privatize with known and unknown treatment assignment probabilities. We then offer causal
inference methodologies to analyze such privatized data. Our main contributions are as
follows:
• We propose a “naïve” inverse probability weighting (IPW) estimator for the joint
scenario. The bias of this IPW estimator is computed, and we introduce a technique
to debias it. Furthermore, we present efficient frequentist estimators that achieve
the minimax optimal rate for custom scenarios. The asymptotic variance of each of
our estimators is calculated, and we construct asymptotic plugin nominal confidence
intervals for these frequentist estimators.
• We develop a flexible and efficient Bayesian nonparametric methodology. Additionally,
we introduce a novel data augmentation Gibbs sampler, tailored for locally privatized
observations under the potential outcome framework. This methodology is general and
can be applied to all scenarios considered in the frequentist analyses. Our simulation
studies show that our Bayesian approach performs well in terms of MSE, especially for
tight privacy budgets.
• We present simulation studies to evaluate the frequentist and Bayesian methodologies at
various privacy budgets, resulting in useful suggestions for performing causal inference
for privatized data. We then apply our methodologies to the real-life data from
the evaluation of a cash transfer program conducted in Colombia. We show our
methodologies successfully recover the non-private estimates for moderate privacy
budgets.

The rest of the paper is organized as follows. Section 2 presents the preliminaries for the
Rubin Causal Model and LDP. In Section 3, we develop frequentist approaches to inferring
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the causal effects of interest. Section 4 presents a Bayesian methodology for performing valid
causal inference with the privatized data. Section 5 provides simulation studies for validating
our methodologies developed in the previous sections, and Section 6 provides an application
of our methodologies to real-world data of a cash transfer program conducted in Colombia.
Section 7 concludes with some final discussion. The Appendix contains proofs, technical
details, and additional numerical results. We also propose a regression adjustment technique
under the joint scenario, which incorporates covariate information, but since it does not offer
substantial gains over our other methods we leave it in the Appendix.

1.1 Related Work

In non-causal domains, Evans and King (2022) offered statistically valid linear regression
estimates and descriptive statistics for locally private data that can be interpreted as ordinary
analyses of non-confidential data but with appropriately larger standard errors. Schein et al.
(2019) presented an MCMC algorithm that approximates the posterior distribution over
the latent variables conditioned on data that has been locally privatized by the geometric
mechanism. Ju et al. (2022) proposed a general privacy-aware data augmentation MCMC
framework to perform Bayesian inference from privatized data.

Some researchers have developed causal inference methodologies under the central DP
model. D’Orazio et al. (2015) introduced the construction of central differential privacy
mechanisms for summary statistics in causal inference. They then presented new algorithms
for releasing differentially private estimates of causal effects and the generation of differentially
private covariance matrices from which any least squares regression may be estimated. Lee
et al. (2019) proposed a privacy-preserving inverse propensity score estimator for estimating
the average treatment effect (ATE). Komarova and Nekipelov (2020) studied the impact of
differential privacy on the identification of statistical models and demonstrated identification
of causal parameters failed in regression discontinuity design under the central differential
privacy. Niu et al. (2022) introduced a general meta-algorithm for privately estimating
conditional average treatment effects. Kusner et al. (2016) tackles causal inference using a
framework called the additive noise model (ANM), a more restrictive causal model than the
Rubin Causal Model.

While all of the above works predominantly focus on the central differential privacy model,
our research emphasizes the application of local differential privacy (LDP) for causal inference.
This shift is crucial as LDP ensures robust privacy protection by adding noise to individual
data points before they are shared, eliminating the need for a trusted central authority.
Given the increasing concerns about data privacy and the potential risks of centralized data
breaches, LDP is now widely adopted in many organizations. It allows for stronger privacy
guarantees without compromising the integrity of individual data contributions. Our work
demonstrates how to perform causal inference under LDP model, maintaining the accuracy
and reliability of results while providing enhanced privacy protection.

While LDP is a rapidly growing technique, the literature on causal inference methodologies
under LDP remains sparse. Agarwal and Singh (2021) introduced an end-to-end procedure for
covariates cleaning, estimation, and inference, offering covariates cleaning-adjusted confidence
intervals under the local differential privacy mechanism. This work targets situations where
only the covariates are privatized. In contrast, our methods consider the joint privatization
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of all variables, including treatment, outcomes, and covariates. Additionally, we emphasize
the context of randomized experiments, which remains the benchmark for credible causal
inference. Other key contributions of our work are the minimax optimal rates for our
estimates and the introduction of Bayesian methodologies, which are optimized for tight
privacy budgets and have not been proposed in previous literature.

2. Preliminaries

2.1 Rubin Causal Model

Causal inference is of fundamental importance across many scientific and engineering domains
that require informed decision-making based on experiments. Throughout this manuscript,
we adopt the Rubin Causal Model (RCM) as our causal paradigm. In the RCM it is critical
to first carefully define the Science of a particular problem, i.e., to define the experimental
units, covariates, treatments, and potential outcomes (Imbens and Rubin, 2015). We consider
N experimental units, indexed by i = 1, . . . , N , that correspond to physical objects at a
particular point in time. Each unit i has an observed outcome Yi and treatment assignment
Wi respectively. We consider a binary treatment Wi ∈ {0, 1} with a fixed assignment
probability, p = P (Wi = 1), which is usually assumed to be known by the experimental
design, and let Yi(w) denote a potential outcome for w ∈ {0, 1}. In this article, we consider
the N units as a random sample from a large super-population, and we are interested in
inferring the Population Average Treatment Effect (PATE): τ = E[Yi(1)− Yi(0)]. We invoke
the common set of assumptions, which enable us to identify the PATE by the estimators
derived in this manuscript (Imbens and Rubin, 2015).

Assumption 1 1. (Positivity) The probability of treatment assignment given the covari-
ates is bounded away from zero and one: 0 < P (Wi = 1) < 1.

2. (Random Assignment) The potential outcomes are independent of treatment assignment:
{Yi(0), Yi(1)} ⊥⊥Wi.

3. (Stable Unit Treatment Value Assumption [SUTVA]) There is neither interference
nor hidden versions of treatment. The observed outcome is formally expressed as:
Yi = WiYi(1) + (1−Wi)Yi(0).

2.2 Differential Privacy

In this article, we use the local differential privacy (LDP) model. Let D be the set of
possible contributions from one individual in database D. In this paper, we only consider
non-interactive local DP mechanisms. LDP is formally defined for any D as follows.

Definition 1 (Local Differential Privacy) An algorithmM is said to be ε-locally differ-
entially private (ε-LDP) if for any two data points x, x′ ∈ D, and any S ⊆ Range(M),

P (M(x) ∈ S)

P (M(x′) ∈ S)
≤ exp(ε).

The definition states that if an individual changes their value from x to x′, the output
distribution ofM remains similar, making it difficult for an adversary to determine whether
the true value was x or x′. Intuitively, the probability ratio on the left-hand side quantifies
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the “similarity” of the algorithm’s output for different inputs x and x′. The value ε on the
right-hand side is called the privacy budget. Lower values of ε, which indicate tighter upper
bounds on the probability ratio, correspond to stronger privacy guarantees. This is because
a tightly bounded ratio implies that the random output provides little information about
whether the input was x or x′.

Two important properties of differential privacy are composition and invariance to post-
processing. Composition allows one to derive the cumulative privacy cost when releasing
the results of multiple privacy mechanisms: if M1 is ε1-LDP and M2 is ε2-DP, then the
joint release (M1(x),M2(x)) satisfies (ε1 + ε2)-LDP. Invariance to post-processing ensures
that applying a data-independent procedure to the output of a DP mechanism does not
compromise the privacy guarantee: if M is ε-LDP with range Y, and f : Y → Z is a
(potentially randomized) function, then f ◦M is also ε-LDP. Invariance to post-processing is
especially important in this paper, as all of our inference procedures (i.e., frequentist and
Bayesian) can be expressed as post-processing of more basic DP quantities.

One of the most commonly used DP mechanisms is the Laplace mechanism, which adds
noise to a function of interest. Importantly, the noise must be scaled proportionally to the
sensitivity of the function, which measures the worst-case magnitude by which the function’s
value may change between two individuals. Formally, the `1-sensitivity of a function f :
D → Rk is ∆f = supx,y∈D ||f(x)− f(y)||1.

Proposition 2 (Laplace Mechanism) Let f : D → Rk. The Laplace mechanism is
defined as M(x) = f(x)+(ν1, ..., νk)>, where the νi are independent Laplace random variables,
νi ∼ Lap(0,∆f/ε), where the density of the Laplace distribution, Lap(µ, b), is given by
f(ν|µ, b) = 1

2b exp(− |ν−µ|b ). Then M satisfies ε-LDP.

For a binary variable (e.g., treatment assignment), a common mechanism is the randomized
response.

Proposition 3 (Randomized Response Mechanism) Let Zi ∈ {0, 1} be a binary vari-
able. The randomized response mechanism is defined as

M(Zi) =

{
Zi w.p. exp(ε)

1+exp(ε)

1− Zi w.p. 1
1+exp(ε) ,

which satisfies ε-LDP.

3. Frequentist Approach

3.1 Minimax Risk Lower Bound for PATE Estimation

In this section, we discuss frequentist estimators for τ under several privacy scenarios where
variables are privatized in different manners. According to Duchi et al. (2018), the minimax
lower bound of the mean-squared error (MSE) for one-dimensional mean estimation is
O((Nε2)−1). In Lemma 4, we show that this same lower bound applies to the MSE for PATE
estimation as well. We letMε denote the set of all privacy mechanisms that satisfy ε-LDP.
To ensure bounded `1-sensitivity, we assume Yi(w) ∈ [0, 1] for i = 1, . . . , N , and {Yi(w)}Ni=1

are drawn according to some distribution Pw ∈ Pw, where Pw denotes a class of distributions
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on the sample space of potential outcomes. Our restriction to Yi(w) ∈ [0, 1] is for simplicity
and clarity. This follows standard practice (e.g., Lei et al. (2017), Ferrando et al. (2022) to
name a few), and our discussions can be easily generalized to bounded outcomes Yi(w) ∈ [a, b]
with −∞ < a < b <∞ using shifting and scaling factors. In Section 7 we discuss a potential
extension to unbounded outcomes. We define an estimator τ̂ as a measurable function that
maps privatized inputs to a real value, that is, τ̂ : XN → R, where X generally denotes the
space of privatized inputs under various privacy scenarios.

Lemma 4 For ε ∈ [0, 1], there exists a constant c such that

cmin(1, (Nε2)−1) ≤ inf
Mε∈Mε

inf
τ̂

sup
P0∈P0,
P1∈P1,
p∈[0,1]

E[(τ̂ − τ)2] (1)

Lemma 4 states that the optimal estimator of the PATE estimation problem also has the
minimax lower bound O((Nε2)−1), implying that if an LDP ATE estimation procedure
achieves the minimax lower bound, then it is minimax optimal among all ε-LDP procedures.

3.2 Joint Scenario with Known p

We first consider a scenario where all variables are jointly and separately privatized. The
observed outcomes are privatized by the Laplace mechanism. The privatized outcomes are
Ỹi = Yi + νYi , where ν

Y
i ∼ Lap(1/εy). We chose the Laplace mechanism as our privacy

mechanism because of its versatility in that it can be used for both continuous and binary
outcomes, offering a more general solution for our analysis. If the outcome is binary, the
randomized response mechanism can also be used for privatizing Yi. Appendix C provides
detailed discussions of this special case. The binary treatment variable Wi is privatized by
the random response mechanism.

W̃i =

{
Wi w.p. qεw = exp(εw)

1+exp(εw)

1−Wi w.p. 1− qεw = 1
1+exp(εw) .

By composition, the joint release of (Ỹi, W̃i)
N
i=1 satisfies (εy + εw)-LDP. Ỹi is observed after

adding noise to Yi, which is either Yi(0) or Yi(1), but we cannot identify which it is through
the observed variables because Wi is also unobserved.

First, we propose estimators by plugging in the privatized observations into classical
formulas, then derive bias correction results of the plug-in estimators. We also provide
variance estimators, enabling asymptotically accurate plug-in confidence intervals.

We consider the following naïve inverse probability weighting (IPW) estimator τ̃naive.
This naïve IPW estimator is defined by plugging in privatized observations for the usual
IPW estimator.

τ̃naive =
1

N

N∑
i=1

{
W̃iỸi
ρ1
− (1− W̃i)Ỹi

ρ0

}
, (2)

where ρw = P (W̃i = w) for w = 0, 1. Note that ρw is a known marginal probability expressed
by p and qεw . The following lemma quantifies the bias of the estimator (2).

6



Locally Private Causal Inference for Randomized Experiments

Lemma 5 Under Assumption 1, the estimator (2) is biased for τ . The bias is

Bias(τ̃naive) =

(
1

Cp,εw
− 1

)
τ,

where Cp,εw = ρ0ρ1
p(1−p)(2qεw−1) with qεw = exp(εw)/(1 + exp(εw)).

Let Êw = 1
Ñw

∑
i:W̃i=w

Ỹi and V̂w = 1
Ñw−1

∑
i:W̃i=w

(Ỹi−Êw)2, where Ñw =
∑N

i=1 1(W̃i =

w) for w = 0, 1. In Theorem 6, we show that the estimator Cp,εw · τ̃naive is unbiased, consistent,
and that we can construct asymptotically valid confidence intervals for PATE based on this
estimator.

Theorem 6 1. (Unbiasedness & Consistency) Cp,εw · τ̃naive is unbiased and consistent
for τ .

2. (CLT)
√
N(Cp,εw · τ̃naive − τ) converges in distribution to a mean-zero normal distribu-

tion.
3. (Confidence Interval) The following interval is the nominal central confidence at the

significance level α:Cp,εw · τ̃naive − zα2
√

Σ̂naive

N
,Cp,εw · τ̃naive + zα

2

√
Σ̂naive

N

 ,

where Σ̂naive = C2
p,εw( 1

ρ1
V̂1 + 1

ρ0
V̂0 + ρ0

ρ1
Ê2

1 + ρ1
ρ0
Ê2

0 + 2Ê0Ê1).
4. (Convergence rate) The MSE of Cp,εw · τ̃naive is O((Nε2yε

2
w)−1).

The details of the asymptotic normality and the confidence interval construction are in
Appendix A.4. Setting εy = εw = ε/2 gives MSE of O((Nε4)−1), which matches the minimax
rate (1) in terms of N , but not in terms of ε. In the following sections, we see that when
we use a customized privacy mechanism, rather than a naïve joint privatization, we can
match the minimax lower bound. In the Appendix, we introduce another class of frequentist
estimators: the OLS estimator, specifically under the joint scenario. We explore both the
advantages and limitations of the OLS estimator in comparison to the IPW estimator within
this context.

3.3 Custom Scenario with Known p

In this section, we will tailor the privacy mechanism to the PATE estimation problem,
assuming that the value p is known (such as in most designed experiments). Specifi-
cally, for unit i = 1, . . . , N , we privatize the following variable by the Laplace mech-
anism: Ai = WiYi

p − (1−Wi)Yi
1−p . The sensitivity of A is ∆A = maxAi,A′i |Ai − A′i| =

maxWi,Yi,W ′i ,Y
′
i

∣∣∣WiYi
p − (1−Wi)Yi

1−p − W ′iY
′
i

p +
(1−W ′i )Y ′i

1−p

∣∣∣ ≤ 1
p + 1

1−p . The privatized value of

A is Ãi = Ai + νAi , where ν
A
i ∼ Lap(∆A/εa). Then, it is straightforward to show that the

following IPW estimator is unbiased and consistent.

τ̃IPW =
1

N

N∑
i=1

Ãi. (3)
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Theorem 7 1. (Unbiasedness & Consistency) τ̃IPW is unbiased and consistent for τ .
2. (CLT)

√
N(τ̃IPW − τ) converges in distribution to a mean-zero normal distribution.

3. (Confidence Interval) The following interval is the nominal central confidence at the
significance level α: τ̃IPW − zα

2

√
Σ̂IPW

N
, τ̃IPW + zα

2

√
Σ̂IPW

N

 ,

where Σ̂IPW = 1
N−1

∑N
i=1(Ãi − ÊA)2 with ÊA = 1

N

∑N
i=1 Ãi.

4. (Convergence rate) The MSE of τ̃IPW is O((Nε2a)
−1).

The details of the asymptotic normal distribution and the confidence interval construction are
provided in Appendix A.5. We see in Theorem 7 that the lower bound of the IPW estimator
under the custom scenario matches the minimax lower bound for the locally private PATE
estimation (1), improving over the naïve estimator from Section 3.2.

3.4 Custom Scenario with Unknown p

The estimator (3) is appealing in the sense of optimality when p is known, such as in
randomized experiments, however, their application is restricted when p is unknown. In
this regard, we proceed a step further to address situations in which p is inaccessible, while
Assumption 1 remains valid. Examples of this setting include A/B testing and clinical trials,
where marketers or doctors assign treatments with an undisclosed probability (that does not
depend on the covariate information).

We consider releasing the following quantities: B̃i = (B̃i,1, B̃i,2, B̃i,3), where

B̃i,1 = WiYi + νB1
i , B̃i,2 = (1−Wi)Yi + νB2

i , and B̃i,3 = Wi + νB3
i ,

where νBji ∼ Lap(1/εbj ) for j = 1, 2, 3. We also let B̃i,4 = 1− B̃i,3. By composition, the joint
release of (B̃i,1, B̃i,2, B̃i,3)Ni=1 satisfies (εb1 + εb2 + εb3)-LDP.

Given these privatized quantities, we construct our difference-in-means (DM) estimator
as follows.

τ̃DM =

∑N
i=1 B̃i,1∑N
i=1 B̃i,3

−
∑N

i=1 B̃i,2∑N
i=1 B̃i,4

. (4)

Let ÊBj = 1
N

∑N
i=1 B̃i,j , V̂Bj = 1

N−1

∑N
i=1(B̃i,j − ÊBj )2 for j = 1, 2, 3, 4 and Ĉovj,k =

1
N−1

∑N
i=1(B̃i,j − ÊBj )(B̃i,k − ÊBk) for j 6= k. We have the following properties for τ̃DM :

Theorem 8 1. (Consistency) τ̃DM is consistent for τ .
2. (CLT)

√
N(τ̃DM − τ) converges in distribution to a mean-zero normal distribution.

3. (Confidence Interval) The following interval is the nominal central confidence at the
significance level α: τ̃DM − zα

2

√
Σ̂DM

N
, τ̃DM + zα

2

√
Σ̂DM

N

 ,
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where Σ̂DM = ê′Ŝê, with ê = (1/ÊB3 ,−1/(1− ÊB3),−ÊB1/Ê
2
B3
, ÊB2/(1− ÊB3)2)′ and

Ŝ =


V̂B1 Ĉov1,2 Ĉov1,3 Ĉov1,4

Ĉov2,1 V̂B2 Ĉov2,3 Ĉov2,4

Ĉov3,1 Ĉov3,2 V̂B3 Ĉov3,4

Ĉov4,1 Ĉov4,2 Ĉov4,3 V̂B4

 .

4. (Convergence rate) The MSE of τ̃DM is O((N(ε2b1 + ε2b2 + ε2b3))−1).

The details of the asymptotic normal distribution and the confidence interval construction
are provided in Appendix A.6. Setting εb1 = εb2 = εb3 = ε/3 gives O((Nε2)−1), which also
matches the minimax lower bound of (1), indicating the optimality of the estimator.

3.5 Discussion on Frequentist Estimators

The three scenarios serve different purposes. While the joint scenario permits the release of
the entire synthetic dataset to analysts, it suffers from the privatization of multiple variables,
thereby compromising its optimality. As discussed in the Appendix, the OLS estimator helps
improve the efficiency under the joint scenario, however, the gain is limited since we must pay
additional privacy budgets for covariates. In the custom scenarios, access to the complete
dataset is unavailable, but the estimators attain the optimal rate of the locally private PATE
estimation. While both custom estimators achieve the minimax rate, the estimator with
known p is able to focus its privacy budget on a single quantity, which gives improved finite
sample performance; see Section 5. We emphasize that despite the simplicity of the Laplace
and randomized response mechanisms we employ, our customized estimators attain the
minimax lower bound, thereby ensuring rate optimality across any privacy mechanisms.

When the sample size is small, or when privacy budgets are too tight, it is possible
that the point estimators and interval estimators are out of support of the estimand, as the
estimand is assumed to be bounded, but the observed private data are usually unbounded.
Therefore, we apply additional post-processing to clamp estimators to the closest end of
the support when they are out of bounds. For example, if the initial estimator is τ̂ = 1.8,
then we instead set τ̂ = 1.0. However, suppose the lower and upper bounds of the estimated
confidence interval are both clamped to the bounds of the support: in this case, the estimated
confidence interval is not useful at all. Note that this clamping processing does not affect
the asymptotic statistical properties derived in the paper. It only serves to reduce the
MSE of the estimator by projecting the out-of-bound estimator to the bound. Although its
asymptotic properties are not harmed, the clamping process introduces bias in finite samples
and is a drawback of many of the frequentist estimators including those proposed in this
paper. In the Appendix, we provide an analysis of the bias introduced by the clamping
in finite samples. Specifically, in the construction of our frequentist estimators, we do
incorporate the boundedness of the outcomes, which calls for the heuristic clamping step.
The subsequent section about the Bayesian approach results in a Bayesian estimator that
naturally incorporates the boundedness assumption into the modeling.
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4. Bayesian Approach

4.1 Overview of the Bayesian Methodology

In this section, we propose a principled Bayesian methodology that operates under any LDP
scenario. We consider the Bayesian formulations for a few key reasons that we clarify here:
First, we can incorporate our specific prior knowledge as well as information about the DP
mechanism into our inference. For example, the differential privacy framework typically allows
the release of information about the mechanisms the data curator uses to privatize the data,
and major mechanisms (e.g., Laplace and randomized response mechanisms) have a known
likelihood. Therefore, using this knowledge in the form of the joint distribution (as shown in
Equation (5) in the manuscript) enables more efficient inference. We can also incorporate
our knowledge about the boundedness of variables into the modeling process, which also
contributes to more efficient inference. Bayesian methodology allows us to combine all sources
of information and summarize the information about τ into the posterior distribution. This
allows us to incorporate statistical information in ways that may not be obvious, which is
expected to improve performance.

More generally, in the context of statistical estimation, Bayesian estimators with proper
priors are justified in terms of admissibility, whereas frequentist estimators have no such
guarantee. Furthermore, with our current assumption of bounded outcomes, we have a
compact parameter space. In this case, the complete class theorem (Chernoff and Moses,
1959; Ferguson, 1967) implies that all admissible procedures are in fact Bayes estimators. By
incorporating prior information and optimizing posterior expected loss, Bayesian estimators
are not only flexible and robust but also theoretically grounded as the optimal choice within
the class of admissible rules. This strong theoretical support, coupled with their practical
advantages, makes Bayesian estimators well-motivated for our problem.

Following the Bayesian paradigm of Rubin (1978), we consider deriving the posterior
distributions of the causal estimands (Forastiere et al., 2016; Ohnishi and Sabbaghi, 2022a)
given all observed variables. The key idea is the data augmentation (Tanner and Wong,
1987) to obtain the posterior distribution of the causal estimands by imputing in turn the
missing variables. The idea for estimating causal effects in the Bayesian paradigm is outlined
in Rubin (1978); Imbens and Rubin (2015), but our unique challenges lie in the fact that
neither treatment variable W nor either potential outcome Y (0), Y (1) is observed.

For Bayesian inference in our framework, consider the following joint distribution of all
observed variables Õ and missing variables Y(0),Y(1),W: P (Y(0),Y(1),W, Õ), where
Õ = (Ỹ, W̃) for the joint scenario and Õ = Ã or B̃ for the custom scenarios. As discussed
in Section F, since causal effects are identifiable under randomization without covariate
adjustment and incorporating covariates requires additional privacy costs for their release,
we do not include covariates in our Bayesian methodologies, but the extension should be
straightforward (e.g., Maceachern (1999)). In what follows, we focus on the joint scenario
discussed in Section 3.2 to show the outline of our algorithm, but it can easily be extended
to the custom scenarios, as explained in Appendix.

Under the super-population perspective, the observed and missing variables are considered
as a joint draw from the population distribution. Bayesian inference considers the observed
values of these quantities to be realizations of random variables and the missing values to
be unobserved random variables. We also assume these quantities are unit exchangeable,
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then de Finetti’s theorem implies that there exists a vector of parameters, θ, with the prior
distribution P (θ) such that

P (Y(0),Y(1),W, Ỹ,W̃) =

∫
P (θ)

∏
i

P (Yi(0), Yi(1),Wi, Ỹi, W̃i | θ)dθ

=

∫
P (θ)

∏
i

P (Wi)P (W̃i |Wi)P (Yi(0), Yi(1) | θ)P (Ỹi | Yi(0), Yi(1),Wi)dθ,

(5)

which follows from the conditional independence of potential outcomes and W̃i given Wi

(Lemma 9 in the Appendix) and the random assignment assumption. The distribution of Ỹi
depends not only on Yi(0) and Yi(1) but also on Wi because the DP mechanism is applied to
the observed outcome Yi = WiYi(1) + (1−Wi)Yi(0). Note that we know the DP mechanisms
for W and Y , that is, P (Ỹi | Yi(0), Yi(1),Wi) and P (W̃i |Wi) have a known functional form.
Therefore, the modeling effort is only required for P (Yi(0), Yi(1) | θ). Under this modeling
strategy, our Bayesian approach is a valid inference for PATE. Note that PATE is a function
of the parameters θ, which governs the potential outcomes. Thus, it suffices to obtain the
posterior draws of the posterior of the θ for the posterior draws of PATE.

A significant insight from (5) is that the treatment assignment mechanism is not ignorable.
In conventional non-private settings, the treatment assignment model, represented as P (Wi),
is ignorable and falls out of the likelihood in Bayesian causal inference under randomization
or unconfoundedness assumptions (Li et al., 2023). Yet, in a DP context, these treatment
assignment variables are not directly observed. This necessitates the integration of both the
treatment assignment models and their respective privacy mechanisms into our inferences.
Additionally, a nuanced but crucial point is the necessity to model both Yi(0) and Yi(1).
Typically, Bayesian causal inference for PATE estimation is performed via observable data
(e.g., Zigler (2016); Stephens et al. (2023)). This is because the missing potential outcome
eventually gets marginalized out from (5) under the assumption of prior parameter indepen-
dence and unconfounded assignment, thus it does not influence parameter inference. In our
scenario, however, it is uncertain whether Yi(0) or Yi(1) has been privatized to yield Ỹi. This
uncertainty calls for a data augmentation strategy for both potential outcomes.

We adopt the Dirichlet Process Mixture (DPM) to model P (Yi(0), Yi(1) |Wi,θ) for its
flexibility. The DPM is a natural Bayesian choice for density estimation problems, which
fits our needs that require P (Yi(0), Yi(1) |Wi,θ) to be estimated without assuming strong
parametric forms. The following section and Appendix D provide technical details of the
DPM and the Gibbs sampler.

4.2 Algorithm Outlines

Equation (5) motivates the Gibbs sampling procedures to obtain the draws from the posterior
distribution of θ. This section describes the key steps of the Gibbs sampler. Each step
is derived from the corresponding components of (5). For inference of DPM parameters,
denoted by θ = (µ,Σ,u), we adopt an approximated blocked Gibbs sampler based on the
truncation of the stick-breaking representation (Ishwaran and Zarepour, 2000), due to its
simplicity. In this algorithm, we set a conservatively large upper bound, K ≤ ∞, on the
number of components that units potentially belong to. Let Ci ∈ {1, ...,K} denote the latent
class indicators with a multinomial distribution, Ci ∼ Multinomial(u) where u = (u1, ..., uK)
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denote the weights of all components of the DPM. More specific details about the DPM are
provided in the Appendix. The algorithm proceeds as follows.

1. Given Yi(0), Yi(1), draw each Wi from P (Wi = 1|−) = r1
r0+r1

, where rw = P (Ỹi |
Yi(w))P (W̃i |Wi = w)P (Wi = w) for w = 0, 1.

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCiWi
,ΣCi

Wi
)P (Ỹi | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi1−Wi
,ΣCi

1−Wi
).

3. Update model parameters via the blocked Gibbs sampler and calculate the estimands.
The key steps of this algorithm are 1 and 2, which correspond to the data augmentation steps,
imputing the latent variables Yi(0), Yi(1) and Wi. In Step 1, the probability P (Ỹi | Yi(w))
for w = 0, 1 indicates that Ỹi is observed via privatizing the potential outcome Yi(w), which
would have been observed if we observed Wi = w.

In step 2, given Wi, the corresponding potential outcome Yi(Wi) is considered to be
privatized, but the other missing potential outcome Yi(1−Wi) should not be associated with
the observed Ỹi within the iteration. Therefore, the posterior distribution of Yi(Wi) cannot
be obtained in a closed form as it is weighted by the privacy mechanism P (Ỹi | Yi(Wi)),
whereas the missing potential outcomes Yi(1 −Wi) are just generated from the outcome
model P (Yi(1 −Wi) | θ). We adopt the Metropolis-within-Gibbs algorithm for this step.
Specifically, we use the outcome model to sample a proposal value from P (Yi(Wi)|θ) at
the current value of θ, rather than specifying a custom proposal distribution and step
size for the Metropolis-Hastings step. Ju et al. (2022) provided theoretical guarantees on
mixing performance for the this data augmentation algorithm, indicating that the acceptance
probability is lower bounded by exp(−εy).

Finally, Step 3 updates all the parameters of the DPM that govern the potential outcomes,
using standard Gibbs sampling techniques; see Section D of the Appendix for details of
the DPM, full details of the algorithm and the extension of the algorithm to the custom
scenarios, which requires slight modifications to Steps 1 and 2.

5. Simulation Studies

We evaluate the frequentist properties of our methodologies for various privacy budgets.
The evaluation metrics that we consider are bias and mean square error (MSE) in esti-
mating a causal estimand, coverage of an interval estimator for a causal estimand, and
the interval length. Bias, MSE and coverage are generally defined as

∑M
m=1 (τ − τ̂m) /M ,∑M

m=1 (τ − τ̂m)2 /M and
∑M

m=1 1
(
τ̂ lm ≤ τ ≤ τ̂um

)
/M respectively, whereM denotes the num-

ber of simulated datasets, τ denotes the true causal estimand, τ̂m, τ̂ lm and τ̂um denote the
estimate of the causal estimand, 95% lower and upper end of the interval estimator of the
causal estimand using dataset m = 1, . . . ,M . Our summary of the interval length is the
mean of the lengths of the intervals computed from M simulated datasets. For our Bayesian
method, the point estimator is the mean of the posterior distribution of a causal estimand,
and the interval estimator is the 95% central credible interval. We ran the MCMC algorithm
for 100, 000 iterations using a burn-in of 50, 000. The iteration numbers were chosen after
experimentation to deliver stable results over multiple runs.
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5.1 Data-generating Mechanisms

For our simulations, we consider a Bernoulli randomized experiment with treatment assign-
ment and covariates for unit i generated according to:

Wi ∼ Bernoulli(0.5), Xi,1 ∼ Uniform(0, 1), Xi,2 ∼ Beta(2, 5), Xi,3 ∼ Bernoulli(0.7).

To generate potential outcomes, we adopt the Beta regression (Ferrari and Cribari-Neto,
2004): Yi(w) ∼ Beta(µi(w)φ, (1 − µi(w))φ), where µi(w) and φ are a location parameter
and scale parameter respectively with µi(w) = expit(1.0− 0.8X1 + 0.5X2 − 2.0X3 + 0.5w)
and φ = 50. We consider Xi,d to generate Yi but do not release the privatized X̃i,d. This
model is beneficial for our simulations because the generated data automatically satisfy the
following sensitivity: ∆Y = 1. Then, we obtain the private data Ỹi, W̃i, Ãi, B̃i by applying
the corresponding privacy mechanisms. The actual value of PATE can be obtained in a closed
form, which is necessary to calculate bias, MSE, and coverage. The details are provided in
the Appendix.

5.2 Results

Table 1 presents the performance evaluation of our estimators under different scenarios for
N = 10, 000 with various privacy budgets for εtot. We let εtot = εa = εy + εw = εb1 + εb2 + εb3 ,
where εy = εw and εb1 = εb2 = εb3. All scenarios achieve about 95% coverage, except for
the custom scenario (DM) of εtot = 0.1, .03, which has some over-coverage. This may be
because the estimator for the asymptotic variance has a non-negligible estimation error in
finite samples. The simulations in this section rely on the results of Section 3.2, 3.3, and 3.4
to build confidence intervals. The fact that the intervals have correct 95% coverage indicates
that the estimators 1) are in fact asymptotically normal, 2) are asymptotically unbiased,
and 3) have the stated asymptotic variance. For bias and MSE, we observe smaller bias and
MSE for larger privacy budgets. The custom scenario (IPW) yields lower MSE than the
joint scenario, which is also consistent with the discussion of the optimality in Section 3.2,
3.3, and 3.4, but the difference becomes negligible as εtot increases.

When we have a tight privacy budget of εtot = 0.1, 0.3, the length of the confidence
intervals of the joint scenario are nearly 2, which is almost non-informative about the
estimand. With strict budget constraints and a small sample size, the analysis results may
tell us little about the estimands, even though their consistency and confidence intervals are
statistically valid. This is an inevitable trade-off between privacy protection and the accuracy
of the results. Custom (IPW) has the best finite sample performance, offering informative
intervals and small bias and MSE for all privacy budgets.

Table 2 compares our Bayesian methodology under the three scenarios. We see that the
Bayes estimator yields well-calibrated coverage probabilities and smaller MSE and bias for
most cases. The differences in MSE between frequentist estimators and Bayesian estimators
become negligible as εtot gets large (εtot = 3.0, 10.0). When the privacy budget is tight, the
Bayesian methodology outperforms the frequentist approach in all metrics. Specifically, the
interval length of the Bayes estimator for εtot = 0.1 is around 0.35 for all scenarios, which is
informative about the estimands. In the Appendix, we provide additional simulation studies
for smaller sample sizes, as well as those for the OLS estimator under the joint scenario.
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Table 1: Evaluation metrics for IPW estimator under different privacy scenarios (N =
10, 000, Nsim = 2, 000). Nsim denotes the number of simulations. εtot denotes the
total privacy budget. “Custom (IPW)” and “Custom (DM)” columns are scenarios
in Section 3.3 and 3.4 respectively.

Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 94.7% 95.05% 99.5% −1.0975 −0.4434 0.9025 0.9766 0.2813 0.7527 1.892 1.64 1.987
0.3 95.45% 94.35% 98.15% −0.8388 0.2448 −0.3912 0.7919 0.0365 0.2563 1.896 0.74 1.646
1.0 95.45% 95.0% 95.25% 0.0827 0.043 −0.0241 0.0539 0.0033 0.0205 0.915 0.225 0.553
3.0 95.2% 95.1% 94.8% −0.0044 0.0229 0.0534 0.0011 0.0004 0.0021 0.13 0.082 0.182
10 94.3% 94.3% 95.1% −0.0025 −0.0104 −0.0083 0.0001 0.0001 0.0002 0.043 0.043 0.057

Table 2: Evaluation metrics of Bayesian estimators for N = 10, 000, Nsim = 1, 000.
Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 96.4% 98.0% 96.3% −0.0949 −0.0858 −0.0951 0.0099 0.0087 0.0099 0.3400 0.3542 0.3410
0.3 96.9% 97.0% 94.6% −0.0953 −0.0585 −0.0897 0.0099 0.0057 0.0094 0.3420 0.3021 0.3340
1.0 93.4% 92.0% 92.2% −0.0691 −0.0197 −0.0511 0.0077 0.0017 0.0055 0.3200 0.1590 0.2630
3.0 93.2% 90.5% 94.2% −0.0081 −0.0070 −0.0098 0.0006 0.0004 0.0010 0.0930 0.0698 0.1170
10.0 95.0% 91.5% 92.3% −0.0023 −0.0052 −0.0045 0.0000 0.0001 0.0001 0.0260 0.0325 0.0360

6. Real Data Analysis

We applied our methodology to a real-world causal inference task. We analyzed a randomized
experiment that examined the impact of a cash transfer program on students’ attendance
rates (Barrera-Osorio et al., 2011). Conducted at San Cristobal in Colombia, the study
recruited households with one to five school children, randomly assigning children to either
participate in the cash transfer program or not with probability p = 0.628. The number
of recruited students is N = 5, 240. With known treatment assignment, we assessed the
treatment effect of the program on the attendance rate of the students, with eligible students
receiving cash subsidies if they attended school at least 80% of the time in a given month.

We utilized the privatization techniques as outlined in Section 3, setting εtot to values of
0.1, 0.3, 1.0, 3.0, and 10.0. Our methodologies were then benchmarked against non-private
baseline methods, which offer target values for our private estimates. For the non-private
frequentist baseline, we employed the standard IPW estimator.

Table 6 presents point mean estimators alongside the lower (2.5%) and upper (97.5%)
bounds for interval estimators across each methodology. For the interval estimators, we
used central confidence intervals for the frequentist approach and credible intervals for the
Bayesian approach. Both frequentist and Bayesian non-private interval estimators highlighted
a positive interval, indicating a significant effect. The point estimates showed a 0.6% increase
in the frequentist non-private approach and a more modest 0.5% increase in the Bayesian
approach. Given these results, our expectation for the private methodologies is, at best, to
approximate the non-private values, since better inferences are unlikely with privatized data.
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Note that as the experimental data is fixed, the only randomness in this study is the privacy
mechanisms.

The point estimates for both frequentist and Bayesian methodologies are similar to
their non-private results when εtot ≥ 3.0. In particular, we observe that the Custom (IPW)
scenario results in the narrowest confidence intervals. In the joint and custom (DM) scenarios,
the frequentist estimators deviated more from the non-private one, showing larger intervals.
The frequentist methodologies yield non-informative intervals when the privacy budget is
tightest εtot = 0.1. The Bayesian methodology demonstrated strong performance across
all scenarios. These observations align with our simulation studies, further validating the
efficacy of our methodologies.
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Table 3: Empirical analysis evaluating privatized cash transfer programs in Colombia. In the “Non-private” columns, “Freq”
represents the standard IPW estimator, while “Bayes” represents the standard Dirichlet process mixture models for
non-private data.

Non-private Private

Joint Custom (IPW) Custom (DM)

Freq Bayes Freq Bayes Freq Bayes Freq Bayes

εtot Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%
0.1 0.006 -0.042 0.054 0.005 0.001 0.008 1.0 −1.0 1.0 0.011 −0.178 0.145 0.651 -1.0 1.0 0.072 -0.135 0.244 1.0 -1.0 1.0 0.032 -0.137 0.193
0.3 0.006 -0.042 0.054 0.005 0.001 0.008 -1.0 -1.0 1.0 0.049 -0.082 0.190 0.220 -0.333 0.775 0.160 -0.038 0.389 -0.581 -1.0 1.0 0.049 -0.148 0.238
1.0 0.006 -0.042 0.054 0.005 0.001 0.008 -0.169 -0.898 0.559 0.041 -0.022 0.111 0.069 -0.104 0.243 0.073 -0.018 0.137 0.131 -0.546 0.809 0.054 -0.124 0.169
3.0 0.006 -0.042 0.054 0.005 0.001 0.008 0.008 -0.116 0.131 0.018 -0.007 0.044 0.0265 -0.051 0.104 -0.002 -0.018 0.015 -0.038 -0.248 0.170 0.048 0.004 0.098
10.0 0.006 -0.042 0.054 0.005 0.001 0.008 0.006 −0.051 0.064 0.009 0.0 0.018 0.011 -0.045 0.068 -0.002 -0.009 0.006 -0.006 -0.066 0.054 0.015 0.002 0.027
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7. Concluding Remarks

In this article we proposed causal inferential methodologies to analyze differential private data
from randomized experiments under the Rubin Causal Model. We considered three distinct
local privacy scenarios that have practical relevance: 1) jointly privatized variables with
known p, 2) custom privatized variables with known p, and 3) custom privatized variables
with unknown p. We showed that a naïve debiased estimator in the first scenario results
in poor MSE compared to the minimax lower bound. In contrast, we show that by using
customized privacy mechanisms, we can achieve the lower bound and obtain minimax optimal
inference. We also presented a Bayesian methodology and its sampling algorithm as an
alternative to the frequentist methodologies. We emphasize that despite the simplicity of
the Laplace and randomized response mechanisms we employ, our customized estimators
attain the minimax lower bound, thereby ensuring optimality across any privacy mechanisms.
Additionally, our analyses can readily be extended to other mechanisms that add independent
noise with a zero mean and known variance. Our Bayesian algorithm works effectively across
a broad spectrum of privacy mechanisms if the privacy mechanism has a known likelihood.
Finally, we validated the performance of our estimators via simulation studies and empirical
analyses using real-world data.

A direction for future research is to develop an analytical framework for unbounded
variables. Our framework is currently limited to bounded variables due to considerations
of the sensitivity of DP mechanisms, however this can be relaxed by adopting the minimax
privacy mechanism for mean estimation for unbounded functions proposed by Duchi et al.
(2018).

Additionally, the finite-sample performance of our estimators may be improved by more
carefully designing the noise adding mechanisms; one may investigate using truncated-
uniform-Laplace (Awan and Slavković, 2018), K-norm mechanisms (Hardt and Talwar,
2010; Awan and Slavković, 2021), or the minimax optimal noise mechanism for multivariate
mean estimation (Duchi et al., 2018). As mentioned in Section 3.5, the performance of
our frequentist estimators may be improved by incorporating knowledge about the DP
mechanisms (i.e., likelihood of mechanisms and boundedness of variables), as our Bayesian
approach does. We leave these directions for future research.

Finally, in this study, we specifically focused on experimental settings where the treatment
is randomly assigned to individuals.

Randomized experiments are the gold standard and provide a solid foundation for causal
inference. However, in many cases of interest, performing a randomized experiment is
impractical or impossible, whether due to feasibility issues or ethical concerns (e.g., it would
be unethical to force people to smoke to study health outcomes). In such situations, it
may be necessary to estimate causal effects based solely on observational data. Estimating
causal effects from observational data introduces significantly more challenges compared to
settings where randomized experiments are possible. Specifically, in observational studies, the
treatment assignment mechanisms are unknown (Imbens and Rubin, 2015), and treatment is
typically assigned based on individuals’ covariates. This induces selection bias in estimating
true causal effects, and this bias must be adjusted for valid inference. Various strategies
exist for this adjustment, such as matching, stratification, and weighting. However, these
procedures require modeling the assignment mechanisms (i.e., propensity scores) and checking
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covariate balances between treatment groups, which is particularly challenging in DP contexts.
Therefore, another future direction for research is to develop methodologies for PATE
estimation that address selection bias in observational studies.
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Appendix A. Details of Theorems and Proofs in Section 3

A.1 Conditional independence of {Yi(0), Yi(1)} and W̃i given Wi

We first state a subtle yet important lemma that we will use to prove subsequent theorems.

Lemma 9 The potential outcomes are conditionally independent of the privatized treatment
assignments given the actual treatment assignment:

{Yi(0), Yi(1)} ⊥⊥ W̃i |Wi.

This result holds because the DP mechanism flips the given treatment independently. This
result is subtle, but important because it plays a crucial role in proving the upcoming
theorems.

A.2 Proof of Lemma 4

Proof We first acknowledge that

sup
P0=δ(0),
P1∈P1,
p=1

E[(τ̂ − τ)2] = sup
P1∈P1

E[(τ̂ − µ1)2], (6)

where δ(0) denotes a point mass at 0 and µ1 = E[Yi(1)]. Equation (6) is equivalent to the
one-dimensional mean estimation problem in Duchi et al. (2018, Corollary 1). Therefore, by
Duchi et al. (2018), there exists some constant cl such that

cl min(1, (Nε2)−1) ≤ sup
P1∈P1

E[(τ̂ − µ1)2],

Finally, we note that

inf
Mε∈Mε

inf
τ̂

sup
P0=δ(0),
P1∈P1,
p=1

E[(τ̂ − τ)2] ≤ inf
Mε∈Mε

inf
τ̂

sup
P0∈P0,
P1∈P1,
p∈[0,1]

E[(τ̂ − τ)2],

where the inequality holds as the right side is taking supremum over a larger set. Putting
everything together, we prove our claim.
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A.3 Proof of Lemma 5

Proof Let p̄ = 1− p and q̄εw = 1− qεw . The weak law of large numbers implies

1

N

N∑
i=1

W̃iỸi
p→ E[W̃iỸi] = E[E[W̃iỸi |Wi]] = E[E[W̃i |Wi]E[Yi |Wi]]

= E[P (W̃i = 1 |Wi)E[Ỹi |Wi]]

= E[P (W̃i = 1 |Wi)E[Yi |Wi]]

= p
(
P (W̃i = 1 |Wi = 1)E[Yi(1)]

)
+ p̄
(
P (W̃i = 1 |Wi = 0)E[Yi(0)]

)
= pqεwµ1 + p̄q̄εwµ0,

where the second line follows from the law of total expectation and the third line follows
from Lemma 9. Similarly, we have 1

N

∑N
i=1(1− W̃i)Ỹi

p→ pq̄εwµ1 + p̄qεwµ0. Therefore, we see
that τ̃naive

p→ 1
Cp,εw

τ, and, since Cp,εw is a constant, we have Cp,εw τ̃naive
p→ τ.

A.4 Details of Theorem 6

We provide the following central limit theorem.

Theorem 10 The estimator Cp,εw τ̃naive is unbiased and consistent for τ . Furthermore,√
N(Cp,εw τ̃naive − τ) converges in distribution to

N

(
0, C2

p,εw

(
1

ρ1
V1 +

1

ρ0
V0 +

ρ0

ρ1
E2

1 +
ρ1

ρ0
E2

0 + 2E0E1

))
, (7)

where, for w = 0, 1,

Vw = Var(Ỹi|W̃i = w) =P (Wi = 0|W̃i = w)Var[Yi(0)] + P (Wi = 1|W̃i = w)Var[Yi(1)]

+ P (Wi = 0|W̃i = w)P (Wi = 1|W̃i = w)τ2 +
2

ε2y
,

and Ew = E(Ỹi|W̃i = w) = P (Wi = 0|W̃i = w)E[Yi(0)] + P (Wi = 1|W̃i = w)E[Yi(1)].

Proof Consistency is proven in Section A.3.

Cp,εw τ̃naive =
Cp,εw
N

N∑
i=1

{
W̃iỸi
ρ1
− (1− W̃i)Ỹi

ρ0

}
=
Cp,εw
N

N∑
i=1

τ̃i.

Note that τ̃i is i.i.d. for i = 1, . . . , N , E[Cp,εw τ̃i] = τ , and the second moment is bounded due
to the sensitivity of Y . Thus, it is sufficient to derive the variance of τ̃i as Var[Cp,εw τ̃i] =
C2
p,εwVar[τ̃i].

Var[τ̃i] =
1

ρ2
1

Var[W̃iỸi] +
1

ρ2
0

Var[(1− W̃i)Ỹi]−
2

ρ0ρ1
Cov[W̃iỸi, (1− W̃i)Ỹi].
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Then,

Var[W̃iỸi] = E[Var[W̃iỸi | W̃i]] + Var[E[W̃iỸi | W̃i]]

= E[W̃ 2
i Var[Ỹi | W̃i]] + Var[W̃iE[Ỹi | W̃i]]

= p(W̃i = 1)Var[Ỹi | W̃i] + p(W̃i = 1)p(W̃i = 0)E[Ỹi | W̃i]
2

= ρ1Var[Ỹi | W̃i] + ρ0ρ1E[Ỹi | W̃i]
2

= ρ1V1 + ρ0ρ1E
2
1 .

Similarly, we have Var[(1− W̃i)Ỹi] = ρ0V0 + ρ0ρ1E
2
0 . The covariance is given by

Cov[W̃iỸi, (1− W̃i)Ỹi] = −E[W̃iỸi]E[(1− W̃i)Ỹi]

= −E[W̃iE[Ỹi | W̃i]]E[(1− W̃i)E[Ỹi | W̃i]]

= −p(W̃i = 1)E[Ỹi | W̃i = 1]p(W̃i = 0)E[Ỹi | W̃i = 0]

= −ρ0ρ1E0E1.

Putting all together, we prove the central limit theorem in Theorem 10 and hence Theorem
6.

Next, we consider the decompositions of Ew and Vw. We have

Ew = E[Ŷi | Ŵi = w]

= E[Yi | Ŵi = w]

= P (Wi = 0|W̃i = w)E[Yi(0)] + P (Wi = 1|W̃i = w)E[Yi(1)],

which follows from Lemma 9. By the law of total variance and SUTVA,

Var[Yi | W̃i = 1]

=
1∑

w=0

Var[Yi | W̃i = 1,Wi = w]P (Wi = w | W̃i = 1) + Var[E[Yi | W̃i = 1,Wi = w]].

The first term simplifies to

1∑
w=0

Var[Yi | W̃i = 1,Wi = w]P (Wi = w | W̃i = 1)

=
p̄q̄εw

pqεw + p̄q̄εw
Var[Yi(0)] +

pqεw
pqεw + p̄q̄εw

Var[Yi(1)].

The second term simplifies to

Var[E[Yi | W̃i = 1,Wi = w]]

= E
[
(E[Yi | W̃i = 1,Wi = w]− E[(E[Yi | W̃i = 1,Wi = w]])2 | W̃i = 1

]
=

1∑
w=0

(
E[Yi(w)]− p̄q̄εw

pqεw + p̄q̄εw
E[Yi(0)]− pqεw

pqεw + p̄q̄εw
E[Yi(1)]

)2

P (Wi = w | W̃i = 1)

=
pqεw p̄q̄εw

(pqεw + p̄q̄εw)2
τ2.
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Therefore, we have

V1 := Var[Yi | W̃i = 1] =
p̄q̄εw

pqεw + p̄q̄εw
Var[Yi(0)] +

pqεw
pqεw + p̄q̄εw

Var[Yi(1)] +
pqεw p̄q̄εw

(pqεw + p̄q̄εw)2
τ2.

Similarly, we have

V0 := Var[Yi | W̃i = 0] =
p̄qεw

p̄qεw + pq̄εw
Var[Yi(0)] +

pq̄εw
p̄qεw + pq̄εw

Var[Yi(1)] +
pqεw p̄q̄εw

(p̄qεw + pq̄εw)2
τ2.

Finally, the order of the asymptotic variance is immediate from the fact that C2
p,εw =

O((ε2w)−1), which proves Theorem 6 and Corollary 12

We now turn to estimating the asymptotic variance of Cp,εw τ̃naive in (7). We consider the
following estimators for Ew and Vw: Êw = 1

Ñw

∑
i:W̃i=w

Ỹi and V̂w = 1
Ñw−1

∑
i:W̃i=w

(Ỹi−Êw)2,

where Ñw =
∑N

i=1 1(W̃i = w) for w = 0, 1.

Lemma 11 V̂w and Êw are consistent for Vw and Ew respectively. Also, we have

E[Êw | W̃i = w] = Ew and E[V̂w | W̃i = w] = Vw

Proof

V̂1 =
1

Ñ1 − 1

∑
i:W̃i=1

(Ỹi − Ê1)2

=
1

Ñ1 − 1

∑
i:W̃i=1

(Ỹi − E[Ỹi | W̃i = 1] + E[Ỹi | W̃i = 1]− Ê1)2

=
1

Ñ1 − 1

∑
i:W̃i=1

{
(Ỹi − E[Ỹi | W̃i = 1])2 + (E[Ỹi | W̃i = 1]− Ê1)2

− 2(Ỹi − E[Ỹi | W̃i = 1])(E[Ỹi | W̃i = 1]− Ê1)

}
=

Ñ1

Ñ1 − 1

1

Ñ1

∑
i:W̃i=1

(Ỹi − E[Ỹi | W̃i = 1])2 − Ñ1

Ñ1 − 1
(Ê1 − E[Ỹi | W̃i = 1])2.

Therefore,

E[V̂1 | W̃i = 1] =
Ñ1

Ñ1 − 1
Var[Ỹi | W̃i = 1]− Ñ1

Ñ1 − 1
Var[Ê1 | W̃i = 1]

=
Ñ1

Ñ1 − 1
Var[Ỹi | W̃i = 1]− 1

Ñ1 − 1
Var[Ỹi | W̃i = 1]

= Var[Ỹi | W̃i = 1] = V1.

We can follow the same procedure for E[V̂0 | W̃i = 0] = V0.
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Using Êw and V̂w, we can construct the plug-in estimator for the asymptotic variance
and the nominal central confidence interval at the significance level α as:

(
Cp,εw τ̃naive − zα2

√
Σ̂naive

N
,Cp,εw τ̃naive + zα

2

√
Σ̂naive

N

)
.

where Σ̂naive = C2
p,εw( 1

ρ1
V̂1 + 1

ρ0
V̂0 + ρ0

ρ1
Ê2

1 + ρ1
ρ0
Ê2

0 + 2Ê0Ê1), which is a consistent estimator
for the asymptotic variance in (7).

Finally, we discuss the optimality of the naïve estimator.

Corollary 12 (Convergence rate) The naïve estimator under the joint scenario has the
MSE O((Nε2yε

2
w)−1).

Setting εy = ε2 = ε/2 gives O((Nε4)−1). While we do not match the minimax lower bound of
mean estimation in terms of ε when both W and Y are privatized, it should be emphasized
that the estimation of PATE is significantly harder than the usual mean estimation when we
do not know who belongs to which treatment group, especially using a non-interactive LDP
mechanism as in the joint scenario.

A.5 Details of Theorem 7

By the standard central limit theorem, we have

√
N(τ̃IPW − τ)

D→ N

(
0,
µ2

1 + σ2
1

p
+
µ2

0 + σ2
0

1− p
− τ2 − µ0µ1 +

2∆A

ε2a

)
, (8)

where µw = E[Yi(w)] and σ2
w = Var[Yi(w)] for w = 0, 1. We can then construct the plug-in

estimator for the asymptotic variance and the nominal central confidence interval at the
significance level α as:

(
τ̃IPW − zα

2

√
Σ̂IPW

N
, τ̃IPW + zα

2

√
Σ̂IPW

N

)
.

where Σ̂IPW = 1
N−1

∑N
i=1(Ãi − ÊA)2 with ÊA = 1

N

∑N
i=1 Ãi, which is an unbiased estimator

for the asymptotic variance in (8).

A.6 Details of Theorem 8

First, we provide the following asymptotic results regarding this estimator.

Theorem 13 τ̃DM is consistent for τ and
√
N(τ̃DM − τ) converges in distribution to

N

(
0, 4µ0µ1 +

σ2
0

1− p
+
σ2

1

p
+

2

ε2b1

(
µ0

1− p
+
µ1

p

)2

+
2

p2ε2b2
+

2

(1− p)2ε2b3

)
. (9)
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Proof First, we have E[B̃i,1] = pµ1, E[B̃i,2] = (1 − p)µ0, E[B̃i,3] = p, E[B̃i,4] = 1 − p,
Var[B̃i,1] = pσ2

1 +p(1−p)µ2
1 + 2

ε2b1
, Var[B̃i,2] = (1−p)σ2

0 +p(1−p)µ2
0 + 2

ε2b2
, Var[B̃i,3] = p(1−

p)+ 2
ε2b3

, Var[B̃i,4] = p(1−p)+ 2
ε2b3

, Cov[B̃i,1, B̃i,2] = −p(1−p)µ0µ1, Cov[B̃i,1, B̃i,3] = p(1−p)µ1,

Cov[B̃i,1, B̃i,4] = 0, Cov[B̃i,2, B̃i,3] = 0, Cov[B̃i,2, B̃i,4] = p(1 − p)µ0, and Cov[B̃i,3, B̃i,4] =
−p(1− p)µ0µ1. By the central limit theorem, we have

√
N


1
N

∑N
i=1 B̃i,1 − E[B̃i,1]

1
N

∑N
i=1 B̃i,2 − E[B̃i,2]

1
N

∑N
i=1 B̃i,3 − E[B̃i,3]

1
N

∑N
i=1 B̃i,4 − E[B̃i,4]

 D→ N




0
0
0
0

 , S∗

 ,

where

S∗ =


Var[B̃i,1] Cov[B̃i,1, B̃i,2] Cov[B̃i,1, B̃i,3] Cov[B̃i,1, B̃i,4]

Cov[B̃i,2, B̃i,1] Var[B̃i,2] Cov[B̃i,2, B̃i,3] Cov[B̃i,2, B̃i,4]

Cov[B̃i,3, B̃i,1] Cov[B̃i,3, B̃i,2] Var[B̃i,3] Cov[B̃i,3, B̃i,4]

Cov[B̃i,4, B̃i,1] Cov[B̃i,4, B̃i,2] Cov[B̃i,4, B̃i,3] Var[B̃i,4]

 .

Define a function h(a, b, c, d) = a
c −

b
d and ∇h = (∂h∂a ,

∂h
∂b ,

∂h
∂c ,

∂h
∂d ), where

∂h

∂a
=

1

c
,
∂h

∂b
= −1

d
,
∂h

∂c
= − a

c2
,
∂h

∂d
=

b

d2
.

Note that

τ = µ1 − µ0 =
E[B̃i,1]

E[B̃i,3]
− E[B̃i,2]

E[B̃i,4]
= h

(
E[B̃i,1],E[B̃i,2],E[B̃i,3],E[B̃i,4]

)
,

and

τ̃DM =

∑N
i=1 B̃i,1∑N
i=1 B̃i,3

−
∑N

i=1 B̃i,2∑N
i=1 B̃i,4

= h

(
1

N

N∑
i=1

B̃i,1,
1

N

N∑
i=1

B̃i,2,
1

N

N∑
i=1

B̃i,3,
1

N

N∑
i=1

B̃i,4

)
.

By applying the delta method, we have

√
N(τ̃DM − τ)

D→ N(0,Σ∗),

where Σ∗ = ∇h(E)′S∗∇h(E). ∇h(E) denotes the gradient ∇h evaluated at
E = (E[B̃i,1],E[B̃i,2,E[B̃i,3],E[B̃i,4]). Calculating Σ∗ proves our claim in Thereom 13. The
estimator of Σ∗ that we adopt in Section 3.4 are a plug-in estimator with consistent estimators
of ∇h(E) and S∗.

By Theorem 13, the asymptotic variance of τ̃DM has the convergence rate O((N(ε2b1 +
ε2b2 + ε2b3))−1). Setting εb1 = εb2 = εb3 = ε/3 gives O((Nε2)−1), which also matches the
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minimax lower bound for the locally private mean estimation, indicating the optimality of
the estimator.

Let ÊBj = 1
N

∑N
i=1 B̃i,j , V̂Bj = 1

N−1

∑N
i=1(B̃i,j − ÊBj )2 for j = 1, 2, 3, 4 and Ĉovj,k =

1
N−1

∑N
i=1(B̃i,j − ÊBj )(B̃i,k − ÊBk) for j 6= k. Then, we construct the plug-in estimator for

the asymptotic variance and the nominal central confidence interval at the significance level
α as: (

τ̃DM − zα
2

√
Σ̂DM

N
, τ̃DM + zα

2

√
Σ̂DM

N

)
.

where Σ̂DM = ê′Ŝê, with ê = (1/ÊB3 ,−1/(1− ÊB3),−ÊB1/Ê
2
B3
, ÊB2/(1− ÊB3)2)′ and

Ŝ =


V̂B1 Ĉov1,2 Ĉov1,3 Ĉov1,4

Ĉov2,1 V̂B2 Ĉov2,3 Ĉov2,4

Ĉov3,1 Ĉov3,2 V̂B3 Ĉov3,4

Ĉov4,1 Ĉov4,2 Ĉov4,3 V̂B4

 .

This is a consistent estimator for the asymptotic variance in (9).

Appendix B. Clamping Bias Analysis

In this section, we provide an analysis of the bias introduced by the clamping process for
the frequentist estimator in the joint scenario and the custom scenario with a known p. The
custom scenario with an unknown p does not guarantee the bias in finite samples, so we do
not consider it, but the same analysis can be applied.

Let τ̃ and τ̃∗ denote a generic unbiased estimator in each scenario and the clamped
estimator of τ̃ , respectively, that is:

τ̃∗ =


τ̃ if − 1 ≤ τ̃ ≤ 1

1 if τ̃ > 1,

−1 if τ̃ < −1,

Under the joint scenario and the custom scenario with a known p, we have already proved
the unbiasedness of τ̃ : E[τ̃ ] = τ . Therefore, the bias of the clamped estimator is expressed
as:

E[τ̃∗]− τ = E[τ̃ ]P (−1 ≤ τ̃ ≤ 1) + P (1 < τ̃)− P (τ̃ < −1)− τ
= τP (−1 ≤ τ̃ ≤ 1) + P (1 < τ̃)− P (τ̃ < −1)− τ

(10)

The exact distribution of τ̃ is challenging to compute because the distribution of the
outcome Y is unknown. However, given our private estimators are the sample average of
independent samples, it is reasonable to apply the normal approximation to the estimator. By
Theorem 6 in the joint scenario, the unbiased estimator τ̃ = Cp,εw · τ̃naive can be approximated
by:

N

(
τ,
C2
p,εw

N

(
1

ρ1
V1 +

1

ρ0
V0 +

ρ0

ρ1
E2

1 +
ρ1

ρ0
E2

0 + 2E0E1

))
. (11)
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Therefore,

P (−1 ≤ τ̃ ≤ 1) = Φ

 1− τ√
C2
p,εw
N

(
1
ρ1
V1 + 1

ρ0
V0 + ρ0

ρ1
E2

1 + ρ1
ρ0
E2

0 + 2E0E1

)


− Φ

 −1− τ√
C2
p,εw
N

(
1
ρ1
V1 + 1

ρ0
V0 + ρ0

ρ1
E2

1 + ρ1
ρ0
E2

0 + 2E0E1

)
 ,

P (1 < τ̃) = 1− Φ

 1− τ√
C2
p,εw
N

(
1
ρ1
V1 + 1

ρ0
V0 + ρ0

ρ1
E2

1 + ρ1
ρ0
E2

0 + 2E0E1

)
 ,

P (τ̃ < −1) = Φ

 −1− τ√
C2
p,εw
N

(
1
ρ1
V1 + 1

ρ0
V0 + ρ0

ρ1
E2

1 + ρ1
ρ0
E2

0 + 2E0E1

)


Plugging in these probabilities for (10), we obtain the bias of the clamped estimator under
the joint scenario.

Similarly, for the custom scenario with a known p, we have the unbiased estimator
τ̃ = τ̃IPW , which can be approximated by:

N

(
τ,

Σ̂IPW

N

)
.

Therefore,

P (−1 ≤ τ̃ ≤ 1) = Φ

 1− τ√
Σ̂IPW
N

− Φ

 −1− τ√
Σ̂IPW
N

 ,

P (1 < τ̃) = 1− Φ

 1− τ√
Σ̂IPW
N

 ,

P (τ̃ < −1) = Φ

 −1− τ√
Σ̂IPW
N

 .

Plugging in these probabilities for (10), we obtain the bias of the clamped estimator under
the custom scenario with a known p.

Appendix C. Randomized Response Mechanism for Binary Outcome

In this study, we are focusing on a continuous outcome Y ∈ [0, 1], rather than a binary
one. We chose the Laplace mechanism for its privacy mechanism because it can be used
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for both continuous and binary outcomes, offering a more general solution for our analysis.
Although we acknowledge that the Laplace mechanism has an unbounded domain—which can
introduce bias if we apply clamping post-process—we believe that its versatility outweighs
this limitation in our context. However, it indeed might be of practical interest to use the
Randomized Response mechanism when the outcome is binary in the joint scenario. In this
section, we provide another bias correction technique under the joint scenario with a binary
outcome Yi ∈ {0, 1} in which both treatment variables and outcomes are privatized by the
Randomized Response mechanism. We let

Ỹi =

{
Yi w.p. rεy
1− Yi w.p. 1− rεy ,

where rεy =
exp(εy)

1+exp(εy) . Then, the following lemma follows.

Lemma 14 Kp,εw,εy · τ̃naive is an unbiased and consistent estimator for τ , where Kp,εw,εy =
ρ0ρ1

p(1−p)(2qεw−1)(2rεy−1) . The following interval is the nominal central confidence interval at the
significance level α:Kp,εw,εy · τ̃naive − zα2

√
Σ̂naive

N
,Kp,εw,εy · τ̃naive + zα

2

√
Σ̂naive

N

 ,

where Σ̂naive = K2
p,εw,εy(

1
ρ1
V̂1 + 1

ρ0
V̂0 + ρ0

ρ1
Ê2

1 + ρ1
ρ0
Ê2

0 + 2Ê0Ê1).

Proof Note that

E[W̃iỸi] = E[E[W̃iỸi |Wi]]

= E[E[W̃i |Wi]E[Ỹi |Wi]]

= E[P (W̃i = 1 |Wi)P (Ỹi = 1 |Wi)]

= pE[qεwP (Ỹi = 1 |Wi = 1)] + (1− p)E[(1− qεw)P (Ỹi = 1 |Wi = 0)].

We also have:

P (Ỹi = 1 |Wi = 1)

= P (Ỹi = 1 | Yi = 1,Wi = 1)P (Yi = 1 |Wi = 1)

+ P (Ỹi = 1 | Yi = 0,Wi = 1)P (Yi = 0 |Wi = 1)

= rεyµ1 + (1− rεy)(1− µ1).

Similarly, we have

P (Ỹi = 1 |Wi = 0) = rεyµ0 + (1− rεy)(1− µ0).

Thus, we have:

E[W̃iỸi] = pqεw{rεyµ1 + (1− rεy)(1− µ1)}+ (1− p)(1− qεw){rεyµ0 + (1− rεy)(1− µ0)}.
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Similarly, we have:

E[(1− W̃i)Ỹi] = p(1− qεw){rεyµ1 + (1− rεy)(1− µ1)}+ (1− p)qεw{rεyµ0 + (1− rεy)(1− µ0)}.

We can then show that Kp,εw,εy · τ̃naive is an unbiased estimator for τ , and, by the weak law
of large number, it is also a consistent estimator for τ .

The variance in the confidence interval can be obtained following the same procedures in
the proof of Theorem 6.

This lemma also implies that the MSE of Kp,εw,εy · τ̃naive is also O((Nε2yε
2
w)−1), which is the

same convergence rate in Theorem 6.

Appendix D. Bayesian Methodology

D.1 Details of the DPM

We say the probability measure H is generated from a Dirichlet Process, DP(α,H0), with a
concentration parameter α > 0 and a base probability measure H0 over a measurable space
(Θ,S) (Ferguson, 1974) if, for any finite partition (S1, ..., Sk) of S, we have(

H(S1), ...,H(Sk)
)
∼ Dir

(
αH0(S1), ..., αH0(Sk)

)
,

where Dir(α1, ..., αk) denotes the Dirichlet distribution with positive parameters α1, ..., αk.
The DPM is specified as

{Y1(0), Y1(1)}, ..., {YN (0), YN (1)} | Φ1, ...,ΦN
ind∼ p(Yi(0), Yi(1)|Φi),

Φ1, ...,ΦN |H
ind∼ H,

H
ind∼ DP (α,H0).

We write ind∼ to say independently distributed. This model has unit-level parameters Φi for
i = 1, ..., N , but the discreteness of the Dirichlet process (DP) distributed prior implies that
the vector Φ = (Φ1, ...,ΦN ) can be rewritten in terms of its unique values Φ∗ = (Φ∗1, ...,Φ

∗
K).

In particular, this can be represented in the following stick-breaking process.

H =
∞∑
k=1

ukδΦk , uk = vk
∏
l<k

[1− vl], vl
ind∼ Beta(1, α).

More specifically, the outcome model is specified by the following model.

P (Yi(w)|µ,Σ) ∝
∞∑
k=1

ukTN(µkw,Σ
k
w, 0, 1), (12)

where TN(µ, σ2, u, l) denotes the truncated normal distribution with the mean, variance,
upper bound and lower bound parameters. The atoms Φk = (µk0, µ

k
1,Σ

k
0,Σ

k
1) and the weight

parameters uk are nonparametrically specified via DP(α,H0). This can be regarded as the
infinite mixture of normal distributions, where µkw and Σk

w is the location parameter and
variance parameter of each component respectively.
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For inference, we adopt an approximated blocked Gibbs sampler based on a truncation of
the stick-breaking representation of the DP proposed by Ishwaran and Zarepour (2000), due
to its simplicity. In this algorithm, we first set a conservatively large upper bound, K ≤ ∞,
on the number of components that units potentially belong to. Let Ci ∈ {1, ...,K} denote the
latent class indicators with a multinomial distribution, Ci ∼MN(w) where u = (u1, ..., uK)
denote the weights of all components of the DPM. Conditional on Ci = k, (12) is greatly
simplified to

P (Yi(w)|µ,Σ) ∝ TN(µkw,Σ
k
w, 0, 1).

Ishwaran and James (2001) showed that an accurate approximation to the exact DP is
obtained as long as K is chosen sufficiently large. The DPM provides an automatic selection
mechanism for the number of active components K∗ < K. To ensure that K is sufficiently
large, we run several MCMC iterations with different values of K. If the current iteration
occupies all components, then K is not large enough, so we increase K for the next iteration.
We conduct this iterative process until the number of the occupied components is below K.

D.2 Detailed Steps of Gibbs Sampler

In this section we present the detailed steps of the Gibbs sampler that is described in Section
4.2. The algorithm is inspired by Schwartz et al. (2011) and Ohnishi and Sabbaghi (2022b).

1. Given Yi(0), Yi(1), draw each Wi from

P (Wi = 1|−) =
r1

r0 + r1
,

where, for unit i with W̃i = 0,

r0 = Lap(Ỹi | Yi(0), 1/εy)qεw(1− p) and r1 = Lap(Ỹi | Yi(1), 1/εy)(1− qεw)p,

and for unit i with W̃i = 1,

r0 = Lap(Ỹi | Yi(0), 1/εy)(1− qεw)(1− p) and r1 = Lap(Ỹi | Yi(1), 1/εy)qεwp.

where Lap(y | µ, σ) is the pdf of the laplace distribution evaluated at y with the location
parameter µ and scale parameter σ.

2. Given µ, Σ, u, Ci and Wi = w, draw Yi(1− w) according to:

Yi(1− w) ∼ TN(µCi1−w,Σ
Ci
1−w, 0, 1),

where TN(µ, σ2, u, l) denotes the truncated normal distribution with the mean, variance,
upper bound and lower bound parameters.
Then, draw Yi(w) using the following Privacy-Aware Metropolis-within-Gibbs sampler
Ju et al. (2022):
(a) Draw a proposal: y∗ ∼ TN(µCiw ,Σ

Ci
w , 0, 1).

(b) Accept the proposal with probability α = min
(
1,

Lap(y∗|Ỹi,1/εy)

Lap(yprev|Ỹi,1/εy)

)
,

where yprev is the value of Yi(w) in the previous step.
3. Given µ, Σ, u, Yi(0) and Yi(1), draw each Ci from

P (Ci = k|−) ∝ ukTN(Yi(0) | µk0,Σk
0, 0, 1)TN(Yi(1) | µk1,Σk

1, 0, 1).

This is a multinomial distribution.

28



Locally Private Causal Inference for Randomized Experiments

4. Let u′K = 1. Given α, C, draw u′k for k ∈ {1, ...,K − 1} from

P (u′k|−) ∝ Beta
(

1 +
∑
i:Ci=k

1, α+
∑
i:Ci>k

1

)
.

Then, update uk = u′k
∏
j<k(1− u′j).

5. Given C and u′, draw α from

P (α|−) ∝ P (α)
K∏
k=1

f

(
u′k

∣∣∣∣1 +
∑
i:Ci=k

1, α+
∑
i:Ci>k

1

)
,

where f is the pdf of u′k, the beta distribution. The Metropolis-Hastings algorithm is
used for this step with a proposal distribution TN(αprev, 1.0, 0,∞). αprev is the value
of α in the previous step.

6. Given Y(0), Y(1) and C, draw µ and Σ from
(a) If Nk =

∑N
i=1 1(Ci = k) > 0, draw Σk

w from IG(2 + 0.5Nk, 0.2
2 + 0.5skw) where

skw =
∑

i:Ci=k
(Yi(w)− µkw)2 for w = 0, 1. If Nk = 0,then draw Σk

w from the prior
IG(2, 0.22).

(b) IfNk > 0, draw µkw from TN

(
0.5∗Σkw+9.0sw

Σkw+9.0Nk
, 9.0Σkw

Σkw+9.0Nk
, 0, 1

)
, where sw =

∑N
i=1 Yi(w).

If Nk = 0, draw µkw from TN(0.5, 9.0, 0, 1). We use a common choice of the base
measure H0: the Normal-Inverse-Gamma conjugate N(µ0, σ

2
0)N(µ0, σ

2
0)IG(a0, b0)

IG(a0, b0). The specific values of the hyperparameters in this step are: µ0 = 0.5,
σ0 = 3.0, a0 = 2.0 and b0 = 0.22 for both w = 0, 1.

D.3 Modifications for Custom Scenario in Section 3.3

We need to modify Step 1 and 2 for the custom scenarios. Particularly,
1. Given Yi(0), Yi(1), draw each Wi from P (Wi = 1|−) = r1

r0+r1
, where rw = P (Ãi |

Yi(0), Yi(1),Wi = w)P (Wi = w) for w = 0, 1. Specifically, since Ãi is generated by pri-
vatizing either −Yi(0)/(1−p) or Yi(1)/p given the value ofWi, P (Ãi | Yi(0), Yi(1),Wi =
w) = Lap(Ãi | −Yi(0)/(1− p),∆a/εa) for Wi = 0, and P (Ãi | Yi(0), Yi(1),Wi = w) =
Lap(Ãi | Yi(1)/p,∆a/εa) for Wi = 1.

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCiWi
,ΣCi

Wi
)P (Ãi | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi1−Wi
,ΣCi

1−Wi
).

Specifically, P (Ãi | Yi(Wi)) = Lap(Ãi | −Yi(0)/(1 − p),∆a/εa) for Wi = 0 and
P (Ãi | Yi(Wi)) = Lap(Ãi | Yi(1)/p,∆a/εa) for Wi = 1. The privacy-aware Metropolis-
within-Gibbs algorithm (Ju et al., 2022) is used for the draw of Yi(Wi).

D.4 Modifications for Custom Scenario in Section 3.4

Under the custom scenario in Section 3.4, we do not have access to p. Therefore, we need an
additional step to infer p. Specifically, with a prior distribution p ∼ Beta(1, 1), we add the
following step.
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0. Draw p ∼ Beta
(

1 +
∑N

i=1 1(Wi = 1), 1 +
∑N

i=1 1(Wi = 0)
)
.

Then we proceed as follows.
1. Given Yi(0), Yi(1) and p, draw each Wi from P (Wi = 1|−) = r1

r0+r1
, where

rw = pw(1− p)1−wP (B̃i,1 | Yi(0), Yi(1),Wi = w)P (B̃i,2 | Yi(0), Yi(1),Wi = w)

× P (B̃i,3 | Yi(0), Yi(1),Wi = w)

for w = 0, 1. Specifically, considering the privatization of B̃i,1, B̃i,2 and B̃i,3, we
have P (B̃i,1 | Yi(0), Yi(1),Wi = 0) = Lap(B̃i,1 | 0, 1/εb2), P (B̃i,2 | Yi(0), Yi(1),Wi =
0) = Lap(B̃i,2 | Yi(0), 1/εb2), P (B̃i,3 | Yi(0), Yi(1),Wi = 0) = Lap(B̃i,3 | 0, 1/εb3),
P (B̃i,1 | Yi(0), Yi(1),Wi = 1) = Lap(B̃i,1 | Yi(1), 1/εb1), P (B̃i,2 | Yi(0), Yi(1),Wi =
1) = Lap(B̃i,2 | 0, 1/εb2) and P (B̃i,3 | Yi(0), Yi(1),Wi = 1) = Lap(B̃i,3 | 0, 1/εb3).

2. Given µ, Σ, u, Ci and Wi, draw each Yi(0) and Yi(1) according to:

P (Yi(Wi)|−) ∝ P (Yi(Wi) | µCiWi
,ΣCi

Wi
)P (B̃i | Yi(Wi))

P (Yi(1−Wi)|−) ∝ P (Yi(1−Wi) | µCi1−Wi
,ΣCi

1−Wi
).

Specifically, P (B̃i | Yi(Wi)) = P (B̃i,2 | Yi(0)) = Lap(B̃i,2 | Yi(0), 1/εb2) for Wi = 0
and P (B̃i | Yi(Wi)) = P (B̃i,1 | Yi(1)) = Lap(B̃i,1 | Yi(1), 1/εb1) for Wi = 1. The
privacy-aware Metropolis-within-Gibbs algorithm (Ju et al., 2022) is used for the draw
of Yi(Wi).

Appendix E. Simulation Details

E.1 Estimands

Under the data-generating processes and the re-parameterizations of the Beta regression
provided in Section 5.1, the expectations of each potential outcome are expressed as:

E[Y (0)] = EX1,X2,X3 [µ(0)] = EX1,X2,X3

[
exp(1.0− 0.8X1 + 0.5X2 − 2.0X3)

1 + exp(1.0− 0.8X1 + 0.5X2 − 2.0X3)

]
= 0.359613,

E[Y (1)] = EX1,X2,X3 [µ(1)] = EX1,X2,X3

[
exp(1.5− 0.8X1 + 0.5X2 − 2.0X3)

1 + exp(1.5− 0.8X1 + 0.5X2 − 2.0X3)

]
= 0.457068.

We refer readers to Ferrari and Cribari-Neto (2004) for further details about the Beta
regression.

E.2 Additional Simulations

Table 4 – 7 display the simulation results for smaller sample sizes of N = 100 and N = 1, 000.
All scenarios achieve roughly 95% coverage. Regarding Bias and MSE, custom scenarios
demonstrate superior performance compared to the joint scenario, consistent with the
observations in the main manuscript for N = 10, 000. As expected, the MSE of the
frequentists estimators for N = 1, 000 is about 10 times that of N = 10, 000, and N = 100
is about 10 times that of N = 1, 000, which confirms the validity of the convergence rates
we derived. All discussions regarding the comparison between the frequentist and Bayesian
estimators in the main manuscript are applicable to the case of N = 100 or N = 1, 000.
Please refer to Section 5 in the main manuscript for a detailed discussion on this matter.
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Table 4: Evaluation metrics of frequentist estimators for N = 100, Nsim = 2, 000.
Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 94.75% 94.6% 100.0% 0.9025 −1.0975 −1.0975 0.9977 0.9208 0.7357 1.895 1.889 2.0
0.3 93.4% 95.05% 100.0% 0.9025 −1.0975 0.9025 0.9827 0.729 0.7877 1.869 1.877 2.0
1.0 94.8% 95.6% 99.8% −0.0535 −0.6484 0.9025 0.7787 0.2685 0.7476 1.883 1.652 1.986
3.0 94.65% 95.4% 97.6% −0.3555 0.1663 −0.844 0.1037 0.0441 0.2508 1.237 0.82 1.673
10 95.85% 95.0% 95.7% 0.1429 0.1249 −0.1147 0.0115 0.0117 0.0226 0.433 0.426 0.591

Table 5: Evaluation metrics of Bayesian estimators for N = 100, Nsim = 1, 000.
Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 100.0% 100.0% 100.0% −0.0961 −0.0982 −0.0966 0.0093 0.0097 0.0094 0.616 0.5996 0.575
0.3 100.0% 100.0% 100.0% −0.0958 −0.0964 −0.0970 0.0092 0.0096 0.0095 0.616 0.5953 0.586
1.0 100.0% 100.0% 100.0% −0.0952 −0.0897 −0.0951 0.0093 0.0101 0.0096 0.615 0.5700 0.580
3.0 99.5% 99.5% 99.5% −0.0657 −0.0584 −0.0864 0.0106 0.0086 0.0113 0.521 0.4687 0.540
10 94.4% 94.5% 94.3% −0.0155 −0.0352 −0.0259 0.0034 0.0052 0.0068 0.232 0.2779 0.304

Table 6: Evaluation metrics of frequentist estimators for N = 1, 000, Nsim = 2, 000.
Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 95.1% 95.45% 100.0% 0.9025 −1.0975 0.9025 0.9995 0.7129 0.7832 1.901 1.877 2.0
0.3 95.05% 95.1% 99.5% −1.0975 −0.189 −1.0975 0.9412 0.296 0.7623 1.9 1.669 1.987
1.0 94.6% 95.2% 98.5% 0.2516 0.2546 0.7294 0.3827 0.033 0.2147 1.744 0.71 1.623
3.0 94.7% 95.65% 95.8% 0.0154 0.0101 0.2328 0.0109 0.0042 0.0229 0.41 0.261 0.587
10 94.6% 94.9% 94.85% 0.0057 0.066 −0.0543 0.0012 0.0012 0.0022 0.137 0.135 0.181

Table 7: Evaluation metrics of Bayesian estimators for N = 1, 000, Nsim = 1, 000.
Coverage Bias MSE Interval Width

Custom Custom Custom Custom Custom Custom Custom Custom
εtot Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM) Joint (IPW) (DM)
0.1 100.0% 100.0% 100.0% −0.0973 −0.0965 −0.0987 0.0096 0.0096 0.0099 0.450 0.4706 0.462
0.3 100.0% 100.0% 100.0% −0.0972 −0.0859 −0.0974 0.0096 0.0084 0.0099 0.455 0.4594 0.463
1.0 100.0% 98.0% 100.0% −0.0928 −0.0597 −0.0916 0.0093 0.0070 0.0099 0.445 0.3625 0.433
3.0 96.1% 92.5% 95.7% −0.0265 −0.0219 −0.0469 0.0040 0.0030 0.0056 0.258 0.2036 0.303
10 92.7% 94.5% 92.0% −0.0103 −0.0161 −0.0144 0.0004 0.0007 0.0009 0.078 0.0960 0.107
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Appendix F. Regression Adjustment

F.1 Overview

In the context of randomized experiments, causal effects τ can be identified solely using the
treatment assignment and outcome variables. Also, as demonstrated in prior sections, our
custom frequentist estimators achieve minimax optimality without the need for covariates.
However, there is a clear rationale for incorporating covariates when deducing causal effects
in randomized settings: they can enhance the efficiency of inference by leveraging pertinent
individual data. This enhancement method is termed regression adjustment (Lin, 2013).
Nevertheless, applying regression adjustment within LDP presents challenges. Specifically,
it could incur additional privacy costs for the covariates, and these costs could escalate
significantly for high-dimensional covariates. In this section, we present another type of
frequentist estimator for the joint scenario, namely the OLS estimator. We explore its
advantages and constraints, compared to the IPW estimator in the same scenario.

Assume that the observed covariates are privatized by the Laplace mechanism. We
assume Xi,j ∈ [0, 1] for i = 1, . . . , N and j = 1, . . . , d to ensure bounded `1-sensitivity. The
privatized outcomes and covariates are X̃i,j = Xi,j + νXi,j , where ν

X
i,j ∼i.i.d Lap(d/εx). By

composition, the joint release of (Ỹi, X̃i,1, . . . , X̃i,d, W̃i)
N
i=1 satisfies (εy + εx + εw)-LDP.

Without privacy considerations, it is well known that the covariate adjustment can further
improve the efficiency, even without assuming a correctly specified outcome model (Lin,
2013). Specifically, we propose the following plug-in OLS estimator.

τ̃OLS = α̃(1) − α̃(0) + X̄(β̃(1) − β̃(0)), (13)

where X̄ = 1
N

∑N
i=1 X̃i and (α̃(w), β̃(w)) = arg minα,β

∑
i:W̃i=w

(Ỹi − α − X̃ ′iβ)2 for w = 0, 1.
Note that, under some regularity conditions (Lehmann and Casella, 1998, p. 440), (α̃(w), β̃(w))

converges to (α̃∗(w), β̃
∗
(w)), defined as

(α̃∗(w), β̃
∗
(w)) = arg min

α,β
E[(Ỹi − α− X̃ ′iβ)2 | W̃i = w].

We investigate the potential bias of the naïve OLS estimator and propose a bias-corrected
version. The following theorem states that the naïve OLS estimator (13) is an inconsistent
estimator for τ , but multiplying by the same factor Cp,εw makes it consistent. The central
limit theorem has also been developed.

Theorem 15 1. (Consistency) Cp,εw τ̃OLS is consistent for τ .
2. (CLT)

√
N(Cp,εw τ̃OLS − τ) converges in distribution to

N

(
0, C2

p,εw

(
MSE1

ρ1
+

MSE0

ρ0

))
, (14)

where MSEw = E[(Ỹi − α̃∗(w) − X̃
′
iβ̃
∗
(w))

2 | W̃i = w] for w = 0, 1.
3. (Confidence Interval) The following interval is the nominal central confidence at the

significance level α:(
Cp,εw τ̃OLS − zα2

√
Σ̂OLS

N
,Cp,εw τ̃OLS + zα

2

√
Σ̂OLS

N

)
,
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where Σ̂OLS = C2
p,εw

(
M̂SE1
ρ1

+ M̂SE0
ρ0

)
and M̂SEw = 1

Ñw

∑
i:W̃i=w

(Ỹi − α̃(w) − X̃iβ̃(w))
2

for w = 0, 1.

Proof Consider the objective function

Q(α(w), β(w)) = E[(Ỹi − α(w) − X̃
′
iβ(w))

2 | W̃i = w]

= E[(Ỹi − γ(w) − (X̃
′
i − µX̃)β(w))

2 | W̃i = w],

where γ(w) = α(w) + µX̃β(w). Note that, for both w = 0, 1,

µX̃ = E[X̃i | W̃i = w] = E[Xi | W̃i = w] = E[Xi] = µX .

The second equality follows from the independence of noise νXi , and the third equality follows
from the randomized assignment of Wi and the independence of the randomized response
mechanism. Minimizing the right-hand side over γ(w) and β(w) leads to the same values for
α(w) and β(w) as minimizing the left-hand side over α(w) and β(w), with the least squares
estimate of γ∗(w) = α∗(w) + µX̃β

∗
(w).

Q(γ(w), β(w))

= E[(Ỹi − γ(w) − (X̃
′
i − µX)β(w))

2 | W̃i = w]

= E[(Ỹi − γ(w))
2 | W̃i = w] + E[((X̃

′
i − µX̃)β(w))

2 | W̃i = w]

− 2E[(Ỹi − γ(w))(X̃
′
i − µX̃)β(w) | W̃i = w]

= E[(Ỹi − γ(w))
2 | W̃i = w] + E[((X̃

′
i − µX̃)β(w))

2 | W̃i = w]

− 2E[Ỹi(X̃
′
i − µX̃)β(w) | W̃i = w].

The last two terms do not depend on γ(w). Thus, minimizing Q(γ(w), β(w)) over γ(w) is
equivalent to minimizing E[(Ỹi − γ(w))

2 | W̃i = w] over γ(w), which leads to the minimizer

γ̃∗(1) = E[Ỹi|W̃i = 1] = E[Yi|W̃i = 1] =

1∑
w=0

E[Yi|W̃i = 1,Wi = w]P (Wi = w | W̃i = 1)

=
p̄q̄εw

pqεw + p̄q̄εw
E[Yi(0)] +

pqεw
pqεw + p̄q̄εw

E[Yi(1)].

Similarly, we have

γ̃∗(0) =
p̄qεw

p̄qεw + pq̄εw
E[Yi(0)]− pq̄εw

p̄qεw + pq̄εw
E[Yi(1)].

Then, we have

γ̃∗(1) − γ̃
∗
(0) =

(qεw − q̄εw)pp̄

(p̄qεw + pq̄εw)(pqεw + p̄q̄εw)
(E[Yi(1)]− E[Yi(0)])

=
(qεw − q̄εw)pp̄

(p̄qεw + pq̄εw)(pqεw + p̄q̄εw)
τ =

1

Cp,εw
τ.
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Finally, noting the fact that γ̃∗(w) = α̃∗(w) + µX̃ β̃
∗
(w) and, under some regularity conditions,

(α̃(w), β̃(w)) converges to (α̃∗(w), β̃
∗
(w)),

τ̃OLS = α̃(1) − α̃(0) + ¯̃X(β̃(1) − β̃(0))
p→ γ̃∗(1) − γ̃

∗
(0) =

1

Cp,εw
τ.

Thus, by the continuous mapping theorem, Cp,εw τ̃OLS is a consistent estimator for τ .
Next, we obtain the central limit theorem. Again, it is convenient to parameterize the

model using (γw, βw) instead of (αw, βw). In terms of these parameters, the objective function
for W̃i = w is ∑

i:W̃i=w

(
Ỹi − γ − (X̃i − µX̃)β

)2
.

The first order conditions for the estimators (γ̃w, β̃w) are∑
i:W̃i=w

ψ(Ỹi, X̃i, γ̃w, β̃w) = 0,

where ψ(·) is a two-component column vector:

ψ(y, x, γ, β) =

(
y − γ − (x− µX̃)β

(x− µX̃)(y − γ − (x− µX̃)β)

)
.

The standard M-estimation results imply that, under standard regularity conditions, the
estimator is consistent and asymptotically normally distributed:

√
Nw

(
γ̃w − γ̃∗w
β̃w − β̃∗w

)
D→ N

((
0
0

)
,Γ−1

w ∆w(Γ
′
w)−1

)
,

where Nw =
∑N

i=1 1(W̃i = w) and the two components of the covariance matrix are

Γw = E
[

∂

∂(γ, β)
ψ(Ỹi, X̃i, γ, β) | W̃i = w

]∣∣∣∣
(γ̃∗w,β̃

∗
w)

= E
[(

−1 −(X̃i − µX̃)

−(X̃i − µX̃)
′ −(X̃i − µX̃)

′
(X̃i − µX̃)

)
| W̃i = w

]
= E

[(
−1 0

0 −E[(X̃i − µX̃)
′
(X̃i − µX̃)]

)
| W̃i = w

]
,

and

∆w = E
[
ψ(Ỹi, X̃i, γ̃

∗
w, β̃

∗
w) · ψ(Ỹi, X̃i, γ̃

∗
w, β̃

∗
w)′ | W̃i = w

]
= E

[
(Ỹi − γ̃∗w − (X̃i − µX̃)β̃∗w)2 ·

(
−1

(X̃i − µX̃)′

)(
−1

(X̃i − µX̃)
′

)′
| W̃i = w

]
.
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The variance of γ̃w is the (1, 1) element of the covariance matrix. Because Γw is block
diagonal, the (1, 1) element is equal to

MSEw = E[(Ỹi − γ̃∗w − (X̃i − µX̃)β̃∗w)2 | W̃i = w] = E[(Ỹi − α̃∗w − X̃
′
i β̃
∗
w)2 | W̃i = w].

Therefore, we have√
Nw

(
γ̃w − γ̃∗w
β̃w − β̃∗w

)
D→ N

((
0
0

)
,MSEw

(
1 0

0
(
E[(X̃i − µX̃)

′
(X̃i − µX̃)]

)−1

))
,

which implies
√
N(γ̃(w) − γ̃∗(w))

D→ N

(
0,

MSEw

P (W̃i = w)

)
. (15)

As shown before, τ = Cp,εw(γ̃∗1 − γ̃∗0). Also, Cp,εw τ̃OLS = Cp,εw(γ̃1 − γ̃0) = Cp,εw{α̃1 −
α̃0 + ¯̃X(β̃1 − β̃0)} is the consistent estimator for τ . Noting that β̃1, β̃0, γ̃1 and γ̃0 are all
asymptotically independent, the asymptotic distribution of τ̃OLS is expressed as

√
N(Cp,εw τ̂OLS − τ)

D→ N

(
0, C2

p,εw

(
MSE1

ρ1
+

MSE0

ρ0

))
.

F.2 Simulation setups for Regression Adjustment

We empirically evaluate the frequentist properties of the OLS estimator developed in Section
F. We consider the joint privacy mechanism in Section 3.2 and use the same data-generating
mechanisms in Section 5. We release Xi,d after applying the Laplace mechanism. Specifically,
the generated covariates satisfy the following sensitivity: ∆X = 3. Accordingly, we add the
Laplace noise Lap(3/εy) to Xi,k for k = 1, 2, 3. Then, we obtain the private data X̃i,k, Ỹi, W̃i.
By composition, this privacy mechanism guarantees that (Ỹi, W̃i) satisfies (εy + εw)-DP and
(X̃i,k, Ỹi, W̃i) satisfies (εx + εy + εw)-DP.

F.3 Results

Tables 8 and 9 present the performance evaluation of the naïve and OLS estimators for
N = 1, 000, 10, 000 with various privacy budgets for εx, εy and εw. We let εtot = εx + εy + εw.
Both estimators achieve about 95% coverage for N = 1, 000, 10, 000 as expected. For bias
and MSE, we observe smaller bias and MSE for larger privacy budgets. For the same levels of
privacy budgets, both bias and MSE improve when N increases, which empirically supports
our consistency and asymptotically unbiased properties of the estimators.

When we have a tight privacy budget of (εx, εy, εw) = (0.1, 0.1, 0.1), the length of the
confidence interval of the frequentist estimators is nearly 2, which is almost non-informative
about the estimand. When N increases, the interval length gets smaller and becomes
informative enough for some allocations, e.g., (εx, εy, εw) = (1.25, 0.5, 1.25). However, with
strict budget constraints and a small sample size, the analysis results may tell us little about
the estimands, even though their consistency and confidence intervals are statistically valid.
This is an inevitable trade-off between privacy protection and the accuracy of the results.
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Table 8: Evaluation metrics for the naïve and OLS estimators (N = 1, 000, Nsim = 2, 000)
under the joint scenario. Nsim denotes the number of simulations. εtot denotes the
total privacy budget, εtot = εx + εy + εw.

Coverage Bias MSE Interval Width

εtot (εx, εy, εw) Naïve OLS Naïve OLS Naïve OLS Naïve OLS
3 (1, 1, 1) 95.3% 95.7% −0.00266 −0.00329 0.0405 0.0371 0.798 0.770
9 (3, 3, 3) 95.4% 96.4% −0.00105 −0.000422 0.00208 0.00126 0.181 0.142
30 (10, 10, 10) 95.0% 96.8% −0.000547 −0.000282 0.000906 0.000177 0.120 0.058
0.3 (0.1, 0.1, 0.1) 95.5% 95.5% −0.129 −0.128 0.989 0.984 1.909 1.910
3 (2, 0.5, 0.5) 94.5% 94.5% −0.00703 −0.00837 0.378 0.375 1.748 1.749
3 (0.5, 2, 0.5) 95.2% 95.4% −0.00576 −0.00406 0.0484 0.0373 0.857 0.754
3 (0.5, 0.5, 2) 95.4% 95.0% −0.00238 −0.00263 0.0575 0.0565 0.929 0.923
3 (0.5, 1.25, 1.25) 94.6% 94.5% 0.00480 0.00276 0.0210 0.0187 0.547 0.518
3 (1.25, 0.5, 1.25) 95.3% 95.2% −0.00101 −0.00246 0.103 0.101 1.232 1.225
3 (1.25, 1.25, 0.5) 94.6% 95.7% 0.00137 0.00150 0.102 0.0889 1.195 1.144

F.4 Discussions

In the simulations, we consider different divisions of the same overall privacy budget, εtot = 3,
which suggests an allocation strategy of the budget. Among all the budget allocations
with εtot = 3, we see that (εx, εy, εw) = (0.5, 1.25, 1.25) achieves the lowest MSE for both
naïve and OLS estimators. Thus, it seems reasonable to assign a strict budget to X,
and larger budgets to Y and W . We also see that for most allocations with budgets
εtot ≤ 3, there is minimal gain in MSE for the OLS over the naïve estimator. However, for
(εx, εy, εw) = (10, 10, 10), (3, 3, 3), (0.5, 2, 0.5), we see that the OLS estimator does significantly
outperform the naïve estimator in terms of MSE. This result follows from the fact that the
regression adjustment technique in randomized experiments (Freedman, 2008; Lin, 2013)
helps reduce the variance of the OLS estimator, leading to better MSE. Intuitively, the
regression adjustment works for (εx, εy, εw) = (10, 10, 10) because the privatized data contains
smaller noise, and X̃ still contains some information to explain Ỹ . When the total budget is
smaller (εtot ≤ 3), however, the gain is limited.

We here further discuss some limitations to the gains in precision of the estimator for the
PATE from including covariates from theoretical perspectives. In large samples, including
covariates in the regression function under usual randomized experiments will not lower the
precision (Imbens and Rubin, 2015). However, DP mechanisms under randomization pose
unique challenges. First, MSEw in Theorem 15 can be written as follows:

MSEw = Var[Yi|W̃i = w] + E[Yi|W̃i = w]2 +
1

ε2y
− E[Ỹ ′i X̃i(X̃

′
iX̃i)

−1X̃ ′iỸi|W̃i = w]. (16)

The last term, E[Ỹ ′i X̃i(X̃
′
iX̃i)

−1X̃ ′iỸi|W̃i = w], is effectively the gain in precision from
including covariates. This term implies that the gain is zero when X̃i and Ỹi are orthogonal,
but is always positive otherwise. As adding large independent noise to Xi and Yi makes
the privatized observations less correlated, the gain becomes negligible when εx and εy are
small. We also note that the first two terms in (16) are bounded due to the sensitivity of Y ;
however, the last two terms are unbounded, making them the dominant precision factors,
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Table 9: Evaluation metrics for the naïve and OLS estimators (N = 10, 000, Nsim = 2, 000)
under the joint scenario.

Coverage Bias MSE Interval Width

εtot (εx, εy, εw) Naïve OLS Naïve OLS Naïve OLS Naïve OLS
3 (1, 1, 1) 95.4% 95.2% −0.00174 −0.00196 0.00407 0.00376 0.252 0.243
9 (3, 3, 3) 94.7% 94.7% −0.000154 −0.000149 0.000216 0.000136 0.0573 0.0454
30 (10, 10, 10) 94.6% 96.3% 0.000213 −0.0000316 0.0000962 0.0000184 0.0380 0.0183
0.3 (0.1, 0.1, 0.1) 94.4% 94.3% −0.104 −0.101 0.919 0.921 1.883 1.885
3 (2, 0.5, 0.5) 94.9% 95.1% −0.00380 −0.00358 0.0535 0.0520 0.915 0.906
3 (0.5, 2, 0.5) 95.7% 95.7% 0.00112 0.000358 0.00466 0.00356 0.271 0.237
3 (0.5, 0.5, 2) 95.9% 95.9% 0.000703 0.000989 0.00524 0.00512 0.295 0.292
3 (0.5, 1.25, 1.25) 95.9% 95.9% 0.00133 0.00124 0.00187 0.00170 0.173 0.163
3 (1.25, 0.5, 1.25) 95.1% 95.0% −0.000968 −0.000691 0.0106 0.0104 0.405 0.401
3 (1.25, 1.25, 0.5) 95.4% 95.4% 0.00247 0.00279 0.00957 0.00848 0.391 0.369

especially when εx and εy are small. Therefore, the gain from adding covariates in inference
is actually limited in our LDP scenarios.
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