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Abstract

This paper deals with uncertainty quantification and out-of-distribution detection in deep learning
using Bayesian and ensemble methods. It proposes a practical solution to the lack of prediction
diversity observed recently for standard approaches when used out-of-distribution (Ovadia et al.,
2019; Liu et al., 2021). Considering that this issue is mainly related to a lack of weight diversity,
we claim that standard methods sample in “over-restricted” regions of the weight space due to the
use of “over-regularization” processes, such as weight decay and zero-mean centered Gaussian pri-
ors. We propose to solve the problem by adopting the maximum entropy principle for the weight
distribution, with the underlying idea to maximize the weight diversity. Under this paradigm, the
epistemic uncertainty is described by the weight distribution of maximal entropy that produces neu-
ral networks “consistent” with the training observations. Considering stochastic neural networks, a
practical optimization is derived to build such a distribution, defined as a trade-off between the av-
erage empirical risk and the weight distribution entropy. We provide both theoretical and numerical
results to assess the efficiency of the approach. In particular, the proposed algorithm appears in the
top three best methods in all configurations of an extensive out-of-distribution detection benchmark
including more than thirty competitors.

Keywords: Epistemic uncertainty, out-of-distribution detection, deep ensemble, Bayesian neural
networks, maximum entropy

1. Introduction

In many practical deep learning scenarios, neural network models are deployed on unknown data
distributions that can significantly differ from the training distribution. For instance, when building
deep learning models of object detection for autonomous cars, the training dataset cannot cover any
potential situation that the model can encounter, in terms of weather conditions, geography, or cam-
era obstructions for examples. In this context, the learner aims at providing confidence guarantees
on the model prediction for any data belonging to the whole input space, including data outside the
support of the training distribution. This task is related to epistemic uncertainty quantification and
out-of-distribution (OOD) detection for deep learning (Kendall and Gal, 2017; Shen et al., 2021).
In the epistemic uncertainty quantification framework, the learner aims at estimating the potential
discrepancy between the estimated hypothesis and the optimal predictor. When dealing with neural
networks, the set of hypotheses is typically very large and many of them provide a low empirical
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risk on the training observations. Informally, this collection of hypotheses that are consistent with
the training data form a subset of relevant candidates for the optimal predictor. The prediction un-
certainty for a novel input observation is then described by the prediction diversity of the consistent
hypotheses (Hiillermeier and Waegeman, 2021).

In the case of universal approximators such as neural networks, a proxy of the epistemic uncer-
tainty can be estimated by computing the distance to the support of the training set. For example,
if the considered set of hypotheses is the set of k-Lipschitz functions, the pointwise prediction dis-
crepancy between two consistent hypotheses is bounded by a value proportional to the distance to
the training inputs (Sullivan et al., 2013; Malherbe and Vayatis, 2017; de Mathelin et al., 2022).
Methods developed under this paradigm are referred to as distance-based uncertainty quantifiers,
which include, for instance, derivative of Gaussian processes (Rasmussen, 2003), Deterministic
Uncertainty Quantification (DUQ) (Van Amersfoort et al., 2020), Mahalanobis distance (Lee et al.,
2018b) or Deep Nearest Neighbors (Sun et al., 2022). The main challenge faced by distance-based
uncertainty approaches is to find a relevant notion of distance to use (Liu et al., 2022). For high-
dimensional machine learning problems, using the Euclidean distance in the input space is generally
irrelevant and one looks for geometric distances computed in encoded spaces. For instance, Liu et al.
(2022) and Cao and Zhang (2022) develop distance preserving networks using spectral normaliza-
tion. Finally, computing the distance to the training distribution support can also be performed by
density estimation techniques, such as auto-encoders or GANs, which have been used for OOD
detection (Zhou, 2022; Ryu et al., 2018). The distance to the training set is then computed through
the reconstruction error of the decoder or by the predicted likelihood of the discriminator.

The main alternative to the distance-based approach consists in directly looking for a set of
hypotheses that are consistent with the training observations and to use the diversity of their predic-
tions as uncertainties. It essentially includes ensemble and Bayesian methods (Lakshminarayanan
et al., 2017; Mackay, 1992). The ongoing challenge of this approach is to produce diversity in the
ensemble of networks, i.e., to avoid sampling similar hypotheses. It has been observed, indeed, that
most of the main baselines lead to a lack of prediction diversity, in particular outside the training
support, i.e., for out-of-distribution data (Ovadia et al., 2019; Liu et al., 2021; Henning et al., 2021).
Facing this issue, several attempts propose to increase the prediction diversity by adding a penal-
izing term to the loss. For instance, negative correlation methods penalize the correlation between
the outputs of the ensemble members on the training data (Liu and Yao, 1999; Shui et al., 2018;
Zhang et al., 2020). Related methods, referred to as contrastive approaches, penalize small output
variances on synthetic OOD data produced by sampling uniformly in the input space (Jain et al.,
2020; Mehrtens et al., 2022) or in the neighborhood of the training instances (Lakshminarayanan
et al., 2017; Segonne et al., 2022). The drawback of these methods is the lack of generalization to
any OOD data that the model can encounter (Cao and Zhang, 2022). Alternative approaches consist
in penalizing the similarity between the ensemble members in the parameter space (Pearce et al.,
2018; D’ Angelo and Fortuin, 2021), with the underlying assumption that an ensemble of neural net-
works with weights distant from each other produces diversified outputs. In this work, we advocate
that the key feature for producing accurate uncertainty quantification for any input data point is to
sample in the whole space of consistent hypotheses. Indeed, we argue that standard Bayesian and
ensemble methods often provide over-confident predictions for OOD data because the hypotheses
they produce are sampled in restricted regions of the consistent hypothesis space due to weight
decay regularization and hyper-parameters selection based on hold-out validation.
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Considering stochastic neural networks with parameterized weight distribution (Jospin et al.,
2022), we cast the problem as a trade-off between sampling in low empirical risk regions and in-
creasing the weight diversity. We consider the entropy as a measure of weight diversity, and show
that the optimization boils down to solving a maximum entropy problem (Jaynes, 1968), where we
aim at selecting the weight distribution of maximal entropy under the constraint that the training
loss is acceptable. We derive a practical optimization formulation to solve this problem, called
Maximum Weight Entropy (MaxWEnt), and show that it can be tackled with stochastic variational
inference (Hoffman et al., 2013) using the reparameterization trick (Kingma and Welling, 2014).
The proposed optimization consists in penalizing the training loss with a term imposing the in-
crease of the weight distribution entropy. We provide a theoretical framework to understand the
dynamic of this approach and show that the spread of the weight distribution is inversely propor-
tional to the neuron activation amplitude for the training data. Numerical experiments conducted
on several regression and classification datasets demonstrate the strong benefit of this approach in
OOD detection compared to state-of-the-art methods dedicated to this task (e.g., Figure 1).

% e X
e Training data
Confidence Intervals

(a) Deep Ensemble (b) MC-Dropout (c) MaxWEnt (d) MaxWEnt + Clip

Figure 1: Uncertainty Estimation Comparison. Above: “two-moons” 2D classification dataset. Be-
low: 1D-regression (Jain et al., 2020). Deep Ensemble (a) and MC-Dropout (b) produce
overconfident estimations outside the training support due to a lack of hypothesis di-
versity. In the classification experiment, the hypotheses produced by both methods are
restricted to half-space separators. There is no prediction uncertainty in the upper left and
lower right areas of the input space, despite the lack of training data in these regions. In
contrast, MaxWEnt (c, d) provides a clear discrimination between the in-distribution and
out-of-distribution domains in terms of prediction uncertainty. Figure (c) presents the
result obtained with MaxWEnt when no regularity assumption is made on the labeling
function. In this case, the uncertainty quickly increases when leaving the training sup-
port, which truly represents the epistemic uncertainty in the absence of prior knowledge
about the labeling function. Figure (d) reports the MaxWEnt uncertainty estimation when
considering Lipschitz constraints. This result can be obtained with a small modification
of the previous MaxWEnt model in the form of weight clipping. The full description of
these synthetic experiments is reported in Section 7.1.
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2. Assessing Epistemic Uncertainty for OOD Prediction: Setup and Challenges
2.1 Notations

We consider the supervised learning framework provided with the input space X of finite dimension
b € N, and the output space )). We denote by p*(x, y) the “ground truth” law defined over X' x ).
Furthermore, we distinguish the in-distribution and out-of-distribution domains by considering that
only a subset Dy C X can be sampled. The subset Dy is called “training domain” and any data
from the complementary X' \ Dy is considered to be “out-of-distribution”. We assume that the
learner has access to the training set S = {(z1,y1), ..., (Tn,Yn)} € Dx x Y of size n € N where
the training instances (x;, y;) are supposed independently identically distributed (iid) according to
the joint distribution p(z, y) defined over Dy x Y and verifying p(y|z) = p*(y|x) V& € Dx. We
consider a continuous loss function £ : ) x V — R, and define the optimal predictor f* : X — Y
as follows:
£(@) = axgmin | 6(4/,0) o).
y'ey Jyey

We denote H a set of neural networks of a specified architecture, mapping X to ). The set H
is assumed to be “large”. We denote WW C R? (d € N) the set of weights corresponding to the
hypotheses in H. The best hypothesis in the class, h*, referred to as the optimal hypothesis, is
defined according to the following expression:

h* = argmin / / Uh(z),y) dp(z, ).
heH zeX Jye)

Finally, for any i € H, we define the empirical risk as follows:

L) =1 S (h(e),y).

(z,y)eS

denoted indifferently L£s(w), when considering the weights w € W associated to the hypothesis
h € H, also referred as hy,.

2.2 The epistemic uncertainty is described by the set of consistent hypotheses

The general purpose of uncertainty quantification is to provide, for any x € X, a distribution in the
label space )/, describing the potential outputs that can be associated with x, knowing the training
observations S and prior information about p*(z, y). In this work, we distinguish the following four
sources of uncertainty:

1. Aleatoric uncertainty: the intrinsic random noise of the data, i.e., p*(y|x). This uncertainty
cannot be reduced, even with an infinite number of observations (e.g., the outcome of a coin
flip).

2. Model uncertainty: the discrepancy between f* and h*. The model uncertainty is related
to the choice of the hypothesis set 7. It can be reduced by increasing the size of H or by
acquiring prior knowledge about f* (e.g., Lipschitz constraints).

3. Statistical uncertainty: the partial knowledge about p(z,y) given by the finite number of
data S. This uncertainty, also referred to as approximation uncertainty (Hiillermeier and
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Waegeman, 2021) or data variability (Huang et al., 2021b), is linked to the discrepancy be-
tween h* and its estimation. It can be reduced by the acquisition of novel observations drawn
according to p(x, y) or by prior knowledge about the intrinsic random noise (e.g., a Gaussian
homoscedastic noise of known variance).

4. Out-of-distribution uncertainty: the absence of observation over the out-of-distribution do-
main X’ \ Dy. This uncertainty can remain large even with an infinite number of training
observations. Indeed, for complex hypotheses as neural networks, different hypotheses can
match h*(z) on Dy but produce different outputs on X \ Dy.

The first three sources of uncertainty are described in detail in Hiillermeier and Waegeman
(2021), while source (4) is an additional distinction of the epistemic uncertainty similar to the
framework introduced in Liu et al. (2022). The distinction between these four sources of uncer-
tainty is useful for positioning our contribution. In this work, we focus essentially on the estimation
of the statistical and OOD uncertainty. We assume, indeed, that f* is close to H, i.e., h* ~ f*,
and then neglect the model uncertainty, which is a common assumption when considering a large
set of hypotheses such as a set of deep neural networks (Hiillermeier and Waegeman, 2021). In the
following, the term epistemic uncertainty will refer to the combination of the statistical and OOD
uncertainty.

It should be noted that, on the one hand, as we consider model uncertainty to be negligible, our
approach may not effectively capture the epistemic uncertainty if this assumption does not hold. On
the other hand, since our method is designed to address OOD uncertainty, it remains useful even
when the statistical uncertainty is low (e.g., when a very large amount of training data is available).
Indeed, multiple hypotheses can perform optimally on the training distribution while providing
different predictions on OOD data. Our method specifically aims to capture this variability.

Because of lack of complete knowledge, the learner cannot perfectly determine the optimal hy-
pothesis A* and then the optimal predictions ~2*(z). If no data is available, the prediction uncertainty
for z € X is given by the distribution of the predicted values h(x) for all hypotheses h € H. When
acquiring more observations, the learner can discriminate between relevant and irrelevant candidates
for h*, i.e., between “consistent” and “inconsistent” hypotheses with respect to the observations S
(assuming that a notion of “consistency” can be formally defined). By denoting H s the set of con-
sistent hypotheses, the epistemic uncertainty for the prediction of the model for x is then given by
the distribution of predictions h(z) with h ~ Hs.

The notion of consistency depends on the underlying assumptions that the user considers about
the data sample S. A strong assumption is the “no noise” framework, where the user assumes that
the optimal hypothesis necessarily verifies h*(z) = y for any (x,y) € S. In this case, the set of
consistent hypotheses is the set: Hs = {h € H; h(x) = y} (Mitchell, 1977). In general, the
user assumes a moderated noise level. Then, the notion of consistency is related to the empirical
risk L£s(h), such that consistent hypotheses provide “low” empirical risk on S. For instance, if
the user is only interested in deploying models with greater accuracy than 7 = 0.99, then the set
of consistent hypotheses is defined as Hs = {h € H; Ls(h) < 1 — 7} (assuming that ¢ is the
0-1 loss). In the Bayesian setting, a noise model, p(y|z, h) is generally assumed (e.g., a Gaussian
noise of unknown mean and variance), then a gradual notion of consistency is obtained through the
likelihood of the hypothesis h € H given the sample S, i.e., p(h|S) (D’ Angelo and Fortuin, 2021).
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2.3 The main limitation of epistemic uncertainty estimation for deep learning

Based on the previous considerations, the epistemic uncertainty estimation is then considered accu-
rate when the learner is able to determine the whole set of consistent hypothesis H s (or to determine
the likelihood of any hypotheses in the Bayesian framework). However, as ‘H is an infinite set, com-
puting the empirical risk for any hypothesis from H to determine which hypothesis belong to Hs
is impossible. Moreover, with deep neural network hypotheses, determining the subspace Hs is
generally intractable, because of the non-linear relationship between the neural network parameters
and the empirical error.

To overcome this issue, common practice consists in using empirical risk minimization algo-
rithms to produce a sample or a distribution of consistent hypotheses. To avoid sampling always
the same empirical risk minimizer, deep ensemble methods use random initialization and random
batch order with early stopping (Lakshminarayanan et al., 2017), while Bayesian neural networks
algorithms learn a weight distribution (Kendall and Gal, 2017). Although such approaches foster
hypothesis diversity, they cannot guarantee to produce a representative sample of the whole set of
consistent hypotheses. Moreover, common practices in deep learning training induce important bi-
ases which narrow the sampling in a restricted region of the consistent hypotheses’ subspace. For
instance, the use of weight decay (¢ penalization) and random weights initialization of relatively
small variance (e.g., equal to the inverse of the number of neurons in the layer, Glorot and Ben-
gio 2010) drive the sample in low weight regions. Consistent hypotheses with high weights are
then excluded, even though they can explain the observations as well, but in a different way, which
would contribute to increase the potential prediction diversity. Similarly, in the Bayesian frame-
work, it has been recently observed that the most commonly used prior, i.e., the Gaussian centered
prior, is “unintentionally informative” (Wenzel et al., 2020a). Finally, the evaluation of uncertainty
quantification methods and their hyper-parameters selection is traditionally driven by the negative-
log-likelihood metric (NLL) computed over a validation dataset belonging to the training domain
(Liu and Yao, 1999; Pearce et al., 2018; Jain et al., 2020). However, such practice does not account
for the epistemic uncertainty out-of-distribution and then does not foster methods which accurately
estimate it. This issue is illustrated by the four bottom graphics of Figure 1, the four methods pro-
vide almost the same prediction uncertainty on the training domain, their validation NLL is then
similar, but their OOD epistemic uncertainty estimation is very different.

Therefore, we identify the inability of standard approaches to produce a representative sample
of consistent hypotheses as their main limitation. We argue that this limitation is the principal cause
of their lack of prediction diversity for OOD data, observed recently (Ovadia et al., 2019; Liu et al.,
2021; Henning et al., 2021) (cf. Section 5.1).

3. Weight Entropy Maximization

The main contribution of this work is the development of a practical algorithm to produce a sample
of hypotheses that tends to be representative of the whole space of consistent hypotheses. Consid-
ering stochastic neural networks, we propose to learn the scale parameters of a distribution over
the network weights, centered on a hypothesis of low empirical risk, with the double objective of
minimizing the average empirical risk and maximizing the distribution diversity, measured through
the weight entropy.
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3.1 A principle to sample the whole space of consistent hypotheses

We consider the stochastic neural network approach, where samples of hypotheses are produced
through a parameterized weight distribution gy in the set ® = {gy}4crp composed of several
distributions over W parameterized by ¢ € RP, with D € N the parameter dimension. We propose
to penalize the average training risk over g, with the entropy of the weight distribution, leading to
the following optimization formulation:

nin, Bg, [Ls(w)] — ABg, [~ log(gs(w))] (1)

with A € R the trade-off parameter.

e The first term: E,, [Ls(w)] of the optimization objective in Equation (1) is the average empir-
ical risk over the weight distribution. This term induces the increase of the probability mass
¢s(w) in regions where the weights w € W produce accurate hypotheses on the training
dataset, i.e., where Ls(w) is small.

e The second term: —\E, [ log(gg(w))] in Equation (1) is a penalty that induces the increase
of the weight entropy, which is generally related to expand the support of the weight distribu-
tion gy as broad as possible.

It should be underlined that both terms in Equation (1) evolve in opposite direction with respect
to the weight distribution: the first term induces a weight distribution concentrated around any set
of weights with minimal error on S, while the second term induces a uniform distribution over
the whole weight space. To solve this trade-off, the weight distribution tends to flatten in regions
of little impact on the empirical risk, while remaining concentrated in directions where a small
weight perturbation causes an important risk increase. The theoretical analysis in Section 4 shows,
indeed, that the distribution spread of the weights is inversely proportional to the neuron activation
amplitude. The weight variance is then larger for weights in front of neurons weakly activated by
the training data. This theoretical result is supported by numerical results observed on synthetic
datasets in Section 7.1 which provide a direct illustration of this link between the neuron activation
and the weight variance (cf. Figure 6).

Objective (1) can be understood as a maximum entropy problem (Jaynes, 1957), where, in the
presence of partial information about the optimal weight, the uncertainty is best described by the
distribution of low-risk hypotheses with maximal entropy. In the Bayesian neural network setting,
a similar objective can be derived through the ELBO formulation by using the prior of maximum
entropy (Jaynes, 1968), which, in this case, is the uniform distribution over W (see Section 5.2).
To highlight the link between our proposed approach and the maximum entropy principle, we call
the method: Maximum Weight Entropy (MaxWEnt) in reference to the general maximum entropy
modeling framework, commonly named MaxEnt (Berger et al., 1996). Formulating the epistemic
uncertainty quantification as a maximum entropy problem offers a natural classification among the
weight distributions g, € ®. Between two weight distributions that provide the same level of
empirical risk on the training data, the user should select the one with the largest entropy. The
maximum entropy paradigm also offers an interesting guideline to drive the selection of the weight
distribution family ®: the user should foster weight parameterization that enables larger increases
of the entropy, as the SVD-parameterization described in Section 3.3.2.
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3.2 The maximum weight entropy algorithm under general weight parameterization

Equation (1) is solved through stochastic gradient descent with mini-batches. To compute the ex-
pectation over g4, we use the reparameterization trick (Kingma and Welling, 2014; Rezende et al.,
2014). We introduce a sampling variable z ~ Z with Z a distribution over R? and a parameteriza-
tion function w : R x R? — R? such that: w = w(z, ¢). Typically, z follows a distribution that can
be numerically sampled as the normal or uniform distribution. In case of simple parameterization,
the weight entropy can be directly derived from the weight parameters ¢, such that there exists a
function H : R? — R verifying H(¢) = Ez[—log(gs(w(z,)))]. This leads to the following
objective function, computed on a mini-batch of data S, C S of size B > 0:

G(0,8) = Ez [Ls, (w(z,¢))] = AH(9). 2)

By sampling (1), ..., (™) jid according to Z, we can compute an estimation of the objective
function gradient for each mini-batch as follows:

N
1 4
VoG(6,8) = Vg |5 > L, (W=, 0) = XH(9)| - 3)
j=1
Note that choosing N = 1 appears to be sufficient, in practice, to obtain efficient results

(Kingma and Welling, 2014). Several gradient updates are performed until convergence to obtain
the estimated parameters 95 The training part of the algorithm is summarized in Algorithm 1. For
inference on z € X, a set of P predictions (P € N*) is obtained by sampling multiple z(?) ~ Z
with j € [|1, P|], and computing the corresponding outputs {hy,, (z); w; = w(z9), @) }ieq,pp (cf.
Algorithm 2)

Algorithm 1 MaxWEnt Training Algorithm 2 MaxWEnt Inference
1: Inputs: Training set S, learning rate v, trade- 1: Inputs: Input data z, parameterization w,
off A, batch size B, parameterization w scaling vector ¢, sample size P
2: Outputs: Scaling vector ¢ 2: Outputs: Prediction sample (91, ..., yp)
3: Init: ¢ € R? 3: for1 <i< Pdo
4: while stopping criterion is not reached do &z~ Z
5. 2z~ 2, SbNU(SB) 500 w4 w(z,9)
6 66— 1Vy[Ls, (w2 0) — AH(9)] 6 i hu(@)
7: end while 7: end for

3.3 Examples of weight parameterization

Obviously, the choice of the weight parameterization w has an important impact on the resulting
weight distribution. In line with the purpose of the MaxWEnt approach, the guidelines for choosing
w should follow these three principles: enable the sampling in regions of accurate hypotheses, foster
the increase of the weight entropy and be practical to use. Moreover, one should consider weight
parameterizations that provide a tractable formulation of the weight entropy H (¢).
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3.3.1 SCALING PARAMETERIZATION

Following the aformentionned guidelines, we consider the sampling variable z ~ Z such that
E[z] = 0, V[z] = Id4 and propose the “scaling” parameterization defined as follows:

w(z,p) =W+ ¢® 2. 4

Where @ is the element-wise product between two vectors, such that ¢ ® z = (p121, ..., pgzq) with
¢ = (¢1,...,04) € R%and z = (21, ..., 2g) € R The weight vector w € R? is the weight mean
Ey,[w] = w. Itis typically defined as the weights of a pretrained network hz fitted on the training
data. For Z defined as a normal \V'(0,Id,) or uniform distribution ¢ ([—+/3, v/3]%), the parameters
¢ = (¢1, ..., 0q) act as scaling factors: the higher ¢y, the wider the distribution wy, ~ Wy + ¢k 2k.

The scaling parameterization (4) meets the three previous requirements for a relevant choice of
stochastic model. The mean of the weight distribution verifies E,, [w] = w with @ the weights of
a pretrained network fitted on S, the weight distribution is then centered in a region of the weight
space of low empirical risk. If ¢ ~ 0, the resulting weight distribution is equivalent to a peaked
distribution around w, which meets the first objective to provide samples of accurate hypotheses.
Moreover, the weight entropy is directly controlled by the parameters ¢ : when ¢ increases, the
weight distribution becomes wider and the entropy increases. We show, indeed, in the next section,
that the weight entropy H (¢) can be expressed directly as a function of ¢. Finally, it can be no-
ticed that the scaling parameterization only involves element-wise multiplications, which makes it
practical to compute.

3.3.2 SVD PARAMETERIZATION

We show, through the theoretical analysis developed in Section 4, that the increase of the ¢ param-
eters is inversely proportional to the neuron activation amplitude. Indeed, if a neuron is weakly
activated by the training data, all the weights wy, in front of this neuron have little impact on the
network predictions in the training domain. Therefore, the parameters ¢, can be enlarged without
degrading the average empirical risk Eg, [Ls(w)]. In the extreme case, if the neuron is never ac-
tivated by the training data (it always returns 0), then the parameters ¢, can go to infinity without
impacting the network outputs on the training domain. Based on this theoretical observation, we
argue that the weight entropy can be further increased without impacting the training risk by taking
into account the correlation between neurons. Indeed, let’s consider, for instance, two neurons of
the same hidden layer, totally correlated, both with activation amplitude ¢ > 0 on average on the
training data. The scales of the weights wy, in front of these neurons will verify ¢ o« 1/a. How-
ever, by expressing the outputs of these neurons in their singular value decomposition basis, the
novel representation is now composed of one component of average amplitude a and the other of
null amplitude. In that case, some parameters ¢y can be further increased without impacting the
training risk. Motivated by these arguments, we propose the “SVD” parameterization described in
the following subsection.

Let’s consider a pretrained neural network hz; of L hidden layers. We denote 1) (X) € R
the hidden representation of the input data X € R™*? in the [*" layer of hg, with b; the hidden
layer dimension (i.e., the number of neurons). The singular values decomposition of ;) (X) is
written: ¢;)(X) = Uy Sy V) with Ugy € R™™, Sy € R™* and V;) € R"*". We propose
the SVD parameterization, which consists in “aligning” the weight distribution with the principal
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components of ;) (X) such that:

w(y =Wy + V(ZT)(¢(1) ® 2), (5)

forany [ € [|0, L
average weights, scaling parameters and sampling variables between the " layer and the next layer.
A compact formulation of the parameterization can be written as follows:

1], where w), Wq), by, 2q) € RU¥bit1 are respectively the matrix of weights,

w(z,¢) =w+ V(o O z). (6)

Where V' denotes the block matrix: V = [Vg), s V({), V(g), . V(ZZ)] of dimension ) b; X bj41.

Similar to the previous one, the SVD parameterization fulfills the guidelines. Indeed, the weight
distribution is still centered on w, which ensures to sample in a weight space region of low empirical
risk. Moreover, the weight entropy can be increased by enlarging the ¢ parameters. This can be
done more efficiently compared to the previous approach due to the integration of the neurons’
correlations (cf. Section 4.1.3). The SVD parameterization requires additional computational time
compared to the scaling one, due to the SVD decomposition and the matrix multiplication. It should
be noticed that the SVD decomposition for each layer is computed only once. Before the stochastic
gradient descent, a forward pass of the training data in hz is required to compute each hidden
representation ;) (X ), then the SVD decomposition of ;) (X) is performed to compute the matrix
V{1)- However, the matrix multiplications between V) and ¢ ;) © 2(;) are performed at each gradient
update, which requires an additional computational burden during the gradient descent compared to
the scaling parameterization (cf. Section 5.3 for the complexity calculation). Finally, we show in
the next section, that a similar expression of the weight entropy H (¢) can be written in function of
¢ for both parameterizations.

3.3.3 WEIGHT ENTROPY FORMULATION UNDER SCALING AND SVD PARAMETERIZATIONS

The following proposition states that the previous weight parameterizations provide a closed-form
expression of the weight entropy H (¢):

Proposition 1 (Closed-form expression of the weight entropy) Let g4 be a weight distribution
described by Equation (4) or (6) with z ~ Z and ¢ > 0. If Z is defined as the normal N (0,1d,)
or the uniform distribution U ([—\/g, \/g]d), there exists two constants Cy, Co such that the weight
entropy H () is expressed as follows:

d

H(¢)=C1 Y log(¢}) + Co, )

k=1
with ¢ = (p1, ..., ¢q) € RY, the scaling parameters of the weight distribution qo-

Proof The full proof is reported in Appendix A.1. The proof consists in considering that, for a
normal distribution NV (0, X) or for a uniform distribution defined over a parallelotope described by
¥, the entropy verifies H(¢) o log(|det(X)]). Then, by showing that for both parameterizations
det(X) o det(diag(¢)), the above result can be derived. [
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Note that, the Cs constant can be removed in the objective function of Equation (2) as it does
not impact the optimization and the C'; constant can be integrated in the trade-off parameter ). This
expression of the entropy function is easy to implement. It highlights the direct link between the
scale parameter ¢, and the weight entropy. When ¢, grows, the weight distribution becomes wider
and the entropy increases.

4. Theoretical Analysis

In this section, we develop a theoretical framework to understand the MaxWEnt approach in the
specific case where the loss function is defined by the mean squared error. We first develop theo-
retical results in the linear regression case, and further extend these results to deep fully-connected
neural networks.

4.1 Linear regression

Linear regression can be seen as a particular case of deep fully-connected neural networks where the
networks are composed of exactly two layers: the input layer of b neurons and the output layer of
1 neuron with linear activation function. The linear regression case is not representative of the
framework considered in this work, as the hypotheses h € 7 can no longer be considered as
universal approximators. However, the following study provides valuable insights on what happen
between the neurons of one hidden layer and one neuron of the next layer. In particular, we highlight
the link between the scale parameters ¢ and the amplitude of the input features.

4.1.1 NOTATIONS

We consider the linear regression framework, where the learner has access to an input dataset X €
R™*b composed of n row data 2; € R® drawn iid according to the distribution p(z) and an output
vector y € R™ such that y = (y1, ..., yn). Each input x; is associated to the scalar output y; € R
drawn according to p(y|z;). We denote S = {(z1,y1), ..., (T, yn) } the set of training observations.
We consider the set H = {z — > ,_; zpwg; w € R} of linear hypotheses. The loss function
is the mean squared error, and we define the empirical risk for any weight w € R® as Ls(w) =
%||Xw — y||3. We denote by a = (a1,...,a) € RY the amplitude of the input features of the
training set, such that a? = 1||X;||3 for any j € [|1,b]], with X the j™ column of X. We assume
that a; > 0 for any j € [|1, b]].

4.1.2 SCALING WEIGHT PARAMETERIZATION

We first consider the weight parameterization defined in Equation (4) such that g5 ~ W + ¢ ©® 2
with z ~ Z such that Z ~ N(0,1d) or Z ~ U([—+/3,/3]®). The weight vector w € R’ is the
weight mean: E, [w] = w. Finally, we consider the entropy penalty H(¢) defined by H(¢) =

22:1 log(¢?). The optimization problem (1) can then be written:

iy E2 | 1 1X(w +60.2 —yuz]—AZlog 7). ®)
We show that the MaxWEnt optimization problem of Equation (8) has a unique solution, which
can be expressed with the following closed-form expression:

11
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Proposition 2 (Closed-form solution for the scaling parameterization) Equation (8) has a
unique solution ¢* € R® verifying for any k € [|1,b]]:

9 A
or = —5-
a,

Proof The proof consists in first developing the average risk as follows:

b
1 _ 1o
Ez [n\lX(w+¢®2) —yl\g] => a%¢i+g!|Xw—yH§-

k=1
Optimization (8) can then be written:
b b
min 2 ardi — A ; log(¢})- ©)

This is a convex problem, for which the derivative of the objective function with respect to ¢? is
null for:
ap — A/ ¢ = 0.

A detailed proof is provided in Appendix A.2. |

This closed-form solution of ¢* is particularly insightful: ¢; is inversely proportional to az,
which means that the optimal scale parameters ¢; are larger for weights in front of low amplitude
features ai. Applied to the hidden layers of a neural network, Proposition (2) states that the weight
distribution is wider in front of neurons weakly activated by the training data. As a consequence,
if an OOD data activates these neurons, large values are propagated through the network, which
produces an important output variance. These statements are formalized in Section 4.2 when con-
sidering deep fully connected neural networks.

It can be further noticed that Equation (9) is equivalent to a log determinant optimization pro-
blem (Boyd et al., 2006). The maximum entropy optimization can then be interpreted as a maxi-
mum ellipsoid volume problem, where the volume [ gbz is maximized under the linear constraint
>k aiqﬁi < Ab. If Z is a uniform distribution, this boils down to maximizing the support of the
weight distribution while maintaining the average empirical risk on the training data under an ac-
ceptable threshold. This is in line with the purpose of the approach to find the weight distribution
that covers as many consistent weights as possible.

4.1.3 SVD WEIGHT PARAMETERIZATION

According to Proposition (2), the optimal scale parameters verify ¢*? = A/a?. When injecting
this solution in the entropy formulation, we obtain: H(¢) = — > log(a?) + cste. Considering this
formula, it appears clearly that the weight entropy is particularly important if some ai are small,
i.e., if some input features have a low amplitude. However, in the presence of correlated features,
all amplitudes az may be high while the input training data may present small variation in some
directions of the input space. The SVD parameterization (6) proposes to exploit these directions
of small variation by aligning the weight distribution with the singular value components of the
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input data. For this purpose, we now consider V' € R*®, the matrix of eigenvectors of %X Tx

and s? = (s2,...,s7) € RE the vector of eigenvalues, and assume that s; > 0 for any j € [|1,b]].

The SVD weight parameterization is written w = W + V(¢ ® z) with z ~ Z and the MaxWEnt
optimization problem (1) becomes:

b
iy 2 | X+ V(o0 2) — o] 23 lox(ad) (10

In comparison to the previous optimization problem in Equation (8), there is now the presence of
the matrix V' between X and ¢ ® z. By definition of V/, the matrix XV is the expression of X in its
singular values basis. Thus, the vector ¢ ® z is now aligned with the singular value components. As
for the previous parameterization, the optimal parameter vector ¢* admits a closed-form expression
as follows:

Proposition 3 (Closed-form solution for the SVD parameterization) Equation (10) has a
unique solution ¢* € R® verifying for any k € [|1,b]]:
A
x2
¢k _‘S%'
Proof The proof consists in developing the average risk, such that:

b
1 _ 1, o
ez | LI+ V(o0 2) - o] = X stot + lixw -yl
k=1

Optimization (10) is then written:
b

b
min Y~ spép — Ay log(¢}),
k=1

b
o€eR 1

which is similar to Equation (9) with sz instead of ai (see Appendix A.3 for a detailed proof). M

Proposition (3) states that the optimal parameters ¢* are now inversely proportional to the singu-
lar values of the training data instead of the feature amplitudes. We show, with the next Proposition,
that this difference implies a larger weight entropy for the same level of average empirical risk.

Proposition 4 (Comparison between scaling and SVD parameterization) Let qél*), q( *) be the

respective optimal weight distributions for the scaling and the SVD parameterization. The following
propositions hold:

Ew [Ls(w)] = B [Ls(w)]
E ) [~ loa(gy (w))] <o [~ loa(a? (w)]

Proof The average empirical risk equality can be derived as follows:

b 2 b 2
S

E(1) [Ls(w)] = E 715 :)\b—i-e:)\g §+6:Eq;i)[£5(w)]’
k k=1 "k
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with € = %HX w — y||3. The weight entropy inequality is derived from Hadamard’s inequality. The
detailed proof is reported in Appendix A.4. |

In light of Proposition (4), it appears that the SVD parameterization leads to a more efficient weight
distribution according to the maximum entropy principle. Indeed, for the same level of explana-
tion of the observations (same average empirical risk), the SVD parameterization provides more
entropy. Experiments conducted on both synthetic and real datasets show that this last weight pa-
rameterization provides, indeed, a better evaluation of the epistemic uncertainty (cf. Section 7)
which advocates in favor of the use of the entropy as a measure of weight distribution quality.

4.2 Deep fully connected neural network

In this subsection, we extend the previous result to deep fully connected networks under the mean
squared error loss. In particular, we formally derive the connection between the neuron activation
amplitude and the optimal scaling parameters suggested by Proposition (2).

4.2.1 NOTATIONS

We consider fully-connected neural networks h,, € H of L hidden layers with w € V. For the sake
of simplicity, we assume that every hidden layer is composed of b neurons with b the dimension of
the input data, the last layer is composed of 1 neuron such that the neural networks produce scalar
outputs. For any z € & and for any [ € [[1, L|], ¥q)(z) € R® denotes the hidden representation
of the input data z in the I** layer; Yoy () € R’ and Y(+1) € R are respectively the input and
output layer representation, such that 1y (z) = x and 97 41)(z) = hy/(z). Notice that the hidden
representations depend on w; the notation ¢ (z) is a contraction of ¢ (z, w) or ¢ (z). The
set of network weights verifies W C R?, with d = Lb? + b the number of weights in the network
(bias parameters are not considered here). For any weights w € W, w ;) € R® denotes the weights
between the layer [ and the j*" components of the layer [ + 1 for I € [|0, L|] and j € [|1, b;|], with
by = 1ifl = L and b; = b otherwise. We consider the activation function ¢ : R — R such that,
forany z € X, any [ € [|0,L — 1] and any j € [|1,b]], ¥q415)(x) = ¢ (¥ (2)Tw ;) with
Ya41,5) () the 4" component of the hidden representation Y(+1)(x). The weight distributions are
denoted g4 with ¢ € RY. The loss function  is the mean squared error and the problem to be solved
is written:

d
min E,, [Ls(w)] — A log(¢}). (11)
gerd k=1

We assume that Problem (11) has a unique solution, denoted ¢* € R,

4.2.2 SCALING WEIGHT PARAMETERIZATION

We focus our deep neural networks analysis on the scaling parameterization (4) such that g4 ~
W+ ¢ © z with z ~ Z where Z ~ N(0,1dg) or Z ~ U([—/3,+/3]%) and W the weight of a
pretrained network hq. In the following, we aim at extending the results of Proposition (2) to the
hidden layers of deep neural networks and show that the MaxWEnt optimization leads to scaling
parameters inversely proportional to the neuron activation amplitude. For this purpose, we consider
the following assumption on the activation function (. Assumption (5) states that the order of the
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first and second moment of the neuron activation are preserved by (. This assumption is verified,
for instance, for most of the common activation functions, as ReLLU or Leaky-ReL.U, if the neuron
activation follows a centered independent Gaussian distribution.

Assumption 5 (Moments preserving property of the activation function) For any ¢1,¢2 € P,
le€[|0,L—1|]andany j € | |, the activation function  verifies:

Z Eq4>1 ” = Z qd>2 ’] = Z E% U)] < Z EQ¢2 [C (Ulj)]
i=1 =1 =1

STE,, [UiUT] < ZE% [UUT] = ;E% W)y’ < ;Eq@ [Cwycw)”

=1

Where U; = (Uit ..., Up) and Ugj = ¢y (i) w ;) Vi € [|1,n]], Vj € [|1,b]]. For two matrices
A, B, the notation A <X B states that B — A is a positive semi-definite matrix.

Proposition 6 (Optimal scaling parameters) Letr ¢* € R? be the unique solution of Problem (11),
then ¢* verifies:

L b
o = R (%J,’l), ¢E‘z,j,b)>
1=0 j=1 12
* L, .
Gk’ = 5 P01 e (1,10} J € [Lbl) k€ (1.5

k)

Where @) is the concatenation operator and for any | € |

a(lk ZE%* L&D ]
ol ) = ZV%* zi)" (wag) —Way)] -

, i €l1,b]] and k € [|1,0]]:

Proof The full proof is reported in Appendix A.5. The main idea of the proof consists in first
dividing Problem (11) by layer and output neurons. The parameters ¢ ;1) defined in Equation
(12) provide the solution for each sub-problem. Then, considering Assumption (5) on the activation
function and the uniqueness of the solution, it can be shown that ¢ = ¢*. |

Proposition (6) states that the solution ¢* of the MaxWEnt optimization (11) is the inverse
of the average neuron activation amplitude over the training data. We emphasize that the aim of
Proposition (6) is not to provide an exact solution (as the quantities a? 1k) and o2 1j) are intractable)
but to offer a theoretical understanding of MaxWEnt in the case of deep fully connected neural
networks. Numerical observations described in Section 7.1.4 confirm this “inverse proportionality”
relationship between the scaling parameters and the neuron activation amplitude. This means that
maximizing the weight entropy leads to put more emphasis on the activation of neurons that are
weakly activated by the training data. Thus, it can be considered that these neurons act as “detectors”
for the out-of-distribution data that activate them.
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5. Discussion

5.1 Overfitting, weight diversity and evaluation

In Section 2.3, we identify the main limitation of standard ensemble and Bayesian approaches as
their inability to produce a representative sample of the whole consistent hypothesis set. We argue
that this limitation is related to the use of weight decay regularization and hyper-parameters selec-
tion driven by hold-out validation. Indeed, the use of weight decay for deep neural networks is first
designed as a tool to avoid overfitting (Krogh and Hertz, 1991), with the underlying idea that large
weights induce the over-specification of the network on the observations. This technique has proven
to improve the model accuracy in most cases. However, when applied in ensemble and Bayesian
learning, it induces the counter effect of penalizing the diversity of the resulting sample of neural
networks. On the contrary, our approach aims at jointly regularizing the sample of neural networks
by increasing the entropy of their underlying weight distribution. Additionally, the use of a broad
weight distribution avoids overfitting thanks to the marginalization process (Wilson, 2020).

Regarding the use of hold-out validation for hyper-parameters selection, we claim that such a
technique fosters narrowed weight distributions. As g4 cannot model complex distribution, the cov-
ering of a large portion of consistent hypotheses generally comes with the inclusion of inconsistent
weights in the support of the weight distribution. As a consequence, the in-distribution performance
for distributions of high entropy is usually degraded (confirmed numerically in our experiments).
Moreover, for a large number of training data, the in-distribution epistemic uncertainty becomes
negligible in front of the aleatoric uncertainty. Its accurate estimation is then not required to obtain
good validation NLL. However, for out-of-distribution data, the main source of uncertainty is epis-
temic, and its estimation is critical. Then, narrowed weights distributions, although improving the
validation NLL, fail to produce relevant uncertainty quantification out-of-distribution (Ovadia et al.,
2019; Liu et al., 2021; Henning et al., 2021).

It should be underlined that, although MaxWEnt tends to enlarge the weight distribution, it can-
not fully guarantee to capture the whole set of consistent hypotheses due to the technical limitation
of the stochastic model g4. However, the MaxWEnt approach is an important step in this direction.
It already provides significant improvements compared to the baselines, as demonstrated by our
numerical experiments.

5.2 Bayesian neural networks

In the Bayesian variational inference framework, the learner aims at approximating the posterior
distribution p(w|S) with a parameterized distribution g4 defined over WW. The minimization of the
Kullback-Leibler (KL) divergence between p(w|S) and g, leads to the maximization of the evidence
lower bound (ELBO) expressed as follows (Wenzel et al., 2020a):

max E

max Eq, | Y log(p(ylhu(@) | = Dia (go(w), p(w)). (13)

(z,y)eS

Where p(y|hw(z)) is the log likelihood of y with respect to hy,(z), Dkr is the Kullback-Leibler
divergence and p(w) is the prior distribution defined over W .

If we consider a uniform prior over the whole weight space: p(w) ~ U(W) (assuming W
bounded), the second term of the ELBO maximization: Dy, (¢4(w), p(w)), is equal to the negative
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entropy of g, (up to a constant). Therefore, if the empirical risk £s(w) can be written as a quan-
tity proportional to the negative log-likelihood, the ELBO maximization (13) is equivalent to the
MaxWEnt optimization problem (1). This is in line with the application of the maximum entropy
principle to the Bayesian framework (Jaynes, 1968), which states that the prior should be selected
as the distribution of maximal entropy that integrates prior information. In our case, without any
regularity assumption about the optimal hypothesis, the maximum entropy principle then leads to
consider a uniform prior over the whole weight space WV (bounded), i.e., p(w) ~ U(W).

The use of “uninformative” parameter priors is considered as the guideline to model epistemic
uncertainty in the Bayesian framework (Wilson, 2020). In practice, however, the most commonly
used priors for Bayesian neural networks are Dropout (Gal and Ghahramani, 2016; Kendall and
Gal, 2017; Boluki et al., 2020) which has been shown to produce over-confident predictions for
out-of-distribution data (Liu et al., 2021) and the isotropic Gaussian prior p(w) ~ N(0,031d,)
(Zhang et al., 2018; Osawa et al., 2019; Jospin et al., 2022), which is recently considered to be often
“non-optimal” or “unintentionally informative” (Wenzel et al., 2020a; Fortuin et al., 2021).

When considering a Gaussian isotropic prior p(w) ~ N(0,021d,) with oy € R and an inde-
pendent multivariate Gaussian stochastic model g4 ~ N (u,diag(c?)) with y,o € R? the mean
and scale parameters such that ¢ = (u, o), the following expression can be derived for the KL
divergence between the approximate posterior and the prior (Duchi, 2007):

d
|pll3 | 1 o i d
Dxr (gp(w), p(w)) = + = — —log (=5 ))— 5.
2 2 o2 0(2) 2

From this expression, it appears that the KL divergence operates a “double” regularization regime
on the scale parameters 0. When o7} is below o3, the term — log(c?/02) dominates o7 /o8, which
induces the increase of the O']% parameter similar to the MaxWEnt penalization. Whereas, for a,%
above o3, the dominant term becomes o /o2 which stops the increase of the scaling parameter.
Then, for oy — o0, the regularization over o induced by the KL divergence converges to the
maximum entropy penalization. However, as a side effect, the term ||]|3 /203 is reduced to zero
and no regularization on the mean is operated, which is generally avoided. In many previous works
which consider isotropic Gaussian priors, the commonly considered prior bandwidth o2 are rela-
tively small (Zhang et al., 2018; Osawa et al., 2019; Ashukha et al., 2019), or at least, not designed
in a maximum entropy perspective. Moreover, a trade-off parameter A < 1 is often added between
the log likelihood and the KL divergence in optimization (13) (Wenzel et al., 2020a) which further
tempers the KL divergence regularization. Our interpretation is that the hyper-parameter selection
is often driven by the in-distribution performances (computed on a validation set for instance) which
fosters narrowed posterior distributions. Indeed, extending the weight distribution to any consistent
weight, generally penalizes the test performances as observed in our experiments (cf. Sections 7.1.3
and 7.2.2). However, we argue that such penalization could be accepted when considering OOD
detection. Further insights on the key components that enable a Bayesian Neural Network (BNN)
with a Gaussian prior to exhibit behaviors similar to those of MaxWEnt and MaxWEnt-SVD are
provided in Appendix C.

5.3 SVD-parameterization

The SVD-parameterization has been introduced in Section 3.3.2 (cf. Equation 6) with the aim of al-
lowing a larger increase of the weight entropy while limiting the average empirical risk penalty. We
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argue, indeed, that using independent weight components in the stochastic model sets the directions
of weight distribution expansion to the canonical basis of R%, which seems intuitively sub-optimal.
We could include correlations between weight components as additional parameters to optimize in
¢. However, this solution would require the optimization of O(d?) parameters which may become
intractable, especially for large neural networks such as ResNet (He et al., 2016), for instance, for
which d > 10°. Through the SVD-parameterization, we propose to set the correlation between
weight components, at each hidden layer, according to the singular value decomposition of the neu-
ron activation on the training data. Our theoretical analysis in Section 4.1.3 shows, in the case of
linear regression, that this weight parameterization provides the same level of average empirical risk
as independent weight components but with larger weight entropy.

Previous works consider the use of weight correlations in stochastic model in the form of ma-
trix Gaussian distribution (Louizos and Welling, 2016; Sun et al., 2017) or through more sophis-
ticated models such as weight distributions defined over “well-chosen” subspace of R4 (Izmailov
et al., 2020), as well as normalizing flows (Louizos and Welling, 2017) and implicit weight models
(Pawlowski et al., 2017). A notable use of correlation between weights is the Laplace approxi-
mations (MacKay, 1992; Foong et al., 2019; Ritter et al., 2018), where the correlation matrix for a
Gaussian model is given by a “closed-form” solution which can be computed using one forward and
backward step through the network. Similarities can be observed between the Kronecker Laplace
approximation (Ritter et al., 2018) and the SVD-parameterization, as both method involve the corre-
lation matrix of the neuron activation, but identifying the link between both methods would require
further investigation. In our case, the parameters ¢ are still optimized through stochastic variational
gradient descent, whereas the Laplace approximation does not require multiple gradient updates. As
we manage to find a closed-form expression for ¢* in the linear case (cf. Propositions 2 and 3), in-
teresting future work directions include “Laplace-like” approximation in the Max WEnt framework,
which can potentially speed up the computation of the parameters ¢*.

Regarding the complexity of the SVD parameterization, we can consider the case of a fully
connected neural network with L layers of b neurons each. Computing the SVD decomposition
matrix V (cf. Section 3.3.2) requires one forward pass of the training inputs and the computation of
the SVD decomposition at each layer with complexity O(Lb%) (Pan and Chen, 1999). Storing the
matrices adds O(Lb?) of memory burden, which is equivalent to O(d) with d € N the dimension
of the network weight vector. During the variational gradient descent, the matrix multiplication
between the matrix V' and the vector ¢ ® z has a complexity of order O(Lb?). For comparison, a
forward pass with a batch of size B, for the scaling parameterization, is of complexity O(LBb?). If
we consider that b ~ B with B the batch size, we can say that the SVD parameterization requires
twice as much computational time as the scaling one, which corresponds approximately to what we
observed in our experiments.

5.4 Entropy function

In the case of scaling (Equation 4) or SVD parameterization (Equation 6), we manage to provide an
expression of the entropy H (¢) function of ¢ (cf. Equation 7), which is a convenient property to
speed up the MaxWEnt optimization. For other weight parameterizations, one may not be able to
derive such a closed-form expression. If the probability density function g4(w) can be computed,
one can estimate the entropy through sampling, as done for the empirical risk. An alternative solu-
tion is to use a proxy of the entropy which is directly linked to the parameters ¢. If the entropy is a
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growing function of ¢y, for any k € [|1, d|], we propose to consider the following general expression
for the penalization term related to the entropy:

d

H(¢) = gr(d7), (14)

k=1

with g : Ry — R predefined growing functions such that gbi grows with H(¢). Typical choices
are gip(u) = log(u) or gx(u) = /u. In the case, gi(u) = log(u), Equation (14) matches the
entropy expression derived in Proposition (1) within a constant factor. Equation (14) can be seen as
a “proxy” of the weight “entropy” as it increases with ¢;, as the entropy.

We observe in our numerical experiments that alternative functions g lead to improved results
compared to the logarithm. Our interpretation is that the logarithm function over-penalizes small
components ¢g. Then, at initialization, the gradient norm of the objective function is large (as ¢
are initialized close to 0) and the first gradient steps push the ¢j too far. We then advocate for the
use of proxy functions, as gx(u) = 1/u, to improve the optimization stability in practice.

5.5 Assessing epistemic uncertainty quantification methods

Our work focuses on better quantifying epistemic uncertainty using Bayesian and ensemble ap-
proaches, as we identify the underestimation of epistemic uncertainty as the key reason why stan-
dard methods tend to provide overconfident predictions on OOD data.

As discussed in Section 2.2, epistemic uncertainty is characterized by the set of consistent hy-
potheses. We argue that an optimal estimation of epistemic uncertainty should account for the entire
set of these consistent hypotheses. This makes evaluating uncertainty quantification methods inher-
ently challenging, as it requires knowledge of the full set of consistent hypotheses, which is the very
goal these methods aim to uncover. Additionally, commonly used metrics for evaluating uncer-
tainty—such as negative log-likelihood (NLL), coverage, expected calibration error (ECE)—do not
adequately assess epistemic uncertainty. These metrics rely on the ground truth label and evaluate
the probability assigned to it or whether it is covered by a predictive interval. However, epistemic
uncertainty is more accurately evaluated by determining if all potential labels, given the observation
set S, are identified, rather than checking if the correct label is included in the confidence intervals.

Therefore, a commonly used “proxy” to evaluate the epistemic uncertainty quantification meth-
ods is OOD detection scores, with the underlying assumption that epistemic uncertainty should be
larger for OOD data than ID data. This boils down to compute uncertainty scores for test data com-
ing from the same distribution as the training data and an OOD dataset from a different distribution.
If epistemic uncertainty is well estimated, the uncertainty scores should be larger for OOD data than
test data. AUROC and FPR95 metrics can be used on the uncertainty scores to evaluate the OOD
detection ability of the methods (Yang et al., 2022).

A good illustration of the difficulty to evaluate epistemic uncertainty quantification methods
with metrics such as NLL or coverage is provided in Figure 7 presenting the results of uncertainty
quantifiaction for a counting vehicle task. We can see that, after 17:30, because of water drops
landing on the camera, many cars are hidden and are difficult to count. The human annotator has
only counted visible cars, resulting in an under-estimation of the true number of vehicles present at
this time. We can see that Deep Ensemble is rather confident in the number of vehicles and almost
matches the number given by the human annotator. On the contrary, MaxWEnt detects the domain
shift and triggers large prediction variances. If we evaluate the NLL or the coverage, Deep Ensemble
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will likely provide better scores than MaxWEnt. However, in this case, MaxWEnt is closer to the
“true” epistemic uncertainty, as it is not possible to accurately count the actual number of vehicles.

6. Related Work

The main related works in distance-based and ensemble-based uncertainty quantification are pre-
sented in Section 1. The vast uncertainty estimation literature also includes notable methods as
conformal prediction (Vovk et al., 2005; Lei et al., 2018; Angelopoulos et al., 2020), calibration
(Guo et al., 2017b; Kuleshov et al., 2018) and evidential learning (Sensoy et al., 2018; Amini et al.,
2020). Our focus in this present work is on the Bayesian and ensemble approaches, for which we
propose a specific improvement through the MaxWEnt algorithm. Readers interested in the alter-
native approaches will find further details in the following surveys (Abdar et al., 2021; Shen et al.,
2021).

6.1 Deep ensembles and prediction diversity out-of-distribution

The main challenge, faced by Bayesian and ensemble methods, is the lack of explicit correlation
between the prediction diversity and the distance to the training domain, leading to the observa-
tion that standard methods in this category often produce over-confident predictions for OOD data
(Henning et al., 2021; Ovadia et al., 2019; Liu et al., 2021).

As described in Section 1, two main approaches are considered to increase the prediction di-
versity of deep ensemble, especially out-of-distribution: the first approach works on the diversity
of the network outputs, gradients or hidden representations (Liu and Yao, 1999; Shui et al., 2018;
Zhang et al., 2020; Ross et al., 2020; Ramé and Cord, 2021; Sinha et al., 2021). In this category,
contrastive approaches make use of auxiliary real or synthetic OOD data (Pagliardini et al., 2022;
Tifrea et al., 2022; Kristiadi et al., 2022; Jain et al., 2020; Mehrtens et al., 2022; Yu and Aizawa,
2019; Wang et al., 2022b). The second approach works on the hypothesis diversity through random
initialization and different architectures (Lakshminarayanan et al., 2017; Wen et al., 2020; Wenzel
et al., 2020b; Zaidi et al., 2021) or by imposing the weight diversity (Pearce et al., 2018; Tagasovska
and Lopez-Paz, 2019; D’ Angelo and Fortuin, 2021; de Mathelin et al., 2023).

These last methods particularly relate to MaxWEnt. In particular, the DARE algorithm
(de Mathelin et al., 2023) produces a deep ensemble at the edge of the consistent hypothesis set
by enlarging the network weights while maintaining the loss under an acceptable threshold. How-
ever, the DARE approach is limited to the use of the mean squared error loss function with linear
end activation. Moreover, the DARE training requires the control of the penalization term to avoid
numerical issues when the weights become too large. With the MaxWEnt approach, the training is
more stable, as the weight distribution is centered on the weights w of a pretrained network. It also
works with softmax activation because of the symmetric expansion of the weight distribution.

6.2 Bayesian neural network priors and stochastic models

Since the seminal work of Jaynes on Bayesian priors (Jaynes, 1968), an ongoing discussion has
been opened about the use of the maximum entropy method for assigning priors in Bayesian model-
ing. This method, considered “thought-provoking” (MacKay, 2003), is generally not recommended
(Gelman, 2020). With the proposed MaxWEnt approach, we do not plan to further extend this
discussion. We do not argue that the maximum entropy method is the “optimal” way to select a
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prior, as such a statement depends on the considered notion of optimality. Actually, we advocate
for the use of MaxWEnt for OOD detection but do not recommend this method to improve the test
accuracy. Enlarging the weight entropy may, indeed, induce a loss of test accuracy due to the large
weight variance. However, we show in our experiments that one can always use a “shrunk” version
of the weight distribution learned by MaxWEnt when looking for accurate inference while sampling
over the whole distribution for OOD detection (cf. Section 7.2.2).

The question of the prior choice has been extensively discussed in the Bayesian literature, a
recent review provides the main considered approaches (Fortuin et al., 2021). For Bayesian neural
networks, two main groups of priors can be distinguished: weight-space priors and function-space
priors. The latter includes priors defined in function space, i.e., over H. Many recent works consider
this approach (Sun et al., 2018; Louizos et al., 2019; Tran et al., 2022; Fortuin, 2022; Rudner et al.,
2023), which mainly use Gaussian process priors. These methods can be related to the distance-
based uncertainty approach, as they make explicit the link between uncertainty and distance to
training data through Gaussian processes. The former group corresponds to priors defined over
the weights of the neural network, i.e., over WW. Our work relates particularly to this approach,
as discussed in Section 5.2. The main considered priors in this category are Dropout (Gal and
Ghahramani, 2016; Gal et al., 2017; Boluki et al., 2020; Nguyen et al., 2022), isotropic Gaussians
(Zhang et al., 2018; Osawa et al., 2019; Jospin et al., 2022), mixture of Gaussians (Blundell et al.,
2015), hierarchical (Wu et al., 2018) and horseshoe priors (Ghosh et al., 2019). Some methods
also propose to define the prior based on empirical observation of the weight distribution of non-
Bayesian networks (Atanov et al., 2018; Fortuin et al., 2021).

Regarding the stochastic model of the weight distribution, previous works have considered the
use of diagonal Gaussian (Graves, 2011) and matrix Gaussian to include the weight correlations
(Louizos and Welling, 2016; Sun et al., 2017). In the case of multivariate Gaussian model with
fixed mean, approximation methods can be used to derive the posterior distribution without using
gradient descent as Laplace approximations (MacKay, 1992; Foong et al., 2019; Ritter et al., 2018;
Kristiadi et al., 2020) and tractable approximate Gaussian inference (TAGI) (Goulet et al., 2021).
More sophisticated stochastic models have been developed with techniques as normalizing flows
(Rezende and Mohamed, 2015; Louizos and Welling, 2017), implicit distribution (Pawlowski et al.,
2017) or distribution defined over subspaces of W (Izmailov et al., 2020).

7. Experiments

We conduct several experiments on both synthetic and real datasets. We primarily focus on OOD
detection performances to compare the methods. The implementation details for the MaxWEnt
algorithm are presented in Section 7.5. The source code of the experiments is available on GitHub.'

7.1 Synthetic experiments

In this section, we provide a qualitative analysis of the MaxWEnt algorithm on low dimensional
synthetic datasets. Specifically, we compare the uncertainty estimation produced by MaxWEnt and
standard ensemble and Bayesian methods.

1. https://github.com/antoinedemathelin/maxwent-expe
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7.1.1 SETUP

We consider both classification and regression experiments, performed respectively on the two fol-
lowing datasets:

e Two Moons Classification: We consider the two-moons classification dataset from scikit-
learn® which simulates a two-dimensional binary classification task with moons like dis-
tributed classes. The training set is composed of 200 data points generated from the rwo-
moons generator; 50 additional instances are generated to form a validation dataset. The
noise level of the generator is set to 0.1.

e 1D Regression : We reproduce the synthetic univariate regression experiment from Jain et al.
(2020) with 100 training and 20 validation instances. The input instances are drawn in X C
R according to the mixture of two Gaussians centered respectively in —0.5 and 0.75 with
standard deviation 0.1. The outputs y € ) C R are drawn according to the conditional
distribution: p(y|z) ~ f*(x) + € with € ~ N(0,0.02) the noise variable and f*(z) the
“ground truth” defined as:

f*(x) = 0.3 (z + sin(27wz) + sin(4nx)) .

In both experiments, the base estimator is a fully-connected neural network with three layers
of 100 neurons, each with ReLLU activations. For classification, the end layer is composed of one
layer with sigmoid activation to produce probabilistic outputs. The end layer for regression is made
of two neurons which respectively encode for the conditional mean i, (x) and conditional standard
deviation oy, (x) of the univariate Gaussian N (p,(x), 0y (x)) as suggested in Nix and Weigend
(1994) to produce probabilistic outputs in the regression setting. We consider the five following
uncertainty quantification methods:

e Vanilla Network, the baseline, which produces uncertainty estimation based on the network
probabilistic outputs h,,(z) € [0, 1] for classification and o,,(x) € R for regression. Notice
that an ensemble of Vanilla Networks corresponds to the Deep Ensemble method.

e MC-Dropout (Gal and Ghahramani, 2016), with dropout rate selected through hold-out val-
idation NLL, computed using the validation data, among [0.05,0.1,0.2,0.3,0.5];

e standard BNN (Bayesian Neural Network) (MacKay, 1992; Graves, 2011), trained with
stochastic variational inference and reparameterization trick (Hoffman et al., 2013; Kingma
and Ba, 2015), we use an independent multivariate Gaussian stochastic model ¢, ) ~
N (u, diag(c*)) and a Normal prior p(w) ~ N (0, Id). Following common practices for varia-
tional Bayes approach to BNNs, we consider a trade-off parameter A between the NLL and the
KL divergence (Wenzel et al., 2020a). The trade-off parameter is selected in {10%} ke[|—3,3]
through hold-out validation NLL.

e MaxWEnt, with an independent multivariate uniform stochastic model centered on the re-
sulting weights of the Vanilla Network.

2. https://scikit—-learn.org/stable/modules/generated/sklearn.datasets.make_
moons.html
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e MaxWEnt-SVD, which uses the “SVD” parameterization of Equation (6) in addition to the
previous MaxWEnt settings.

We use the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001 and batch size
32. 10k iterations are used to train the Vanilla Network and 20k iterations for other methods, as
the stochastic variational inference requires more iterations to converge. For both tasks, the loss
function is the Negative Log Likelihood (NLL). It can be written for the respective classification
and regression settings as follows:

Ls(w) = ! Z ylog(hy(x)) + (1 — y)log(l — hy(z)) (Classification) (15)
" (z,y)eS
2
Ls(w) = :L(x%:esé (log(aw(:n)Q) + W) (Regression), (16)

with h,, € H the neural network of weights w € W such that, for any z € X, hy,(z) =
(ta (), 04y (z)) for the regression setting (cf. Lakshminarayanan et al. 2017).

To compute uncertainty estimates, we use the entropy metric for classification and the standard
deviation of the “Gaussian mixture approximation” introduced in (Lakshminarayanan et al., 2017)
for regression. All uncertainty quantification methods except the Vanilla Network produce stochas-
tic outputs, i.e., for any © € X, hy () is a random variable as w follows a stochastic model. To
produce uncertainty estimates at inference, we then compute P = 50 predictions { A, (7) }ic[1,p))
with w; drawn iid according to the learned weight distribution. Then, the uncertainty estimation for
each setting becomes, for any x € X

u(z) = —hy(x)log(hw(z)) — (1 — hy(xz))log(1l — hyw(z))  (Classification) (17)

> (0w, (@) + pru, (2)?) — Ty ()*  (Regression), (18)

i=1

u(x) =

Nl =

with Ay, (z), i, (), the average of the respective sets { Ay, (7)}; and { gy, (z)}4. It should be un-
derlined that the uncertainty metric for classification in Equation (17) is the entropy metric applied
to the average predicted output over the P stochastic inferences, while the uncertainty metric for
regression in Equation (18) is the variance formula for the Gaussian mixture composed of P Gaus-
sians of mean fi,,, () and variance o, (z)? (Lakshminarayanan et al., 2017). Notice also that, for
the Vanilla Network, the estimated uncertainty is independent of P as the method produces the deter-
ministic outputs A, (z). In the regression case, the Vanilla Network uncertainty is u(x) = oy, (z)2.

To complete the experiments, we also consider ensembles of the previously mentioned uncer-
tainty quantification methods. We build ensembles of N = 5 networks trained independently with
different random weight initializations. In this case, the uncertainty metrics are computed in the
same way as in the single-network setting through Equation (17) and (18) with P predictions for
each network in the ensemble, i.e., with a total of N P = 250 predictions.

7.1.2 RESULTS

The regression experiment results are reported in Figure 2. Predicted uncertainties for each method
are presented in the form of confidence intervals in light blue. We observe that the Deep Ensemble,
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MC-Dropout and BNN methods provide larger uncertainty estimates out-of-distribution than in-
distribution, which offers an efficient way to detect OODs in this case. However, the three methods
fail to capture the full epistemic uncertainty, as a significant part of the ground-truth lies outside
the confidence intervals. In contrast, MaxWEnt provides relevant confidence intervals outside the
training support when extrapolating on the right and left sides of the domain. Although the predicted
uncertainties between the two separated parts of the training domain are still under-estimated. This
behavior is corrected by MaxWEnt-SVD which fully manages to produce tight confidence intervals
in-distribution and uncertainties as large as possible out-of-distribution.

)

S W

=2

on

5

”

(]

s

E M

2

@
Deep Ensemble MC-Dropout BNN MaxWEnt MaxWEnt-SVD

Figure 2: 1D-Regression Uncertainty Estimation. The horizontal and vertical axes correspond re-
spectively to the 1D input space X and the 1D output space ). The black line represents
the ground truth f*(z) and the blue line the average predictions fi,,(x). Training in-
stances are reported as white dots. Uncertainty estimations are reported in the form of
confidence intervals centered around the average prediction (in light blue). The length of
the intervals is equal to 41/u(x) with u(x) defined according to Equation (18).

The results of the classification experiment are reported in Figure 3. As for the regression exper-
iment, we observe that Deep Ensemble, MC-Dropout and BNN fail to provide relevant uncertainty
estimations whereas MaxWEnt and MaxWEnt-SVD are close to the expected behavior of an ideal
uncertainty quantifier. Moreover, in this experiment, the first three methods do not offer proper
discrimination between out-of-distribution and in-distribution data. The produced uncertainties are
concentrated in the margin between classes and do not increase in the OOD areas behind the train-
ing instances. We observe that MaxWEnt and MaxWEnt-SVD manage to increase the uncertainty
outside the margin between classes.

7.1.3 DISCUSSION

Both experiments on synthetic data strongly highlight the benefit of using MaxWEnt for uncertainty
quantification over standard Bayesian and ensemble methods. As discussed in Section 5.2, the
MaxWEnt implementation is related to BNN algorithms, however, the predicted uncertainties of
MaxWEnt and BNN are very different (cf. Figures 2 and 3). These observed discrepancies between
the two methods can be explained by their different paradigms. In standard BNN optimization,
the main objective is to produce relevant uncertainty estimation inside the training domain. In this
perspective, the prior distribution and the trade-off parameters are selected in order to minimize
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Figure 3: Two-Moons Classification Uncertainty Estimation. The horizontal and vertical axes cor-
respond to both dimensions of the input space X'. Training instances are represented by
white dots. The two “moons” formed by the training instances correspond to two differ-
ent classes. Predicted uncertainties u(z), computed through Equation (17), are reported
in shades of blue (darker areas correspond to larger uncertainties).

the validation NLL. Consequently, the expansion of the weight distribution is generally limited. In
MaxWEnt optimization, the primary goal is to maximize the entropy of the weight distribution as
long as the sampled weights are consistent. Although this approach induces a slight penalization
of the validation NLL as suggested in Figure 3 (predicted uncertainties in the training domain are
larger for MaxWEnt and MaxWEnt-SVD than for BNN), it significantly improves the predicted
epistemic uncertainties outside the training domain. Notice that one can sample from the whole
MaxWEnt weight distribution to detect OOD and then from “shrunk” weight distribution to provide
more accurate prediction for data identified as in-distribution (cf. Figure 4).

When considering the MaxWEnt-SVD results for both experiments (cf. right side of Figures
2 and 3), we might judge that the produced out-of-distribution uncertainties are over-estimated;
especially in the regression experiment, where the predicted uncertainties become very large almost
instantly at the borders of the training domain. However, this behavior is optimal according to the
notion of epistemic uncertainty considered in this work. Indeed, epistemic uncertainty is defined
through the set of potential candidates for the optimal hypothesis h,,«. Then, as soon as there exists
a neural network A in H which fits the training instances and produces very high outputs out-of-
distribution, the user has no reason, in the absence of further regularity consideration, to exclude
that the optimal hypothesis can be modeled by h. If, for some reason, the user wants to add some
prior information on A+, such as Lipschitz constraints on the network output, this can be achieved,
for example, by clipping the scaling variable ¢ ® z during the MaxWEnt inference as done for
the weights of the Wasserstein-GAN to impose the 1-Lipschitz constraint (Arjovsky et al., 2017).
This boils down to considering a reduced hypothesis space H, which de facto reduces the epistemic
uncertainty estimation, but potentially increases the discrepancy between H and f*. We present
in Figure 4 the impact of weight clipping on the predicted uncertainties of MaxWEnt-SVD on the
regression dataset. We observe that the clipping parameter enables the interpolation between the
behavior of the vanilla probabilistic network and the MaxWEnt-SVD behavior. Notice that clipping
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is performed at “test time”, i.e., after the MaxWEnt optimization, which is convenient as the clipping
parameter can be selected “a posteriori”, without further training.

AV AV P oV

C =400 C=15 C=1 C=05 C=0

Figure 4: MaxWEnt-SVD Uncertainties for different clipping parameters. Clipping is performed
“a posteriori” on the scaling variable qg ©® z (cf. Equation 6) with (;AS the parameters of the
fitted MaxWEnt-SVD network, such that ¢, ~ @+V min(¢© z, C), with C the clipping
parameter.

The comparison between the regression and classification results suggests that out-of-distribution
detection is a more difficult task in the classification setting. Indeed, in this setting, the uncertainty
quantification methods do not fully manage to increase uncertainty for OOD data behind the train-
ing instances of each class. This behavior can be explained by the use of the sigmoid activation
at the end-layer, which hardens the epistemic uncertainty estimation as different large outputs are
reduced in the same probabilistic output (close to 1 if positive or O if negative). In fact, recent out-
of-distribution detection methods often abandon the use of softmax and sigmoid activation functions
at the end layer in favor of distance-based approaches where class assignment is computed through
distance to class prototypes (Van Amersfoort et al., 2020). Notice that, we do not consider distance-
based uncertainty methods in these synthetic experiments. For these low dimensional problems,
using the Euclidean distance to the training instances would provide an almost perfect OOD detec-
tor. However, for high dimensional datasets, ensemble-based approaches generally provide better
performances (Yang et al., 2022).

In both experiments, we observe that MaxWEnt-SVD produces uncertainty estimates of better
quality than MaxWEnt. The theoretical analysis in Section 4.1.3 suggests that this improvement is
related to the weight entropy increase. To evaluate this theoretical claim, we report the evolution
of the predicted uncertainties and the weight entropy H(¢) through the epochs for both methods
in the regression setting (cf. Figure 5). We observe, for both methods, a strong correlation be-
tween the increase of the weight diversity (measured by H(¢)) and the increase of the uncertainty
estimates out-of-distribution. Moreover, the predicted uncertainties of MaxWEnt-SVD quickly in-
crease around epoch 100 as well as its distribution entropy H (¢), which becomes higher than the
MaxWEnt entropy (H(¢) = —0.03 at epoch 125 for MaxWEnt-SVD while H(¢) = —2.51 for
MaxWEnt). After this stage, the predicted OOD uncertainties are better for MaxWEnt-SVD than
for MaxWEnt, especially in the interpolation regime between the two parts of the training domain.
These observations support the idea that higher weight diversity for the same level of in-distribution
risk produces better uncertainty quantification out-of-distribution.

7.1.4 NEURON ACTIVATION AMPLITUDE AND SCALING PARAMETERS

In the theoretical analysis in Section 4, we show, in the case of fully-connected neural networks,
that the scaling parameters ¢y, are inversely proportional to the neuron activation amplitude on the
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Figure 5: MaxWEnt Uncertainties Evolution through Epochs. One epoch corresponds to 100 it-
erations. The entropy term H(¢) is defined here as H(¢) = ézzzl log(¢2) with ¢
the scale parameters of the weight distribution. Notice that MaxWEnt and MaxWEnt-
SVD have different parameter initialization, respectively: ¢ = softplus(—5) and
®init = softplus(—10).

training data denoted a%h k) for the [*" layer (cf. Proposition 6). We aim at supporting this theoretical

result with empirical observations. For this purpose, we estimate the activation amplitudes in each
layer of the MaxWEnt neural network and compare their values with the average of their corre-
sponding scaling parameters (1/b;) Z?l: 19(1,5,k)- We report the result in Figure 6. The top three
graphics present the scaling parameters as a function of the activation amplitudes in the three layers
of the MaxWEnt neural network trained on the two moons dataset. We observe a clear relation of
inverse proportionality between the two quantities, in line with the theoretical outcomes. The three
graphics below present the results for the standard BNN method. We observe the inverse propor-
tionality relationship for the first layer but to a lesser extent than for MaxWEnt. This relationship is
diminished in the two next layers. Moreover, we observe that the scaling parameters in the two last
layers are globally larger for MaxWEnt than for BNN.

7.2 UCI regression datasets
7.2.1 SETUP

In this section, we consider the most common UCI regression datasets used to evaluate uncertainty
quantification methods. Most previous works evaluate the methods based on the in-distribution NLL
computed on a test set drawn from the same distribution as the training set (Lakshminarayanan et al.,
2017). In this work, we focus on the method’s ability to detect whether a data point is outside the
training support or not. For this purpose, we build OOD detection problems by splitting each dataset
into two distinct parts, with one part modeling the training domain and the other part the OOD data.
Inspired by Foong et al. (2019) and Jain et al. (2020), which propose OOD splits for UCI datasets,
we split the dataset along the first component of the input PCA: we define the internal domain with
the data between the 25% and 75% percentiles of the first component of the input PCA, while the
rest of the data forms the external domain. We then consider the two following experimental setups:
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Figure 6: Neuron activation amplitude for the three hidden layers of MaxWEnt and BNN for the
synthetic classification experiment: The top three graphics correspond to MaxWEnt while
the three bottom to BNN. Each graphic reports the value of the average scaling parameter
as a function of the training neuron activation amplitude in the three layers of the neural
network.

e Extrapolation: The training data are defined by the infernal domain, while the data from the
external domain are considered as OOD.

e Interpolation: The training data are defined by the external domain, while the data from the
internal domain are considered as OOD.

In all experiments, we consider a fully-connected network with three hidden layers of 100 neu-
rons each and ReLLU activation for the base estimator. The end-layer is composed of two neurons,
which respectively predict the conditional mean and standard deviation fu,,(x), oy () (cf. Section
7.1.1). We consider 13 different uncertainty quantification approaches: five deep ensemble meth-
ods: Deep Ensemble (Lakshminarayanan et al., 2017), Negative Correlation (Liu and Yao, 1999;
Shui et al., 2018), Maximize-Overall-Diversity (MOD) (Jain et al., 2020), Anchored-Networks
(Pearce et al., 2018), Repulsive-Deep-Ensemble (RDE) (D’ Angelo and Fortuin, 2021) and four
“Bayesian” methods: MC-Dropout, BNN, MaxWEnt, MaxWEnt-SVD (described in Section
7.1.1), and ensemble version of these four previous Bayesian methods. The competitor charac-
teristics are summarized in Table 1. We use the Gaussian NLL loss for regression, as defined in
Equation (16) and the Adam optimizer (Kingma and Ba, 2015) with learning rate 0.001 and batch
size 128. The number of iterations is chosen such that the minimum validation NLL is generally
reached by every method on every dataset. We then consider 10k iterations for ensemble methods
and 50k iterations for Bayesian and Bayesian ensemble methods, as stochastic variational inference
converges slower than stochastic gradient descent. A callback process is used to monitor the valida-
tion NLL of the model every 100 iterations, the network weights corresponding to the iteration of
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best validation NLL are restored at the training end. For MaxWEnt, the scale parameters are saved
if the validation NLL is below the threshold defined in Section 7.5. Notice that the OOD dataset
is not used during the network training, as well as a test dataset, selected uniformly in the training
domain. 10% of the in-distribution data are selected to form the test set and 5% of the remaining
data to form the validation set.

Methods Abrv.  Kind Nets Preds Total Parallel Hyper-parameters
Deep Ensemble DE  Ensemble 5 1 5 v None

Negative Correlation NC Ensemble 5 1 5 v A e {107%; k€ [|0,5]}
Maximize-Overall-Diversity MO  Ensemble 5 1 5 X X e {1075 k€ [|0,5]}
Anchored-Networks AN  Ensemble 5 1 5 v 3,2 €[0.1,1,10]
Repulsive-Deep-Ensemble RE  Ensemble 5 1 5 X o = median heuristic
MC-Dropout (x1) MD Bayesian 1 50 50 N/A rate € [0.05,0.1,0.2,0.3,0.5]
Bayesian Neural Net (x1) BN Bayesian 1 50 50 N/A e {105 ke[| -3,3|]}
MaxWEnt (x1) ME  Bayesian 1 50 50 N/A A = 10, ¢inic = soft(—5)
MaxWEnt-SVD (x1) ME+ Bayesian 1 50 50 N/A A = 10, ¢inic = soft(—10)
MC-Dropout (X 5) MD BayEns 5 50 250 V rate € [0.05,0.1,0.2,0.3,0.5]
Bayesian Neural Net (x5) BN BayEns 5 50 250 V e {10% ke[ - 3,3}
MaxWEnt (x5) ME BayEns 5 50 250 V A = 10, ¢inic = soft(—5)
MaxWEnt-SVD (x5) ME+ Bay Ens 5 50 250 V A = 10, ¢inic = soft(—10)

Table 1: Competitors Summary. The columns “Nets” and “Preds” respectively report the number
of networks in the ensemble and the number of predictions at inference for one network.
“Total” is the total number of predictions (Nets x Preds). The “Parallel” column reports
whether the ensemble can be trained in parallel or not. When a list is given in the “Hyper-
parameters” section, the value is selected based on hold-out validation NLL. “soft” is the
abbreviation for the “softplus” function: soft(z) = log(1 + exp(x)).

7.2.2 RESULTS

To evaluate the model performances, we use the metric defined in Equation (18) which defines an
uncertainty score for each data point, this score is used to compute the AUROC metric between
in-distribution and OOD data which is a commonly used metric in the OOD detection setting (Yang
et al., 2022). All results are reported in Table 2. Each experiment is performed only once to reduce
the computational time of the experiments. As many different datasets are used, this is sufficient to
obtain statistically significant results. We report the results by kind of methods: ensemble, Bayesian
and Bayesian ensemble. The best result for each dataset in each category is emphasized in bold. We
report the average AUROC among extrapolation and interpolation experiments and the rank of the
methods. Our observations can be summarized as follows:

e MaxWEnt-SVD (ME+) outperforms all other approaches, with or without ensembling.
The second-best non-MaxWEnt approach is 11.3 points behind in extrapolation and 18 points
behind in interpolation in terms of average AUROC. Ensembling improves from 4.5 points in
extrapolation and 1.2 points in interpolation.

29



DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Meth Ensemble Bayesian Bayesian Ensemble
Data DE NC MO AN RE BN MD ME ME+ | BN MD ME ME+
yacht 989 99.1 99.1 981 995 | 89.5 782 97.1 994 | 953 831 99.6 99.1
energy 81.0 936 913 799 929 | 882 556 743 99.6 | 920 819 91.7 999
concrete 784 89.8 889 838 877 | 757 687 743 908 | 795 72.1 818 95.6
= | wine 38.8 48.7 368 458 393 | 709 623 79.1 859 | 66.7 642 838 884
£ | power 849 785 753 751 794 | 821 798 784 93.0 | 824 867 93.1 93.3
% naval 975 977 853 997 960 | 89.5 96.1 969 97.2 | 96.8 968 989  99.6
£ | protein 825 830 828 780 797 | 829 747 816 796 | 840 799 893 87.6
E kin8nm 454 450 450 459 461 | 525 514 391 603 | 545 528 49.1 78.2
=
Avg AUC 759 794 756 758 776 | 789 708 77.6 882 | 814 772 859 927
Rank 9 5 11 10 7 6 12 7 2 4 8 3 1
yacht 7715 784 80.6 761 79.7 | 46,7 484 714 989 | 519 480 90.1 98.6
energy 99.2 997 996 987 995 | 955 788 885 995 | 982 964 988 100.0
concrete 60.8 727 724 462 73.6 | 486 574 467 934 | 603 606 625 95.0
o | wine 433 427 427 41.1 438 | 348 416 322 525 | 339 410 370 621
S | power 435 428 178 673 485 | 38.1 427 586 947 | 572 471 655  96.0
-g naval 81.8 735 736 836 712 | 228 838 546 986 | 469 915 889 984
£ | protein 706 725 659 737 733 | 660 716 642 838 | 71.0 76.1 719  80.6
§ kin8nm 63.7 632 633 647 648 | 531 562 558 671 | 542 581 569 677
P
Avg AUC 676 682 645 689 693 | 50.7 60.1 590 86.1 | 592 648 714 873
Rank 7 6 9 5 4 13 10 12 2 11 8 3 1

Table 2: UCI experiments OOD detection results. AUROC scores for OOD detection are reported.
The best score for each category is emphasized in bold (higher scores are better). The two
last rows for the extrapolation and interpolation settings report the average AUROC over
the eight datasets (Avg AUC) and the rank of the method among all methods according to
the average score (Rank).

e The ensemble version of MaxWEnt (ME) is third best behind the two versions of
MaxWEnt-SVD. The single-network MaxWEnt, however, provides poor performances,
which advocates for the use of ensembling or SVD parameterization.

o AUROC scores are higher in extrapolation than in interpolation, suggesting that the sec-
ond task is more difficult. This seems reasonable, as the network is conditioned on both sides
of the OOD domain in the interpolation case while being conditioned only on one side of the
OOD domain in extrapolation.

¢ Ensembling of Bayesian methods generally improves the results compared to the single-
net from 7 points on average. However, using Bayesian combined in ensemble increases the
training and inference time by the number of members as well as the required memory size.
Note that, for these methods, the ensemble training can be conducted in parallel, which can
alleviate the training time burden.

Finally, to evaluate the in-distribution performance of the methods, we compute, on the test set,
the Negative Log Likelihood (NLL) as well as the Expected Calibration Error (ECE) (Levi et al.,
2022). To further assess the in-distribution performance of the methods, we also introduce two ad-
ditional metrics: coverage and average interval width. Coverage measures the proportion of labels
that fall within the predicted uncertainty intervals, while interval width evaluates the average length
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Baselines MaxWEnt MaxWEnt + Clip

Metric DE BN1 BN5 | MEl MEI+ ME5 MES+ | MEl MEl+ ME5 ME5S+
= | AvgNLL -0.69 -0.61 -0.75 | -0.44 -0.33 -0.41 -0.04 | -0.61 -0.71 -0.59  -0.71
2 | AvgECE 0.37 0.37 0.35 0.36 0.33 0.36 0.39 0.31 0.36 0.29 0.35
% Cov. 0.61 0.58 0.65 0.73 0.75 0.79 0.82 0.65 0.68 0.63 0.64
£ | Int. Width 1.00 1.33 1.85 >50 >50 >50 >50 3.07 1.19 1.07 1.12
*E Coverage Conform 0.91 0.93 0.86 0.93 0.92 0.91 0.94 0.93 0.93 0.90 0.90
M | Int. Width Conform 1.00 141 1.68 >50 >50 >50 >50 3.34 1.42 0.99 0.99
= | AvgNLL -045 -049 -0.54 | -0.26 -0.12  -0.23 -0.06 | -027 -045 -028 -045
= | AvgECE 0.33 0.32 0.30 0.32 0.30 0.30 0.34 0.33 0.33 0.33 0.33
% Coverage 0.65 0.57 0.64 0.74 0.78 0.81 0.84 0.59 0.59 0.65 0.65
2 | Int. Width 1.00 1.21 174 | >50 >50 >50 >50 0.90 0.88 1.00 1.02
g Coverage Conform 0.91 0.90 0.90 0.93 0.96 0.94 0.92 0.93 0.94 0.91 0.91
= | Int. Width Conform 1.00 1.25 1.68 >50 >50 3.54 > 50 1.14 1.20 1.00 0.99

Table 3: UCI experiments In-distribution performances. The average Negative Log Likelihood
(NLL) and Expected Calibration Error (ECE) over the eight datasets are reported. The
scores are computed on the test set, the lower the score the better. The number at the end
of the acronyms corresponds to the number of networks (ME1 refers to a MaxWEnt single
network and MES to an ensemble of 5 MaxWEnt networks). The coverage target level is
95%. “Int. Width” indicates the average confidence interval width and “Conf” denotes
conformalized metrics, i.e., the metrics computed after conformalization of the intervals
on the validation dataset.

of these intervals. The average metrics computed over the eight datasets are reported in Table 3.
To evaluate the impact of clipping on the in-distribution performance, we also report the average
metrics for the “clipped” MaxWEnt weight distribution: g, ~ W + min(¢ ® z, C') (independent)
and gy ~ W+ Vmin(¢ ® z,C) (SVD), with C the clipping parameter selected in [+o00, 10, 5,
2,1,0.5,0.2,0.1, 0] according to the validation NLL performance. We observe that the MaxWEnt
algorithms generally penalize the test NLL and ECE compared to the baselines. In particular, the
average NLL of MaxWEnt-SVD (x5) is larger than the ones produced by the other methods, sug-
gesting that stronger OOD detection results come with weaker test performances. However, we
observe that the use of weight clipping improves the MaxWEnt test performances, which become
comparable to those of the baselines. Our results reveal that, in the absence of clipping, the pre-
dicted uncertainty intervals tend to be overestimated, which, while resulting in better coverage,
leads to excessively large interval widths. After applying clipping, we observe that both the length
of the intervals and the coverage improve, becoming comparable to those achieved by the base-
line methods, especially for the MaxWEnt-SVD (x5) and MaxWEnt-SVD (x5) (Me5 and Me5+).
These results suggest that the user should use the “unclipped” MaxWEnt predicted uncertainties
to perform OOD detection and the “clipped” MaxWEnt inferences to provide predictions for data
identified as in-distribution. This requires two different inferences: one for OOD detection and one
for prediction.

We emphasize that clipping is not used during training; but only in inference after the model
has been trained. Additionally, clipping is not essential for out-of-distribution (OOD) detection, but
rather for in-distribution (ID) prediction. Therefore, the choice of clipping parameter does not affect
the training nor the OOD detection score. Regarding the impact of clipping on the entropy, clipping
intuitively reduces the weight entropy as suggested by the reduction of the prediction uncertainty
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shown in Figure 4 for the synthetic experiment. Deriving the formula of the weight entropy af-
ter clipping is not straightforward because the clipped distribution is a mixture of continuous and
discrete distributions. Insights to compute the entropy in such cases can be found in (Nair et al.,
2006).

7.3 CityCam regression datasets
7.3.1 SETUP

This section is dedicated to uncertainty quantification on the real-world dataset CityCam (Zhang
et al., 2017). This dataset is composed of images gathered from several cameras monitoring the
traffic in a city. Each camera records between 1k and 6k images dispatched over several days and
hours. The task consists in counting the number of vehicles in the image using a neural network.
This task is useful, for instance, to monitor the traffic in the city. To produce in-distribution vs OOD
splits, we consider the three following experiments:

e Camera-Shift: Images coming from ten different cameras are selected for this experiment.
At each round, five cameras are randomly selected to form the training dataset, while the five
remaining cameras are used as OOD dataset. On average, both datasets contain around 20k
images.

o BigBus-Shift: Images from five cameras are considered in this experiment. Some of them
are marked as “big-bus” if a large vehicle masks a significant part of the image (cf. Zhang
et al. 2017). These images are selected to form the OOD dataset, while the remaining ones
compose the training set. The in-distribution and OOD datasets respectively contain around
17k and 1k images.

o Weather-Shift: For this experiment, we consider the images gathered from three cameras
recorded during February the 23™ from 9 am to 6 pm. On this particular day, weather condi-
tions changed considerably between the beginning and end of the day. The dataset is split into
two subsets: images recorded before 2 pm are considered in-distribution, while the others are
out-of-distribution. After 4 pm, water drops landed on the cameras blur the images, causing
a clear domain shift (cf. Table 4).

The three previous experiments model different out-of-distribution scenarios. OOD data for the
BigBus-Shift and Weather-Shift experiments can be considered as “anomalies”. When a large ve-
hicle masks an important part of the image or when the images become too blurry due to raindrops,
it becomes very difficult to produce accurate predictions even for a human (cf. Table 4). In this
case, the user may expect uncertainty quantification methods to provide large prediction uncertainty
in order to detect such abnormal events. The paradigm slightly differs for the Camera-Shift ex-
periment. In this setting, the domain shift essentially lies in the background differences between
cameras. Since the model is trained on five different cameras, the user might expect the model to
“generalize” and to provide accurate predictions for the images of the novel cameras.

As preprocessing, we use the features of the last layer of a ResNet50 (He et al., 2016) pretrained
on ImageNet (Deng et al., 2009). We consider the same setting as for the UCI experiments in terms
of base estimator, optimization parameters, callbacks and competitors.
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Camera-Shift BigBus-Shift Weather-Shift

In-Dist

(00)))

Table 4: CityCam Experiments setup. An example of a webcam image is given for each domain for
the three settings: Camera-Shift, BigBus-Shift and Weather-Shift.

7.3.2 RESULTS

For each experiment, we compute the AUROC metric and the False Positive Rate at 95 percent
(FPR@95) (Yang et al., 2022), using the uncertainty scores given in Equation (18). The computed
metrics are reported in Table 5. We observe an important discrepancy between the scores produced
by MaxWEnt-SVD and the ones of other methods. The gap is particularly large for the Camera-
Shift experiments, where every method produces an average FPR@95 score around 97% while
MaxWEnt-SVD provides a false positive rate of 29.4% in the single-net setting and 15.3% with
ensembling. Similarly, MaxWEnt-SVD outperforms every other method for the BigBus-Shift and
Weather-Shift experiments. The MaxWEnt algorithm without SVD parameterization provides the
second-best results in the Bayesian and ensemble category, however, the performance gains com-
pared to the baselines are much smaller than the ones obtained with the SVD parameterization.
Notice, however, that MaxWEnt-SVD requires more computational time because of the additional
matrix multiplication caused by the SVD alignment (cf. Section 5.3).

A visualization of the MaxWEnt uncertainty evolution on the Weather-Shift experiment is pre-
sented in Figure 7. We compare the evolution of the confidence intervals produced by Deep Ensem-
ble and MaxWEnt (x1) along the day. The left part of Figure 7 corresponds to the images recorded
between 2:00 pm and 2:30 pm which are the closest OOD data to the training domain. We observe
that, in this time interval, both methods produce tight uncertainty intervals which well cover the
ground-truth. The right part of Figure 7 corresponds to the time interval 4:00 pm to 6:00 pm. Dur-
ing this period of time, raindrops progressively land on the camera objective and blur the image. At
some point around 5:30 pm, the deterioration of the image becomes critical for the vehicles’ count-
ing. We observe that, in this case, the size of the confidence intervals produced by Deep Ensemble
does not increase. Paradoxically, the Deep Ensemble method seems to produce more confident
predictions around 5:30 pm than before 2:30 pm. Conversely, the MaxWEnt predicted uncertainty
progressively grows after 5:00 pm in correlation with the increasing task difficulty. Notice that, at
some point, even the ground-truth is not reliable anymore, as the human annotator was not able to
accurately count the actual number of vehicles.
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Method Camera-Shift BigBus-Shift Weather-Shift
FPR@95 AUROC FPR@95 AUROC FPR@95 AUROC
DE 98.3(14) 52149 | 820(2.2) 779(1.3) | 79.72.1) 77.5(1.0)
NegCorr 95.6 (0.6) 56.5(43) | 784(3.6) 79.9(1.0) | 80.0(1.1) 78.5(1.9)
MOD 97.0(1.7) 57.2(2.2) | 780(4.0) 79.0(2.1) | 76.7(2.4) 78.5(1.9)
AnchorNet 99.4(0.4) 51.0(59) | 84.0(L.7) 782(0.9) | 73.4(7.2) 80.9(3.2)
RDE 97.4(04) 54639 | 78.0(14) 784(1.1) | 77.1(1.0) 78.0(0.6)
BNN (x1) 98.0(2.8) 51.0(23) | 93.3(2.1) 623(7.6) | 76.6(1.4) 76.7(1.8)
MCDropout (x1) 99.9 (0.1) 435(44) | 922(14) 71.7(1.8) | 77.1(43) 77.7(1.9)
MaxWEnt (x1) 95.4(0.0) 51.2(0.0) | 86.6(0.0) 78.7(0.0) | 70.4(0.0) 77.3(0.0)
MaxWEnt-SVD (x1) | 29.4(6.3) 92.3(2.5) | 575(5.9) 87.0(2.5) | 61.1(3.0) 85.7(0.7)
BNN (x5) 98.1(25) 535(29) | 94.1(14) 64.0(7.9) | 753(1.9) 80.2(1.1)
MCDropout (x5) 99.8(0.1) 56.5(1.8) | 87.4(1.4) 78.0(0.1) | 76.1(2.5) 80.6(2.7)
MaxWEnt (x5) 93.6(2.1) 585(59) | 79.1(49) 805(1.2) | 67.8(2.7) 80.8(0.3)
MaxWEnt-SVD (x5) | 15.3(6.3) 96.9(1.5) | 53.5(3.4) 88.6(0.7) | 59.8(7.6) 86.7 (2.5)

Table 5: CityCam Experiments: OOD Detection Results. Average AUROC and FPR@95 over
three repetitions of the experiment are reported for each dataset and each method.

7.4 OSR-OO0D detection benchmark on classification datasets
7.4.1 SETUP

We consider the Open-Set-Recognition (OSR) and Out-of-Distribution detection extensive bench-
mark (OpenOOD), developed in Yang et al. (2022) which compares more than 30 OSR and OOD
detection methods on various classification datasets. The source code for the MaxWEnt experi-
ments, conducted within the OpenOOD benchmark, is available on GitHub.? We focus on the OSR
and OOD detection experiments:

e Open-Set-Recognition: For the OSR benchmark, each dataset is divided into two parts by
removing the instances corresponding to some classes from the training set. The goal is
to detect whether an instance comes from a training class or a removed one. Each exper-
iment is repeated five times with random selections of the training classes. Four datasets
are considered: MNIST (Deng, 2012), CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and
TinyImageNet (Torralba et al., 2008).

e Out-Of-Distribution Detection: For the OOD detection benchmark, data coming from all
classes are used at training time. The goal is then to discriminate between the test set and data
coming from other datasets (with no overlapping classes). Two types of OOD datasets are
considered: Far-OOD which corresponds to images very different from the training instances
(e.g., CIFAR10 vs MNIST) and Near-OOD which corresponds to images close to the training
instances (e.g., CIFAR10 vs CIFAR100). This last type of OOD detection is considered more
challenging and is closely related to the OSR setting (Yang et al., 2022). Three datasets are
considered: MNIST, CIFAR10 and CIFAR100.

A summary of the datasets used in each experiment is presented in Table 6. The AUROC score is
used to evaluate the discrimination accuracy between test and OOD datasets. To compute the “O0D
scores”, a variety of algorithms are considered. They can be classified into two main categories:

3. https://github.com/antoinedemathelin/Open0O0OD
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Figure 7: Comparison of the uncertainty evolution across time for Deep Ensemble and MaxWEnt
on the Weather-Shift OOD dataset. The top images are examples of the camera’s record-
ing. The length of confidence intervals (in light blue) is equal to 21/u(x).

e post-hoc Methods, defined as methods that can be applied “directly” on a pretrained single
network, independently of the training process. These methods are considered practical and
model-agnostic (Yang et al., 2022). Among them, we can further distinguish the methods that
do not require the training data: MSP (Hendrycks and Gimpel, 2017), MLS (Hendrycks et al.,
2022a), ODIN (Liang et al., 2017), EBO (Liu et al., 2020), GradNorm (Huang et al., 2021a),
ReAct (Sun et al., 2021), KLM (Hendrycks et al., 2022a) and TempScale (Guo et al., 2017a)
and the methods that uses the training set: OpenMax (Bendale and Boult, 2016), MDS (Lee
et al., 2018a), Gram (Sastry and Oore, 2020), VIM (Wang et al., 2022a), KNN (Sun et al.,
2022), DICE (Sun and Li, 2022). Notice that, except for MSP and MLS, all post-hoc methods
at least require the use of a validation dataset to fine-tune their hyper-parameters.

e Non post-hoc Methods, including all methods which do not belong to the previous cate-
gory, essentially because they require a specific training process (in terms of training loss
or data augmentation for instance). This category of methods includes anomaly detection
approaches: DeepSVDD (Ruff et al., 2018), CutPaste (Li et al., 2021), DRAEM (Zavrtanik
et al., 2021); OOD detection methods with specific training process: ConfBranch (DeVries
and Taylor, 2018), G-ODIN (Hsu et al., 2020), CSI (Tack et al., 2020), ARPL (Chen et al.,
2021), MOS (Huang and Li, 2021), OpenGAN (Kong and Ramanan, 2021), VOS (Du et al.,
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2022), LogitNorm (Wei et al., 2022); uncertainty-based approaches: MCdropout (Gal and
Ghahramani, 2016), Deep Ensemble (Lakshminarayanan et al., 2017); and data augmentation
methods: MixUp (Thulasidasan et al., 2019), CutMix (Yun et al., 2019), PixMix (Hendrycks
et al., 2022b).

Experiment ‘ In-Distribution Dataset Out-Of-Distribution Datasets
MNIST6 MNIST4
CIFAR6 CIFAR4
OSR CIFARS0 CIFARS0
TIN20 TIN180
MNIST NOTMNIST, FashionMNIST
Near-OOD CIFAR10 CIFAR100, TIN200
CIFAR100 CIFAR10, TIN200
MNIST CIFAR10, TIN200, Texture, Places-365
Far-OOD CIFAR10 MNIST, SVHN, Texture, Places-365
CIFAR100 MNIST, SVHN, Texture, Places-365

Table 6: OpenOOD Experiments Summary.

According to Yang et al. (2022), a fair comparison between methods should be done among each
category, as non-post-hoc methods may benefit from their specific training process. Notice that this
classification is not perfect. Post-hoc methods are considered model-agnostic, as they can generally
be “plugged” into any pretrained network. However, most post-hoc methods generally require the
end-layer of the network to produce logits. Post-hoc methods are considered practical because
they generally require less computational time than the non post-hoc methods. This computational
efficiency is mainly due to the training process economy. It should be mentioned, however, that
inference time for some post-hoc methods may become important for large training datasets. For
instance, KNN computes the distance between test data and all training data in the penultimate
network layer. This may lead to important memory and computational burden if the training dataset
is very large.

The MaxWEnt algorithm can be plugged directly into a pretrained neural network hz. It may
not be totally considered as post-hoc, as it requires the additional training of the scale parameters
¢. However, this training may be done with a few epochs and also on a small extract of the training
dataset. For our experiments, we trained MaxWEnt with the Adam optimizer (Kingma and Ba,
2015) with learning rate 5 - 10~% and 20 epochs. We also consider an ensemble of five MaxWEnt
networks. For inference, we use P = 10 predictions.

7.4.2 RESULTS

The results are reported in Figure 8, we compare AUROC scores between MaxWEnt (x1) and
MaxWEnt (x5) (in red) to the previously mentioned methods (in blue). Note that we do not include
OOD detection methods that require auxiliary OOD datasets during training for the comparison, as
MaxWEnt does not use this kind of additional information. post-hoc methods are marked with a
dagger {. We group all experiments in the three main categories: OSR, NearOOD and FarOOD as
described in Table 6. The reported AUROC scores are averaged over all experiments inside each
category and over five different random seeds. We observe that MaxWEnt (x1) is ranked 3™, 8" and
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214 for respectively the OSR, FarOOD and NearOOD experiments compared to all methods. When
restricting the comparison to post-hoc methods, the MaxWEnt (x1) rankings become 1%, 3™ and
1%t which demonstrates the effectiveness of the approach. It should be underlined that MaxWEnt
(x1) is outperforming all other methods in the particular setting OSR and Near-OOD which are
known to be the more challenging. For these two experiments, the MaxWEnt (x1) performances
closely match those of Deep Ensemble, which requires the training of five neural networks and thus
more computational resources. The ensemble of MaxWEnt networks provides an additional gain of
around 2 points of AUROC scores and is then ranked 1%, 3" and 1% compared to all methods. How-
ever, this improvement requires the training of five networks, which increases the computational
time.

7.5 Implementation choices

We present hereafter the implementation choices that we consider as “good practices” for MaxWEnt:

7.5.1 INITIALIZATION

In our proposed setup, the weight mean E,, [w] = w is frozen during the MaxWEnt optimization
and independent of the parameters ¢. The weight vector w is derived from a pretrained network
h fitted on the training data. The ¢ parameters are initialized with a small constant value C' < 1.
Therefore, the weight distribution gy, is initialized as a peaked distribution around w, which already
provides low empirical risk. Notice that the use of pretrained weights to initialize the mean of g
is similar to the common practice in Laplace approximation (Ritter et al., 2018), where the mean
of the posterior distribution is set to the maximum a posteriori estimation (MAP). Moreover, in
the case where a pretrained network is already available, the use of pretrained weights reduces the
computational time. Note, finally, that we also consider a “softplus” activation of the ¢ parameters
to smooth the increase of the weight entropy in earlier stages: ¢ = log(1 + exp(u)).

7.5.2 ENTROPY FUNCTION

In our implementation, we use a proxy for the entropy given by H(¢) Zzzl |¢x|- This choice
smooths the increase of ¢ during the initial stages of training, offering improved optimization sta-
bility compared to the logarithmic function log(qﬁz), which can over-penalize small components and
cause excessive initial gradients (cf. Section 5.4).

7.5.3 TRADE-OFF PARAMETER

The MaxWEnt optimization (1) involves a trade-off between empirical risk minimization and en-
tropy maximization, which is controlled by the trade-off parameter A. A small A\ penalizes larger
average risks, while a large A favors the weight distribution expansion. Obviously, the learner has
to accept to penalize the empirical risk to offer room for the weight distribution to expand. In this
perspective, we do not recommend selecting the trade-off parameter based on validation risk min-
imization. The A value should be selected large enough to speed up the increase of the weight
entropy, while not too large to avoid optimization instabilities. In all our experiments, we choose to
consider a fixed trade-off A = 10 for simplicity.*

4. In practice the entropy is scaled by the number of parameters such that A = 10/d.
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(b) FarOOD: MNIST + CIFAR10 + CIFAR100
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(c) NearOOD: MNIST + CIFAR10 + CIFAR100

Figure 8: OpenOOD benchmark ranking. Each method is ranked according to the average AU-

ROC score computed for the three “global” experiments: OSR, Far-OOD, Near-OOD.
Each experiment is performed on 3 or 4 different datasets (cf. Table 6). The top 23
scores among the 32 competitors are reported. post-hoc methods are marked with dag-
gers, MaxWEnt(x1) can be considered as post-hoc as it applies on a pretrained network,

although it requires additional training steps to learn the scaling parameters ¢.
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An extended analysis of the impact of A on the training and the OOD detection performances
is reported in Appendix B. This analysis reveals that OOD performances and entropy generally
increase with higher A values, but when A is too large, the training becomes unstable and the val-
idation loss quickly increases. As a result, a recommended approach is to use a stopping criterion
to maintain a reasonable validation loss and select A based on the resulting weight entropy. A well-
performing model is characterized by high entropy and reasonable validation loss. Both metrics can
be measured without using OOD data, which enables a practical approach to select the A parameter.

7.5.4 STOPPING CRITERION

In standard training of neural networks, a sufficiently large number of epochs is generally performed
until the full convergence of the training loss. Then the learner restores the weights of the network
for the epoch which provides the best validation risk. Of course, we cannot consider such a tech-
nique for the MaxWEnt optimization, as increasing the weight entropy generally induces a small
degradation of the validation risk. We then propose to save the network weights if the validation
risk is below a threshold 7 computed at the beginning of the optimization. We propose to estimate
the performance threshold 7 by the validation risk of the pretrained network Az plus a statistical
error:

2
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The second term is proportional to the standard deviation of the errors on the validation dataset.

The hyperparameter impact study presented in Appendix B reveals that, in some cases, a signif-
icant variance in OOD detection metrics is observed for late epochs, coinciding with an important
increase in the validation loss. In these cases, the stopping criterion effectively selects an epoch
with lower variance in OOD metrics and a reasonable validation loss. This indicates that the stop-
ping criterion heuristic provides a relevant guideline to end the training, which does not add further
hyperparameter tuning.

7.5.5 ENSEMBLE

It should be underlined that the proposed parameterizations (4) and (6) limit the range of the weight
distribution around a neighborhood of w. A straightforward improvement would be to apply Al-
gorithm (1) on a set of weights w) coming from a pretrained deep ensemble (Lakshminarayanan
etal., 2017). Conceptually, this comes down to describing g4 as a mixture with, for any j € [|1,m|],
o) € R%, 20) ~ Zand m ~ U({1, ..., m}):

g~ Y 1(m = j)w(eW, 21,
j=1

with w(¢W), 20)) = w0 + ¢ © 20 or w(¢W), 20)) = w0 +V (¢19) ® 2(9)). In practice, we ap-
ply Algorithm (1) to each of the pretrained networks with the scaling parameterization w(gb(j ), 29) ).
Notice that, if there is no overlap between the mixture components, the ensemble parameterization
necessarily results in a weight distribution of higher entropy for the same empirical risk level, and
then leads to a more efficient parameterization than the single network setting. A guideline to choose
the centers w'/) is then to avoid overlapping, which can be achieved with centers distant from each
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other. Thus, combining MaxWEnt with techniques such as RDE (D’ Angelo and Fortuin, 2021) and
AnchorNet (Pearce et al., 2018) may offer increased performances.

8. Limitations and Perspectives

In this work, we develop the MaxWEnt algorithm to improve OOD detection with stochastic neural
networks. The main goal of MaxWEnt is to produce samples with larger weight diversity com-
pared to standard Bayesian and ensemble methods. Our experiments show that MaxWEnt fulfills its
promise, it increases the weight entropy and provides better OOD detection results. Moreover, we
show that the more the weight entropy, the better the OOD detection (for the same level of average
empirical error).

e Increasing the weight entropy: The weight entropy increase is strongly conditioned by the
weight parameterization. We show that the use of the SVD-parameterization is already an
important improvement compared to the use of independent scaling parameters. However,
more efficient parameterization may be obtained with other techniques such as normalizing
flows (Louizos and Welling, 2017) or weight subspaces (Izmailov et al., 2020). Neverthe-
less, the maximum entropy framework provides a general guideline for selecting the weight
parameterization: an efficient stochastic model should enable a large increase of the weight
entropy in low empirical risk regions of the weight space.

o Penalized performances in-distribution: We have seen that increasing the entropy penalizes
the in-distribution performances. However, this negative result can be mitigated by the use of
“shrunk” weight distribution obtained through weight clipping (cf. Sections 7.1.3 and 7.2.2).
The user can use the MaxWEnt uncertainties to discriminate between ID and OOD data, and
then use the prediction obtained with “shrunk™ weight distribution for the ID data.

e SVD-parameterization for Convolutions: For now, the SVD-parameterization is only de-
veloped for fully connected neural networks, but it may also be applied to convolutional
layers. Convolutions apply the same kernel to multiple windows of one channel. To use the
SVD-parameterization in this context, one idea is to concatenate all the windows on which
the kernel is applied for all training data and then compute the SVD decomposition of the
resulting dataset.

¢ General Bayesian and ensemble limitations: The developed MaxWEnt approach improves
upon Bayesian and ensemble methods in terms of weight diversity. However, it still inherits
the other limitations of these approaches, which principally include the computational burden
in training and inference. Future work will then consider the use of “Laplace-like” approxi-
mation to reduce the computational time of MaxWEnt (cf. Section 5.3).

9. Conclusion

In this work, we tackle the over-confidence issue encountered with standard Bayesian and ensemble
methods outside the training domain. Building on the maximum entropy principle, we show that
penalizing the empirical average error with the weight entropy leads to larger hypothesis diversity
and, then, to improved OOD detection. Theoretical analysis shows that the behavior of the devel-
oped MaxWEnt approach is related to the amplitude of the neuron activation on the training data.
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In MaxWEnt neural networks, weakly activated neurons play a more important role in the OOD
detection in comparison to vanilla probabilistic networks. Motivated by this quest of entropy maxi-
mization and by the outcomes of our theoretical analysis, we propose the SVD parameterization to
take advantage of correlations between weights with limited additional complexity. Numerical ex-
periments show the benefit of the method and highlight the link between weight entropy and OOD
detection performances. We show that the maximum entropy framework offers a guideline to rank
two weight distributions with the same empirical risk, the one with the largest entropy should be
preferred to improve OOD detection. Moreover, we advocate for the use of stochastic models that
foster the increase of the weight entropy, as the SVD parameterization. We are convinced that this
approach is a step forward in the safety of deep learning. Although many challenges have to be
resolved such as the training and inference computational time.
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Appendix A. Proofs
A.1 Proof of Proposition 1

Let’s consider a matrix A € R%*? and a vector ¢ € R?, ¢ > 0, such that the weights w are written:
w=1+A($ O 2),

with z ~ Z following either a multivariate normal or a uniform distribution. We demonstrate
Proposition (1) for any orthogonal matrix A. Indeed, the weight parameterizations (4) and (6)
correspond respectively to the specific cases A = Idg and A = V which are both orthogonal
matrices.

A.1.1 GAUSSIAN CASE

To demonstrate the result in the Gaussian case z ~ N (0,1dy), we first derive the two following
preliminary results:

e 2~ N(0,Idg) = A(z® ¢) ~ N(0, ATdiag(4?)A), with diag(¢?) the diagonal matrix of
diagonal values ¢? (cf. Lemma 7).

e The entropy of a multivariate Gaussian N (0, ¥) is written C' + 3 log(|det(X)|) with C > 0 a
constant (independent of X) and det(X) the determinant of ¥ (cf. Lemma 8).

Lemma 7 Forany A € R%d and any ¢ € R we have:
2~ N(0,1dg) = Az © ¢) ~ N (0, Adiag(¢*) AT).

Proof We first notice that linear combinations of Gaussian variables are Gaussians. Then, it appears
that:

E[A(z © ¢)] = A(E[z] © ¢) =0,

and:

V[A(z © ¢)] = E[(A(2 © ¢)) (A(z @ ¢))"]
(2 ¢)"AT]
2@ ¢) (2 ¢)T]AT

From which we conclude that A(z ® ¢) ~ N(0, Adiag(¢?)AT)

Lemma 8 The entropy of a multivariate Gaussian N'(0,X) is written C' + % log(|det(X)]) with
C > 0 a constant (independent of ) and det(X) the determinant of X.
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Proof Let’s consider the multivariate Gaussian variable Z ~ A(0,¥) with ¥ € R?*?4, We denote
pz(2) its probability density function such that, for any z € R%:

= 1 ex —EZT 1z
209 = T (7).

Then,
—2log(pz(2)) = dlog(27) + log(|det(2)]) + 2T~

We now consider the eigen-decomposition of ¥, such that 5~ = QT diag(1/)\)Q with Q € R?*¢
an orthogonal matrix and \ the vector of eigenvalues of 3. The following equality holds:

\M

d
2571 = (Q2)Tdiag(1/M)(Qz) = uldiag(1/\)u Z v
k=1

Moreover, for any z ~ N(0, ), the variable u = Qz follows the distribution N'(0, Q¥Q7) =
N (0, diag(\)). We then deduce that:

)\2
k=1

Finally, we can derive the following formula for the entropy of Z:
1
~Eflog(pz(2))] = C + 5 log(|dex(S))),

with C' € R verifying: C' = & log(27) + ¢
|

Let’s now consider the variable z ~ N (0,1dy). According to Lemma (7), the variable A(z ® ¢)
follows the distribution N(0, A diag(¢?)AT). Then, according to Lemma (8) and by invariance of
the entropy by translation, the entropy of the distribution g4(w) ~ W + A(z ® ¢) is written:

H(¢) = —E[log(gg(w))]
:o+;%wwAmg&mﬁn

1
=C+ 3 log(|det(A) det(diag(¢?))det(AT)]),
with C' € R a constant. Then, as A is an orthogonal matrix, we have |det(A)| = |det(AT)| = 1 and:

H(6) = C + 5 log(|det(diag(6?)))
d
=+ los(| [T 2
k=1

d
1 2
=C+ 3 ;log(qﬁk).
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A.1.2 UNIFORM CASE

The probability density function pz(z) of a uniform distribution defined over the parallelotope P
described by the matrix ¥ € R%*? is written:

_J1/Y(P) zeP
pz(z)—{o z¢ P’

with P the subset of R? defined as P = {Xx; = € [0,1]¢} and V(P) the volume of P which
verifies V(P) = |det(X)|.

Let’s now consider the variable Z of probability density function pz(z), the entropy of Z is then
written:

E[—log(pz(2))] = log(|det(%)]).

We notice that, if z ~ U([—/3,v/3]%), then the variable A(z ® ¢) = Adiag(¢)z is defined
as the uniform distribution over the parallelotope P = {Adiag(¢)z; = € [—/3,/3]¢}, which
is well-defined as det(Adiag(¢)) # 0. As the volume of a subset is invariant by translation, we
have V(P) = V(P) with P the parallelotope defined as P = {Adiag(¢)z; = € [0,2v/3]?} =
{2v/3Adiag(¢)x; = € [0,1]4}. We then deduce that the entropy of gs(w) ~ W + A(z © ¢)

H(¢) = E[—log(gp(w))]
= log(|det(2V/3A diag(¢))|)
= log(|det(A)| |det(2v/3 diag(¢))]).

Finally, as A is an orthogonal matrix, we have |det(A)| = 1 and:

H(¢) = log(|det(2v/3 diag(¢))])
b
= 291v3" S log(6)).
k=1

A.2 Proof of Proposition 2

Proof Let’s consider ¢ € R? and z ~ Z. The training risk for the weight w = @ + ¢ ® z can be
written as follows:

[X(@+ ¢ ©2) =yl =1 X (¢ © 2) + XW — ][5
=1 X(¢© )|} + (X (¢ © 2), XW — y) + || X@ — y][3-
When averaging over z ~ Z, considering that E[z] = 0, we obtain:

Ez [[|IX(@+¢©2) —yll3] — 1 Xw —yll; = Ez [IX(¢ © 2)|[3]

n b 2
=> Ez (Z Xz‘kd)kzlc)
i—1 k=1
n b
= Z Z X5k
i=1 k=1

b
_ 2 42
=n Z apPx
k=1

19)
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The objective function of Problem (8) can then be written, for any ¢ € R?:

b
G(¢) = (ager — Aog(¢})) -

k=1

The objective function of Problem (8) is convex and admits a solution. Moreover, the partial deriva-
tive of the objective with respect to qﬁz is written:

0G(@) _ o A
ok " 4
As a consequence, the gradient of GG is null if and only if
A
2 —
¢k - aiv

which is well-defined when assuming ai > 0.

A.3 Proof of Proposition 3

Proof Let’s consider ¢ € R, V' the matrix of eigenvectors of %X T X with s? the corresponding
vector of eigenvalues and z ~ Z. The average training risk for the weight w = w + V(¢ ® z) can
be written as follows:

ez | LIX(@+ Voo ) -] €2 [Lxvieo 18| + Lixw -yl
We notice that:
LIXV(6© )3 = | XV diag(0)-]l3
= 2Tdiag(¢)TVT (TllXTX> Vdiag(¢)z

= 2T diag(¢)T diag(s?)diag(¢)z

= 2T diag(s%¢?)z
b
= sidrzi.
k=1
Then,
1 b 1
B2 | LIX(@+V(6©2) -yl = o stot + Llixw -yl 20)
k=1

The continuation of the proof is similar to the proof in Appendix (A.2) with s% instead of az.
|
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A.4 Proof of Proposition 4

Proof Let qul*), qg) be the respective optimal weight distributions for the scaling and the SVD

parameterization. Then,
A
P RRNEREAYCP
a
@ A
L~w A+ V(= ,
dy w ( s ® z)

with z ~ Z. Considering Equations (19) and (20), both average empirical losses are written:

)\ak _ 9
qublﬁ [Ls(w)] = Z 2 *HXU) —yl[3

k=1 'k
b As2 1

E,( 2) [Ls(w)] = =k + =||Xw — 5.
=1 Sk n

Then, )
E o [Ls(w)] = E @ [Ls(w)] = Ab+ ~[|[Xw - y|l3-
»* ¢* n

Moreover, both entropy can be written as:

b
E 0 |~ los(af)] = = D" log(a}) +blog(3)
k=1

b
©)N . 2
Eq((;*) {— log (g )} = - ; log(sj) + blog(A).
Let’s denote M = %X T X, by definition, we have the following equalities:
M = V7T diag(s?)V (21)
M;; = a? Vi € [|1,b]]. (22)
Equation (21) implies that M = UU” with U = VT diag(s)V. For any i € [|1,

u; € RP the ™" row vector of the matrix U and ||u;|]z = /> iU 1ts corresponding Euclidean
norm.
Applying the Hadamard inequality to the matrix U, we obtain that:

], we denote

b
det(U) < [T INuilla-
=1

Then, the formula U = V7T diag( )V implies that det(U) = Hb,l s; and the equality M = UU”T
implies that M;; = 520 i Ui = ||l |2. Considering Equation (22), we then deduce that:
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From which we conclude that:

b b b b
—log (H s?) > —log (H a?) = — Zlog(s%) > — Zlog(a?)
i=1 i=1 i=1

=1
= E o [— log(qéﬁ))] > Eq;z*) [— 10g(q(§sl*))} .

A.5 Proof of Proposition 6

The proof consists in first rewriting the optimization problem (11) as a maximum entropy problem
with a constraint over the average empirical risk. Then, we show that ¢* is solution of the optimiza-
tion problem (OP) augmented with additional equality constraints in the hidden layers. We then
remove the constraint over the average empirical risk and show that the solution ¢! of the resulting
OP provides a distribution with higher entropy than ¢*. By splitting the OP in sub-optimization
problems by hidden layer, we show that ¢! verifies Equation (12). Then, using recursively Assump-
tion (5) on the activation function, we show that, for any layer, the first and second moments of
the neuron activation are the same for both distribution g4t and g4-. We then prove the equality of
empirical risk for g, and g4+, leading to show that ¢! is solution of Problem (11), from which we
conclude that ¢T = ¢*, as the solution is unique.

Proof Let’s consider w € R? and, for any ¢ € R, the distribution gy ~ W+ QO zwithz ~ Z
such that Z ~ U([—V/3,v/3]%) or Z ~ N(0,1dy). The optimization problem (11) is written:

d
min E,, [Ls(w)] — A log(¢}). (23)
peRd 1

It is assumed that the above optimization problem has a unique solution, denoted ¢* € R?. Then,
there exists 7 € R4 such that ¢* verifies the following optimization problem:

pER

d
2
max ;Mg(aﬁk) o)

subject to By, [Ls(w)] < 7.

Indeed, for 7 = Eg,. [Ls(w)], if we denote ¢** € R¢ the solution of problem (24), then
S log(¢*?%) > e log(¢;?) and Egyer [Ls(w)] < 7 which implies that:

d d
Egger [Ls(w)] =AY log(¢}*?) < Eq,. [Cs(w)] =AY log(d;7).
k=1 k=1

From which we deduce that ¢** = ¢*, as the solution of Problem (23) is assumed unique. Moreover,
¢* is the unique solution of Problem (24).
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For each layer, we define the amplitude of the input neuron activation on average over the training
data:

gy = ZEW W (x:)?] V1€ [|0,L];k e [|1,b]].

We also define the quantities a(2l i) related to the variance of the output neurons, before activation,
on average over the training data:

ZV%* (@) T (way —@ay)] Vi€ lo,Lllj € [|1,b]],

with b; = 1if [ = L and b; = b otherwise.
Let’s now take I € [|0, L|] and j € [|1,b;]], considering the independence between ;) and 2 ;).
we have:

ol = D N [0 (@) (5 © 20,)]
=1
n b
=D Vo | D %am @) m sk
=1 k=1

n b
=> > Z Dl1g) P50 COV () (€0) 21wy s Y(a.0) (20) 2(1,5.0))

i=1 u=1v=1

n b b
=3 3 i Baer [P @)Y ()] Egge (20500 2050)] -

i=1 u=1v=1

Foru # v, (1) L 2a30) a0d Eqye [205070,50)] = Eape [2050)] Eape [20,0)] = 0, then:

n b
== > Eqplan @)100m°

=1 k=1

3\*—*

a0y BLim)

Il
NER

e
Il

1

The optimization problem (24) is then equivalent to:

max Z log( qﬁk

¢cRd
(25)

. Eq, [Ls(w)] <7
subject to: 9 9 .
Zk 1 lk)(b(l,j,k) =019 VIe[lo,L]];j € [IL, bi]]-

)

Indeed, as problem (25) includes more constraints than problem (24), its solution necessarily pro-
vides a distribution of lower or equal entropy than g4+. However, as the additional constraints are
verified by ¢*, ¢* is the unique solution of problem (25).
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We now remove the constraint over the average empirical risk and consider the following alter-
native optimization problem:

d
max log(p?
eRd ; g(¢k)

b (26)

subject to: Za%l,k)‘b(l,j,k)Q = U(QI,J.) Viello,L|];5 € [|1,bi]]-
k=1

Considering a similar argument as before, the solution ¢’ of problem (26) necessarily provides a
distribution of larger or equal entropy than ¢*, i.e.,

d

d
S log(?) < log(6] ). @7)
k=1

k=1

Moreover, the optimization problem (26) can be decomposed in multiple sub-problems such that:

L b
— i
= Q&)
1=0 j=1
with ng . € RV foranyl € [|0,L|], j € [|1,b]]. The operator ) is the concatenation operator.

Each vector gb 1s a solution of the following optimization sub-problem:

b
max Z log(qb%l7j7k))

¢an€R" 1
b
: . 2 2 _ 2
subject to: Za(l,k)¢(l,j,k) =005)
k=1

Then, by writing the Karush—Kuhn—Tucker conditions of the above optimization problem we get
the following expression for the solution:

2
2 l,
Ss) = 5o 2y e b))

k)
Thus, qu verifies Equation (12).

We now need to show that ¢! provides the same empirical risk than ¢*. For this purpose, we
consider [ € [|0, L — 1|] and assume that the first and the second moments of the neuron activation
in layer [ are the same for ¢* and ¢!, we will then show that this property is true in layer [ + 1. Let’s
then assume that:

> B [y (@] = D Eqyy [Yap(@)] Vi e llLo] (28)
=1 =1
ZE%* by () ()" ZEquT [ ()b ()] - (29)
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Let’s define U; = (Uﬂ, vt Uib) with Uij = ¢(l) (:BZ')T’U)(ZJ) Vi € Hl,nH, Vi e Hl, bH Considering
Equation (28), for any j € [|1, b|], we have:

n

D Eqy [Ug] =) Eq, [v0)(@i)] T = Z Eq, [y (@)]" Ty) = Z Eqy [Uis] - (30)
=1

=1

Moreover, for any k, j € [|1, b|] such that k& # j, we have:

Z Ey, (VU] Z Eq,: [UiUi)
ZquﬂL ) .ZU@ lk)) (¢(l (xl) w(lvj))]

= Z Z Z B (V00 (@)¥a0) ()] Eqyp (Wit kw00

i=1 u=1v=1

= Z Z (Z Eq [V (@) ¢0.0) (%)]> W1, k,u) W(1,5,0)
u=1v=1
- Z% (Z Eq,i [ (@)t (l‘DT}) W)

= Z w(l k) (Z E%* o (i)Y (xl)T]> w( ;) (considering Equation (29))

= ZE%* [UiUT ], -

i=1
(€29)
Then, for any j € [|1, b|], we have:
- T . T 2
ZE%T [U:U; ]jj =2 Eay [(1/1(1)(1’1') w ;) ]
i=1 i=1

I
M=

(Vays [ (@) (wi gy = Ba)] +Eayy | (@) @0,5)°))

(

2
( B [0 (20100, 50y + (050 Eage [V ()0 (2)"] w(lu’))'

1

.
I

|
kmz

@
Il
i

2
Eq,i W(z,k)(iﬂi)Q]%,j,k) +w( g, [V (@i)va)(@i)'] w(z,y))

Il
M-
- M-

N
Il
—
£
Il
—
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Where the last equality is deducted from Equation (29). Moreover, the first term can be developed
as follows:

n

b
ZZE%* W(z,k)(ﬂvz l]k) Z”a Zk)¢ ,Jk
i=1 k=1

b 0.2
= Z n a%l N a(éj ) by definition of ot
k=1 (L,k)
2
-n "(m)

—ZV%* [y (@) (wig) —Wa)] -

We then deduce that: .
> Eg, [UUT] ZE%* [wuf]; - (32)
=1 =1
Equations (31) and (32) implies that } ;" , E%T [UZ-UZT] =>", Egy [U U; ] Considering this
last equality, Equation (30) and Assumption (5), we then conclude that:

Y Eqi KW =D Eq, [C(U)] (33)
=1 =1
> By [CONCNT] = DBy [ @) (34)
i=1 =1

Where,
C W) = (¢ (W lwan) € (¥ @dwag) ) = Yasn (@)

Then Equations (33) and (34) are equivalent to the moments’ equality in Equations (28) and (29)
applied to layer [ 4+ 1. As these equations are true for [ = 0, then, by recurrence, we have Equations
(28) and (29) forl = L + 1, then:

Z E%T Z Eq,- [P(zi)]  and Z EquT [h(:l:Z Z E%* x;)
i=1

Moreover, by developing the empirical risk, we have:

n n

Ls(w) =Y (h(wi) —y)* =Y (h(x:)? = 2h(xi)ys +47) -

i=1 i=1
From which we deduce that:
By, [Ls(w)] = Eq,. [Ls(w)].

Then, considering Equation (27) and the uniqueness of the solution of Problem (24), we conclude
that ¢f = ¢*.
[ |
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Appendix B. Hyperparameters Impact Analysis

A=0.1 A=1.0 A=10.0 A=100.0 A =1000.0
0.8 | et ungm afomm, - - - o
. o o o % o
0.7 L oo S . . ®* % e LN
% 3 .‘.’.’.’"‘ .:: o 000® o.’.‘..‘f‘ o0 s o ‘: cee Voo
c 06 . N o °% e’ o "". -..0.0 o.. . ® . o oene °
i . %o e ©° e ‘e ° A
0.5 ° et °° °
0.4 °
0.90
8 oss
o
2
< o0.80
0.75
10 —
g ’ Lt
S . o S, %
= . L] »
E 4 L] °
£ .. T,
. A . . %l oShp enr Voo
g cm——vo | | swn20% " 2% o | | ceretas s mmeentss® | | P ~ o
0
12
10
Q8 //—
o
-6 / o>
g 4 ’. .0.
JOTHEWOY M 4
2 —f amgf- - - - mmmmmmmmmmme
0
1
0 /
>-1 s
2 /
g2
c l— -
w -3 — P —— «
- / s ; ‘ |
5 Vi s . .
0 200 400 0 200 400 0 200 400 0 200 400 0 200 400
Epoch Epoch Epoch Epoch Epoch
Figure 9: Hyperparameter analysis of MaxWEntSVD for the Weather-Shift experiment. Evolution

of the five metrics: FPR@95, AUROC, training loss, validation loss, and weight entropy
across epochs for different values of A (note that a scaling factor of 1/d is further applied
to \). The horizontal dashed lines in the validation loss plots represent the threshold 7
and the dotted vertical lines indicate the stopping epoch (after which the validation loss
exceeds 7). We observe that higher A values lead to better FPR and AUROC, along with
higher entropy. At a certain epoch, entropy increases rapidly, coinciding with improved
OOD detection performance but also an increase in validation loss. For high A values
and late epochs, the variance in OOD detection metrics between epochs becomes large.
The stopping criterion ensures that training stops when AUROC is high but with reduced
variance. For A = 1000, the training loss is large and fluctuating, with high variance in
OOD detection metrics, suggesting that the training loss stability should be taken into
account when selecting the A value.
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Figure 10: Hyperparameter analysis of MaxWEntSVD for the BigBus-Shift experiment. Evolution
of the five metrics: FPR@95, AUROC, training loss, validation loss, and entropy across
epochs for different values of A (note that a scaling factor of 1/d is further applied to \).
The horizontal dashed lines in the validation loss plots represent the threshold 7 and the
dotted vertical lines indicate the stopping epoch (after which the validation loss exceeds
7). We observe that higher A values lead to better FPR and AUROC, along with higher
entropy. At a certain epoch, entropy increases rapidly, coinciding with improved OOD
detection performance. The increase in validation loss is only observed for A = 1000.
In this setting, the OOD detection performance remains stable for late epochs although
the training loss is unstable.
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Figure 11: Hyperparameter analysis of MaxWEntSVD for the Cameras-Shift experiment. Evolu-
tion of the five metrics: FPR@95, AUROC, training loss, validation loss, and entropy
across epochs for different values of A (note that a scaling factor of 1/d is further applied
to A). The horizontal dashed lines in the validation loss plots represent the threshold 7
and the dotted vertical lines indicate the stopping epoch (after which the validation loss
exceeds 7). We observe that higher A values lead to better FPR and AUROC, along
with higher entropy. At a certain epoch, entropy increases rapidly, coinciding with im-
proved OOD detection performance. The increase in validation loss is only observed
for A = 1000. In this setting, the OOD detection performance remains stable for late
epochs although the training loss is unstable.
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The analysis of the hyperparameter impact across the three experiments Weather, BigBus, and
Camera Shift (Figures 9, 10, 11) demonstrates that larger values of A generally result in improved
OOD detection performances. In the Weather Shift experiment, however, a significant variance
in OOD detection metrics is observed for high A values during later epochs. Furthermore, for
A = 1000, the training loss is highly unstable across all three experiments, indicating that while
larger A values tend to improve performance, excessively large values can lead to instability during
training. Additionally, it should be noted that, in the Weather Shift experiment, the stopping criterion
effectively selects an epoch with lower variance in OOD metrics and a reasonable validation loss.

The detailed metrics obtained at the stopping epoch are reported for all A values in Table 7.
The results reveal that weight entropy is closely aligned with OOD performance: higher entropy
corresponds to better AUROC and lower FPR. Although A = 1000 yields the highest entropy after
500 epochs, the stopping criterion stops the training at an epoch where the entropy is lower than
that for A = 100. This observation suggests that hyperparameter selection should be guided by both
entropy and validation loss. Specifically, users should select a A value that produces a model with
the highest entropy, while ensuring the validation loss remains below the threshold 7. Importantly, it
should be highlighted that the lowest validation loss does not correspond to the best OOD detection
performance.

In summary, while OOD metrics tend to improve with more epochs, the variance between
epochs also increases in some cases. OOD performance and entropy generally increase with higher
A values, but when A is too large, training becomes unstable and validation loss quickly exceeds
the threshold. Therefore, the recommended approach is to use the stopping criterion to maintain a
reasonable validation loss and select A based on the resulting entropy. A well-performing model is
characterized by high entropy and reasonable validation loss. Both metrics can be measured without
using OOD data, which enables a practical approach to select the hyperparameter .

Exp BigBus Cameras Weather
A AUC FPR95S Ent. Val | AUC FPR9S Ent. Val | AUC FPR95 Ent. Val
0.1 0.74 0.83 -3.19 091 | 053 0.83 -347  1.11 0.8 0.61 -3.36 1.21
1.0 0.78 0.79 -2.88 09 | 0.76 0.52 -32 111 | 0.77 0.7 -321 118
10.0 0.82 074 245 089 | 09 0.31 -2.8  1.09 | 0.85 0.69 -2.55 135
100.0 0.89 057 -1.59 094 | 097 014 -1.85 1.12 | 0.87 0.56 -1.66 1.22
1000.0 0.78 086  -2.03 0.88 | 0.61 0.99 -2.04 1.07 | 0.82 0.69 -201 115

Table 7: Metrics for different values of A\ obtained at the stopping epoch. The table presents the
AUC, FPR95, weight entropy (Ent.), and validation NLL (Val) for the three datasets Big-
Bus, Cameras, and Weather. Lower FPR95 values and higher AUC scores indicate better
OOD detection performance, while lower validation NLL account for better ID perfor-
mance. The entropy measures the diversity of the weight distribution. We observe that the
A providing the highest weight entropy at the stopping epoch achieves the best AUC and
FPR. In contrast, the A corresponding to the lowest validation loss does not yield the best
overall performance.
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Appendix C. Achieving MaxWEnt’s Behavior in Bayesian Neural Networks

In this section, we conduct an ablation study to identify the key components that enable a Bayesian
Neural Network (BNN) with a Gaussian prior to exhibit behaviors similar to those of MaxWEnt and
MaxWEnt-SVD. We identified three critical factors: frozen mean, large prior variance, and SVD
parameterization. Experiments were performed on the synthetic classification dataset and the eight
UCI regression datasets introduced in Section 7.5.

In this study, we consider a non-MC-Dropout BNN trained with stochastic variational inference
(Hoffman et al., 2013) using the reparameterization trick (Kingma and Welling, 2014). We use the
KL-weighted ELBO optimization involving a A parameter to weight the KL term as follows:

;ng)lg Eq Z log(p(y|hw(x)) | — ADkL (go(w), p(w)) .
€ (z.9)€S

This formulation is commonly adopted in practice for the variational Bayes approach to Bayesian
neural networks (Wenzel et al., 2020a). The use of a trade-off parameter enables the direct com-
parison with the MaxWEnt objective. In the following, we adopt the same trade-off factor as for
MaxWERnt, such that A\ = 10%. We consider a Gaussian isotropic prior p(w) of variance o2 and a
Gaussian posterior ggp(w) ~ N (u, X), with 6 = (u, 3) the posterior parameters.

The following settings are examined:

e SVD vs. No SVD: In both settings, the posterior variance > is parameterized by the vector
¢ € R%, such that ¥ = diag(¢?) (No SVD) or ¥ = Vdiag(¢?)V"' (SVD), using the matrix
V defined in Section 3.3.2.

e Frozen vs. Unfrozen Mean: For the frozen mean case, the posterior mean (i is trained along
with 3; the prior is centered on 0 such that p(w) ~ N(0, 2Id4), which corresponds to the
usual setting for BNNs. For the unfrozen mean case, the posterior mean is equal to the weights
of a pretrained neural network, such that y = w is fixed during training, as implemented in
MaxWEnt. Accordingly, the prior is set to ' (w, o%1d,).

e Large vs. Small Prior Variance o: We have highlighted in Section 5.2 that the MaxWEnt
optimization is related to the BNN training with Gaussian prior of large variance. To showcase
the impact of the prior variance we consider both setting 02 < 1 (62 = 0.1) and 02 > 1
(0? =10%0).

It should be noted that the SVD parameterization requires a frozen posterior mean. Hence, the
implementation choices above results in six different setup combinations. For all experiments, all
networks are trained during 500 epochs and implement the stopping criterion presented in Section
7.5.4, providing a consistent basis for comparison.

C.1 Synthetic Classification

We consider the synthetic classification dataset described in Section 7.1. The results for the six
setting combinations are reported in Figure 8. The left and right columns respectively present
the results obtained with low and large variance prior. We observe that for all settings enlarging
the prior variance increases the contrast between in-distribution and out-of-distribution uncertainty.
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Table 8: Comparison of BNN settings on the synthetic classification dataset. White points represent
training data, and shades of blue indicate uncertainty.

Additionally, the results highlight that the two settings “frozen mean” and SVD-parameterization,
used for the MaxWEnt and MaxWEnt-SVD approaches, improve the epistemic uncertainty quan-
tification.

C.2 UCI datasets

Table 9 presents the OOD detection performance for different BNN settings on the 8 UCI datasets.
We report our observations as follows:
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No SVD SVD
Unfrozen mean Frozen mean Frozen mean

Ll |o?>1l | o<l |o?>1 o<1 |o?>1
© | extrapol | 0.659 0.692 0.761 0.775 0.795 0.843
2 interpol 0.450 0.556 0.524 0.559 0.656 0.783
v | extrapol | 0.698 0.639 0.594 0.576 0.503 0.407
& interpol 0.950 0.897 0.895 0.852 0.765 0.535
_. | extrapol | -0.318 -0.100 -0.638 -0.623 -0.649 -0.62
= interpol | -0.169 0.633 -0.359 -0.342 -0.409 -0.371

Table 9: Comparison of the BNN settings for the UCI experiments. The table presents the average
OOD detection metrics (AUC, FPR) and Validation NLL (Val) across the 8 UCI datasets
for interpolation (interpol) and extrapolation (extrapol) settings. Higher AUC and lower
FPR are better. Columns compare BNN settings with and without SVD parameterization
and “frozen mean”, under small (62 < 1) and large (02> 1) prior variances.

o Effectiveness of large variance prior. For frozen and unfrozen mean, SVD and No SVD
settings, the use of a large variance prior instead of a low variance significantly improves the
OOD detection performances (e.g., for the interpolation experiments with the SVD parame-
terization the FPR drops from 0.765 to 0.535).

o Impact of frozen mean. Freezing the mean improves the OOD detection performances com-
pared to the unfrozen mean setting. For instance, with large prior variance in the extrapolation
experiments, the FPR decreases from 0.639 to 0.576 when using a frozen mean. A similar ef-
fect is observed in the synthetic experiment, where the uncertainty between the two classes is
lower for the unfrozen mean setting. A possible explanation to this phenomenon is that using
a frozen mean shifts the training focus to the scale parameters, which are directly related to
weight entropy, hence promoting an increase in entropy.

e Impact of SVD parameterization. Incorporating the SVD parameterization to the BNN
significantly increase the OOD detection performances, even with low prior variance. Further
improvements are obtained when enlarging the prior variance.

e The validation NLL is smaller when using the low variance prior. The use of a large prior
consistently degrades the validation NLL. For example, in the Unfrozen mean case, NLL
increases from -0.169 to 0.633 in the interpolation setting. This observation highlights that
validation NLL is not a suitable metric for promoting weight entropy and improving OOD
performances. Interestingly, the best validation NLL is obtained with the SVD parameter-
ization and low prior variance, suggesting that traditional BNNs could benefit from SVD
parameterization to improve in-distribution performance.

In conclusion, enlarging the prior variance, and then the weight entropy, effectively improves OOD
detection performances in all settings. While the SVD parameterization with small prior variance
already improves OOD detection performance, increasing the variance further yields a significant
improvement, especially in the challenging interpolation setting.

58



DEEP OUT-OF-DISTRIBUTION UNCERTAINTY QUANTIFICATION VIA WEIGHT ENTROPY MAXIMIZATION

References

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al. A
review of uncertainty quantification in deep learning: Techniques, applications and challenges.
Information Fusion, 76:243-297, 2021.

Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep evidential regression.
Advances in Neural Information Processing Systems, 33:14927-14937, 2020.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Uncertainty
sets for image classifiers using conformal prediction. In International Conference on Learning
Representations, 2020.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks.
In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214—
223, International Convention Centre, Sydney, Australia, 06-11 Aug 2017. PMLR. URL http:
//proceedings.mlr.press/v70/arjovskyl7a.html.

Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov, and Dmitry Vetrov. Pitfalls of in-domain
uncertainty estimation and ensembling in deep learning. In International Conference on Learning
Representations, 2019.

Andrei Atanov, Arsenii Ashukha, Kirill Struminsky, Dmitriy Vetrov, and Max Welling. The deep
weight prior. In International Conference on Learning Representations, 2018.

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the
IEEFE conference on computer vision and pattern recognition, pages 1563—-1572, 2016.

Adam Berger, Stephen A Della Pietra, and Vincent J Della Pietra. A maximum entropy approach to
natural language processing. Computational linguistics, 22(1):39-71, 1996.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural network. In International conference on machine learning, pages 1613-1622. PMLR,
2015.

Shahin Boluki, Randy Ardywibowo, Siamak Zamani Dadaneh, Mingyuan Zhou, and Xiaoning
Qian. Learnable bernoulli dropout for bayesian deep learning. In International Conference on
Artificial Intelligence and Statistics, pages 3905-3916. PMLR, 2020.

S Boyd, L Vandenberghe, and L Faybusovich. Convex optimization. /[EEE Transactions on Auto-
matic Control, 51(11):1859-1859, 2006.

Senqi Cao and Zhongfei Zhang. Deep hybrid models for out-of-distribution detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4733—
4743, 2022.

Guangyao Chen, Peixi Peng, Xianggian Wang, and Yonghong Tian. Adversarial reciprocal points
learning for open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(11):8065-8081, 2021.

59


http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html

DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Francesco D’ Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in
Neural Information Processing Systems, 34, 2021.

Antoine de Mathelin, Frangois Deheeger, Mathilde Mougeot, and Nicolas Vayatis. Discrepancy-
based active learning for domain adaptation. In International Conference on Learning Represen-
tations, 2022.

Antoine de Mathelin, Francois Deheeger, Mathilde Mougeot, and Nicolas Vayatis. Deep anti-
regularized ensembles provide reliable out-of-distribution uncertainty quantification. arXiv
preprint arXiv:2304.04042, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. Ieee, 2009.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of the
web]. IEEE signal processing magazine, 29(6):141-142, 2012.

Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection in
neural networks. arXiv preprint arXiv:1802.04865, 2018.

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by
virtual outlier synthesis. In International Conference on Learning Representations, 2022.

John Duchi. Derivations for linear algebra and optimization. Berkeley, California, 3(1):2325-5870,
2007.

Andrew YK Foong, Yingzhen Li, José Miguel Herndndez-Lobato, and Richard E Turner. ’in-
between’uncertainty in bayesian neural networks. arXiv preprint arXiv:1906.11537,2019.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 90
(3):563-591, 2022.

Vincent Fortuin, Adria Garriga-Alonso, Sebastian W Ober, Florian Wenzel, Gunnar Ratsch,
Richard E Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
ors revisited. In International Conference on Learning Representations, 2021.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050-1059.
PMLR, 2016.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. Advances in neural information process-
ing systems, 30, 2017.

Andrew Gelman. Prior choice recommendations, 2020. URL https://github.com/
standev/stan/wiki/Prior—-Choice—-Recommendations.

Soumya Ghosh, Jiayu Yao, and Finale Doshi-Velez. Model selection in bayesian neural networks
via horseshoe priors. J. Mach. Learn. Res., 20(182):1-46, 2019.

60


https://github.com/standev/stan/wiki/Prior-Choice-Recommendations
https://github.com/standev/stan/wiki/Prior-Choice-Recommendations

DEEP OUT-OF-DISTRIBUTION UNCERTAINTY QUANTIFICATION VIA WEIGHT ENTROPY MAXIMIZATION

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS’ 10). Society for Artificial Intelligence and Statistics, 2010.

James-A Goulet, Luong Ha Nguyen, and Saeid Amiri. Tractable approximate gaussian inference
for bayesian neural networks. The Journal of Machine Learning Research, 22(1):11374-11396,
2021.

Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321-1330. PMLR, 2017a.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321-1330. PMLR, 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

770-778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joseph Kwon, Mohammadreza Mosta-
jabi, Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world set-
tings. In International Conference on Machine Learning, pages 8759-8773. PMLR, 2022a.

Dan Hendrycks, Andy Zou, Mantas Mazeika, Leonard Tang, Bo Li, Dawn Song, and Jacob Stein-
hardt. Pixmix: Dreamlike pictures comprehensively improve safety measures. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16783-16792,
2022b.

Christian Henning, Francesco D’ Angelo, and Benjamin F Grewe. Are bayesian neural networks
intrinsically good at out-of-distribution detection? arXiv preprint arXiv:2107.12248, 2021.

Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational infer-
ence. Journal of Machine Learning Research, 2013.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
of-distribution image without learning from out-of-distribution data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10951-10960, 2020.

Rui Huang and Yixuan Li. Mos: Towards scaling out-of-distribution detection for large semantic
space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8710-8719, 2021.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distri-
butional shifts in the wild. Advances in Neural Information Processing Systems, 34:677-689,
2021a.

61



DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Ziyi Huang, Henry Lam, and Haofeng Zhang. Quantifying epistemic uncertainty in deep learning.
arXiv preprint arXiv:2110.12122, 2021b.

Eyke Hiillermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods. Machine Learning, 110:457-506, 2021.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace inference for bayesian deep learning. In Uncertainty in Artificial
Intelligence, pages 1169-1179. PMLR, 2020.

Siddhartha Jain, Ge Liu, Jonas Mueller, and David Gifford. Maximizing overall diversity for im-
proved uncertainty estimates in deep ensembles. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 4264-4271, 2020.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

Edwin T Jaynes. Prior probabilities. IEEE Transactions on systems science and cybernetics, 4(3):
227-241, 1968.

Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine, and Mohammed Bennamoun.
Hands-on bayesian neural networks—a tutorial for deep learning users. IEEE Computational
Intelligence Magazine, 17(2):29-48, 2022.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014,

Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 813-822, 2021.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. In International conference on machine learning, pages 5436—
5446. PMLR, 2020.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being a bit frequentist improves bayesian
neural networks. In International Conference on Artificial Intelligence and Statistics, pages 529—
545. PMLR, 2022,

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

62



DEEP OUT-OF-DISTRIBUTION UNCERTAINTY QUANTIFICATION VIA WEIGHT ENTROPY MAXIMIZATION

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning

using calibrated regression. In International conference on machine learning, pages 2796-2804.
PMLR, 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,

30, 2017.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018a.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting

out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018b.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman. Distribution-
free predictive inference for regression. Journal of the American Statistical Association, 113
(523):1094-1111, 2018.

Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya. Evaluating and calibrating uncertainty
prediction in regression tasks. Sensors, 22(15):5540, 2022.

Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning
for anomaly detection and localization. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 9664-9674, 2021.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Jeremiah Zhe Liu, Shreyas Padhy, Jie Ren, Zi Lin, Yeming Wen, Ghassen Jerfel, Zack Nado, Jasper
Snoek, Dustin Tran, and Balaji Lakshminarayanan. A simple approach to improve single-model
deep uncertainty via distance-awareness. arXiv preprint arXiv:2205.00403, 2022.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detec-
tion. Advances in neural information processing systems, 33:21464-21475, 2020.

Yehao Liu, Matteo Pagliardini, Tatjana Chavdarova, and Sebastian U Stich. The peril of popular
deep learning uncertainty estimation methods. arXiv preprint arXiv:2112.05000, 2021.

Yong Liu and Xin Yao. Ensemble learning via negative correlation. Neural networks, 12(10):
1399-1404, 1999.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix

gaussian posteriors. In International conference on machine learning, pages 1708—-1716. PMLR,
2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In International Conference on Machine Learning, pages 2218-2227. PMLR, 2017.

63



DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Christos Louizos, Xiahan Shi, Klamer Schutte, and Max Welling. The functional neural process.
Advances in Neural Information Processing Systems, 32, 2019.

David JC MacKay. A practical bayesian framework for backpropagation networks. Neural compu-
tation, 4(3):448-472, 1992.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

David John Cameron Mackay. Bayesian methods for adaptive models. PhD thesis, California
Institute of Technology, 1992.

Cédric Malherbe and Nicolas Vayatis. Global optimization of lipschitz functions. In International
Conference on Machine Learning, pages 2314-2323. PMLR, 2017.

Hendrik Alexander Mehrtens, Camila Gonzalez, and Anirban Mukhopadhyay. Improving robust-
ness and calibration in ensembles with diversity regularization. arXiv preprint arXiv:2201.10908,
2022.

Tom M Mitchell. Version spaces: A candidate elimination approach to rule learning. In Proceedings
of the 5th international joint conference on Artificial intelligence-Volume 1, pages 305-310, 1977.

Chandra Nair, Balaji Prabhakar, and Devavrat Shah. On entropy for mixtures of discrete and con-
tinuous variables. arXiv preprint cs/0607075, 2006.

Andre T Nguyen, Fred Lu, Gary Lopez Munoz, Edward Raff, Charles Nicholas, and James Holt.
Out of distribution data detection using dropout bayesian neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36, pages 7877-7885, 2022.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 ieee international conference on neural networks (ICNN’94),
volume 1, pages 55-60. IEEE, 1994.

Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz E Khan, Anirudh Jain, Runa Eschen-
hagen, Richard E Turner, and Rio Yokota. Practical deep learning with bayesian principles.
Advances in neural information processing systems, 32, 2019.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

Matteo Pagliardini, Martin Jaggi, Francois Fleuret, and Sai Praneeth Karimireddy. Agree
to disagree: Diversity through disagreement for better transferability.  arXiv preprint
arXiv:2202.04414, 2022.

Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages 507-516, 1999.

Nick Pawlowski, Andrew Brock, Matthew CH Lee, Martin Rajchl, and Ben Glocker. Implicit
weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297,2017.

64



DEEP OUT-OF-DISTRIBUTION UNCERTAINTY QUANTIFICATION VIA WEIGHT ENTROPY MAXIMIZATION

Tim Pearce, Mohamed Zaki, Alexandra Brintrup, N Anastassacos, and A Neely. Uncertainty in
neural networks: Bayesian ensembling. stat, 1050:12, 2018.

Alexandre Ramé and Matthieu Cord. Dice: Diversity in deep ensembles via conditional redundancy
adversarial estimation. In ICLR 2021-9th International Conference on Learning Representations,
2021.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer school on machine
learning, pages 63-71. Springer, 2003.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Interna-
tional conference on machine learning, pages 1530-1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pages 1278-1286. PMLR, 2014.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for neural
networks. In 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, volume 6. International Conference on Representation Learning, 2018.

Andrew Ross, Weiwei Pan, Leo Celi, and Finale Doshi-Velez. Ensembles of locally independent
prediction models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 5527-5536, 2020.

Tim GJ Rudner, Sanyam Kapoor, Shikai Qiu, and Andrew Gordon Wilson. Function-space regular-
ization in neural networks: A probabilistic perspective. 2023.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Miiller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pages 4393-4402. PMLR, 2018.

Seonghan Ryu, Sangjun Koo, Hwanjo Yu, and Gary Geunbae Lee. Out-of-domain detection based
on generative adversarial network. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 714718, 2018.

Chandramouli Shama Sastry and Sageev Oore. Detecting out-of-distribution examples with gram
matrices. In International Conference on Machine Learning, pages 8491-8501. PMLR, 2020.

Pierre Segonne, Yevgen Zainchkovskyy, and Sgren Hauberg. Robust uncertainty estimates with
out-of-distribution pseudo-inputs training. arXiv preprint arXiv:2201.05890, 2022.

Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify classifica-
tion uncertainty. Advances in neural information processing systems, 31, 2018.

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

Changjian Shui, Azadeh Sadat Mozafari, Jonathan Marek, Thsen Hedhli, and Christian Gagné. Di-
versity regularization in deep ensembles. arXiv preprint arXiv:1802.07881, 2018.

65



DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Samarth Sinha, Homanga Bharadhwaj, Anirudh Goyal, Hugo Larochelle, Animesh Garg, and Flo-
rian Shkurti. Dibs: Diversity inducing information bottleneck in model ensembles. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 35, pages 9666-9674, 2021.

Timothy John Sullivan, Mike McKerns, Dominik Meyer, Florian Theil, Houman Owhadi, and
Michael Ortiz. Optimal uncertainty quantification for legacy data observations of lipschitz func-
tions. ESAIM: Mathematical Modelling and Numerical Analysis, 47(6):1657-1689, 2013.

Shengyang Sun, Changyou Chen, and Lawrence Carin. Learning structured weight uncertainty
in bayesian neural networks. In Artificial Intelligence and Statistics, pages 1283-1292. PMLR,
2017.

Shengyang Sun, Guodong Zhang, Jiaxin Shi, and Roger Grosse. Functional variational bayesian
neural networks. In International Conference on Learning Representations, 2018.

Yiyou Sun and Yixuan Li. Dice: Leveraging sparsification for out-of-distribution detection. In
Computer Vision—-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022,
Proceedings, Part XXIV, pages 691-708. Springer, 2022.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activa-
tions. Advances in Neural Information Processing Systems, 34:144-157, 2021.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pages 20827-20840. PMLR, 2022.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via con-
trastive learning on distributionally shifted instances. Advances in neural information processing
systems, 33:11839-11852, 2020.

Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. Advances
in Neural Information Processing Systems, 32, 2019.

Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya, and Sarah Micha-
lak. On mixup training: Improved calibration and predictive uncertainty for deep neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

Alexandru Tifrea, Eric Petru Stavarache, and Fanny Yang. Semi-supervised novelty detection using
ensembles with regularized disagreement. In The 38th Conference on Uncertainty in Artificial
Intelligence, 2022.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 30(11):1958-1970, 2008.

Ba-Hien Tran, Simone Rossi, Dimitrios Milios, and Maurizio Filippone. All you need is a good
functional prior for bayesian deep learning. The Journal of Machine Learning Research, 23(1):
3210-3265, 2022.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using
a single deep deterministic neural network. In International conference on machine learning,
pages 9690-9700. PMLR, 2020.

66



DEEP OUT-OF-DISTRIBUTION UNCERTAINTY QUANTIFICATION VIA WEIGHT ENTROPY MAXIMIZATION

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random
world, volume 29. Springer, 2005.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4921-4930, 2022a.

Haotao Wang, Aston Zhang, Yi Zhu, Shuai Zheng, Mu Li, Alex J Smola, and Zhangyang Wang.
Partial and asymmetric contrastive learning for out-of-distribution detection in long-tailed recog-
nition. In International Conference on Machine Learning, pages 23446-23458. PMLR, 2022b.

Hongxin Wei, Renchunzi Xie, Hao Cheng, Lei Feng, Bo An, and Yixuan Li. Mitigating neural net-
work overconfidence with logit normalization. In International Conference on Machine Learning,
pages 23631-23644. PMLR, 2022.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? In International Conference on Machine Learning,
pages 10248-10259. PMLR, 2020a.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter ensembles for
robustness and uncertainty quantification. Advances in Neural Information Processing Systems,
33:6514-6527, 2020b.

Andrew Gordon Wilson. The case for bayesian deep learning. arXiv preprint arXiv:2001.10995,
2020.

Angi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, José Miguel Herndndez-Lobato,
and Alexander L Gaunt. Deterministic variational inference for robust bayesian neural networks.
In International Conference on Learning Representations, 2018.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. Openood: Benchmarking generalized out-of-
distribution detection. arXiv preprint arXiv:2210.07242, 2022.

Qing Yu and Kiyoharu Aizawa. Unsupervised out-of-distribution detection by maximum classifier
discrepancy. In Proceedings of the IEEE/CVF international conference on computer vision, pages
9518-9526, 2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon
Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 6023-6032,
2019.

Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee Teh. Neural
ensemble search for uncertainty estimation and dataset shift. Advances in Neural Information
Processing Systems, 34:7898-7911, 2021.

67



DE MATHELIN, DEHEEGER, MOUGEOT AND VAYATIS

Vitjan Zavrtanik, Matej Kristan, and Danijel Skocaj. Draem-a discriminatively trained reconstruc-
tion embedding for surface anomaly detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8330-8339, 2021.

Guodong Zhang, Shengyang Sun, David Duvenaud, and Roger Grosse. Noisy natural gradient
as variational inference. In Infernational conference on machine learning, pages 5852-5861.
PMLR, 2018.

Shanghang Zhang, Guanhang Wu, Joao P Costeira, and Jose MF Moura. Understanding traffic
density from large-scale web camera data. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5898-5907, 2017.

Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. Advances
in Neural Information Processing Systems, 33:16001-16011, 2020.

Yibo Zhou. Rethinking reconstruction autoencoder-based out-of-distribution detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7379—
7387, 2022.

68



	Introduction
	Assessing Epistemic Uncertainty for OOD Prediction: Setup and Challenges
	Notations
	The epistemic uncertainty is described by the set of consistent hypotheses
	The main limitation of epistemic uncertainty estimation for deep learning

	Weight Entropy Maximization
	A principle to sample the whole space of consistent hypotheses
	The maximum weight entropy algorithm under general weight parameterization
	Examples of weight parameterization
	Scaling Parameterization
	SVD Parameterization
	Weight Entropy Formulation Under Scaling and SVD Parameterizations


	Theoretical Analysis
	Linear regression
	Notations
	Scaling Weight Parameterization
	SVD Weight Parameterization

	Deep fully connected neural network
	Notations
	Scaling Weight Parameterization


	Discussion
	Overfitting, weight diversity and evaluation
	Bayesian neural networks
	SVD-parameterization
	Entropy function
	Assessing epistemic uncertainty quantification methods

	Related Work
	Deep ensembles and prediction diversity out-of-distribution
	Bayesian neural network priors and stochastic models

	Experiments
	Synthetic experiments
	Setup
	Results
	Discussion
	Neuron Activation Amplitude and Scaling Parameters

	UCI regression datasets
	Setup
	Results

	CityCam regression datasets
	Setup
	Results

	OSR-OOD detection benchmark on classification datasets
	Setup
	Results

	Implementation choices
	Initialization
	Entropy function
	Trade-off parameter
	Stopping criterion
	Ensemble


	Limitations and Perspectives
	Conclusion
	Proofs
	Proof of Proposition 1
	Gaussian Case
	Uniform Case

	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 6

	Hyperparameters Impact Analysis
	Achieving MaxWEnt's Behavior in Bayesian Neural Networks
	Synthetic Classification
	UCI datasets


