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Abstract

We develop a method to decompose causal effects on a social network into an indirect effect
mediated by the network, and a direct effect independent of the social network. To handle
the complexity of network structures, we assume that latent social groups act as causal
mediators. We develop principal components network regression models to differentiate
the social effect from the non-social effect. Fitting the regression models is as simple as
principal components analysis followed by ordinary least squares estimation. We prove
asymptotic theory for regression coefficients from this procedure and show that it is widely
applicable, allowing for a variety of distributions on the regression errors and network edges.
We carefully characterize the counterfactual assumptions necessary to use the regression
models for causal inference, and show that current approaches to causal network regression
may result in over-control bias. The method is very general, so that it is applicable to many
types of structured data beyond social networks, such as text, areal data, psychometrics,
images and omics.

Keywords: causal mediation, latent mediators, network regression, principal components
regression, random dot product graph, spectral embedding

1. Introduction

Recent years have seen a concerted effort to study causal effects on networks, motivated by
striking claims about contagions in social networks (Christakis and Fowler, 2007). One of
the key ideas to emerge from this push is the need to account for clustering in networks
(Shalizi and Thomas, 2011). Sociologists have long known that people in social networks
are mostly connected to other people like themselves, which is often expressed informally
as “birds of a feather flock together,” and more formally called “homophily”. To identify
and estimate causal effects in social settings, it is thus fundamental to model how social
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groups form in networks, as well any downstream effects of social group membership. This
is challenging, as social groups in a network are typically unobserved.

To account for unobserved social structure in networks, Shalizi and Thomas (2011)
proposed using latent space models, where each node has an embedding that determines
its propensity to connect with other nodes. More recently, McFowland and Shalizi (2021)
showed that certain types of causal effects on networks can be estimated by controlling for
latent node embeddings in linear network regression models. There is now a rapidly grow-
ing literature investigating how embeddings can be used for causal inference on networks
(Paul et al., 2022a; Veitch et al., 2019, 2020; Louizos et al., 2017; Guo et al., 2020; Chu
et al., 2021; Guo et al., 2020; Cristali and Veitch, 2022; Chen et al., 2022; Ogburn et al.,
2022; Liu and Tchetgen Tchetgen, 2022; O’Malley et al., 2014; Leung, 2019; Egami and
Tchetgen Tchetgen, 2021; Ogburn et al., 2022, 2020).

We make two contributions to this literature. First, we develop broad semi-parametric
theory for network regression, showing how to incorporate node embeddings into linear re-
gression. These network regression models are useful for causal inference on networks, as
they allow practitioners to account for homophily, but they are also of substantial indepen-
dent interest as an observation model. Similar models have previously appeared in Li et al.
(2019); Le and Li (2022); Fosdick and Hoff (2015); He and Hoff (2019) and in concurrent
work Nath et al. (2023); Chang and Paul (2024). Compared to these approaches, we require
substantially weaker assumptions on the edge distribution in the network and the error dis-
tribution in the regression models. We allow weighted (i.e., real-valued) edges and allow
edges to be observed with noise. Edges in the network and regression errors can be sampled
from any distribution that satisfies a sub-gamma tail bound. Further, our regression models
allow for heteroscedastic errors. Altogether, our results show estimating network embed-
dings with principal components analysis, together with ordinary least squares to estimate
regression coefficients, is applicable under broad semi-parametric conditions. This contrasts
with previous approaches that have largely focused on specific parametric models.

Our second contribution is to characterize how latent node-level variables (i.e., embed-
dings) can act as causal mediators (Imai et al., 2010). To date, causal methods for network
data have mainly focused on homophily as a confounding factor. In contrast, we articulate
the causal mechanisms involved when treatments influence latent social group membership.
This is perhaps best illustrated by an example. Suppose we are interested in understanding
and reducing adolescent smoking (Di Maria et al., 2022; Michell and Amos, 1997). Under-
standing why adolescents smoke is challenging, as smoking is both a sexually differentiated
behavior and a social behavior. To study the effect of sex on adolescent smoking, we decom-
pose the effect of sex into a direct effect independent of the network and an indirect effect
that operates through the network. For instance, sex may directly cause higher cigarette
consumption through sexed expectations about smoking. Sex may also have an indirect
effect mediated by the network: adolescents may prefer to form sex-homophilous friend-
ships, and social norms about the acceptability of smoking may vary across friend groups.
That is, sex may influence an adolescent’s social circumstances, which in turns causes a
change in smoking behavior. These effects correspond to natural direct and indirect effects,
specialized to the network setting by treating latent community memberships as mediators.

To estimate network-mediated effects, we propose an approach based on a general-
ization of the random dot product graph (Athreya et al., 2018; Levin et al., 2022) and
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principal components network regression (Le and Li, 2022; Cai et al., 2021; Paul et al.,
2022a; McFowland and Shalizi, 2021; Upton and Carvalho, 2017). To represent the medi-
ating effect of the network, we embed the network into a low-dimensional Euclidean space
via a singular value decomposition (Sussman et al., 2014). We then use the embeddings
to develop two network regression models: (1) an outcome model that characterizes how
nodal outcomes vary with nodal treatment, controls, and position in latent space; and (2)
a mediator model that characterizes how latent positions vary with nodal treatment and
controls. We estimate the regressions using ordinary least squares and Huber-White robust
standard errors, and prove that the resulting coefficients are asymptotically normal under
general semi-parametric conditions. Once estimation is complete, the coefficients from the
outcome model can be used to estimate the direct effect of treatment, and the coefficients
from the outcome model and the mediator model can be combined to estimate the indirect
effect of treatment (VanderWeele and Vansteelandt, 2014). These estimators are essentially
the well-known product-of-coefficients estimators (VanderWeele and Vansteelandt, 2014;
Nguyen et al., 2021), but using the network embedding as a mediator. We anticipate that
our causal estimators will be accessible to many social and natural scientists, as they are
based on familiar product-of-coefficients mediation techniques. Importantly, the mediation
estimands we consider in this work are distinct from peer effects such as contagion and in-
terference, explored elsewhere in the literature (Ogburn et al., 2020, 2022). Our mediational
estimands measure the effect of meso-level social structures, in contrast to more micro-level
peer influence. In Section 2.5 we explore the relationship between these mechanisms.

While the product-of-coefficient estimator is familiar to many, it relies on strong func-
tional form assumptions. We want to emphasize that our characterization of latent medi-
ation is valuable even to readers who suspect these assumptions are too strong to hold in
practice. Following McFowland and Shalizi (2021), practitioners and theorists are increas-
ingly using linear regressions for causal inference on networks, and careful characterizations
of the causal structure of these models is increasingly important (Paul et al., 2022a; Mc-
Fowland and Shalizi, 2021; Veitch et al., 2019, 2020; Louizos et al., 2017; Guo et al., 2020;
Chu et al., 2021; Guo et al., 2020; Cristali and Veitch, 2022; Chen et al., 2022; Ogburn
et al., 2022; Liu and Tchetgen Tchetgen, 2022; O’Malley et al., 2014; Leung, 2019; Egami
and Tchetgen Tchetgen, 2021; Ogburn et al., 2022, 2020). In our development of the
product-of-coefficients estimator, we correct the misconception that homophily can only
have a confounding effect, we describe the over-control bias that can be induced by causal
misspecification, and we document a network data set where causal misspecification leads
to substantially misleading results. Indeed, this work was originally motivated by a misin-
terpretation of coefficients in a principal components network regression model.

We expect our estimators to have significant causal and non-causal applications to out-
side of the network setting. Similar methods for low-rank data have been employed, for
example, on spatial networks (Gilbert et al., 2021; Tiefelsdorf and Griffith, 2007; Doreian,
1981; Ord, 1975), text data (Keith et al., 2021; Veitch et al., 2020; Gerlach et al., 2018),
psychometric surveys (Freier et al., 2022; Thurstone, 1947), imaging data (Zhao et al., 2020;
Levin et al., 2022), and omics panels (Listgarten et al., 2010; Alter et al., 2000). Indeed, we
apply our method to psychometric data, in addition to our running social network example.
In data applications, we find that adolescent girls end up smoking more than adolescent boys
primarily due to an indirect network effect. This suggests that public health interventions
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might want to disrupt or alter social group formation. In an application to psychometrics
data, we find that a meditation app reduces anxiety primarily by helping study partici-
pants defuse (i.e., step back and examine) from their emotions and by helping them feel
less lonely. Our findings suggest that the meditation program might improve mental health
outcomes by replacing meditation modules aimed at increasing a sense of meaning in life
with additional modules targeting defusion or loneliness.

Our work is related to several extant lines of research. Past authors have heuristi-
cally proposed regression estimators for latent mediation in networks under the Hoff model
(Hoff et al., 2002), albeit without asymptotic theory or much elaboration of causal mecha-
nisms (Di Maria et al., 2022; Liu et al., 2021; Che et al., 2021). These ideas are related to
work on non-parametric mediation analysis (Tchetgen Tchetgen and Shpitser, 2012; Farb-
macher et al., 2022; Fulcher et al., 2020; Zheng and van der Laan, 2012) and semi-parametric
methods for hidden mediators such as Cheng et al. (2022), as well as methods for proximal
mediation such as Dukes et al. (2021) and Ghassami et al. (2021). Similarly, Sweet (2019);
Sweet and Adhikari (2022); Guha and Rodriguez (2021); Zhao et al. (2022) consider medi-
ation in networks, albeit treating entire networks as mediators, an approach that requires
observing an entire network per unit of analysis.

Beyond causal considerations, this paper proposes semi-parametric methods for principal
components network regression. Similar results have previously been established in more
restrictive parametric settings. Le and Li (2022) and Paul et al. (2022a) show a related
result in binary networks, under the assumption that regression errors are Gaussian, and
Cai et al. (2021) considers Gaussian networks with a one-dimensional latent space. We
substantially relax these assumptions to allow for latent spaces of arbitrary dimension and
to permit far more general edge and regression error distributions. The regression models
that we propose are related to several other forms of regression studied within the network
literature, such as classic spatial and econometric interference models (Land and Deane,
1992; Manski, 1993) and regressions with network-coherence penalties (Li et al., 2019). For
a review, we refer the interested reader to Le and Li (2022). Also related is a large body of
work on network association testing, such as Ehrhardt and Wolfe (2019); Fredrickson and
Chen (2019); Lee et al. (2019); Gao et al. (2022); Su et al. (2020).

Notation

For a matrix A, let ‖A‖, ‖A‖F and ‖A‖2,∞ denote the spectral, Frobenius, and two-to-

infinity norms, respectively. We write A† for the Moore-Penrose pseudoinverse, Ai· for
the i-th row, A·j for the j-th column, and vec(A) for the column-wise vectorization of A,
i.e., vec(A) = (AT·1, A

T
·2, . . . , A

T
·n)T for a matrix with n columns. We use ⊗ to denote the

Kronecker product. We write [n] to denote the set {1, 2, . . . , n}. Od denotes the set of d×d
orthogonal matrices. When we define a new symbol inline, we use ≡. We use standard
Landau notation, e.g., O(an) and o(an) to denote growth rates, as well as the probabilistic
variants Op(an) and op(an). For example, g(n) = O(f(n)) means that for some constant
C > 0, |g(n)| < Cf(n) for all suitably large n. In proofs, C denotes a constant not
depending on the number of vertices n, whose precise value may change from line to line,
and occasionally within the same line.
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2. The Causal Structure of Mediation in Latent Spaces

A central goal of this paper is to formalize and estimate natural direct and indirect effects
as mediated by latent positions in a network. Briefly, the idea is that node-level treatments
can affect formation of social groups, and that membership in social groups can further
influence nodal outcomes.

2.1 Motivating Example: Social and Non-Social Elements of Teenage Smoking

Let us return to the adolescent smoking example mentioned previously, which is based
on the Teenage Friends and Lifestyle Study, reported in Michell and West (1996), Michell
and Amos (1997), Michell (1997), and Michell (2000). The Teenage Friends and Lifestyle
Study collected three waves of survey data in a secondary school in Glasgow, beginning
in January 1995. Students in the study filled out a questionnaire about their lifestyle and
risk-taking behaviors, including alcohol, tobacco and drug use, and additionally were asked
to list six of their friends. Beyond this quantitative data, researchers also conducted in-
depth qualitative work, investigating the social dynamics of the school through focus groups,
classroom observations, and interviews.

In the Glasgow data, as in prior investigations, researchers found that adolescent girls
smoked more than adolescent boys. Michell and West (1996) and Michell (2000) proposed
two distinct effects on smoking: one about athletic expectations, and the other about social
influence. Michell (2000) proposed that athletic expectations affected smoking as follows:
both boys and girls were subject to general societal pressure to smoke, but adolescent boys
were subject to additional pressure to be good at sports (Michell and West, 1996). Since
smoking was generally accepted as reducing athletic performance, this influenced adolescent
boys to abstain from smoking in favor of pursuing athletic social capital (Michell, 2000).

The second proposed effect was a social effect. Smoking is known to be a collective
behavior, where group members typically all partake or all abstain (Michell, 2000). Re-
searchers found evidence of this form of group decision-making for various risk-taking be-
haviors in the Glasgow study, including tobacco consumption. This group-level decision-
making led to differentiated behavior amongst adolescent boys and girls because adolescent
friendships are highly sex-homophilous until the onset of puberty (Mehta and Strough,
2009). Taken all together, this meant that the effect of sex on smoking was mediated by
friend group membership: adolescent friend group membership was heavily determined by
sex, and smoking was heavily determined by friend group. More precisely, Michell (2000)
found that smoking was mostly concentrated in friend groups composed of popular girls, un-
popular students, and trouble-makers: “risk taking behaviour was heavily polarized within
social categories so that, for instance, groups of individuals (and their peripherals) were in
general either risk-taking or non-risk-taking [...] generally groups (and their peripherals)
were either all boys or all girls.”

The goal of this paper is to formalize a causal model for network-linked data that allows
us to quantify and estimate causal effects like those proposed in the example above, a setting
that we refer to as homophilous mediation. The first mechanism corresponds to a direct
effect, independent of social considerations, and the second mechanism corresponds to an
indirect effect, with friend group membership mediating the causal effect of sex on smoking.
In the Glasgow study, it seems intuitive that sex exerted both a direct and indirect effect
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Recorded sex
Female
Male

Tobacco use
Never
Occasional
Regular

Figure 1: Directed friendships in a secondary school in Glasgow, reported in the Teenage
Friends and Lifestyle Study (wave 1). Each node represents one student. An arrow from
node i to node j indicates student i claimed student j as a friend. Node size is proportional
to in-degree.

on tobacco consumption, driving adolescent girls to smoke more than adolescent boys. Our
formalization, developed in Sections 2.2 and 2.3, also accommodates observed confounders
influencing both the direct and the indirect pathways. For example, some students in the
Glasgow study reported attending church, which has the potential to influence both their
social group and attitudes about tobacco.

2.2 Causal Mediation in Latent Social Spaces

To formalize a model for mediated effects on a network, we begin by introducing some nota-
tion. We assume that we have a network with n nodes (corresponding to our experimental
units), which we label according to the integers [n] = {1, 2, . . . , n}. Let T ∈ {0, 1}n be a
vector of observed binary treatment indicators for nodes i ∈ [n], and let Y ∈ Rn be a vector
of observed node-level outcomes. Let X ∈ Rn×d be a matrix describing the unobserved
“friend groups” of each node (to be formalized below), with the row vector Xi· ∈ R1×d

encoding the friend group of node i for each i ∈ [n]. Similarly, let C ∈ Rn×p be a matrix of
observed confounders, with the row vector Ci· ∈ R1×p denoting the confounders associated
with node i. Lastly, let Aij ∈ R denote the strength of the friendship between node i and
node j. For simplicity, our model takes friendships to be symmetric, such that Aij = Aji for
all i, j ∈ [n], but this condition can be relaxed to allow for directed networks (see Section 5).

To define causal estimands, we introduce notation for the necessary counterfactual quan-
tities, defined in the sense of structural causal models (Pearl, 2009).

Definition 1 Let Yi(t) be the counterfactual value of the outcome measured for the ith node
when Ti is set to t. Similarly, let Yi(t, x) be the counterfactual value of the ith outcome when
Ti is set to t and Xi· is set to x, and let Xi·(t) be the counterfactual value of the mediator
Xi· when Ti is set to t. The average treatment effect, natural direct effect and natural
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indirect effect are defined, respectively, as

Ψate(t, t
∗) = E[Yi(t)− Yi(t∗)],

Ψnde(t, t
∗) = E[Yi(t,Xi·(t

∗))− Yi(t∗, Xi·(t
∗))], and

Ψnie(t, t
∗) = E[Yi(t,Xi·(t))− Yi(t,Xi·(t

∗))].

Note that the average treatment effect decomposes into the sum of the natural direct
effect and the natural indirect effect: Ψate(t, t

∗) = Ψnde(t, t
∗) + Ψnie(t, t

∗). We interpret all
three estimands following Chapter 2 of VanderWeele (2015): the average treatment effect
Ψate describes how much the outcome Yi would change on average over all nodes i ∈ [n] if
the treatment Ti were changed from Ti = t to Ti = t∗. The natural direct effect describes
how much the outcome Yi would change on average over all nodes i ∈ [n] if the exposure Ti
were set at level Ti = t∗ versus Ti = t but for each individual the mediator Xi· were kept at
the level it would have taken for that individual, had Ti been set to t∗. The natural indirect
effect describes how much the outcome Yi would change on average over all nodes i = [n] if
the exposure were fixed at level Ti = t∗ but the mediator Xi· were changed from the level
it would take under Ti = t to the level it would take under Ti = t∗.

In slightly more plain language, we can interpret the natural direct effect as capturing
the effect of the exposure on the outcome when the mediating pathway is disabled. In
the smoking example discussed in Section 2.1, this would correspond to the effect of sexed
expectations alone. Similarly, we can interpret the natural indirect effect as capturing the
effect of the exposure on the outcome that operates by changing the mediator while keeping
treatment fixed (VanderWeele, 2015). In the smoking example, this corresponds to the
effect of sex on friend group, and then friend group on smoking behavior. The total effect of
sex on smoking is the sum of the effects from sexed athletic expectations and friend group
pressures.

In order to estimate counterfactual quantities, we must make identifying assumptions to
relate unobserved counterfactual quantities to the observable data. Identification is implied
by the properties of consistency, sequential ignorability, and positivity (Imai et al., 2010),
which are standard sufficient conditions within the causal inference literature.

Assumption 1 (Non-parametric Identification of Natural Direct and Indirect Effects)
The random variables (Yi, Yi(t, x), Xi·, Xi·(t), Ci·, Ti) are independent over i ∈ [n] and obey
the following three properties.

1. Consistency:

if Ti = t, then Xi·(t) = Xi· with probability 1, and

if Ti = t and Xi· = x, then Yi(t, x) = Yi with probability 1

2. Sequential ignorability:

{Yi(t∗, x), Xi·(t)} ⊥⊥ Ti | Ci· and {Yi(t∗, x)} ⊥⊥ Xi· | Ti = t, Ci·

3. Positivity:
P(x |Ti, Ci·) > 0 for each x ∈ supp(Xi·)

P(t |Ci·) > 0 for each t ∈ supp(Ti)
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Figure 2: A directed acyclic graph (DAG) representing the causal pathways of latent me-
diation in a network with two nodes called i and j. Each node in the figure corresponds
to a random variable, and edges indicate which random variables may cause which other
random variables. We are interested in the causal effect of Ti on Yi, as mediated by the
latent position Xi·.

Roughly speaking, a sufficient condition for natural direct and indirect effects to be
non-parametrically identified is that the observed controls Ci· contain all confounders of the
exposure-outcome (Ti → Yi), the exposure-mediator (Ti → Xi·) and the mediator-outcome
(Xi· → Yi) relationships. One structural causal model satisfying these requirements is
given in Figure 2. Note that, crucially, our model differs from traditional mediation models
because the mediators (i.e., the group memberships Xi·) are unobserved.

Three assumptions are particularly important from a counterfactual perspective. As
in tabular settings, the sequential ignorability assumption is strong and may not hold due
to mediator-outcome confounding. Two other concerns are more specific to the network
setting. In particular, positivity may be a problem if friend groups are highly homophilous.
That is, conditional on treatment and controls, some regions of the latent space might have
zero probability mass. In the context of the adolescent smoking example, this is potentially
an issue, as friend groups are highly sexually homophilous. Since empirical networks often
exhibit high degrees of homophily, positivity violations may present a larger challenge in
network settings than in non-network settings. A third crucial assumption is that there are
not peer effects such as contagion or interference, a topic we discuss in detail in Section 2.5.

2.3 Semi-Parametric Latent Space Structure

The counterfactual model we have presented thus far is a standard causal model for media-
tion, with the exception that we have not clarified the role of Xi·, which we claimed should
correspond to a latent measure of social group membership. We now fix ideas about Xi·
and clarify the details of the network model by developing a statistical model for low-rank
matrices. This low-rank model can be thought of as a generalization of the random dot
product model (Athreya et al., 2018; Nickel, 2006; Bonato and Chung, 2007) to networks
with weighted (i.e., non-binary) edges.

Describing (possibly) weighted edges requires a brief technical pre-requisite.
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Definition 2 Let Z be a mean-zero random variable with cumulant generating function
ψZ(t) = logE

[
etZ
]
.

1. Z is ν-sub-Gaussian for ν > 0 if ψZ(t) ≤ t2ν/2 for all t ∈ R.

2. Z is (ν, b)-sub-gamma for ν, b ≥ 0 if ψZ(t) ≤ t2ν
2(1−bt) and ψ−Z(t) ≤ t2ν

2(1−bt) for all

t < 1/b.

The class of sub-gamma distributions is broad, and includes as special cases the Bernoulli,
Poisson, Exponential, Gamma, and Gaussian distributions, as well as any sub-Gaussian or
squared sub-Gaussian distribution, and all bounded distributions (see Boucheron et al.,
2013, for a detailed treatment). Our primary assumption on the network structure is that
the edges are sampled according to sub-gamma distributions and the network is low-rank
in expectation (Boucheron et al., 2013; Tropp, 2015).

Assumption 2 (Sub-gamma network) Let A ∈ Rn×n be a random symmetric matrix,
such as the adjacency matrix of an undirected graph. Let P = E[A |X] = XXT be the ex-
pectation of A conditional on X ∈ Rn×d, which has independent and identically distributed
rows X1·, . . . , Xn·. The matrix P has rank(P ) = d and is positive semi-definite with eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λd > 0 = λd+1 = · · · = λn. Conditional on X, the upper-triangular
elements of A− P are independent (νn, bn)-sub-gamma random variables.

This characterization of the network structure is very general and encompasses a range
of popular network models as special cases. The most important example of the sub-gamma
model for our purposes is the random dot product graph.

Example 1 (Random Dot Product Graph; Athreya et al. (2018)) Let F be a dis-
tribution on Rd such that xT y ∈ [0, 1] whenever x, y ∈ suppF . Draw X1·, X2·, . . . , Xn· i.i.d.
according to F , and collect these n points in the rows of X ∈ Rn×d. Conditional on X,
the edges of graph G are generated independently, with probability of an edge i ∼ j given
by Xi·X

T
j· . That is, conditional on X, the entries of the symmetric adjacency matrix A

above the diagonal are independent with Aij ∼ Bernoulli(Xi·X
T
j·). Then we say that A is

distributed according to a random dot product graph with latent position distribution F and
write (A,X) ∼ RDPG(F, n).

Under the random dot product graph, each node in a network is associated with a latent
vector, and these latent vectors characterize propensities to form edges with other nodes.
Specifically, nodes close to each other in latent space are more likely to form connections,
and nodes far apart are unlikely to form connections. When nodes cluster in the latent
space, the result is that edges in the network are more likely to form between nodes with
similar latent characteristics. This manifests as homophily in the resulting network.

Another particularly important sub-gamma model is the stochastic blockmodel, which
is in fact a sub-model of the random dot product graph.

Example 2 (Stochastic Blockmodel) The stochastic blockmodel (SBM; Holland et al.,
1983) is a model of community membership, in which each vertex is assigned to a commu-
nity (sometimes called a “block”). Conditional on assignments to communities, edges are
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generated independently between every pair of vertices in the network, and the probability of
forming an edge between vertices i and j depends only on the community memberships of
nodes i and j.

Let B ∈ [0, 1]d×d denote a fixed, positive semi-definite matrix of inter-block edge proba-
bilities and let Zi· ∈ Rd be a vector encoding the block membership of node i. Conditional on
the matrix B ∈ [0, 1]d×d and on the block memberships encoded by the rows of Z ∈ {0, 1}n×d,
the behavior of the stochastic blockmodel is characterized by

P(Aij = 1 |Z,B) = Zi·BZ
T
j· .

The basic stochastic blockmodel, as introduced in Holland et al. (1983), forces each node to
belong to exactly one block. That is, it requires Zi· ∈ {0, 1}d to have exactly one entry equal
to one. The degree-corrected stochastic blockmodel (Karrer and Newman, 2011) relaxes this
restriction by giving each node a “degree-heterogeneity” parameter that encodes a node’s
propensity to form edges. This is equivalent to requiring Zi· ∈ Rd+, where d − 1 entries
of Zi· are still zero. The overlapping stochastic blockmodel (Latouche et al., 2011) allows
Zi· ∈ {0, 1}d with no additional restrictions, such that nodes can belong to multiple blocks.
The mixed membership stochastic blockmodel (Airoldi et al., 2008) restricts Zi· to lie on the
d− 1 dimensional simplex, such that nodes can have partial membership in multiple blocks,
but their total block participation must sum to one. The overlapping and mixed-membership
variants may also be extended to include degree-correction, in which case Zi· can be a nearly
arbitrary vector in Rd+ (Jin et al., 2024; Zhang et al., 2020).

To express the stochastic blockmodel in more general sub-gamma form, take X = ZB1/2.
Thus, the latent positions X encode (1) block participation as characterized by Z, (2) degree-
adjustment (i.e., popularity) captured by the row scales of Z, and (3) intra-block edge for-
mation propensities contained in B.

Before moving on to describe how the latent positions X are related to other network
covariates, some remarks about the general sub-gamma model are warranted. First, the
sub-gamma model allows for edges to be observed with noise.

Example 3 (Noisily Observed Random Dot Product Graph) Let (A , X) ∼ RDPG(F, n)
and let {Eij : 1 ≤ i < j ≤ n} be independent, mean-zero sub-gamma random variables for
1 ≤ i ≤ j ≤ n. For example, Eij might correspond to (centered) Gaussian or Bernoulli
noise. Then the network Aij = Aij +Eij satisfies Assumption 2, as the sum of sub-gamma
random variables remains sub-gamma.

We note that all our results presented below can be extended to asymmetric P , rect-
angular P , and P with negative eigenvalues. The assumption that P is symmetric and
positive semi-definitive is primarily to simplify notation, and our proofs can be extended
to the general case using the techniques of Rubin-Delanchy et al. (2022) and Rohe and
Zeng (2023). Thus, the sub-gamma model can be extended to handle bipartite and directed
graphs (Qing and Wang, 2021; Rohe et al., 2016). Other natural extensions include models
such as Gaussian mixtures with identity covariance, latent Dirichlet allocation (Rohe and
Zeng, 2023; Blei et al., 2003), topic models (Gerlach et al., 2018), and psychometric factor
models (Thurstone, 1947, 1934).

10



Network-mediated causal effects

It is also important to note that, like the random dot product graph, the sub-gamma
model considered here is subject to orthogonal non-identifiability. Since P = XXT =
(XQ)(XQ)T for any d×d orthogonal matrix Q, the latent positions X are only identifiable
up to an orthogonal transformation (see Athreya et al. 2018 for further discussion). Luckily,
this non-identifiability of latent positions does not influence identifiability of the natural
direct and indirect effects.

Lastly, under the sub-gamma model, the latent positions X are sufficient for A. That
is, the nodal covariates Ti, Ci· and Yi do not directly influence the formation of edges of Aij .
The covariates Ti and Ci· can influence edge formation, but only via the intermediary X.
Relaxing this constraint is an interesting topic for future work, but requires different esti-
mators for the latent positions X than those we consider here (Mele et al., 2023; Binkiewicz
et al., 2017).

With the network structure established, we now relate the latent positions Xi· to the
node-level observations (Ti, Ci·, Yi).

Assumption 3 (Linear Conditional Expectations) The outcome regression functional
is linear in Ti, Ci·, and Xi· and the mediator regression functional is linear in Ti and Ci·:

E[Yi |Ti, Ci·, Xi·]︸ ︷︷ ︸
R

= β0︸︷︷︸
R

+ Ti︸︷︷︸
{0,1}

βt︸︷︷︸
R

+ Ci·︸︷︷︸
R1×p

βc︸︷︷︸
Rp

+ Xi·︸︷︷︸
R1×d

βx︸︷︷︸
Rd

, (outcome model)

E[Xi· |Ti, Ci·]︸ ︷︷ ︸
R1×d

= θ0︸︷︷︸
R1×d

+ Ti︸︷︷︸
{0,1}

θt︸︷︷︸
R1×d

+ Ci·︸︷︷︸
R1×p

Θc︸︷︷︸
Rp×d

(mediator model)

The columns of T,C and X must be linearly independent for regression coefficients to be
identifiable. The latent dimension d and the number of nodal controls p are constants that
do not vary with sample size.

In this model, β0 and θ0 play the role of intercept terms, while βt and βc encode the
average associations between nodal covariates T,C and nodal outcomes Y , conditional on
the effect of the latent positions X. θt and Θc describe how latent positions in the network
vary with nodal covariates. In the general sub-gamma edge model that we consider here, it
is difficult to provide an interpretation of βx and the mediator coefficients because the latent
positions X can take on several roles depending on the precise parametric sub-model under
consideration (e.g., under the SBM as compared to the more general RDPG). Nonetheless,
βx represents the average association between latent network structure and nodal outcomes,
conditional on nodal covariates. Since X is only identified up to orthogonal rotation, βx

and Θ are similarly only identified up to orthogonal rotation.

When we combine the statistical model entailed by Assumption 3 with the previous
counterfactual assumptions entailed by Assumption 1, the regression coefficients β and Θ
have known causal interpretations.

Proposition 3 (VanderWeele and Vansteelandt 2014) Under Assumptions 1 and 3

Ψnde(t, t
∗) = (t− t∗)βt, and (1)

Ψnie(t, t
∗) = (t− t∗) θt βx (2)
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Remark 4 An immediate question is whether Proposition 3 is useful, given that θt and
βx are subject to an unknown orthogonal transformation. Luckily, non-identifiability of the
regression coefficients does not impact identifiability of causal estimands. Ψnde depends only
on βt, which is fully identified. On the other hand, Ψnie is a function of θt and βx, and
the unknown orthogonal transformations for these estimates cancel (a result that follows
immediately from Theorem 9 below). This is because Ψnie depends fundamentally on the
projection of Y onto the span of {T,C,X} and the projection of X onto the span of {T,C},
rather than the precise bases of those subspaces.

Remark 5 Proposition 3 identifies the natural direct and indirect effects based solely on
outcome and mediator regression models, and does not require a propensity score model. It
is possible to construct more complicated estimators that additionally leverage the propensity
score, and these estimators can be more robust and efficient than the product-of-coefficients
estimator considered here (Nguyen et al., 2021; Tchetgen Tchetgen and Shpitser, 2012).
We are primarily interested in network regression in this work, and leave exploration of
other estimators to future work.

2.4 Causal Mechanisms in Latent Space

A first challenge when considering mediation in a latent space is to understand how latent
mediation works in the abstract. To characterize one possible form of latent mediation,
we develop some intuition in the context of degree-corrected mixed-membership stochastic
blockmodels, as in Example 2. Recall that, under this model, the latent position Xi· encodes
the group memberships of node i, and the “popularity” of node i (i.e., the propensity of
node i to form connections with other nodes)1. The latent position Xi· is involved in several
causal pathways.

1. The homophily-inducing pathway Ti → Xi·. Since Xi· encodes the group membership
and popularity of node i, intervening on Xi· can cause node i to participant in different
communities, or change its popularity, or simultaneously translate node i to new
communities while also scaling its popularity. Assumption 3 implies that intervention
must, on average, cause a translation in the latent space.

2. The network-formation pathway Xi· → Ai·. Intervening on Xi· simultaneously mod-
ifies P(Aij = 1 |X) for all j ∈ [n]. That is, intervening on node i’s community mem-
bership changes node i’s probability of connecting to every other node.

3. The social outcome effect pathway Xi· → Yi. This encodes the idea that community
membership and popularity influence outcomes.

1. More precisely, under the degree-corrected mixed-membership stochastic blockmodel, P(Aij = 1 |Z,B) =
Zi·BZ

T
j· , where Z ∈ Rn×d

+ is a matrix of popularity-scaled group membership weights, and B is a positive

semi-definite mixing matrix. In particular, under this model, X = ZB1/2. The B1/2 factor in X can
be slightly counter-intuitive at first. For the sake of intuition, one can conceptualize interventions as
applying to the block memberships Z, while holding the mixing matrix B constant. In Proposition 19,
we show that any intervention on Z satisfying the parametric constraints of Assumption 3 is equivalent
to an intervention on X, which also satisfies the parametric constraints of Assumption 3. Thus, for
concreteness, one can think about interventions applying directly to the block memberships Z. Under
Assumption 3, interventions can also simultaneously influence B, but these interventions may feel less
intuitive.
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Figure 3: Block memberships in a degree-corrected mixed-membership stochastic block-
model before and after intervention. Each row corresponds to a node in the network and each
column corresponds to a block in the blockmodel. Darker colors indicated increased partic-
ipation in a given block. The intervention decreases participation in the second community
slightly and increases participation in the third community more dramatically. Nodes are
sorted by community membership.

To develop intuition for interventions on the latent positions, consider a degree-corrected
mixed membership stochastic blockmodel with five blocks, where nodes are primarily mem-
bers of a single block and there is a small amount of degree heterogeneity. Interventions
can increase or decrease participation in particular communities. For instance, in Figure
3, we visualize an intervention that decreases participation in the second community while
increasing participation in the third community, in the latent space.

Intervention in turn alters the probability of friendship between pairs of nodes, and thus
leads to different counterfactual networks via the pathway T → X → A. To understand the
impact of the intervention on the network itself, Figure 4 visualizes the difference between
counterfactual networks where intervention does and does not occur. In the top left panel,
we see friendship probabilities when T does not impact X, and in the top right panel, we
see friendship probabilities when T causes a change in X. Intervention causes all nodes
to participate in the third community. The mixing matrix B is a diagonal matrix in this
example, so nodes participating in the third community have some probability to connect
with other nodes also participating in the third community. This means that, under inter-
vention, all nodes in the network are more likely to connect with one another, due to mutual
participation in the third block. The effect is especially pronounced for nodes that began in
the third block. The bottom panels of Figure 4 show corresponding random samples from
the networks conditional on latent positions X.

This synthetic example is primarily to develop intuition about the latent positions, and
downstream consequences of an intervention. Even with this intuition, it may be difficult
to understand what it means to intervene on a latent position. In practice, we believe that

13



Hayes, Fredrickson and Levin

(a) P without intervention. (b) P with intervention.

(c) Realized network without intervention (d) Realized network with intervention

Figure 4: A visualization of how intervention impacts the probability of edge formation P ,
and ultimately the realized network A. In all cases matrices as visualized as heatmaps. Each
element of the heatmap corresponds to one edge in the network. Sub-figure a shows edge
formation probabilities pre-intervention, and Sub-figure b shows edge formation probabili-
ties post-intervention. Sub-figure c shows a network realized when the intervention doesn’t
occur, and Sub-figure d shows a network realized when the intervention does occur. Nodes
are sorted by community membership.

the best way to resolve this ambiguity is by interpreting the latent positions in the context
of the relevant data application. In practice, we compute estimates of the latent positions
using the adjacency spectral embedding (see Section 3; one can think of A as a collection
of proxy measurements that we use to infer X). With estimates of the latent positions in
hand, it is often much easier to reason about causal mechanisms, because the estimated
positions can be given a concrete interpretation via inspection, auxiliary data and domain
knowledge. In the psychometric data application of Section 5.2, for instance, the latent
positions have a very clear interpretation. To interpret the latent positions, we find that
Gaussian mixture models and varimax rotation are often valuable tools (Rohe and Zeng,
2023; Rubin-Delanchy et al., 2022; Zhang et al., 2021; Priebe et al., 2019).
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To summarize: we believe that the degree-corrected mixed-membership stochastic block-
model offers compelling intuition about the structures that latent positions can represent.
This intuition is helpful to determine when a latent mediation model may be applicable: for
instance, in settings where one suspects that social groups act as mediators. However, there
is an additional confirmatory step necessary for empirical work. It is critical to confirm that
the estimated latent positions do in fact capture the hypothesized mediating constructs. Es-
timates of latent positions might reflect other network structure unrelated to hypothesized
mediators. This is a weakness of our smoking example: we know from extensive sociology
research that the adolescent social network is composed of numerous small social groups.
However, we cannot confirm that the social structure observed by sociologists is the same as
the social structure captured by the network principal components, an issue that we discuss
in more detail in Section 5.1. In contrast, in the psychometric example of Section 5.2, the
estimated latent positions are clearly measures of latent constructs of interest.

2.5 Relation to Peer Effects

The mediation mechanism that we have proposed considers how network effects manifest
through group-level dynamics rather than individual-level interactions. In network settings,
it is commonly assumed that there may be peer effects operating at the level of individual
interactions. Two especially pertinent peer effects are contagion and interference (Hu et al.,
2022; Ogburn et al., 2020). Contagion occurs when the outcome of neighbor j impacts the
outcome of node i (i.e., there is a path Yj → Yi). Interference occurs when the treatment
applied to neighbor j impacts the outcome of node i (i.e., there is a path Tj → Yi). In the
context of our smoking example, eliding some simultaneity issues, contagion would occur
if a student’s tobacco usage were influenced by their friends’ tobacco usage. Interference
would occur if a student’s tobacco usage were influenced by their friends’ sex.

Both our counterfactual assumptions and the parametric form of our outcome model
assume that there are no peer effects. This restriction clearly limits the applicability of
our method, but there are some caveats. First, in ongoing work, we are extending the
network mediation model to allow for these peer effects. The extension is quite involved,
but preliminary results and related work suggest that, at least some of the time, it is possible
to estimate both mediated effects and peer effects using ordinary least squares and estimated
latent positions X̂, as we propose here (Chang and Paul, 2024; Lee, 2002; Paul et al., 2022b;
Trane, 2023). That is, one can view the network mediation model, and our characterization
of mediation in a latent space, as descriptions of an important subset of causal mechanisms
in networks. In many cases, these mechanisms should be jointly modelled, but developing
methods to do so is a complicated technical endeavor that is outside the scope of this paper.

Part of the challenge in jointly modelling latent mediation and peer effects is that the
mechanisms can be difficult or impossible to distinguish. Shalizi and Thomas (2011) showed
this in a non-parametric longitudinal setting, but a very similar consideration arises in
the parametric cross-sectional setting. To see this, consider the “linear-in-sums” model,
one popular way to model contagion and interference (Paul et al., 2022a; McFowland and
Shalizi, 2021; Egami and Tchetgen Tchetgen, 2021; Hu et al., 2022; Bramoullé et al., 2020):

E[Yi |Ti, Ci·, X,A, Y−i] = β0 + Tiβt + Ci·βc +Xi·βx + βAy

n∑
j 6=i

AijYj + βAt

n∑
j 6=i

AijTj .
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The coefficient βAy encodes a contagion effect, and the coefficient βAt encodes an interfer-
ence effect. In forthcoming work, we show that columns of the design matrix corresponding
to βx, βAy and βAt are collinear in the asymptotic limit. That is, the interference column
AT and the contagion column AY of the design matrix are both contained in the column
space of X in large samples. This occurs because the column spaces of A and X get closer
with increasing sample size under the sub-gamma model, and thus peer effects that are
linear functions of A can be equivalently represented as linear functions of X. From a para-
metric perspective, the coefficient βx generalizes “linear-in-sums” style peer effects. In the
context of our smoking example, the causal effect of belonging to a particular friend group
is asymptotically indistinguishable from a contagion effect that depends on the number
of friends who are smokers. Thus, the causal effects along the pathway Xi· → Yi can be
thought of as effects of group memberships, or alternatively, as consequences of diffusions
over the network. The fact that this equivalence holds only in the asymptotic limit, however,
introduces a number of subtle caveats, which we describe in a forthcoming manuscript.

In addition to “linear-in-sums” style peer effect, it is also possible to consider “linear-
in-means” style peer effects,

E[Yi |Ti, Ci·, X,A, Y−i] = β0 + Tiβt + Ci·βc +Xi·βx + βAy

∑
j∈N (i)

Aij
di
Yj + βAt

∑
j∈N (i)

Aij
di
Tj

where N (i) = {j ∈ [n] : Aij = 1} denotes the neighbors of node i and di =
∑

j Aij is the
degree of node i (Bramoullé et al., 2009). In the linear-in-means approach, βx, βAy and
βAt are identified, even in the asymptotic limit, under some non-trivial assumptions about
the network structure. Recent work has considered these models from a statistical point
of view (Chang and Paul, 2024; Lee, 2002; Paul et al., 2022b; Trane, 2023), although we
believe there are still substantial identifications concerns to address, from both a causal and
a statistical perspective.

3. Estimation Theory for Principal Components Network Regression

Having established a model, we have several estimation targets. First, there are the network
regression coefficients β and Θ from Assumption 3. Once we estimate the coefficients β and
Θ, we can plug them into Equations (1) and (2) to obtain estimates of the natural direct
and indirect effects, respectively.

3.1 Principal Components Network Regression

Before discussing estimation, we simplify notation by collecting the node-level covariates
into W =

[
1 T C

]
∈ Rn×(p+2). Assumption 3 can then be re-written as

E[Yi |Wi·, Xi·] = Wi·βw +Xi·βx, (outcome model)

E[Xi· |Wi·] = Wi·Θ. (mediator model)
(3)

We would like to estimate βw, βx and Θ by applying ordinary least squares regression to
the vertex-level latent positions X. Unfortunately, the latent positions X are unobserved.
To contend with this, we will estimate X from the observed network, then plug in X̂ for X
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in subsequent regressions. We use the adjacency spectral embedding (ASE; Sussman et al.,
2012) to achieve this estimation, but we note that several other methods are available (Xie
and Xu, 2020, 2021; Wu and Xie, 2022).

Definition 6 (ASE; Sussman et al. (2014)) Given a network with adjacency matrix A,
the d-dimensional adjacency spectral embedding (ASE) of A is defined as

X̂ = Û Ŝ1/2 ∈ Rn×d,

where Û ŜV̂ T is the rank-d truncated singular value decomposition of A. That is, Ŝ ∈ Rd×d
is diagonal, with entries given by the d leading singular values of A, and Û , V̂ ∈ Rn×d have
the corresponding d orthonormal singular vectors as their columns.

The spectral embeddings X̂ converge to the true X uniformly over the rows of X, up to
orthogonal non-identifiability (Levin et al., 2022; Lyzinski et al., 2014). We thus construct
least squares estimators for the regression coefficients based on X̂ rather than X, as follows.

Definition 7 (Regression Point Estimators) Define D̂ =
[
W X̂

]
∈ Rn×(2+p+d). We

estimate βw and βx via ordinary least squares as follows[
β̂w
β̂x

]
=
(
D̂T D̂

)−1
D̂TY.

Similarly, we estimate Θ via ordinary least squares as

Θ̂ =
(
W TW

)−1
W T X̂.

Definition 8 (Regression variance estimators) With notation as above, we define co-
variance estimators

Σ̂β = Â−1
β · B̂β ·

(
Â−1
β

)T
and

Σ̂vec(Θ) = Â−1
vec(Θ) · B̂vec(Θ) ·

(
Â−1

vec(Θ)

)T
,

where Id is a d× d identity matrix, and letting ξ̂i· = X̂i· −Wi·Θ̂, we define

Âβ =
D̂T D̂

n
, B̂β =

1

n

n∑
i=1

(
Yi − D̂i·β̂

)2
D̂T
i· D̂i·,

Âvec(Θ) =
Id ⊗W TW

n
, and B̂vec(Θ) =

1

n

n∑
i=1

ξ̂Ti· ξ̂i· ⊗W T
i·Wi·.

Our main technical results state that the ordinary least squares estimates based on X̂
converge to the same asymptotic distribution as the ordinary least squares estimates based
on X. That is, the estimated regression coefficients asymptotically behavior as if we had
access to the true latent positions, even though we do not. In order for plug-in estimation
to be useful, the estimates based on the true latent positions X must themselves be well-
behaved. Under fairly weak conditions, estimates based on the true latent positions are
asymptotically normal.
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Assumption 4 (Regularity Conditions for Ordinary Least Squares M-estimation)
We require standard regularity conditions for ordinary least squares estimates for both the
outcome model and the mediator model. See Chapter 7 of Boos and Stefanski (2013) and
Chapter 5 of van der Vaart (1998) for additional discussion.

1. Define ξ = X−E[X |W ] ∈ Rn×d to be the matrix of errors in the mediator regression.
ξij and ξi′j are independent for i 6= i′ and all j ∈ [d], and that E[ξij |W ] = 0 for all
i ∈ [n], j ∈ [d]. Further,

Avec(Θ) ≡ E

[
lim
n→∞

1

n

n∑
i=1

W T
i·Wi·

]
∈ Rp×p

exists and is non-singular, and the matrix Bvec(Θ) ∈ Rd×d defined according to

[Bvec(Θ)]j,j′ ≡ E

[
lim
n→∞

1

n

n∑
i=1

ξijW
T
i·Wi· ξij′

]
j, j′ ∈ [d]

exists and has all entries finite.

2. Define D̂ =
[
W X̂

]
∈ Rn×(2+p+d), let ε = Y − E[Y |D] ∈ Rn be the vector of

errors in the outcome regression. The εi are independent, and obey E[εi |D] = 0 for
all i ∈ [n]. Further, Aβ ≡ E

[
limn→∞

1
n

∑n
i=1D

T
i·Di·

]
∈ R(p+d)×(p+d) exists and is

non-singular, and

Bβ ≡ E

[
lim
n→∞

1

n

n∑
i=1

ε2
i D

T
i·Di·

]
exists and is finite.

For consistent estimation of β and Θ based on known X, the key requirement is that
the residuals εi and ξij have (conditional) mean zero, given the covariates D and W , re-
spectively. Fundamentally, this means that E[Yi |Wi·, Xi·] must be linear in both Wi· and
Xi· and that E[Xi· |Wi·] must be linear in Wi·. We note that the errors ε and ξ need
not come from a particular distribution: any distribution satisfying the assumptions on
Avec(Θ), Bvec(Θ), Aβ, and Bβ will do. The rows of ξ must be independent of one another,
but arbitrary dependence is acceptable within the rows of ξ. Once the regularity conditions
in Assumption 4 are satisfied, these least-squares estimates for β and Θ are asymptotically
normal about their estimands. Further, the well-known “robust” or “sandwich” covariance
estimator is a consistent estimator for the covariance structures of these asymptotic distri-
butions and the ordinary least squares estimates and covariance estimators can be used to
obtain asymptotically valid confidence intervals for β and Θ.

Since we do not have access to the latent positions X, we must estimate them using the
adjacency matrix, and as a result we need additional structure beyond Assumption 4.

Assumption 5 (Conditions for Two-stage Estimability) With notation as above, we
assume that
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1. The smallest non-zero eigenvalue λd of P grows at a sufficiently fast rate as a function
of n relative to the noise parameters νn and bn. In particular,(

νn + b2n
)

= o

(
λ2
d

n log2 n

)
.

2. The entries of the observation error vector ε have bounded second moments, i.e.,
maxi∈[n] E

[
ε2
i

]
< B for B > 0 not depending on n. Further, we assume that the error

vector is such that n−1
∑

i E
[
ε4
i

]
is bounded as a function of n.

3. The rows W1·,W2·, . . . ,Wn· of W are independent. Within each row Wi,·, the elements
may be dependent, but are marginally sub-Gaussian with fixed, shared parameter σ > 0.

4. The latent positions X1, X2, . . . , Xn are such that n−1
∑

i E
[
‖ξi·‖2

]
and n−1

∑
i E
[
‖Xi·‖4

]
are bounded as functions of n.

The first condition is a sufficient condition for X̂ to concentrate around X (see Levin
et al., 2022, for further discussion). This condition primarily places requirements on the
density of edges in the network, and in particular requires that the expected average degree
is ω(

√
n log n). In a random dot product graph, all degrees are asymptotically of the same

order as the average degree, so our results are for dense networks. See Remark 12 for some
additional comments on sparsity.

The second condition puts some additional (weak) conditions on the error in the outcome
regression, beyond those already required for M -estimation. While the second condition
strengthens Assumption 4, it still makes no distributional assumptions. For example, if the
εi are independent and identically distributed sub-gamma random variables, our bounded
second moment condition is satisfied. The third condition is necessary for control over ‖W‖
in our proofs. The fourth-moment assumptions in the second and fourth conditions are
needed to ensure convergence of our covariance estimator based on the spectral estimates.
They ensure that error terms between this spectral-based covariance estimate and the co-
variance estimate based on the true (but unobserved) latent positions are suitably close.
We anticipate that the moment bounds in the second, third and fourth conditions can be
relaxed, but at the expense of additional proof complexity.

Our theoretical results, in their most general form, require certain growth rates on the
sub-gamma parameters νn and bn, and the largest and smallest non-zero eigenvalues λ1

and λd of P , described in Assumption 6. For ease of presentation, we note that these
rates are satisfied by random dot product graphs (and therefore stochastic blockmodels,
since stochastic blockmodels are a submodel of random dot product graphs) and present
Theorem 9 in the setting of a random dot product graph. Fully general bounds in terms of
n, νn, bn, λ1 and λd along with proof details may be found in the Appendix.

Theorem 9 If Example 1, and Assumptions 3, 4, and 5 hold, then there exists a sequence
of orthogonal matrices {Qn}∞n=1 such that

√
n Σ̂
−1/2
vec(Θ)

(
vec
(

Θ̂QTn

)
− vec(Θ)

)
→ N (0, Ipd), and

√
n Σ̂
−1/2
β

(
β̂w − βw
Qn β̂x − βx

)
→ N (0, Id).
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Theorem 9 shows that the ordinary least squares estimates based on X̂ are asymptot-
ically normal about their estimands, up to orthogonal non-identifiability. Since X̂ only
recovers X up to some unknown orthogonal transformation, Θ̂ and β̂x are only recovered
up to this transformation, but βw can be fully recovered.

Remark 10 (Specifying the latent dimension d) Theorem 9 assumes, implicitly, that
the latent dimension d is known or consistently estimated. In general, estimating the di-
mension of the latent space d is a challenging problem, but it can be addressed independently
of network regression. Indeed, there are a variety of techniques for estimating the rank of
random dot product graphs, such as those in Chen et al. (2021); Han et al. (2015); Fishkind
et al. (2013); Landa et al. (2021); Li et al. (2020); Han et al. (2020), among others. The-
oretically, any consistent estimator of the rank of a network suffices for Theorem 9 to hold.

Practically, we propose that analysts use a consistent estimator of d, but also that they
conduct a sensitivity analysis to investigate how much results vary with the embedding di-
mension d. When results are indeed sensitive to d, we recommend erring on the side of
over-estimating d. It is well-known in the random dot product graph literature that over-
estimating the rank of X can lead to estimates X̂ that are still useful for downstream tasks
(Fishkind et al., 2013). We show via simulations that over-estimating d still leads to inter-
val estimates of Ψnde and Ψnie with correct coverage in the network mediation setting. We
also note that these estimates tend to vary with embedding dimension d when d is under-
estimated, but they stabilize once the embedding dimension has been reached. This suggests
that a reasonable way to choose the embedding dimension d is to look for a plateau in Ψ̂nde

and Ψ̂nie as a function of d (see Section 4 and Figure 8 for details).

Remark 11 (Finite sample bias) The noise in X̂ around X induces bias in the esti-
mates of β̂ at finite sample sizes. In random dot product graphs, the coefficients β̂ will be
shrunken towards zero, as the rows of X̂ −XQ are approximately normally distributed with
mean zero (Athreya et al., 2015), such that standard results on noisily observed regressors
hold. Asymptotically, however, the noise in X̂ around X vanishes, such that bias induced
by measurement error disappears.

Remark 12 (Sparsity) Under Assumption 5, the average degree of a binary network must
be ω(

√
n log n), rather than the more typical ω(logc n). In turn, under Assumption 2, all

degrees in the network are the same order, and so all degrees must be ω(
√
n log n). This re-

striction to dense networks is a consequence of the proof technique, rather than a fundamen-
tal limit of the estimator: the sub-gamma bounds used in the present work are not tight when
applied to networks with sparse Bernoulli edges. It is straightforward, however, to replace
the sub-gamma bounds in our proofs with tighter bounds specialized to Bernoulli random
variables (Lei and Rinaldo, 2015; Boucheron et al., 2013) and to thereby relax assumptions
on average degree in binary networks. Given our focus on general semi-parametric results,
we do not perform these calculations here. See Remark 15 of Levin et al. (2022) for further
discussion.

Remark 13 (Generalized linear models) We expect that results similar to Theorem 9
hold for generalized linear models, and indeed for general regression M -estimators. Past
work on random dot product graphs has established a functional central limit theorem for
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the latent positions X̂ (Tang et al., 2017, Theorem 4) and convergence of M -estimates that
are functions of X̂ only (Athreya et al., 2021, Theorem 4). These results should extend to the
sub-gamma model and regression M -estimators, and we anticipate this to be a fruitful avenue
for future work. In particular, these results would enable practitioners to use many of the
estimators considered in Nguyen et al. (2021) to estimate network-mediated causal effects,
or alternatively may allow incorporation of spatial or network error structures (LeSage and
Pace, 2009; Bramoullé et al., 2009). Similarly, such results would imply that X̂ could
be used in place of X in the regression-based estimators proposed in VanderWeele (2015).
Indeed, VanderWeele (2015) can be seen as a template for how our model could be extended
to included non-linear terms or link functions.

3.2 Network Regression for Causal Estimation

The semi-parametric identification results of Proposition 3 suggest a regression estimator
for the natural direct and indirect effects.

Definition 14 (Causal Point Estimators) To estimate Ψnde and Ψnie, we combine re-
gression coefficients from the network regression models

Ψ̂cde = Ψ̂nde = (t− t∗) β̂t and

Ψ̂nie = (t− t∗) θ̂t β̂x.

Remark 15 When X̂ = X, Ψ̂nie reduces to the multivariate product-of-coefficients esti-
mator introduced in VanderWeele and Vansteelandt (2014). As such, there are numerous
methods for sensitivity analysis that can be immediately applied to Ψ̂nde and Ψ̂nie (Vander-
Weele, 2015, Chapter 3).

Definition 16 (Causal Variance Estimators) To estimate the variances of Ψnde and
Ψnie in our semi-parametric setting, we combine coefficients from the network regression
models:

σ̂2
nde = (t− t∗)T · Σ̂βt · (t− t∗)

where Σ̂βt denotes the element of Σ̂β corresponding to βt. Using analogous notation, let

σ̂2
nie = (t− t∗)T

[
β̂x
θ̂t

]T [
Σ̂θt 0

0 Σ̂βx

][
β̂x
θ̂t

]
(t− t∗).

As with Theorem 9, we present Theorems 17 and 18 in the setting of a random dot
product graph. Fully general versions may be found in the Appendix.

Theorem 17 In the setting of Example 1 under Assumptions 1, 3, 4 and 5,√
n σ̂2

nde

(
Ψ̂nde −Ψnde

)
→ N (0, 1).

The theorem follows from Definition 14 and Theorem 9 together with Slutsky’s theorem
and an application of the delta method. A similar distributional result holds for the natural
indirect effect. Proofs for both results are given in the Appendix.
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Theorem 18 In the setting of Example 1 under Assumptions 1, 3, 4 and 5,√
n σ̂2

nie

(
Ψ̂nie −Ψnie

)
→ N (0, 1).

The form of the variance estimator σ̂2
nie follows from an application of the delta method to

the regression estimators β̂ and Θ̂, which can be shown to have an asymptotically normal
joint distribution via a stacked M-estimator argument (Boos and Stefanski, 2013; Nguyen
et al., 2021; VanderWeele and Vansteelandt, 2014; He et al., 2024). Note that rotational
non-identifiability of the regression coefficients does not impact our ability to recover Ψnie,
as the unknown matrix Q cancels with a corresponding QT in the product of regression
coefficients.

4. Simulations

We now turn to a brief exploration of our estimators’ performance when applied to sim-
ulated data. In our results below, we find that our two-stage regression estimators are
able to reliably recover regression coefficients and mediated effects, up to orthogonal non-
identifiability where appropriate. We conduct simulations using two separate models to
generate network structure, both based on the degree-corrected stochastic blockmodel.

We consider a degree-corrected SBM with d blocks, n nodes, and degree heterogeneity
parameters γ sampled from a continuous uniform distribution on the interval [1, 3]. Block
assignment is random and nodes have equal probability of assignment to all blocks. The
mixing matrix B is set to 0.8 on the diagonal, and 0.03 off the diagonal, corresponding to
strong assortative structure. Once the block memberships Z, degree heterogeneity param-
eters γ and mixing matrix B are known, we compute the latent positions X numerically
based on the singular value decomposition of E[A |Z, γ,B].

To generate data for our simulations, we first sample a network A and latent positions X
according to a degree-corrected stochastic blockmodel. Then we sample the nodal covariates
W , according to one of two different models:

1. In the “uninformative” model, the nodal covariates are three-dimensional samples
from a standard multivariate normal distribution, independent of all other parameters
in the model. These are combined with an intercept column. One of the Gaussian
columns is taken to be the treatment and the others are taken to be controls.

2. In the “informative” model, the nodal covariates are dummy-coded block membership
indicators, using treatment coding and including an intercept column. The treatment
T is taken to be the column corresponding to the indicator for the second block, and
the controls are taken to be all other block membership indicators.

Then, we infer the implied mediator coefficients Θ via a linear regression of nodal covariates
on the latent positions2. In the uninformative model, there is no association between W and

2. This process may seem counter-intuitive, since it gives up precise control over the mediator coefficients
Θ. The upside is that we do not need to specify a generative model for the mediator regression errors
ξ. Specifying ξ is challenging in binary networks where X must follow an inner product distribution to
maintain Pij ∈ [0, 1].
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X on average, so W is only idiosyncratically associated with X. In the informative model,
W is a coarsened version of X where degree-correction information has been omitted, and
so we expect a strong association between nodal covariates and latent positions.

Next we sample β from a multivariate Gaussian distribution with mean equal to the
vector of all ones, and covariance equal to a diagonal matrix with 1/4 on the diagonal.
Finally, to generate the nodal outcomes, we generate errors ε from a t5 distribution and
use W,X, β and ε to produce Y satisfying the regression condition in Assumption 3. At
this point, we also determine the induced direct and indirect effects based on β and Θ via
Equations (1) and (2).

For each model, we sample (A, Y,W ) for varying number of nodes n and latent di-
mensions d, and compute point estimates and confidence intervals for Θ̂, β̂, Ψ̂nde and Ψ̂nie.
We repeat this procedure 100 times for each combination of parameters. We focus here
on the causal estimators Ψ̂nde and Ψ̂nie. Refer to the Appendix for further results on the
consistency and finite sample bias of the regression coefficients.

In Figure 5, we consider the mean squared error of Ψ̂nde and Ψ̂nie. We observe that the
point estimates Ψ̂nde and Ψ̂nie converge to Ψnde and Ψnie, as expected per Theorem 9. In
Figure 6 we observe that the proposed asymptotic confidence intervals achieve close to their
nominal coverage rates in finite samples. This verifies that variance estimators accurately
quantify the uncertainty in Ψ̂nde and Ψ̂nie, also as expected given Theorems 17 and 18. In
the uninformative setting, coverage for the indirect effect is higher than the nominal rate,
which is unsurprising, given that confidence intervals for the indirect effect based on the
delta method can be overly conservative (He et al., 2024).

In Figure 7, we investigate the coverage of our asymptotic confidence intervals when the
rank d of the network is misspecified. We see that underestimating the latent dimension
dramatically degrades coverage of confidence intervals of Ψnde and Ψnie. However, when
d is overestimated, confidence intervals for Ψnde and Ψnie obtain nominal coverage rates.
The negative effect of underestimating d is more pronounced in the informative model,
where treatment is strongly associated with latent position in the network, and weaker in
the uninformative model, where treatment is weakly associated with latent position in the
network. On the basis of these results, we suggest that practitioners err on the side of over-
estimating, rather than under-estimating, the rank d of the latent positions X. Intuitively,
as d increases, X̂ captures more and more of the latent community structure in the network,
until eventually X̂ captures all the latent structure in the network and the effects stabilize
(see Figure 27 in the Appendix for additional simulation results in this vein).

Lastly, in Figure 8, we investigate the bias of Ψ̂nde and Ψ̂nie as a function of the embed-
ding dimension d. We observe that estimates of Ψ̂nde and Ψ̂nie vary with the embedding
dimension d when d is under-estimated. However, once the embedding dimension d is cor-
rectly specified, the estimates Ψ̂nde and Ψ̂nie stabilize. This suggests that practitioners can
use sensitivity curves (such as those in Figures 9 and 18) to estimate that embedding di-
mension d: in particular, they should look for the embedding dimension d that stabilizes the
estimates Ψ̂nde and Ψ̂nie; any estimate using this embedding dimension or higher is likely
to have good coverage properties.
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Figure 5: Convergence of Ψ̂nde to Ψnde and Ψ̂nie to Ψnie. Each panel shows the mean squared
error (vertical axis, log scale) of Ψ̂nde (teal) and Ψ̂nie (orange) as a function of the number
of nodes in the network (horizontal axis, log scale). Panels vary horizontally by number of
latent communities (left: two blocks, middle: five block, right: seven blocks) and vertically
by the simulation model (top: informative, bottom: uninformative).

5. Data Applications

We now illustrate our method by applying it to two data sets, one previously considered
by Di Maria et al. (2022), and the other previously considered by Hirshberg et al. (2022,
2024).

5.1 Smoking in an Adolescent Social Network

We first revisit the Teenage Friends and Lifestyle Study described in Section 2.1, focusing
on the causal effect of sex on smoking during the first wave of the study. Recall that the
social network was collected by asking students “who are your best friends”, and allowing
them to list up to six responses. Sex and tobacco use were self-reported as nominal features
with levels “Male” and “Female”; and “Never”, “Occasional,” and “Regular,” respectively.
To match the analysis of Di Maria et al. (2022), for the tobacco use measure we combined
“Occasional” and “Regular” into a single level, and compared smokers with non-smokers.
We treated age (continuous) and church attendance (nominal) as possible confounders.

We began by computing the adjacency spectral embedding of the social network A. In
the Glasgow data, the social network is directed: an edge i→ j indicates that student i listed
student j as friend. This directedness means that students have two distinct co-embeddings
corresponding to their propensity to send out-edges and receive in-edges. Letting Â ≈
Û ŜV̂ T be the truncated singular value decomposition of A, the left co-embedding X̂ =
Û Ŝ1/2 describes how students in the network send edges (i.e., claim friends), and the right
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Figure 6: Finite sample coverage of asymptotic confidence intervals for Ψnde and Ψnie. Each
panel shows coverage (vertical axis) of Ψnde (teal) and Ψnie (orange) as a function of the
number of nodes in the network (horizontal axis, log scale). The dashed horizontal line
denotes the nominal coverage rate of 95%. Panels vary horizontally by number of latent
communities (left: two blocks, middle: five block, right: seven blocks) and vertically by the
simulation model (top: informative, bottom: uninformative).

co-embedding F̂ ≡ V̂ Ŝ1/2 describes how students receive edges (i.e., are claimed as friends).
Here we report results using the right co-embeddings F̂ . We did not select any particular
dimension d for the latent space. Instead, we repeated our analysis for many values of d, to
investigate the sensitivity of our results to the dimension of the latent space (see Remark
10 and the simulation study in Section 4 for additional commentary).

Once we obtained embeddings F̂ via the singular value decomposition, we performed
two ordinary least squares regressions. Using the formula notation of Wilkinson and Rogers
(1973) to specify the design and outcome matrices, we obtained least squares estimates for
the following specifications:

smoking ∼ sex + age + church + Fhat

Fhat ∼ sex + age + church.

We then combined the regression coefficients (and covariances) per Definitions 14 and 16
to obtain point and interval estimates for the natural direct and indirect effects of sex on
tobacco use. We visualized these results as a function of the embedding dimension d in
Figure 9.

The estimates of Ψ̂nde and Ψ̂nie stabilized as a function of the embedding dimension
around d = 12, and the qualitative interpretation of the results is effectively the same for
all d ≥ 12. Since over-estimating d results in less estimation error than under-estimating d
(see Remark 10 and simulation results in Section 4), we first interpreted interval estimates
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Figure 7: Coverage of confidence intervals for Ψnde and Ψnie when the dimension d is
misspecified. Each panel shows coverage (vertical axis) of Ψnde (teal) and Ψnie (orange)
as a function of the embedding dimension d (horizontal axis). The dashed horizontal line
denotes the nominal coverage rate of 95% and the dashed vertical line denotes the true
latent dimension. Panels vary horizontally by number of latent communities (left: five,
middle: ten, right: fifteen) and vertically by the simulation model and number of nodes in
the network.

when the latent dimension of the network is d = 15, under the assumption that d = 15 is
correctly specified. For this latent dimension, we estimated a 95% CI for the direct effect
of male sex, relative to female sex, to be (−0.14, 0.17) and a 95% CI for the indirect effect
to be (−0.28,−0.04). That is, the estimates are consistent with no direct effect of sex on
probability of tobacco usage. Nonetheless, there is substantial uncertainty in the estimate
of the direct effect: the data is consistent with a direct effect in either direction of up
to roughly 0.15. In contrast, the estimates are consistent with a negative indirect effect,
though the scale of this effect is fairly uncertain.
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Figure 8: Stability of point estimates for Ψnde and Ψnie when the dimension d is misspecified.
Each panel shows bias (vertical axis) of Ψ̂nde (teal) and Ψ̂nie (orange) as a function of the
embedding dimension d (horizontal axis). The dashed vertical line denotes the true latent
dimension. Panels vary horizontally by number of latent communities (left: five, middle:
ten, right: fifteen) and vertically by the simulation model and number of nodes in the
network.

There are, however, several reasons to be cautious about these estimates. First and
foremost, we did not have auxiliary information about the social network that allowed us
to directly interpret the embeddings F̂ . This potentially leads to an issue with ill-defined
interventions on F , as we discussed in Section 2.4. While substantial sociological research
confirms the presence of meaningful social groups in the social network (Michell, 2000), as
well as the fact that smoking predominantly occurs in majority female social groups (Michell,
2000, 1997), we could not verify that the social groups observed by sociologists match the
social groups encoded by F̂ . We must hope that low-rank structure is an appropriate way
to capture these social groups. There is a second issue, namely that we have no particularly
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Figure 9: Estimated direct (teal) and indirect (orange) effects of sex on tobacco usage in
the Glasgow social network. The estimated effects (vertical axis) vary with the dimension
d of the latent space (horizontal axis), and are adjusted for possible confounding by age
and church attendance. Positive values indicate a greater propensity for adolescent boys to
smoke, while negative values indicate a greater propensity for adolescent girls to smoke.

compelling way to adjudicate between the sending co-embeddings X̂ and the receiving co-
embeddings F̂ . Our choice of F̂ is based primarily on folklore and personal experience that,
in social networks, the receiving co-embeddings F̂ are more informative than the sending
co-embeddings X̂. A sensitivity analysis using X̂ in place of F̂ yields smaller estimates
of the indirect effect, which are not statistical distinguishable for zero (Figure 16 in the
Appendix). A third and final reason to be cautious about this analysis is that the positivity
assumption may be violated (Figure 15, also in the Appendix).

In light of these considerations, we consider this analysis to be illustrative. That said,
the results in Figure 9 do align with previous sociological analyses, as well as the results
obtained in Di Maria et al. (2022), who used a related estimator to conclude that “the
probability of smoking tobacco regularly is higher for 13-year-old girls than for boys. In
contrast, the total indirect effect for girls is negative, [such that] the effect of gender on the
chance of smoking reduces through friendship relationships.” Collectively, these analyses
are suggestive of potential public health interventions, which could be further investigated.
To reduce smoking, a public health intervention could focus on the indirect causal pathway,
and could intervene on either the friend group formation process, or localized smoking
within friend groups. For instance, students who smoke could be encouraged to connect
socially with students who do not smoke. Alternatively, public health campaigns could focus
on locating social groups where smoking is prevalent, and then performing more resource
intensive interventions on those social groups.

5.2 Psychological Mediators of Anxiety in a Randomized Controlled Trial on
Meditation

We next use our method to re-analyze data from a randomized controlled trial of a smartphone-
based well-being training called the Healthy Minds Program, originally reported in Hirsh-
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Figure 10: Anxiety levels (measured by the computer adaptive PROMIS test) for interven-
tion and control groups in the Healthy Minds Study. Ribbons represent 95% confidence
intervals for mean anxiety level in each group at each time point.

berg et al. (2022). We call this trial the Healthy Minds trial for convenience, but note that
numerous trials have been conducted based on the Healthy Minds smartphone app and
methodology.

In the trial, 662 adults were randomly assigned to a four-week meditation program or
a control condition. During the intervention, participants were surveyed on a weekly basis
to assess their psychological well-being (psychological distress, anxiety and depression) and
four anticipated psychological mediators of well-being (mindful action, loneliness, cognitive
defusion and purpose). Participants were also surveyed three months after the end of the
intervention period.

Meditation based interventions are known to improve anxiety and depression, an ob-
servation empirically verifiable in the Healthy Minds data itself (see Figure 10). Further,
there are theoretical reasons to believe that meditation can improve mindful action, lone-
liness, cognitive defusion and purpose, and that improvements in these dimensions can
reduce depression and anxiety. In the four week long intervention program, one week is
devoted to improving each of the hypothesized psychological mediators. The main goal of
the Healthy Minds study was to investigate these mechanisms, and to improve knowledge
of psychological mechanisms in order to design more effective interventions. We re-analyzed
the data with this same goal in mind, focusing on the anxiety outcome at the end of the
four week intervention. Following the original analysis, we control age and sex as potential
confounders.

While the Healthy Minds data at first glance seems unrelated to social networks, there
is a close connection to network data, as psychological constructs are typically considered
latent constructs that must be measured via surveys followed by factor analysis (Rohe and
Zeng, 2023). In the Healthy Minds study, mindful action was measured via the Five Facet
Mindfulness Questionnaire Act with Awareness subscale (8 questions), loneliness via the
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Figure 11: Survey responses for mediator measures at the end of four weeks.

NIH Toolbox Loneliness Questionnaire (5 questions), defusion via the Drexel Defusion Scale
(10 questions), and purpose via the Life Questionnaire Presence subscale (10 questions).
We can represent the survey responses as a bipartite network with adjacency matrix A ∈
R533×33, where Aij denotes participant i’s response to survey question j (for convenience,
we only consider the 533 study participants who responded to all survey questions at the
end of the intervention period). The survey questions were validated as measures of the
corresponding latent constructs at the time that the surveys were developed.

Since A is rectangular, we compute a decomposition A = X̂F̂ T , where X̂ = Û Ŝ1/2

and F̂ = V̂ Ŝ1/2. Since the rows of A correspond to participants and the columns of A
correspond to survey items, the left co-embeddings X̂ describe participants, and the right
co-embeddings F̂ describe survey items. When the dot product of X̂i·F̂

T
j· is large, that

indicates that participant i is expected to give a large response (e.g., “absolutely agree”
rather than “neither agree nor disagree”) to survey item j. When participants i and i′ have
embeddings X̂i· and X̂i′· that are close to each other, this indicates that they tended to
respond to survey items in a similar manner. When survey items j and j′ have embeddings
F̂j· and F̂j′· that are close to each other, this means that participants responded to questions
j and j′ in a similar manner.

Our hope is that F̂ captures the hypothesized mediating constructs. Investigating if
this is the case complicated by the fact that X̂ and F̂ are both subject to orthogonal
non-identifiability, since A = XQQTF T for any orthogonal Q. To interpret the question
embeddings, we varimax rotate the right co-embeddings, as described in Rohe and Zeng
(2023). That is, we compute a varimax rotation R based on the unscaled right singular
vectors V and then take X̂ = Û ŜR and F̂ = RT V̂ T . Under the assumption that the
embeddings are leptokurtic (i.e., more skewed than a Gaussian), the varimax rotated em-
beddings are identified up to column permutations and sign flips, making them much easier
to interpret. We visualize the varimax-rotated results in Figure 12, where we see that a five
dimensional embedding yields highly interpretable latent factors, which explain 70% of the
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Figure 12: Survey item embeddings F̂ based on the survey responses at the end of four
weeks.

variance in the survey responses. The factors F̂·3, F̂·4, F̂·5 load primarily on the awareness,
defusion and loneliness survey questions. The factors F̂·1 and F̂·2 load primarily on the
purpose survey questions. However, two factors are need to capture the purpose latent
construct because the survey questions are written with alternating valences:

1. I understand my life’s meaning.
2. I am looking for something that makes my life feel meaningful.
3. I am always looking to find my life’s purpose.
4. My life has a clear sense of purpose.
5. I have a good sense of what makes my life meaningful.
6. I have discovered a satisfying life purpose.
7. I am always searching for something that makes my life feel significant.
8. I am seeking a purpose or mission for my life
9. My life has no clear purpose.

10. I am searching for meaning in my life.

Items 1 and 2, for instance, are coded with opposite valences, but responses for all questions
were on an integer scale from 1 (absolutely untrue) to 7 (absolutely true). Larger numerical
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Figure 13: Left: Coefficients from the Healthy Minds mediator and outcome regression
models, visualized as point intervals with interval widths 0.5, 0.8, 0.95, respectively. Coeffi-
cients for control variables not visualized. Intervals in the mediator model are very close to
the point estimates, and thus not visible. All mediator coefficients are statistically distin-
guishable from zero. Right: confidence intervals for the corresponding coefficient products.
The treatment coefficient, labelled “Meditation,” is simply repeated from the left panel for
a comparative sense of scale.

responses to item 1 indicate a greater sense of purpose, so we call F̂·1 the “purposeful”
factor. Larger numerical responses to item 2 indicate an absence of purpose, so we call F̂·2
the “purposeless” factor. Interestingly, the 9-th item “My life has no clear purpose’ is not
particularly associated with the purposeful and purposeless factors F̂·1 and F̂·2, but rather
the loneliness factors F̂·5 (survey items for other scales are available in Appendix C). Using
similar reasoning, we name F̂·3 the “distraction” factor rather than the awareness factor,
because larger numerical responses indicate lower levels of awareness (see Appendix C for
the survey items and response scale).

In order to conduct the mediation analysis, we fit the following two regression models
on the study participants:

anxiety ∼ meditation + sex + age + Xhat

Xhat ∼ meditation + sex + age.

We visualize the coefficients for both regressions in Figure 13. First, consider the me-
diator model coefficients. The intervention has a small but statistically significant effect
on each of the latent mediators: it reduces loneliness, increases cognitive defusion, de-
creases distraction, decreases purposelessness and increases purposefulness. This suggests
that the Healthy Minds Program is effectively improving the theorized psychological medi-
ators. However, not all of the psychological mediators cause anxiety. Both coefficients for
purpose-related factors are consistent with zero causal effects. Loneliness and distraction
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(i.e., low awareness) both increased anxiety, and cognitive defusion (i.e., the ability to step
back from thoughts and feelings and reflect on them) reduced anxiety. Meditation also ap-
pears to have a direct anxiety reducing effect, independent of its impact on the psychological
mediators.

Considering the causal pathways, and the outcome regression and the mediation re-
gression in aggregate, we estimate 95% confidence intervals for the natural direct effect as
[−2.38,−0.45] and for the natural indirect effect as [−2.69,−1.05]. That is, about half the
anxiety reducing effect of the intervention was due to indirect effect, and about half was due
to the direct effect. A natural followup question is if products of factor-specific regression
coefficients can be interpreted as factor-specific indirect effects. This is the case, provided
that we make the additional assumption that the latent psychometric factors are indepen-
dent of one another conditional on intervention and controls. We visualize these products
and their associated confidence intervals in the right panel of Figure 13.

If conditional independence of the factors is plausible, the defusion and loneliness path-
ways seem most important for reducing anxiety. The distraction estimate is smaller and
nearly compatible with a null effect. The purpose effects are both fairly precisely measured
zeroes. This factor-specific effects might motivate more effective meditation interventions.
Each of the four weeks of the Healthy Minds intervention is devoted to improving one
of the four hypothesized mediators, and our results suggest that it could be beneficial to
replace the purpose module of the Healthy Minds program with an alternative, possibly
doubling the time devoted to defusion or social connectedness skills. Alternatively, it may
be worthwhile to investigate whether or not the factors are indeed independent; we find
it particularly interesting that the Purpose 09 item (“My life has no clear purpose”) was
so strongly associated with the loneliness factor, possibly suggesting a connection between
sense of meaning and social connectedness that could be leveraged in future interventions.

The analysis thus far has exclusively considered the survey responses and anxiety levels
at the end of the four week intervention period. Participants were surveyed before the
intervention period, then weekly for four weeks during the intervention period, and then
three months after the end of the intervention. As a final step, we repeated our mediation
analysis, considering each time point in the study independently. We compute direct and
indirect effects at each stage of the study, and then plotted them in Figure 14. We see
that the direct effect appears at week 1 of the intervention, and persists at the same level
throughout the program, before fading back down three months post intervention. This
leads us to believe that the direct effect is capturing the beneficial effect of calming breathing
exercises, which have immediate and short term benefits. In contrast, the indirect effect
grows slowly over time, exactly as one would expect if participants were slowly learning new
and healthier habits of mind. These effects also seem to persist more strongly after the end
of the intervention period. This suggests that a longer program might have more beneficial
effect, and perhaps that the larger indirect effects may persist longer.

6. Discussion

In this paper, we have explored the use of principal components network regression for
analyzing structured data and its potential applications in causal inference. We highlight
four main takeaways from our research.
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Figure 14: Natural direct and indirect effects of meditation on anxiety level, analyzed
independently at each week in the Healthy Minds Trial, controlling for age and sex as
confounders, and using a five dimensional embedding of survey responses at each time
point.

Use principal components network regression. Principal components network
regression is distributionally agnostic, robust to noisily observed networks, and computa-
tionally straightforward. The general low-rank sub-gamma model that we consider accom-
modates a wide variety of parametric submodels, as well as noisily observed networks, and is
appropriate for many kinds of structured data. We recommend including spectral network
embeddings in ordinary least squares regressions. We have shown that including spectral
network embeddings in ordinary least squares estimators only requires semi-parametric as-
sumptions. Asymptotically, it is equivalent to observing latent low-rank structure in the
network and including population structure in regressions, although in finite samples there
may be some bias induced by estimation error. Low-rank network regressions are consistent
and asymptotically normal under weak and distribution-free assumptions. Although some
regression coefficients are subject to an unknown orthogonal transformation, in practical
applications this may not matter, or may be resolvable with varimax rotation (Rohe and
Zeng, 2023).

Principal components network regression can be used for causal inference.
Principal components network regression is useful in observational settings, and additionally
for causal inference. We have carefully detailed the counterfactual and statistical assump-
tions required for regression coefficients to have causal interpretations. When latent network
positions are mediators, coefficients from principal components network regression can be
used in the product-of-coefficients method for estimating natural direct and indirect effects.
Much of the causal intuition for tabular regressions also applies to our network regressions
(VanderWeele and Vansteelandt, 2014), but there some network-specific concerns such as
homophily causing positivity violations, and the presence or absence of peer effects.

Social groups can act as mediators, not just confounders. In other words, latent
homophily can have a mediating effect rather than a confounder effect. As a result, it is
critical to carefully consider the role of latent positions in causal settings, because causal
analysis should adjust for confounders, but should not adjust for mediators. Mistaking a
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mediator for a confounder and then adjusting for the mediator induces over-control bias.
We empirically demonstrate how incorrect assumptions about the direction of causation
can induce dramatic overcontrol bias into causal estimates. We suspect overcontrol bias is
most likely to be an issue when considering causal effects of demographic features, which
are likely to induce homophily in networks.

Network embeddings need to be interpreted. Network embeddings are not black
boxes, magical controls, or inherent mediators. Network embeddings are estimates of la-
tent structure in networks, and compelling inference using network embeddings requires
an interpretation of that latent structure. It is not enough to claim that network embed-
dings capture the homophily relevant to a particular causal pathway. In applied projects,
one must confirm that the network embeddings capture the important latent constructs,
rather than noise, or latent constructs other than those originally hypothesized. As an
important corollary, practitioners should not use network embeddings for causal inference
unless they have sufficient domain knowledge or auxiliary data to give the embeddings a
concrete and substantive interpretation. Pragmatically, interpreting network embeddings is
complicated by orthogonal non-identifiability, but this identification challenge can often be
resolved with varimax rotation (Rohe and Zeng, 2023), or mixture modeling in the latent
space (Rubin-Delanchy et al., 2022).

Reproducibility

A replication package for our simulations and data analysis is available at https://github.
com/alexpghayes/network-mediation-replication.
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Appendix A. Alternative Blockmodel Parameterization

We develop our theory of network regression around the latent positions X. While this is
mathematically convenient and allows us to relate our work to previous work on random
dot product graphs, it is often difficult to develop good intuition for the latent positions X,
even in well-known settings such as the stochastic blockmodel, as discussed in Section 2.4.
Instead of parameterizing a network in terms of latent positions X, there is often a natural
decomposition of P = ZBZT , which we explore here.

Proposition 19 (Equivalent Parameterizations for Network Regression) Suppose
that Z ∈ Rn×d and B ∈ Rd×d are arbitrary full-rank matrices such that E[A |Z,B] = ZBZT

and let

Z = WΘ′ + ξ′, (4)

Y = Wβw + Zβz + ε′ (5)

where ξ′ = Z − E[Z |W ] ∈ Rn×d and each row ξ′i· is mean-zero and uncorrelated with the
corresponding row Wi·, and the εi are independent with bounded second moments. Then
there exist Θ ∈ Rp×d, ξ ∈ Rn×d, βx ∈ Rd and ε ∈ Rn such that

X = WΘ + ξ, and

Y = Wβw +Xβx + ε,

where ξ satisfies E[ξij |Wi·] = 0 for i ∈ [n], j ∈ [d], and the elements of ε are independent
with bounded second moments.

This proposition has several implications. First, if there is a linear regression (4) to
establish how Z varies with nodal covariates W , then there is another equivalent regression,
also linear, to establish how X varies with nodal covariates W . That is, every “conveniently”
parameterized mediator model implies an “inconveniently” parameterized mediator model
(our proofs are developed in the “inconvenient” setting). Further, provided that the errors
in the Z-regression are uncorrelated with W , then the errors in the X regression are also
uncorrelated with W . Thus, if the coefficients in the convenient mediator regression are
estimable, so are the coefficients in the inconvenient mediator regression. There is an
analogous story for the outcome regression (5).

Remark 20 The reparameterization above comes at the cost of a potential loss of identi-
fiability. For example, there are some law-rank models where X is identifiable up to multi-
plication by a signed permutation matrix (e.g., Rohe and Zeng, 2022, Proposition 3.2), and
much of the rotational ambiguity induced can be resolved via a varimax rotation. This in
turn implies βx is identifiable up to sign flips in the regression coefficients βx. Since our net-
work regression model does not leverage any additional identifying information about latent
positions X, even when X is narrowly identified, βx is always subject to non-identifiability
up to a full orthogonal rotation.

We conjecture that plugging varimax rotated singular vectors into a nodal regression
results in a consistent estimator of regression coefficients. We further anticipate that these
estimates are normally distributed in the large-n limit, effectively resolving the issue of
rotational non-identifiability in network regression settings.
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Proof [Proof of Proposition 19] First we consider the mediator model. We explicitly con-
struct Θ′ and ξ′ and then verify the dependence properties of ξ′. Let ΣZ = ZTZ and let

RTUDRU be the singular value decomposition of Σ
1/2
Z BΣ

1/2
Z . By Proposition 3.2 of Rohe

and Zeng (2022), D is a diagonal matrix containing the singular values of E[A |Z,B], and
the singular vectors of E[A |Z,B] are given by

U = ZΣ
−1/2
Z RTU .

Thus, Z and B together imply that X = ZΣ
−1/2
Z RTUD

1/2. Then, by hypothesis,

X = ZΣ
−1/2
Z RTUD

1/2 = (WΘ + ξ)Σ
−1/2
Z RTUD

1/2 = WΘ′ + ξ′.

where Θ′ = ΘTZ and ξ′ = ξ TZ and TZ = Σ
−1/2
Z RTUD

1/2 is an invertible matrix depending
only on Z and B. The tower law then yields

E
[
ξ′i·
∣∣Wi·

]
= E[ξi· TZ |Wi·] = E[E[ξi· |Wi·]TZ |Z,B] = E[0 · TZ |Z,B] = 0.

Now, turning to the outcome model, we have Z = XD−1/2RUΣ
1/2
Z . Let βx = D−1/2RUΣ

1/2
Z βz.

Then Zβz = Xβx and we can take ε = ε′. Since Xi· is a function of Zi· and B, and B is
fixed, independence of Zi· and εi implies independence of Xi· and εi, completing the proof.

Appendix B. Additional Details about the Glasgow Data Example

In the Glasgow example, recall that the adolescent social network was highly sexually ho-
mophilous (see Figure 1). This high level of homophily suggests that there may be positivity
violations (Sections 2.3 and 2.4), and so we investigate positivity empirically by plotting
F̂ . In Figure 15, we see that the latent embeddings in the Glasgow data likely violate the
positivity assumption, as some regions of the latent space are only occupied by male or
female students. This implies that causal identification may not hold in the Glasgow data
set.

Also recall that that the Glasgow social network is a directed network, and as a result
each node has a set of left co-embeddings X̂ and a set of right co-embeddings F̂ . In Section
5.1, we used the right co-embeddings F̂ , but we were unable to confirm that F̂ characterized
the relevant social structure in the network. In Figure 16, we see that the results based on
left co-embeddings X̂ are estimated to be smaller in magnitude than those based on the
right co-embeddings F̂ . Since we are unable to definitely adjudicate between X̂ and F̂ , the
difference in these analyses introduces ambiguity into the data analysis.

Appendix C. Additional Details about the Healthy Minds Data Example

Figure 17 characterizes the causal structure of mediation in a bipartite network, and Fig-
ure 18 shows that Ψ̂nde and Ψ̂nde are insensitive to the embedding dimension in the Healthy
Minds data application.
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Figure 15: Right latent co-embeddings in the Glasgow data set, colored by reported sex.
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Figure 16: Estimated direct (teal) and indirect (orange) effects of sex on tobacco usage
in the Glasgow social network, using the left co-embeddings X̂ rather than the right co-
embeddings F̂ (compare with Figure 9). The estimated effects (vertical axis) vary with the
dimension d of the latent space (horizontal axis), and are adjusted for possible confounding
by age and church attendance. Positive values indicate a greater propensity for adolescent
boys to smoke, while negative values indicate a greater propensity for adolescent girls to
smoke.

Figure 17: A directed acyclic graph (DAG) representing the causal pathways of latent
mediation in a bipartite network. The network has two nodes called i and j and the node
i is the unit of interest. Each node in the figure corresponds to a random variable, and
edges indicate which random variables may cause which other random variables. We are
interested in the causal effect of Ti on Yi, as mediated by the latent position Xi·.
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Figure 18: Estimated direct (teal) and indirect (orange) effects of the Healthy Minds pro-
gram on anxiety levels at the end of the four week intervention period. The estimated
effects (vertical axis) vary with the dimension d of the latent space (horizontal axis), and
are adjusted for possible confounding by age and sex attendance. Positive values indicate
that the intervention increased anxiety, while negative values indicate that intervention
decreases anxiety.

C.1 Five Facet Mindfulness Questionnaire Act With Awareness subscale

1. When I do things, my mind wanders off and I’m easily distracted.
2. I don’t pay attention to what I’m doing because I’m daydreaming, worrying, or oth-

erwise distracted.
3. I am easily distracted.
4. I find it difficult to stay focused on what’s happening in the present.
5. It seems I am ‘running on automatic’ without much awareness of what I’m doing.
6. I rush through activities without being really attentive to them.
7. I do jobs or tasks automatically without being aware of what I’m doing.
8. I find myself doing things without paying attention.

Score Description

5 Very often or always true

4 Often true

3 Sometimes true

2 Rarely true

1 Never or very rarely true

C.2 Drexel Defusion Scale

1. Feelings of anger. You become angry when someone takes your place in a long line.
To what extent would you normally be able to defuse from feelings of anger?

2. Cravings for food. You see your favorite food and have the urge to eat it. To what
extent would you normally be able to defuse from cravings for food?

3. Physical pain. Imagine that you bang your knee on a table leg. To what extent would
you normally be able to defuse from physical pain?
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4. Anxious thoughts. Things have not been going well at school or your job, and work
just keeps piling up. To what extent would you normally be able to defuse from
anxious thoughts like “I’ll never get this done.”?

5. Thoughts of self. Imagine you are having a thought such as “no one likes me.” To what
extent would you normally be able to defuse from negative thoughts about yourself?

6. Thoughts of hopelessness. You are feeling sad and stuck in a difficult situation that
has no obvious end in sight. You experience thoughts such as “Things will never get
any better.” To what extent would you normally be able to defuse from thoughts of
hopelessness?

7. Thoughts about motivation or ability. Imagine you are having a thought such as “I
can’t do this” or “I just can’t get started.” To what extent would you normally be
able to defuse from thoughts about motivation or ability?

8. Thoughts about your future. Imagine you are having thoughts like, “I’ll never make
it” or “I have no future.” To what extent would you normally be able to defuse from
thoughts about your future?

9. Sensations of fear. You are about to give a presentation to a large group. As you
sit waiting for your turn, you start to notice your heart racing, butterflies in your
stomach, and your hands trembling. To what extent would you normally be able to
defuse from sensations of fear?

10. Feelings of sadness. Imagine that you lose out on something you really wanted. You
have feelings of sadness. To what extent would you normally be able to defuse from
feelings of sadness?

Score Description

5 Very much

4 Quite a lot

3 Moderately

2 Somewhat

1 A little

0 Not at all

C.3 NIH Toolbox Loneliness Questionnaire

1. I feel alone and apart from others
2. I feel left out
3. I feel that I am no longer close to anyone
4. I feel alone
5. I feel lonely

Score Description

5 Always

4 Usually

3 Sometimes

2 Rarely

1 Never
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Figure 19: A DAG representing the causal pathways in a network with homophilous con-
founding, for a network with two nodes called i and j. Compare to Figure 2, where the
direction of the Xi· → Ti and Xj· → Tj arrows are reversed.

Appendix D. Case Study: Over-Control Bias

Treating latent positions as confounders when they are in fact mediators leads to biased
causal estimates. This bias can be substantial in empirical networks.

When the latent positions are confounders (see the structural causal model in Figure
19), βt is the average treatment effect:

E[Yi |Ti, Ci·, Xi·] = β0 + Ti βt︸︷︷︸
average

treatment
effect

+ Ci·βc +Xi·βx.

In contrast, when the latent positions are mediators (see the structural causal model in
Figure 2), βt is the natural direct effect:

E[Yi |Ti, Ci·, Xi·] = β0 + Ti βt︸︷︷︸
natural
direct
effect

+Ci·βc +Xi· βx︸︷︷︸
effect of
X on Y

, and

E[Xi· |Ti, Ci·] = θ0 + Ti θt︸︷︷︸
effect of
T on X

+Ci·Θc.

Treating the latent positions as confounders when they are mediators implies the mistaken
identification result βt = Ψate. However, in truth, βt = Ψnde = Ψate−Ψnie, and using βt as
an estimate of Ψate induces a bias of Ψnie into the estimate of the average treatment effect.
This bias is well-known as “over-control bias” (Cinelli et al., 2022).

Over-control bias can be large in network data. To demonstrate this, we re-analyzed
the AddHealth data set investigated in the initial pre-print of Le and Li (2022). The
AddHealth data consists of a self-reported social network of 2,152 high school students,
along with grade level, sex, race, and a proxy measure of mental health for each student.
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Figure 20: Confidence intervals (95%) for natural direct (teal) and indirect (orange) effects
in the AddHealth data example. The vertical axis corresponds to the value of the causal
effect, and the horizontal axis encodes the embedding dimension d. All contrasts are relative
to white students.

Our goal is to investigate how mental health varies with race, controlling for grade level
and sex.

In the original analysis, Le and Li (2022) used a procedure that is equivalent to the
ordinary least squares regression

mental health ∼ grade + race + sex + Xhat

and found that race did not have a statistically significant effect on mental health. The
original analysis did not interpret the regression coefficients causally, but it did suggest that
the effect of race was plausibly zero.

Our mediation framework allows us to clarify the role of race. Race (as well as grade
and sex) causes community structure, rather than the other way around, such that latent
social groups are clearly mediators in the AddHealth network. Indeed, race precedes the
network in time, and it is impossible for causal arrows to point backwards in time.

Using the framework developed in this paper, we fit models

mental health ∼ grade + race + sex + Xhat

Xhat ∼ grade + race + sex

and then computed Ψ̂nde and Ψ̂nie, which we plotted with confidence intervals in Figure 20.
Using the cross-validated eigenvalue method proposed in Chen et al. (2021), we determined
that a reasonable choice of latent dimension was d ≈ 120. Our estimates were stable in a
neighborhood around this value of d, suggesting that they were reliable so long d was not
badly misspecified (see Remark 10 and Section 4).

At d = 120, the estimated direct effect of non-white race was zero, and the estimated
indirect effects of non-white race was large and statistically significant. This in turn implied
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that there was a large average treatment effect of race on mental health. The effect simply
operates along the indirect pathway, as race causes group membership.

The takeaways from this case study are two-fold. First, when latent positions are in-
cluded in network regression models, they are likely to be interpreted, either implicitly
or explicitly, as causal confounders. It’s important to assess whether or not this is the
case. Second, it’s entirely plausible for causal effects in social networks to occur entirely via
the indirect pathway. In this setting, mistakenly using the latent positions as confounders
rather than mediators can result in over-control bias and very misleading estimates of causal
effects.

Appendix E. Proof of Theorem 9

In order to prove Theorem 9, we will first prove a more general statement holds under
the sub-gamma network model (Assumption 2), which generalizes the random dot product
graph considered in Example 1. To work with the general sub-gamma model, we require
the following assumptions about the sub-gamma parameters:

Assumption 6 (Growth rates) Under the model in Assumption 2, the eigenvalues λ1

and λd and the sub-gamma parameters νn and bn grow with n in such a way that

λ1 = O(n), (6)

λ1 = Ω(1), (7)

√
νn + b2nn log3/2 n

λ
3/2
d

= o(1), (8)

λ1(νn + b2n)n2 log2 n

λ
7/2
d

= o(1), (9)

and
λd

λ
1/2
1

= O(1). (10)

We additionally take d, the rank of the latent positions X, and p, and the number of
nodal controls, to be fixed asymptotically.

Note that Assumption 6 holds for the random dot product graph (Example 1).

Proposition 21 Suppose that (A,X) ∼ RDPG(F, n), as described in Example 1. Then
(A,X) are generated according to a process that satisfies Assumption 2, and further λ1 =
Θ(n), λd = Θ(n), νn = c, and bn = 1 for some c > 0.

Proof See Athreya et al. (2018, Remark 24) or Sussman et al. (2014, Prop 4.3).
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A straightforward application of Proposition 21 shows that random dot product graphs
satisfy Assumption 6. Thus, in order to prove Theorem 9, it is sufficient to replace Example
1 with Assumptions 2 and 6, as in the following. Recalling the W notation of Equation (3),
we have the following theorem.

Theorem 22 If Assumptions 2, 3, 4, 5, and 6 hold, then there exists a sequence of orthog-
onal matrices {Qn}∞n=1 such that

√
n Σ̂
−1/2
vec(Θ)

(
vec
(

Θ̂QTn

)
− vec(Θ)

)
→ N (0, Ipd), and

√
n Σ̂
−1/2
β

(
β̂w − βw
Qn β̂x − βx

)
→ N (0, Id).

The proof of Theorem 22 reduces to three key lemmas. Lemma 23 shows that least
squares estimates are asymptotically normally distributed when the true latent positions
are known. This is a standard result of M-estimation theory for regression.

Lemma 23 (Boos and Stefanski (2013), Theorems 7.2) Define β̃w, β̃x and Θ̃ analo-
gously to the estimators in Definition 7, but using the true latent positions X rather than
the spectral embedding X̂. Under Assumptions 2, 3, and 4,

√
n
(

vec
(

Θ̃
)
− vec(Θ)

)
→ N

(
0,Σvec(Θ)

)
, and

√
n

(
β̃w − βw
β̃x − βx

)
→ N (0,Σβ).

Further, when the true latent positions are known, the covariance of the least squares
coefficients is also estimable using the robust covariance estimator.

Lemma 24 (Boos and Stefanski (2013), Theorems 7.3, 7.4) Define Σ̃β and Σ̃vec(Θ)

analogously to the estimators in Definition 8, but using the true latent positions X rather
than the spectral embedding X̂. Under Assumptions 2, 3, and 4,

Σ̃β → Σβ in probability, and

Σ̃vec(Θ) → Σvec(Θ) in probability.

Since the true latent positions X are unobserved, we must use estimates X̂ in place of
X in least squares estimators. This does not change the asymptotic distribution of the least
squares coefficients.

Lemma 25 Under Assumptions 2, 3, 4, 5, and 6,

√
n

(
β̂w − β̃w
Qn β̂x − β̃x

)
= op(1) and

√
n
(

Θ̂QTn − Θ̃
)

= op(1).

We must show a similar result for the covariance estimators in order to obtain a consis-
tent estimator based on X̂ rather than X.
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Lemma 26 Under Assumptions 2, 4, 5, and 6, we have

Σ̂β → Σ̃β and Σ̂vec(Θ) → Σ̃vec(Θ) both in probability.

Proofs of Lemmas 25 and 26 are provided in Sections E.1 and E.4, respectively. Addi-
tional technical results are also given in Section E.3.

With these preliminaries in place, we are ready to prove Theorem 22. Note that in this
proof, and subsequently, we often drop the subscript n from Qn for convenience and write
Q instead.
Proof [Proof of Theorem 22]

First, we show that β̂ and Θ̂ are asymptotically normal. By Lemmas 25 and 23, asymp-
totically we have

√
n
(

Θ̂QT −Θ
)

=
√
n
(

Θ̂QT − Θ̃
)

︸ ︷︷ ︸
op(1)

+
√
n
(

Θ̃−Θ
)

︸ ︷︷ ︸
N (0,ΣΘ)

.

Slutsky’s theorem is then sufficient to establish asymptotic normality. An analogous argu-
ment holds for β̂.

We use a similar argument to establish consistency of covariance estimation. By Lem-
mas 26 and 24

Σ̂vec(Θ) − Σvec(Θ) = Σ̂vec(Θ) − Σ̃vec(Θ)︸ ︷︷ ︸
op(1)

+ Σ̃vec(Θ) − Σvec(Θ)︸ ︷︷ ︸
op(1)

,

such that Σ̂vec(Θ) → Σvec(Θ) in probability. Again, an analogous argument holds for the

covariance of β̂. A final application of Slutsky’s theorem to combine the above two results
completes the proof.

E.1 Proof of Lemma 25

To prove Lemma 25, we will first consider the mediator regression coefficients, and then
the outcome regression coefficients. We partition the outcome regression coefficients β =
(βw, βx) using the Frisch-Waugh-Lowell theorem to deal with identified and unidentified
coefficients separately. Here we present some important supporting lemmas that outline
the proof; some tedious and less illuminating supporting lemmas are relegated to a later
portion of the Appendix.

Lemma 27 (Sub-gamma mediator coefficient bound) Suppose Assumptions 2, 4, 5
and 6 hold. Let {Qn}∞n=1 be the sequence of orthogonal matrices guaranteed by Lemma 31.
Then ∥∥∥√n(Θ̂QTn − Θ̃

)∥∥∥ = op(1).

Proof Using basic properties of the spectral norm,∥∥∥√n(Θ̂QT − Θ̃
)∥∥∥ =

√
n
∥∥∥(W TW

)−1
W T

(
X̂ −XQ

)∥∥∥
≤
√
n

1

n

∥∥∥∥∥
(

1

n
W TW

)−1
∥∥∥∥∥∥∥∥W T

(
X̂ −XQ

)∥∥∥. (11)
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By the independence and moment conditions of Assumption 4,
(

1
nW

TW
)−1

converges to
the inverse covariance matrix of W , so that∥∥∥∥∥

(
1

n
W TW

)−1
∥∥∥∥∥ = O(1).

By Lemma 49, ∥∥∥W T
(
X̂ −XQ

)∥∥∥ = op
(√
n
)
.

Applying the above two displays to Equation (11),∥∥∥√n(Θ̂QT − Θ̃
)∥∥∥ = op(1),

completing the proof.

Theorem 28 (Lovell 1963; Frisch and Waugh 1933) Let β̂ be as in Definition 7. Then[
β̂w
β̂x

]
=

(W TW
)−1

W T
(
Y − X̂ β̂x

)
(
X̂TMX̂

)−1
X̂TMY

 (12)

where M = I −W T
(
W TW

)−1
W .

We note that M projects vectors onto the orthogonal complement of the column space
of W . Note that ‖M‖ = 1 since M is a projection matrix.

Lemma 29 (Sub-gamma outcome coefficient bound) Suppose Assumptions 2, 4, 5
and 6 hold, and let {Qn}∞n=1 be the sequence of orthogonal matrices guaranteed by Lemma 31.
Then √

n
(
Qn β̂x − β̃x

)
= op(1).

Proof Applying the definition of β̂x and β̃x from Theorem 28 and adding and subtracting
appropriate quantities, we have

√
n
(
Q β̂x − β̃x

)
=
√
n

[
Q
(
X̂TMX̂

)−1
X̂T −

(
XTMX

)−1
XT

]
MY

=
√
n

[
Q
(
X̂TMX̂

)−1
−
(
XTMX

)−1
Q

]
X̂TMY (13)

+
√
n
(
XTMX

)−1
(
QX̂T −XT

)
MY. (14)

We bound the quantities (13) and (14) separately, starting with (13). Recalling the
definition of M in Theorem 28 and expanding Y ,∥∥∥X̂TMY

∥∥∥ =
∥∥∥X̂T (MXβ +MWξ +Mε)

∥∥∥ =
∥∥∥X̂T (MXβ +Mε)

∥∥∥.
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Applying the triangle inequality, submultiplicativity and the fact that M is a projection
matrix, ∥∥∥X̂TMY

∥∥∥ ≤ ∥∥∥X̂∥∥∥‖β‖+
∥∥∥X̂TMε

∥∥∥.
Lemma 33 and the fact that β is a constant control the first term, while Lemma 43 with
H = X̂TM controls the second term, and we have∥∥∥X̂TMY

∥∥∥ ≤ Cλ1/2
1 +

√
B trace X̂TMMT X̂. (15)

By cyclicity of the trace and Von Neumann’s trace inequality,

trace X̂TMMT X̂ = trace X̂X̂TMMT ≤ trace X̂X̂T = trace Ŝ,

where we have used the fact that M is a projection matrix and the definition of X̂ = Û Ŝ1/2.
Bounding trace Ŝ ≤ d‖Ŝ‖, Lemma 33 implies

trace X̂TMMT X̂ ≤ Cdλ1.

Plugging this bound back into Equation (15) and using the fact that B and d are assumed
constant, we conclude that ∥∥∥X̂TMY

∥∥∥ = Op
(
λ

1/2
1

)
. (16)

Noting that for conformable matrices A and B, A−1−B−1 = A−1(B−A)B−1, submul-
tiplicativity of the spectral norm implies∥∥∥∥Q(X̂TMX̂

)−1
−
(
XTMX

)−1
Q

∥∥∥∥
=

∥∥∥∥Q(X̂TMX̂
)−1[

QTXTMX − X̂TMX̂ QT
](
XTMX

)−1
Q

∥∥∥∥
≤
∥∥∥∥(X̂TMX̂

)−1
∥∥∥∥∥∥∥QTXTMX − X̂TMX̂ QT

∥∥∥∥∥∥(XTMX
)−1
∥∥∥.

Applying Lemmas 42 and 46, it follows that∥∥∥∥Q(X̂TMX̂
)−1
−
(
XTMX

)−1
Q

∥∥∥∥ = op

(
1

√
nλ

1/2
1

)
. (17)

Applying submultiplicativity, we can bound (13) as∥∥∥∥√n[Q(X̂TMX̂
)−1
−
(
XTMX

)−1
Q

]
X̂TMY

∥∥∥∥
≤
√
n

∥∥∥∥Q(X̂TMX̂
)−1
−
(
XTMX

)−1
Q

∥∥∥∥∥∥∥X̂TMY
∥∥∥.

Applying Equations (16) and (17), the quantity in Equation (13) is bounded as∥∥∥∥√n[Q(X̂TMX̂
)−1
−
(
XTMX

)−1
Q

]
X̂TMY

∥∥∥∥ = op(1). (18)
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Turning our attention to the quantity on line (14), by applying submultiplicativity and
the triangle inequality, along with the fact that M is a projection matrix,∥∥∥√n(XTMX

)−1
(
QX̂T −XT

)
MY

∥∥∥
≤
√
n
∥∥∥(XTMX

)−1
∥∥∥∥∥∥(QX̂T −XT

)
MY

∥∥∥
=
√
n
∥∥∥(XTMX

)−1
∥∥∥∥∥∥(QX̂T −XT

)
MXβ

(
QX̂T −XT

)
Mε
∥∥∥

≤
√
n
∥∥∥(XTMX

)−1
∥∥∥∥∥∥(QX̂T −XT

)
MX

∥∥∥‖β‖
+
√
n
∥∥∥(XTMX

)−1
∥∥∥∥∥∥(QX̂T −XT

)
Mε
∥∥∥.

Applying Lemmas 40, 45 and 46 and using the fact that ‖β‖ is a constant,∥∥∥√n(XTMX
)−1
(
QX̂T −XT

)
MY

∥∥∥ = op(1).

Using the above display and Equation (18), respectively, to bound the terms on lines (13)
and (14), we conclude that

√
n
(
Q β̂x − β̃x

)
= op(1),

completing the proof.

Lemma 30 Suppose that Assumptions 2, 3, 4, 5 and 6 hold. Then, letting β̃w and β̃x be
as specified in Definition 7, √

n
(
β̂w − β̃w

)
= op(1).

Proof Applying Theorem 28 and using basic properties of norms, we have∥∥∥√n(β̂w − β̃w

)∥∥∥ ≤ √n ∥∥∥(W TW
)−1

W T
(
X − X̂QT

)∥∥∥∥∥∥β̃x

∥∥∥
+
√
n
∥∥∥(W TW

)−1
W T X̂

∥∥∥∥∥∥QT β̃x − β̂x

∥∥∥. (19)

By Lemmas 23 and 27,∥∥∥β̃x

∥∥∥ = Op(1) and
√
n
∥∥∥(W TW

)−1
W T

(
X − X̂ QT

)∥∥∥ = op(1),

and it follows that

√
n
∥∥∥(W TW

)−1
W T

(
X − X̂QT

)∥∥∥∥∥∥β̃x

∥∥∥ = op(1). (20)

By Lemma 29, √
n
∥∥∥QT β̃x − β̂x

∥∥∥ = op(1),

and by Lemmas 23 and 27,∥∥∥(W TW
)−1

W T X̂
∥∥∥ =

∥∥∥Θ̂QT
∥∥∥ ≤ ∥∥∥Θ̂QT − Θ̃

∥∥∥+
∥∥∥Θ̃
∥∥∥ = op

(
n−1/2

)
+Op(1) = Op(1).
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Combining the above two displays,

√
n
∥∥∥(W TW

)−1
W T X̂

∥∥∥∥∥∥QT β̃x − β̂x

∥∥∥ = op(1).

Using this and Equation (20) to bound Equation (19) completes the proof.

E.2 Technical Preliminaries for Supporting Lemmas

The main technical components of our proofs are a series of concentration bounds similar
to those in Levin et al. (2022). See Athreya et al. (2018) for an overview of proof techniques
specialized to the RDPG setting.

Many of our results rely on the concentration X̂ around X and A around P .

Lemma 31 (Levin et al. (2022), Theorem 6) Under Assumptions 2 and 5, with prob-
ability at least 1−O

(
n−2

)
, there exists an orthogonal matrix Q ∈ Rd×d such that∥∥∥X̂ −XQ∥∥∥

2,∞
≤ ηn (21)

where ηn is defined to be

ηn =
C d

λ
1/2
d

(νn + b2n)1/2 log n+
C dnλ1

λ
5/2
d

(
νn + b2n

)
log2 n. (22)

While Lemma 31 holds for any model satisfying Assumptions 2 and Assumption 5, the
result is not very interesting unless ηn is o(1). ηn must be o(1) for convergence of β̂ and Θ̂ in
the general sub-gamma case. In the special case of a random dot product graph (Example
1), one can show that ηn = Op

(
n−1/2 log n

)
. Under our growth assumptions outlined in

Assumption 6, ηn = o(1), as the next lemma shows.

Lemma 32 Letting ηn be as defined in Lemma 31, under the growth conditions of Assump-
tion 6, we have ηn = o(1). Further, under the additional Assumptions 2 and 5,∥∥∥X̂ −XQ∥∥∥

2,∞
= op(1).

Proof By Lemma 31 and the Borel-Cantelli lemma, there exists a sequence of orthogonal
matrices Q ∈ Rd×d such that, eventually,∥∥∥X̂ −XQ∥∥∥

2,∞
≤ ηn. (23)

Applying the definition of ηn given in Lemma 31,

ηn =
C
√
νn + b2n log n

λ
1/2
d

+
Cλ1(νn + b2n)n log2 n

λ
5/2
d

. (24)
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Using the fact that λd ≤ λ1 by definition and applying our growth assumptions in Equa-
tions (6)(8),

C
√
νn + b2n log n

λ
1/2
d

= o(1).

Similarly, using λd ≤ λ1 = O(n) and Equation (9),

Cλ1(νn + b2n)n log2 n

λ
5/2
d

= o(1).

Applying the above two displays to Equation (24),

ηn = o(1),

establishing our desired growth rate on ηn. Applying this to Equation (23),∥∥∥X̂ −XQ∥∥∥
2,∞

= op(1),

as we set out to show.

Several other technical results will also prove useful. We collect them below.

Lemma 33 Under Assumptions 2 and 5, with probability at least 1−O
(
n−2

)
we have∥∥∥Ŝ−1/2

∥∥∥ ≤ Cλ−1/2
d and

∥∥∥Ŝ1/2
∥∥∥ ≤ Cλ1/2

1

for some universal constant C > 0.

Proof Both of these facts are shown in the course of proving Lemma 4 of Levin et al.
(2022), in particular see Equations (28) and (32) in that work.

The following two lemmas are fundamental for determining rates of concentration through-
out our proofs. Our goal is to produce bounds under very general assumptions on A, and as
a result, under additional assumptions, it will often be possible to improve rates of conver-
gence under specialized assumptions. For example, under the additional assumption that
A is binary, (Lei and Rinaldo, 2015, Theorem 5.2) produces a notable improvement over a
generic sub-gamma bound. We do not pursue specialized bounds here.

Lemma 34 (Levin et al. (2022), Lemma 5, taking N = 1) Under Assumption 2 and
5, with probability at least 1−O

(
n−2

)
,

‖A− P‖ ≤ C
√
νn + b2n

√
n log n.

Lemma 35 Suppose that Assumptions 2 and 5 hold and let H ∈ Rn×n be a fixed matrix
satisfying

max
i∈[n]

n∑
j=1

H2
ij ≤ CH (25)
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for some constant CH ≥ 0. Then, with notation as above, with probability at least 1 −
O
(
n−2

)
, ∥∥UT (A− P )HU

∥∥
F
≤ Cd

√
νn + b2n log n

Proof We will show that
∥∥UT (A− P )HU

∥∥2

F
≥ Cd2(νn + b2n) log2 n with probability no

larger than O
(
n−2

)
, whence taking square roots will yield the result.

For each k, ` ∈ [d], define

Sk,` =
[
UT (A− P )HU

]
k,`

=
n∑
i=1

n∑
j=1

(A− P )ijUik(HU)j`

and note that ∥∥UT (A− P )HU
∥∥2

F
=

d∑
k=1

d∑
`=1

S2
k,`. (26)

Since (A− P )ij are i.i.d. (νn, bn)-sub-gamma, we have

n∑
i=1

n∑
j=1

E
[
[(A− P )ijUik(HU)j`]

2
]
< νn

n∑
i=1

n∑
j=1

U2
ik(HU)2

j`

and thus by Corollary 2.11 in Boucheron et al. (2013), for any t > 0,

P(|Sk,`| ≥ t) ≤ 2 exp

 −t2

2
(
νn
∑n

i=1

∑n
j=1 U

2
ik(HU)2

j` + bnt
)
.

By Cauchy-Schwarz and our assumption in Equation (25),

(HU)2
j` =

(
n∑
t=1

HjtUt`

)2

≤

(
n∑
t=1

H2
jt

)(
n∑
t=1

U2
t`

)
≤ CH ,

and it follows that

P(|Sk,`| ≥ t) ≤ 2 exp

{
−t2

2(CHνn + bnt)

}
.

Taking t = C(νn + b2n)1/2 log n for C > 0 suitably large, it follows that

P
(
|Sk,`| ≥ C(νn + b2n)1/2 log n

)
≤ 2n−4.

A union bound over all k, ` ∈ [d] implies that

P
(
∃ k, ` ∈ [d] : |Sk,`| ≥ C(νn + b2n)1/2 log n

)
≤ 2d2

n4
≤ 2n−2,

and it follows from Equation (26) that

P
(∥∥UT (A− P )HU

∥∥2

F
≥ Cd2(νn + b2n) log2 n

)
≤ 2n−2,

completing the proof.

We now define of a convenient decomposition of X̂ −XQ.
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Lemma 36 (Levin et al. 2022, Lemma 4) Define the following three matrices:

R1 = UUT Û − UQ

R2 = QŜ1/2 − S1/2Q

R3 = Û − UUT Û +R1 = Û − UQ.

Then

X̂ −XQ = Û Ŝ1/2 − US1/2Q

= (A− P )US−1/2Q+ (A− P )U(QŜ−1/2 − S−1/2Q)

+ UUT (A− P )UQŜ−1/2 +R1Ŝ
1/2 + UR2

+ (I − UUT )(A− P )R3Ŝ
−1/2.

Our proofs will rely on bounding each of the terms in the decomposition given in
Lemma 36. The next few technical results will be used to ensure these bounds.

Proposition 37 (Levin et al. 2022, Proposition 19) With notation as above, under
Assumptions 2 and 5, it holds with probability at least 1−O

(
n−2

)
that

‖R1‖F =
∥∥∥U(UT Û −Q)∥∥∥

F
=
∥∥∥UT Û −Q∥∥∥

F
≤ d‖A− P‖2

λ2
d

≤ Cd(νn + b2n)n log2 n

λ2
d

.

Proof By Proposition 19 of Levin et al. (2022) and Lemma 34.

Lemma 38 Under Assumptions 2 and 5, with probability at least 1−O
(
n−2

)
,

∥∥∥Û − UUT Û∥∥∥
F
≤ C
√
d ‖A− P‖
λd

≤
C
√
d
√
νn + b2n

√
n log n

λd
. (27)

Furthermore,

∥∥∥QŜ − SQ∥∥∥
F
≤ Cλ1(νn + b2n)n log2 n

λ2
d

+ Cd
√
νn + b2n log n (28)

‖R2‖F =
∥∥∥QŜ1/2 − S1/2Q

∥∥∥
F
≤ Cλ1(νn + b2n)n log2 n

λ
5/2
d

+
Cd
√
νn + b2n log n

λ
1/2
d

and, (29)

∥∥∥QŜ−1/2 − S−1/2Q
∥∥∥
F
≤ Cλ1(νn + b2n)n log2 n

λ
7/2
d

+
Cd
√
νn + b2n log n

λ
3/2
d

(30)
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Proof By Proposition 20 of Levin et al. (2022) and an application of Lemma 34 we obtain
(27). Further, by Proposition 20 of Levin et al. (2022), we have∥∥∥QŜ − SQ∥∥∥

F
≤ C‖A− P‖2λ1

λ2
d

+
∥∥UT (A− P )U

∥∥
F

∥∥∥QŜ1/2 − S1/2Q
∥∥∥
F
≤

∥∥∥QŜ − SQ∥∥∥
F

λ
1/2
d

,

and
∥∥∥QŜ−1/2 − S−1/2Q

∥∥∥
F
≤

∥∥∥QŜ − SQ∥∥∥
F

λ
3/2
d

.

First we apply Lemma 34 and Lemma 35 to bound the top term∥∥∥QŜ − SQ∥∥∥
F
≤ C‖A− P‖2λ1

λ2
d

+
∥∥UT (A− P )U

∥∥
F

≤ C(νn + b2n)n log2 nλ1

λ2
d

+ Cd
√
νn + b2n log n

and Equations (29) and (30) follow immediately.

Lemma 39 Under Assumptions 2 and 5, it holds with probability 1−O
(
n−2

)
that

∥∥∥Û − UQ∥∥∥ = ‖R3‖ ≤
C
√
d
√
νn + b2n

√
n log n

λd
+
Cd(νn + b2n)n log2 n

λ2
d

Proof Adding and subtracting appropriate quantities, applying the triangle inequality and
using basic properties of the Frobenius norm,∥∥∥Û − UQ∥∥∥ ≤ ∥∥∥Û − UUT Û∥∥∥+

∥∥∥UUT Û − UQ∥∥∥
F

≤
∥∥∥Û − UUT Û∥∥∥+

∥∥∥UT Û −Q∥∥∥
F
.

Applying Lemmas 37 and 38, it follows that with probability at least 1−O
(
n−2

)
,

∥∥∥Û − UQ∥∥∥ = ‖R3‖ ≤
C
√
d
√
νn + b2n

√
n log n

λd
+
Cd(νn + b2n)n log2 n

λ2
d

,

completing the proof.

E.3 Supporting Results for Lemma 25 and Lemma 26

When we introduced Lemma 25 and Lemma 26 earlier, we presented a broad proof sketch
and deferred the technical details to supporting lemmas, which we now present.
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Lemma 40 Suppose that Assumptions 2, 5 and 6 hold. Then∥∥∥(X̂QT −X)TMX
∥∥∥ = op

(
λd√
n

)
.

Proof Applying Lemma 36,

(X̂QT −X)TMX

= Q
(
Û Ŝ1/2 − US1/2Q

)T
MX

= QS−1/2UT (A− P )MX +Q(QŜ−1/2 − S−1/2Q)TUT (A− P )MX

+QŜ−1/2QTUT (A− P )UUTMX +QŜ1/2RT1 MX +QRT2 U
TMX

+QŜ−1/2RT3 (I − UUT )(A− P )MX.

(31)

We will bound each of the six terms on the right-hand side in turn.
Considering the first term, expanding the definition of X and using submultiplicativity

of the norm, with probability 1−O
(
n−2

)
,∥∥∥QS−1/2UT (A− P )MX

∥∥∥ ≤ ∥∥∥S−1/2
∥∥∥∥∥UT (A− P )MU

∥∥∥∥∥S1/2
∥∥∥

≤
Cdλ

1/2
1

√
νn + b2n log n

λ
1/2
d

,

where the second bound follows from Lemma 35. Applying Equations (6) and (8),∥∥∥QS−1/2UT (A− P )MX
∥∥∥ = op

(
λd√
n

)
. (32)

For the second term in Equation (31), we again use submultiplicativity of the spec-
tral norm, along with Equation (30) from Lemma 38 and Lemma 35, to show that with
probability 1−O

(
n−2

)
,∥∥∥Q(QŜ−1/2 − S−1/2Q)TUT (A− P )MX

∥∥∥
≤
∥∥∥QŜ−1/2 − S−1/2Q

∥∥∥∥∥UT (A− P )MU
∥∥∥∥∥S1/2

∥∥∥
≤ Cλ1/2

1

(
λ1(νn + b2n)n log2 n

λ
7/2
d

+
d
√
νn + b2n log n

λ
3/2
d

)
d
√
νn + b2n log n

≤ Cdλ
3/2
1 (νn + b2n)3/2n log3 n

λ
7/2
d

+
Cd2λ

1/2
1 (νn + b2n) log2 n

λ
3/2
d

.

Applying Equation (6) and cubing the quantity in Equation (8) implies that the first of
these two right-hand side quantities is o(λd/

√
n). Similarly, Equations (6) and (9) imply

that the second right-hand term is o(λd/
√
n), whence∥∥∥Q(QŜ−1/2 − S−1/2Q)TUT (A− P )MX

∥∥∥ = op

(
λd√
n

)
. (33)
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For the third term in Equation (31), by Lemmas 33 and 35, we have∥∥∥QŜ−1/2QTUT (A− P )UUTMX
∥∥∥ ≤ ∥∥∥Ŝ−1/2

∥∥∥∥∥UT (A− P )U
∥∥∥∥∥S1/2

∥∥∥
≤
Cdλ

1/2
1

√
νn + b2n log n

λ
1/2
d

.

Applying Equations (6) and (8) along with the trivial log n = Ω(1), we have∥∥∥QŜ−1/2QTUT (A− P )UUTMX
∥∥∥ = op

(
λd√
n

)
. (34)

For the fourth term in Equation (31), recalling R1 = UUT Û − UQ = U(UT Û − Q),
observe that

QŜ1/2RT1 MX = QŜ1/2(UT Û −Q)TUTMUS1/2,

whence Lemma 33 and Proposition 37 imply that∥∥∥QŜ1/2RT1 MX
∥∥∥ ≤ ∥∥∥Ŝ1/2

∥∥∥∥∥∥UT Û −Q∥∥∥
F
‖MU‖

∥∥∥S1/2
∥∥∥

≤ Cdλ1(νn + b2n)n log2 n

λ2
d

.

Using Equation (6) and the trivial λ1 ≥ λd, Equation (9) then implies∥∥∥QŜ1/2RT1 MX
∥∥∥ = op

(
λd√
n

)
. (35)

Similarly, for the fifth term in Equation (31), applying submultiplicativity followed by
Equation (29) and Lemma 33,

∥∥QRT2 UTMX
∥∥ ≤ ‖R2‖

∥∥∥S1/2
∥∥∥ ≤ Cλ

3/2
1 (νn + b2n)n log2 n

λ
5/2
d

+
Cdλ

1/2
1

√
νn + b2n log n

λ
1/2
d

.

Equations (6) and (9) control the first of these terms, while Equations (6) and (8) control
the second, and we conclude that

∥∥QRT2 UTMX
∥∥ = op

(
λd√
n

)
. (36)

For the sixth term in Equation (31), we expand R3 to write

QŜ−1/2RT3 (I − UUT )(A− P )MX

= QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )MX (37)

+QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )MX. (38)
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To bound (37), we use submultiplicativity, Lemma 33, (27) of Lemma 38, and Lemma 34
to write ∥∥∥QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )MX

∥∥∥
≤ C

∥∥∥Ŝ−1/2
∥∥∥∥∥∥Û − UUT Û∥∥∥‖A− P‖∥∥∥S1/2

∥∥∥
≤ Cλ−1/2

d

C
√
d
√
νn + b2n

√
n log n

λd
Cλ

1/2
1

√
νn + b2n

√
n log n

≤ C
√
dλ

1/2
1 (νn + b2n)n log2 n

λ
3/2
d

,

Applying Equations (6) and (9),∥∥∥QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )MX
∥∥∥ = op

(
λd√
n

)
. (39)

To bound (38), we apply Lemma 33, Proposition 37 and Lemma 34 to see that∥∥∥QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )MX
∥∥∥

≤
∥∥∥Ŝ−1/2

∥∥∥∥∥∥UT Û −Q∥∥∥‖A− P‖‖MU‖
∥∥∥S1/2

∥∥∥
≤ Cλ−1/2

d

Cd(νn + b2n)n log2 n

λ2
d

λ
1/2
1

√
νn + b2n

√
n log n

≤ Cλ
1/2
1 d(νn + b2n)3/2 n3/2 log3 n

λ
5/2
d

.

Applying Equations (6), (8) and (9),∥∥∥QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )MX
∥∥∥ = op

(
λd√
n

)
. (40)

Using Equations (39) and (40), respectively, to bound (37) and (38), we conclude that∥∥∥QŜ−1/2RT3 (I − UUT )(A− P )MX
∥∥∥ = op

(
λd√
n

)
. (41)

Applying Equations (32), (33), (34), (35), (36) and (41) to the right-hand side of Equa-
tion (31), we conclude that ∥∥∥(X̂QT −X)TMX

∥∥∥ = op

(
λd√
n

)
,

completing the proof.

Lemma 41 Under Assumptions 2, 5 and 6, it holds with high probability that∥∥∥XQ− X̂∥∥∥ = Op

(
λ1(νn + b2n)n log2 n

λ
5/2
d

)
+Op

(
λ

1/2
1

√
νn + b2n

√
n log n

λd

)
.
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Proof Using basic properties of the norm and the triangle inequality,∥∥∥XQ− X̂∥∥∥ ≤ ∥∥∥U(S1/2Q−QŜ1/2)
∥∥∥+

∥∥∥UQŜ1/2 − Û Ŝ1/2
∥∥∥

≤
∥∥∥S1/2Q−QŜ1/2

∥∥∥+
∥∥∥UQ− Û∥∥∥∥∥∥Ŝ1/2

∥∥∥. (42)

By Lemma 38, it holds with high probability that∥∥∥S1/2Q−QŜ1/2
∥∥∥ ≤ Cλ1(νn + b2n)n log2 n

λ
5/2
d

+
Cd
√
νn + b2n log n

λ
1/2
d

Applying Lemmas 33 and 39, it holds with high probability that

∥∥∥UQ− Û∥∥∥∥∥∥Ŝ1/2
∥∥∥ ≤ C

√
dλ

1/2
1

√
νn + b2n

√
n log n

λd
+
Cdλ

1/2
1 (νn + b2n)n log2 n

λ2
d

.

Applying the above two displays to Equation (42),

∥∥∥XQ− X̂∥∥∥ = Op

(
λ1(νn + b2n)n log2 n

λ
5/2
d

)
+Op

(√
νn + b2n log n

λ
1/2
d

)

+Op

(
λ

1/2
1

√
νn + b2n

√
n log n

λd

)
+Op

(
λ

1/2
1 (νn + b2n)n log2 n

λ2
d

)
.

Collecting terms and using the fact that λd ≤ λ1 ,

∥∥∥XQ− X̂∥∥∥ = Op

(
λ1(νn + b2n)n log2 n

λ
5/2
d

)
+Op

(
λ

1/2
1

√
νn + b2n

√
n log n

λd

)
,

completing the proof.

Lemma 42 Under Assumptions 2, 5 and 6, for any orthogonal projection matrix M ,

∥∥∥QTXTMX − X̂TMX̂ QT
∥∥∥ = op

(
λ2
d√

nλ
1/2
1

)
.

Proof Adding and subtracting appropriate quantities, applying the triangle inequality and
using basic properties of the spectral norm,∥∥∥QTXTMX − X̂TMX̂ QT

∥∥∥ ≤ ∥∥∥(XQ)TM(X − X̂QT )
∥∥∥+

∥∥∥(XQ− X̂)TM(X̂QT −X)
∥∥∥

+
∥∥∥(XQ− X̂)TMX

∥∥∥
≤ 2
∥∥∥(X̂QT −X)TMX

∥∥∥+
∥∥∥XQ− X̂∥∥∥2

‖M‖.
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Using the fact that ‖M‖ ≤ 1 and applying Lemma 40,∥∥∥QTXTMX − X̂TMX̂ QT
∥∥∥ ≤ ∥∥∥XQ− X̂∥∥∥2

+ op

(
λd√
n

)
(43)

By Lemma 41,∥∥∥XQ− X̂∥∥∥2
= Op

(
λ2

1(νn + b2n)2n2 log4 n

λ5
d

)
+Op

(
λ1(νn + b2n)n log2 n

λ2
d

)
.

Applying our growth assumption in Equation (9) controls the first of these terms as o(λd/
√
n),

while Equations (7) and (9) control the second of these terms as o(λd/
√
n), so that∥∥∥XQ− X̂∥∥∥2

= op

(
λd√
n

)
.

Applying this bound to Equation (43),∥∥∥QTXTMX − X̂TMX̂ QT
∥∥∥ = op

(
λd√
n

)
.

Applying our assumption in Equation (10) completes the proof.

Lemma 43 Under Assumption 5, for any (possibly random) matrix H independent of ε,

‖Hε‖ = Op
(√

B traceHTH
)
.

In particular, taking H = I, ‖ε‖ = Op
(√

Bn
)

.

Proof We begin by noting that since ε is a vector of independent mean-zero random
variables,

E‖Hε‖2 = EεTHTHε ≤ B traceHTH,

where B > 0 is the bound on the variance guaranteed by Assumption 5. Applying Markov’s
inequality, for any t > 0 and δ > 0,

P

(
‖Hε‖2

t
> δ

)
≤ E‖Hε‖2

tδ
≤ B traceHTH

tδ
.

Let rn be any function of n growing such that rn = ω(B traceHTH). Then taking
t = rn,

lim
n→∞

P

(
‖Hε‖2

rn
> δ

)
= 0.

Thus, ‖Hε‖2 = op(rn) for any rn = ω(B traceHTH), and it follows that

‖Hε‖2 = Op
(
B traceHTH

)
.

Taking square roots completes the proof.
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Lemma 44 Under Assumptions 2 and 5, let M ∈ Rn×n satisfy ‖M‖ = 1. Then∥∥UT (A− P )Mε
∥∥ = Op

(√
d log n

√
νnBn log n+ b2n

)
.

Proof For each k ∈ [d], define

Sk =
[
UT (A− P )Mε

]
k

=

n∑
i=1

n∑
j=1

(A− P )ijUik(Mε)j

and note that ∥∥UT (A− P )Mε
∥∥2

2
=

d∑
k=1

S2
k .

By Corollary 2.11 in Boucheron et al. (2013), for any t > 0,

P(|Sk| ≥ t |X, ε) ≤ 2 exp

 −t2

2
(
νn
∑n

i=1

∑n
j=1 U

2
ik(Mε)2

j + bnt
)


= 2 exp

 −t2

2
(
νn
∑n

j=1(Mε)2
j + bnt

)


= 2 exp

{
−t2

2(νn‖Mε‖2 + bnt)

}
≤ 2 exp

{
−t2

2(νn‖ε‖2 + bnt)

}
.

Note that we can drop the conditioning on X in the above since the bound is free of
terms that depend on X. We now need to drop the conditioning on ε. Let Gn denote the

event
{
‖ε‖2 < nB log n

}
and Gcn denote the complement of Gn. By a slight modification

of the proof of Lemma 43 with H = I, Gn occurs with probability at least 1− 1
logn . Thus

P(|Sk| ≥ t) = P(|Sk| ≥ t |Gn) · P(Gn) + P(|Sk| ≥ t |Gcn) · P(Gcn)

≤ P(|Sk| ≥ t |Gn) + P(Gcn)

≤ P(|Sk| ≥ t |Gn) +
1

log n

using our previous bound on P(|Sk| ≥ t |X, ε). Let δ > 0 be arbitrary. Taking t =
C log n

(√
νnBn log n+ bn

)
δ for C > 0 suitably large, it follows that

P
(
|Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
∣∣∣Gn) ≤ 2n−3.

A union bound over all k ∈ [d] implies that

P
({
∃k ∈ [d] : |Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
} ∣∣∣Gn) ≤ 2d

n3
≤ 2n−2
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from we which we see that

P
({
∃k ∈ [d] : |Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
})

= P
({
∃k ∈ [d] : |Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
} ∣∣∣Gn) · P(Gn)

+ P
({
∃k ∈ [d] : |Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
} ∣∣∣Gcn) · P(Gcn)

≤ P
({
∃k ∈ [d] : |Sk| ≥ C log n

(√
νnBn log n+ bn

)
δ
} ∣∣∣Gn)+ P(Gcn)

≤ 2

n2
+

1

log n
.

Thus,
∥∥UT (A− P )Mε

∥∥2

2
=
∑d

k=1 S
2
k ≥ Cd

(
νnBn log n+ b2n

)
δ2 log2 n with probability

2n−2 + 1/ log n; that is,∥∥UT (A− P )Mε
∥∥ = op

(√
d
√
νnBn log n+ b2n log n

)
,

completing the proof.

Lemma 45 Suppose that Assumptions 2, 5 and 6 hold. Then∥∥∥(X̂QT −X)TMε
∥∥∥ = op

(
λd√
n

)
.

Proof Applying Lemma 36 to expand X̂ −XQ,

(X̂QT −X)TMε

= Q
(
Û Ŝ1/2 − US1/2Q

)T
Mε

= QS−1/2UT (A− P )Mε+Q(QŜ−1/2 − S−1/2Q)TUT (A− P )Mε

+QŜ−1/2QTUT (A− P )UUTMε+QŜ1/2RT1 Mε+QRT2 U
TMε

+QŜ−1/2RT3 (I − UUT )(A− P )Mε.

(44)

We will bound each of the six terms on the right-hand side in turn. In the first term,
expanding the definition of X and using submultiplicativity of the norm,∥∥∥QS−1/2UT (A− P )Mε

∥∥∥ ≤ ∥∥∥S−1/2
∥∥∥∥∥UT (A− P )Mε

∥∥.
Applying Lemmas 33 and 44,∥∥∥QS−1/2UT (A− P )Mε

∥∥∥ = Op

(
(νnBn log n+ b2n)1/2 log n

λ
1/2
d

)

= Op

(√
νn + b2n

√
n log3/2 n

λ
1/2
d

)
,
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where we have used the trivial upper bound

νnn log n+ b2n ≤ n(νn + b2n) log n (45)

along with the assumption that d and B are constant in n. Equation (8) then implies that∥∥∥QS−1/2UT (A− P )Mε
∥∥∥ = op

(
λd√
n

)
. (46)

For the second term in Equation (44), we use submultiplicativity of the spectral norm
again to write∥∥∥Q(QŜ−1/2 − S−1/2Q)TUT (A− P )Mε

∥∥∥ ≤ ∥∥∥QŜ−1/2 − S−1/2Q
∥∥∥∥∥UT (A− P )Mε

∥∥.
Equation (30) from Lemma 38 bounds the first multiplicand on the right-hand side, while
Lemma 44 bounds the second, and we have∥∥∥Q(QŜ−1/2 − S−1/2Q)TUT (A− P )Mε

∥∥∥
≤ C

(
λ1(νn + b2n)n log2 n

λ
7/2
d

+

√
νn + b2n log n

λ
3/2
d

)
op

(√
νnBn log n+ b2n log n

)
= op

(
λ1(νn + b2n)3/2n3/2 log7/2 n

λ
7/2
d

)
+ op

(
(νn + b2n)n1/2 log5/2 n

λ
3/2
d

)

where we have again used the bound in Equation (45) and our assumption that B and
d are constants. Raising the quantity in Equation (8) to the third power and applying
Equation (6), the first of these as op(λd/

√
n). Trivially using λ1 ≥ λd and log n = o(n),

Equation (9) bounds the second term by the same rate, and it follows that∥∥∥Q(QŜ−1/2 − S−1/2Q)TUT (A− P )Mε
∥∥∥ = op

(
λd√
n

)
. (47)

For the third term in Equation (44), submultiplicativity followed by Lemmas 33, 35
and 43 yields ∥∥∥QŜ−1/2QTUT (A− P )UUTMε

∥∥∥ ≤ ∥∥∥Ŝ−1/2
∥∥∥∥∥UT (A− P )U

∥∥‖ε‖
≤ Cλ−1/2

d d
√
νn + b2n‖ε‖ log n

= Op

(√
νn + b2n

√
n log n

λ
1/2
d

)
.

The trivial bound log1/2 n = Ω(1) and our growth bound in Equation (8) imply∥∥∥QŜ−1/2QTUT (A− P )UUTMε
∥∥∥ = op

(
λd√
n

)
. (48)
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For the fourth term in Equation (44), recalling the definition of R1 = UUT Û − UQ =
U(UT Û −Q), observe that

QŜ1/2RT1 Mε = QŜ1/2(UT Û −Q)TUTMε.

Applying submultiplicativity followed by Lemma 33, Proposition 37 and Lemma 43, and
using our assumption that B is constant in n,∥∥∥QŜ1/2RT1 Mε

∥∥∥ ≤ ∥∥∥Ŝ1/2
∥∥∥∥∥∥UT Û −Q∥∥∥

F
‖ε‖

= op

(
λ

1/2
1 (νn + b2n)n3/2 log2 n

λ2
d

)
.

Using the trivial upper bound λ1 ≥ λd and our growth assumption in Equation (9), it
follows that ∥∥∥QŜ1/2RT1 Mε

∥∥∥ = op

(
λd√
n

)
. (49)

Similarly, for the fifth term in Equation (44), applying submultiplicativity followed by
Equation (29) and Lemma 43,∥∥QRT2 UTMε

∥∥ ≤ ‖R2‖‖ε‖

≤ C

[
λ1(νn + b2n)n log2 n

λ
5/2
d

+
(νn + b2n)1/2 log n

λ
1/2
d

]
Op
(√
n
)

= Op

(
λ1(νn + b2n)n3/2 log2 n

λ
5/2
d

)
+Op

(√
νn + b2n

√
n log n

λ
1/2
d

)
.

(50)

Our growth assumption in Equation (9) states that the first of these two rates is op(λd/
√
n).

Our bound in Equation (8) along with the trivial bound log1/2 n = Ω(1) implies that the
second is op(λd/

√
n), whence ∥∥QRT2 UTMε

∥∥ = op

(
λd√
n

)
. (51)

For the sixth term in Equation (44), we expand R3 to write

QŜ−1/2RT3 (I − UUT )(A− P )Mε

= QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )Mε (52)

+QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )Mε. (53)

To bound (52), we use submultiplicativity followed by Lemma 33, Equation (27) of Lemma 38,
and Lemma 34 to see ∥∥∥QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )Mε

∥∥∥
≤ C

∥∥∥Ŝ−1/2
∥∥∥∥∥∥Û − UUT Û∥∥∥‖A− P‖‖ε‖

≤ C(νn + b2n)n3/2 log2 n

λ
3/2
d

.
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Applying the trivial upper bound λ1 ≥ λd and our growth bound in Equation (9),∥∥∥QŜ−1/2(Û − UUT Û)T (I − UUT )(A− P )Mε
∥∥∥ = op

(
λd√
n

)
. (54)

To bound (53), we apply submultiplicativity followed by Lemma 33, Proposition 37,
Lemma 34 and Lemma 43 to see∥∥∥QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )Mε

∥∥∥
≤ C

∥∥∥Ŝ−1/2
∥∥∥∥∥∥UT Û −Q∥∥∥‖A− P‖‖Mε‖ ≤ C(νn + b2n)3/2n2 log3 n

λ
5/2
d

.

Applying Equations (8) and (9) along with the trivial bound λd ≤ λ1 = O(n) from Equa-
tion (6), ∥∥∥QŜ−1/2(UUT Û − UQ)T (I − UUT )(A− P )Mε

∥∥∥ = op

(
λd√
n

)
. (55)

Applying Equations (54) and (55) to bound the respective quantities on lines (52) and (53),
we conclude that ∥∥∥QŜ−1/2RT3 (I − UUT )(A− P )Mε

∥∥∥ = op

(
λd√
n

)
. (56)

Applying Equations (46), (47), (48), (49), (51) and (56) to control the terms of Equa-
tion (44), we conclude that ∥∥∥(X̂QT −X)TMε

∥∥∥ = op

(
λd√
n

)
,

completing the proof.

Lemma 46 Under Assumptions 2, 3, and 5∥∥∥(XTMX
)−1
∥∥∥ = Op

(
λ−1
d

)
and

∥∥∥∥(X̂TMX̂
)−1

∥∥∥∥ = Op
(
λ−1
d

)
.

Proof Recall that M = I −W
(
W TW

)−1
W T . Consider the full singular value decompo-

sition

W =

[
U‖ U⊥

] [
S‖ 0

0 S⊥

] [
V T
‖
V T
⊥

]
,

where U‖, V‖ ∈ Op and U⊥, V⊥ ∈ On−p. It can be shown that M = U⊥U
T
⊥ .

Recall that, for conformable real-valued matrices A and B, (AB)† = B†A† when
B = AT , or when either A or B is an orthogonal matrix (Greville, 1966). Using this
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fact repeatedly, together with submultiplicativity and orthogonal invariance of the spectral
norm, and Lemma 33, we obtain:∥∥∥(XTMX

)−1
∥∥∥ =

∥∥∥(XTU⊥U
T
⊥X

)−1
∥∥∥ =

∥∥∥(XTU⊥U
T
⊥X

)†∥∥∥ =
∥∥∥(UT⊥X)†(XTU⊥

)†∥∥∥
≤
∥∥∥(UT⊥X)†∥∥∥∥∥∥(XTU⊥

)†∥∥∥ =
∥∥∥X†(UT⊥)†∥∥∥∥∥∥U †⊥(XT

)†∥∥∥
≤
∥∥∥X†∥∥∥∥∥∥U †⊥∥∥∥∥∥∥U †⊥∥∥∥∥∥∥X†∥∥∥ =

∥∥∥∥(S1/2
)†∥∥∥∥∥∥∥∥(S1/2

)†∥∥∥∥
= Cλ

−1/2
d · λ−1/2

d = Cλ−1
d .

The proof for the X̂ case is analogous, and uses the fact that Ŝ concentrates around S,
as characterized by Lemma 33. The fact that the inverses exist asymptotically follows from
Assumption 4, which takes the regression coefficients β to be identified.

Lemma 47 (Concentration of Sub-Gaussian Norms) Let W ∈ Rn×p obey Assump-
tion 5, so that W has independent rows, with the entries of each row being possibly depen-
dent, but each marginally sub-Gaussian with parameter σ > 0. Then there exists a constant
C > 0 such that with probability 1−O

(
n−2

)
,

‖W‖ ≤ C
√
pnσ2.

and, also with probability 1−O
(
n−2

)
, it holds for all j ∈ [p] that

‖W·j‖2 ≤ Cnσ2.

Proof To prove the spectral norm bound on W , we adapt the argument given in Theorem
4.6.1 in Vershynin (2020), for which we must first establish the Orlicz norm of each row Wi·
(Vershynin, 2020, Definition 3.4.1). We begin by noting that for any unit vector u ∈ Rp,
any integer q ≥ 1 and i ∈ [n],

E
[(
uTWi·

)2q] ≤ E

p2q−1
p∑
j=1

(ujWij)
2q

 = p2q−1
p∑
j=1

u2q
j E
[
W 2q
ij

]
,

where the inequality follows from the convexity of x 7→ x2q. Since Wij is sub-Gaussian with
parameter σ, using basic properties of sub-Gaussian random variables (see, e.g., Boucheron
et al., 2013, Theorem 2.1),

E
[
W 2q
ij

]
≤ q!(4σ)2q,

and it follows that, trivially upper bounding q! ≤ qq and using ‖u‖ = 1,

E
[(
uTWi·

)2q] ≤ q!(4pσ)2q 1

p

p∑
j=1

u2q
j ≤ q

q(4pσ)2q.
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Thus, we find that for any unit u ∈ Rp, the random variable uTWi· satisfies(
E
[(
uTWi·

)2q])1/2q
≤
√

2q
(

2
√

2pσ2
)
. (57)

That is, the random variable uTWi· has Orlicz norm (Vershynin, 2020, Proposition 2.5.2)

‖uTWi·‖Ψ2 ≤ Cpσ2.

Taking the supremum over all unit u ∈ Rp, the random vector Wi· has Orlicz norm (see,
e.g., Vershynin, 2020, Definition 3.4.1)

‖Wi·‖Ψ2 ≤ Cpσ2. (58)

Following the argument of Theorem 4.6.1 in Vershynin (2020), let N be a (1/4)-net for
the unit sphere in Rp, which can be constructed with cardinality at most 9p. It follows that∥∥∥∥ 1

n
W TW

∥∥∥∥ ≤ 2 max
u∈N

∣∣∣∣ 1nuTW TWu

∣∣∣∣ = 2 max
u∈N

1

n
‖Wu‖2.

Fixing u ∈ N , note that

1

n
‖Wu‖2 =

1

n

n∑
i=1

(
uTWi·

)2
.

Since the random vector Wi· has Orlicz norm as given in Equation (58), uTWi· is subgaussian
with parameter Cpσ2 and it follows that

1

n

(
‖Wu‖2 − E

[
‖Wu‖2

])
=

1

n

n∑
i=1

[
(uTWi·)

2 − E
[
(uTWi·)

2
]]

is the sample mean of n independent sub-exponential random variables, each with parameter
Cpσ2 (adjusting C by a suitable constant multiple). Define δ = C(

√
p + t)/

√
n for t ≥ 0

and set ε = Cpσ2 max{δ, δ2}. Applying Bernstein’s inequality (Vershynin, 2020, Corollary
2.8.3), an argument essentially identical to that in Step 2 of Theorem 4.6.1 in Vershynin
(2020), yields that

P
(∣∣∣∣ 1n (‖Wu‖2 − E

[
‖Wu‖2

])∣∣∣∣ ≥ ε

2

)
≤ 2 exp

{
−C(p+ t2)

}
.

Setting t = C log1/2 n for suitably large C > 0 and taking a union bound over all at most 9p

vectors u ∈ N , it follows that with probability at least 1 −O
(
n−2

)
, it holds for all u ∈ N

that ∣∣∣∣ 1n (‖Wu‖2 − E
[
‖Wu‖2

])∣∣∣∣ ≤ Cσ2p(
√
p+ log1/2 n)2

√
n

≤ Cpσ2(p+ log n)√
n

.

Thus, it follows that with probability at least 1−O
(
n−2

)
, for all u ∈ N

‖Wu‖2 ≤ E
[
‖Wu‖2

]
+ Cpn1/2σ2(p+ log n). (59)
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Expanding Wu and setting q = 1 in Equation (57),

E
[
‖Wu‖2

]
=

n∑
i=1

E
[
(uTWi·)

2
]
≤ Cpnσ2.

Applying this bound to Equation (59), with probability at least 1−O
(
n−2

)
, it holds for all

u ∈ N that
‖Wu‖2 ≤ Cpσ2(n+ n1/2 log n).

Thus, with probability at least 1−O
(
n−2

)
,

‖W‖2 ≤ 2 max
u∈N
‖Wu‖2 ≤ Cpσ2n.

Taking square roots yields our desired bound on the spectral norm. To prove the column-
wise bound on W , observe that for any j ∈ [p], we use a straight-forward adaptation of the
proof of Theorem 3.1.1 in Vershynin (2020). We observe that

1

n
‖W·j‖2 −

1

n

n∑
i=1

E
[
W 2
ij

]
=

1

n

n∑
i=1

(
W 2
ij − E

[
W 2
ij

])
is the sample mean of independent mean-zero random variables, each of which is sub-
exponential with parameter Cσ for suitably chosen constant C > 0. An application of
Bernstein’s inequality (Boucheron et al., 2013) then yields that with probability 1−O

(
n−2

)
,∣∣∣∣∣ 1n

n∑
i=1

(
W 2
ij − E

[
W 2
ij

])∣∣∣∣∣ ≤ C
√
σ2 log n

n1/2
.

Thus, with probability at least 1−O
(
n−2

)
,

‖W·j‖2 = E
[
‖W·j‖2

]
+
C
√
σ2 log n

n1/2
≤ Cnσ2

for C > 0 chosen suitably large.

Lemma 48 Under Assumptions 2 and 5, with notation as above, it holds with probability
at least 1−O

(
n−2

)
that∥∥UT (A− P )W

∥∥
F
≤ C

√
dp(νn + b2n)n log n.

Proof We will show that
∥∥UT (A− P )W

∥∥2

F
≥ Cdp(νn + b2n)n log n with probability no

larger than O(n−2), whence taking square roots will yield the result.
For each k ∈ [d], ` ∈ [p+ 2], define

Sk,` =
[
UT (A− P )W

]
k,`

=

n∑
i=1

n∑
j=1

(A− P )ijUikWj`
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and note that ∥∥UT (A− P )W
∥∥2

F
=

d∑
k=1

p+2∑
`=1

S2
k,`.

By Corollary 2.11 in Boucheron et al. (2013), for any t > 0,

P(|Sk,`| ≥ t |X,W ) ≤ 2 exp

 −t2

2
(
νn
∑n

i=1

∑n
j=1 U

2
ikW

2
j` + bnt

)
.

Let Gn denote the event
{
‖W·`‖2 ≤ CW n

}
for some constant CW , and Gcn denote the

complement of Gn. By Lemma 47, Gn occurs with probability at least 1−O
(
n−2

)
. Thus

P(|Sk,`| ≥ t) = P(|Sk,`| ≥ t |Gn) · P(Gn) + P(|Sk,`| ≥ t |Gcn) · P(Gcn)

≤ P(|Sk,`| ≥ t |Gn) + P(Gcn)

≤ P(|Sk,`| ≥ t |Gn) +O
(
n−2

)
.

Now observe that
∑n

j=1W
2
j` is the squared `2 norm of a column of W . By the definition

of Gn,

P(|Sk,`| ≥ t |Gn) ≤ 2 exp

{
−t2

2(CWnνn + bt)

}
.

Thus

P(|Sk,`| ≥ t) ≤ 2 exp

{
−t2

2(CWnνn + bt)

}
+O

(
n−2

)
Taking t = C(νn + b2n)1/2

√
n log n for C > 0 suitably large, it follows that

P
(
|Sk,`| ≥ C(νn + b2n)1/2

√
n log n

)
≤ 2n−4 +O

(
n−2

)
.

A union bound over all k ∈ [d], ` ∈ [p+ 2] implies that

P
(
∃k ∈ [d], ` ∈ [p] : |Sk,`| ≥ C(νn + b2n)1/2

√
n log n

)
≤ 2d(p+ 2)

n4
+O

(
d(p+ 2)

n2

)
= O

(
n−2

)
,

as d and p are fixed as a function of n. It follows that

P
(∥∥UT (A− P )W

∥∥2

F
≥ Cdp(νn + b2n)n log2 n

)
≤ 2n−2,

completing the proof.

Lemma 49 Suppose that Assumptions 2, 5 and 6 hold. Then∥∥∥(X̂QT −X)TW
∥∥∥ = op

(√
n
)
.
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Proof Applying Lemma 36,

(X̂QT −X)TW

= Q
(
Û Ŝ1/2 − US1/2Q

)T
W

= QS−1/2UT (A− P )W +Q(QŜ−1/2 − S−1/2Q)TUT (A− P )W

+QŜ−1/2QTUT (A− P )UUTW +QŜ1/2RT1 W +QRT2 U
TW

+QŜ−1/2RT3 (I − UUT )(A− P )W.

(60)

We observe that since λd/
√
n ≤ λ1

√
n trivially, our growth assumption in Equation (6)

implies that it is sufficient to show that the above terms are all bounded as o(λd/
√
n).

This is precisely the bound obtained in Lemma 45, and the proof of this lemma proceeds
identically, but using Lemma 48 instead of Lemma 44 and using the bound in Lemma 47
instead of directly bounding ‖S1/2‖. The remaining details of the proof are omitted.

E.4 Proof of Lemma 26

The following fact will be useful in the subsequent proofs.

Proposition 50 For u, v ∈ Rk,
∥∥uuT − vvT∥∥ ≤ 2‖u− v‖‖v‖+ ‖u− v‖2.

Proof Follows from adding and subtracting appropriate quantities and repeatedly apply-
ing the triangle inequality.

Proposition 51 Under Assumption 5,

max
i∈[n]
‖Wi·‖ = Op

(√
log n

)
.

Proof Since each Wij is sub-Gaussian with variance parameter σ2, by Theorem 2.1 of
Boucheron et al. (2013),

P(|Wij | ≥ t) ≤ 2 exp
(
−t2/2σ2

)
.

By a union bound,

P
(

max
ij
|Wij | ≥ t

)
≤ 2n(p+ 2) exp

(
−t2/2σ2

)
.

Taking t =
√
Cσ2 log n and C > 0 sufficiently large,

P
(

max
i∈[n],j∈[p+2]

|Wij | ≥
√
Cσ2 log n

)
≤ 2n(p+ 2) exp

(
−Cσ2 log n/2σ2

)
=

(4p+ 4)

n2
.

Observing that maxi∈[n] ‖Wi·‖ ≤
√
p+ 2 maxijWij , we obtain the desired result.
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Proposition 52 Suppose Assumptions 2, 4, 5 and 6 hold. Letting Q ∈ Od be as in
Lemma 31, define

Q̃ =

[
Ip+2 0

0 Q

]
.

Then Σ̂β → Q̃Σ̃βQ̃
T in probability, where Σ̂β and Σ̃β are as defined in Definition 8.

Proof By definition,∥∥∥Σ̂β − Q̃Σ̃βQ̃
T
∥∥∥ =

∥∥∥∥Â−1
β · B̂β ·

(
Â−1
β

)T
− Q̃T Ã−1

β Q̃ · Q̃T B̃βQ̃ · Q̃T
(
Ã−1
β

)T
Q̃

∥∥∥∥.
By the continuous mapping theorem, it is sufficient to show Âβ → Q̃T ÃβQ̃ and B̂β →
Q̃T B̃βQ̃, with both convergences holding in probability.

We begin by observing that

Âβ − Q̃T ÃβQ̃ =
1

n

[
0 W T (X̂ −XQ)

(X̂ −XQ)TW X̂T X̂ −QTXTXQ

]
,

and so, applying Lemma 49 to bound ‖(X̂ −XQ)TW‖ = op(
√
n),∥∥∥Âβ − Q̃T ÃβQ̃∥∥∥ ≤ 2

n

∥∥∥(X̂ −XQ)TW
∥∥∥+

1

n

∥∥∥X̂T X̂ −QTXTXQ
∥∥∥

=
1

n

∥∥∥X̂T X̂ −QTXTXQ
∥∥∥+ op

(
n−1/2

)
.

(61)

Applying Lemma 42 with M = I,

1

n

∥∥∥X̂T X̂ −QTXTXQ
∥∥∥ = op

(
λ2
d

n3/2λ
1/2
1

)
.

Using the fact that λd ≤ λ1 by definition and applying Equation (6),

1

n

∥∥∥X̂T X̂ −QTXTXQ
∥∥∥ = op(1).

Applying this to Equation (61),∥∥∥Âβ − Q̃T ÃβQ̃∥∥∥ = op(1) + op

(
n−1/2

)
= op(1).

The continuous mapping theorem then implies that

Â−1
β → Q̃T Ã−1

β Q̃ in probability.

It remains to show that B̂β converges to Q̃T B̃βQ̃ in probability. Toward this end, recall

the definitions ε̂i = Yi − D̂i·β̂ and ε̃i = Yi − Di·β̃. Adding and subtracting appropriate
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quantities,

∥∥∥B̂β − Q̃T B̃βQ̃∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

ε̂2
i D̂

T
i· D̂i· − ε̃2

i Q̃
TDT

i·Di·Q̃

∥∥∥∥∥
=

∥∥∥∥∥ 1

n

n∑
i=1

ε̂2
i

[
D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
]

+
[
ε̂2
i − ε̃2

i

]
Q̃TDT

i·Di·Q̃

∥∥∥∥∥
≤ 1

n

n∑
i=1

ε̂2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥+

∣∣ε̂2
i − ε̃2

i

∣∣∥∥DT
i·Di·

∥∥.
(62)

Adding and subtracting appropriate quantities and applying the triangle inequality,

max
i∈[n]
|ε̂i − ε̃i| = max

i∈[n]

∣∣∣D̂i·Q̃
T Q̃β̂ −Di·β̃

∣∣∣
≤ max

i∈[n]

∥∥∥D̂i·Q̃
T
∥∥∥∥∥∥Q̃β̂ − β̃∥∥∥+

∥∥∥D̂i·Q̃
T −Di·

∥∥∥∥∥∥β̃∥∥∥.
By definition,

∥∥∥D̂i· −Di·Q̃
∥∥∥ =

∥∥∥X̂i· −Xi·Q
∥∥∥. Thus, applying Lemma 32 and using Lemma

33 to ensure that
∥∥∥D̂i·

∥∥∥ = Op
(
λ

1/2
1

)
,

max
i∈[n]
|ε̂i − ε̃i| ≤

∥∥∥Q̃β̂ − β̃∥∥∥Op(λ1/2
1

)
+ ηn

∥∥∥β̃∥∥∥.
Applying Assumption 6 and Lemma 25,

max
i∈[n]
|ε̂i − ε̃i| ≤ ηn + op(1).

Applying the bound on ηn from Lemma 32,

max
i∈[n]
|ε̂i − ε̃i| = op(1).

This in turn yields, by Proposition 50,∣∣ε̂2
i − ε̃2

i

∣∣ ≤ |ε̂i − ε̃i||ε̃i|+ |ε̂i − ε̃i|2 = (1 + |ε̃i|)op(1). (63)

By Proposition 50 and Lemma 31,∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ ≤ ∥∥∥D̂i· −Di·Q̃

∥∥∥∥∥∥Di·Q̃
∥∥∥+

∥∥∥D̂i· −Di·Q̃
∥∥∥2

= ηn‖Di·‖+ η2
n. (64)

Adding and subtracting appropriate quantities,

1

n

n∑
i=1

ε̂2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ ≤ 1

n

n∑
i=1

ε̃2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥

+
1

n

n∑
i=1

[
ε̂2
i − ε̃2

i

]∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ (65)
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By Equation (64),

1

n

n∑
i=1

ε̃2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ ≤ ηn

n

n∑
i=1

ε̃2
i ‖Di·‖+

η2
n

n

n∑
i=1

ε̃2
i

By the regularity conditions in Assumptions 4 and 5, both averages on the right-hand side
converge to constants. Thus, since ηn = o(1) by Lemma 32,

1

n

n∑
i=1

ε̃2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ ≤ C ηn = op(1). (66)

Appealing to Equations (63) and (64),

1

n

n∑
i=1

[
ε̂2
i − ε̃2

i

]∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ =

op(1)

n

n∑
i=1

(1 + |ε̃i|)ηn (‖Di·‖+ ηn)

=
op(ηn)

n

n∑
i=1

(1 + |ε̃i|) (‖Di·‖+ ηn) .

By Assumptions 4 and 5, the mean on the right-hand side converges to a constant, and
again recalling that ηn = o(1), we have

1

n

n∑
i=1

[
ε̂2
i − ε̃2

i

]∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ = op(1).

Applying this and Equation (66) to Equation (65),

1

n

n∑
i=1

ε̂2
i

∥∥∥D̂T
i· D̂i· − Q̃TDT

i·Di·Q̃
∥∥∥ = op(1). (67)

By Equation (63) and Proposition 50,

1

n

n∑
i=1

∣∣ε̂2
i − ε̃2

i

∣∣ ∥∥DT
i·Di·

∥∥ ≤ op(1)

n

n∑
i=1

(1 + |ε̃i|)‖Di·‖2.

Assumptions 4 and 5 ensure that the mean on the right-hand side converges to a constant,
and we have

1

n

n∑
i=1

∣∣ε̂2
i − ε̃2

i

∣∣ ∥∥DT
i·Di·

∥∥ = op(1).

Applying this and Equation (67) to Equation (62), we conclude that∥∥∥B̂β − Q̃T B̃βQ̃∥∥∥ = op(1),

completing the proof.
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Remark 53 Proposition 54 below states that the robust covariance estimator for Θ̂ based on
X̂ converges to the robust covariance estimator based on X, but subject to some orthogonal
non-identifiability. The orthogonal non-identifiability has a somewhat nasty form because
we have vectorized Θ̂ in for the stake of M -estimation. To understand the result more
intuitively, suppose that d = 1. Then Theorem 9 states

√
n Σ̂
−1/2
vec(Θ)

(
Θ̂QT −Θ

)
→ N (0, Ip),

such that Θ̂ ∈ Rd×1. Proposition 54 then states that Σ̂vec(Θ) → Q̃Σ̃vec(Θ)Q̃
T , analogously to

Proposition 52.

Proposition 54 Suppose Assumptions 2, 4, 5 and 6 hold. Let

Σ̃vec(ΘQ) = Ã−1
vec(Θ) · B̃vec(ΘQ) ·

(
Ã−1

vec(Θ)

)T
,

where Ãvec(Θ) is as defined in Definition 8, and

B̃vec(ΘQ) =
1

n

n∑
i=1

QT ξ̃Ti· ξ̃i·Q⊗W T
i·Wi·.

Under Assumptions 2, 4, and 5, and Definition 8, Σ̂vec(Θ) → Σ̃vec(ΘQ) in probability.

Proof By definition, Âvec(Θ) = Ãvec(Θ). Thus, by the continuous mapping theorem, it will

suffice to show that B̂vec(Θ) → B̃vec(Θ).

Let ξ̃i· = Xi· −Wi·Θ̃. Then, by the triangle inequality and properties of the Kronecker
product, ∥∥∥B̂vec(Θ) − B̃vec(Θ)

∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

(
ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q

)
⊗W T

i·Wi·

∥∥∥∥∥
≤ 1

n

n∑
i=1

∥∥∥(ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q)⊗W T
i·Wi·

∥∥∥
≤ 1

n

n∑
i=1

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥∥∥W T
i·Wi·

∥∥.
Applying Cauchy-Schwarz, we obtain

∥∥∥B̂vec(Θ) − B̃vec(Θ)

∥∥∥ ≤
√√√√ 1

n

n∑
i=1

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥2

√√√√ 1

n

n∑
i=1

∥∥W T
i·Wi·

∥∥2
. (68)

We will show that this product is op(1), which will complete the proof. Using basic
properties of the norm,

E
[∥∥W T

i·Wi·
∥∥2
]
≤ E

[
‖Wi·‖4

]
= E

p+2∑
j=1

W 2
ij

2 ≤ C p+2∑
j=1

E
[
W 4
ij

]
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Our sub-Gaussian assumption on the entries of Wi· imply that E
[
W 4
ij

]
≤ Cσ4 (Boucheron

et al., 2013, Theorem 2.1), whence

E
[∥∥W T

i·Wi·
∥∥2
]
≤ C(p+ 2)σ4 = O(1).

It follows that, by the law of large numbers,

1

n

n∑
i=1

∥∥W T
i·Wi·

∥∥2
= Op(1).

Applying this fact to Equation (68), our proof will be complete if we can show that

1

n

n∑
i=1

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥2
= op(1). (69)

Recalling the definition of ξ̂ij from Definition 8, we observe that

ξ̂i· − ξ̃i·Q = X̂i· −Wi·Θ̂−Xi·Q+Wi·Θ̃Q = X̂i· −Xi·Q+Wi·

(
Θ̃Q− Θ̂

)
.

Using Lemma 31 to bound maxi

∥∥∥X̂i· −Xi·Q
∥∥∥, Lemma 25 to bound

∥∥∥Θ̃Q− Θ̂
∥∥∥ and

Proposition 51 to bound ‖Wi·‖, it follows that

max
i∈[n]

∥∥∥ξ̂i· − ξ̃i·Q∥∥∥ ≤ ηn + max
i∈[n]
‖Wi·‖ op

(
n−1/2

)
= ηn + op

(
n−1/2 log1/2 n

)
.

Applying our growth assumptions to ensure that ηn = o(1),

max
i∈[n]

∥∥∥ξ̂i· − ξ̃i·Q∥∥∥ = op(1). (70)

Adding and subtracting appropriate quantities,

ξ̃i· = ξ̃i· − ξi· + ξi· = Xi· −Wi·Θ̃−Xi· +Wi·Θ + ξi· = Wi·

(
Θ− Θ̃

)
+ ξi·,

so that
∥∥∥ξ̃i·∥∥∥ = ‖ξi·‖+ op

(
n−1/2 log1/2 n

)
, and it follows that

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥2
=
∥∥∥(ξ̂Ti· −QT ξ̃Ti·)(ξ̂i· − ξ̃i·Q)+

(
ξ̂Ti· −QT ξ̃Ti·

)
ξ̃i· + ξ̃Ti·

(
ξ̂i· − ξ̃i·Q

)∥∥∥2

≤
∥∥∥ξ̂i· − ξ̃i·Q∥∥∥4

+ 2 ‖ξi·‖
∥∥∥ξ̂i· − ξ̃i·Q∥∥∥3

+
∥∥∥ξ̃i·∥∥∥2∥∥∥ξ̂i· − ξ̃i·Q∥∥∥2

= op(1) ·
[
1 + ‖ξi·‖+ ‖ξi·‖2

]
,

where we have made several applications of Equation (70). Thus,

1

n

n∑
i=1

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥2
≤ op(1) · 1

n

n∑
i=1

(
1 + ‖ξi·‖+ ‖ξi·‖2

)
.
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By the law of large numbers and Assumption 5, the mean on the right-hand side converges
in probability to a finite constant. Thus,

1

n

n∑
i=1

∥∥∥ξ̂Ti· ξ̂i· −QT ξ̃Ti· ξ̃i·Q∥∥∥2
= op(1),

which establishes Equation (69) and completes the proof.

Appendix F. Proofs for Causal Estimators

Here we collect the proofs of Theorems 17 and 18.

F.1 Proof of Theorem 17

Proof Follows immediately from Theorem 9, Proposition 3 and the delta method.

F.2 Proof of Theorem 18

Before giving a formal proof of Theorem 18, we give a high-level sketch of the argument.
As above, let Ψ̃nie denote the analogous estimator to Ψ̂nie, but based on X rather than X̂.

First, we show that Ψ̃nie converges to a normal distribution centered on Ψnie by a stacked
M-estimation argument. This requires an extension of Theorem 22 to show that (β̃, Θ̃) are
jointly asymptotically normal rather than marginally asymptotically normal. Then, using
the delta method, we show

√
n
(

Ψ̃nie −Ψnie

)
→ N

(
0, σ2

nie

)
.

Next we show that we can replace the true latent positions X with the estimates X̂ without
changing the asymptotic distribution of our estimates. By Slutsky’s theorem it is sufficient
show that ∣∣∣Ψ̂nie − Ψ̃nie

∣∣∣ = op

(
1√
n

)
.

Finally, we argue that σ̂2
nie is a consistent estimator for σ̃2

nie, which is itself a consistent
estimator for σ2

nie under some mild conditions (Boos and Stefanski, 2013, Theorem 7.3,
Theorem 7.4).

Proof Define θ =
(
ΘT
·1, ...,Θ

T
·d, β

T
)T

. Observe that
(

Θ̂T
·1, ..., Θ̂

T
·d, β̂

T
)T

is an M -estimator

with estimating function

ψ((Yi,Wi·, Di·),θ
∗) =


(Xi1 −Wi·Θ·1)Wi·

...
(Xid −Wi·Θ·d)Wi·

(Yi −Di·β)Di·

 .
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Recall the prior definitions of D and W as the design matrices for the mediator and outcome
regressions. Then, by straightforward calculation, or Boos and Stefanski (2013, Chapter
7), and recalling the definitions of Avec(Θ) ∈ Rpd×pd and Aβ ∈ R(d+p)×(d+p) from Assump-
tion 4, we have, under sufficient regularity conditions for limits and expectations to be
interchangeable,

Aθ = lim
n→∞

E

[
− 1

n

n∑
i=1

ψ′((Yi,Wi·, Di·),θ)

]

= lim
n→∞

E


1
n

∑n
i=1Wi·W

T
i· 0 . . . 0

0
. . . 0 0

... 0 1
n

∑n
i=1Wi·W

T
i· 0

0 0 0 1
n

∑n
i=1Di·D

T
i·


=

[
Avec(Θ) 0

0 Aβ

]
.

Further, again recalling the definitions of Bvec(Θ) ∈ Rpd×pd and Bβ ∈ R(d+p)×(d+p) from
Assumption 4, we have

Bθ = lim
n→∞

E

[
1

n

n∑
i=1

ψ((Yi,Wi·, Di·),θ)ψ((Yi,Wi·, Di·),θ)T
]

= lim
n→∞

E

 1

n

n∑
i=1


ξi1Wi·W

T
i· ξ

T
i1 . . . ξi1Wi·W

T
i· ξ

T
id 0

...
. . .

... 0
ξidWi·W

T
i· ξ

T
i1 . . . ξidWi·W

T
i· ξ

T
id 0

0 0 0 ε2
iDi·D

T
i·




=

[
Bvec(Θ) 0

0 Bβ

]
.

While the diagonal blocks of Bθ correspond to Bvec(Θ), and Bβ, we show the derivation of
the off-diagonal blocks. By the tower law, definition of D and ξ, and then Assumption 4,
we have

B14 =
1

n

n∑
i=1

E
[
E
[
ξi1Wi·D

T
i· ε

T
i

∣∣Di·
]]

=
1

n

n∑
i=1

E
[
(Xi1 −Wi·Θ·1)Wi·D

T
i·E
[
εTi
∣∣Di·

]]
= 0

where the derivations to show that B23 = B34 = 0 are analogous to the B14 case. Under
Assumption 4, Theorem 7.2 of Boos and Stefanski (2013) implies that[

vec(Θ̂)

β̂

]
→ N

([
vec(Θ)
β

]
,

[
Σvec(Θ) 0

0 Σβ

])
,
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where Σvec(Θ) and Σβ are the same marginal covariances for vec
(

Θ̂
)

and β̂ from Theorem

22. This is an extension of Theorem 22 in that it shows that Θ̂ and β̂ are jointly, rather than
marginally, asymptotically normal. Also note that the asymptotic covariances between Θ̂
and β̂ are zero, such that we can concatenate the previous marginal covariance estimators
to obtain a joint covariance estimate. Next we show that∣∣∣Ψ̂nie − Ψ̃nie

∣∣∣ = op

(
1√
n

)
.

Recall that
Ψ̂nie = (t− t∗) θ̂t β̂x

We apply the submultiplicativity to obtain∣∣∣Ψ̂nie − Ψ̃nie

∣∣∣
(t− t∗)

≤
∥∥∥θ̂tβ̂x − θ̃tβ̃x

∥∥∥
We now bound the first term on the right-hand side via∣∣∣θ̂tβ̂x − θ̃tβ̃x

∣∣∣ ≤ ∥∥∥θ̂t

(
β̂x − β̃x

)∥∥∥+
∥∥∥(θ̂t − θ̃t

)
β̃x

∥∥∥
≤
∥∥∥θ̂t − θ̃t

∥∥∥∥∥∥β̂x − β̃x

∥∥∥+
∥∥∥θ̃t

∥∥∥∥∥∥β̂x − β̃x

∥∥∥+
∥∥∥θ̂t − θ̃t

∥∥∥∥∥∥β̃x

∥∥∥.
By Lemma 23,

∥∥∥θ̃t

∥∥∥ and
∥∥∥β̃x

∥∥∥ are both Op(1). By Theorem 9,
∥∥∥θ̂t − θ̃t

∥∥∥ and
∥∥∥β̂x − β̃x

∥∥∥
are both op

(
n−1/2

)
. Thus, we obtain that the upper display is op

(
n−1/2

)
, as desired.

Finally, we show that σ̂2
nie is a consistent estimator for σ2

nie. By Theorem 7.2 of Boos

and Stefanski (2013) and the delta method, the asymptotic variance of Ψ̃nie is given by

σ2
nie = (t− t∗)T

[
βx

θt

]T [
Σθt 0
0 Σβx

] [
βx

θt

]
(t− t∗).

By Theorem 9, Proposition 52, Proposition 54, and the continuous mapping theorem,
σ̂2

nie converges to σ̃2
nie in probability.

Appendix G. Additional Simulation Results

In this section we report additional results from our simulation study.

G.1 Convergence Rates for β̂ and Θ̂

In Section 4, we showed that Ψ̂nde converged to Ψnde and Ψ̂nie converged to Ψnie. We now
show similar convergence results for the regression estimators β̂ and Θ̂. Recall that β̂x and
Θ̂ only recover βx and Θ up to an unknown orthogonal transformation Q. Luckily, since
the true latent positions are known in our simulations, we can align X̂ with the latent X
by solving a Procrustes alignment problem (Gower and Dijksterhuis, 2004). As a result,
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Figure 21: Elementwise `1 convergence of Θ̂QT to Θ under the uninformative model. Recall
that Θ̂ is a matrix-valued estimator. Each panel shows the `1 error (vertical axis, log scale)
of a portion of Θ̂ as a function of the number of nodes in the network (horizontal axis, log
scale). Within each panel, each line represents the error for a single coefficient corresponding
to a particular dimension of the latent space. Panels vary horizontally by number of latent
communities (left: two blocks, middle: five block, right: seven blocks) and vertically by
column of the design matrix W .

we can investigate element-wise parameter recovery even in the presence of orthogonal non-
identifiability. Figures 21 and 22 visualize results for Θ̂. Figures 23 and 24 visualize results
β̂. These figures show convergence of each element of Θ̂ and β̂ to the corresponding elements
of Θ and β. This convergence occurs at the same

√
n-rate across several simulation settings,

as expected under Theorem 9.

G.2 Finite Sample Bias in β̂

As explained in Remark 11, it is well-known that ordinary least squares estimates are biased
when regression covariates are measured with error. Asymptotically, this is not an issue
for β̂, as the deviance of X̂ around X tends goes to zero in two-to-infinity norm, such
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Figure 22: Elementwise `1 convergence of Θ̂QT to Θ under the informative model. Recall
that Θ̂ is a matrix-valued estimator. Each panel shows the `1 error (vertical axis, log scale)
of a portion of Θ̂ as a function of the number of nodes in the network (horizontal axis, log
scale). Within each panel, each line represents the error for a single coefficient corresponding
to a particular dimension of the latent space. Panels vary horizontally by number of latent
communities (left: two blocks, middle: five block, right: seven blocks) and vertically by
column of the design matrix W .
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Figure 23: Convergence of β̂w to βw and Qβ̂x to βx under the uninformative model. Each
panel shows the `1 error (vertical axis, log scale) of a portion of β̂ as a function of the number
of nodes in the network (horizontal axis, log scale). Within each panel, each line represents
the error for a single coefficient. We visualize results for β̂w and β̂x in separate rows of
panels, since only β̂x is subject to rotational non-identifiability. Panels vary horizontally by
number of latent communities (left: two blocks, middle: five block, right: seven blocks).
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Figure 24: Convergence of β̂w to βw and Qβ̂x to βx under the informative model. Each panel
shows the `1 error (vertical axis, log scale) of a portion of β̂ as a function of the number of
nodes in the network (horizontal axis, log scale). Within each panel, each line represents
the error for a single coefficient. We visualize results for β̂w and β̂x in separate rows of
panels, since only β̂x is subject to rotational non-identifiability. Panels vary horizontally by
number of latent communities (left: two blocks, middle: five block, right: seven blocks).
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Figure 25: Elementwise bias of β̂ for β under the uninformative model. This can be thought
of as measurement error bias induced by using X̂ in place of X. Each column of panels
corresponds to a distinct model, where models have varying numbers of latent communities.
We visualize results for β̂w and β̂x in separate rows of plots. Within each panel, each line
represents results for a single coefficient. Note that the bias disappears asymptotically, as
X̂ converges to X.

that “measurement error” shrinks to zero as the number of nodes in the network grows.
Nonetheless, we visualize the finite sample bias of β̂ in Figures 25 and 26. Unsurprisingly,
β̂ is biased, as expected due to the noise in X̂ around X. As n increases and X̂ converges
to X, the bias rapidly shrinks.

G.3 Robustness of Causal Point Estimates to Rank Misspecification

In Theorems 17 and 18, the dimension d of the latent space is taken to be known or otherwise
correct specified. In Figure 27, we investigate the estimation error of Ψ̂nde and Ψ̂nie when
the dimension of the latent space is misspecified. As in Figure 6 (which investigates coverage
rates when d is specified), we find that it is dramatically better, in terms of estimation error,
to overestimate d than it is to underestimate d. This aligns with previous results that suggest
overestimating the dimension of the embedding space in stochastic blockmodels incurs a
performance penalty but otherwise retains nice properties of estimators like consistency
(Fishkind et al., 2013).
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Figure 26: Elementwise bias of β̂ for β under the informative model. This can be thought
of as measurement error bias induced by using X̂ in place of X. Each column of panels
corresponds to a distinct model, where models have varying numbers of latent communities.
We visualize results for β̂w and β̂x in separate rows of plots. Within each panel, each line
represents results for a single coefficient. Note that the bias disappears asymptotically, as
X̂ converges to X.
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Figure 27: Mean squared error of Ψ̂nde and Ψ̂nie when the dimension d is misspecified.
Each panel shows mean squared error (vertical axis) of Ψnde (teal) and Ψnie (orange) as a
function of the embedding dimension d (horizontal axis). The dashed vertical line denotes
the true latent dimension. Panels vary horizontally by number of latent communities (left:
five, middle: ten, right: fifteen) and vertically by the simulation model and number of nodes
in the network.
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Figure 28: Convergence of Ψ̂nde to Ψnde and Ψ̂nie to Ψnie. Each panel shows the mean
squared error (vertical axis, log scale) of Ψ̂nde (teal) and Ψ̂nie (orange) as a function of the
number of nodes in the network (horizontal axis, log scale). Panels vary horizontally by
number of latent communities (left: two blocks, middle: five block, right: seven blocks) and
vertically by the simulation model (top: informative, bottom: uninformative).

G.4 Causal Estimation Error When Either Ψnde or Ψnie is Zero

We additionally investigate if estimation error and converge rates behave as expected when
either Ψnde = 0 or Ψnie = 0. To generate data where Ψnde = 0, we simulate from the
informative model with βt = 0, and so to generate data where Ψnie = 0, we simulate from
the informative model with βx = 0. The results, in Figures 28 and 29, show that estimator
error and coverage rates do not behave any differently in the setting where Ψnde or Ψnie is
zero.
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Figure 29: Finite sample coverage of asymptotic confidence intervals for Ψnde and Ψnie.
Each panel shows coverage (vertical axis) of Ψnde (teal) and Ψnie (orange) as a function of
the number of nodes in the network (horizontal axis, log scale). The dashed horizontal line
denotes the nominal coverage rate of 95%. Panels vary horizontally by number of latent
communities (left: two blocks, middle: five block, right: seven blocks) and vertically by the
simulation model (top: informative, bottom: uninformative).
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