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Abstract

High-dimensional healthcare data, such as electronic health records (EHR) data and claims
data, present two primary challenges due to the large number of variables and the need to
consolidate data from multiple clinical sites. The third key challenge is the potential exis-
tence of heterogeneity in terms of covariate shift. In this paper, we propose a distributed
learning algorithm accounting for covariate shift to estimate the average treatment effect
(ATE) for high-dimensional data, named DisC2o-HD. Leveraging the surrogate likelihood
method, our method calibrates the estimates of the propensity score and outcome models
to approximately attain the desired covariate balancing property, while accounting for the
covariate shift across multiple clinical sites. We show that our distributed covariate balanc-
ing propensity score estimator can approximate the pooled estimator, which is obtained by
pooling the data from multiple sites together. The proposed estimator remains consistent
if either the propensity score model or the outcome regression model is correctly specified.
The semiparametric efficiency bound is achieved when both the propensity score and the
outcome models are correctly specified. We conduct simulation studies to demonstrate the
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performance of the proposed algorithm; additionally, we conduct an empirical study to
present the readiness of implementation and validity.

Keywords: Causal Inference; Distribution Shift; Federated Learning; High-dimensional
Data; Real-World Data

1. Introduction

Causal inference, which aims to elucidate the cause-effect relationships underlying the ob-
served phenomena, usually relies on carefully designed experiments to establish causality
(Hernán and Robins, 2010). However, in many domains, conducting controlled experiments
may be unfeasible, leaving researchers to look for alternative methods. The increasing
amount of real-world data (RWD) that captured the patients’ clinical information offer a
valuable opportunity for the researchers to investigate the causal relationships on a larger
scale. By providing resourceful and rich observational data, the RWD shed light on building
complex healthcare systems, inform evidence-based decision making, and drive advance-
ments across diverse fields in addition to public health such as social sciences, economics,
and beyond.

In the past few decades, the distributed research networks (DRNs) have been built to
facilitate large-scale observational studies, covering large sample sizes and diverse popu-
lations, for example, the Observational Health Data Sciences and Informatics (OHDSI)
consortium (Hripcsak et al., 2015), an international network of researchers and observa-
tion health databases, and the Patient-Centered Clinical Research Network (PCORnet)
(Fleurence et al., 2014; Collins et al., 2014), which covers groups of diverse healthcare insti-
tutions and CRNs across the U.S. These research networks are highly valuable for clinical
research by improving statistical power and enhancing the generalizability of the findings
(Friedman et al., 2010). The growth of research networks has made it possible to analyze
rare events and improve the accuracy of statistical models.

However, when utilizing large-scale RWD collected from CRNs for causal inference, there
are three critical challenges to address. The first challenge revolves around the difficulty
of sharing patient-level data, often due to privacy concerns and varying policy regulations
in biomedical research (Behlen and Johnson, 1999). Sharing individual patient-level data
can be time-consuming, logistically challenging, or infeasible in practice. The second ma-
jor challenge arises when interest lies in conducting comparative effectiveness research via
causal inference using RWD, where high-dimensional covariates collected in RWD are used
to control the impact of confounders. Last but not least, the existence of population het-
erogeneity, also known as distribution shift or covariate shift, is also a key challenge to
consider in practice. The differences in the underlying population could be caused by fac-
tors such as geographical variability in disease patterns, variations in patient characteristics,
and regional differences in practice patterns. For example, there are studies using multi-
ple electronic health records (EHR) datasets from Mayo Clinics and Vanderbilt University
Medical Center (VUMC) to investigate the causal effects of candidate non-cancer drugs to
be used for the treatment of cancer for drug repurposing (Xu et al., 2015; Wu et al., 2019).
These studies successfully identified potential candidates for antineoplastic repurposing. A
notable observation in these studies is that patient characteristics, including factors such
as racial distribution and medication usage (such as insulin utilization), exhibit variations
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across the different sites. When conducting multi-site analyses in which patient-level data
cannot be shared, it is essential to employ statistical methods that account for covariate
shifts. Ignoring these differences can lead to biased estimates of causal relationships, an
increased risk of overfitting, compromised generalizability of the findings, and potentially
ineffective decision-making.

To address the first challenge in data sharing, a divide-and-conquer procedure is com-
monly used (Zhang et al., 2013; Lee et al., 2017; Battey et al., 2018). In particular, Battey
et al. (2018) is one of the earliest innovations on distributed hypothesis testing for divide-
and-concur estimator with high-dimensional data. After calculating and sharing the local
estimators from the local patient-level data at each data site to the lead site or coordinat-
ing center, the final estimator is obtained by taking the average over the local estimators.
Though sharing the estimators across sites mitigates the need in sharing patient-level data,
the theoretical and empirical performance of this simple average method is suboptimal, espe-
cially when dealing with a large number of clinical sites and rare disease setting in multi-site
studies (Duan et al., 2020b). In the past few years, an enhanced distributed learning, known
as the surrogate likelihood approach, was proposed for association studies and prediction
tasks (Wang et al., 2017; Jordan et al., 2018; Duan et al., 2018, 2020a,b, 2022). By re-
quiring summary statistics from collaborating sites, the method is communication-efficient
and privacy-preserving. In real-world settings, communication costs present a significant
challenge, particularly in collaborative studies where transferring summary-level statistics
demands considerable human labor. In response, it is essential to develop a communication-
efficient distributed learning algorithm that minimizes communication rounds across sites.

In the context of addressing the second challenge posed by high-dimensional settings
using RWD, considerable efforts have been dedicated to estimating the average treatment
effect (ATE) in recent years. A number of notable methods have emerged, each of which
presents innovative strategies. Belloni et al. (2014), Farrell (2015), Belloni et al. (2017),
and Chernozhukov et al. (2018), have proposed a two-step approach. In this approach, they
advocate first estimating the propensity score through penalized maximum likelihood and
subsequently utilizing the efficient score function to estimate the ATE. Athey et al. (2018)
introduced a different perspective by proposing approximate residual balancing. Notably,
this approach eliminates the need for a propensity score model, while maintaining a re-
quirement for linearity in covariates for the outcome model. This method was shown to
be semiparametrically efficient and the balancing weights converge to the inverse propen-
sity score but with a slower rate under suitable regularity conditions (Hirshberg and Wager,
2021). Bradic et al. (2019) contributed an estimator that excels in situations of rate/sparsity
double robustness. The key advantage of this estimator is its root-n consistency even when
either the propensity score model or the outcome model lacks sparsity, as long as the other
model exhibits sufficient sparsity. Additionally, Tan (2020a) and Ning et al. (2020) proposed
the high-dimensional covariate balancing propensity score method, which provides doubly
robust confidence intervals for ATE involving high-dimensional covariates. These methods
yield root-n consistent and asymptotically normal estimators, contingent on the accurate
specification of either the propensity score model or the outcome model.

However, it is important to note that these methods are not specifically designed to
accommodate scenarios where data are distributed across multiple clinical sites within re-
search networks. Recent studies in this direction have led to the proposal of distributed
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learning algorithms for ATE estimation in causal inference (Xiong et al., 2021; Han et al.,
2021), where the propensity score model and outcome model were used for causal effect esti-
mation. Nevertheless, these methods cannot be applied directly to analyze high-dimensional
data, as lasso-type estimators may not be aggregated directly in multisite settings (Battey
et al., 2018).

In this paper, we propose a solution called DisC2o-HD to simultaneously address all three
challenges: data sharing, distributed causal inference for high-dimensional data, and covari-
ate shift. Our method is specifically designed for analyzing real-world high-dimensional data
and incorporates three key features:

• Firstly, DisC2o-HD leverages the surrogate method to estimate the propensity score
model and outcome model. Our proposed method can be implemented within a
few rounds of communication, requiring only a single round of communication for
participating sites to transfer summary-level statistics when fitting each model; all
estimation iterations are conducted within a single local site or a designated lead
site. This efficiency feature makes the proposed method more applicable to practical
settings, enabling the generation of real-world data-based evidence.

• Secondly, our method effectively handles high-dimensional data to estimate average
treatment effects (ATE). By properly integrating the rich information contained in
high-dimensional data into our inferential procedure, we obtain more reliable esti-
mates of causal effects. Furthermore, our method demonstrates robustness to model
misspecifications. Even if either the propensity score model or the outcome model
is incorrectly specified, our distributed algorithm produces results comparable to the
gold standard method that relies on pooling patient-level data.

• Thirdly, DisC2o-HD accounts for heterogeneous populations (e.g., differences in pop-
ulation or systematic variations) across multiple sites. It is capable of accommodating
variations among different sites, ensuring the applicability of our method to diverse
patient cohorts. Its robustness in handling the distributional differences makes it
highly applicable in real-world situations.

Overall, DisC2o-HD addresses the challenges of data sharing, distributed causal inference for
high-dimensional data, and covariate shift. It offers a comprehensive and reliable approach
for analyzing real-world high-dimensional data while protecting privacy and accommodating
population heterogeneity across multiple sites.

We use the following notation. For v = (v1, . . . , vp) ∈ Rp and 1 6 q 6 ∞, ‖v‖0 =

| supp(v)|, where supp(v) = {j : vj 6= 0}, and ‖v‖q =
(∑d

i=1 |vi|
q
)1/q

. The Orlicz norm

associated with a Young’s modulus ψ of X is defined by ‖X‖ψ = inf{C > 0 : E[ψ(|X|/C)] 6
1}. λmin(A) and λmax(A) represent the minimal and maximal eigenvalues of A if we have a
symmetric matrix A. For two positive sequences an and bn, an � bn if there exist C,C ′ > 0
such that C 6 an/bn 6 C ′ holds. For ψ1 = ex

2 − 1, a random variable X is sub-Gaussian,
if ‖X‖ψ1 <∞. Denote a ∨ b = max(a, b).
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2. Methodology

Given the context of analyzing multisite data from research networks, we assume that
individual patient data (IPD) are stored at K sites in a distributed manner and IPD cannot
be shared across sites. Without loss of generality and for notation simplicity, we assume
that each site has equal sample size n. We denote N as the total sample size of the pooled
data from all K clinical sites (i.e., N = Kn). For the i-th patient from the k-th site, we
observe (Tki, Yki, Xki), where Tki ∈ {0, 1} is the binary treatment assignment, Yki is the
outcome variable, and Xki is a p-dimensional vector of pre-treatment covariates.

We formulate the problem by considering the existence of covariate shifts (i.e., hetero-
geneous covariate distributions) across the sites. The term “covariate shift” refers to the
variation in the distribution of the covariates across distinct sites. To provide a concrete
illustration, suppose we have a single covariate, denoted as X, which is accessible across all
sites. This covariate X follows a normal distribution at each site. The “covariate shift”
scenario of X means the distribution of X at site A might have different mean and variance
values compared to the distribution of X at another site. The definition of distribution shift
is illustrated visually in Figure 1 and defined as follows:

Definition 1 Let’s denote by P and Q two probability measures associated with random
variables X and X ′ respectively, defined on the same probability space (Ω, F ), and suppose
they admit density functions f and g. If there exists a set A such that for all x in A,
f(x) 6= g(x) and the Lebesgue measure of A (denoted by λ(A)) is not zero, then the density
functions f and g (and thus the distributions P and Q) are different. This can be written
formally as:

∃A ∈ F, λ(A) > 0 such that ∀x ∈ A, f(x) 6= g(x)

This essentially means that there is a non-negligible set of outcomes where the two
random variables X and X ′ have different densities.

The potential outcome under treatment and the potential outcome under control for
the k-th site are denoted as Yki(1) and Yki(0), respectively. The observed outcome Yki
is denoted as Yki = TkiYki(1) + (1− Tki)Yki(0). The parameter of interest by taking the
covariate shift into account is the average treatment effect (ATE) over the K populations,
defined as

∆∗ =
1

K

K∑
k=1

E [Yki(1)− Yki(0)] =
1

K

K∑
k=1

E [Yki(1)]− 1

K

K∑
k=1

E [Yki(0)] .

The terms τ∗1 := 1
K

∑K
k=1 E [Yki(1)] and τ∗0 := 1

K

∑K
k=1 E [Yki(0)] can be obtained in

similar way by replacing the treatment assignment. Therefore, in the following subsections
including derivations, equations, and algorithms, we will focus on the estimation of τ∗1 ,
which is the expected outcome for the treated cohort.

At k-th site, we consider the following logistic propensity score (PS) model and a linear
outcome model (OM):

P (Tki = 1 | Xki) = π
(
XT
kiθ
)
, (1)
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Figure 1: Illustration of distribution shift in 3-dimension plot, where mean values of the
densities are the same, but the values of covariance matrices are different.

E [Yki(1) | Xki] = XT
kiβ, (2)

where θ is a p-dimensional unknown vector that is homogeneous across all sites, π(z) =
1/(1 + exp(−z)), and β is a p-dimensional unknown vector. We assume that the PS model
is homogeneous across all sites, and the same applies to the OM model. In this paper, we
allow the models (1) and (2) to be misspecified. In the following sections, we will first present
the algorithm and theoretical results by assuming both models are correctly specified. Then,
we will further present the asymptotic distribution of the proposed estimator when either
model is mis-specified in Section 3.4.

2.1 Background: Pooled method

If all of the patient-level data from K sites can be pooled together, two potential challenges
exist: high-dimensional data and covariate shift. To address the first challenge, a variety of
methods have been developed, as reviewed in the Introduction. To fix the idea, in this work
we focus on the high-dimension covariate balancing method proposed by Ning et al. (2020).
The first step is to estimate the propensity score via the following `1-penalized estimator

θ̂pooled = arg min
θ∈Rp

QN (θ) + λ
′
pooled ‖θ‖1, (3)

where QN (θ) = 1
K

∑K
k=1Qk(θ) with

Qk(θ) =
1

n

n∑
i=1

{
(1− Tki)XT

kiθ + Tki/ exp
(
XT
kiθ
)}

(4)

with Qk(θ) being a generalized quasilikelihood function from the kth site, which is similar to
the quasi-likelihood function for generalized linear models (Wedderburn, 1974) and was also
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used in Tan (2020b) and Tan (2020a) for fitting propensity score using high-dimensional
data. In our study, the quasilikelihood function was chosen due to its alignment with the
robust covariate balancing property exhibited by the corresponding quasi-score function
(Ning et al., 2020). To establish the doubly robust confidence interval for ATE when ana-
lyzing high-dimensional data, the hyperparameter λ

′
pooled in the (3) satisfied the following

KKT condition ∥∥∥∥∥∥ 1

Kn

K∑
k=1

n∑
i=1

 Tki

π
(
XT
kiθ̂pooled

) − 1

Xki

∥∥∥∥∥∥
∞

6 λ
′
pooled .

This inequality implies that the maximum difference between the weighted average of
Xki in the treatment group and the population average of Xki (e.g., 1

Kn

∑K
k=1

∑n
i=1Xki )

is at most λ
′
pooled. Thus, the estimated propensity score π(XT

kiθ̂pooled ) can approximately
balance the covariates Xki (Tan, 2020a; Ning et al., 2020).

After θ̂pooled is obtained, we then estimate the parameter through the following global
loss function of the outcome model:

β̂pooled = arg min
θ∈Rp

LN (β, θ̂pooled) + λ
′′
pooled ‖β‖1, (5)

where

LN (β, θ) =
1

Kn

K∑
k=1

N∑
i=1

{
Tki

exp
(
XT
kiθ
) (Yki −XT

kiβ
)2}

(6)

is a weighted least square loss designed to achieve the desired doubly robust property.
Finally, we obtain the AIPW estimate of τ∗1 = 1

K

∑K
k=1 E [Yki(1)]

τ̂1,pooled =
1

Kn

K∑
k=1

n∑
i=1

{
XT
kiβ̂k +

Tki

π(XT
kiθ̂k)

(
Yki −XT

kiβ̂k

)}
.

With the similar procedure, we estimate τ̂0,pooled. Finally, we have:

∆̂1,pooled = τ̂1,pooled − τ̂0,pooled.

Regarding covariate shift, a notable aspect is that its presence does not affect the esti-
mation of ATE in the pooled method. In other words, the existence of covariate shift does
not introduce additional challenges when applying the introduced method for analyzing
pooled data, as we assume the conditional distributions of Y are the same across all sites.
Therefore, this method is treated as the gold standard method and will be compared with
our method in simulation studies and data application.

2.2 Naive Method: Simple average method

Although θ̂pooled achieves the covariate balance property when analyzing the pooled data,
in a distributed setting, where patient-level data cannot be shared across sites, the pooled
estimator is not directly applicable. In such scenarios, an additional challenge arises: the
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decentralization of data. To tackle the complexities posed by high-dimensional and decen-
tralized data analysis, a straightforward method is to aggregate the local estimates, which
is a divide-and-conquer procedure. Specifically, each site fit the propensity score model and
the outcome model:

θ̂k = arg min
θ∈Rp

Qj(θ) + λ′‖θ‖1, (7)

β̂k = arg min
θ∈Rp

Lk

(
β, θ̂k

)
+ λ′′‖β‖1, (8)

where λ′ and λ′′ are the regularization parameters, and

Lk (β, θ) =
1

n

n∑
i=1

{
Tki

exp(XT
kiθ)

(
Yki −XT

kiβ
)2}

.

Within each site, we obtain the local AIPW estimate of τ∗1

τ̂1,k =
1

n

n∑
i=1

{
XT
kiβ̂k +

Tki

π(XT
kiθ̂k)

(
Yki −XT

kiβ̂k

)}
.

Finally, we aggregate the local AIPW estimators

τ̂1,simple average =
1

K

K∑
k=1

τ̂1,k.

With the similar procedure, we estimate τ̂0,simple average, and define ∆̂1,simple average =
τ̂1,simple average − τ̂0,simple average. Although this method requires only a single round of com-
munications to combine the local estimates, which have a convergence rate of 1/

√
n, and the

relatively small local sample sizes (i.e., n) could potentially lead to biased local estimates,
which in turn could affect the overall accuracy of the ATE.

2.3 Proposed method: DisC2o-HD

In this paper, we present our method, DisC2o-HD, uniquely designed to collectively tackle
all three challenges mentioned earlier – high-dimensional data, decentralized data, and co-
variate shift. The resolution of all these challenges is essential to bring federated causal
learning into practical utility. In particular, motivated by the Taylor expansion of the like-
lihood function (Jordan et al., 2018), we proposed to construct a robust surrogate function
of QN (θ) shown in the pooled method:

Q̃(θ, θ̄) := Q1(θ) +
(
∇QN (θ̄)−∇Q1(θ̄)

)T
θ +

1

2
(θ − θ̄)T

(
∇2QN (θ̄)−∇2Q1(θ̄)

)
(θ − θ̄),

(9)

where θ̄ is an initial estimator of θ, for example, a meta-analysis estimator which required
one more round of communication or a local estimator from the lead site, Q1(θ), ∇Q1(θ̄),
and ∇2Q1(θ̄) are calculated within the 1-st site, also known as the lead site, assuming that
we have full access to the patient-level data. For the rest of the sites from site 2 to K,
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they only need to communicate ∇Qk(θ̄), a p-dimensional vector, and ∇2Qk(θ̄), a p × p
matrix. We note that unlike the surrogate likelihood proposed by Jordan et al. (2018),
Q̃(θ, θ̄) requires communicating the Hessian matrix ∇2Qk(θ̄), which is essential to account
for the covariate shift. A key procedure in Jordan et al. (2018) involves substituting the
global Hessian matrix ∇2QN (θ), with a local Hessian matrix (e.g., Hessian matrix for Site
1), ∇2Q1(θ). This substitution relies on the assumption:

‖∇2Q1(θ)−∇2QN (θ)‖ < δ = o(1)

This indicates that the local datasets should be homogeneous from site to site. However, in
settings characterized by heterogeneous data distribution, such as those involving covariate
shifts — which are of particular interest to our study — this assumption may not hold. In
other words, with the presence of covariate shift:

‖∇2Q1(θ)−∇2QN (θ)‖ = O(1)

Faced with such a scenario, if we do not account for the covariate shift, an additional
constant term would be induced in the error bound of the surrogate estimators. More
details are provided in the Supplementary Appendix 3.7. Therefore, we proposed using the
average of all Hessian matrices from collaborating sites, rather than replacing the global
Hessian matrix solely with the local one. This method ensures that:∥∥∥∥∥ 1

K

K∑
k=1

∇2Qk(θ)−∇2QN (θ)

∥∥∥∥∥ = 0 < δ = o(1)

As a result, by collecting the Hessian matrices from the collaborating sites, the proposed
method can address the issue of covariate shifts across different sites. This incorporation
of Hessians shows that the presence of covariate shift does not affect the estimation of the
ATE when using high-dimensional data. Then, we obtain the penalized surrogate propensity
score estimator through

θ̃ = arg min
θ∈Rp

Q̃
(
θ, θ̄
)

+ λPS‖θ‖1,

where λPS is a regularization parameter.
After we obtain the estimator, θ̃, from the propensity score function, we need to further

fit the outcome model in a distributed manner. Similarly, we construct the surrogate loss
function:

L̃(β, β̄, θ̃) = L1(β) +
(
∇LN (β̄, θ̃)−∇L1(β̄, θ̃)

)T
β (10)

+
1

2
(β − β̄)T

(
∇2LN (β̄, θ̃)−∇2L1(β̄, θ̃)

)
(β − β̄),

where β̄ is an initial outcome model estimator. To construct L̃(β, β̄, θ̃) in (10), sites other
than the lead site only need to contribute ∇Lk(β̄, θ̃) and ∇2Lk(β̄, θ̃). Then, we compute
the penalized surrogate outcome model estimator

β̃ = arg min
β∈Rp

L̃
(
β, β̄, θ̃

)
+ λOM‖β‖1,
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where λOM is a regularization parameter.
In order to enhance the theoretical analysis, we utilize the sample splitting technique

within our algorithms, a widely employed approach in semiparametric models and causal
inference (Chernozhukov et al., 2018; Newey and Robins, 2018; van der Laan et al., 2011).
Specifically, splitting data enables us to achieve independence between θ̃, β̃, and Xki in the
final AIPW estimator. Consequently, the classical Bernstein Inequality for sub-exponential
sums can be applied separately to bound each of them. Given the dilemma of sharing
patient-level data, splitting patient-level data across sites into several folds requires ad-
ditional rounds of communications. Furthermore, splitting patient-level data across sites
results in a smaller sample size for obtaining the initial estimators of θ̄ and β̄, which in
turn can affect the convergence rate of the final AIPW estimator. Instead, we split the
K sites into three sets K1,K2, and K3 with roughly equal size. This splitting strategy
is shown to outperform the one by splitting patient-level data. For further discussion on
the performance of splitting data versus not splitting it, as well as the comparison between
splitting patient-level data and splitting sites, please refer to Section 4 in the supplementary
material. In this section, we conduct additional numerical simulations to compare the per-
formance between splitting and not splitting data, as well as between splitting patient-level
data (split n) and splitting sites (split K).

To obtain the final average treatment effect (ATE), the following three steps are required.

• Step 1 involves conducting high-dimensional covariate balancing propensity score es-
timation using the aforementioned surrogate approach. The estimation is conducted
in K1, K2, and K3, respectively.

• Step 2 entails fitting the outcome model in a distributed manner, employing a similar
surrogate likelihood function approach. The estimation is conducted in K1, K2, and
K3, respectively.

• Finally, in Step 3, we calculate the augmented inverse propensity weighted (AIPW)
estimators from different splits and aggregate them to obtain the final ATE estimator.

For each step, we provide explicit algorithms, namely Algorithms 1, 2, and 3, respec-
tively. In Algorithms 1 and 2, we show the algorithm in K1 as an example. Same procedure
is conducted for K2 and K3. The asymptotic variance of the final estimator τ̃1 in Algorithm
3, can be estimated through:

V̂ =
1

Kn

K∑
k=1

n∑
i=1

Tki

π
(
XT
kiθ̃
)2 (Yki −XT

kiβ̃
)2

+
1

Kn

K∑
k=1

n∑
i=1

(
XT
kiβ̃ − τ̃1

)2
,

where θ̃ =
(
θ̃K1 + θ̃K2 + θ̃K3

)
/3, β̃ =

(
β̃K1 + β̃K2 + β̃K3

)
/3. The variance V̂ can be com-

puted in a distributed manner. In the following section, we present the theoretical justifi-
cation of the proposed algorithm.

Remark 2 A key advantage of our proposed method is its ability to remain unaffected by
the presence of covariate shift when estimating the ATE using high-dimensional data. In
particular, we construct the surrogates of the propensity score model and outcome model with
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second order. These second-order surrogate models make use of the gradients and Hessians
of the global objective functions, and approximate the higher-order derivatives of the global
objective function by the counterparts of the objective function at the leading site, while the
first-order surrogate likelihood method (Wang et al., 2017; Jordan et al., 2018) only keeps
the gradient of the objective function and approximates all higher-order derivatives by the
alternatives at the leading site.

As a comparison, the corresponding surrogate functions constructed from the idea in
Jordan et al. (2018) are

Q̃original(θ, θ̄) = Q1(θ) +
(
∇QN (θ̄)−∇Q1(θ̄)

)T
θ, (11)

L̃original(β, β̄, θ̃) = L1(β) +
(
∇LN (β̄, θ̃)−∇L1(β̄, θ̃)

)T
β. (12)

We refer the method that only necessitates the collection of first gradients across multiple
sites to as the original surrogate method hereafter. We can similarly estimate ATE by
plugging the penalized estimators using the original surrogate method. In our simulation
studies and data application, we will compare our proposed method, denoted as DisC2o-HD-
2, with this original surrogate method, denoted as DisC2o-HD-1.

Algorithm 1 Distributed high-dimensional propensity score estimation on K1

Require: {Tki, Yki, Xki} for i = 1, . . ., n, and k ∈ K1.

At site k = 1, calculate the initial propensity score estimator:

θ̄K1 = arg min
θ∈Rp

Q1(θ) + λPS,initial‖θ‖1,

whereQ1(θ) is defined in Equation (4) and λPS,initial is the initial regularization parameter.

Broadcast θ̄K1 to all collaborating sites in K1.

for site k ∈ K1 do
Compute the first gradient ∇Qk(θ̄K1) and second gradient ∇2Qk(θ̄K1). Broadcast

these values to the leading site (i.e., k = 1).
end for

Construct the surrogate loss Q̃
(
θ, θ̄K1

)
in Equation (9), where

∇QN
(
θ̄K1

)
=

1

|K1|
∑
k∈K1

∇Qk
(
θ̄K1

)
and ∇2QN

(
θ̄K1

)
=

1

|K1|
∑
k∈K1

∇2Qk
(
θ̄K1

)
.

Then, compute the penalized surrogate propensity score estimator

θ̃K1 = arg min
θ∈RP

Q̃
(
θ, θ̄K1

)
+ λPS‖θ‖1,

where λPS is a regularization parameter.

11
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Algorithm 2 Distributed high-dimensional outcome model on K1

Require: {Tki, Yki, Xki} for i = 1, . . ., n, and k ∈ K1.

At site k = 1, calculate the initial outcome model estimator:

β̄K1 = arg min
θ∈Rp

L1

(
β, θ̃K2

)
+ λOM, initial‖β‖1,

Broadcast β̄K1 to all collaborating sites in K1.

for site k ∈ K1 do
Compute the first gradient ∇Lk(β̄K1 , θ̃K2) and second gradient ∇2Lk(β̄K1 , θ̃K2).

Broadcast these values to the leading site (i.e., k = 1)
end for

Construct the surrogate loss as defined in Equation (10). Then, compute the penalized
surrogate outcome model estimator

β̃K1 = arg min
β∈Rp

L̃
(
β, β̄K1 , θ̃K2

)
+ λOM‖β‖1,

where λOM is a regularization parameter.

Algorithm 3 Calculation of AIPW estimators and final ATE

Require: {Tki, Yki, Xki} for i = 1, . . ., n, and k = 1, . . ., K.

Calculate θ̃K1 by Algorithm 1 on K1 and broadcast θ̃K1 to all sites in K2 and K3.
Calculate β̃K2 by Algorithm 2 on K2 with θ̃K1 and broadcast β̃K2 to all sites in K3.

for site k ∈ K3 do
Calculate the AIPW estimator of τ∗1 = E [Yki(1)]

τ̃1,k =
1

n

n∑
i=1

XT
kiβ̃K2 +

Tki

π
(
XT
kiθ̃K1

) (Yki −XT
kiβ̃K2

) .

end for
Aggregate the local AIPW estimators in K3

τ̃1,K3 =
1

|K3|
∑
k∈K3

τ̃1,k.

Calculate τ̃1,K1 and τ̃1,K2 .
Calculate the final estimator of τ∗1 :

τ̃1 = (τ̃1,K1 + τ̃1,K2 + τ̃1,K3) /3

12
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3. Theoretical Results

3.1 Assumptions

In this section, we present and discuss the assumptions under which our theoretical results
are proved.

Assumption 1 (Unconfoundedness) The treatment assignment is unconfounded, i.e.,
{Yki(0), Yki(1)} ⊥⊥ Tki|Xki.

Assumption 2 (Overlap) There exists a constant c0 > 0 such that c0 ≤ P(Tki = 1|Xki) ≤
1− c0.

Assumption 7 requires that there is no unmeasured confounder. Assumption 8 implies
that every sample has a positive probability to receive the treatment or belong to the control
group. When Assumptions 7 and 8 are satisfied, the treatment assignment is considered as
strongly ignorable (Rosenbaum and Rubin, 1983). The above two assumptions are standard
in the causal inference literature.

Assumption 3 (Design) The minimal and maximal eigenvalues of E[XkiX
T
ki] are con-

tained in a bounded interval that does not contain zero.

Assumption 3 requires the design matrix is well conditioned. The same eigenvalue
condition has been used to analyze high-dimensional lasso and causal inference problems
(Van de Geer et al., 2014; Ning and Liu, 2017; Bradic et al., 2019). This assumption
is utilized in Lemma 10, as detailed in the Supplementary Appendix Section 3.5 on the
Restricted Strong Convexity (RSC) condition. It is a necessary condition for both the
propensity score model and the outcome model in our proposed method. If site-specific
covariates are present – for instance, a unique site indicator for each site – this assumption
is violated, rendering the theoretical framework we have established for high-dimensional
data inapplicable.

3.2 Restricted strong convexity(RSC) conditions

Assumption 4 (Model) Xki has a bounded sub-Gaussian norm. Moreover, ε∗ki = Yki(1)−
XT
kiβ
∗ also has a bounded sub-Gaussian norm.

Assumption 10 is a mild regularity condition on the tail of error term ε∗ki and design
Xki. This assumption controls the behavior of the error term and enables us to use various
concentration inequalities in high-dimensional statistics.

Assumption 5 (Sparsity) Let s1 = ‖θ∗‖0, and s2 = ‖β∗‖0. Assume that

√
s2(s1 ∨ s2) log(p ∨Kn)√

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
= o(1)

as s1, s2, p,K, n→∞.

13
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Assumption 11 imposes conditions on how fast the model sparsity s1 and s2, the covariate
dimension p and the number of sites K can grow with the local sample size n. When
s1 � s2 � s, up to some logarithmic factors, the condition reduces to s√

Kn
+ s2

n = o(1).

In addition, when K is fixed, it further reduces to s/
√
n = o(1), which is identical to the

existing sparsity conditions for high-dimensional treatment effect estimation (Tan, 2020a;
Ning et al., 2020). Finally, we comment that the assumption may still hold even if s1 is
large but s2 is small (more precisely, s1s2 is small), which is known as the sparsity double
robustness property.

Assumption 6 (Variance) We assume that there exists some constant c1 > 0 such that
E(ε∗2ki |Xki) ≥ c1,E(XT

kiβ
∗)4 = O(s22).

Assumption 12 is a mild condition on the noise and design. The first assumption guar-
antees the nondegeneracy of the asymptotic variance, while the second part is used in the
Lyapunov condition in CLT.

3.3 Asymptotic distribution when both models are correctly specified

In this section, we present our main results with respect to the propensity score model,
potential outcome model and the proposed estimator τ̃1, respectively. For simplicity, we
use CL and M to denote some generic constants, whose values may differ from line to line.

For propensity score estimator θ̃K obtained from Algorithm 1, we summarize its error
bound in the following Proposition 3.

Proposition 3 Under assumptions 1-6, with λPS �
√

log(p∨Kn)
Kn + s1 log

2(p∨n)
n , we have:

∥∥∥θ̃K − θ∗∥∥∥
2
≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,

3

Kn

∑
(k,i)∈K

{
XT
ki(θ̃K − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
,

3

Kn

∑
(k,i)∈Kc

{
XT
ki(θ̃K − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
.

holds with probability at least 1− M
(p∨n)8 −

M
n8 , where K = K1, K2, or K3 and Kc represents

another set of servers.

It can be seen that the error bound of θ̃K consist of two terms. The first term is the
classical lasso error bound when using the pooled data, signifying the optimal convergence

rate achievable through this method. The second term can be represent by s
1/2
1 log(p ∨

n)
∥∥θ̄K − θ∗∥∥22, which comes from the convergence rate of the initial local estimator θ̄K .

Consequently, it’s generally smaller than that of the local estimator θ̄K , which is

√
s1 log(p∨n)

n .

While for the potential outcome estimator β̃K , its error bound is provided as follows.
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Proposition 4 Under assumptions 1-6, with λOM �
√

log(p∨Kn)
Kn , we have:

∥∥∥β̃K − β∗∥∥∥
2
≤ CL

(√
s2 log(p ∨Kn)

Kn

)
,

3

Kn

∑
(i,j)∈K

{
XT
ki(β̃K − β∗)

}2
≤ CL

(
s2 log(p ∨Kn)

Kn

)
,

3

Kn

∑
(i,j)∈Kc

{
XT
ki(β̃K − β∗)

}2
≤ CL

(
s2 log(p ∨Kn)

Kn

)
.

holds with probability at least 1− M
(p∨n)8 −

M
n8 , where K = K1, K2, or K3 and Kc represents

another set of servers.

We can see that the rate of β̃K is the same as that of the pooled estimator, which
is obtained by directed applying the penalized loss function to the pooled data with the
sample size Kn/3. This is due to that the objective function (6) is in a weighted least
squares form. On one hand, the error in θ̃K leads to a constant scaling of the weights,
impacting only the constant scale but not the rate of convergence. On the other hand,
a linear model has the lossless feature when using the surrogate likelihood method. This
means that the distributed method can obtain exactly the same results as when the data
are pooled together for analysis. Therefore, the convergence rate will not be affected by
the initial local estimator β̄K . Specifically, the convergence rate of the Lasso estimator
β̃K mainly depends on the infinity norm of the gradient, ‖∇L̃(β∗, β̄K , θ̃Kc)‖∞. Given that
L̃(β∗, θ̃Kc) represents a weighted least squares loss, by some calculation, it is easy to verify
that ∇L̃(β∗, β̄K , θ̃Kc) = ∇LN (β∗, θ̃Kc), thus the convergence rate of the initial estimator
β̄K does not affect the error bound of ‖∇LN (β∗, θ̃Kc)‖∞. Consequently, the error bound
of β̃K shares the same order as that of the pooled estimator. Then, we present our main
result on the bound of the proposed ATE estimator τ̃1 in the following two theorems.

Theorem 5 Under assumptions 1-6, we have

|τ̃1 − τ̂∗1 | ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+

√
s2(s1 ∨ s2) log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

(p∨n)8 −
M
n8 , where

τ̂∗1 =
1

Kn

K∑
k=1

n∑
i=1

{
XT
kiβ
∗ +

Tki

π
(
XT
kiθ
∗
) (Yki −XT

kiβ
∗)}

is the asymptotic linear representation of the pooled AIPW estimator.

The first term in Theorem 12 represents the intrinsic error due to the estimation of
nuisance parameters, which remains even if we are able to construct the pooled estimator
by combining the data from multiple sites. Specifically, the order of the first term agrees with
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the findings of existing studies on the application of the hdCBPS estimator to pooled data
with a sample size of Kn (Ning et al., 2020). The second term in Theorem 12 represents the
cost incurred due to distributed learning. When K = o(n) holds, our distributed estimator
is equivalent to the global estimator in terms of the error bound. Furthermore, in Theorem
13, we present our main result on the Berry-Esseen bound for the proposed estimator τ̃1.

Theorem 6 Under assumptions 1-6, we have

sup
x∈R

∣∣∣∣∣Pr

(√
Kn(τ̃1 − τ∗1 )√

V̂
≤ x

)
− Φ(x)

∣∣∣∣∣
≤ M

(p ∨ n)8
+
M

n8
+ CL

√s2(s1 ∨ s2) log(p ∨Kn)√
Kn

+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n

 ,

where CL is a sufficiently large constant, and M depends on CL.

Theorem 13 implies the asymptotic normality of τ̃1, from which we can construct valid
confidence intervals and hypothesis tests for τ∗1 . Hahn (1998) proposed the semiparametric
asymptotic variance bound for estimating τ∗1 , that is

V ∗ := E
[

1

π∗ki
E
[
ε2ki | Xki

]
+
(
XT
kiβ
∗ − τ∗1

)2]
,

where π∗ki is the true value of the propensity score. We then show in Proposition 14 that
the variance estimator defined in Theorem 13 consistently estimates V ∗. Consequently, the
proposed estimator τ̃1 achieves the semiparametric efficiency bound.

Proposition 7 (Consistency of variance estimator) The variance estimator satisfies

|V̂ − V ∗| ≤ CL

(√
(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,

with probability at least 1− M
(p∨n)8 −

M
n8 .

Throughout the various error bounds mentioned above, we find that

√
s2(s1∨s2) log(p∨Kn)√

Kn
+

s1
√
s1s2 log(p∨Kn) log4(p∨n)

n dominates all other terms above. Therefore, in Assumption 5, we

typically assume that

√
s2(s1∨s2) log(p∨Kn)√

Kn
+

s1
√
s1s2 log(p∨Kn) log4(p∨n)

n = o(1), which implies

that all the other terms are also o(1). Let s = s1 ∨ s2. Up to some logarithmic factors, this

assumption can be reduced to s√
Kn

+ s2

n = o(1). This further simplifies to s/
√
n = o(1)

regardless of whether K is fixed or approaching infinity, which is identical to the existing
sparsity conditions for high-dimensional treatment effect estimation Tan (2020a); Ning et al.
(2020).
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3.4 Asymptotic distribution when the models are misspecified

In this section, we first examine the robustness of the proposed estimator when the propen-
sity score model is misspecified while the outcome model is correctly specified. In this
setting, we assume that the true propensity score does not conform to the assumed para-
metric class, i.e., P (Tki = 1 | Xki) /∈

{
π
(
XT
kiθ
)

: θ ∈ Rp
}

. We define the estimand obtained
through Algorithm 1 as follows:

θo = arg min
θ∈Rd

E [Qk(θ)] .

In the following, we demonstrate that the proposed estimator τ̃1 in Algorithm 3 is asymp-
totically equivalent to τ̂ o1,PS defined as follows

τ̂ o1,PS =
1

Kn

K∑
k=1

n∑
i=1

{
XT
kiβ
∗ +

Tki

π
(
XT
kiθ

o
) (Yki −XT

kiβ
∗)} ,

where β∗ is the true value of β in the outcome model.

Proposition 8 Under Assumptions 1-6, with θ∗ replaced by θo, the proposed estimator
satisfies

|τ̃1 − τ̂ o1,PS| ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

n8 , where CL is a sufficiently large constant and M is another
constant depending on CL.

Since τ̂ o1,PS is asymptotically normal with mean τ∗1 , we can establish the asymptotic
normality of the proposed estimator τ̃1. Consequently, the resulting confidence intervals
remain valid even under the misspecified propensity score model. This provides justification
for the robustness of the confidence intervals (Tan, 2020a; Ning et al., 2020).

We then can examine the robustness of the proposed estimator when the propensity
score model is correctly specified while the outcome model is misspecified. In this scenario,
we assume that the true potential outcome is nonlinear, meaning that E [Yki(1) | Xki] /∈
{Xkiβ : β ∈ Rp}. Next, we define the estimand obtained through Algorithm 2 as follows:

βo = arg min
β∈Rd

E [Lk (β, θ∗)] ,

where θ∗ is the true value in the propensity score model. Define τ̂ o1,OM as

τ̂ o1,OM =
1

Kn

K∑
k=1

n∑
i=1

{
XT
kiβ

o +
Tki

π
(
XT
kiθ
∗
) (Yki −XT

kiβ
o
)}

.

17



Tong, Hu, Hripcsak, Ning and Chen

Proposition 9 Under Assumptions 1-6, with β∗ replaced by βo, the proposed estimator
satisfies

|τ̃1 − τ̂ o1,OM| ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

n8 , where CL is a sufficiently large constant and M is another
constant depending on CL.

Similarly, we demonstrate that the proposed estimator τ̃1 in Algorithm 3 is asymptot-
ically equivalent to τ̂ o1,OM. This equivalence implies the robustness of confidence intervals
even in the presence of misspecified outcome models.

4. Simulation studies

In this section, we examine the performance of the proposed DisC2o-HD-2 estimator by
comparing them with the pooled estimator, the local average method, and the DisC2o-HD-
1 estimator. Without loss of generality, for k = 1, . . . ,K and i = 1, . . . , n, the treatment Tki
are generated from a logistic regression with πki = expit(−0.5+0.5Xki1+0.3Xki2−0.3Xki3+
0.3Xki4−0.3Xki5), the potential outcomes satisfy Yki(1) = 2+0.3Xki1+0.2Xki2−0.2Xki3+
0.2Xki4−0.2Xki5+εki1 and Yki(0) = 1+0.3Xki1+0.2Xki2−0.2Xki3+0.2Xki4−0.2Xki5+εki0,
where εki1 and εki0 are i.i.d from N(0, 1), while the p-dimensional covariates are generated
from Xki ∼ N(0,Σk). We consider the following seven scenarios.

(I) Homogeneous covariates with p < n: We consider the dimension with p = 100
and the sample size in each site is fixed at n = 200, while the covariance matrix Σk is
set to be Σk;st = 0.5|s−t| for k = 1, . . . ,K. In this case, the simple size is larger than
the dimension, and the distribution of covariates is homogeneous across sites.

(II) Heterogeneous covariates (i.e., covariate shift) with p < n: We consider the
dimension with p = 100 and the sample size in each site is fixed at n = 200, while

the covariance matrix Σk is set to be Σk;st = ρ
|s−t|
k , where ρk ∼ Uniform(0.2, 0.8) for

k = 1, . . . ,K. In this case, the simple size is larger than the dimension, and there is
a shift in the distribution of covariates across sites.

(III) Homogeneous covariates with p > n: We consider the dimension with p = 500
and the sample size in each site is fixed at n = 200, while the covariance matrix Σk is
set to be Σk;st = 0.5|s−t| for k = 1, . . . ,K. In this case, the simple size is smaller than
the dimension, and the distribution of covariates is homogeneous across sites.

(IV) Heterogeneous covariates with p > n: We consider the dimension with p = 500
and the sample size in each site is fixed at n = 200, while the covariance matrix Σk

is set to be Σk;st = ρ
|s−t|
k , where ρk ∼ Uniform(0.2, 0.8) for k = 1, . . . ,K. In this case,

the simple size is smaller than the dimension, and there is a shift in the distribution
of covariates across sites.
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(V) Misspecified propensity score model with p > n: We further consider the trans-
formed covariates Xki,mis = (Xki,1, Xki,2, X

3
ki,3, exp(Xki,4), Xki,5(1 + exp(Xki,6))

−2,
Xki,7, . . . , Xki,p). In this case, the treatment Tki is generated from the logistic re-
gression in (IV) with Xki replaced with the transformed covariates Xki,mis, while the
potential outcomes are generated in the same way as in (IV).

(VI) Misspecified outcome model with p > n: We consider the same transformed
covariates as in (V). In this case, the potential outcomes yki is generated from the
linear regression in (IV) with Xki replaced with the transformed covariates Xki,mis,
while the treatments are generated in the same way as in (IV).

(VII) Misspecified propensity score and outcome models with p > n: We consider
the same transformed covariates as in (V). In this case, both the treatment and
potential outcomes are generated from the models in (IV)with Xki replaced with the
transformed covariates Xki,mis.

In each scenario, we repeat the simulation 100 times and vary the number of sites K in
{10, 20, 30, 40, 50, 60} to mimic research networks with moderate to large size, respectively.
The regularization parameters in both algorithms are selected via cross-validation.

We compare the proposed DisC2o-HD-2 approach and other approaches in terms of the
root-mean-squared error (RMSE), absolute value of bias, variance under all scenarios. The
comparison results of correctly specified cases are present in Figure 7 and 3. The four figures
show that the proposed DisC2o-HD-2 approach tends to have smaller bias and variance and
hence have significantly smaller RMSE than that of other approaches except the pooled
estimator in all scenarios. In addition, as the number of sites increases, the RMSE, bias,
and variance of the proposed method decrease accordingly. However, the local average
method and DisC2o-HD-1 are less robust as the number of sites increases. In addition,
the proposed DisC2o-HD-2 approach is robust to the model misspecification and usually
outperforms other methods as shown in Figure 6.

In summary, under the distributed setting, the proposed DisC2o-HD-2 approach demon-
strates superior performance and closely approximates the pooled results as the number of
sites (K) increases. The proposed approach also exhibits more robust performance under
model misspecifications.

5. Data application

A number of studies have been conducted to investigate the long-term consequences of
SARS-CoV-2, the virus responsible for COVID-19. Post-acute sequelae of SARS-CoV-2,
hereafter referred to as PASC, can manifest as various health issues affecting multiple organ
systems, appearing four weeks or more after infection. The World Health Organization
has defined post-COVID-19 conditions as those occurring three months after the initial
infection, lasting a minimum of two months, and lacking an alternative diagnosis. However,
there is limited information regarding the impact of the vaccine on PASC in diverse pediatric
populations, particularly children in the United States.

In this section, we assess the proposed methods by utilizing a simulated data generated
from summary statistics derived from electronic health record (EHR) data in existing studies
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Figure 2: Simulation results for the lower-dimensional settings (i.e., p < n). Upper panel:
comparison results of different methods under scenario (I) – homogeneous co-
variates with p < n; lower panel: comparison results of different methods under
scenario (II) – heterogeneous covariates with p < n
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Figure 3: Simulation results for the high-dimensional settings (i.e., p > n). Upper panel:
comparison results of different methods under scenario (III) – homogeneous co-
variates with p > n; lower panel: comparison results of different methods under
scenario (IV) – heterogeneous covariates with p > n
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Figure 4: Simulation results for the high-dimensional settings with model misspecification.
Upper panel: comparison results of different methods under scenario (V) – mis-
specified propensity score model with p > n; middle panel: comparison results of
different methods under scenario (VI) – misspecified outcome model with p > n;
lower panel: comparison results of different methods under scenario (VI) – mis-
specified propensity score model and outcome model with p > n
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on the impact of vaccination on PASC in children during the Omicron period (Wu et al.,
2024; Thaweethai et al., 2023). These EHR data included a comprehensive collection of
routinely gathered clinical information, including patient demographics, medications, coded
procedures, coded diagnoses, medical history, allergies, lab results, microbiology, blood bank
data, pathology, vital signs, surgery, anesthesia, and more.

The eligibility criteria for participants in this study included being between the ages of
5 and 11 at the beginning of the study period, with no previous COVID-19 vaccination or
documented SARS-CoV-2 infection. Additionally, participants were required to have a prior
encounter within 18 months before entering the cohort to ensure an ongoing interaction with
the healthcare system. The intervention under investigation was vaccination, specifically
comparing those who received any type of COVID-19 vaccine with those who did not receive
any. The outcome of interest was the count of PASC features observed within 28 to 179
days following the initial SARS-CoV-2 test date.

To mimic the patients’ medical records in the EHR data, we simulated a set of con-
founders using the summary statistics reported in the existing studies. These confounders
includes demographic variables such as age and gender, race, obesity status, Pediatric Med-
ical Complexity Algorithm (PMCA) score (Simon et al., 2018), the number of visits to the
emergency department in the 18 months leading up to 7 days before cohort entry, the num-
ber of inpatient visits during the same time frame, the number of outpatient visits within
the specified period, the count of unique medications prescribed within the 18 months prior
to 7 days before cohort entry, and the presence of diagnoses related to 205 chronic condition
clusters within the same timeframe. In total, we included 248 confounders in our analysis.

Our final simulated dataset includes six clinical sites and consists of 1,158 individuals,
with each site contributing approximately 193 patients to the analysis. We have complete
access to all simulated 1,158 individuals, enabling us to apply both pooled analysis and the
proposed method to the dataset. Figure 5 illustrates the results of the data analysis, com-
paring the pooled method, simple average method, DisC2o-HD-1, and the proposed method.
Among these methods, the proposed method (highlighted in red) yields the ATE estimation
of -0.26 (95% CI: [-0.44, -0.08]) closest to that of the pooled method estimation of -0.24
(95% CI: [-0.38, -0.14]) (highlighted in purple), which is considered as the gold standard. It
is worth noting that the proposed method exhibits a loss in efficiency, resulting in a wider
confidence interval for the estimate. The results of this study by examining the impact of
COVID-19 vaccination on children aged 5 to 11 showed consistent findings with previous
studies conducted on adults (Wynberg et al., 2022). However, further investigations are
warranted to better understand the effects of vaccination on children in this age group.

6. Conclusion

Overall, this paper presents a novel approach to address the challenges of high-dimensional
healthcare data analysis, offering a distributed learning algorithm that effectively accounts
for covariate shift and enables accurate estimation of the average treatment effect. The
proposed method shows promise for improving healthcare research and decision-making by
leveraging large-scale data from multiple clinical sites. The implementation of our pro-
posed method requires a uniform set of covariates across all participating sites to ensure
the validity of statistical analyses. However, we recognize that this requirement could limit
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its applicability in scenarios with structural missingness. Therefore, it is crucial for future
extensions to address the presence of structural missingness in multi-site studies when ana-
lyzing high-dimensional data. Additionally, we plan to extend this method for other types
of outcomes and address the potential issue of small sample sizes of the collaborating clinical
sites. It is also important to note that although we assume the coefficients are homogeneous
across sites in our models, these coefficients could indeed vary across different sites, partic-
ularly when analyzing complex, real-world, multi-site data. Some efforts have been made
in the field of distributed learning. For example, Duan et al. (2022) proposed using the
density ratio tilting method to accommodate differences in coefficients. We look forward
to extending our current framework to more comprehensively understand and account for
the potential variability of coefficients in the model. In addition to calculating the ATE at
the population level, it is essential to assess the site-specific ATE. This analysis can yield
significant insights into the factors driving heterogeneity across clinical sites.
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Appendix A. Proofs and Technical Details

Recall that the loss functions for DisC2o-HD estimator is defined as:

Q̃(θ, θ̄) = Q1(θ) +
(
∇QN (θ̄)−∇Q1(θ̄)

)T
θ +

1

2
(θ − θ̄)T

(
∇2QN (θ̄)−∇2Q1(θ̄)

)
(θ − θ̄),

L̃(β, β̄, θ̃Kc) = L1(β) +
(
∇LN (β̄, θ̃Kc)−∇L1(β̄, θ̃Kc)

)T
θ

+
1

2
(β − β̄)T

(
∇2LN (β̄, θ̃Kc)−∇2L1(β̄, θ̃Kc)

)
(θ − θ̄),

respectively. Where θ̄ and β̄ are proper initial estimator.

We first present and discuss the assumptions under which our theoretical results are
proved.

Assumption 7 (Unconfoundedness) The treatment assignment is unconfounded, i.e.,
{Yki(0), Yki(1)} ⊥⊥ Tki | Xki.
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Assumption 8 (Overlap) There exists a constant c0 > 0 such that c0 ≤ P(Tki = 1|Xki) ≤
1− c0.

Assumption 7 requires that there is no unmeasured confounder. Assumption 8 implies
that every sample has a positive probability to receive the treatment or belong to the control
group. When Assumptions 7 and 8 are satisfied, the treatment assignment is considered as
strongly ignorable (Rosenbaum and Rubin, 1983). The above two assumptions are standard
in the causal inference literature.

Assumption 9 (Design) The minimal and maximal eigenvalues of E[XkiX
T
ki] are con-

tained in a bounded interval that does not contain zero.

Assumption 3 requires the design matrix is well conditioned. The same eigenvalue
condition has been used to analyze high-dimensional lasso and causal inference problems
(Van de Geer et al., 2014; Ning and Liu, 2017; Bradic et al., 2019).

Assumption 10 (Model) Xki has mean 0 and a bounded sub-Gaussian norm. Moreover,
ε∗ki = Yki(1)−XT

kiβ
∗ also has a bounded sub-Gaussian norm.

Assumption 10 is a mild regularity condition on the tail of error term ε∗ki and design
Xki. This assumption controls the behavior of the error term and enables us to use various
concentration inequalities in high-dimensional statistics. Since the mean shift of Xki does
not influence the procedure of the proof, without loss of generality, we further assume that
Xki has a mean of 0 for the convenience of the proof, even though it may vary across sites.

Assumption 11 (Sparsity) Let s1 = ‖θ∗‖0, and s2 = ‖β∗‖0. Assume that

√
s2(s1 ∨ s2) log(p ∨Kn)√

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
= o(1)

as s1, s2, p,m, n→∞.

Assumption 11 imposes conditions on how fast the model sparsity s1 and s2, the covariate
dimension p and the number of sites K can grow with the local sample size n. When
s1 � s2 � s, upto some logarithmic factors, the condition reduces to s√

Kn
+ s2

n = o(1).

In addition, when K is fixed, it further reduces to s/
√
n = o(1), which is identical to the

existing sparsity conditions for high-dimensional treatment effect estimation (Tan, 2020a;
Ning et al., 2020). Finally, we comment that the assumption may still hold even if s1 is
large but s2 is small (more precisely, s1s2 is small). This is known as the sparsity double
robustness property, recently proposed by Bradic et al. (2019).

Assumption 12 (Variance) We assume that there exists some constant c1 > 0 such that

E(ε∗2ki |Xki) ≥ c1, E
(
XT
kiβ
∗)4 = O(s22).

Assumption 12 is a mild condition on the noise and design. The first assumption guar-
antees the nondegeneracy of the asymptotic variance, while the second part is used in the
Lyapunov condition in CLT.
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Throughout this proof, we use the following notation. For v = (v1, . . . , vp) ∈ Rp and

1 ≤ q ≤ ∞, we define ‖v‖q =
(∑d

i=1 |vi|q
)1/q

, ‖v‖0 = |supp(v)|, in which supp(v) =

{j : vK 6= 0}. The Orlicz norm associated with a Young’s modulus ψ of X is defined by
‖X‖ψ = inf {C > 0 : E[ψ(|X|/C)] ≤ 1}. If a matrix A is symmetric, then λmin(A) and
λmax(A) represent the minimal and maximal eigenvalues of A. For two positive sequences
an and bn, we write an � bn if there exist C,C ′ > 0 such that C ≤ an/bn ≤ C ′ holds. We
denote ψ1 = ex

2 − 1 and if a random variable X is sub-Gaussian, then ‖X‖ψ1 <∞. Denote
a ∨ b = max(a, b).

Throughout the proof below, we denote J to be a set of the servers, while Kc to be
another set of servers. As an example, when J is the K1, then Kc can be either K2 or K3.

A.1 Main result

Proposition 10 Under assumption 1-6, with λps �
√

log(p∨Kn)
Kn + s1 log

2(p∨n)
n , for DisC2o-

HD estimator θ̃K , we have:∥∥∥θ̃K − θ∗∥∥∥
2
≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,

3

Kn

∑
(k,i)∈K

{
XT
ki(θ̃K − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
,

3

Kn

∑
(k,i)∈Kc

{
XT
ki(θ̃K − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
.

holds with probability at least 1− M
(p∨n)8 −

M
n8 , where K = K1, K2, or K3 and Kc represents

another set of servers.

Proof First Claim:

Consider the events defined as:

E1 =

{
‖θ̄K − θ∗‖2 ≤ C1

√
s1 log(p ∨ n)

n

}
,

E2 =

{
‖∇QN (θ∗)‖∞ ≤ C1

√
log(p ∨Kn)

Kn

}
,

E3 =

{
max
K
‖Xi1‖∞ ≤ C log(p ∨ n)

}
,

E4 =

 1

n

∑
(i,1)∈J

{
XT
i1(θ̄K − θ∗)

}2 ≤ CL ∥∥θ̄K − θ∗∥∥22
 ,

E5 =

 3

Kn

∑
(k,i)∈K

{
XT
ki(θ̄K − θ∗)

}2 ≤ CL ∥∥θ̄K − θ∗∥∥22
 .
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For event E1, it is a result of lemma 17. While for E2, E3, we can apply lemma 21 and
union bound. For E4, E5, they are the result from lemma 25. Plugging in the results above,

it can be obtained that: P
(⋂5

i=1 Ei
)
≥ 1− M

(p∨n)8 −
M
n8 .

Constrain ‖δ‖2 ≤ C1

√
s1 log(p∨n)

n , we can see that for the loss function of our DisC2o-HD
estimator satisfies

Q̃(θ∗ + δ)− Q̃(θ∗)−∇Q̃(θ∗)δ

= Q1(θ
∗ + δ)−Q1(θ

∗)−∇Q1(θ
∗)δ +

1

2
δT
(
∇2QN (θ̄K)−∇2Q1(θ̄K)

)
δ

= Q1(θ
∗ + δ)−Q1(θ

∗)−∇Q1(θ
∗)δ − 1

2
δT∇2Q1(θ

∗)δ +
1

2
δT∇2QN (θ̄K)δ

+
1

2
δT
(
∇2Q1(θ

∗)−∇2Q1(θ̄K)
)
δ

= o(‖δ‖22) +
1

2
δT∇2QN (θ̄K)δ +

1

2
δT
(
∇2Q1(θ

∗)−∇2Q1(θ̄K)
)
δ

≥ µ ‖δ‖22 − µ
′ log p

n
‖δ‖21 +

1

2
δT
(
∇2Q1(θ

∗)−∇2Q1(θ̄K)
)
δ + o(‖δ‖22),

where the last inequality is a direct result of lemma 19 and algebra. In addition,

∣∣∣∣12δT (∇2Q1(θ
∗)−∇2Q1(θ̄K)

)
δ

∣∣∣∣ =

∣∣∣∣∣∣ 1n
∑

(i,1)∈J

exp
(
−XT

i1(θ
∗ + t(θ̄K − θ∗))

)
XT
i1(θ̄K − θ∗)

(
XT
i1δ
)2∣∣∣∣∣∣ = o(‖δ‖22).

Then, we have

Q̃(θ∗ + δ)− Q̃(θ∗)−∇Q̃(θ∗)δ ≥ µ ‖δ‖22 − µ
′ log p

n
‖δ‖21 + o(‖δ‖22) ≥

µ

2
‖δ‖22 − µ

′ log p

n
‖δ‖21.

Thus, Q̃ also satisfies the RSC condition given in Negahban et al. (2012). Then, by directly
applying Corollary 1 of Negahban et al. (2012), we have:

∥∥∥θ̃K − θ∗∥∥∥
2
≤

3
√
s1λps
C

,

for every λps ≥
∥∥∥∇Q̃(θ∗)

∥∥∥
∞

.

We can see that

∇Q̃(θ∗) = ∇Q1(θ
∗) + (∇QN (θ̄K)−∇Q1(θ̄K)) + (∇2QN (θ̄K)−∇2Q1(θ̄K))(θ∗ − θ̄K)

= ∇Q1(θ
∗)−∇Q1(θ̄K) +∇QN (θ̄K)−∇QN (θ∗)

+∇QN (θ∗) + (∇2QN (θ̄K)−∇2Q1(θ̄K))(θ∗ − θ̄K)

= ∇QN (θ∗) +
(
∇2Q1(θ̄K)−∇2Q1(θ

∗ + t1(θ̄K − θ∗))
)

(θ̄K − θ∗)
+
(
∇2QN (θ∗ + t2(θ̄K − θ∗))−∇2QN (θ̄K)

)
(θ̄K − θ∗),
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where t1, t2 ∈ [0, 1]. Under E4 ∩ E5, we can see:∥∥(∇2Q1(θ̄K)−∇2Q1(θ
∗ + t1(θ̄K − θ∗))

)
(θ̄K − θ∗)

∥∥
∞

≤ t1

∥∥∥∥∥∥ 1

n

∑
(i,1)∈J

exp
(
−XT

i1(θ
∗ + s(θ̄K − θ∗))

)
Xi1

(
XT
i1(θ̄K − θ∗)

)2∥∥∥∥∥∥
∞

≤M ‖Xi1‖∞

∣∣∣∣∣∣ 1n
∑

(1,j)∈J

{
XT
i1(θ̄K − θ∗)

}2∣∣∣∣∣∣
≤MC log(p ∨ n)

∥∥θ̄K − θ∗∥∥22 .
Notice that we can deal with the last term in a similar manner. Plugging it back in the

equation we have, it shall be observed that:∥∥∥∇Q̃(θ∗)
∥∥∥
∞
≤ ‖∇QN (θ∗)‖∞ + 2M ′ log(p ∨ n)

∥∥θ̄K − θ∗∥∥22 .
Under event

⋂6
i=0 Ei, we can see that:∥∥∥∇Q̃(θ∗)

∥∥∥
∞
≤ C1

√
log(p ∨Kn)

Kn
+ C2

s1 log2(p ∨ n)

n
.

Then, with properly chosen λps, under
⋂6
i=0 Ei, we can see that:∥∥∥θ̃K − θ∗∥∥∥

2
≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
.

Second Claim:

Let S = {i : θ∗Ji 6= 0}. By definition, we can see that:

Q̃(θ̃K) + λps

∥∥∥θ̃K∥∥∥
1
≤ Q̃(θ∗) + λps ‖θ∗‖1 , (13)

Q̃(θ̃K)− Q̃(θ∗)−∇Q̃(θ∗)(θ̃K − θ∗) +
∥∥∥θ̃JSc

∥∥∥
1
≤ −∇Q̃(θ∗)(θ̃K − θ∗) + λps

(∥∥∥(θ∗ − θ̃K)S

∥∥∥
1

)
.

On the left hand side, we can see that

Q̃(θ̃K)− Q̃(θ∗)−∇Q̃(θ∗)(θ̃K − θ∗)

=
(
∇Q̃(θ∗ + t(θ̃K − θ∗))−∇Q̃(θ∗)

)
(θ̃K − θ∗)

= t(θ̃K − θ∗)T
(
∇2Q̃(θ∗ + t′(θ̃K − θ∗))

)
(θ̃K − θ∗).

= t(θ̃K − θ∗)T
(
∇2Q1(θ

∗ + t′(θ̃K − θ∗)) +∇2QN (θ̄K)−∇2Q1(θ̄K)
)

(θ̃K − θ∗).

= t
3

Kn

∑
(k,i)∈K

{
exp(−XT

kiθ̄K)
(
XT
ki(θ̃K − θ∗)

)2
+O

((
XT
ki(θ̃K − θ∗)

)2 (
XT
ki(θ̄K − θ∗)

))}
,

(14)
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where t, t′ ∈ [0, 1].
Furthermore, under assumption 7, the left hand side satisfies:

Q̃(θ̃K)− Q̃(θ∗)−∇Q̃(θ∗)(θ̃K − θ∗) ≥ C
3

Kn

∑
(k,i)∈K

{
XT
ki(θ̃K − θ∗)

}2
.

On the right hand side, under
∑6

i=0 Ei, we have:

Q̃(θ∗)(θ∗ − θ̃K) + λps

(∥∥∥(θ∗ − θ̃K)S

∥∥∥
1

)
≤
∥∥∥∇Q̃(θ∗)

∥∥∥
∞

∥∥∥θ∗ − θ̃K∥∥∥
1

+ λps

∥∥∥θ∗ − θ̃K∥∥∥
1

≤ CL
(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
.

Plugging in the result we have on left hand side, the desired result is thus obtained.
Third Claim:

By equation (14), we can see that under
⋂6
i=0 Ei,

Q̃(θ̃K)− Q̃(θ∗) ≥ ∇Q̃(θ∗)(θ̃K − θ∗).

Since

|∇Q̃(θ∗)(θ̃K − θ∗)| ≤
∥∥∥∇Q̃(θ∗)

∥∥∥
∞
‖θ̃K − θ∗‖1,

we can plug these facts in (13). Thus,

−
(∥∥∥∇Q̃(θ∗)

∥∥∥
∞
‖θ̃K − θ∗‖1

)
+ λps

∥∥∥θ̃K∥∥∥
1
≤ λps ‖θ∗‖1 .

Denote
λps

‖∇Q̃(θ∗)‖∞
= c, we have

∥∥∥∇Q̃(θ∗)
∥∥∥
∞

= cλps. Since ‖θ̃K‖1 =
∥∥∥θ∗ + (θ̃K − θ∗)Sc + (θ̃K − θ∗)S

∥∥∥ =∥∥∥θ∗ + (θ̃K − θ∗)Sc

∥∥∥
1

+
∥∥∥(θ̃K − θ∗)S

∥∥∥
1
, we can see that:

−cλps‖θ̃K − θ∗‖1 + λps

∥∥∥(θ̃K − θ∗)S
∥∥∥
1
≤ λps

(
‖θ∗‖1 −

∥∥∥θ∗ + (θ̃K − θ∗)Sc

∥∥∥
1

)
≤ λps

∥∥∥(θ̃K − θ∗)
S

∥∥∥
1
.

That is, ∥∥∥(θ̃K − θ∗)
Sc

∥∥∥
1
≤ 1 + c

1− c

∥∥∥(θ̃K − θ∗)
S

∥∥∥
1
.

Thus, under
⋂6
i=0 Ei,

3

Kn

∑
(i,j)∈Kc

{
XT
ki(θ̃K − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
.

Since λps ≥
∥∥∥∇Q̃(θ∗)

∥∥∥
∞

, c ≤ 1. Thus, by taking λps = 2
∥∥∥∇Q̃(θ∗)

∥∥∥
∞

, we can apply lemma

6 of Bradic et al. (2019), and the desired result is obtained.

Notice that the same result should still hold if we interchange J with Kc. Thus, this
result is equivalent to proposition 10.
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Proposition 11 Under assumption 1-6, with λom �
√

log(p∨Kn)
Kn , for DisC2o-HD estimator

β̃K , we have:

∥∥∥β̃K − β∗∥∥∥
2
≤ CL

(√
s2 log(p ∨Kn)

Kn

)
,

3

Kn

∑
(i,j)∈K

{
XT
ki(β̃K − β∗)

}2
≤ CL

(
s2 log(p ∨Kn)

Kn

)
,

3

Kn

∑
(i,j)∈Kc

{
XT
ki(β̃K − β∗)

}2
≤ CL

(
s2 log(p ∨Kn)

Kn

)
.

holds with probability at least 1− M
(p∨n)8 −

M
n8 , where K = K1, K2, or K3 and Kc represents

another set of servers.

Proof First Claim:

Consider the events defined as:

E1 =

{∥∥∥∇2LN (β∗, θ̃Kc)−∇2L1(β
∗, θ̃Kc)

∥∥∥
∞
≤ C1

√
log(p ∨ n)

n

}
,

E2 =

{∥∥∥∇LN (β∗, θ̃Kc)
∥∥∥
∞
≤ C1

√
log(p ∨Kn)

Kn

}
.

For E1, E2, we can apply lemma 21 and union bound, where we can consider θ̃Kc to be

fixed. Combining the results above, we can see that P
(⋂2

i=1 Ei
)
≥ 1− M

(p∨n)8 .

We can see that for the loss function of our DisC2o-HD estimator, we have,

L̃(β∗ + δ, θ̃Kc)− L̃(β∗, θ̃Kc)−∇L̃(β∗, θ̃Kc)T δ

= L1(β
∗ + δ, θ̃Kc)− L1(β

∗, θ̃Kc)−∇L1(β
∗, θ̃Kc)T δ +

1

2
δT
(
∇2LN (β̄K , θ̃Kc)−∇2L1(β̄K , θ̃Kc)

)
δ.

=
1

2
δT∇2L1(β̄K , θ̃Kc)δ +

1

2
δT
(
∇2LN (β̄K , θ̃Kc)−∇2L1(β̄K , θ̃Kc)

)
δ

=
1

2
δT∇2LN (β̄K , θ̃Kc)δ

≥ C‖δ‖22,

where the last inequality is a direct result of lemma 18 and algebra. Thus, L̃ also satisfies
the RSC condition given in Negahban et al. (2012). Then, by directly applying Corollary 1
of Negahban et al. (2012), we have:∥∥∥β̃K − β∗∥∥∥

2
≤

3
√
s2λom
C

,

for every λom ≥
∥∥∥∇L̃(β∗, θ̃Kc)

∥∥∥
∞

.

30



DisC2o-HD

Following the same technique as proposition 10, we can show that

∇L̃(β∗, θ̃Kc)

= ∇L1(β
∗, θ̃Kc) + (∇LN (β̄K , θ̃Kc)−∇L1(β̄K , θ̃Kc)) +

(
∇2LN (β̄K , θ̃Kc)−∇2L1(β̄K , θ̃Kc)

)
(β∗ − β̄K)

= ∇L1(β
∗, θ̃Kc)−∇L1(β̄K , θ̃Kc) +∇LN (β̄K , θ̃Kc)−∇LN (β∗, θ̃Kc) +∇LN (β∗, θ̃Kc)

+
(
∇2LN (β̄K , θ̃Kc)−∇2L1(β̄K , θ̃Kc)

)
(β∗ − β̄K)

=
(
∇2LN (β∗, θ̃Kc)−∇2LN (β̄K , θ̃Kc)

)
(β̄K − β∗)−

(
∇2L1(β

∗, θ̃Kc)−∇2L1(β̄K , θ̃Kc)
)

(β̄K − β∗)

+∇LN (β∗, θ̃Kc)

= ∇LN (β∗, θ̃Kc).

Then, we can see that under
⋂2
i=1 Ei∥∥∥∇L̃(β∗, θ̃Kc)

∥∥∥
∞
≤
∥∥∥∇LN (β∗, θ̃Kc)

∥∥∥
∞
.

Under event
⋂2
i=1 Ei, we can see that:∥∥∥∇L̃(β∗, θ̃Kc)

∥∥∥
∞
≤ C1

√
log(p ∨Kn)

Kn
.

Then, with properly chosen λom, under
⋂2
i=1 Ei, we can see that:∥∥∥β̃K − β∗∥∥∥

2
≤ CL

√
s2 log(p ∨Kn)

Kn
.

Second and Third Claim:
The proof is an analog of proposition 10.

Notice that the same result still holds if we interchange J with Kc. Thus, this result is
equivalent to lemma 11.

Theorem 12 Under assumption 1-6, the distributed estimator for DisC2o-HD method sat-
isfies

|τ̃1 − τ̂∗1 | ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+

√
s2(s1 ∨ s2) log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

(p∨n)8 −
M
n8 , where CL is a sufficiently large constant and M is

another constant depending on CL.

Proof
We focus on

∣∣∣τ̃1,K1 − τ̂∗1,K1

∣∣∣ first. While
∣∣∣τ̃1,K2 − τ̂∗1,K2

∣∣∣ and
∣∣∣τ̃1,K3 − τ̂∗1,K3

∣∣∣ can be dealt

with in a similar manner.
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Consider the events defined as:

E0 =

{
‖θ̃Kc − θ∗‖2 ≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)}
,

E1 =

{
‖β̃Kc − β∗‖2 ≤ CL

√
s2 log(p ∨Kn)

Kn

}
,

E2 =

 3

Kn

∑
(k,i)∈K

{
XT
ki(θ̃Kc − θ∗)

}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
,

3

Kn

∑
(k,i)∈K

{
XT
ki(β̃Kc − β∗)

}2
≤ CL

s2 log(p ∨Kn)

Kn

 ,

E3 =


∥∥∥∥∥∥ 3

Kn

∑
(k,i)∈K

{(
Tki

π(XT
kiθ
∗)
− 1

)
XT
ki

}∥∥∥∥∥∥
∞

≤ CL

√
log(p ∨Kn)

Kn

 ,

E4 =


∥∥∥∥∥∥ 3

Kn

∑
(k,i)∈K

Xkiε
∗
ki

∥∥∥∥∥∥
∞

≤ CL

√
log(p ∨Kn)

Kn

 .

By proposition 10 and 11 we may realize that E0, E1, E2 will hold with probability at least
1 − M

(p∨n)8 −
M
n8 for both one-step and DisC2o-HD estimator. We can see that Tki

π(XT
kiθ
∗)
− 1

is bounded by the strong ignorability assumption, with zero expected value. By lemma 21
and union bound, we can see event E3, E4 will hold with probability at least 1 − M

(p∨Kn)8 .

Thus,
⋂4
i=0 Ei will hold with probability at least 1− M

(p∨n)8 −
M
n8 .

By rearranging the terms, we have:

τ̂∗1,J − τ̃1,J =
3

Kn

∑
(k,i)∈K

{
XT
kiβ
∗ +

Tki
π(XT

kiθ
∗)

(
Yki −XT

kiβ
∗)}

− 3

Kn

∑
(k,i)∈K

{(
XT
kiβ̃Kc +

Tki

π(XT
kiθ̃Kc)

(
Yki −XT

kiβ̃Kc

))}
= ∆1 + ∆2 + ∆3.

where

∆1 =
3

Kn

∑
(k,i)∈K

 Tki

π
(
XT
kiθ̃Kc

) − Tki

π
(
XT
kiθ
∗
)
XT

ki

(
β̃Kc − β∗

)
,

∆2 =
3

Kn

∑
(k,i)∈K

(
Tki

π
(
XT
kiθ
∗
) − 1

)
XT
ki

(
β̃Kc − β∗

)
,

∆3 =
3

Kn

∑
(k,i)∈K

(
Tki

π(XT
kiθ
∗)
− Tki

π(XT
kiθ̃Kc)

)(
Yki −XT

kiβ
∗) .
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Consider ∆1, we may see that

|∆1| =

∣∣∣∣∣∣ 3

Kn

∑
(k,i)∈K

Tki

{(
exp

(
−XT

kiθ̃Kc

)
− exp

(
−XT

kiθ
∗))XT

ki

(
β̃Kc − β∗

)}∣∣∣∣∣∣
≤ C ′

 3

Kn

∑
(k,i)∈K

{
XT
ki

(
β̃Kc − β∗

)}2

1/2 3

Kn

∑
(k,i)∈K

{
XT
ki

(
θ̃Kc − θ∗

)}2

1/2

,

where we applied the mean value theorem and Cauchy inequality in the second line. Under
E0
⋂
E1, we have :

|∆1| ≤ C

√s1s2 log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn

 .

While for ∆2, we have:

∆2 =
3

Kn

∑
(k,i)∈K

{(
Tki

π(XT
kiθ
∗)
− 1

)
XT
ki

(
β̃Kc − β∗

)}

≤

∥∥∥∥∥∥ 3

Kn

∑
(k,i)∈K

{(
Tki

π(XT
kiθ
∗)
− 1

)
XT
ki

}∥∥∥∥∥∥
∞

∥∥∥β̃Kc − β∗
∥∥∥
1
.

≤

∥∥∥∥∥∥ 3

Kn

∑
(k,i)∈K

{(
Tki

π(XT
kiθ
∗)
− 1

)
XT
ki

}∥∥∥∥∥∥
∞

√
s2

∥∥∥β̃Kc − β∗
∥∥∥
2

Thus, under E1
⋂
E3,

|∆2| ≤ CL
s2 log(p ∨Kn)

Kn
.

While for ∆3, we can take advantage of the sample splitting method, which would give
us:

E

 3

Kn

∑
(k,i)∈K

{(
Tki

π(XT
kiθ̃Kc)

− Tki
π(XT

kiθ
∗)

)}
ε∗ki


= E

E
 3

Kn

∑
(k,i)∈K

(
Tki

π(XT
kiθ̃Kc)

− Tki
π(XT

kiθ
∗)

)
ε∗ki

∣∣∣∣∣∣{Xki, Yki, Tki}(i,j)∈Kc

⋂
{Xki}(k,i)∈K

 = 0

Notice that if we condition on {Xki, Yki, Tki}i∈Jc
K

⋂
{Xki}K , π(XT

kiθ̃Kc) can be considered

as fixed.

Then, we can consider the truncated case, where E5 =

{
3
Kn

∑
(k,i)∈K

(
Tki

π(XT
kiθ̃Kc )

− Tki
π(XT

kiθ
∗)

)
ε∗ki ≥ t

}
for some t to be chosen later. In the meanwhile, we can denote:

A =

 3

Kn

∑
(k,i)∈K

{
XT
ki

(
θ̃Kc − θ∗

)}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log2(p ∨ n)

n2

) .
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Then, we can see that:

P (E5) = E
[
P
(
E5
∣∣∣{Tki, Xki, Yki}Kc

⋂
{Xki}K

)]
= E

[
P
(
E5
∣∣∣{Tki, Xki, Yki}Kc

⋂
{Xki}K

)
1 {A}

]
+ E

[
P
(
E5
∣∣∣{Tki, Xki, Yki}Kc

⋂
{Xki}K

)
1 {Ac}

]
.

Denote ∆2
Kn = 3

Kn

∑
(k,i)∈K

{(
exp(−XT

kiθ
∗)− exp(−XT

kiθ̃Kc)
)}2

. Since Tkiε
∗
ki are sub-

Gaussian, by assumption 10 and the fact that Tki ∈ {0, 1}, by Hoeffding inequality, we
have

E
(

exp

(
−CKnt

2

∆2
Kn

))

≤ E

exp

(
−CKnt

2

∆2
Kn

)
1

 3

Kn

∑
(k,i)∈K

{
XT
ki

(
θ̃Kc − θ∗

)}2
≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)


+ P (Ac)

≤ E

exp

− CKnt2

CL

(
s1 log(p∨Kn)

Kn +
s31 log

4(p∨n)
n2

)
+ P (Ac) .

Taking t2 = C ′L
log(p∨Kn)

Kn

(
s1 log(p∨Kn)

Kn +
s31 log

4(p∨n)
n2

)
:

P (E5) = P

(
|∆3| ≥ CL

√
log(p ∨Kn)

Kn

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

))

≤ M

(p ∨Kn)8
.

Thus, we can see that event

|∆3| ≤
√

log(p ∨Kn)

Kn

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)

will hold with probability at least 1 − M
(p∨Kn)8 . Combining the event and probability we

obtained at ∆1,∆2, and ∆3, we have

P

|τ̃1,J − τ̂∗1,J | ≤ CL
√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn


≥ 1− M

(p ∨ n)8
− M

n8
.

Likewise, we can apply the same technique to τ̃1,K2 or τ̃1,K3 . Combining the bound
above, the desired bound can be obtained.
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Theorem 13 Under assumptions 1-6, we have

sup
x∈R

∣∣∣∣∣P
(√

Kn(τ̃1 − τ∗1 )√
V̂

≤ x

)
− Φ(x)

∣∣∣∣∣
≤ M

(p ∨ n)8
+
M

n8
+ CL

√s2(s1 ∨ s2) log(p ∨Kn)√
Kn

+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n

 ,

where CL is a sufficiently large constant, and M depends on CL.

Proof We prove this theorem in two steps. Firstly, we control

sup
x∈R

∣∣∣∣∣P
(√

Kn(τ̃1 − τ∗1 )√
V ∗

≤ x

)
− Φ(x)

∣∣∣∣∣ .
Then, with the Berry-Esseen type bound established, we can replace the true value of the
variance with the variance estimator to bound

sup
x∈R

∣∣∣∣∣P
(√

Kn(τ̃1 − τ∗1 )√
V̂

≤ x

)
− Φ(x)

∣∣∣∣∣ .
For the first term, consider τ̂∗1 defined as:

τ̂∗1 : =
1

Kn

m∑
j=1

n∑
i=1

{
XT
kiβ
∗ +

Tki
π(XT

kiθ
∗)

(
Yki −XT

kiβ
∗)} ,

then we can see that the classical Berry-Esseen bound holds under assumption 12:

sup
x∈R

∣∣∣∣∣P
(√

Kn(τ̂∗1 − τ∗1 )√
V ∗

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ C√
Kn

.

Then, we may consider the event E1 = {|τ̃1 − τ̂∗1 | ≤ r} where

r = CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn

 .

By theorem 12, we can realize that P(Ec1) ≤ M
(p∨n)8 + M

n8 .

For the first term, we may realize that:

P

(√
Kn(τ̃1 − τ∗1 )√

V ∗
≤ x

)
− Φ(x) = P

(√
Kn(τ̃1 − τ∗1 )√

V ∗
≤ x, E1

)
− Φ(x) + P

(√
Kn(τ̃1 − τ∗1 )√

V ∗
≤ x, Ec1

)
.

It can be easily showed that:

sup
x∈R

P

(√
Kn(τ̃1 − τ∗1 )√

V ∗
≤ x, E1

)
− Φ (x) ≤ C√

Kn
+

M

(p ∨ n)8
+
M

n8
+ C
√
Knr,
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where C is some positive constant. With similar argument, we can see that:

sup
x∈R

∣∣∣P(√Kn(τ̃1 − τ∗1 )√
V ∗

≤ x

)
− Φ (x)

∣∣∣ ≤ C√
Kn

+
M

(p ∨ n)8
+
M

n8
+ C ′

√
Knr,

where C ′ is some positive constant.

By proposition 14,

P

∣∣∣∣∣∣
√

V̂

V ∗
− 1

∣∣∣∣∣∣ ≤ CL
(√

(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log(p ∨ n)

n

) ≥ 1− M

(p ∨ n)8
− M

n8
.

Thus, for the second result, we can apply the same technique as above. The same result
shall be obtained.

A.2 Consistency Lemmas

Proposition 14 (Consistency of variance estimator) The variance estimator satisfies

|V̂ − V ∗| ≤ CL

(√
(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,∣∣∣∣∣∣

√
V̂

V ∗
− 1

∣∣∣∣∣∣ ≤ CL
(√

(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,

with probability at least 1 − M
(p∨n)8 −

M
n8 , where CL is a sufficiently large constant and M

depends on CL.

Proof
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Consider events defined as

E0 =

{
‖θ̃ − θ∗‖2 ≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)}
,

E1 =

{
‖β̃ − β∗‖2 ≤ CL

√
s2 log(p ∨Kn)

Kn

}

E2 =

 1

Kn

m∑
j=1

n∑
i=1

(XT
ki(θ̃ − θ∗))2 ≤ CL

(
s1 log(p ∨Kn)

Kn
+
s31 log4(p ∨ n)

n2

)
,

1

Kn

m∑
j=1

n∑
i=1

(XT
ki(β̃ − β∗))2 ≤ CL

s2 log(p ∨Kn)

Kn

 ,

E3 =


∥∥∥∥∥∥ 1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ
∗)
− 1

)
XT
ki

}∥∥∥∥∥∥
∞

≤ CL

√
log(p ∨Kn)

Kn

 ,

E4 =

{
|τ∗1 − τ̃1| ≤

C ′L√
Kn

}
,

E5 =


∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(XT
kiθ
∗)2

(
Yki −XT

kiβ
∗)2}− E

[
1

π(XT
kiθ
∗)

(Yki −XT
kiβ
∗)2
]∣∣∣∣∣∣ ≤ CL

√
log(p ∨Kn)

Kn

 ,

E6 =


∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

(ε∗ki)
4 − E

(
(ε∗ki)

4
)∣∣∣∣∣∣ ≤ CL,

∥∥∥∥∥∥ 1

Kn

m∑
j=1

n∑
i=1

εkiXki

∥∥∥∥∥∥
∞

≤ CL

√
log(p ∨Kn)

Kn

 ,

E7 =


∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

{(
XT
kiβ
∗ − τ∗1

)2}− E
((
XT
kiβ
∗ − τ∗1

)2)∣∣∣∣∣∣ ≤ CL
√

log(p ∨Kn)

Kn

 .

By proposition 10 and 11 we may realize that E0, E1 will hold with probability at least
1− M

(p∨n)8 −
M
n8 . Also, E2 will hold with probability at least 1− M

(p∨Kn)8 , which is the result of

lemma 25. For event E3, it is a combination of theorem 12, assumption 11, union bound, and
lemma 21. We can see that Tki

π(XT
kiθ
∗)
− 1 is bounded by the strong ignorability assumption,

with zero expected value. By lemma 21 and union bound, we can see events E4, E6, E7 will
hold with probability at least 1− M

(p∨Kn)8 . We can show the second part of E6 by the same

technique. For the first part of E6, it can be derived by lemma 24. Thus,
⋂7
i=0 Ei will hold

with probability at least 1− M
(p∨n)8 −

M
n8 .

We can show that, under
⋂7
i=0 Ei:

|V̂ − V̂ ∗| ≤ CL

(√
(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
,

where V̂ ∗ := 1
Kn

∑m
j=1

∑n
i=1

{
Tki

π(XT
kiθ
∗)2

(
Yki −XT

kiβ
∗)2 +

(
XT
kiβ
∗ − τ∗1

)2}
.
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Then, we show that:

|V̂ ∗ − V ∗| ≤ C ′L

√
log(p ∨Kn)

Kn
.

We may begin by rearranging the terms. Consider V̂ − V̂ ∗, we have:

V̂ − V̂ ∗ =
1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(XT
kiθ̃)

2

(
Yki −XT

kiβ̃
)2

+
(
XT
kiβ̃ − τ̃1

)2}

− 1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(Xkiθ∗)2
(
Yki −XT

kiβ
∗)2 +

(
XT
kiβ
∗ − τ∗1

)2}
.

This can be decomposed as:

V̂ − V̂ ∗ = ∆1 + ∆2,

where

∆1 =
1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(XT
kiθ̃)

2

(
Yki −XT

kiβ̃
)2}

− 1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(Xkiθ∗)2
(
Yki −XT

kiβ
∗)2} ,

∆2 =
1

Kn

m∑
j=1

n∑
i=1

{(
XT
kiβ̃ − τ̃1

)2}
− 1

Kn

m∑
j=1

n∑
i=1

{(
XT
kiβ
∗ − τ∗1

)2}
.

Then, we can decompose ∆1:

∆1 = ∆11 + ∆12,

where

∆11 =
1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(Xkiθ∗)2

((
Yki −XT

kiβ̃
)2
−
(
Yki −XT

kiβ
∗)2)} ,

∆12 =
1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

2
− Tki
π(XT

kiθ
∗)2

)(
Yki −XT

kiβ̃
)2}

.

Then, for ∆11, we can see that

∆11 =
2

Kn

m∑
j=1

n∑
i=1

{
Tki

π(Xkiθ∗)2
ε∗ki

(
XT
ki(β̃ − β∗)

)}
+

1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(Xkiθ∗)2

(
XT
ki(β̃ − β∗)

)2}

≤

∥∥∥∥∥∥ 2

Kn

m∑
j=1

n∑
i=1

Tki
π(XT

kiθ
∗)2

ε∗kiX
T
ki

∥∥∥∥∥∥
∞

∥∥∥β̃ − β∗∥∥∥
1

+
1

Kn

m∑
j=1

n∑
i=1

{
XT
ki(β̃ − β∗)

}2
.

≤

∥∥∥∥∥∥ 2

Kn

m∑
j=1

n∑
i=1

Tki
π(XT

kiθ
∗)2

ε∗kiX
T
ki

∥∥∥∥∥∥
∞

√
s2

∥∥∥β̃ − β∗∥∥∥
2

+
1

Kn

m∑
j=1

n∑
i=1

{
XT
ki(β̃ − β∗)

}2
.
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Under E1
⋂
E2
⋂
E6:

∆11 ≤ CL
s2 log(p ∨Kn)

Kn
.

For ∆12, we have:

∆12 =
1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

2
− Tki
π(XT

kiθ
∗)2

)
2ε∗ki

(
XT
kiβ̃ −XT

kiβ
∗
)}

+
1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

2
− Tki
π(XT

kiθ
∗)2

)(
XT
kiβ̃ −XT

kiβ
∗
)2}

+
1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

2
− Tki
π(XT

kiθ
∗)2

)
(ε∗ki)

2

}
.

We can apply similar technique as above for the first two terms. While for the last one, by
Cauchy inequality and mean value theorem:

1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

2
− Tki
π(XT

kiθ
∗)2

)
(ε∗ki)

2

}

≤ C

 1

Kn

m∑
j=1

n∑
i=1

{(
Tki

π(XT
kiθ̃)

+
Tki

π(XT
kiθ
∗)

)
(ε∗ki)

2

}2
1/2 1

Kn

m∑
j=1

n∑
i=1

{
XT
ki(θ̃ − θ∗)

}2

1/2

.

Under E0
⋂
E2
⋂
E5

|∆12| ≤ CL

(√
(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
.

For ∆2, we have:

|∆2| ≤ 2

 1

Kn

m∑
j=1

n∑
i=1

{
XT
ki(β̃ − β∗)

}2
+ (τ̃1 − τ∗1 )2

+

 1

Kn

m∑
j=1

n∑
i=1

{
XT
ki(β̃ − β∗)

}2

1/2 1

Kn

m∑
j=1

n∑
i=1

{
XT
kiβ
∗ − τ∗1

}21/2

+

 1

Kn

m∑
j=1

n∑
i=1

{
XT
kiβ
∗ − τ∗1

}21/2

|τ̃1 − τ∗1 |

 .

Thus, under
⋂7
i=0 Ei

|V̂ − V̂ ∗| ≤ CL

(√
(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
.
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Then,∣∣∣V̂ ∗ − V ∗∣∣∣ ≤
∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

{
Tki

π(XT
kiθ
∗)2

(
Yki −XT

kiβ
∗)2}− E

(
1

π(XT
kiθ
∗)

(Yki −XT
kiβ
∗)2
)∣∣∣∣∣∣

+

∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

{(
XT
kiβ
∗ − τ∗1

)2}− E
((
XT
kiβ − τ∗1

)2)∣∣∣∣∣∣ .
Under E6: ∣∣∣V̂ ∗ − V ∗∣∣∣ ≤ CL√ log(p ∨Kn)

Kn
.

Under the events above, since V ∗ is bounded and positive:∣∣∣∣∣∣
√

V̂

V ∗
− 1

∣∣∣∣∣∣ ≤
∣∣∣∣∣ V̂ − V ∗

V ∗ +
√
V̂ V ∗

∣∣∣∣∣ ≤ CL
(√

(s1 ∨ s2) log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
.

A.3 Misspecified models

Proposition 15 Under Assumptions 1-6, with θ∗ replaced by θo, the proposed estimator
satisfies

|τ̃1 − τ̂ o1,ps| ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

n8 , where CL is a sufficiently large constant and M is another
constant depending on CL.

Proof The proof is an analog of theorem 13, where auxiliary lemmas can be established
in a likewise manner.

Lemma 16 Under Assumptions 1-6, with β∗ replaced by βo, the proposed estimator satis-
fies

|τ̃1 − τ̂ o1,om| ≤ CL

√s2(s1 ∨ s2) log(p ∨Kn)

Kn
+
s1

√
s1s2 log(p ∨Kn) log4(p ∨ n)

n
√
Kn


with probability at least 1− M

n8 , where CL is a sufficiently large constant and M is another
constant depending on CL.

Proof The proof is an analog of theorem 13, where auxiliary lemmas can be established
in a likewise manner.
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A.4 Initial estimator

Lemma 17 For θ̄ = θ̄K , we have:

∥∥θ̄ − θ∗∥∥
2
≤ C1

√
s1 log(p ∨ n)

n

holds with probability at least 1− M
(p∨n)8 , where J = K1, K2, or K3.

Proof By lemma 19, we can see that event defined as:

E0 =

{
Q1(θ

∗ + δ)−Q1(θ
∗)−∇Q1(θ

∗)T δ ≥ µ ‖δ‖22 − µ
′
√

log p

n
‖δ‖2 ‖δ‖1

}
.

will hold with probability at least 1− M
(p∨n)8 .

Then, under E0, we can apply corollary 1 of Negahban et al. (2012). Then, it shall be
obtained that: ∥∥θ̄K − θ∗∥∥2 ≤ 3

√
s1λps, ini
C

,

where

λps, ini ≥ ‖∇Q1(θ
∗)‖∞ .

For ∇Q1(θ
∗), we have:

∇Q1(θ
∗) =

1

n

n∑
i=1

(1− Ti1)XT
i1S − Ti1 exp

(
−XT

i1θ
∗)XT

i1S .

Since E(∇Q1(θ
∗)) = 0 and Ti1, (1 − Ti1) are bounded, with Xi1S being sub-Gaussian, by

union bound and lemma 21,

‖∇Q1(θ
∗)‖∞ ≤

√
log(p ∨ n)

n
.

Thus, we have:

∥∥θ̄ − θ∗∥∥
2
≤ C1

√
s1 log(p ∨ n)

n
.

A.5 Restricted strong convexity(RSC) conditions

Lemma 18 Under assumptions, we can see that the event defined as:

n∑
i=1

Tki ≥ c1n+ CL
√
n log n

will hold with probability at least 1− M
(p∨n)8 for some constant c1, CL.
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Proof Let Zki be binomial random variables with probability c0, where c0 is the constant
defined in 8. Then, we clearly have

P

({
n∑
i=1

Tki ≥ c1n+ CL
√
n log n

})
≥ P

({
n∑
i=1

Zki ≥ c1n+ CL
√
n log(p ∨ n)

})
.

Clearly, Zki are sub-Gaussian random variables. Then, by lemma 22, the claimed bound
can be obtained.

Lemma 19 The loss function of propensity score model follows restricted strong convexity
with probability at least 1 − M

(p∨n)8 , where M is some positive constant. That is: for all

δ s.t. ‖δ‖2 ≤ 1

Q1(θ
∗ + δ)−Q1(θ

∗)−∇Q1(θ
∗)T δ ≥ µ ‖δ‖22 − µ

′ log p

n
‖δ‖21,

where µ, µ′ is some positive constant.

Proof Under lemma 18, the claim is a result of Proposition 2 in Negahban et al. (2009).
As demonstrated in Negahban et al. (2009), Assumption 3, outlined below, is integral to
the proof of Lemma 10. Serving as a foundational assumption for high-dimensional data
analysis, this condition ensures that the loss function maintains sufficient convexity even in
high-dimensional spaces where traditional convexity might not universally apply.

Assumption 3 (Design) The minimal and maximal eigenvalues of E[XkiX
T
ki] are con-

tained in a bounded interval that does not contain zero.

A.6 Concentration results

Lemma 20 Consider
∑n

i=1Xi, where Xi are zero-mean, independent sub-exponential ran-
dom variables with parameter α = ai, ν = νi. Then, Y =

∑n
i=1Xi is a sub-exponential

random variable with parameter α = maxi ai, ν =
√∑n

i=1 ν
2
i .

Lemma 21 (Bernstein Inequality for sub-exponential sums) Consider
∑n

i=1Xi, where
Xi are zero-mean, independent sub-exponential random variables with parameter α = ai, ν =

νi. Let α = maxi ai, ν =
√∑n

i=1 ν
2
i , we then notice that

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
)
≤

{
exp(− nt2

2ν2/n
) for 0 ≤ t ≤ ν2

nα ,

exp(− nt
2α) for t > ν2

nα .
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Lemma 22 Consider
∑m

j=1

∑n
i=1Xki, where Xki are independent sub-exponential random

variables with parameter α = aki, ν = νki and common expectation E(Xki), then the event∣∣∣∣∣∣ 1

Kn

m∑
j=1

n∑
i=1

Xki − E(Xki)

∣∣∣∣∣∣ ≥ CL
√

logKn

Kn

will hold with probability at most M
(Kn)8

, where CL is some sufficiently large constant and

M depends on CL.

The proof is a direct application of lemma 21 and union bound.

Lemma 23 (Rosenthal (1970), Theorem 3) Suppose that {Xi}ni=1 are zero-mean and
independent random variables. For any p ≥ 1, there exists a constant Rp that for any p ∈ N:

E

( n∑
i=1

Xi

)2p
 ≤ Rp( n∑

i=1

E(X2p
i ) +

(
n∑
i=1

E(X2
i )

)p)
.

Lemma 24 (Tail bounds under moment conditions) Suppose that {Xi}ni=1 are zero-
mean and independent random variables such that, for some fixed integer p ≥ 1, they satisfy
the moment bound ‖Xi‖P,2p ≤ Cp. Then

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ ≥ δ
)
≤ Bp

(
1√
nδ

)2p

for allδ > 0.

Proof This lemma is a simple application of lemma 23.

Lemma 25 Under the assumptions 3 and 10,

1.
1

Kn

m∑
j=1

n∑
i=1

(XT
ki(θ̂ − θ∗))2 ≤ C‖θ̂ − θ∗‖22,

2. ∥∥∥β̂ − β∗∥∥∥
1
≤ (s1 ∨ s2)

√
log(p ∨ n)

n
,

1

Kn

m∑
j=1

n∑
i=1

(XT
ki(β̂ − β∗))2 ≤

(s1 ∨ s2) log(p ∨ n)

n

with probability at least 1 − M
n8 , where C is some sufficiently large constant, and θ̂, β̂ are

regularized PS, OR estimator, respectively.

Proof For the first claim, it is a result of lemma 6 and lemma 9 of Bradic et al. (2019),
while for the second claim, it is a result of lemma S4 of Ning et al. (2020).
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A.7 Bias without transferring Hessians

We are providing more details on the scenario where covariate shift exists but only first-
order gradients are transferred. In particular, an additional bias term is introduced when
only first-order gradients are transferred, rather than Hessians. Please find the detailed
explanation below:

From Theorem 5 of Jordan et al. (2018), the error bound is determined by∥∥∥θ̃ − θ∗∥∥∥
2
≤ C

(√
s1 log(p ∨Kn)

Kn
+
√
s1
∥∥∇2L1(θ

∗)−∇2LN (θ∗)
∥∥
∞
∥∥θ̄ − θ∗

∥∥
1

)
,

where θ̄ is the initial estimator. If Lasso is applied to the local data to obtain initial θ̄,

then
∥∥θ̄ − θ∗

∥∥
1
≤ Cs1

√
log p∨n

n holds.

• If there does not exist covariate shift , we are assuming E(∇2L1(θ
∗)) = E(∇2Lk(θ

∗))
for all k ∈ {1, . . . ,K}, then we have

∥∥∇2L1(θ
∗)−∇2LN (θ∗)

∥∥
∞ ≤

√
log(p ∨ n)

n
.

Following Jordan et al’s idea, the error bound is∥∥∥θ̃ − θ∗∥∥∥
2
≤ C

(√
s1 log(p ∨Kn)

Kn
+ s

3/2
1

log(p ∨ n)

n

)
,

This error bound is better than the classical Lasso l2-error bound

√
s1 log(p∨n)

n , which
only uses the local data from a single local site.

• However, if there exists covariate shift , i.e. E(∇2L1(θ
∗)) 6= E(∇2Lk(θ

∗)) for
some k ∈ {1, . . . ,K}, we have∥∥∇2L1(θ

∗)−∇2LN (θ∗)
∥∥
∞ = O(1).

If we still follow Jordan et al’s idea by only transferring first-order gradients, the error
bound becomes∥∥∥θ̃ − θ∗∥∥∥

2
≤ C

(√
s1 log(p ∨Kn)

Kn
+ s

3/2
1

√
log(p ∨ n)

n

)
,

This error bound is worse than the classical Lasso l2-error bound where only local
data is used.

Therefore, when there exits covariate shift between different sites, with the aim of im-
proving the convergence rate, we require not only transferring the first-order gradients but
also the Hessians to obtain the improved rate∥∥∥θ̃ − θ∗∥∥∥

2
≤ CL

(√
s1 log(p ∨Kn)

Kn
+
s
3/2
1 log2(p ∨ n)

n

)
.
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Appendix B. Additional simulations

In this section, to provide a better understanding of the methodology, we conduct additional
numerical simulations. We compare the performance of the proposed method from two
perspectives: splitting data versus not splitting it, and the comparison between splitting
patient-level data and splitting sites. Without loss of generality, for k = 1, . . . ,K and i =
1, . . . , n, the treatment Tki are generated from a logistic regression with πki = expit(−0.5 +
0.5Xki1 + 0.3Xki2 − 0.3Xki3 + 0.3Xki4 − 0.3Xki5), the potential outcomes satisfy Yki(1) =
2 + 0.3Xki1 + 0.2Xki2 − 0.2Xki3 + 0.2Xki4 − 0.2Xki5 + εki1 and Yki(0) = 1 + 0.3Xki1 +
0.2Xki2−0.2Xki3 + 0.2Xki4−0.2Xki5 + εki0, where εki1 and εki0 are i.i.d from N(0, 1), while
the p-dimensional covariates are generated from Xki ∼ N(0,Σk). For simplicity, we only
consider the heterogeneous case (II) in the paper, specifically

(II) Heterogeneous covariates (i.e., covariate shift) with p < n: We consider the
dimension with p = 100 and the sample size in each site is fixed at n = 200, while

the covariance matrix Σk is set to be Σk;st = ρ
|s−t|
k , where ρk ∼ Uniform(0.2, 0.8) for

k = 1, . . . ,K. In this case, the simple size is larger than the dimension, and there is
a shift in the distribution of covariates across sites.

The comparison results of splitting data versus not splitting it are depicted in Figure 6,
where DisC2o-HD-1 and DisC2o-HD-2 represent our proposed approaches involving the
splitting of K, while DisC2o-HD-1-WS and DisC2o-HD-2-WS denote the corresponding
methods without splitting any data. We can see that the performance of DisC2o-HD-2 are
close to DisC2o-HD-2-WS when K is large, while DisC2o-HD-1 can outperform DisC2o-HD-
1-WS when K is large. In summary, while we employ data splitting for proof convenience,
in numerical analysis, it’s also feasible to apply the proposed method without splitting any
data.

In the comparison between splitting patient-level data and splitting sites scenario, we
fixed K = 15 and compare the ATE estimation error by repeating the process 100 times.
The DisC2o-HD-1 and DisC2o-HD-2 are our proposed approaches involving splitting K,
while the DisC2o-HD-1-SN and DisC2o-HD-2-SN approaches involve splitting patient-level
data n. As depicted in Figure 7, it is evident that the DisC2o-HD-1 and DisC2o-HD-2
methods exhibit greater robustness and yield smaller ATE estimation errors compared to
the DisC2o-HD-1-SN and DisC2o-HD-2-SN methods, thereby supporting our decision to
split K.
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