
Journal of Machine Learning Research 26 (2025) 1-44 Submitted 5/23; Revised 10/24; Published 3/25

Nonconvex Stochastic Bregman Proximal Gradient Method
with Application to Deep Learning

Kuangyu Ding kuangyud@u.nus.edu
Department of Mathematics
National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

Jingyang Li li jingyang@u.nus.edu
Department of Mathematics
National University of Singapore
10 Lower Kent Ridge Road, Singapore 119076

Kim-Chuan Toh mattohkc@nus.edu.sg

Department of Mathematics

Institute of Operations Research and Analytics

National University of Singapore

10 Lower Kent Ridge Road, Singapore 119076

Editor: Sanjiv Kumar

Abstract

Stochastic gradient methods for minimizing nonconvex composite objective functions typ-
ically rely on the Lipschitz smoothness of the differentiable part, but this assumption fails
in many important problem classes like quadratic inverse problems and neural network
training, leading to instability of the algorithms in both theory and practice. To address
this, we propose a family of stochastic Bregman proximal gradient (SBPG) methods that
only require smooth adaptivity. SBPG replaces the quadratic approximation in SGD with
a Bregman proximity measure, offering a better approximation model that handles non-
Lipschitz gradients in nonconvex objectives. We establish the convergence properties of
vanilla SBPG and show it achieves optimal sample complexity in the nonconvex setting.
Experimental results on quadratic inverse problems demonstrate SBPG’s robustness in
terms of stepsize selection and sensitivity to the initial point. Furthermore, we introduce a
momentum-based variant, MSBPG, which enhances convergence by relaxing the mini-batch
size requirement while preserving the optimal oracle complexity. We apply MSBPG to the
training of deep neural networks, utilizing a polynomial kernel function to ensure smooth
adaptivity of the loss function. Experimental results on benchmark datasets confirm the
effectiveness and robustness of MSBPG in training neural networks. Given its negligible
additional computational cost compared to SGD in large-scale optimization, MSBPG shows
promise as a universal open-source optimizer for future applications.

Keywords: Nonconvex stochastic algorithm, Bregman distance, Smooth adaptivity, Deep
neural network, Algorithmic stability

c©2025 Kuangyu Ding and Jingyang Li and Kim-Chuan Toh.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v26/23-0657.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v26/23-0657.html

Ding and Li and Toh

1. Introduction

In this paper, we present and analyze a family of nonconvex stochastic Bregman proximal
gradient methods (SBPG) for solving the following generic stochastic minimization problem:

min
x∈C

Eξ[f(x, ξ)] +R(x), (1)

where f(·, ξ) is a nonconvex differentiable function on C, R is a proper lower-semicontinuous
convex function, ξ is a random variable, and C is the closure of C, which is a nonempty
convex open subset of Rd. We denote F (x) := Eξ[f(x, ξ)], and Φ(x) := F (x) + R(x).
This type of stochastic minimization problem is common in machine learning and statistics
(Hastie et al., 2009; Shapiro et al., 2021; Zhang, 2004), where the optimizer has limited access
to the distribution of ξ and can only draw samples from it. In many instances, the smooth
part of the objective function F (x) can be formulated as a finite-sum structure F (x) =
1
n

∑n
i=1 fi(x). Although the distribution of ξ is known in such cases, when n is extremely

large, calculating the true gradient for the smooth part of the objective function becomes
extremely expensive. As a result, stochastic first-order methods, originating from the work
of Robbins and Monro (1951), have emerged as the prevailing approach for solving these
large-scale optimization problems. In particular, stochastic (proximal) gradient descent
and its numerous variants (Duchi et al., 2011; Duchi and Singer, 2009; Gu et al., 2020;
Kingma and Ba, 2014; Allen-Zhu, 2018; Wang et al., 2022) have been widely used in large-
scale stochastic optimization for machine learning (LeCun et al., 2015; Shapiro et al., 2021;
Zhang, 2004). From a modeling perspective, stochastic (proximal) gradient descent can
be viewed as minimizing a sequence of upper quadratic approximations of the nonconvex
objective Φ(x):

xk+1 = argmin
x∈C

F (xk,Ξk) + 〈∇̃k, x− xk〉+
1

2αk
‖x− xk‖2︸ ︷︷ ︸

F
xk

(x): model of F at xk

+R(x)

 , (2)

where F (xk,Ξk) := 1
|Ξk|

∑
ξ∈Ξk f(xk, ξ), Ξk is the set of samples of ξ at the k-th iteration,

and ∇̃k is an estimator of the exact gradient ∇F (xk). This modeling perspective is well-
established in deterministic optimization and has been used in methods such as Newton
method, Gauss-Newton method, bundle method, and trust-region method, as discussed in
various sources such as Hiriart-Urruty and Lemaréchal (1993); Nesterov (2003); Lin et al.
(2007); Paren et al. (2022).

Despite their widespread use, stochastic gradient methods (2) face several well-known
challenges both in theory and practice. One of the key assumptions underlying the anal-
ysis of these methods is the Lipschitz continuity of the gradient of the differentiable part,
which is critical for ensuring convergence and establishing complexity results. However,
this assumption is not always valid. For instance, even a simple function like F (x) = x4

does not admit a globally Lipschitz gradient over R, illustrating the limitations in analyzing
stochastic gradient methods in more general settings. In addition, choosing the appropri-
ate stepsize is another challenge in both the theoretical analysis and the practical usage

2

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

of stochastic gradient methods. In practice, the stepsize plays a decisive role—arguably
the most important—in determining the convergence behavior of the algorithm. Finding
the optimal stepsize can be time-consuming, as engineers often need to conduct numerous
experiments to fine-tune it. From a theoretical perspective, choosing a cautious stepsize is
necessary to ensure the descent property at each iteration, which is typically proportional
to the inverse of the Lipschitz smoothness parameter. As a result, the absence of Lipschitz
smoothness can lead to instability in classical stochastic first-order methods, complicating
both their theoretical analysis and practical implementation.

To address these issues, classical approaches often resort to either line search or more
complicated inner loops, but these methods can negatively impact the efficiency of the
algorithm or even become intractable in a stochastic setting. For example, stochastic
proximal point algorithm (PPA) models the approximation of F (x) in (2) as Fxk(x) =
F (x, ξk) + 1

2αk
‖x − xk‖2 (Bertsekas, 2011; Bianchi, 2016; Patrascu and Necoara, 2017;

Rockafellar, 1976), making the selection of stepsize αk more robust than the original model
(2). However, the application of stochastic PPA is limited due to the difficulty of solving the
subproblems, especially for complicated objectives, such as training deep neural networks.
In such cases, solving the subproblem is almost as difficult as solving the original problem,
rendering the method impractical. Recently, Bauschke et al. (2017); Lu et al. (2018) have
proposed using Bregman proximity measures to relax the assumption of gradient Lipschitz
continuity to smooth adaptivity. The Bregman gradient method was first introduced as
the mirror descent scheme by Nemirovskij and Yudin (1983) for minimizing convex nons-
mooth functions. From the modeling perspective, Bregman methods consider the following
subproblem at each iteration:

xk+1 = argmin
x∈C

F (xk,Ξk) + 〈∇̃k, x− xk〉+
1

αk
Dφ(x,xk)︸ ︷︷ ︸

F
xk

(x): model of F at xk

+R(x)

 , (3)

where Dφ is the Bregman distance induced by the kernel function φ. To illustrate the ad-
vantage of the Bregman proximity model, we present a toy example. Consider the objective
function F (x) = x4, which does not admit a globally Lipschitz continuous gradient. We
compare the performance of the upper quadratic approximation model (2) and Bregman
proximity model (3). As shown in Figure (1)(a), the Bregman proximity model (3) (F2(x))
with the kernel function φ(x) = 1

2x
2 + 1

4x
4 can provide a closer approximation to F (x)

than the upper quadratic approximation model 2 (F1(x)), as the yellow curve stays closer
to the curve of the objective function F (x) = x4. This improved approximation enables the
Bregman gradient method to generate xk+1 that makes more substantial progress toward
the optimal solution (x∗ = 0) compared to the gradient descent method, as shown in Figure
1(b).

While several stochastic extensions of Bregman methods based on smooth adaptivity as-
sumptions have been developed recently, the existing literature primarily focuses on stochas-
tic convex problems (Dragomir et al., 2021b; Hanzely and Richtárik, 2021; Lu, 2019). Con-
vergence analyses for Bregman methods in nonconvex settings (Latafat et al., 2022; Wang
and Han, 2023) rely heavily on variance reduction techniques and finite sum structure.

3

Ding and Li and Toh

-0.5 0 0.5 1 1.5 2

-10

0

10

20

30

40

50

(a) Two models’ approximations of F (x)

0.6 0.7 0.8 0.9 1

-1

0

1

2

3

4

(b) Zoomed-in of version plot (a)

Figure 1: For function F (x) = x4, which does not admit a globally Lipschitz continuous
gradient. We restrict the feasible set to [−0.5, 2]. Consider the models (2) and (3)
of F at xk = 1. The Lipschitz smooth constant of F with respect to the kernel
φ(x) = 1

2x
2 is 48. The smooth adaptivity constant of F with respect to the kernel

φ(x) = 1
2x

2 + 1
4x

4 is 4. The figure in (b) is a zoomed-in version of the plot in (a)
for the range [0.6, 1]. The unique minimum of F (x) is at x = 0.

However, these approaches are either memory-intensive or require periodic computation of
the full gradient, making them impractical for large-scale problems such as deep neural
networks as demonstrated in (Defazio and Bottou, 2019).

Beyond the optimization literature, recent works in learning theory (Azizan et al., 2019;
Li et al., 2021; Sun et al., 2022, 2023) have focused on specific scenarios, such as highly
overparameterized models or linear models for classification and regression tasks, examining
the implicit bias of Bregman-type methods. For instance, (Azizan et al., 2019) demonstrates
that in overparameterized models, mirror descent iterates converge to the global minimum
closest to the initial point in terms of Bregman divergence, provided the initial point is near
the minimum set. Other works (Li et al., 2021; Sun et al., 2022, 2023) explore convergence
towards the direction that maximizes the margin in classification problems. Our work,
however, focuses on the optimization properties of stochastic Bregman proximal gradient
(SBPG) in general nonconvex optimization problems, which presents a different perspective
from the implicit bias literature. As a result, we will not review the broader literature on
implicit bias in this context.

As we can see, stochastic Bregman methods have not been fully explored in the general
large-scale nonconvex problems such as training neural networks, and rigorous numerical
evaluations of their performance are limited. Additionally, the current literature gives in-
sufficient attention to the robustness of stochastic Bregman methods, particularly regarding
the selection of stepsizes and initial points—factors that can have a substantial impact on
their effectiveness in large-scale applications.

In this paper, we consider stochastic Bregman proximal gradient methods (SBPG) for
nonconvex problems with application to the training of deep neural networks. We estab-
lish the convergence result of a vanilla SBPG without Lipschitz smoothness assumption for

4

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

nonconvex problems. Moreover, we propose a momentum-based variant, denoted as MS-
BPG, and prove that it offers improved convergence properties compared to vanilla SBPG,
particularly through a relaxed requirement on the mini-batch size. Both methods exhibit
sample complexity of O(ε−4), which matches the optimal bound for stochastic first order
methods (Arjevani et al., 2023). We apply MSBPG to the training of deep neural net-
works with a polynomial kernel function, which ensures the smooth adaptivity of the loss
function. Through an implicit reformulation, we observe that MSBPG enhances the ro-
bustness of neural network training by mitigating the gradient explosion phenomenon. For
numerical illustrations, we conduct experiments on quadratic inverse problems (QIP) and
testify vanilla SBPG’s robustness to stepsize selection and initial point scaling. We also
conduct extensive experiments on training deep neural networks for image classification
and LSTMs for language modeling by employing MSBPG, which is well-suited for solving
large-scale problems. Experimental results on representative benchmarks show that MS-
BPG converges to stationary points and, in some cases, nearly achieves the global minimum
(i.e., training loss approaches zero). Moreover, MSBPG achieves comparable generalization
performance to widely-used optimization algorithms, such as SGD (Robbins and Monro,
1951), Adam (Kingma and Ba, 2014), and AdamW (Loshchilov and Hutter, 2017), and in
some instances, even outperforms these methods. The polynomial kernel function employed
contributes to improved algorithmic stability compared to standard SGD, which may partly
explain the good generalization performance of MSBPG observed in our experiments (see
Appendix B for details). As the primary focus of this paper is on the optimization properties
of Bregman-type methods, we only provide a preliminary analysis of algorithmic stability in
the appendix. Furthermore, compared with standard SGD, SBPG/MSBPG is more robust
to large stepsize and initial point scaling, which are the common reasons behind gradient
explosion.

To summarize, our contributions are as follows:

1. Development of SBPG for General Nonconvex Composite Problems: We in-
vestigate Stochastic Bregman Proximal Gradient (SBPG) method to solve nonconvex
problems without finite-sum structure, which employs Bregman distance to handle
the non-Lipschitz gradient continuity. we establish its convergence properties along
with optimal sample complexity of O(ε−4). Furthermore, we propose a momentum-
based variant, MSBPG, which improves the convergence property by relaxing the
mini-batch size requirements, which is more suitable for large-scale problems. To
our knowledge, this is the first integration of momentum techniques into a stochastic
Bregman proximal gradient framework for nonconvex problems.

2. Tailored MSBPG for Deep Neural Networks with Polynomial Kernel: We
apply MSBPG to training deep neural networks (DNN), which leverages on a suitable
polynomial kernel function to ensure that the DNN’s loss function is smooth adaptable
with respect to the designed kernel function. Through an implicit reformulation, we
observe that MSBPG is more robust than the traditional SGD in terms of stepsize se-
lection and initialization. We highlight that MSBPG is a theoretically derived method
that is able to ease the difficulty of selecting stepsize, mitigate gradient explosion, and
maintain good generalization performance simultaneously. This distinguishes MSBPG
from many existing techniques that rely on intuition and empirical observations.

5

Ding and Li and Toh

3. Empirical Evaluation of SBPG/MSBPG: We demonstrate the efficiency and
robustness of SBPG/MSBPG across various applications, including sparse quadratic
inverse problems and large-scale deep neural networks. In the quadratic inverse prob-
lem, SBPG shows greater robustness to both stepsize and initial point selection. When
training deep neural networks, MSBPG achieves comparable generalization perfor-
mance to commonly used optimizers such as SGD, Adam, and AdamW, and in many
cases, even outperforms them. Additionally, our method demonstrates robustness to
stepsize selection and initialization. These results highlight the potential of MSBPG
as a powerful tool for optimizing complex and large-scale deep neural networks, thus
offering a promising direction for future research in this area.

The remainder of this paper is organized as follows. In Section 2, we present notation, some
related preliminaries, and our problem setting. In Section 3, we first describe SBPG and
establish its convergence results. Then, we propose a momentum-based SBPG (MSBPG)
and prove its improved convergence properties. In Section 4, we adapt SBPG/MSBPG
to the training of deep neural networks and analyze its capacity in mitigating gradient
explosion. In Section 5, we present numerical experiments that demonstrate the efficiency
and robustness of vanilla SBPG on quadratic inverse problems and MSBPG on training
deep neural networks. Finally, we give some concluding remarks in Section 6. Additional
supplementary materials are provided in the Appendix.

2. Preliminaries and Problem setting

In this paper, vectors are represented using boldface letters like v, while scalars are repre-
sented using normal font. Given a proper, lower-semicontinuous function F : Rd → R̄ :=
[−∞,∞], domF = {x : F (x) < ∞}. The Fenchel conjugate function of F is defined as
F ∗(y) = sup{〈x, y〉 − F (x) : x ∈ Rd}. Given a set S ⊂ Rd, S̄ denotes its closure, intS
denotes the set of interior points. A function is of class Ck(S) if it is k times differentiable
and the k-th derivative is continuous on S. We say that F is level bounded if the set
{x : F (x) < α} is bounded for any real number α. Given a matrix A, Vec(A) denotes
the vectorization of A by column order. Mat(·) is the inverse operation of Vec(·), which
reshapes a vector back into its original matrix form. Define the operator Diag(·) to map a
vector into a diagonal matrix with diagonal elements equal to the corresponding entries of
the vector. The Hadamard product is represented by the symbol ◦. If we use the notation
‖ · ‖ without any additional explanation, we assume that it refers to the Euclidean vector
norm for vectors and the Frobenius matrix norm for matrices.

Let (Ω,F ,P) be a probability space. Given a random variable ξ and a σ-algebra F ,
we write ξ C F if ξ is measurable over F . Let {ξk}k≥0 be a stochastic process, and
{Fk}k≥0 be a filtration, where Fk defined by a σ-algebra Fk := σ(ξ0, . . . , ξk−1) on Ω. The
conditional expectation is denoted by E[·|Fk]. For simplicity, we use the notation E[·] to
denote E[·|F∞]. The sequence {xk}k≥0 generated by our proposed method is adapted to the

filtration {Fk}k≥0, i.e. xk C Fk, for all k ≥ 0. The notation ∇̃k represents an estimator of

the exact gradient ∇F (xk), which satisties ∇̃k C Fk+1. This estimator is applicable to both
the vanilla and momentum cases. The stochastic error is denoted by εk = ∇F (xk)−∇̃k. The
unbiasedness of the stochastic error εk is assumed throughout this paper, i.e., E[εk|Fk] = 0.

6

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

The following supermartingale convergence lemma is a fundamental tool in the analysis of
stochastic algorithms.

Lemma 1 (Robbins and Monro, 1951) Let {yk} , {uk} , {ak} and {bk} be non-negative adapted
processes with respect to the filtration {Fk} such that

∑∞
k=0 ak <∞,

∑∞
k=0 bk <∞, and for

all k, E [yk+1 | Fk] ≤ (1 + ak) yk−uk+bk almost surely. Then, {yk} converges almost surely
to a non-negative finite random variable and

∑∞
k=0 uk <∞ almost surely.

2.1 Smooth adaptable functions

In this subsection, we introduce the concept of smooth adaptivity, initially proposed by Bolte
et al. (2018). This concept extends the idea of relative smoothness for convex functions,
first introduced in Bauschke et al. (2017); Lu et al. (2018), and has since been applied in
various contexts (Hanzely et al., 2021; Yang and Toh, 2021, 2022; Yang et al., 2024). We
first give the definitions of kernel function and Bregman distance.

Definition 2 (Kernel function and Bregman distance). Let S be a nonempty, convex and
open subset of Rd. A function φ : Rd → (−∞,+∞] is called a kernel function associated
with S if it satisfies the following two conditions:

1. φ is proper, lower-semicontinuous and convex, with domφ ⊂ S̄, dom∂φ = S.

2. φ ∈ C1(S) and int domφ = S.

Denote the class of kernel function associated with S byM(S). Given φ ∈M(S), the Breg-
man distance (Bregman, 1967) generated by φ is defined as Dφ(x,y) : domφ× int domφ→
[0,+∞), where

Dφ(x,y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉.

Bregman distance measures the difference between the value of φ at x and its linear approxi-
mation at y based on the gradient of φ at y. Some basic properties of Bregman distance can
be found in (Chen and Teboulle, 1993; Teboulle, 2018). Some kernel functions commonly
used in optimization are 1

2‖x‖
2, 1

2‖x‖
2 + α

4 ‖x‖
4, −

∑d
i=1 logxi and

∑d
i=1 xi logxi, where

1
2‖x‖

2 ∈M(Rd) recovers the classical half squared Euclidean distance. The kernel function
1
2‖x‖

2 + α
4 ‖x‖

4 ∈M(Rd) has found applications in various problems, such as quadratic in-
verse problems, non-negative matrix factorization, and low-rank minimization (Bolte et al.,
2018; Dragomir et al., 2021a). The entropy function

∑d
i=1 xi logxi ∈M(Rd++) is commonly

used in applications that involve probability constraints, where the resulting Bregman dis-
tance is known as the Kullback–Leibler (KL) divergence. Throughout the paper we will
focus on the following pair of functions (f, φ) satisfying smooth adaptivity condition. We
introduce this concept in the following definition:

Definition 3 (Smooth adaptivity). Given a kernel function φ ∈ M(S), a proper lower-
semicontinuous function f : Rd → (−∞,+∞] with domf ⊃ domφ that is C1 on S. f is
L-smooth adaptable with respect to φ if there exists L > 0, such that Lφ+ f and Lφ− f are
convex on S.

Alternative definition of smooth adaptivity is the two-side descent lemma (Bolte et al., 2018,
Lemma 2.1). When both f and φ belong to C2(S), we can verify their smooth adaptivity
by comparing the Hessians of f and φ.

7

Ding and Li and Toh

Lemma 4 f is L-smooth adaptable with respect to φ ∈M(S), if and only if

|f(x)− f(y)− 〈∇f(y), x− y〉| ≤ LDφ(x,y), ∀x,y ∈ int domφ.

Moreover, when both f and φ belong to C2(int domφ), then the above is equivalent to

∃L > 0, L∇2φ(x)±∇2f(x) � 0, for all x ∈ int domφ.

The following four-point identity is frequently employed in our proofs, and can be easily
verified.

Lemma 5 (Four points identity) Given points a, b, c,d and any convex function φ which
is differentiable at a and b, then

〈∇φ(a)−∇φ(b), c− d〉 = Dφ(c, b) +Dφ(d,a)−Dφ(c,a)−Dφ(d, b).

2.2 Bregman Proximal Mapping

Throughout this paper, we make the following basic assumptions.

Assumption 1 (Basic requirements). In problem (1):

A1. F is a proper lower-semicontinuous function with domφ ⊂ domF , and it is C1 on
intC.

A2. The Legendre kernel (Definition 6) φ ∈ M(C) is µ-strongly convex for some µ > 0.
F (·) is LF -smooth adaptable with respect to φ.

A3. R is is a proper, lower-semicontinuous and convex function with domR ∩ intC 6= ∅.

A4. infx∈C{Φ(x)} > −∞.

Assumption 1 is a standard requirement for Bregman-type methods and is usually satisfied
in practice. It ensures the well-definedness of Bregman-type methods, as shown in (Bolte
et al., 2018; Latafat et al., 2022). We also recall the definition of the Legendre function in
(Latafat et al., 2022), which makes additional supercoercive conditions on the concept in
(Rockafellar, 1997).

Definition 6 (Legendre kernel). Let φ : C → (−∞,∞] be a proper lower-semicontinuous
convex function. It is called essentially smooth if int domφ is nonempty and φ is differ-
entiable on int domφ, moreover limk→∞ ‖∇φ(xk)‖ = ∞ whenever {xk}k∈N converges to
a boundary point of domφ. The function φ is called Legendre function if it is essentially
smooth, strictly convex on int domφ and supercoercive, i.e. lim‖x‖→∞

φ(x)
‖x‖ =∞.

Definition 7 Given a nonempty convex open set C, a proper lower-semicontinuous convex
function R and a Legendre kernel function φ ∈ M(C), x ∈ int domφ, we denote the

Bregman proximal mapping by ProxφR := (∇φ+ ∂R)−1∇φ, which is equivalent to

ProxφR(x) = argmin
u∈C

{R(u) +Dφ(u,x)}. (4)

8

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Note that the objective function of (4) is strictly convex on domφ ∩ domR, therefore
(4) has at most one solution. To ensure that (4) is well-defined, the following result claims

that ProxφαR(x) is well-defined for any α > 0, and moreover ProxφαR(x) ∈ int domφ under
standard assumptions. The proof can be found in Appendix A.

Lemma 8 Suppose Assumption 1 holds. Then (4) has a unique solution. Moreover, the

solution ProxφαR(x) ∈ C.

The following proposition for Bregman proximal mapping generalizes the nonexpansive
property of the classical proximal mapping (in the case φ(x) = 1

2‖x‖
2). This property is

commonly used in convergence proofs. The proof of the following proposition can be found
in Appendix A.

Proposition 9 Suppose Assumption 1 holds. Let x+
i := ProxφR(∇φ∗(xi)), i = 1, 2. Then

‖x+
1 − x

+
2 ‖ ≤ 1

µ‖x1 − x2‖.

In this paper, we make the assumption that R and φ are simple enough so that (4)
either has a closed-form solution or admits an efficient subroutine to solve it. Using the
definition of the Bregman proximal mapping, we can then define the Bregman gradient
mapping associated with (1). This mapping measures the solution accuracy of the methods
we propose. Note that φ is a Legendre kernel, which implies that φ∗ ∈ C1(Rd) is strictly
convex and (∇φ)−1 = ∇φ∗ (Rockafellar, 1997, Corollary 13.3.1, Theorem 26.5). Therefore,
the following concept is well-defined.

Definition 10 (Bregman Gradient Mapping) Given α > 0, a nonempty convex open
set C and a Legendre kernel function φ ∈M(C), the Bregman gradient mapping associated
with (1) is defined as follows

Gα(x) =
x− ProxφαR (∇φ∗(∇φ(x)− α∇F (x)))

α
.

To simplify notation, we use G(x) to denote G1(x) when α = 1.

When the kernel function φ(x) = 1
2‖x‖

2, the resulting Bregman Gradient Mapping becomes
equivalent to the classical Gradient Mapping (Nesterov, 2003, 2005), which measures the
solution’s accuracy for proximal gradient methods.

Definition 11 (Limiting subdifferential (Rockafellar and Wets, 1998, Definition 8.3)) Con-
sider a function f : Rd → R̄ and a point x, the regular subdifferential is defines as

∂̂f(x) = {v : f(y) ≥ f(x) + 〈v, y − x〉+ o(‖y − x‖)}.

The limiting subdifferential is defined as

∂f(x) = {v : xn → x, f(xn)→ f(x),vn ∈ ∂̂f(xn), and vn → v}.

Now, we restrict our attention on the case C = Rd. By Fermat’s rule (Rockafellar and Wets,
1998, Theorem 10.1), the set of critical point of Φ is given by

crit Φ =
{
x ∈ Rd : 0 ∈ ∂Φ(x) ≡ ∇F (x) + ∂R(x)

}
.

9

Ding and Li and Toh

The Bregman Gradient Mapping can also be used to evaluate the solution accuracy for
Bregman methods. Let x+ = ProxφαR(∇φ∗(∇φ(x) − α∇F (x))). From Definition 10 and
equation (4), it can be easily verified by definition that 0 ∈ ∂Φ(x) ⇔ 0 = Gα(x). Hence,
0 ∈ ∂Φ(x+) for any α > 0. The proof of this result is omitted for brevity. Furthermore, if
∇φ is Lφ-Lipschitz continuous, then the following proposition holds, implying that ‖Gα(x)‖
can be used as a reasonable criterion to measure the accuracy of x.

Proposition 12 Suppose Assumption 1 holds and that ∇φ is Lφ Lipschitz continuous.
Then, we have the following inequality:

dist
(
0, ∂Φ(x+)

)
≤ (1 + αLF)Lφ‖Gα(x)‖.

We also define the stochastic counterpart of Definition 10, which is commonly utilized to
evaluate the accuracy of solutions for nonconvex stochastic proximal gradient methods, as
discussed in (Ghadimi et al., 2016).

Definition 13 (Stochastic Bregman Gradient Mapping). Given α > 0 a nonempty convex
open set C and a Legendre kernel function φ ∈ M(C), the stochastic Bregman gradient
mapping associated with (1) is defined as follows

G̃α(x) :=
x− ProxφαR

(
∇φ∗

(
∇φ(x)− α∇̃

))
α

, where ∇̃ is an estimator of ∇F (x).

3. Stochastic Bregman Proximal Gradient Method

In this section, we will study the Stochastic Bregman Proximal Gradient method (SBPG)
with the following update scheme:

xk+1 = argmin
x∈C

R(x) + 〈∇̃k, x− xk〉+
1

αk
Dφ(x,xk). (SBPG)

We call the above method as ”vanilla” SBPG in this section, meaning that the method
we study is a basic version without any additional techniques such as variance reduction,
momentum, etc., except for the use of mini-batches. In this case, we suppose the following
assumptions.

Assumption 2 (Noise requirement). The estimator satisfies the following two conditions:

E[∇̃k|Fk] = ∇F (xk) and E[‖∇̃k −∇F (xk)‖2|Fk] ≤
σ2

mk
,

where mk is the size of the mini-batch in the k-th iteration.

Note that we do not assume a finite-sum structure for F (x) in this section. The solution
of (SBPG) can be written in the form of the Bregman proximal mapping. This is stated in
the following proposition.

Proposition 14 Suppose Assumption 1 holds. Then the solution of (SBPG) can be written
as the following Bregman proximal mapping:

xk+1 = ProxφαkR

(
∇φ∗

(
∇φ(xk)− αk∇̃k

))
.

10

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Proof From the optimality condition of the main subproblem (SBPG), we have

0 ∈ ∂R(xk+1) + ∇̃k +
1

αk

(
∇φ(xk+1)−∇φ(xk)

)
.

Let uk+1 := ProxφαkR

(
∇φ∗

(
∇φ(xk)− αk∇̃k

))
. From the definition of Bregman proximal

mapping, we have

uk+1 = arg min
u

{
αkR(u) +Dφ

(
u,∇φ∗

(
∇φ(xk)− αk∇̃k

))}
,

which is equivalent to

0 ∈ αk∂R(uk+1) +∇φ(uk+1)−∇φ
(
∇φ∗(∇φ(xk)− αk∇̃k)

)
.

Note that the function φ∗ is the Fenchel conjugate of the Legendre kernel φ, which implies
that ∇φ(∇φ∗(w)) = w for all w ∈ Rd, as stated in (Rockafellar, 1997, Corollary 13.3.1,
Theorem 26.5). Furthermore, since the objective function in (SBPG) is strictly convex,
there exists a unique solution to the inclusion above. By comparing the two inclusions, we
can conclude that uk+1 = xk+1.

Based on Proposition 14 and definition of the definition of G̃α(x), we can easily observe
that xk+1 = xk − αkG̃αk(xk). We can derive the following proposition, which bounds the

difference between Gα(x) and G̃α(x) directly from Proposition 9. The proof is omitted for
brevity.

Proposition 15 Suppose Assumption 1 holds. At the k-th step, we have the estimation:

‖Gαk(xk)− G̃αk(xk)‖ ≤ 1

µ
‖∇F (xk)− ∇̃k‖ =

‖εk‖
µ

,

where εk = ∇F (xk)− ∇̃k.

Before presenting the main convergence result, we state the following one-step descent
lemma below.

Lemma 16 Suppose Assumption 1 holds. The sequence generated by SBPG satisfies the
following condition:

Φ(xk+1) ≤ Φ(xk)− 1

αk
Dφ(xk,xk+1)−

(
1

αk
− LF

)
Dφ(xk+1,xk) + 〈εk, xk+1 − xk〉.

Proof By the optimality condition of (SBPG), we obtain that

0 ∈ ∂R(xk+1) + ∇̃k +
1

αk

(
∇φ(xk+1)−∇φ(xk)

)
.

Appealing to the convexity of R, we have

R(x)−R(xk+1) ≥
〈
−∇̃k −

1

αk

(
∇φ(xk+1)−∇φ(xk)

)
, x− xk+1

〉
.

11

Ding and Li and Toh

By the four points identity and the definition of εk, we get

R(x)−R(xk+1) ≥ 1

αk

[
Dφ(xk+1,xk) +Dφ(x,xk+1)−Dφ(x,xk)

]
−〈∇F (xk), x−xk+1〉+〈εk, x−xk+1〉.

Set x = xk in the above inequality, we have the following inequality:

R(xk)−R(xk+1) ≥ 1

αk

[
Dφ(xk+1,xk) +Dφ(xk,xk+1)

]
−〈∇F (xk), xk−xk+1〉+〈εk, xk−xk+1〉.

By the smooth adaptivity of F , we have

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+ LFDφ(xk+1,xk).

Combining the above two inequalities above, we complete the proof.

3.1 Convergence analysis of SBPG

In this subsection, we establish the convergence results for SBPG, which is an extension
of the convergence result in (Ghadimi et al., 2016), in which the lassical Lipschitz gradient
assumption is required. In many literature, the bounded sequence assumption is often
required in the convergence analysis of stochastic algorithms. However, in this section, we
relax this assumption and prove that under a certain condition, the sequence generated by
(SBPG) is bounded almost surely. We need the following result to bound the stochastic
error term 〈εk, xk+1 − xk〉 in Lemma 16.

Lemma 17 Suppose Assumption 1, 2 hold. We have the following estimation of the error
term:

E
[
〈εk, xk+1 − xk〉

]
≤ αk

µ
E[‖εk‖2] ≤ αkσ

2

µmk
.

Proof Define x̄k+1 := ProxφαkR(∇φ∗(∇φ(xk) − αk∇F (xk))). By Proposition 14 and the

optimality condition for x̄k+1, we have

0 ∈ ∂R(x̄k+1) +∇F (xk) +
1

αk
(∇φ(x̄k+1)−∇φ(xk)).

Similarly,

0 ∈ ∂R(xk+1) + ∇̃k +
1

αk
(∇φ(xk+1)−∇φ(xk)).

By the monotonicity of ∂R and Lemma 5, we have〈
x̄k+1 − xk+1, −εk −

1

αk
(∇φ(x̄k+1)−∇φ(xk+1))

〉
≥ 0.

Therefore,

〈xk+1 − x̄k+1, εk〉 ≥ 〈x̄k+1 − xk+1,
1

αk
(∇φ(x̄k+1)−∇φ(xk+1))〉 ≥ µ

αk
‖x̄k+1 − xk+1‖2.

12

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

By Cauchy-Schwarz inequality, we get ‖x̄k+1 − xk+1‖ ≤ αk
µ ‖εk‖.

Now, we are ready to prove Lemma 17. From the definition, we know that x̄k+1 C Fk.
Therefore, E[〈εk, xk − x̄k+1〉] = E[E[〈εk, xk − x̄k+1〉|Fk]] = E[〈E[εk|Fk], xk − x̄k+1〉] = 0,
where the first equality is from the tower rule of conditional expectation, the second comes
from the fact that xk − x̄k+1 C Fk. Hence,

E
[
〈εk, xk+1 − xk〉

]
= E

[
〈εk, xk+1 − x̄k+1〉

]
− E

[
〈εk, xk − x̄k+1〉

]
≤ αk

µ
E[‖εk‖2] ≤ αkσ

2

µmk
,

which completes the proof.

Lemma 18 (Bounded sequence) Suppose Assumption 1, 2 hold. If
∑

k
αk
mk

<∞, supk αk ≤
ᾱ < 1

LF
, then,

1.
∑∞

k=0 E[Dφ(xk+1,xk)] <∞.

2. If Φ is level bounded, then {xk}k≥0 is bounded almost surely.

Proof By Cauchy-Young inequality, we have

|〈εk, xk − xk+1〉| ≤ µ

2αk
‖xk − xk+1‖2 +

αk
2µ
‖εk‖2 ≤

1

αk
Dφ(xk,xk+1) +

αk
2µ
‖εk‖2.

By Lemma 16, we have(
1

αk
− LF

)
Dφ(xk+1,xk) ≤ Φ(xk)− Φ(xk+1) +

αk
2µ
‖εk‖2. (5)

Taking conditional expectation for both sides of (5), we get

E
[(

1

αk
− LF

)
Dφ(xk+1,xk)|Fk

]
≤ Φ(xk)− E[Φ(xk+1)|Fk] +

αk
2µ

E[‖εk‖2|Fk].

Since
∑

k≥0
αk
2µE[‖εk‖2|Fk] ≤

∑
k≥0

αkσ
2

2µmk
< ∞, applying Theorem 1, we have that Φ(xk)

converges and
∑

k≥0 E
[(

1
αk
− LF

)
Dφ(xk+1,xk)|Fk

]
<∞ almost surely. By the tower rule

of conditional expectation, we have
∑∞

k=0 E[Dφ(xk+1,xk)] < ∞. Since Φ(xk) converges
almost surely, thus {Φ(xk)}k≥0 is bounded almost surely. By the level boundness of Φ, we
deduce that {xk}k≥0 is bounded almost surely.

Now, we present our main convergence result for the vanilla SBPG, which is in the sense
of expectation.

Theorem 19 (Convergence result in expectation) Suppose Assumption 1, 2 hold, αk <
1
LF

min{1, 1
µ}. Define a random variable r with the distribution P{r = k} = αk∑N−1

k=0 αk
for

k = 0, ..., N − 1. Then,

E[‖G̃αr(xr)‖2] ≤
2∆0 + 2

∑N−1
k=0

αkσ
2

µmk

µ
∑N−1

k=0 αk
, (6)

13

Ding and Li and Toh

where ∆0 := Φ(x0) − Φ∗. If
∑

k
αk
mk

< +∞ and
∑

k αk = +∞, then the right hand side of

(6) converges to zero. Moreover, if Φ is level bounded, then the sequence {xk}k≥0 is bounded
almost surely.

Proof Note that xk+1 = xk − αkG̃αk(xk) and by the strongly convexity of φ, Lemma 16
yields

µ(αk −
LFα

2
k

2
)‖G̃αk(xk)‖2 ≤ 1

αk
Dφ(xk,xk+1) +

(
1

αk
− LF

)
Dφ(xk+1,xk)

≤ Φ(xk)− Φ(xk+1) + 〈εk, xk+1 − xk〉.

Taking expectations, telescoping from k = 0...N − 1, and using Lemma 17, we obtain

N−1∑
k=0

µ(αk −
µLFα

2
k

2
)E[‖G̃αk(xk)‖2] ≤ Φ(x0)− Φ(xN) +

N−1∑
k=0

αkσ
2

µmk
. (7)

By utilizing the inequality αk −
µLFα

2
k

2 ≥ αk
2 , the condition Φ(xN) ≥ Φ∗, and considering

the definition of the random variable r, we can derive (6) from (7).

Remark 20 We give some remarks for Theorem 19.

1. The mini-batch size plays a crucial role in ensuring convergence, as it allows us to
control the stochastic error term in Lemma 16 and provide a bound for E[‖G̃αk(xk)‖2]
that converges to 0 as k tends to infinity. If mk = 1 for all k, then the upper bound
for E[‖G̃αk(xk)‖2] will not converge to 0, no matter how {αk} is selected.

2. In (Ghadimi et al., 2016), a similar convergence result is established for mini-batch
stochastic proximal gradient methods, but our analysis differs in a crucial aspect in that
we do not assume the Lipschitz continuity of F (x). Instead, we rely on the smooth
adaptivity of F (x), which is a more relaxed assumption. Additionally, we provide
specific conditions on the stepsizes {αk} and mini-batch sizes {mk} that guarantee
the convergence of E[‖G̃αk(xk)‖2] to 0, as well as the almost sure boundedness of the
sequence {xk}.

3. We now provide a specific choice of {αk} and {mk} to establish a convergence rate
in terms of expected stationarity. For given positive constants c1, c2, γ ∈ (0,∞) and
δ ∈ [0, 1), we choose

αk =
c1

(k + 1)δ
, mk = dc2(k + 1)γe .

Under these choices, we have
∑k

i=0 αi = O(k1−δ) and
∑k

i=0
αk
mk

= O(k1−(δ+γ)). As

a result, the RHS of (6) has the bound of O(k−(1−δ) + k−γ). When δ = 0 and
γ ≥ 1, the order is O(k−1) which recovers the optimal rate of deterministic first order
method. In this case, the mini-batch size mk increases rapidly and the variance in the
stochastic gradient reduces to zero quickly, so the algorithm behaves like a deterministic
algorithm. However, such a favorable convergence rate comes at the expense of a heavy
computational burden and high memory cost in each iterative step.

14

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Next, we present the sample complexity of the SBPG method. We define each compu-
tation of ∇f(x, ξ) for a fix ξ as an oracle evaluation.

Corollary 21 Given an accuracy level ε > 0 and a positive constant γ > 0, choose αk =
α < 1

LF
min{1, 1

µ}. Then to achieve an ε-stationary point in expectation, at most N̄ :=⌈
max

{
γ2, 4σ4

µ4ε4

(
2∆0µγ
ασ2 + 1

γ

)2
}⌉

oracle evaluations are required. In this case, we need to

set mk = m := dmin{γ
√
N̄ , N̄}e for all k.

Proof Let the total number of oracle evaluations be N̄ . Then N =
⌊
N̄
m

⌋
and N ≥ N̄

2m . We

have that

RHS of (6) ≤4∆0m

αµN̄
+

2σ2

µ2m
≤ 4∆0

αµN̄

(
γ
√
N̄
)

+
2σ2

µ2
max

{
1

γ
√
N̄
,

1

N̄

}
≤ 2σ2

µ2
√
N̄

(
2∆0µγ

ασ2
+

1

γ

)
,

where ∆0 := Φ(x0)−Φ(x∗). By the choice of N̄ , we have RHS of (6) ≤ ε2. This completes
the proof.

This oracle complexity matches the lower bound provided by (Arjevani et al., 2023), thus
it cannot be improved in general.

3.2 Momentum based Stochastic Bregman Gradient Descent Method

Remark 20 and Corollary 21 suggest that a large mini-batch size mk is necessary to achieve
a small stationarity error. However, employing a large mini-batch size in each iteration
can be computationally expensive and memory inefficient, especially in modern large-scale
problems such as deep neural network training. In this part, we resort to the momentum
technique to address this issue. Specifically, we consider using a stochastic moving average
estimator (SMAE) for the true gradient given by:

vk = (1− βk)vk−1 + βk∇̃k, where E[∇̃k|Fk] = ∇F (xk), (8)

where vk−1 can be viewed as the momentum which contains the information of all historical
stochastic gradients, and E[‖∇̃k‖2|Fk] ≤ σ2

mk
. We expect that incorporating the SMAE

technique can achieve a certain level of variance reduction without requiring an increase
in the mini-batch size or the computation of the full gradient. In our approach, we utilize
the gradient estimator vk within SBPG, and we refer to the resulting method as MSBPG.
Specifically, we consider the following update scheme:

xk+1 = argmin
x∈C

R(x) + 〈vk, x− xk〉+
1

αk
Dφ(x,xk). (9)

We need the following assumption that the difference of gradients of F can be bounded by
the Bregman distance.

Assumption 3 There exists κ > 0, such that ‖∇F (x) − ∇F (y)‖2 ≤ κDφ(x,y) for all
x ∈ domφ, y ∈ int domφ.

15

Ding and Li and Toh

Remark 22 This assumption generalizes the case of Lipschitz kernel function. If F is
LF -smooth adaptable to φ, it can be easily shown that if φ has Lφ-Lipschitz gradient, this

assumption holds for κ ≥ 2L2
FL

2
φ

µ . In this paper, we are particularly interested in polynomial
kernel functions. For functions with polynomially bounded growth rates, this assumption is
not restrictive. For example, consider the one-dimensional objective function F (x) = 1

4x
4

and the kernel function φ(x) = 1
2x

2 + 1
8x

8. Then, by (Lu et al., 2018, Proposition 2.1), we
know that F is smooth adaptable with respect to φ. Simple algebra shows that Dφ(x, y) =
1
8(x − y)2(x6 + 2x5y + 3x4y2 + 4x3y3 + 5x2y4 + 6xy5 + 7y6 + 4) and (F ′(x) − F ′(y))2 =
(x− y)2(x2 + xy + y2)2. Numerical computation shows that (x6 + 2x5y + 3x4y2 + 4x3y3 +
5x2y4 + 6xy5 + 7y6 + 4)− (x2 + xy+ y2)2 ≥ 3.71. Therefore, (F ′(x)−F ′(y))2 ≤ 8Dφ(x, y),
which holds globally for any x and y in Rd.

Next, we present a recursion lemma that allows us to estimate the accuracy of the
SMAE. While similar lemmas have been proposed in the literature, such as in (Wang et al.,
2017), their bounds are not directly applicable in the Bregman setting. As a result, we have
developed a version of the recursion lemma that is tailored to our specific context.

Lemma 23 The following recursion holds

E[‖vk−∇F (xk)‖2|Fk] ≤ (1−βk)‖vk−1−∇F (xk−1)‖2+β2
kE[‖∇̃k−∇F (xk)‖2|Fk]+

‖∇F (xk−1)−∇F (xk)‖2

βk
.

Proof Note that vk − ∇F (xk) = (1 − βk)(v
k−1 − ∇F (xk−1)) + (1 − βk)(∇F (xk−1) −

∇F (xk)) + βk(∇̃k −∇F (xk)), and E[∇̃k −∇F (xk)|Fk] = 0. Then we have

E[‖vk −∇F (xk)‖2|Fk]
= (1− βk)2‖vk−1 −∇F (xk−1)‖2 + (1− βk)2‖∇F (xk−1)−∇F (xk)‖2+

β2
kE[‖∇̃k −∇F (xk)‖2|Fk] + 2(1− βk)2〈vk−1 −∇F (xk−1), ∇F (xk−1)−∇F (xk)〉

≤ (1− βk)2‖vk−1 −∇F (xk−1)‖2 + (1− βk)2‖∇F (xk−1)−∇F (xk)‖2+

β2
kE[‖∇̃k −∇F (xk)‖2|Fk] + βk(1− βk)‖vk−1 −∇F (xk−1)‖2 +

(1− βk)3

βk
‖∇F (xk−1)−∇F (xk)‖2

= (1− βk)‖vk−1 −∇F (xk−1)‖2 + β2
kE[‖∇̃k −∇F (xk)‖2|Fk] +

(1− βk)2‖∇F (xk−1)−∇F (xk)‖2

βk

≤ (1− βk)‖vk−1 −∇F (xk−1)‖2 + β2
kE[‖∇̃k −∇F (xk)‖2|Fk] +

‖∇F (xk−1)−∇F (xk)‖2

βk
.

This completes the proof.

Now we are ready to provide the convergence result for our momentum based SBPG.

Theorem 24 Suppose Assumption 1, 2 and 3 hold. Let αk = cµβk+1 for any c ∈ (0, 1
2
√
µκ].

Then, it holds that

E[‖G̃αr(xr)‖2] ≤
∆0 + c‖v0 −∇F (x0)‖2 +

∑N−1
k=0

α2
kσ

2

cµ2mk∑N−1
k=0

µαk
8

, (10)

where r is a random variable with distribution P{r = k} = αk∑N−1
k=0 αk

, for k = 0, ..., N − 1.

16

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Proof From Lemma 16 and Cauchy-Young‘s inequality, we have

Φ(xk+1) ≤ Φ(xk)− 1

αk
Dφ(xk,xk+1) +

µ

4αk
‖xk − xk+1‖2 +

αk
µ
‖εk‖2

≤ Φ(xk)− 1

2αk
Dφ(xk,xk+1) +

αk
µ
‖εk‖2.

where we have defined εk := ∇F (xk) − vk. Summing the above inequality over k =
0, . . . , N − 1 and rearranging the terms, we get

N−1∑
k=0

1

2αk
Dφ(xk,xk+1) ≤ Φ(x0)− Φ∗ +

N−1∑
k=0

αk
µ
‖εk‖2.

By applying Lemma 23, we can obtain the following inequality:

βkE[‖εk−1‖2] ≤ E[‖εk−1‖2]−E[‖εk‖2]+β2
kE[‖∇̃k−∇F (xk)‖2]+E

[
‖∇F (xk−1)−∇F (xk)‖2

βk

]
.

Hence

N−1∑
k=0

βk+1E[‖εk‖2] =

N∑
k=1

βkE[‖εk−1‖2] ≤ ‖ε0‖2+

N∑
k=1

β2
kE[‖∇̃k−∇F (xk)‖2]+

N∑
k=1

E
[
‖∇F (xk−1)−∇F (xk)‖2

βk

]
.

Since αk

µ = cβk+1 for some constant c, we get the following inequality:

N−1∑
k=0

1

2αk
E[Dφ(xk,xk+1)] ≤ Φ(x0)−Φ∗+c

(
‖ε0‖2 +

N∑
k=1

β2
kE[‖∇̃k −∇F (xk)‖2] +

N∑
k=1

E
[
‖∇F (xk−1)−∇F (xk)‖2

βk

])
.

By using Assumption 3, we obtain that

‖∇F (xk)−∇F (xk+1)‖2

βk+1
≤ κ

βk+1
Dφ(xk,xk+1).

Combining above two inequalities, we get

N−1∑
k=0

1

2αk
E[Dφ(xk,xk+1)] ≤ Φ(x0)−Φ∗+c

(
‖ε0‖2 +

N∑
k=1

β2
kE[‖∇̃k −∇F (xk)‖2] +

N−1∑
k=0

κ

βk+1
E[Dφ(xk,xk+1)]

)
.

Since c ≤ 1
2
√
µκ and αk

µ = cβk+1, we can deduce that cκ
βk+1

≤ 1
4αk

. Using this condition, we obtain

the inequality:

N−1∑
k=0

1

4αk
E[Dφ(xk,xk+1)] ≤ Φ(x0)− Φ∗ + c

(
‖ε0‖2 +

N∑
k=1

β2
kE[‖∇̃k −∇F (xk)‖2]

)
.

Note that Dφ(xk,xk+1) ≥ µ
2 ‖x

k − xk+1‖2 =
µα2

k

2 ‖G̃αk
(xk)‖2 and by the definition of the random

variable a, we get

E[‖G̃αa
(xa)‖2] ≤

Φ0 − Φ∗ + c‖ε0‖2 + c
∑N
k=1

β2
kσ

2

mk∑N−1
k=0

µαk

8

,

which completes the proof.

17

Ding and Li and Toh

Remark 25 Now we give some remarks for Theorem 24.

1. When the sequence {xk} is bounded, an alternative to Assumption 3 is to assume that
C = Rd and that φ has a locally Lipschitz gradient, as made in (Bolte et al., 2018,
Theorem 4.1) and (Latafat et al., 2022, Theorem 4.7). Under these conditions, we can
conclude that there exists a compact set U containing {xk}. Therefore, there exists a
constant Lφ,U > 0 such that ∇φ is Lipschitz continuous over U , and we can derive

that ‖∇F (x)−∇F (y)‖2 ≤ L2
FL

2
φ,U‖x− y‖2 ≤

2L2
FL

2
φ,U

µ Dφ(x,y) holds.

2. The stationarity error for SBPG in Theorem 19 is given by O
(

1∑k
i=0 αi

+

∑k
i=0

αi
mi∑k

i=0 αi

)
,

while for MSBPG in Theorem 24, the error is O

(
1∑k
i=0 αi

+

∑k
i=0

α2i
mi∑k

i=0 αi

)
. Notably, com-

pared to SBPG, even with a small constant mini-batch size mk, MSBPG can still
achieve convergence to a zero error bound by carefully selecting the stepsize sequence
{αk}. A typical stepsize condition is

∑∞
k=0 αk = ∞,

∑∞
k=0 α

2
k < ∞, which coincides

with the classical stepsize condition ensuring a moderate decrease of the stepsize, as
discussed in (Bertsekas and Tsitsiklis, 2000). Thus, by incorporating the momentum
technique, we can achieve improved convergence properties, particularly in terms of re-
laxed mini-batch size requirements, with minimal additional computational cost. This
favorable convergence property theoretically supports the application of MSBPG for
large-scale problems, such as deep neural networks training, without the use of very
large mini-batch size. To illustrate, we provide a specific choice of {αk} and {mk} that
yields a convergence rate in terms of expected stationarity: Set mk = 1, αk = c√

k+1
,

the convergence rate is Õ
(

1√
k

)
with logarithmic terms hidden.

Next, we present the sample complexity of MSBPG.

Corollary 26 Given an accuracy level ε > 0, a constant α0 > 0, and any integer m >
0, set mk = m. Then to achieve an ε-stationary point in expectation, at most N̄ :=⌈
max

{
(1 + µ2)α2

0L
2
F ,

1
ε4

(
16(∆0+c‖ε0‖2)

µα0
+ 8α0σ2

cµm

)}⌉
oracle evaluations are required. To achieve

this complexity, we can choose αk = α = α0√
N̄

.

Proof Let the total number of oracle evaluations be N̄ . Then N =
⌊
N̄
m

⌋
and N ≥ N̄

2m . By

choosing αk = α = α0√
N̄

and using the definition of N̄ , we have that αk <
1
LF

min
{

1, 1
µ

}
,

satisfying the conditions for Theorem 24. Then we have

RHS of (10) ≤ 8(∆0 + c ‖ε0‖2)m

µαN̄
+

8σ2α

cµm
.

By the choices of N̄ and α, we have RHS of (24) ≤ ε2. This completes the proof.

We observe that MSBPG has the same complexity order as SBPG, with both achieving
O(ε−4), which, as shown in (Arjevani et al., 2023), is the optimal bound and cannot be
improved. However, to reach this complexity bound, SBPG requires a large mini-batch

18

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

size, whereas MSBPG allows for an arbitrary mini-batch size. This relaxed requirement for
the mini-batch size makes MSBPG more practical for training deep neural networks, as it
is more memory-efficient. Therefore, the convergence properties of MSBPG are improved
in terms of reduced mini-batch size requirements.

As a final remark for this section, in this work, we have only established convergence to
a stationary point. However, as demonstrated by (Lee et al., 2019) and (Panageas et al.,
2019), the Bregman gradient method almost always converges to a local minimum when
the loss function has the strict saddle property (i.e. all the saddle points of f are strict
saddle points). In general, finding the global minimum of a nonconvex function is NP-hard.
However, in many applications, the objective function is ”benign” nonconvex, meaning
that all local minima are global minima. Examples include matrix completion (Ge et al.,
2016), matrix factorization (Chi et al., 2019), and phase retrieval (Sun et al., 2018), where
convergence to a local minimum implies convergence to the global minimum. Additionally,
when the objective function satisfies the Polyak– Lojasiewicz (PL) condition (Polyak, 1963),
convergence to a stationary point also guarantees convergence to a global minimum. In the
experimental section, we observe that in some instances of training neural networks, the
training loss can even approach zero, indicating near convergence to a global minimum.

4. Application in training deep neural networks

In this section, we present a detailed description of MSBPG applied to training deep neural
networks. Throughout this section, we assume that the optimization domain C is the entire
space Rd, so that φ ∈M(Rd) and F ∈ C1(Rd). For simplicity, we omit the explicit mention
of the feasible set Rd in this section. In this context, we utilize a polynomial kernel function.

The optimization problem we consider here is given by:

min
W

1

N

N∑
i=1

L(DNN (W ,xi), yi) + λ2 ‖W ‖22︸ ︷︷ ︸
F (W)

+λ1‖W ‖1, (11)

where DNN (W ,x) is the neural network function with training parameters W and input
data x, L is the loss function that measures the difference between the output of the
neural network DNN (W ,xi) and the label yi, λ2 ‖W ‖22 is the weight decay term, and
λ1‖W ‖1 is the L1 regularization term that is the sparsity induced operator and often used
to avoid overfitting in training deep neural networks (Ng, 2004). To illustrate the neural
network function DNN (W ,x), in the L-layer fully connected neural network, we have
W = [W1,W2, · · · ,WL] and

DNN (W ,x) = σL(WL(σL−1(WL−1(...(σ1(W1x))...)))), (12)

where σi is the nonlinear activation function. In this paper, we focus on smooth activation
functions.

At the k-th iteration, MSBPG has the following update scheme:

vk = (1− βk)vk−1 + βk∇̃k (13)

W k+1 = argmin
W

〈vk, W −W k〉+
1

αk
Dφ(W ,W k) + λ1‖W ‖1, (14)

19

Ding and Li and Toh

where ∇̃k is mini-batch gradient of F (W). Omitting all the constants, the subproblem
takes the form of:

W k+1 = argmin
W

φ(W) + 〈pk, W 〉+ αkλ1‖W ‖1, (15)

where pk = αkv
k−∇φ(W k). Here we adopt the kernel function φ(W) = 1

2‖W ‖
2 + δ

r‖W ‖
r

(r ≥ 2) for training neural networks, and then we have an explicit solution for (15) in
Proposition 27.

Proposition 27 Given pk ∈ Rd, positive constant αk, λ, and the kernel function φ(W) =
1
2‖W ‖

2 + δ
r‖W ‖

r (r ≥ 2, δ > 0). The solution of the subproblem (15) is given by

W k+1 = −t∗p+,

where t∗ is the unique positive real root of the equation

(δ‖p+‖r−2)tr−1 + t− 1 = 0, (16)

and p+ is given by

p+ = argmin
p

{1

2
‖p− pk‖2 + αkλ‖p‖1

}
which has an explicit expression given by p+

j = sign(pkj) max(|pkj | − αkλ, 0) for the j-th
coordinate.

Proof The optimality condition of (15) is given by

0 = W k+1(1 + δ‖W k+1‖r−2) + pk + αkλΓk, where Γk ∈ ∂‖ · ‖1(W k+1).

Let p+ = pk + αkλΓk. By the optimality condition, we have W k+1 = −tp+ for some
positive scalar t, and

(−t− δ‖p+‖r−2tr−1 + 1)p+ = 0.

If p+ 6= 0, then δ‖p+‖r−2tr−1 + t− 1 = 0. If p+ = 0, then W k+1 = −tp+ = 0. Since t > 0,
then we have ∂‖ · ‖1(W k+1) = ∂‖ · ‖1(−tp+) = −∂‖ · ‖1(p+). Recall the definition of p+,
we have

p+ = pk + αkλΓk ∈ pk − αkλ∂‖ · ‖1(p+),

which is sufficient and necessary optimality condition of the convex optimization problem:

p+ = argmin
p

{
1

2
‖p− pk‖2 + αkλ‖p‖1

}
.

This completes the proof by noting the the above minimization problem is the well-known
soft threshold operator, see for example (Friedman et al., 2010).

In the absence of L1-regularization, that is, when λ1 = 0, then p+ = pk and the
update formula for MSBPG at the k-th iteration simplifies to W k+1 = −t∗pk, where t∗

is the positive root of the equation (16). In this case, W k+1 = t∗(∇φ(W k) − αkv
k).

20

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Furthermore, if we choose the kernel function simply as the square of Euclidean distance,
i.e. δ = 0, then SBPG reduces to SGD with momentum. Specifically, we have t∗ = 1 and
the update W k+1 = W k − αkvk.

Determining degree of kernel function We now turn our attention to selecting an
appropriate parameter r for the kernel function. Intuitively, in order to bound the Hessian of
the loss function in (11), particularly when the number of layers L in (12) is large, r should
also be chosen larger, so that ∇2F � 1

α∇
2φ holds globally for some α > 0. However, this

can lead to numerical issues when computing when computing ‖W ‖r−2. This problem can
be avoided if the deep neural network exhibits some special structure such that a moderate
r can make F (W) smooth adaptable with respect to φ(W). For simplicity of analysis, we
assume all the given labels yi as zero and consider a sum of squares loss function. Then, we
have a two-layer model defined as follows:

min
W=(u,v)

F (W) =
1

2

N∑
i=1

(
‖σ (Mat(u)(gi(v)))‖2

)
+
λ2

2
(‖u‖2 + ‖v‖2), (17)

where v ∈ Rn, u ∈ Rkm, gi : Rn → Rm, σ : R → R, Mat(u) ∈ Rk×m and σ(·) is a
coordinate-wise operator. Notably, any deep neural network can be reformulated as the
two-layer model in (17). For instance, if we define v = (W1, ...,WL−1), u = Vec(WL),
gi(W1, ...,WL−1) = σL−1(WL−1(...(σ1(W1xi))...)), then model (12) can be transformed
into (17). We make the following assumptions in this section, which guarantees that we can
find a polynomial kernel function φ with a moderate degree, such that F in (17) is smooth
adaptable to φ.

Assumption 4 σ is twice differentiable and σ′ and σ · σ′′ are globally bounded.

Assumption 5 Each gi is twice differentiable. All partial derivatives of order zero, one,
and two of gi are globally bounded.

Remark 28 Now we give some remarks on the above assumptions.

1. Assumption 4 is typically valid for various commonly used smooth activation functions.
For example, the sigmoid function σ(x) = 1

1+e−x satisfies global boundedness for both
σ and σ′′. Certain activation function may not have bounded function value, such as
GELU (Hendrycks and Gimpel, 2016), which takes the formulation of σ(x) = xΦ(x)
where Φ is the standard Gaussian cumulative distribution function. Nonetheless, the
product σ · σ′′ is globally bounded. Another type of activation function satisfying As-
sumption 4 is the smoothed ReLU function, for example, the following smoothed ReLU
function, which will be considered in our numerical experiments:

σε(x) =


0 x ≤ 0

x3
(

1
ε2
− x

2ε3

)
0 < x ≤ ε

x− ε
2 x > ε.

We observe that as ε tends to zero, σε converges to the ReLU function. It is straight-
forward to verify that σε · σ′′ε is globally bounded. Specifically, 3

4 is a uniform bound
on σε · σ′′ε for ε ∈ (0, 1

2).

21

Ding and Li and Toh

2. In many popular neural network frameworks, batch normalization (BN) layers (Ioffe
and Szegedy, 2015) are often used before the fully connected layers. For example, in
the VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016), BN layers
are usually used before the last linear layer. In this case, we can treat all layers except
the last one as one layer, which can be modeled as (17). It is expected that the BN
layer can make the function gi sufficiently smooth, thereby satisfying Assumption 5.

By applying the chain rule, we can compute the Hessian of F and determine a suitable
degree parameter r in the kernel function, which will ensure that ∇2F is bounded by ∇2φ
globally. Consequently, F is smooth adaptable with respect to φ. In order to compute the
Hessian of F , two formulas are required, which can be verified directly.

Lemma 29 Let u ∈ Rkm, g ∈ Rm, A ∈ Rn×m and b ∈ Rk. Consider two linear maps:
u 7→ Mat(u)g and u 7→ A(Mat(u))Tb, then, the Jacobian of the two maps are given by

Ju [Mat(u)g] = gT ⊗ Ik,

Ju[A(Mat(u))Tb] = A⊗ bT .

Proposition 30 Suppose Assumptions 4 and 5 hold. Then, for any given δ > 0 and
any r ≥ 4, the function F defined in (17) is smooth adaptable with respect to φ(W) =
1
2‖W ‖

2 + δ
r‖W ‖

r.

Proof We denote Mat(u) by M . The Jacobian of g is denoted by Jg, while its transpose
is denoted by JT g. Ik is k × k identity matrix. We only need to prove the single sample
case, i.e. N = 1. Using Lemma 29, we can compute the Jacobian and Hessian of F as
follows:
Jacobian of F :

∂F

∂u
= (g(v)⊗ Ik)

[
σ′(Mg(v)) ◦ σ(Mg(v))

]
+ λ2u,

∂F

∂v
= JT g(v)MT

[
σ′(Mg(v)) ◦ σ(Mg(v))

]
+ λ2v.

(18)

Hessian of F :

∂2F

∂u2
= (1) + (2) + λ2Ikm,

where (1) = (g(v)⊗ Ik) Diag
(
σ(Mg(v)) ◦ σ′′(Mg(v))

)
(gT (v)⊗ Ik)

(2) = (g(v)⊗ Ik) Diag
(
σ′(Mg(v)) ◦ σ′(Mg(v))

)
(gT (v)⊗ Ik).

(19)

∂2F

∂u∂v
= (1) + (2) + (3),

where (1) =
(
JT g(v)

)
⊗
[
σ′(Mg(v)) ◦ σ′(Mg(v))

]T
(2) = JT g(v)MTDiag[σ(Mg(v)) ◦ σ′′(Mg(v))]

(
gT (v)⊗ Ik

)
(3) = JT g(v)MTDiag[σ′(Mg(v)) ◦ σ′(Mg(v))]

(
gT (v)⊗ Ik

)
.

(20)

22

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

∂2F

∂v2
= (1) + (2) + (3) + λ2In,

where (1) = D2g(v)
[
MT [σ′(Mg(v)) ◦ σ(Mg(v))]

]
=
∑

di∇2gi(v)

(2) = JT g(v)MTDiag[σ(Mg(v)) ◦ σ′′(Mg(v))]MJg(v)

(3) = JT g(v)MTDiag[σ′(Mg(v)) ◦ σ′(Mg(v))]MJg(v),

(21)

where d = MT [σ′(Mg(v)) ◦ σ(Mg(v))]. Now, we are ready to prove this proposition.
For any w ∈ Rkm+n and h = [hu;hv] ∈ Rkm+n, it suffices to prove that 〈∇2F (w)h, h〉 =
O(〈∇2φ(w)h, h〉). From (19)(20)(21) and Assumption 4, 5, we can easily get 〈∇2F (w)h, h〉 =
O((1 + ‖w‖2)‖h‖2). On the other hand, ∇2φ(w) = I(1 + ‖w‖r−2) + (r − 2)‖w‖r−4wwT .
Hence 〈∇2φ(w)h, h〉 ≥ (1 + ‖w‖r−2)‖h‖2. So, we only require r − 2 ≥ 2. This completes
the proof.

Layerwise kernel function In Proposition 27, we use the kernel function φ(W) =
1
2‖W ‖

2 + δ
r‖W ‖

r, which applies the same Bregman distance across all layers of the deep
neural network. However, different layers exhibit distinct geometric properties (You et al.,
2019), and computing ‖W ‖r with r > 2 may result in numerical instability for neural
networks with millions of parameters, such as in VGG (Simonyan and Zisserman, 2014). To
take advantage of the layerwise structure of neural networks, we design a layerwise kernel
function for a L-layer neural network as follows:

φ(W) =
L∑
i=1

φi(Wi), φi(Wi) =
1

2
‖Wi‖2 +

δ

r
‖Wi‖r. (22)

Note that δ and r can vary from layer to layer, here we take the same δ and r for all layers
for simplicity. With this structure, the Bregman distance takes the form Dφ =

∑L
i=1Dφi .

By incorporating this layerwise Bregman distance into the subproblem (14), our MSBPG
algorithm can be implemented in a layerwise manner. Details of the implementation are
provided in Algorithm 1.

Mitigating gradient explosion In the training of deep neural networks, gradient ex-
plosion is a common undesired phenomenon, where the gradients of the loss function grow
exponentially from layer to layer, leading to numerical instability or even collapse of the
training process (Hochreiter, 1991; Manchev and Spratling, 2020). The reasons for gradient
explosion include selecting a large stepsize and choosing an improper initialization for the
model’s parameters (Pascanu et al., 2013). In the following, we will show that MSBPG
provides a novel approach to mitigate gradient explosion. Considering MSBPG without
L1-regularization, the update rule is given by:

W k+1
i = −tki pki = tki

(
(1 + δ‖Wi

k‖r−2)Wi
k − αkvki

)
, (23)

where tki ∈ (0, 1) is the unique positive root of(
δ
∥∥∥(1 + δ‖W k

i ‖r−2)W k
i − αkvki

∥∥∥r−2
)
tr−1 + t− 1 = 0. (24)

23

Ding and Li and Toh

Algorithm 1 Momentum based Stochastic Bregman Proximal Gradient (MSBPG) for
training neural networks

1: Input: Total number of iterations K, stepsize αk > 0, momentum parameter βk ∈
(0, 1), δ > 0 and integer r ≥ 4 to determine the kernel function φ, and λ1.

2: Initialize: Set W = W 0, v0 = 0.
3: for k = 0, · · · ,K − 1 do
4: Compute mini-batch gradient ∇̃k of F ;
5: Compute SMAE: vk = (1− βk)vk−1 + βk∇̃k;
6: for i = 1, . . . , L do
7: pki = αkv

k
i −∇φ(W k

i);
8: p+

i = argminpi{
1
2‖pi − p

k
i ‖2 + αkλ1‖pi‖1};

9: Solve (δ‖p+
i ‖r−2)tr−1

i + ti − 1 = 0 to get tki ;
10: W k+1

i = −tki p
+
i ;

11: end for
12: end for
13: Output: W 1, · · · ,WK .

Combining (23) and (24), we have the following equivalent implicit update scheme for the
i-th layer:

W k+1
i =

1 + δ‖W k
i ‖r−2

1 + δ‖W k+1
i ‖r−2

W k
i −

αk

1 + δ‖W k+1
i ‖r−2

vki . (25)

It is observed in practice that with large stepsize or large initial point, the gradient vki tends
to explode if no scaling or clipping is applied, while the norm of the weight ‖W k+1

i ‖ also
tends to be large. In (25), scaling the gradient by 1

1+δ‖W k+1
i ‖r−2

prevents the weight W k+1
i

from moving too drastically in the direction of the gradient, thereby controlling the rapid
growth of its norm. At the same time, if the norm ‖W k+1

i ‖ does not change significantly,
the coefficient of W k

i in (25) will remain approximately 1. Thus, the implicit update (25)
provides automatic scaling of the gradient, effectively mitigating the rapid growth of the
weight and preventing subsequent gradient explosion.

Experimental results in Section 5.2 indeed verify MSBPG ’s ability to mitigate gradient
explosion for training deep neural networks. An intuitive illustration of SBPG ’s “pull-back”
ability is given in Figure 12 in Appendix D, and this “pull-back” ability originates from the
Bregman proximity model and the polynomial kernel function we adopt.

5. Numerical experiments

In this section, we conduct numerical experiments to demonstrate the effectiveness and
robustness of MSBPG in comparison to some commonly used optimizers in deep learning.
We assess the impact of stepsize and initial point selection on the performance of our
method. Our experiments consist of two parts. In the first part, we use a quadratic inverse
problem as a toy example to illustrate the capabilities of vanilla SBPG. The second part is
the main focus of this section, where we evaluate the performance of MSBPG in training
deep neural networks. The experiments for the quadratic inverse problem are conducted

24

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

using MATLAB R2021b on a Windows workstation equipped with a 12-core Intel Xeon
E5-2680 @ 2.50GHz processor and 128GB of RAM. For the deep learning experiments, we
conducted the experiments using PyTorch running on a single RTX3090 GPU.

5.1 Quadratic inverse problem

The quadratic inverse problem, as formulated in (Bolte et al., 2018), is given by:

min

Φ(x) :=
1

4

n∑
i=1

(〈Aix, x〉 − bi)2

︸ ︷︷ ︸
F (x)

+λR(x) : x ∈ Rd

 ,

which has practical applications (Beck and Eldar, 2013), including the phase retrieval prob-
lem as a special case (Luke, 2017). In this experiment, we consider the L1 regularization
R(x) = ‖x‖1 with λ = 1 × 10−3, and solve the quadratic inverse problem using SBPG
and stochastic (Euclidean) proximal gradient (SPG) method (Bertsekas, 2011). Notably,
SPG is a special case of SBPG, where φ(x) = 1

2‖x‖
2. Since the smooth term in the ob-

jective function F (x) does not admit a globally Lipschitz continuous gradient, we employ
the kernel function φ(x) = 1

2‖x‖
2 + 1

r‖x‖
r with r = 4. It has been shown in (Lu et al.,

2018) that any r ≥ 4 guarantees that F is φ-smooth adaptable globally. Moreover, ac-
cording to (Bolte et al., 2018), the smooth adaptable constant LF can be chosen such that
LF ≥

∑n
i=1(3‖Ai‖2 + ‖Ai‖|bi|) for r = 4. In this experiment, we randomly generate the

data by the following MATLAB commands:

ai = randn(d, 1); Ai = ai ∗ ai′;
x true = sprandn(d, 1, density x); b i = x true′ ∗ (Ai ∗ x true);

The true solution for the quadratic inverse problem is chosen as a sparse vector x∗ that
satisfies 〈Aix∗, x∗〉 = bi for i = 1, . . . , n. We set the mini-batch size for all algorithms to
be m = 1. To evaluate the effectiveness of each algorithm, we use the following criterion
that takes into account the possibility of stationary points being local minimum or saddle
points:

εk = max

{
‖G(xk)‖, εobj :=

objk − obj∗
1 + obj∗

}
, (26)

where objk = Φ(xk) and obj∗ = Φ(x∗). The term ‖G(xk)‖ measures the stationarity of
the solution, while a small εobj indicates that the solution is a ”nearly” global minimum.

We conduct experiments on a problem with data size d = 100 and density x = 0.05.
All methods are run until they reach an accuracy of εk ≤ 0.01 within a time limit of 30
seconds. To ensure statistical significance, we run each algorithm 10 times and report the
median value. The results are presented in Figure 2. For Figures 2(a), we randomly select
initial points within a ball centered at the origin with radius 1× 10−2. We use the stepsize

schedule of αk = max
{

10−4, α0√
1+k

}
, where α0 is the initial stepsize. For Figure 2(b),

we set constant stepsize schedule 1 × 10−3. For Figures 2(c), we randomly select initial
points within a ball centered at the origin with radius 1× 10−2. We use a constant stepsize

25

Ding and Li and Toh

-6 -4 -2 0 2

log
10

(initial stepsize)

0

5

10

15

20

25

30

35

ti
m

e
(s

)
to

 a
c
c
u

ra
c
y
 1

0
-2

SPG

SBPG

non-convergent

(a) Stepsize robustness

-5 0 5 10 15 20 25

log
10

(radius of initial point)

0

5

10

15

20

25

30

35

ti
m

e
(s

)
to

 a
c
c
u

ra
c
y
 1

0
-2

SPG

SBPG

non-convergent

(b) Initial point robustness

2 4 6 8 10 12 14

r

-3

-2.5

-2

-1.5

-1

-0.5

0

s
a
fe

 s
te

p
 s

iz
e
 t
h
re

s
h
o
ld

:
lo

g
1

0
(s

te
p
 s

iz
e
)

SPG

SBPG

(c) Safe stepsize threshold

Figure 2: Comparison of SBPG and SPG in terms of their robustness with respect to step-
size and initial point selction. A method is considered non-convergent if it fails
to reach an accuracy of εk < 10−2 within 30 seconds or if it collapses. Generally,
choosing large stepsize and large radius for the initial point can cause an algo-
rithm to collapse. The safe stepsize threshold is the maximum stepsize (constant
schedule) that a method does not collapse. We run 10 tests for each algorithm
and report the median of the results.

schedule. To prevent excessively small stepsizes that can slow down all methods, we set a
lower bound for the stepsize.

Figure 2(a) demonstrates that SBPG has a wider range of convergent stepsizes than
SPG, indicating that SBPG is more robust in terms of stepsize selection. The effect of the
initial stepsize on the performance of the algorithms is also depicted in this figure. Figure
2(b) highlights that SBPG is significantly more robust than SPG with respect to initial
point selection, showing high resilience and preventing the training process from collapsing.
Additionally, Figure 2(c) illustrates that increasing the degree r in the kernel function raises
the threshold for safe stepsizes. These observations are explained in Section 4. When a large
stepsize or a large initial point radius leads to a potential gradient explosion, the Bregman
proximal mapping effectively pulls back the iterate, guiding it toward a more stable region
and preventing gradient explosion.

5.2 Deep neural network

To evaluate MSBPG’s performance in training deep neural networks, we consider a model
with L2 regularization to enhance generalization:

min
W

1

N

N∑
i=1

L(DNN (W ,xi), yi)︸ ︷︷ ︸
F (W)

+λ2‖W ‖22. (27)

We employ MSBPG to solve this large-scale problem. Following AdamW (Loshchilov and
Hutter, 2017), we employ the strategy of decoupled weight decay. We use MSBPG to solve
this large-scale optimization problem. Following the AdamW approach (Loshchilov and
Hutter, 2017), we implement a decoupled weight decay strategy. Specifically, we compute

26

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

the stochastic gradient only for the loss function F , treating F and L2 regularization sepa-
rately. After performing the Bregman proximal mapping based on the stochastic gradient,
we apply a weight decay step.

The detailed algorithm is summarized in Algorithm 2. At iteration k, MSBPG first uses
automatic differentiation to compute the mini-batch gradient ∇̃k of F . Then, it maintains
a bias-corrected gradient estimator v̄k (Kingma and Ba, 2014) and uses it to calculate the
layerwise pki . With pki , MSBPG solves a univariate equation to get tki and updates the
weight of the i-th layer to W k

i . In the end, MSBPG conducts decoupled weight decay.

Algorithm 2 MSBPG with L2 regularization

1: Input: Total number of training epochs K, momentum coefficient β, stepsize αk, weight
decay coefficient λ2, δ and r to determine the kernel function φ.

2: Initialize: Set W = W 0, v0 = 0.
3: for k = 1, · · · ,K do
4: Compute mini-batch gradient ∇̃k;
5: vk = βvk−1 + (1− β)∇̃k, v̄k = vk/(1− βk);
6: for i = 1, · · · , L do
7: pki = αkv̄

k
i −∇φ(W k−1

i);
8: Solve (δ‖pki ‖r−2)tr−1

i + ti − 1 = 0 to get tki ;

9: W̃ k
i = −tki pki ;

10: end for
11: W k = W̃ k − αkλ2W

k−1;
12: end for
13: Output: W 1, · · · ,WK

We conducted experiments on several representative benchmarks, including VGG16 (Si-
monyan and Zisserman, 2014), ResNet34 (He et al., 2016) on CIFAR10 dataset (Krizhevsky
et al., 2009), ResNet34 (He et al., 2016), DenseNet121 (Huang et al., 2017) on CIFAR100
dataset (Krizhevsky et al., 2009), and LSTMs (Hochreiter and Schmidhuber, 1997) on the
Penn Treebank dataset (Marcinkiewicz, 1994). We compare MSBPG with the most pop-
ular optimization algorithms used for training neural networks, including SGD (Sutskever
et al., 2013), Adam (Kingma and Ba, 2014), and AdamW (Loshchilov and Hutter, 2017).
Experimental results show that MSBPG has good convergence performance and general-
ization capacity for both the task that SGD dominates (image classification with CNNs)
and the task that Adam dominates (language modeling with LSTMs). We also conducted
experiments to compare MSBPG with SGD on different initial stepsizes and different scales
of the initial point. Our experimental results demonstrate the robustness of MSBPG in
training neural networks.

To further evaluate the performance of MSBPG on more recent neural network archi-
tectures, we conducted additional experiments, with the results presented in Appendix C.

Before getting into the details of our experiments, we first clarify the activation function.
The commonly used ReLU activation function in VGG, ResNet, and DenseNet is defined
as ReLU(x) = max(0, x), which is not continuously differentiable. To address this, we
design a smooth approximation of ReLU with a parameter ε, which is twice continuously

27

Ding and Li and Toh

differentiable and satisfies our Assumption 4:

σε(x) =


0 x ≤ 0

x3
(

1
ε2
− x

2ε3

)
0 < x ≤ ε

x− ε
2 x > ε.

The gradient of this activation function is given by:

σ′ε(x) =


0 x ≤ 0

x2(3
ε2
− 2x

ε3
) 0 < x ≤ ε

1 x > ε.

As ε tends to 0, this smooth activation function converges to the standard ReLU function.
We conducted experiments using VGG16 on the CIFAR-10 dataset, replacing all activation
functions in VGG16 with σε. As shown in Figure 4, our algorithm MSBPG ’s performance
does not degrade as ε tends to 0. Therefore, in the subsequent experiments, we use the
original neural network architectures with the ReLU activation function to evaluate our
method MSBPG.

0 25 50 75 100 125 150 175 200

Training Epoch
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

= 0
= 1e 8
= 1e 6
= 1e 4
= 1e 2

0 25 50 75 100 125 150 175 200

Training Epoch

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y

= 0
= 1e 8
= 1e 6
= 1e 4
= 1e 2

0 25 50 75 100 125 150 175 200

Training Epoch
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

= 0
= 1e 8
= 1e 6
= 1e 4
= 1e 2

0 25 50 75 100 125 150 175 200

Training Epoch

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y

= 0
= 1e 8
= 1e 6
= 1e 4
= 1e 2

(a) Step decay. (b) Cosine annealing.

Figure 3: Training loss and test accuracy (%) of VGG16 on CIFAR10 dataset under two
frequently used training settings. Here the activation function of VGG16 adopts
smoothed ReLU activation function σε with different choices of ε (ε = 0 denotes
adopting the original ReLU activation function).

CNNs on image classification We conducted experiments with VGG16 and ResNet34
on the CIFAR-10 dataset, and ResNet34 and DenseNet121 on the CIFAR-100 dataset. SGD
usually has better generalization performance than adaptive gradient algorithms such as
Adam and AdamW when training CNNs on image classification tasks. For our experiments,
we utilized two common training strategies: reducing the stepsize to 10% of its original value
near the end of training (Zhuang et al., 2020; Chen et al., 2021; Luo et al., 2019), and using a
cosine annealing schedule for stepsizes (Loshchilov and Hutter, 2016, 2017). These strategies
are designed to accelerate convergence and allow for a fair comparison of the generalization
capacities of different optimizers. We use the default training hyperparameters of SGD,
Adam, and AdamW in these settings (He et al., 2016; Zhuang et al., 2020; Chen et al.,
2021), and set MSBPG ’s learning rate (initial stepsize) as 0.1, momentum coefficient β as
0.9, weight decay coefficient λ2 as 1 × 10−3. For the layerwise kernel function φi(Wi) =
1
2‖Wi‖2 + δ

r‖Wi‖r, we set r = 4, δ = 1 × 10−2 for VGG16 and r = 6, δ = 1 × 10−3 for

28

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

ResNet34 on CIFAR10 dataset, and r = 4, δ = 1×10−2 for ResNet34 and r = 4, δ = 1×10−3

for DenseNet121 on CIFAR100 dataset.

Our convergence analysis demonstrates that MSBPG converges to a stationary point.
As shown by (Lee et al., 2019; Panageas et al., 2019), the Bregman gradient method almost
always converges to a local minimum for loss functions with the strict saddle property.
When the neural network is highly overparameterized and exhibits a benign nonconvexity
in the search region, stochastic first-order methods tend to find the global minimum, where
the loss function value is 0.

From the experimental results in Figure 4, 5, 6, 7, we can observe that MSBPG attains
almost zero training loss in all the training settings. This implies that our method can find
the global minimum in these instances. Furthermore, MSBPG consistently achieves the
highest test accuracy for all experimental settings and attains at least 0.5% test accuracy
improvement compared with the second-best optimization algorithm. This generalization
advantage of MSBPG can be attributed to the Bregman proximity model we adopt. In
Appendix B, we further discuss SBPG’s performance from the perspective of algorithmic
stability, which can influence the generalization gap. We demonstrate that the high-order
polynomial kernel used helps reduce the generalization gap bound in high-dimensional sce-
narios, which partially explains the good generalization performance of our proposed meth-
ods.

0 25 50 75 100 125 150 175 200

Training Epoch
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

90

91

92

93

94

95

96

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

(a) VGG16 on CIFAR10 (b) ResNet34 on CIFAR10

Figure 4: Training loss and test accuracy (%) of CNNs on CIFAR10 dataset with learning
rate reduced to 0.1 times of the original value at the 150th epoch.

0 25 50 75 100 125 150 175 200

Training Epoch
0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

64

66

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
64

66

68

70

72

74

76

78

80

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

(a) ResNet34 on CIFAR100 (b) DenseNet121 on CIFAR100

Figure 5: Training loss and test accuracy (%) of CNNs on CIFAR100 dataset with learning
rate reduced to 0.1 times of the original value at the 150th epoch.

29

Ding and Li and Toh

0 25 50 75 100 125 150 175 200

Training Epoch
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

89

90

91

92

93

94

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

90

91

92

93

94

95

96

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

(a) VGG16 on CIFAR10 (b) ResNet34 on CIFAR10

Figure 6: Training loss and test accuracy (%) of CNNs on CIFAR10 dataset with learning
rate using the cosine annealing schedule.

0 25 50 75 100 125 150 175 200

Training Epoch
0

1

2

3

4

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

64

66

68

70

72

74

76

78

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Tr
ai

ni
ng

 L
os

s

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
64

66

68

70

72

74

76

78

80

Te
st

 A
cc

ur
ac

y

MSBPG
SGD
Adam
AdamW

(a) ResNet34 on CIFAR100 (b) DenseNet121 on CIFAR100

Figure 7: Training loss and test accuracy (%) of CNNs on CIFAR100 dataset with learning
rate using the cosine annealing schedule.

LSTMs on language modeling To further evaluate the performance of MSBPG, we
conducted experiments on LSTMs using the Penn Treebank dataset, reporting both training
and test perplexity (lower is better). Adam is generally favored over SGD for language
modeling tasks due to its better generalization capacity (Fu et al., 2016; Siami-Namini
et al., 2019), and thus it is the default optimization algorithm for training LSTMs. We
followed the standard experimental setup for training LSTMs (Zhuang et al., 2020; Chen
et al., 2021), where the learning rate is reduced to 10% of its original value twice (at the
75th and 150th epochs). Additionally, we experimented with the cosine annealing learning
rate schedule (Loshchilov and Hutter, 2016), which is commonly used in practice. For the
training hyperparameters, we used the default settings for SGD, Adam, and AdamW when
training 1-, 2-, and 3-layer LSTMs (Zhuang et al., 2020; Chen et al., 2021). For MSBPG,
we set the learning rate to 25, 80, and 80 for 1-, 2-, and 3-layer LSTMs, respectively, with
a momentum parameter β = 0.9, weight decay coefficient λ2 = 2× 10−6. For the layerwise
kernel function φi(Wi) = 1

2‖Wi‖2 + δ
r‖Wi‖r, we set r = 4 and δ = 1× 10−6. From Figure 8

and Figure 9, we observe that MSBPG converges well on the training dataset for 1-, 2-, and
3-layer LSTMs across both training strategies. In contrast, SGD with the cosine annealing
learning rate schedule fails to fully converge on the training dataset, as shown in Figure
9. Additionally, MSBPG consistently achieves lower test perplexity in all experiments,
outperforming other methods by at least 1 unit. This excellent generalization capacity can
be attributed to the Bregman proximity model employed by MSBPG. As an additional
evaluation, we further assess the performance of MSBPG on a recently popular transformer

30

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

model, Transformer-XL (Dai et al., 2019), which is designed for long-sequence tasks. The
results are provided in Appendix C.

0 25 50 75 100 125 150 175 200

Training Epoch
50

60

70

80

90

100

110

120

130

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

40

50

60

70

80

90

100

110

120

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
30

40

50

60

70

80

90

100

110

120

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st

 P
er

pl
ex

ity

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
65

70

75

80

85

90
Te

st
 P

er
pl

ex
ity

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
60

65

70

75

80

85

90

Te
st

 P
er

pl
ex

ity

MSBPG
SGD
Adam
AdamW

(a) 1-layer LSTM (b) 2-layer LSTM (c) 3-layer LSTM

Figure 8: Training and test perplexity (lower is better) of LSTMs on Penn Treebank dataset
with learning rate reduced to 0.1 times of the original value at the 75th epoch
and 150th epoch.

0 25 50 75 100 125 150 175 200

Training Epoch
50

60

70

80

90

100

110

120

130

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch

40

50

60

70

80

90

100

110

120

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
30

40

50

60

70

80

90

100

110

120

Tr
ai

ni
ng

 P
er

pl
ex

ity MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Te
st

 P
er

pl
ex

ity

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
65

70

75

80

85

90

Te
st

 P
er

pl
ex

ity

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
60

65

70

75

80

85

90

Te
st

 P
er

pl
ex

ity

MSBPG
SGD
Adam
AdamW

(a) 1-layer LSTM (b) 2-layer LSTM (c) 3-layer LSTM

Figure 9: Training and test perplexity (lower is better) of LSTMs on Penn Treebank dataset
with learning rate using the cosine annealing schedule.

31

Ding and Li and Toh

Robustness to initial point scale and stepsize As demonstrated in Section 4, MS-
BPG can mitigate the issue of gradient explosion, which typically occurs when using large
stepsizes or large initial point scales. To verify MSBPG’s robustness in training neural
networks, we conducted experiments using VGG16 on the CIFAR-10 dataset. Specifically,
we compared the performance of MSBPG and SGD under different initial point scales and
stepsizes, as both algorithms share the same default learning rate of (1×10−1). Since adap-
tive gradient algorithms, such as Adam, use a different default learning rate scale (1×10−3),
they were not included in this comparison. For various initial point scales and stepsizes, we
ran each optimization algorithm for 50 iterations and reported the best test accuracy. As
shown in Figure 10, MSBPG is more robust than SGD to large initial points and stepsizes.
Training deep neural networks, which have millions or billions of parameters, is highly sen-
sitive to both the initial point scale and stepsize. From Figure 10, we can see that SGD fails
to converge when the initial point scale is increased to 4.6 or when the stepsize is increased
from 0.1 to 0.6. In contrast, MSBPG converges with an initial point scale as large as 20 and
a stepsize as large as 5. This robustness of MSBPG can ease the tuning of hyperparameters
for training neural networks, and can also make the training process more robust to noises
and errors.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Initial Point Scale
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

MSBPG
SGD

0 2 4 6 8 10

Stepsize
0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

MSBPG
SGD

(a) Initial point robustness (b) Stepsize robustness

Figure 10: Test accuracy (%) of VGG16 on CIFAR10 dataset with different initial point
scale and stepsize choice.

6. Conclusion

In this paper, we introduce a family of nonconvex stochastic Bregman proximal gradient
(SBPG) methods to solve optimization problems without the Lipschitz smoothness assump-
tion. By leveraging Bregman proximity measures, SBPG offers a more flexible and robust
framework than classical stochastic gradient methods. We establish convergence results for
the vanilla SBPG method in the nonconvex setting and propose a momentum-based vari-
ant, MSBPG, which improves convergence property by relaxing the mini-batch size require-
ment. Both methods achieve optimal sample complexity O(ε−4), making them well-suited
for large-scale problems. MSBPG is applied to training deep neural networks, where it mit-

32

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

igates gradient explosion and enhances generalization performance. Numerical experiments
on sparse quadratic inverse problems and deep neural networks demonstrate MSBPG’s ro-
bustness and superior performance compared to commonly used optimizers such as SGD,
Adam, and AdamW. In conclusion, MSBPG provides an effective and efficient optimiza-
tion approach for large-scale nonconvex problems, combining theoretical robustness with
practical advantages. Future work can explore further refinements and applications in more
complex machine learning tasks.

Appendix A. Proofs in Preliminaries

Proof of Lemma 8 First, we prove the uniqueness of the solution. Problem (4) is equivalent
to the following problem:

arg min
u∈C

Ψ(u) := αR(u) + φ(u)− 〈∇φ(x), u〉.

We have that

Ψ(u) ≥ αR(u) + φ(u)− ‖∇φ(x)‖ ‖u‖ ≥ ‖u‖
(αR(u) + φ(u)

‖u‖
− ‖∇φ(x)‖

)
.

As ‖u‖ → ∞, we have Ψ(u) ≥ ‖u‖
(
αR(u)+φ(u)

‖u‖ − ‖∇φ(x)‖
)

= ∞, where we use the fact

that φ is supercoercive and R is convex. Since Ψ is a proper lower-semicontinuous convex
function, by the modern form of Weierstrass theorem (Rockafellar, 1997, Chapter 1), we
know that the solution set of (4) is a nonempty compact set. Also note that Ψ is a strictly
convex function, which implies the uniqueness of the solution. For any Legendre function φ,
from (Rockafellar, 1997, Chapter 26), we have dom∂φ = int domφ with ∂φ(x) = {∇φ(x)}
for all x ∈ int domφ. The optimality condition implies that ∂φ(ProxφαR(x)) is nonempty,

which automatically forces ProxφαP (x) ∈ int domφ. This completes the proof. �

Proof of Proposition 12 Note that ‖∇φ(x+)−∇φ(x)‖ ≤ Lφ‖x+ − x‖ and ‖∇F (x+)−
∇F (x)‖ ≤ LFLφ‖x+ − x‖. By the definition of x+, we have

∇F (x+)−∇F (x) +
∇φ(x)−∇φ(x+)

α
∈ ∇F (x+) + ∂R(x+).

Thus, we obtain

dist
(
0, ∂Φ(x+)

)
≤
∥∥∥∥∇F (x+)−∇F (x) +

∇φ(x)−∇φ(x+)

α

∥∥∥∥ ≤ (LFLφ +
Lφ
α

)
‖x+ − x‖.

Note that ‖x+ − x‖ = α‖Gα(x)‖, which completes the proof. �

Proof of Proposition 9 By the definition of ProxφR(·), xi ∈ ∂R(x+
i) +∇φ(x+

i), i = 1, 2.
Since ∂R(·) is monotone, then 〈x1−x2− (∇φ(x+

1)−∇φ(x+
2)), x+

1 −x
+
2 〉 ≥ 0. From the µ-

strong convexity of φ, it follows that 〈x1−x2, x
+
1 −x

+
2 〉 ≥ 〈∇φ(x+

1)−∇φ(x+
2), x+

1 −x
+
2 〉 ≥

µ‖x+
1 − x

+
2 ‖2. Therefore, ‖x+

1 − x
+
2 ‖ ≤ 1

µ‖x1 − x2‖. �

33

Ding and Li and Toh

Appendix B. Algorithmic stability analysis

Consider a dataset Ξ = (ξ1, ..., ξn) and an algorithm A. Let ΦΞ(x) = F (x,Ξ) +R(x), and
let A(Ξ) be the output of the algorithm A based on the dataset Ξ. Since the underlying
distribution of ξ is unknown, the population risk can be decomposed into two parts:

EΞ,A[Φ(A(Ξ))− Φ(x∗)] = EΞ,A [ΦΞ(A(Ξ))− Φ(A(Ξ))]︸ ︷︷ ︸
εgen

+EΞ,A [ΦΞ(A(Ξ))− Φ(x∗)]︸ ︷︷ ︸
εopt

,

where x∗ is independent of Ξ and A. The first term represents the expected generalization
error, and the second term represents the optimization error. Our goal is to assess the
expected generalization error εgen. For clarity, we focus on the simple case where R(x) ≡ 0,
in which case Φ(x) = F (x) = Eξ[f(x, ξ)]. Consider any two data sets Ξ,Ξ′ that differ by
at most one example. As shown by (Bousquet and Elisseeff, 2002; Shalev-Shwartz et al.,
2010; Hardt et al., 2016), the absolute expected generalization error |εgen| can be bounded
by ε if the algorithm is ε-uniform stable that is defined as follows:

Definition 31 A randomized algorithm A is ε-uniformly stable, if for any two datasets Ξ
and Ξ′ which differ by at most one example, it holds that

sup
z

EA[f(A(Ξ), z)− f(A(Ξ′), z)] ≤ ε.

Lemma 32 Let A be ε-uniformly stable, then |εgen| ≤ ε.

In this section, we demonstrate that the polynomial kernel employed in our method
(as discussed in Section 4) enhances algorithmic stability, particularly in high-dimensional
scenarios such as training deep neural networks. Inspired by the ODE approach for Bregman
gradient-type methods (Alvarez et al., 2004; Ding and Toh, 2024), the ODE corresponding
to SBPG is given by:

d∇φ(x(t))

dt
= −∇F (x(t)),

which is equivalent to the following ODE:

ẋ(t) = −[∇2φ(x(t))]−1∇F (x(t)).

The discrete version of this ODE then leads to the Hessian preconditioned gradient method:

xk+1 = xk − αk[∇2φ(xk)]−1∇F (xk).

This connection between the Bregman gradient method and the Hessian preconditioned
gradient method inspires us to derive the following estimation on the expected generalization
gap:

Theorem 33 Given a dataset Ξ containing n samples. Let A be the method (SBPG) where
the last iterate is the output, and let E be the event where the iterates generated by A is
contained within a compact set B. Suppose f is differentiable and the kernel function φ is
twice differentiable. Under the event E, for any sufficiently small {αk}, we have

|EΞ,A[ΦΞ(A(Ξ))− Φ(A(Ξ))]| ≤
k∑
t=1

exp

((
1− 1

n

)
LB

k∑
i=t+1

αi

)
3`2f,B`Bαt

n
=: εφgen, (28)

34

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

where LB = supx∈B,y∈B,z
‖[∇2φ(x)]−1∇f(x,z)−[∇2φ(y)]−1∇f(y,z)‖

‖x−y‖ , `f,B = supx∈B,y∈B,z
‖f(x,z)−f(y,z)‖

‖x−y‖ ,

and `B = supx∈B
∥∥[∇2φ(x)]−1

∥∥.

Proof Given the dataset Ξ, recall the update scheme of SBPG:

xk+1 = ∇φ∗(∇φ(xk)− αk∇f(xk, zk)).

Noting that ∇φ∗(∇φ(x)) = x and ∇2φ∗(∇φ(x)) = [∇2φ(x)]−1, we have

xk+1 =∇φ∗(∇φ(xk)− αk∇f(xk, zk))

=∇φ∗(∇φ(xk))− αk∇2φ∗(∇φ(xk))∇f(xk, zk) +O(α2
k)

=xk − αk[∇2φ(xk)]
−1∇f(xk, zk) +O(α2

k),

where the second equality comes from Taylor’s expansion. Let Ξ′ be a dataset that differs
from Ξ by one example. Define δk+1 := E

[∥∥xk+1 − x′k+1

∥∥], where x′k+1 corresponds to the
dataset Ξ′. From the inequality above, we have∥∥xk+1 − x′k+1

∥∥
=
∥∥(xk − αk[∇2φ(xk)]

−1∇f(xk, zk)
)
−
(
x′k − αk[∇2φ(x′k)]

−1∇f(x′k, z
′
k)
)∥∥+O(α2

k)

≤
∥∥xk − x′k∥∥+ αk

∥∥[∇2φ(xk)]
−1∇f(xk, zk)− [∇2φ(x′k)]

−1∇f(x′k, z
′
k)
∥∥+O(α2

k).

Since x0 = x′0, then we have

δk+1 =

(
1− 1

n

)
(1 + αkLB) δk +

1

n
(δk + 2`f,B`Bαk) + Cα2

k

≤
(

1 + αk

(
1− 1

n

)
LB

)
δk +

3`f,B`Bαk
n

≤ exp

(
αk

(
1− 1

n

)
LB

)
δk +

3`f,B`Bαk
n

.

(29)

The first inequality comes from the fact that αk is sufficiently small. Since δ0 = 0, by
recursion (29), we have

δk ≤
k∑
t=1

exp

((
1− 1

n

)
LB

k∑
i=t+1

αi

)
3`f,B`Bαt

n
.

Finally, using the bound supz EA[f(xk, z)−f(x′k, z)] ≤ `f,Bδk and Lemma 32, we complete
the proof.

Now, we make some remarks on Theorem 33.

Remark 34 1. When φ(x) = 1
2 ‖x‖

2, we use the notation L̄B = supx∈B,y∈B,z
‖∇f(x,z)−∇f(y,z)‖

‖x−y‖ ,
¯̀B = 1. If αk ≤ c

k for some constant c, the right-hand side of (28) recovers the bound
in (Hardt et al., 2016, Theorem 3.12).

35

Ding and Li and Toh

2. If we choose the polynomial kernel from Proposition 27 with δ = 1 and r = 4, i.e.
φ(x) = 1

2 ‖x‖
2 + 1

4 ‖x‖
4, then ∇2φ(x)−1 = 1

1+‖x‖2 I−
2xxT

(1+3‖x‖2)(1+‖x‖2)
. Thus, we have

`B = supx∈B

∥∥∥ 1
1+‖x‖2 I −

2xxT

(1+3‖x‖2)(1+‖x‖2)

∥∥∥ ≤ 1. When B is a convex compact set, by

the intermediate theorem, we have

LB = `f,B sup
x∈B

{∥∥D∇2φ(x)−1

∥∥}+ `BL̄B,

where D∇2φ(x)−1 is the first order differential operator of ∇2φ(x)−1. Furthermore, if

dist(0,B) ≥ M > 0, then `B ≤ 1
1+M2 < 1. Moreover by some basic algebraic cal-

culations, we have DB := supx∈B
{∥∥D∇2φ(x)−1

∥∥} ≤ { 6 ‖x‖ (1 + 4 ‖x‖2), ‖x‖ ≤ 1,
12

1+3‖x‖2 , ‖x‖ > 1.

When M is sufficiently large, which usually occurs in high-dimensional scenarios, DB
becomes very small. Thus, LB < L̄B. In summary, when a high-order polynomial ker-
nel is employed, (SBPG) tends to have a better stability bound compared to standard
SGD.

Appendix C. Additional Experimental Results

In this section, we provide further experimental results and assess the performance of MS-
BPG on more recent neural network architectures, including ConvNext (Liu et al., 2022) and
the Vision Transformer (ViT) (Dosovitskiy, 2020). The networks are trained on the CIFAR-
100 dataset for 200 epochs, utilizing a cosine annealing learning rate schedule (Loshchilov
and Hutter, 2016), with a batch size of 128. The test accuracies for different optimizers,
including MSBPG, SGD, Adam, and AdamW, are reported in Table 1. Notably, MSBPG
achieved slightly higher test accuracy compared to the other methods. This advantage can
be attributed to the Bregman proximity model used in our approach.

Method MSBPG SGD Adam AdamW

ViT Tiny 62.37 60.65 56.88 58.77

ViT Small 63.59 61.90 57.66 59.39

ConvNext Atto 75.98 74.46 73.76 75.29

ConvNext Femto 76.47 75.96 74.35 75.65

Table 1: Test accuracy (%) of different optimizers on CIFAR-100 dataset.

To further evaluate the performance of MSBPG, we applied it to Transformer-XL (Dai
et al., 2019), a model designed for long-sequence tasks. We followed the official configuration
to train the Transformer-XL-based model on the WikiText-103 dataset (Merity et al., 2016),
a large-scale word-level language modeling benchmark that involves long-term dependencies.
The performance of MSBPG, along with that of SGD, Adam, and AdamW, was measured
by the test perplexity after 50,000 training steps. The results are presented in Table 2.

We also plot the gradient norm of the objective function, which indicates the stationarity
of the minimization problem when the nonsmooth term is absent, as shown in Figure 11.
From the figure, we observe that our method, MSBPG, successfully reaches a stationary
point, similar to other optimization methods. It is important to highlight that our method

36

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

MSBPG SGD Adam AdamW

Transformer-XL 31.07 33.81 33.53 32.17

Table 2: Test perplexity (lower is better) for Transformer-XL-based model on the WikiText-
103 dataset.

theoretically converges to the stationary point without requiring Lipschitz smoothness, while
the convergence of traditional methods relies on this property. With careful tuning of the
learning rate, methods such as SGD, Adam, and AdamW can also achieve stationary points,
but they are more sensitive to learning rate choices compared to MSBPG. This sensitivity is
further demonstrated experimentally in Figure 10, and is partially attributed to the absence
of Lipschitz smoothness, which increases the sensitivity to the learning rate.

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

ie
nt

 L
2

No
rm

MSBPG
SGD
Adam
AdamW

0 25 50 75 100 125 150 175 200

Training Epoch
0.0

0.5

1.0

1.5

2.0

2.5

Gr
ad

ie
nt

 L
2

No
rm
MSBPG
SGD
Adam
AdamW

(a) Step decay (b) Cosine annealing

Figure 11: Gradient norm of the objective function. When the nonsmooth term is absent,
the gradient norm can imply stationarity of the minimization problem.

Appendix D. Additional Figures

References

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods.
Journal of Machine Learning Research, 18(221):1–51, 2018.

Felipe Alvarez, Jérôme Bolte, and Olivier Brahic. Hessian riemannian gradient flows in
convex programming. SIAM journal on control and optimization, 43(2):477–501, 2004.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake
Woodworth. Lower bounds for non-convex stochastic optimization. Mathematical Pro-
gramming, 199(1):165–214, 2023.

37

Ding and Li and Toh

(a) Illustration of SBPG and SGD up-
dates

0 1 2 3 4 5 6

time to accuracy 10-4

10-10

100

1010

1020

1030

o
p

ti
m

a
lit

y

r=10
-2

r=10
0

r=10
2

r=10
4

r=10
6

(b) Different initial points for SBPG

Figure 12: Figure (a) depicts SGD and SBPG updates. SBPG includes a ”pull back” mech-
anism that prevents the point from moving excessively in any given direction.
”P” and ”D” refer to the primal and dual spaces, respectively, and these terms
are commonly used in the mirror descent method literature (see, e.g., Bubeck
et al. (2015); Nemirovskij and Yudin (1983)). Figure (b) illustrates the effect of
choosing the initial point from a ball of radius r on the SBPG when r changes
for the QIP example with d = 100 and n = 5000. All initial step sizes are set to
1× 10−3. As shown in Figure (b), even for an initial point that is far from the
optimal point, SBPG can pull back the iterates to the optimal point.

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on overparame-
terized nonlinear models: Convergence, implicit regularization, and generalization. arXiv
preprint arXiv:1906.03830, 2019.

Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond Lipschitz
gradient continuity: first-order methods revisited and applications. Mathematics of Op-
erations Research, 42(2):330–348, 2017.

Amir Beck and Yonina C Eldar. Sparsity constrained nonlinear optimization: Optimality
conditions and algorithms. SIAM Journal on Optimization, 23(3):1480–1509, 2013.

Dimitri P Bertsekas. Incremental proximal methods for large scale convex optimization.
Mathematical Programming, 129(2):163–195, 2011.

Dimitri P Bertsekas and John N Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10(3):627–642, 2000.

Pascal Bianchi. Ergodic convergence of a stochastic proximal point algorithm. SIAM Journal
on Optimization, 26(4):2235–2260, 2016.

Jérôme Bolte, Shoham Sabach, Marc Teboulle, and Yakov Vaisbourd. First order methods
beyond convexity and Lipschitz gradient continuity with applications to quadratic inverse
problems. SIAM Journal on Optimization, 28(3):2131–2151, 2018.

38

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

Lev M Bregman. The relaxation method of finding the common point of convex sets and
its application to the solution of problems in convex programming. USSR Computational
Mathematics and Mathematical Physics, 7(3):200–217, 1967.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends in Machine Learning, 8(3-4):231–357, 2015.

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algo-
rithm using bregman functions. SIAM Journal on Optimization, 3(3):538–543, 1993.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Clos-
ing the generalization gap of adaptive gradient methods in training deep neural networks.
In Proceedings of the Twenty-Ninth International Conference on International Joint Con-
ferences on Artificial Intelligence, pages 3267–3275, 2021.

Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix
factorization: An overview. IEEE Transactions on Signal Processing, 67(20):5239–5269,
2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguis-
tics, pages 2978–2988, 2019.

Aaron Defazio and Léon Bottou. On the ineffectiveness of variance reduced optimization
for deep learning. Advances in Neural Information Processing Systems, 32, 2019.

Kuangyu Ding and Kim-Chuan Toh. Stochastic bregman subgradient methods for nons-
mooth nonconvex optimization problems. arXiv preprint arXiv:2404.17386, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition
at scale. arXiv preprint arXiv:2010.11929, 2020.

Radu-Alexandru Dragomir, Alexandre d’Aspremont, and Jérôme Bolte. Quartic first-order
methods for low-rank minimization. Journal of Optimization Theory and Applications,
189:341–363, 2021a.

Radu Alexandru Dragomir, Mathieu Even, and Hadrien Hendrikx. Fast stochastic bregman
gradient methods: Sharp analysis and variance reduction. In International Conference
on Machine Learning, pages 2815–2825. PMLR, 2021b.

John Duchi and Yoram Singer. Efficient online and batch learning using forward backward
splitting. Journal of Machine Learning Research, 10:2899–2934, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

39

Ding and Li and Toh

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010.

Rui Fu, Zuo Zhang, and Li Li. Using LSTM and GRU neural network methods for traffic
flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese Association
of Automation (YAC), pages 324–328. IEEE, 2016.

Rong Ge, Jason D Lee, and Tengyu Ma. Matrix completion has no spurious local minimum.
Advances in neural information processing systems, 29, 2016.

Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming,
155(1-2):267–305, 2016.

Bin Gu, Wenhan Xian, Zhouyuan Huo, Cheng Deng, and Heng Huang. A unified q-
memorization framework for asynchronous stochastic optimization. The Journal of Ma-
chine Learning Research, 21(1):7761–7813, 2020.

Filip Hanzely and Peter Richtárik. Fastest rates for stochastic mirror descent methods.
Computational Optimization and Applications, 79:717–766, 2021.

Filip Hanzely, Peter Richtarik, and Lin Xiao. Accelerated Bregman proximal gradient
methods for relatively smooth convex optimization. Computational Optimization and
Applications, 79:405–440, 2021.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability
of stochastic gradient descent. In International conference on machine learning, pages
1225–1234. PMLR, 2016.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The ele-
ments of statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization
algorithms I: Fundamentals, volume 305. Springer science & business media, 1993.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische
Universität München, 91(1), 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

40

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift. In International Conference on Machine Learning,
pages 448–456. pmlr, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

Puya Latafat, Andreas Themelis, Masoud Ahookhosh, and Panagiotis Patrinos. Bregman
finito/miso for nonconvex regularized finite sum minimization without lipschitz gradient
continuity. SIAM Journal on Optimization, 32(3):2230–2262, 2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. First-order methods almost always avoid strict saddle points. Mathe-
matical programming, 176:311–337, 2019.

Yan Li, Caleb Ju, Ethan X Fang, and Tuo Zhao. Implicit regularization of bregman proximal
point algorithm and mirror descent on separable data. arXiv preprint arXiv:2108.06808,
2021.

Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust region newton methods for large-
scale logistic regression. In Proceedings of the 24th international conference on Machine
learning, pages 561–568, 2007.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 11976–11986, 2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Haihao Lu. “Relative continuity” for non-Lipschitz nonsmooth convex optimization using
stochastic (or deterministic) mirror descent. INFORMS Journal on Optimization, 1(4):
288–303, 2019.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization
by first-order methods, and applications. SIAM Journal on Optimization, 28(1):333–354,
2018.

41

Ding and Li and Toh

D Russell Luke. Phase retrieval, what’s new. SIAG/OPT Views and News, 25(1):1–5, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with
dynamic bound of learning rate. arXiv preprint arXiv:1902.09843, 2019.

Nikolay Manchev and Michael Spratling. Target propagation in recurrent neural networks.
The Journal of Machine Learning Research, 21(1):250–282, 2020.

Mary Ann Marcinkiewicz. Building a large annotated corpus of english: The penn treebank.
Using Large Corpora, 273, 1994.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. arXiv preprint arXiv:1609.07843, 2016.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. Wiley Interscience, 1983.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming,
103:127–152, 2005.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2003.

Andrew Y Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proceedings of the twenty-first International Conference on Machine Learning, page 78,
2004.

Ioannis Panageas, Georgios Piliouras, and Xiao Wang. First-order methods almost always
avoid saddle points: The case of vanishing step-sizes. Advances in Neural Information
Processing Systems, 32, 2019.

Alasdair Paren, Leonard Berrada, Rudra PK Poudel, and M Pawan Kumar. A stochastic
bundle method for interpolating networks. Journal of Machine Learning Research, 23:
1–57, 2022.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning, pages 1310–1318.
Pmlr, 2013.

Andrei Patrascu and Ion Necoara. Nonasymptotic convergence of stochastic proximal point
methods for constrained convex optimization. The Journal of Machine Learning Research,
18(1):7204–7245, 2017.

Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal vychisli-
tel’noi matematiki i matematicheskoi fiziki, 3(4):643–653, 1963.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, pages 400–407, 1951.

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal
on Control and Optimization, 14(5):877–898, 1976.

42

Nonconvex Stochastic Bregman Proximal Gradient Method in Deep Learning

R Tyrrell Rockafellar. Convex analysis, volume 11. Princeton university press, 1997.

R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational Analysis. Springer Verlag, Hei-
delberg, Berlin, New York, 1998.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability,
stability and uniform convergence. The Journal of Machine Learning Research, 11:2635–
2670, 2010.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczynski. Lectures on stochastic
programming: modeling and theory. SIAM, 2021.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of LSTM
and BiLSTM in forecasting time series. In 2019 IEEE International Conference on Big
Data, pages 3285–3292. IEEE, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent
maximizes generalized margin and can be implemented efficiently. Advances in Neural
Information Processing Systems, 35:31089–31101, 2022.

Haoyuan Sun, Khashayar Gatmiry, Kwangjun Ahn, and Navid Azizan. A unified approach
to controlling implicit regularization via mirror descent. Journal of Machine Learning
Research, 24(393):1–58, 2023.

Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations
of Computational Mathematics, 18:1131–1198, 2018.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine
Learning, pages 1139–1147. PMLR, 2013.

Marc Teboulle. A simplified view of first order methods for optimization. Mathematical
Programming, 170(1):67–96, 2018.

Bokun Wang, Shiqian Ma, and Lingzhou Xue. Riemannian stochastic proximal gradient
methods for nonsmooth optimization over the stiefel manifold. The Journal of Machine
Learning Research, 23(1):4599–4631, 2022.

Mengdi Wang, Ethan X Fang, and Han Liu. Stochastic compositional gradient descent:
algorithms for minimizing compositions of expected-value functions. Mathematical Pro-
gramming, 161:419–449, 2017.

Qingsong Wang and Deren Han. A Bregman stochastic method for nonconvex nonsmooth
problem beyond global Lipschitz gradient continuity. Optimization Methods and Software,
38(5):914–946, 2023.

43

Ding and Li and Toh

Lei Yang and Kim-Chuan Toh. Inexact Bregman Proximal Gradient Method and its Inertial
Variant with Absolute and Relative Stopping Criteria. arXiv preprint arXiv:2109.05690,
2021.

Lei Yang and Kim-Chuan Toh. Bregman proximal point algorithm revisited: A new inexact
version and its inertial variant. SIAM Journal on Optimization, 32(3):1523–1554, 2022.

Lei Yang, Jingjing Hu, and Kim-Chuan Toh. An inexact bregman proximal difference-
of-convex algorithm with two types of relative stopping criteria. arXiv preprint
arXiv:2406.04646, 2024.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimiza-
tion for deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962,
2019.

Tong Zhang. Solving large scale linear prediction problems using stochastic gradient de-
scent algorithms. In Proceedings of the twenty-first International Conference on Machine
Learning, page 116, 2004.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon
Papademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief
in observed gradients. Advances in Neural Information Processing Systems, 33:18795–
18806, 2020.

44

	Introduction
	Preliminaries and Problem setting
	Smooth adaptable functions
	Bregman Proximal Mapping

	Stochastic Bregman Proximal Gradient Method
	Convergence analysis of SBPG
	Momentum based Stochastic Bregman Gradient Descent Method

	Application in training deep neural networks
	Numerical experiments
	Quadratic inverse problem
	Deep neural network

	Conclusion
	Proofs in Preliminaries
	Algorithmic stability analysis
	Additional Experimental Results
	Additional Figures

