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Abstract

Hidden Markov models (HMM) have been widely used by scientists to model stochastic
systems: the underlying process is a discrete Markov chain, and the observations are noisy
realizations of the underlying process. Determining the number of hidden states for an
HMM is a model selection problem which is yet to be satisfactorily solved, especially for
the popular Gaussian HMM with heterogeneous covariance. In this paper, we propose
a consistent method for determining the number of hidden states of HMM based on the
marginal likelihood, which is obtained by integrating out both the parameters and hid-
den states. Moreover, we show that the model selection problem of HMM includes the
order selection problem of finite mixture models as a special case. We give rigorous proof
of the consistency of the proposed marginal likelihood method and provide an efficient
computation method for practical implementation. We numerically compare the proposed
method with the Bayesian information criterion (BIC), demonstrating the effectiveness of
the proposed marginal likelihood method.

Keywords: hidden Markov models, model selection, marginal likelihood, consistency,
normalizing constant

1. Introduction

It is well recognized that hidden Markov models (HMM) and general state space models
provide useful frameworks for describing noisy observations from an underlying stochastic
process. They are popular for processing time series data and widely used in fields like
speech recognition, signal processing, and computational molecular biology.

The basic components of a hidden Markov model include the observations {Yi = yi, 1 ≤
i ≤ n} and the corresponding hidden states {Xi = xi, 1 ≤ i ≤ n}, which is a Markov chain.
Throughout the paper, we use upper cases {Y,X} to denote the random variables and the
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corresponding lower cases {y, x} to denote the realizations (observations). In this article,
we consider discrete state space hidden Markov models, i.e., the hidden states Xi have
a finite support, observed at discrete time points {t1, . . . , tn}, or {1, . . . , n} for notation
simplicity. The size of the support of the hidden states, denoted by K, is the number
of hidden states of an HMM. In most real-world problems, the number of hidden states
is not known beforehand but conveys important information of the underlying process.
For example, in molecular biology, K could be the number of distinct conformations of a
protein; in chemistry, K could be the number of distinct chemical species in a biochemical
reaction. Existing methods to estimate K either suffer from a lack of theoretical guarantee
or unfeasible/impractical implementation, which we review in detail in Section 1.2. The
goal of this article is to provide a consistent method, the marginal likelihood method, to
determine the number of hidden states K based on the observations {y1, . . . , yn} of an
HMM, which is computationally feasible for practitioners with minimal tuning.

1.1 Recap of HMM and Notations

Consider the following hidden Markov model (HMM): let X = {Xi, i ≥ 0} be an ergodic
(irreducible, aperiodic, and positive recurrent) Markov chain on a finite state space XK =
{1, · · · ,K} with transition matrix QK = {qk`, 1 ≤ k, ` ≤ K} ∈ QK , i.e., qk` = P (Xi+1 =

`|Xi = k) for all i ≥ 0, where QK :=
{
QK : qk` > 0,

∑K
k′=1 qkk′ = 1, ∀1 ≤ k, ` ≤ K

}
is

the collection of transition matrices with all positive entries. Note that a Markov chain
governed by a QK ∈ QK is irreducible, aperiodic, and positive recurrent, so it has an
invariant measure µ(QK) = (µ1(QK), · · · , µK(QK)); we further assume that X0 follows
µ(Qk) so that X is stationary. Conditioning on X, Y = {Yi, i ≥ 1} are independent
random variables on a measurable space Y, and for all i ≥ 1, when given Xi = k, Yi
is assumed to have probability density function f(·|θk) (which is independent to i) with
respect to some σ-finite measure λ on Y, where θk ∈ Θ, and Θ is a subspace of Rd, the
d-dimensional Euclidean space. We assume that f is distinguishable on Θ, i.e., for all
1 ≤ k < ` ≤ K, λ{y : f(y|θk) 6= f(y|θ`)} > 0. We denote the model parameters by
φK = (QK ;θ1, . . . ,θK) ∈ QK ×ΘK := ΦK .

Suppose we observe y1:n = {y1, y2, · · · , yn} ∈ Yn, but the underlying process x1:n =
{x1, x2, · · · , xn} remains hidden (unobserved). The joint likelihood of (y1:n,x1:n) given the
parameters φK is

p(y1:n,x1:n|φK) :=
K∑
k=1

µk(QK)qkx1f(y1|θx1)×
n∏
i=2

qxi−1xif(yi|θxi). (1)

The likelihood after integrating out the hidden states is

p(y1:n|φK) =
∑

x1:n∈XnK

p(y1:n,x1:n|φK), (2)

where X nK denotes the product space of n copies of XK .
The maximum likelihood estimator (MLE) of a hidden Markov model given K, the num-

ber of hidden states, can be obtained through the Baum-Welch/ Expectation-Maximization
(EM) algorithm (Baum and Petrie, 1966; Baum et al., 1970; Dempster et al., 1977). Under
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certain regularity conditions, the consistency and asymptotic normality of the maximum
likelihood estimator of HMMs are established in Leroux (1992b) and Bickel et al. (1998),
respectively, when the correct K is specified.

1.2 Brief Literature Review

It has been recognized that the model parameters of an HMM are not identifiable when the
number of hidden states is over-estimated (Chapter 22 of Hamilton, 1994; Ferguson, 1980;
Rydén et al., 1998). Thus, determining the number of hidden states, also known as the
order selection in the machine learning literature, is an important problem for conducting
valid inferences on model parameters of hidden Markov models. There is a vast literature
on the model selection for hidden Markov models. We briefly review a fraction of the most
widely adopted methods here to place our work in the context of literature.

A special case of HMMs is finite mixture models, where the rows of the transition matrix
are identical to each other. The model selection of finite mixture models is mostly based on
penalized likelihood, also known as information-theoretic approaches, such as the Akaike
Information Criterion (AIC). A rich literature has been developed for finite mixture models,
including Chen and Kalbfleisch (1996),Chen and Khalili (2009), Chen and Li (2009), Chen
and Tan (2009), Chen et al. (2008), Huang et al. (2017), Hui et al. (2015), Jeffries (2003),
Lo et al. (2001), Rousseau and Mengersen (2011), and many others.

When the observations {y1, . . . , yn} are supported on a finite set (i.e., when they are
discrete-valued), we call it a finite-alphabet hidden Markov process (MacDonald and Zuc-
chini, 1997). Information-theoretic approaches (based on maximum likelihood estimation
and penalization terms) for the order estimation of finite-alphabet hidden Markov pro-
cesses are widely used. Finesso (1990) proposes a penalized likelihood method, which is
proved to be strongly consistent for finite-alphabet HMMs under certain regularity con-
ditions. Ziv and Merhav (1992) derives the estimator by minimizing the under-estimation
probability, which is shown to be not consistent (Kieffer, 1993; Liu and Narayan, 1994).
Liu and Narayan (1994) gives a modified version, which is shown to be consistent given an
upper bound of the order of a finite-alphabet HMMs. Kieffer (1993) gives a strongly con-
sistent estimator that resembles the Bayesian information criterion (BIC) (Schwarz, 1978)
for finite-alphabet HMMs. Gassiat and Boucheron (2003) proves strong consistency of these
penalized maximum likelihood estimations without assuming any upper bound on the order
for finite-alphabet HMMs, with smaller penalties than previous works. See Ephraim and
Merhav (2002) and Rydén (1995) for more detailed discussions about the literature on order
selection of finite-alphabet HMMs.

However, when the observations {y1, . . . , yn} are supported on the real line, as in the
Gaussian HMM, where each observation follows a Gaussian distribution conditioning on
its hidden state, the problem becomes more difficult. The major difficulty comes from
the fact that the overly-fitted mixture models are not identifiable and that the likelihood
ratio statistics becomes unbounded, see Gassiat and Rousseau (2014). The majority of
the methodologies proposed in the literature rely on the idea of penalized likelihood, the
consistency of which remains to be satisfactorily solved. For instance, both AIC and BIC
have been proposed to Gaussian HMMs in Leroux and Puterman (1992), but AIC has been
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shown to be inconsistent (Fuh et al. (2024)),1 and the existing consistency results for BIC
do not apply to hetergoeneous Gaussian HMMs with unequal variance (Leroux (1992a),
Yonekura et al. (2021)).

Other methods using penalized likelihood exist in the literature, including the minimum
description length (MDL) in Barron et al. (1998), Chambaz et al. (2009) and Rissanen
(1978). Hung et al. (2013) gives a consistent estimator of the number of hidden states using
double penalization when assuming that the maximum likelihood estimators are consistent.
Rydén (1995) introduces an estimator that does not asymptotically under-estimate the
order, given an upper bound for the order. Rydén et al. (1998) applies the bootstrap
technique to perform a likelihood ratio test for the order estimation of hidden Markov models
for a real-data example. Gassiat and Keribin (2000) investigates the likelihood ratio test for
testing a single population i.i.d. model against a mixture of two populations with Markov
regime. MacKAY (2002) estimates the order and the parameters together by minimizing
a penalized distance function of the empirical distribution with all finite mixture models.
Information-theoretic approaches make it possible to add heavier penalties as opposed to
that of the BIC; see, for instance, Chambaz et al. (2009), Gassiat (2002), and Gassiat and
Boucheron (2003). All of the above faces the aforementioned obstacles of non-identifiability
and unbounded likelihood.

Bayesian methods, which do not depend on the maximum likelihood estimator, also
play an important role in the HMM model selection literature. Reversible jump methods
proposed by Fan et al. (2011) and Green and Hastie (2009) have been successfully adopted
in practice by Boys and Henderson (2004), Green and Richardson (2002), Robert et al.
(2000), and Spezia (2010), with a lack of theoretical justification. Gassiat and Rousseau
(2014) provides a frequentist asymptotic evaluation of Bayesian analysis methods purely
from a theoretical perspective: under certain conditions on the prior, the posterior concen-
tration rates and a consistent Bayesian estimation of the number of hidden states are given;
practical implementation, guidance for tuning of the algorithm, and numerical results are
not provided therein.

In this work, we adopt the Bayesian approach and show both theoretically and numer-
ically that the marginal likelihood method can give a consistent selection of the number
of hidden states. Some authors have studied approaches that are related to our marginal
likelihood method. Chambaz and Rousseau (2005) uses marginal likelihood ratio for the
order estimation of mixture models and obtains similar results for the marginal likelihood
ratio: O(e−cn) for underestimation, and O(n−1/2+δ) for overestimation. Wang and Bickel
(2017) adapts the penalty approach to stochastic block models. Though the aforementioned
studies share similarities with the results in this paper, in these studies on mixture models,
the hidden state variables are assumed to be independent and identically distributed (i.i.d.),
which is not the case for HMMs.

1.3 Gaussian Hidden Markov Models

In this section, we discuss the difficulties of the order selection of HMMs using a concrete
example widely adopted in applications, the heterogeneous Gaussian HMM.

1. It is known that AIC is good for forecasting other than estimation in typical model selection problem.
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In a heterogeneous Gaussian HMM, let X0 = x0, and given Xi = k, Yi follows a Gaussian
distribution with mean µk and variance σ2

k. Thus φK = (QK ; {µk, σ2
k}1≤k≤K) and the joint

likelihood is

p(y1:n,x1:n|φK) ∝
K∏
k=1

 ∏
i:xi=k

1

σk
exp

(
−(yi − µk)2

2σ2
k

)×
{

n∏
i=1

qxi−1xi

}
.

Note that this likelihood is unbounded for some paths x1:n. For example, consider a path
with x1 = 1 and xi 6= 1 for all i ≥ 2. If one takes µ1 = y1, then as σ1 → 0, p(y1:n,x1:n|φK)→
∞. Since the full likelihood p(y1:n|φK) sums over all possible paths, such unbounded path
always exists, and thus, the full likelihood becomes unbounded. This can be a serious
issue when one overfits an HMM—the extra component could concentrate on only one
single observation with zero variance, which blows up the likelihood. Therefore, methods
of model selection for Gaussian HMM based on penalized likelihoods, such as the Bayesian
Information Criterion defined as

BIC := −2 log p(y1:n|φ̂K) +K(K + d− 1) log n,

which requires the consistency of the maximum likelihood estimator, becomes problem-
atic. General consistency results of model selection based on penalized likelihoods have
to exclude this case in their required regularity conditions Leroux (1992a). Therefore, the
BIC, though widely adopted in practice, is theoretically questionable for its validity as a
model selection criterion for HMM, as discussed by MacDonald and Zucchini (1997) and
Gassiat and Rousseau (2014). This is the same issue as the unbounded likelihood for het-
erogeneous Gaussian mixture models (Chen and Khalili, 2009). In fact, Gaussian mixture
models can be obtained by setting qij = sj for all i, j ∈ {1, 2, . . . ,K}, where {sj}1≤j≤K are

the proportions of the mixture components, satisfying
∑K

j=1 sj = 1.

Furthermore, as noted in Gassiat and Rousseau (2014), for overly fitted HMMs or other
finite mixture models, the model parameters become non-identifiable. In an overly fitted
HMM, the neighborhood of the true transition matrix contains transition matrices arbi-
trarily close to non-ergodic transition matrices. Adding hard thresholds to entries in the
transition matrix does not satisfactorily solve the problem.

1.4 Outline

The remainder of the paper has five sections. We first propose the marginal likelihood
method for general HMM order selection in Section 2. The consistency of the method is
presented in Section 3, for which we use a special case to illustrate the proof strategy.
In Section 4, we describe the computational method, demonstrate the effectiveness of the
marginal likelihood method using numerical experiments, and conclude with discussions on
choices of hyper-parameters. Section 5 applies our proposed marginal likelihood method to
real data from single-molecule experiments on protein transportation. Section 6 concludes
the paper with a summary. The proof of the consistency theory is provided in the Appendix,
with additional details presented in the Online Supplement.
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1.5 Contributions

The major contributions of the paper are as follows. (1) We investigate the marginal likeli-
hood method for HMM order selection, which resolves the difficulties caused by unbounded
likelihood by incorporating the prior distribution. (2) The theoretical result on the con-
sistency of our estimator for the number of states is established. (3) The computational
algorithm is efficient, robust, and has been tested to work very well. (4) An easy-to-use R
package, HMMmlselect, which implements our algorithm, is provided and publicly available
at CRAN (https://cran.r-project.org/package=HMMmlselect).

2. Model Selection via Marginal Likelihood

As discussed in Section 1.2, the existing model selection methods for HMM either have no
theoretical guarantee or are theoretically justified only for a very restricted family of HMMs
that excludes the popular heterogeneous Gaussian HMM. We propose a marginal likelihood
method, which directly compares the probability of obtaining the observations under HMMs
with different numbers of hidden states, after integrating out both the model parameters and
the hidden states. This method, as we will see, is consistent under weak regularity conditions
that are satisfied by a wide range of HMMs, including the heterogeneous Gaussian HMM.

As a general guideline, throughout the paper, we will use bold notations (such as θ)
when we want to highlight that the variable may be high-dimensional or a collection of
multiple variables. Fo a variable in alphabet (such as x), we use its calligraphic format
(such as X ) to denote its corresponding set or space. As for a variable in Greek letter (such
as θ), we use its capital letter (such as Θ) to denote the corresponding set or space.

2.1 Marginal Likelihood Method

Given the number of states K, we assume that each θk is independently drawn from the
prior distribution π(θ|α) and that the transition probabilities QK are drawn from the
prior distribution νK(QK |βK), independent of each θk; here α and βK are the hyper-
parameters that are assumed to be fixed constants. We let p0(φK) denote the joint prior:
p0(φK) = p0(φK |α,βK) = νK(QK |βK)

∏K
k=1 π(θk|α). The marginal likelihood under a

K-state HMM is then defined as

pK(y1:n) =

∫
ΦK

p(y1:n|φK) p0(φK) dφK , (3)

where φK ∈ ΦK = QK ×ΘK is defined in Section 1.1.

Given a sufficiently large K, we choose K ∈ {1, 2, · · · ,K} that maximizes the marginal
likelihood as the estimator of the number of states, i.e.,

K̂n := arg max1≤K≤KpK(y1:n). (4)

We show that, if the true number of states is K∗ and K ≥ K∗, then, under mild conditions,
K̂n is a consistent estimator of K∗.
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2.2 Discussions of Marginal Likelihood Methods

The marginal likelihood has been used in the model selection literature. The ratio of
marginal likelihoods is known as the Bayes factor (Kass and Raftery, 1995), a popular model
selection criterion. The BIC is in fact an approximation of the marginal likelihood using the
Laplace method. Ghahramani (2001) discusses the practical applicability and calculation
of the Bayes factor. Bauwens et al. (2014) applies the marginal likelihood method for model
selection of Markov-switching GARCH and change-point GARCH models. Du et al. (2016)
uses the marginal likelihood method to determine the number and locations of change points
of a stepwise signal.

As discussed in Section 1.3, the heterogeneous Gaussian HMM suffers from having an
unbounded likelihood surface. Adding a prior for the variance parameters in Gaussian
HMMs can, in fact, fix the issue of unbounded likelihood. Therefore, the proposed marginal
likelihood method, which integrates out the parameters and hidden states, does not suffer
from irregularity of the likelihood surface.

It is worth mentioning that there are other methods involving the use of prior. For
example, Gassiat and Rousseau (2014) sample parameter φK from ΦK with K ≥ K∗,
and apply a function on the sampled parameter to obtain a consistent estimator of K∗.
Since their approach requires sampling from posterior distribution, their algorithm also
involve MCMC. The difference between these two methods is that we provide computational
approximation that makes the method efficiently enough for practical usage.

Finally, the conditional marginal likelihood has also been proposed in the literature. For
instance, Lotfi et al. (2022) has observed the overfitting and underfitting issues for marginal
likelihood under a machine learning setting, and therefore proposed the use of conditional
marginal likelihood. However, these issues do not apply to our setting as we will prove
the consistency of our estimator, which ensures that the probabilities of overfitting and
underfitting both go to zero asymptotically.

3. Theoretical Study of the Marginal Likelihood Estimator

We first present the consistency result of the proposed marginal likelihood estimator for
HMM order selection, Theorem 1, in Section 3.1. A brief illustration of the proof concept
under a special case is then presented in Section 3.2. Finally, in Section 3.3, we point
out the connections between the order selection of HMMs and the model selection of finite
mixture models. The proofs of these results are deferred to the Appendix, starting with
a short explanation of how to extend the proof concept to more general cases. An online
supplement is further provided for theoretical details.

Throughout the paper, we use
P−→ to denote convergence in probability under probability

law P . For a decreasing sequence {εn, n > 0} that converges to 0 as n → ∞, we denote
it by εn ↓ 0. For any set Ω, we use Ωc, Ω, ∂Ω and 1Ω to denote its complement, closure,
boundary, and corresponding indicator function, respectively. For any vector or matrix A,
let At be its transpose. We use || · || to denote the L2-norm under the corresponding space.
Finally, we use Dθf and D2

θf to denote the gradient vector and Hessian matrix of a function
f with respect to θ, respectively.
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3.1 Consistency and Rate of Convergence

Before we state K̂n is a consistent estimator of K∗, we need first to define what is the “true”
number of states K∗ for a given HMM. Since a K∗-state HMM can always be embedded
as a K-state HMM with K > K∗, we basically define K∗ as the smallest possible number
of states that can characterize the HMM (which turns out to also be the number of states
providing the identifiability under the weakly identifiable condition 3) to be defined later;
see Leroux (1992b), Lemma 2 for related results.) That is, for a K state HMM, recall that
ΦK is the corresponding parameter space, and let MK := {p(·|φK) : φK ∈ ΦK}, i.e., the
set of probability distributions indexed by parameters φK ∈ ΦK , where p(·|φK) is defined
in (2). Define K∗ as the smallest positive integer K such that the probability distribution
of {Yi, i ≥ 1} is in MK .

Now, let K∗ be the true number of states and φ∗ = (Q∗;θ∗1, . . . ,θ
∗
K∗) be the true

parameters of the HMM considered. Let P ∗ and E∗ denote the probability and expectation
under the true parameter φ∗, respectively. In addition, by the definition of QK , the closure
of QK is

QK :=

{
QK : qk` ≥ 0,

K∑
k′=1

qkk′ = 1, ∀1 ≤ k, ` ≤ K

}
.

Further, denote

QεK :=

{
QK : qk` ≥ ε,

K∑
k′=1

qkk′ = 1, ∀1 ≤ k, ` ≤ K

}

for any given ε > 0.

We assume the following regularity conditions in our consistency theorems.

1) q∗k` > 0 for all 1 ≤ k, ` ≤ K∗. This implies that the Markov chain with transition matrix
Q∗ is irreducible, aperiodic, and positive recurrent.

2) Θ is a compact set in Rd, and the true parameters {θ∗k, k = 1, · · · ,K∗} are distinct
interior points of Θ.

3) For any k ∈ {1, 2, · · · ,K∗}, for any θ 6= θ∗k, we have λ{y : f(y|θ) 6= f(y|θ∗k)} > 0 and
E∗| log f(Y1|θ∗k)| <∞. In addition, for any K > 0, the family of mixtures of at most K
elements of {f(·|θ) : θ ∈ Θ} is weakly identifiable in the sense that, for any positive qk
and q′k with

∑K
k=1 qk =

∑K
k=1 q

′
k = 1,

λ

{
y :

K∑
k=1

qkf(y|θk) 6=
K∑
k=1

q′kf(y|θ′k)

}
= 0

if and only if
K∑
k=1

qk1θk(θ) ≡
K∑
k=1

q′k1θ′k(θ)

as a function of θ.
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4) There exists δ > 0 such that, for any k ∈ {1, 2, · · · ,K∗}, the function θ → f(·|θ) is twice
continuously differentiable in Bδ(θ∗k) := {θ : ‖θ − θ∗k‖ < δ}. Furthermore, the following
holds:

E∗

[
sup

θ∈Bδ(θ∗k)
||Dθ log f(Y1|θ)||

]
<∞,

E∗

[
sup

θ∈Bδ(θ∗k)
||D2

θ log f(Y1|θ)||

]
<∞,

∫
Y

sup
θ∈Bδ(θ∗k)

||Dθf(y|θ)||λ(dy) <∞,

∫
Y

sup
θ∈Bδ(θ∗k)

||D2
θf(y|θ)||λ(dy) <∞.

In addition, for each k ∈ {1, 2, · · · ,K∗},

P ∗

 sup
θ,θ′∈

⋃K∗
k=1 Bδ(θ∗k)

f(Y1|θ)

f(Y1|θ′)
=∞

∣∣∣∣∣X1 = k

 < 1.

5) There exists δ > 0 such that, for any θ ∈ Θ,

E∗

[
sup

θ′∈Bδ(θ)
(log f(Y1|θ′))+

]
<∞.

6) The prior density π(θ|α) is a continuous function of θ on Θ, and is positive at θ∗k for all
1 6 k 6 K∗.

7) For all K, the prior density νK(QK |βK) is a continuous and positive function of QK on
QK , with a support in QεK for some ε > 0. In addition, νK∗ is positive at Q∗.

Under these assumptions, we have the following consistency result.

Theorem 1 Assume that conditions 1)-7) hold. Then, under P ∗, as n→∞,

1) there exists c > 0 such that, for all K < K∗,

pK(y1:n)

pK∗(y1:n)
= OP ∗

(
e−cn

)
; (5)

2) for all K > K∗,
pK(y1:n)

pK∗(y1:n)
= OP ∗

(
n−

(K−K∗)d
2

)
. (6)

Consequently, if K ≥ K∗, i.e., the upper bound is at least K∗, then K̂n → K∗ in probability
as n→∞.
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Remark 2 Conditions 1)-7) include the conditions from De Gunst and Shcherbakova (2008),
which ensure the asymptotic normality for the posterior distribution under the true num-
ber of states. An additional weakly identifiable condition is enforced in the second part of
condition 3) to deal with the case when having misspecified number of states. This weakly
identifiable condition is the same as condition (id) in Keribin (2000) and implies condition
2 in Leroux (1992b).

Remark 3 Note that in Condition 7), we assume that the prior has support in QεK . This is
the strong mixing condition typically used in the literature. See Assumption 3 in Yonekura
et al. (2021), for instance. However, as suggested by Gassiat and Rousseau (2014), it is
possible that having a prior vanishes quickly enough as it approaches the boundary of QK
would give the same result.

A potential sufficient condition is to consider a prior

νK(QK |βK) =
K∏
i=1

ν̃K(qi1, qi2, · · · , qiK |βK)

that samples each row of QK independently, in which ν̃K is a continuous prior on{
(q1, · · · , qK) : qj ∈ (0, 1) for j = 1, · · · ,K with

K∑
i=1

qi = 1

}
satisfying the following Dirichlet type condition2 from Assumption A3 in Gassiat and Rousseau
(2014):

0 < ν̃K(q1, q2, · · · , qK |βK) ≤ Cqα1−1
1 · · · qαK−1

K for some C > 0, α1 > 0, · · · , αK > 0.

Note that since ν̃K is continuous and positive, νK is a continuous and positive prior on
QK satisfying the first half of Condition 7), but not the second half. Instead of a compact
support, it vanishes on the boundary of QK in a polynomial rate. The simulation studies
in Section 4 show that this type of priors is indeed possible to ensure consistency at least
numerically. See Online Supplement, Remark 17 for more details, as well as Remarks 23
and 25 for potential issues.

Remark 4 One can relax the assumption that Θ is compact to “if for each y ∈ Y, f(y|·)
vanishes at the infinity, and π vanishes at the infinity”. See Leroux (1992b), page 130. After
such relaxation, conditions 1)-7) hold for a wide range of commonly used HMMs, including
the aforementioned Gaussian HMMS. The simulation studies in Section 4.3 further confirm
this claim.

Remark 5 It should be pointed out that we only assume the compactness on Θ, not QK ×
ΘK . This means that we can have qk` arbitrarily close to 0. However, as we impose
condition 7), the prior νK is zero outside of QεK , and QεK×ΘK is compact. In other words,
condition 7) is effectively equivalent to assuming the entire parameter space is compact, just
as assumed in Douc et al. (2009), Douc et al. (2011), and others. We choose to present
it in the form of condition 7) since it has the potential to be weakened, as mentioned in
Remark 4.

2. Obviously, this includes the classical Dirichlet prior.

10
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3.2 Illustration of the Proof Strategy

To illustrate why Theorem 1 holds and the idea of its proof, let us consider a special case
with K∗ = 1 and K = 2. In this case, we have {Yi, i ≥ 1} coming from a single-state HMM
with true parameter φ∗ = ({1};θ1), which is equivalent to an i.i.d. model with density
f(·|θ1). We want to show that

p2(y1:n)

p1(y1:n)

P ∗−−−→
n→∞

0. (7)

To approach (7), we first examine p1(y1:n), the marginal likelihood of a single-state
HMM. Note that for a single-state HMM, the only possible transition matrix is {1}, so its
parameter space Φ1 = Q1 ⊗ Θ is d-dimensional. Also note that the marginal likelihood is
the denominator of the posterior distribution, so by Bernstein-von Mises theorem, we have

nd/2
p1(y1:n)

p1(y1:n|φ∗)
=

(
p1(y1:n|φ∗)
nd/2p1(y1:n)

)−1
P ∗−−−→

n→∞
c1 (8)

for some constant c1 > 0.
We then examine p2(y1:n), the marginal likelihood of a two-state HMM. Note that Q2

is two dimensional, so Φ2 = Q2 ⊗Θ⊗Θ is 2(d+ 1)-dimensional. Consider

φ̃∗ :=

((
1/2 1/2
1/2 1/2

)
;θ∗1,θ

∗
1

)
,

then, a direct check shows that

p2(·|φ) ≡ p1(·|φ∗) (9)

holds when φ = φ̃∗. This means that we can treat {Yi, i ≥ 1} coming from a two-state
HMM with true parameter φ̃∗. It is therefore “tempted” to apply the Bernstein-von Mises
theorem again to get

n2(d+1)/2 p2(y1:n)

p2(y1:n|φ̃∗)
P ∗−−−→

n→∞
c2 (10)

for some constant c2 > 0. If we can do this, then combing (8) and (10) gives

n(d+2)/2 p2(y1:n)

p1(y1:n)
=
n2(d+1)/2 p2(y1:n)

p2(y1:n|φ̃∗)

nd/2 p1(y1:n)
p1(y1:n|φ∗)

P ∗−−−→
n→∞

c2

c1
,

which immediately leads to (7).
Unfortunately, the argument does not hold. The reason is that the argument above uses

Bernstein-von Mises theorem, which requires that (9) holds only at φ̃∗; in other words, it
requires the identifiability. However, this is not the case. To see why, for any two-state
transition matrix Q ∈ Q2, consider

φ∗Q := (Q;θ∗1,θ
∗
1),

then, a direct check shows that (9) holds for all φ∗Q , meaning that there exists infinitely
many φ that makes (9) hold. In other words, we face non-identifiability here, which forbids
us to directly apply the Bernstein-von Mises theorem.

11
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To get around this issue, for any Q ∈ Q2, consider the sub-parameter space

ΦQ = {φ = (Q;θ1,θ2) : θ1 ∈ Θ,θ2 ∈ Θ}.

Note that we can rewrite p2(y1:n) as

p2(y1:n) =

∫
Φ2

p2(y1:n|φ)p0(φ)dφ =

∫
Q2

{∫
ΦQ

p2(y1:n|φ)p0(φ)dφ

}
dQ. (11)

In addition, for any fixed Q ∈ Q2, note that in the 2d-dimensional set ΦQ = {Q} ⊗Θ⊗Θ,
the only φ that makes (9) hold is φ∗Q; in other words, the model is identifiable on the subset
ΦQ. Hence, we can apply the Berstein-von Mises theorem on the posterior distribution
restricted to ΦQ, which gives

n2d/2
∫

ΦQ
p2(y1:n|φ)p0(φ)dφ

p1(y1:n|φ∗)
=
n2d/2

∫
ΦQ

p2(y1:n|φ)p0(φ)dφ

p2(y1:n|φ∗Q)

P ∗−−−→
n→∞

cQ (12)

for some constant cQ ≥ 0. We can further show that the convergence in (12) is uniform
over Q ∈ Q2, and

∫
Q2
cQdQ <∞, so we can combine (11) and (12) to get

n2d/2 p2(y1:n)

p1(y1:n|φ∗)
=

∫
Q2

{
n2d/2

∫
ΦQ

p2(y1:n|φ)p0(φ)dφ

p1(y1:n|φ∗)
dφ

}
dQ

P ∗−−−→
n→∞

∫
Q2

cQdQ. (13)

Combining (8) and (13), we get

nd/2
p2(y1:n)

p1(y1:n)
=
n2d/2 p2(y1:n)

p2(y1:n|φ̃∗)

nd/2 p1(y1:n)
p1(y1:n|φ∗)

P ∗−−−→
n→∞

∫
Q2
cQdQ

c1
,

which immediately leads to (7) and completes the argument.
The above argument basically involves four key steps: (i) decompose ΦK into a family of

subspaces; (ii) show that each of these subspaces is “identifiable” so that the Berstein-von
Mises theorem can be applied; (iii) show that the aggregate limit (

∫
Q2
c2dQ in this case) is

finite; and (iv) show that the convergence in ii) is uniform across all subspaces. The idea
of proof for general K∗ and K is essentially the same, though the execution is much more
complicated, mainly due to the complication required to decompose ΦK into identifiable
subspaces. See the Appendix for details.

Remark 6 One can conceptually interpret the above argument as follows:

• For a single-state HMM, the posterior distribution shrinks toward the true parameter
φ∗ in a d-dimensional space Φ1 = {1} ⊗ Θ, as we need θ1 converges to θ∗1. This is
shown in (8).

• For a two-state HMM, even if we forfeit all the degree of freedom in Q2 by restricting
the parameter space to ΦQ, we still have the posterior distribution shrinks toward the
“true” parameter φ∗Q in a 2d-dimensional space ΦQ = {Q} ⊗Θ⊗Θ, as we need both
θ1 and θ2 converge to θ∗1. This is shown in (12).

12
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In other words, even if we forfeit all additional dimensions in Q2 compared to Q1 in order
to obtain identifiability, the resulting subspace still has a larger dimension compared to Φ1,
so its marginal likelihood goes to zero faster due to the existence of additional states. This
is the conceptual reason why (6) holds. The same reason holds for general K > K∗, as one
can see in the Appendix.

3.3 Connections with Model Selection of Mixture Models

In this section, we discuss the connections of the order selection for HMMs with the model
selection of mixture models. As mentioned in Section 1.3, the mixture model can be con-
sidered as a special case of an HMM, of which the transition matrix has identical rows,
i.e. qij = sj for all i, j = 1, · · ·K, where sj are the proportions of mixture components

satisfying
∑K

j=1 sj = 1. Consequently, the model selection of mixture models can follow the
same procedure as the order selection for HMMs. Reversely, we can use the model selection
of mixture models to determine the order of HMMs. We show that the estimator of the
order of an HMM is still consistent if we “ignore” the Markov dependency, i.e., regarding
it as a mixture model.

Corollary 7 Assume that all the conditions in Theorem 1 hold, and we restrict νK(·|βK)
to be supported on

QmixK = {QK : q1k = q2k = · · · = qKk for all 1 ≤ k ≤ K},

i.e., a prior for a finite mixture model without state dependency. Then the result of Theorem
1 still holds.

Remark 8 As opposed to Theorem 1, the computational cost required by Corollary 7 is
much smaller: instead of fitting HMMs, we only need to fit mixture models, which are
in lower dimensional spaces with nice independent structures on the latent variables. In
both Theorem 1 and Corollary 7, the convergence rate of the marginal likelihood ratio is
OP ∗(n

−(K−K∗)d/2). However, Corollary 7 requires n to be large so that y1:n shows a “mixture
model” behavior through stability convergence; see Online Supplement S1.3. This leads to a
larger constant term in front of n−(K−K∗)d/2 for the marginal likelihood ratio of Corollary
7 as compared to Theorem 1, especially for the case of nearly diagonal transition matrices.

4. Computation and Numerical Experiments

Now we introduce our method of estimating the marginal likelihood and provide numerical
results comparing the marginal likelihood method and the BIC. We conclude this section
with a brief discussion about the choice of priors.

4.1 Marginal Likelihood as a Normalizing Constant

Denote the joint distribution of y1:n and φK by p(y1:n,φK) = p(y1:n|φK) p0(φK), where
p(y1:n|φK), defined in equation (2), is the likelihood, to which we integrate out the hidden
states. The marginal likelihood pK(y1:n) of a K-state HMM is

∫
ΦK

p(y1:n|φK) p0(φK) dφK
as defined in (3)
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Our strategy to estimate the marginal likelihood is based on the observation that
pK(y1:n), in fact, can be regarded as the normalizing constant of the posterior distribu-
tion p(φK |y1:n) = p(y1:n,φK)/pK(y1:n). Thus, the estimation of pK(y1:n) can be recast as
the estimation of normalizing constant of this posterior density. To do this, note that we
can obtain posterior samples from p(φK |y1:n) using a Markov chain Monte Carlo (MCMC)
algorithm (see Liu (2001) and references therein), since the un-normalized posterior likeli-
hood p(y1:n,φK) can be evaluated at any φK using the forward algorithm which integrates
out the hidden states (Baum and Petrie, 1966; Baum et al., 1970; Xuan et al., 2001). Alter-
natively, we can sample from the augmented space ΦK×X nK , i.e., sample model parameters
and the hidden states together till convergence. This alternative approach corresponds to
the data augmentation method in Tanner and Wong (1987) and has been used for HMM
model fitting by Rydén (2008). Given that we can sample from the posterior distribution,
the question becomes: how to estimate the normalizing constant based on the (posterior)
samples.

4.2 Estimation Procedure

There is a large literature on the estimation of normalization constants, see DiCiccio et al.
(1997) and references therein. Among them, we want to mention a few that is related to
the algorithm we adopt. Methods based on importance sampling and reciprocal importance
sampling require knowledge of a “good” importance function whose region of interest covers
that of the joint posterior to be integrated (Chen and Shao, 1997; Gelfand and Dey, 1994;
Geweke, 1989; Oh and Berger, 1993; Steele et al., 2006).

The importance sampling and reciprocal importance sampling are simple and fast ways
of estimating the normalizing constant if an importance function close to the target density
can be specified. More precisely, we can write the marginal likelihood as:

pK(y1:n) =

∫
ΦK

p(y1:n|φK) p0(φK) dφK = Ef
[
p(y1:n|φK) p0(φK)

f(φK)

]
, (14)

where f(·) is a probability density function (importance function) that is easy to sample

from. If we denote samples from f(·) by {φ(i)
K , i = 1, . . . , n}, then the right-hand-side of

Equation (14) can be approximated by

n−1
n∑
i=1

p(y1:n|φ(i)
K ) p0(φ

(i)
K )

f(φ
(i)
K )

. (15)

The reciprocal importance sampling follows a similar idea so we do not include the detailed
equations here.

Since we already have posterior samples from the unnormalized density, it can be utilized
as a guide for choosing a good importance function for either the importance sampling or the
reciprocal importance sampling. Therefore, our strategy is to use the importance sampling
or the reciprocal importance sampling to estimate the normalizing constant pK(y1:n), where
the importance function is chosen based on the posterior sample from p(φK |y1:n). Since the
posterior samples do not necessarily give enough information about the tail of the posterior
distribution, the importance function might be a poor approximation of the target posterior
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distribution in the tail region, which can result in unstable estimators. We use the locally
restricted importance sampling or reciprocal importance sampling, which is more robust
to the tail behavior of the target posterior distribution p(φK |y1:n), see DiCiccio et al.
(1997). We now give our procedure for estimating the marginal likelihood pK(y1:n) for each
K ∈ {1, 2, . . . ,K}.

1. Obtain posterior samples. Sample from p(φK |y1:n) using a preferred MCMC algo-

rithm, and denote the samples by {φ(i)
K }Ni=1 (where N is often a few thousand).

2. Find a “good” importance function. Fit a mixture model using the samples {φ(i)
K }Ni=1,

where the number of mixing components is given by either (a) any clustering algo-
rithm, or (b) a pre-fixed number which is large enough. Construct the importance
function g(·) by fitting a Gaussian mixture or using a heavier-tailed density as the mix-
ture component; for example, a student-t distribution with a small degree of freedom,
such as 2 or 3, with the same location and scale parameters as the fitted Gaussian
mixture components.

3. Choose a finite region. Choose ΩK to be a bounded subset of the parameter space
such that 1/2 <

∫
ΩK

g(φK)dφK < 1. This can be achieved by finding an appropriate
finite region for each mixing component of g(·), avoiding the tail parts.

4. Estimate pK(y1:n) using either way as follows:

– Reciprocal importance sampling. Approximate pK(y1:n) by

p̂
(RIS)
K (y1:n) =

[
1

N
∫

ΩK
g(φK)dφK

N∑
i=1

g(φ
(i)
K )

p(y1:n,φ
(i)
K )

1ΩK (φ
(i)
K )

]−1

, (16)

where 1Ω(x) is 1 if x ∈ Ω, and zero otherwise.

– Importance sampling.

(a) Draw M independent samples from g(·), denoted by {ψ(j)
K }1≤j≤M .

(b) Approximate pK(y1:n) by

p̂
(IS)
K (y1:n) =

1

MPΩ

M∑
j=1

p(y1:n,ψ
(j)
K )

g(ψ
(j)
K )

1ΩK (ψ
(i)
K ), (17)

where PΩ = #S/N with S = {i : φ
(i)
K ∈ ΩK ; 1 ≤ i ≤ N}.

The purpose of step 2 is to construct a reasonable importance function that covers the
mode of the target density p(φK |y1:n). Thus, the clustering algorithm, if adopted, does not
need to be “optimal” in any sense. Therefore, a conservative recommendation is to choose
overly-fitted Gaussian (or student-t) mixtures based on the posterior samples obtained in
step 1. Moreover, the heavy-tailed distribution and the truncated regions both serve the
purpose of obtaining a robust importance sampling estimator. If reciprocal importance
sampling is used, a heavy-tailed distribution is not recommended for the sake of estimation
robustness.
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Simulation studies of various target densities (skewed, heavy-tailed, and high-dimensional)
with known normalizing constants validate the efficacy of the proposed procedure, regard-
less of the shape of the target density or the dimension of the parameter space. See Online
Supplement S2.

4.3 Simulation Studies for HMM Order Selection

In the numerical experiments, we fix the mean parameters of a K-state HMM to be µ =
(1, 2, . . . ,K) and vary the variances σ2 = (σ2, . . . , σ2) in the first set of simulation studies.
The equal variances assumption is adopted here for simplicity of the presentation of the
results, but this is not part of the model assumptions. We will relax this assumption in
the second set of simulations. We consider four kinds of transition matrices, corresponding

to flat (P
(1)
K ), moderate and strongly diagonal (P

(2)
K , P

(3)
K ) and strongly off-diagonal (P

(4)
K )

cases:

P
(1)
K =

1

K
EK , P

(2)
K =

[
0.8− 0.2

K − 1

]
IK +

0.2

K − 1
EK , (18)

P
(3)
K =

[
0.95− 0.05

K − 1

]
IK +

0.05

K − 1
EK , (19)

P
(4)
K =

0.9

K − 1
EK −

[
0.9

K − 1
− 0.1

]
IK , (20)

where EK is the K ×K matrix with all elements equal to 1 and IK is the K ×K identity
matrix. The number of observations, n, varies from 200 to 2000, and the true number of
hidden states, K, ranges from 3 to 5. Figure 1 illustrates a few simulated HMM traces. The
figure shows the potential difficulty of model selection for HMMs with a limited number of
observations. On the right is the simpler scenario where there are three states with 2000
observations, and each state appears frequent enough to be identified. On the left, there are
four states but only 200 observations; not all states appear frequent enough to be identified
based on visual assessment.

Similar to Dumont (2014), we compared the proposed method with BIC only. This
is because that, among the model selection methods in HMM, (a) AIC is known to be
inconsistent, cf. Fuh et al. (2024), and is good for forecasting and not good for estimation.
(b) The proposed method has strong connection with BIC as they are both consistent under
certain regularity conditions. (c) Other methods such as AICc, MDL, minimum message
length (MML), etc. have not been fully explored in HMM model selection literature.

We conduct m = 200 repeated simulations, each of which compares the marginal like-
lihood method with the BIC as follows. (1) Simulate n observations from the HMM with
K states and the specified set of parameters. (2) Apply the Baum-Welch (EM) algorithm
with multiple starting points (in our case, 50 randomly generated starting points) to obtain
the (local) maximum likelihood values for K̃-state HMM, thus giving the BIC of HMMs
with K̃-states denoted by BICn(K̃), K̃ = 2, 3, 4, . . .; let K̂BIC

n = arg maxK̃BICn(K̃). (3)

Calculate the marginal likelihood of a K̃-state HMM based on the importance sampling
procedure detailed in Section 4, K̃ = 2, 3, 4, . . .; let K̂ML

n = arg maxK̃PK̃(y1:n).
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Figure 1: Sample HMM traces. The left three panels show three simulated HMM traces with n = 200

observations and K = 4 hidden states: σ = 0.3, and the transition matrix is P
(2)
4 . The right

three panels show three simulated HMM traces with n = 2, 000 observations and K = 3 hidden
states: σ = 0.4 and the transition matrix is P

(3)
3 .

Unless users specify their choices for the hyperparameters in the prior distribution, we
set the priors as follows in our R package. And this default choice is the one we adopt for
repeated simulation studies. The prior mean for the mean parameters of the K states are
set as the K equally spaced quantile levels between 0.05 and 0.95 of the observed trajectory,
and the corresponding variances are set to be 1002. The priors for each row of the transition
matrix are flat, that is, Dirichlet with hyperparameters all equal to 1. For the scaled-inverse
chi-square prior for the variance parameters, we set the degree of freedom parameter ν = 3
and the scale parameter s2 as:

s = quantile(y, 0.75)− quantile(y, 0.25)))/(2 ∗K),

where y is the observed trajectory.

Note that although BIC is not well defined for Gaussian HMM as the likelihood is
unbounded, in practice, people often use the EM (Baum-Welch) algorithm with multiple
starting points to obtain the local maximum of the likelihood and then calculate the BIC
based on the (local) maximum from the multiple runs. For a fair comparison, we follow this
practice.

Table 1 summarizes the results from repeated simulations, showing the frequency of
correct identification of the true number of hidden states using the marginal likelihood
method and the BIC when n = 200. Table 4 in the Online Supplement gives the results
when n = 2000.

In the second set of numerical simulations with heterogeneous variances, we set

σheter = σold × (0.5 + 2× runif(K, 0, 1)),
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K σ n
QK = P

(1)
K QK = P

(2)
K QK = P

(3)
K QK = P

(4)
K

ML BIC ML BIC ML BIC ML BIC
3 0.2 200 99 100 99 100 95 83 100 100
3 0.3 200 67 10 100 100 96 85 98.5 74.5
3 0.4 200 1.5 0.5 92 65 90.5 81 29 2.5
3 0.5 200 0.5 0 41 11.5 80 63 4.5 0
4 0.2 200 98 83 88.5 92 85.5 56 99 98
4 0.3 200 6.5 0 98.5 77 77 51.5 30.5 0
4 0.4 200 0 0 50 18 46.5 27 0 0
4 0.5 200 0 0 4 0 11 7.5 0 0
5 0.2 200 81 16.5 87 66.5 67 37.5 88 26.5
5 0.3 200 1 0 82 25 42.5 19 2 0
5 0.4 200 0 0 17 2 8.5 3.5 0 0
5 0.5 200 0 0 0.5 0 0.5 0 0 0

Table 1: Correct identification frequency (percentage) of K∗ for homogeneous variances

The frequency (in %) of correct identification of the true number of hidden states, out of 200 repeated simulations
for each entry, using the marginal likelihood method (ML) and the BIC. Here n = 200 observations are considered
(see Online Supplement for n = 2000 cases). K(= 3, 4, 5) is the true number of hidden states; σ is the standard
deviation of each hidden state around its mean; QK denotes the transition matrix: the matrices

P
(1)
K , P

(2)
K , P

(3)
K , P

(4)
K are defined in equations (18) to (20).

where σold refers to the σ levels we set for the previous simulation experiments with homo-
geneous variances. And the σheter are the new heterogeneous variances. The results are in
Table 2. The results for n = 2000 are in Table 5 in the Online Supplement.

K σ n
QK = P

(1)
K QK = P

(2)
K QK = P

(3)
K QK = P

(4)
K

ML BIC ML BIC ML BIC ML BIC
3 0.2 200 48.5 23.5 82 56 78 66 66 34.5
3 0.3 200 26 11 57 29.5 57 39.5 41.5 18.5
3 0.4 200 13.5 2 32.5 12 41 27.5 20.5 9.5
3 0.5 200 8.5 2 21.5 6 32 16.5 12.5 5.5
4 0.2 200 19.5 5 49 29.5 34 23.5 32.5 8
4 0.3 200 5 0 20.5 10 16.5 11.5 7.5 1
4 0.4 200 0.5 0 6 1.5 5 3 1 0
4 0.5 200 0 0 2.5 1 2.5 0.5 0 0
5 0.2 200 0 0 27 15 13.5 6 17 3
5 0.3 200 0.5 0 7.5 1.5 6 2.5 4 0.5
5 0.4 200 0.5 0 0 0 1 0.5 1 0
5 0.5 200 0 0 0.5 0 1 0.5 0 0

Table 2: Correct identification frequency (percentage) of K∗ for heterogeneous variances

The frequency (in %) of correct identification of the true number of hidden states, out of 200 repeated simulations for
each entry, using the marginal likelihood method (ML) and the BIC. Here n = 200 observations are considered (see
Online Supplement for n = 2000 cases). K(= 3, 4, 5) is the true number of hidden states; σ is the standard deviation

of each hidden state around its mean; QK denotes the transition matrix: the matrices P
(1)
K , P

(2)
K , P

(3)
K , P

(4)
K are

defined in equations (18) to (20). The heterogeneous variances are specified as σheter = σ × (0.5 + 2× U , where U is
independently simulated from a uniform distribution on (0, 1) for each hidden state.

From the simulation studies, it is evident that the marginal likelihood method outper-
forms the BIC in several aspects. First, the frequency of correct identification of the number
of hidden states using the marginal likelihood method is much higher, especially when the
number of observations is small (200 as opposed to 2000). Second, the marginal likelihood
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method is more robust to low signal-to-noise ratio, which can be seen from Table 1. The
success rates of the marginal likelihood method and the BIC both drop as the noise level σ
increases from 0.2 to 0.5. However, the success rate of the BIC drops much more as opposed
to that of the marginal likelihood. Third, since the number of (unknown) model parameters
is quadratic in K, given the same number of observations, the more hidden states there are,
the harder the order selection is. The marginal likelihood method appears more robust to
the true number of hidden states than the BIC: the success rate of the marginal likelihood
is much higher than that of the BIC when the true number of states is high.

4.4 Discussion on Choice of Priors

From the asymptotic results in Section 3, the influence of priors vanishes as the number of
observations goes to infinity. However, in practice, the number of observations is finite, and
the choice of priors would have an impact on the results. Now we give our recommendations
of the choice of prior distributions based on empirical evidence in running simulation studies.
Practitioners should be aware that the best prior distribution often comes from incorporating
scientific knowledge of the specific problem in the field of study.

In the simulation studies in Section 4.3, we choose flat, conjugate priors, and the results
look quite promising. The prior for each row of the transition matrix is an independent
Dirichlet distribution with parameters all equal to 1, corresponding to a ‘flat prior’. The
priors for the means {µk}Kk=1 are set to be independent Gaussian with means {µ0k}Kk=1 and
large standard deviations, e.g., 10 or 20 times the interquartile range of y1:n. {µ0k}Kk=1

is chosen to be data-dependent: the µ0k are set as the evenly spaced quantiles of the
observations y1:n. The priors for the variances of each hidden state {σ2

k}Kk=1 are chosen to
be independent inverse chi-squared distribution with a degree of freedom 3, and the scale
can be chosen based on empirical estimators of the variability in the data: we can simply
take the square root of the scale as the interquartile range of the observations divided by
2K.

Remark 9 Note that the choice of νK is a Dirichlet distribution, which does not have
support within QεK as in Condition 7) in Section 3.1. However, as discussed in Remark 3,
it is possible that a νK vanishes quick enough at the boundary of QεK is sufficient for the

consistency of K̂n. Our simulation studies verify this possibility by numerically demonstrate
the consistency that the estimator is consistent when νK is chosen as the product of Dirichlet
priors suggested in Remark 3, although a theoretical proof remains absent for this situation.
Note that the Dirichlet prior is also recommended in Gassiat and Rousseau (2014).

5. Application to Single-Molecule Experimental Data

We apply the proposed marginal likelihood method to a set of single-molecule experimen-
tal data studied in Chen et al. (2016b), where single-molecule experiments are conducted
to study the co-translational protein targeting process, a universal protein transportation
mechanism in which proteins are transported to appropriate destinations inside or outside
of a cell through the membrane. This process is crucial to the proper functioning of cells,
and transportation errors can lead to serious diseases; see Akopian et al. (2013), Saraogi
and Shan (2011) and Shan (2016) for more discussion.
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In the biophysics community, each observed time-series trajectory is often modeled as
a Gaussian HMM (Greenfeld et al., 2012; McKinney et al., 2006). The number of hidden
states of each HMM corresponds to the number of conformations of a molecular complex,
which is of biological significance, as it reveals the dynamics and function of the molecular
complex (Blanco and Walter, 2010; Watkins and Yang, 2005).

The marginal likelihood method overall gives similar results as compared to the BIC
applied in Chen et al. (2016b). However, for several FRET trajectories, the marginal
likelihood method and the BIC give different results. Figure 2 shows two experimental
FRET trajectories in which the marginal likelihood method and the BIC give different state-
selection: in both cases, the marginal likelihood method gives a selection of three hidden
states, whereas the BIC gives a selection of two hidden states. As analyzed and explained
in Chen et al. (2016b), these two trajectories are in fact believed to be 3-state trajectories
once the information from multiple trajectories was combined together (using a hierarchical
HMM) to help identify rarely occurring states. The fact that the marginal likelihood method
correctly selects three states in this example indicates that it is more sensitive in detecting
rarely occurring states in an HMM. This sensitivity in detecting rare states is also observed
consistently in simulation studies, contributing to the superior performance of the marginal
likelihood method. We note that the performance comparison of the marginal likelihood
and BIC method based on the simulation studies gives us assurance on using the marginal
likelihood in practice. The ability to detect easily missed rare states using the marginal
likelihood method in this real data example is a clear case demonstrating exactly how the
marginal likelihood method outperforms the BIC method in practice when the signal-to-
noise ratio is small, and the model might be subject to misspecification.
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Figure 2: Two experimental FRET trajectories from the single-molecule data studied
in Chen et al. (2016b), with the number of hidden states being three for both tra-
jectories. In this example, the marginal likelihood method can correctly identify
three states while the BIC can only identify two.
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6. Conclusions

In this paper, we use the marginal likelihood to determine the number of hidden states for
hidden Markov models. The proposed method is theoretically consistent under mild con-
ditions. Furthermore, we propose a computation algorithm to robustly estimate the order
of an HMM trace through the estimation of normalizing constants. Extensive simulation
studies verify our proposed approach and demonstrate its power against the widely adopted
approach, the BIC, which lacks theoretical justification. We have provided an R package on
CRAN (https://cran.r-project.org/package=HMMmlselect) that implements our proposed
method. The package is named HMMmlselect.
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Appendix A. Proofs of Consistency Theorems

This section contains five parts. Section A.1 briefly explains how we extend the strategy
in Section 3.2 to general K∗ and K. Sections A.2 and A.3 prove Theorem 1; in particular,
Section A.2 proves (5), and Section A.3 proves (6). The necessary lemmas used in Section
A.3, as well as further theoretical details, are presented in the Online Supplement.

Throughout this section, the notations are consistent with those in the main text. We
use φK to denote the parameter under K states, which consists of QK , the transition
matrix, and θk, the parameters for Y1 given X1 = k, k = 1, . . . ,K. θ∗k, Q

∗ and φ∗ are
the true parameters. The priors on θk and QK are π and νK , respectively. For each K,
ΦK = QK ×ΘK is the parameter space, and ΦK = QK ×ΘK is the closure of it (for which
we use S to denote the closure of any set S.)

A.1 Generalizing the Proof Strategy

In Section A.1, we have demonstrated our proof concept under the special case with K∗ = 1
and K = 2. In below, we will explain how we extend this strategy to general K∗ and K,
and define necessary notations along the way.

First, for all K ≥ 1, define ∆K = K(K + d − 1), which is the number of parameters
for a HMM with K states. Then, similar to (8), the Berstein-von Mises theorem for HMM
(De Gunst and Shcherbakova (2008)) ensures that the posterior distribution under K∗, the
true number of states, has asymptotic normality. In other words, there exists a positive
definite Fisher information matrix J∗ such that

pK∗(y1:n|φ∗)p0(φ∗)

n∆K∗/2pK∗(y1:n)

P ∗−−−→
n→∞

(2π)−∆K∗/2|J∗|1/2. (21)

This allows us to control the asymptotic behavior for pK∗(y1:n).

Now let us investigate pK(y1:n). In the general case, we have two possibilities:
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1) For K < K∗, since a K-state HMM can be treated as an under-estimated model for
the K∗-state HMM, we can prove that there exists c > 0 such that

pK(y1:n)

pK∗(y1:n|φ∗)
= OP ∗

(
e−cn

)
. (22)

Combining (21) and (22), we have (5);

2) For K > K∗, as illustrated in Section 3.2, we will face the non-identifiability issue, so
we need to use the strategy in Section 3.2 to get

n∆K∗+(K−K∗)dpK(y1:n)

pK∗(y1:n|φ∗)
P ∗−−−→

n→∞
C (23)

for some constant C > 0. Combining (21) and (23), we have (6).

Combining the two cases, we prove Theorem 1.
Let us be more specific about the strategy in case 2). As illustrated in Section 3.2, the

core mechanism in this strategy is to decompose the parameter space into subspaces so that
each subspace contains only one “true” parameter. Here “true” refers to having essentially
the same law as we shall see shortly. In the case with K∗ = 1 and K = 2, as illustrated in
3.2, we use Q ∈ Q2 to decompose Φ2 into ΦQ, so that each ΦQ contains only one “true”
parameter

φ∗Q := (Q;θ∗1,θ
∗
1).

Note that this true parameter can be viewed as we “split” the original state into two states,
with the corresponding probability “weight” determined by Q. In other words, in this
special case, Q is the index that specifies the “split” and “weight”, while φ∗Q is therefore
the only “true” parameter that satisfies such specification.

This idea of specifying “split” and “weight” can be extended to general K > K∗ as
follows. We will reparameterize φK by (α, γ) so that α contains all the non-identifiability
(including both “split” and “weight”), and γ is the identifiable part. As such, through
this reparameterization, we can divide the neighborhood of all the “true” values into a
family of subspaces, with each of them identifiable and having exactly one “true” value
with ergodicity so that the Bernstein-von Mises theorem holds on each of the subspaces.
This provides us the subspaces needed to execute steps (i)-(iv) in Section 3.2, which leads
us to (23) and completes the proof.

To formally describe this reparameterization approach, we need to first characterize
all the “true” parameters for a model with K states, following a similar idea in Leroux
(1992b). To be more precise, for each K, recall ΦK = QK ×ΘK is the closure of ΦK . For
any φ1 ∈ ΦK1 and φ2 ∈ ΦK2 , we define φ1 and φ2 to be equivalent, denoting as φ1 v φ2, if
and only if there exists initial distribution µ(φl) = (µ1(φ`), · · · , µK`(φ`)) for ` = 1, 2 such
that:

1) for ` = 1, 2, if {X`
i : i ≥ 0} is a Markov chain with initial distribution X0 ∼ µ(φ`)

and transition matrix given by φ`, then {θX`
i

: i ≥ 0} is a stationary process;

2) the processes {θX1
i

: i ≥ 0} and {θX2
i

: i ≥ 0} follow the same law.
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Let Φ
∗
K = {φK : φK ∈ ΦK ,φK v φ∗} be the set of “true” parameters under the equivalent

class in ΦK , Φ∗K = Φ
∗
K ∩ ΦK be its interior, and ∂Φ∗K = Φ

∗
K − Φ∗K be its boundary.

Now, to obtain the reparametrization (α, γ) of φK , we first construct a set A, and then
construct a set Γα and a function ϕα for each α ∈ A so that ∪α∈Aϕα(Γα) forms a partition
of ΦK . Therefore, we have∫

ΦK

pK(y1:n|φK)p0(φK)dφK =

∫
A

∫
Γα

pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγdα, (24)

in which Λα(γ) is the corresponding Jacobian determinant when changing variables. In
addition, we will prove the steps (i)-(iv) in Section 3.2 in the following form, respectively:

(i) There exists A+ ⊂ A and c > 0 such that, as n→∞,∫
A−A+

∫
Γα
pK(y1:n|φK)p0(ϕα(γ))|Λα(γ)|dγdα

pK∗(y1:n|φ∗)
= OP ∗(e

−cn). (25)

(ii) Define
∆Γ = ∆K∗ + (K −K∗)d (26)

(recall ∆K = K(K + d − 1)). Then, for each α ∈ A+, Γα is ∆Γ-dimensional, and
ϕα(Γα) ∩ Φ

∗
K has exactly one component, which is a true value φ∗α ∈ Φ∗K with an

ergodic transition. In addition, there exists constant Cα such that, as n→∞,

n
∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγ

pK∗(y1:n|φ∗)
= Cα + oP ∗(1). (27)

(iii) The constant Cα in ii) satisfies ∫
α∈A+

Cαdα <∞. (28)

(iv) The convergence in (27) is uniform across α ∈ A+ so that we have, as n→∞,

n
∆Γ
2

∫
A+

∫
Γα
pK(y1:n|φK)p0(ϕα(γ))|Λα(γ)|dγdα

pK∗(y1:n|φ∗)
=

∫
α∈A+

Cαdα+ oP ∗(1). (29)

Combining (24)-(29), we get (23) and completes the proof. See Appendix A.3 for the proofs,
where the detailed description of the reparameterization (α, γ) is given.

A.2 Proof of (5) (K < K∗)

As discussed in Section A.1, since (21) holds, we only need to prove (22) holds in order to
prove (5). This is provided as follows.
Proof [Proof of (22) and (5)] Since K < K∗, for any QK = {qk`, 1 ≤ k, ` ≤ K} ∈ QK ,
define Q̃K∗ = {q̃k`, 1 ≤ k, ` ≤ K∗} by

q̃k` =


qk` k, ` < K

1
K∗−K+1qkK k < K, ` ≥ K
qK` k ≥ K, ` < K

1
K∗−K+1qKK k, ` ≥ K
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which is the transition matrix when we “split” state K into states K,K + 1, · · · ,K∗ with
equal probabilities. In addition, for any φK = (QK ;θ1, · · · ,θK) ∈ ΦK , define

φ̃K∗ = (Q̃K∗ ;θ1, · · · ,θK−1,θK ,θK , · · · ,θK) ∈ ΦK∗ .

Then, a direct computation shows that

pK(y1:n|φK) = pK∗(y1:n|φ̃K∗). (30)

Moreover, note that

φ̃K ∈ Φ̃K∗ := {φ ∈ ΦK∗ : θK = θK+1 = · · · = θK∗} , (31)

and since we assume that the true parameters satisfy θ∗k 6= θ∗` for all k 6= `, there exists
δ > 0 such that

Φ̃K∗ ⊂ {φ : φ ∈ ΦK∗ , ‖φ− φ∗‖ ≥ δ}. (32)

Combining (30) to (32), we have

pK(y1:n) =

∫
ΦK

pK(y1:n|φK)p0(φK)dφK =

∫
ΦK

pK∗(y1:n|φ̃K∗)p0(φK)dφK

≤ sup
φ∈Φ̃K∗

pK∗(y1:n|φ)

∫
ΦK

p0(φK)dφK ≤ sup
‖φ−φ∗‖≥δ

pK∗(y1:n|φ). (33)

In addition, Lemma 3.1 in De Gunst and Shcherbakova (2008) states that under conditions
1)-7), for any δ > 0, there exists ε > 0 such that

P ∗

{
sup

‖φ−φ∗‖≥δ

LK∗(y1:n|φ)− LK∗(y1:n|φ∗)
n

≤ −ε

}
−−−→
n→∞

1, (34)

where LK := log pK . Combining (33) and (34), we have

pK(y1:n)

pK∗(y1:n|φ∗)
≤ sup
‖φ−φ∗‖≥δ

pK∗(y1:n|φ)

pK∗(y1:n|φ∗)

= exp

{
n× sup

‖φ−φ∗‖≥δ

LK∗(y1:n|φ)− LK∗(y1:n|φ∗)
n

}
= OP ∗(e

−εn) (35)

as n→∞. Combining (21) and (35), we complete the proof.

Remark 10 One of the main ingredients in the proof above is (34), which essentially says
that, outside of any open ball of φ∗, the likelihood pK∗(y1:n|φ) decays exponentially compare
to pK∗(y1:n|φ∗) as n → ∞. This can actually be extended to pK with K > K∗. We state
this as Lemma 18 in Section S1.2, which will be used as an intermediate step in the proof
of Lemma 13.
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A.3 Proof of (6) (K > K∗)

As discussed in Section A.1, since (21) holds, we need to prove (24) - (29) for the proof
of (6). To this end, we will have a reparameterization (α, γ) of φK such that α contains
the non-identifiability parameters, and γ is the identifiable part. We will first present such
reparameterization and then prove (24) - (29) accordingly.

Note that, as discussed in Section A.1, for the construction of (α, γ) to be a reparame-
terization with α containing all the non-identifiability, α needs to capture the “split” of the
states as well as the “weight” of the split. To illustrate the idea behind the reparameteri-
zation, we first discuss two special cases and then present the construction of the general
case.

Example 1 (Mixture Normal with Two Components) Consider the case when qk` =
q` for all ` = 1, 2, · · · ,K (so that Xi are i.i.d.), and Yi v N(θXi , 1). When the true number
of components K∗ = 2, and the true parameter φ∗ := ((q∗1, q

∗
2), (θ∗1,θ

∗
2)) is defined as

(q∗1, q
∗
2) = (

1

2
,
1

2
), (θ∗1,θ

∗
2) = (1, 2).

Then the likelihood function under φ∗ is

p2(y1:n|φ∗) =
n∏
i=1

{
1

2
φ(yi − 1) +

1

2
φ(yi − 2)

}
,

where φ(·) is the probability density function for the standard normal distribution.
Now, suppose we fit the model with K = 3 and parameter φ3 ∈ Φ3 defined by (q1, q2, q3)

and (θ1,θ2,θ3), which corresponds to the likelihood function

p3(y1:n|φ3) =

n∏
i=1

{q1φ(yi − θ1) + q2φ(yi − θ2) + q3φ(yi − θ3)} .

This creates identifiability issue since there are multiple φ3 satisfying φ3 v φ∗. For example,
the following φ3 all makes p3(·|φ3) ≡ p2(·|φ∗):

• (q1, q2, q3) = (1
4 ,

1
4 ,

1
2), (θ1,θ2,θ3) = (1, 1, 2);

• (q1, q2, q3) = (1
3 ,

1
6 ,

1
2), (θ1,θ2,θ3) = (1, 1, 2);

• (q1, q2, q3) = (1
2 ,

1
4 ,

1
4), (θ1,θ2,θ3) = (1, 2, 2).

In fact, any φ3 satisfying

θk = θ∗` = ` for all k ∈ S`, and
∑
k∈S`

qk = q∗` =
1

2
(36)

for all ` = 1, 2, for some partition S = (S1, S2) of {1, 2, 3} will make φ3 v φ∗.
Now, suppose (α, γ) is a reparameterization of φ3, and Φ3,α is the subspace of Φ3 condi-

tioning on a given α. Then, by (36), to make sure that α contains all the non-identifiability,
we need that for given α, (36) has at most one solution in Φ3,α. This means that we need
to control α by at least the following two matters:
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1. To make sure the θk part in (36) has at most one solution, α must specify the partition
S = (S1, S2). Equivalently, this means that α needs to specify, for each true state `,
the collection of states S` that the state ` is “split” into.

2. Given S, note that the qk part in (36) only specify the sum of qk across each S`.
Therefore, to ensure that the qk part in (36) has at most one solution, α must also
specify (

q1∑
k∈Ss(1)

qk
,

q2∑
k∈Ss(2)

qk
,

q3∑
k∈Ss(3)

qk

)
,

where

s(k) =

{
1, if k ∈ S1,

2, if k ∈ S2.
(37)

Equivalently, this means that α also needs to specify the “weight” of each qi relative
to
∑

k∈Ss(i) qk.

In fact, we can construct such α and Φ3,α as follows. Set α = (S,W ), in which S =
(S1, S2) is a partition of {1, 2, 3}, and

W = (W1,W2,W3) ∈ (0, 1)3.

To construct Φ3,α, we first set

Θ1 = (−∞, 1.5), Θ2 = [1.5,∞), (38)

so that

θ ∈ {θ∗1,θ∗2} ∩Θ` = {1, 2} ∩Θ` ⇒ θ = `. (39)

Then, for any α = (S,W ), we set

Φ3,α =
{
φ3 : for all ` ∈ {1, 2},θk ∈ Θ` for all k ∈ S`

and for each i ∈ {1, 2, 3}, qi∑
k∈Ss(i) qk

= Wi

}
.

To show that (36) has at most one solution in Φ3,α for any α, suppose that φ3 ∈ Φ3,α

satisfies (36) for some partition S′. Since φ3 satisfies the first part of (36), by (39), we
must have S′ = S, so that we have θk = θ∗` = ` for all k ∈ S`. In addition, for any
i ∈ {1, 2, 3},

qi =
qi∑

k∈Ss(i) qk
×
∑

k∈Ss(i)

qk = Wi ×
∑

k∈Ss(i)

qk = Wi ×
1

2
,

in which the second equality is because φ3 ∈ Φ3,α, and the last equality is because φ3 satisfies
(36). To sum up, given α, the solution of (36) is uniquely determined by α; in other words,
there is at most one solution in Φ3,α for each α, as desired.
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Remark 11 The identifiability issue in mixture models has also been discussed in the BIC
literature; see Keribin (2000) as well as Drton and Plummer (2017). See also Watanabe
(2013) for some extensions toward machine learning.

Example 2 (Gaussian HMM with Two Components) Now let us extend the idea in
Example 1 to Gaussian HMM. Let Yi v N(θXi , 1), but without the constraint of qk` = q`.
Consider the case when the true number of states is K∗ = 2, and the true parameter
φ∗ = (Q∗, (θ∗1,θ

∗
2)) is defined by

Q∗ =

(
q∗11 q∗12

q∗21 q∗22

)
=

(
1
2

1
2

1
2

1
2

)
, (θ∗1,θ

∗
2) = (1, 2).

Note that the invariant probability measure corresponding to Q∗ is µ(φ∗) = (µ1(φ∗), µ2(φ∗)) =
(1

2 ,
1
2).

Again, we fit the model with K = 3. Consider φ3 ∈ Φ3 and its corresponding invariant
probability measure µ(φ3) = (µ1(φ3), µ2(φ3), µ3(φ3)). Similar to equation (36) in Example
1, we like to find the condition that makes φ3 v φ∗. Note that by the definition of the
equivalent class, φ3 v φ∗ means that, under the corresponding invariant probability, the
distributions of {θXi , i ≥ 0} are the same; in particular, (θX0 ,θX1) have the same distri-

bution. Let Pφµ(φ) denote the probability under φ and invariant probability µ(φ). Then, for
any i, j = 1, 2, the probability

Pφ3

µ(φ3) {(θX0 ,θX1) = (i, j)} = Pφ3

µ(φ3) {X0 ∈ {k : θk = i}, X1 ∈ {` : θ` = j}}

=
∑
k:θk=i

∑
`:θ`=j

µk(φ3)qk`

must be equal to

Pφ
∗

µ(φ∗) {(θX0 ,θX1) = (i, j)} = Pφ
∗

µ(φ∗) {X0 = i,X1 = j} = µi(φ
∗)q∗ij =

1

4
.

Hence, similar to (36), for φ3 v φ∗, we have

θk = θ∗i = i for all k ∈ Si,

and
∑
k∈Si

∑
`∈Sj

µk(φ3)qk` = µi(φ
∗)q∗ij =

1

4
(40)

for all i, j = 1, 2, for some partition S = (S1, S2) of {1, 2, 3}. Note that (40) is almost like
(36), just changing the consideration of θX1 to the pair (θX0 ,θX1).

As that in Example 1, (40) suggests that we should have α = (S,W ) with S being the
partition of {1, 2, 3}, and

W =

W11 W12 W13

W21 W22 W23

W31 W32 W33

 (41)

such that Wij ∈ (0, 1) for all 1 ≤ i, j ≤ 3.
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The construction of Φ3,α for given α = (S,W ) is also similar. Recall s(k) defined in
(37), and Θ1 and Θ2 defined the (38). For any α = (S,W ), set

Φ3,α =

{
φ3 : for all ` ∈ {1, 2},θk ∈ Θ` for all k ∈ S`

and for all i, j ∈ {1, 2, 3}, µiqij∑
k∈Ss(i)

∑
`∈Ss(j) µkqk`

= Wij

}
.

By using an argument similar to that in Example 1, we have that for each α = (S,W ), (40)
has at most one solution in Φ3,α.

We now extend the idea in Example 2 to a general setting. First, for the construction
of α = (S,W ), let

S = (S1, S2, · · · , SK∗)

be a partition of {1, 2, · · · ,K}. Given S, we extend the definition of s(k) in (37) to

s(k) = ` if k ∈ S`. (42)

As for W in (41), we generalize it to

W =


W11 W12 · · · W1K

W21 W22 · · · W2K
...

...
. . .

...
WK1 WK2 · · · WKK


such that Wij ∈ (0, 1) for all 1 ≤ i, j ≤ K.

As for the construction of ΦK,α, similar to (38), we first decompose Θ = ∪1≤k≤K∗Θk

such that Θk are disjoint, and θ∗k is an interior point of Θk for all k = 1, 2, · · · ,K∗. Similar
to (39), this guarantees that

θ ∈ {θ∗1, · · · ,θ∗K} ∩Θk ⇒ θ = θ∗k. (43)

Now, given α = (S,W ), set

ΦK,α =

{
φK : for all ` ∈ {1, 2, · · · ,K∗},θk ∈ Θ` for all k ∈ S`, (44)

and for all i, j ∈ {1, 2, · · · ,K}, µiqij∑
k∈Ss(i)

∑
`∈Ss(j) µkqk`

= Wij

}
.

Next using α to construct the reparameterization (α, γ) of ΦK , we first note that by the
definition of ΦK,α in (44), for each φK ∈ ΦK , there exists an unique α such that φK ∈ ΦK,α.
Define

A = {α = (S,W ) : ΦK ∩ ΦK,α 6= ∅} (45)
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so that ∪α∈AΦK,α forms a partition of ΦK .
It remains to parameterize ΦK,α for any α ∈ A through γ so that we can rewrite the

marginal likelihood as an integration over (α, γ) in (24). As φK = (QK ;θ1, · · · ,θK), this
means that we need a reparameterization ofQK . In addition, note that for given α = (S,W ),
we have

µiqij∑
k∈Ss(i)

∑
`∈Ss(j) µkqk`

= Wij ⇐⇒ µiqij = Wij ×

 ∑
k∈Ss(i)

∑
`∈Ss(j)

µkqk`


for all i, j ∈ {1, 2, · · · ,K}, so

{∑
k∈Ss(i)

∑
`∈Ss(j) µkqk`

}
basically suggests a reparameteri-

zation of µiqij , which can further lead to a reparameterization of QK .
The details are given below. Let us first set

R =


R11 R12 · · · R1K∗

R21 R22 · · · R2K∗

...
...

. . .
...

RK∗1 RK∗2 · · · RK∗K∗


such that Rij ∈ (0, 1) for all 1 ≤ i, j ≤ K∗. For fixed α = (S,W ), consider the mapping ψα
from R to QK as

ψα(R) =


ψα11(R) ψα12(R) · · · ψα1K(R)
ψα21(R) ψα22(R) · · · ψα2K(R)

...
...

. . .
...

ψαK1(R) ψαK2(R) · · · ψαKK(R)

 . (46)

Here for all 1 ≤ i, j ≤ K,

ψαij(R) =
WijRs(i)s(j)∑K
`=1Wi`Rs(i)s(`)

. (47)

Further set
γ = (R;θ1, · · · ,θK),

and define the mapping ϕα from γ to φK = (QK ;θ1, · · · ,θK) as

ϕα(γ) = (ψα(R);θ1, · · · ,θK). (48)

To show that for any α ∈ A, γ indeed forms a reparametrization of ΦK,α through ϕα,
we need to verify that for any α ∈ A, ϕα is a bijective function. To do so, we directly claim
that

ϕ−1
α (φK) =

(
ψ−1
α (QK);θ1, · · · ,θK

)
, (49)

where

ψ−1
α (QK) =


ψ−1
α11(QK) ψ−1

α12(QK) · · · ψ−1
α1K∗(QK)

ψ−1
α21(QK) ψ−1

α22(QK) · · · ψ−1
α2K∗(QK)

...
...

. . .
...

ψ−1
αK∗1(QK) ψ−1

αK∗2(QK) · · · ψ−1
αK∗K∗(QK)

 .
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Here for each 1 ≤ i, j ≤ K∗,

ψ−1
αij(QK) =

∑
k∈Si

∑
`∈Sj

µkqk`, (50)

which is the denominator appears in (44). To show that ϕ−1
α is indeed the inverse function of

ϕα, suppose that γ = (R;θ1, · · · ,θK) = ϕ−1
α (φK) for some φK ∈ ΦK,α. Since φK ∈ ΦK,α,

by (44) and (50), we have

µiqij = Wij

∑
k∈Ss(i)

∑
`∈Ss(j)

µkqk` = Wijψ
−1
αs(i)s(j)(QK), (51)

which leads to

µi =
K∑
j=1

Wijψ
−1
αs(i)s(j)(QK) (52)

since
∑K

j=1 qij = 1. Hence, by (51) and (52), we have

qij =
µiqij
µi

=
Wijψ

−1
αs(i)s(j)(QK)∑K

`=1Wi`ψ
−1
αs(i)s(`)(QK)

. (53)

Combining (53) with (47), we have that

ψα(ψ−1
α (R)) = R,

and thus
ϕα(ϕ−1

α (γ)) = γ.

As such, ϕα is invertible, therefore if we set

Γα := ϕ−1
α (ΦK,α),

then ϕα : Γα → ΦK,α is a bijective function. This proves that (α, γ) indeed forms a
reparameterization of ΦK .

We then show that α indeed captures all the non-identifiability; that is, we want to
show that for each α = (S,W ) ∈ A, ΦK,α contains at most one “true” value. To show this,
consider any true value φ∗K = (QK ;θ1, · · · ,θK) ∈ Φ

∗
K , and suppose it lies in ΦK,α for some

α ∈ A. Given this α, set γ∗α = ϕ−1
α (φ∗K). In addition, since φ∗K v φ∗, (θX0 ,θX1) have the

same law under φ∗K and φ∗, by condition 3) we have

K∑
i,j=1

∑
k∈Ss(i)

∑
`∈Ss(j)

µk(φ
∗
K)qk`1θk(θ0)1θ`(θ1) ≡

K∗∑
i,j=1

µ∗i (φ
∗)q∗ij1θ∗i (θ0)1θ∗j (θ1) (54)

as a function of (θ0,θ1).
Note that by (44) and (45), for any α = (S,W ) ∈ A, W has positive entries, so by

(47), for any γ = (R;θ1, · · · ,θK) ∈ Γα, ψα(R) is a transition matrix with positive entries.
As such, since γ∗α = ϕ−1

α (φ∗K) ∈ ϕ−1
α (ΦK,α) = Γα, we have µk(φ

∗
K) = µk(ϕα(γ∗α)) > 0 for
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all α ∈ A and k = 1, 2, · · · ,K. In addition, since φ∗K ∈ ΦK,α, by (44) and (43), we have
θk ∈ Θi for all i = 1, · · · ,K∗ and k ∈ Ss(i), which means that θk ∈ {θ∗1, · · · ,θ∗K∗} if and
only if θk = θ∗i . Hence, the only possibility for (54) to hold is when

θk = θ∗i for all i = 1, 2, · · · ,K∗ and k ∈ Ss(i); (55)

and when this holds, (50) and (54) directly lead to

Rij = ψ−1
αij(QK) =

∑
k∈Si

∑
`∈Sj

µkqk` = µ∗i (φ
∗)q∗ij := R∗ij . (56)

Therefore, φK = (QK ;θ1, · · · ,θK) is a “true” value in ΦK,α if and only if

ψ−1
α (QK) = R∗ :=


µ∗1(φ∗)q∗11 µ∗1(φ∗)q∗12 · · · µ∗1(φ∗)q∗1K∗
µ∗2(φ∗)q∗21 µ∗2(φ∗)q∗22 · · · µ∗2(φ∗)q∗2K∗

...
...

. . .
...

µ∗K∗(φ
∗)q∗K∗1 µ∗K∗(φ

∗)q∗K∗2 · · · µ∗K∗(φ
∗)q∗K∗K∗

 . (57)

Hence, for any α ∈ A, there exists at most one “true” value in each ΦK,α, as desired.
In fact, note that for α = (S,W ) with S = (S1, · · · , SK∗), the only possibility that there

exists no “true” value in ΦK,α is when Si = ∅ for some i. In that case, (54) does not hold
since when (55) holds, the RHS of (54) has the indicator 1θ∗i , but the LHS has not. Hence,
if we define

A+ := {α = (S,W ) : S = (S1, · · · , SK∗) such that Sk 6= ∅ for all k = 1, 2, · · · ,K∗} , (58)

then for each α ∈ A+, ΦK,α contains exactly one “true” value

φ∗α := ϕα(γ∗α), (59)

with
γ∗α := (R∗;θ∗s(1),θ

∗
s(2), · · · ,θ

∗
s(K)). (60)

Remark 12 Note that (54) considers the pair (θ0,θ1) in order to incorporate the infor-
mation of the transition matrix. This concept has been used in the HMM literature. See,
for example, the proof of Lemma 2 in Leroux (1992a), as well as the composite likelihood
method in Chen et al. (2016a).

We are now ready to show that this reparametrization satisfies (24) - (29). For (24), by
standard change of variables,∫

ΦK

pK(y1:n|φK)p0(φK)dφK =

∫
A

∫
Γα

pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγdα, (61)

where Λα(γ) is the Jacobian determinant specified by the mapping ϕα(γ) (as a function of
(α, γ).) On the other hand, (25) - (29) are provided by the following four lemmas.

Lemma 13 Suppose conditions 1)-5) hold. Then (25) holds for the A+ defined in (58).
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Lemma 14 Suppose conditions 1)-7) hold, and recall ∆Γ = ∆K∗ + (K −K∗)d defined in
(26). Then, for each α ∈ A+,

a) Γα is ∆Γ-dimensional, then the dimension of Γα remains the same for all α ∈ A+;

b) ϕα(Γα) ∩Φ
∗
K contains exactly one component, which is a true value ϕα(γ∗α) = φ∗α ∈ Φ∗K

with ergodic transition matrix;

c) γ∗α is an interior point of Γα;

d) there exists a constant Cα such that (27) holds.

Lemma 15 Suppose conditions 1)-7) hold. Then (28) holds for the Cα in Lemma 14.

Lemma 16 Suppose conditions 1)-7) hold. Then (29) holds.

Now we are ready to prove (6) in Theorem 1.

Proof [Proof of (6)] Owing to Lemmas 13 - 16, (25) - (29) hold. (6) follows by combining
them with (21) and (61).

It remains to prove Lemmas 13-16, which are presented in the Online Supplement.

References

D. Akopian, K. Shen, X. Zhang, and S. O. Shan. Signal recognition particle: an essential
protein targeting machine. Annual Review of Biochemistry, 82:693, 2013.

A. Barron, J. Rissanen, and B. Yu. The minimum description length principle in coding
and modeling. IEEE Transactions on Information Theory, 44(6):2743–2760, 1998.

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state
Markov chains. The Annals of Mathamtical Statistics, 37(6):1554–1563, 1966.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. The Annals of
Mathematical Statistics, 41(1):164–171, 1970.

L. Bauwens, A. Dufays, and J. V. K. Rombouts. Marginal likelihood for Markov-switching
and change-point GARCH models. Journal of Econometrics, 178:508–522, 2014.

P. J. Bickel, Y. Ritov, and T. Ryden. Asymptotic normality of the maximum-likelihood
estimator for general hidden Markov models. The Annals of Statistics, 26(4):1614–1635,
1998.

M. Blanco and N. G. Walter. Analysis of complex single-molecule FRET time trajectories.
Methods in Enzymology, 472:153–178, 2010.

32



Det. the Num. of States in HMM via Marg. L.H.

R. J. Boys and D. A. Henderson. A Bayesian approach to DNA sequence segmentation.
Biometrics, 60(3):573–581, 2004.

O. Bunke and M. Xavier. Asymptotic behavior of Bayes estimates under possibly incorrect
models. The Annals of Statistics, 26(2):617–644, 1998.

A. Chambaz and J. Rousseau. Nonasymptotic bounds for Bayesian order identification with
application to mixtures. Citeseer, 2005.

A. Chambaz, A. Garivier, and E. Gassiat. A minimum description length approach to hidden
Markov models with Poisson and Gaussian emissions: Application to order identification.
Journal of Statistical Planning and Inference, 139:962–977, 2009.

J. Chen and J. D. Kalbfleisch. Penalized minimum-distance estimates in finite mixture
models. Canadian Journal of Statistics, 24(2):167–175, 1996.

J. Chen and A. Khalili. Order selection in finite mixture models with a nonsmooth penalty.
Journal of the American Statistical Association, 104(485):187–196, 2009.

J. Chen and P. Li. Hypothesis test for normal mixture models: the EM approach. The
Annals of Statistics, 37:2523–2542, 2009.

J. Chen and X. Tan. Inference for multivariate normal mixtures. Journal of Multivariate
Analysis, 100(7):1367–1383, 2009.

J. Chen, X. Tan, and R. Zhang. Inference for normal mixtures in mean and variance.
Statistica Sinica, 18(2):443–465, 2008.

J. Chen, Y. Huang, and P. M Wang. Composite likelihood under hidden Markov model.
Statistica Sinica, 26(4):1569–1586, 2016a.

M.-H. Chen and Q.-M. Shao. On Monte Carlo methods for estimating ratios of normalizing
constants. The Annals of Statistics, 25(4):1563–1594, 1997.

Y. Chen, K. Shen, S. O. Shan, and S. C. Kou. Analyzing single-molecule protein trans-
portation experiments via hierarchical hidden Markov models. Journal of the American
Statistical Association, 111(515):951–966, 2016b.

M.C.M. De Gunst and O. Shcherbakova. Asymptotic behavior of Bayes estimator for hidden
Markov models with application to ion channels. Mathematical Methods of Statistics, 17
(4):342–356, 2008.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1–38, 1977.

T. J. DiCiccio, R. E. Kass, A. E. Raftery, and L. Wasserman. Computing Bayes factors by
combining simulation and asymptotic approximations. Journal of the American Statistical
Association, 92(439):903–915, 1997.

R. Douc, G. Fort, and A. Guillin. Subgeometric rates of convergence of f-ergodic strong
Markov processes. Stochastic processes and their applications, 119(3):897–923, 2009.

33



Chen, Fuh and Kao

R. Douc, E. Moulines, J. Olsson, and R. Van Handel. Consistency of the maximum likelihood
estimator for general hidden Markov models. The Annals of Statistics, 39(1):474–513,
2011.

M. Drton and M. Plummer. A Bayesian information criterion for singular models. Journal
of the Royal Statistical Society, 79(2):323–380, 2017.

C. Du, C. L. Kao, and S. C. Kou. Stepwise signal extraction via marginal likelihood. Journal
of the American Statistical Association, 111(513):314–330, 2016.

T. Dumont. Context tree estimation in variable length hidden Markov models. IEEE
Transactions on Information Theory, 60(6):3196–3208, 2014.

Y. Ephraim and N. Merhav. Hidden Markov processes. IEEE Transactions on Information
Theory, 48(6):1518–1569, 2002.

Y. Fan, S. A. Sisson, S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng. Reversible jump
MCMC. Handbook of Markov Chain Monte Carlo, 2011.

J. D. Ferguson. Application of hidden Markov models to text and speech. Princeton, NJ,
IDA-CRD, 1980.

L. Finesso. Consistent estimation of the order for Markov and hidden Markov chains.
Technical report, Maryland University College Park Institute for Systems Research, 1990.

C. D. Fuh, C. L. Kao, and T. X. Pang. Kullback-Leibler divergence and Akaike information
criterion in general hidden Markov models. IEEE Transactions on Information Theory,
early access, 2024.

E. Gassiat. Likelihood ratio inequalities with applications to various mixtures. Annales de
l’IHP Probabilités et statistiques, 38:897–906, 2002.

E. Gassiat and S. Boucheron. Optimal error exponents in hidden Markov model order
estimation. IEEE Transactions on Information Theory, 48(4):964–980, 2003.

E. Gassiat and C. Keribin. The likelihood ratio test for the number of components in a
mixture with Markov regime. ESAIM: Probab. Stat., 4:25–52, 2000.

E. Gassiat and J. Rousseau. About the posterior distribution in hidden Markov models
with unknown number of states. Bernoulli, 20(4):2039–2075, 2014.

A. E. Gelfand and D. K. Dey. Bayesian model choice: Asymptotics and exact calculations.
Journal of the Royal Statistical Society, 56(3):501–514, 1994.

J. Geweke. Bayesian inference in econometric models using Monte Carlo integration. Econo-
metrica, 57:1317–1339, 1989.

Z. Ghahramani. An introduction to hidden Markov models and Bayesian networks. Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 15(1):9–42, 2001.

P. J. Green and D. I. Hastie. Reversible jump MCMC. Genetics, 155(3):1391–1403, 2009.

34



Det. the Num. of States in HMM via Marg. L.H.

P. J. Green and S. Richardson. Hidden Markov models and disease mapping. Journal of
the American Statistical Association, 97(460):1055–1070, 2002.

M. Greenfeld, D. S. Pavlichin, H. Mabuchi, and D. Herschlag. Single molecule analysis
research tool (SMART): an integrated approach for analyzing single molecule data. PloS
One, 7, 2012.

J. D. Hamilton. Time Series Analysis. Princeton, NJ: Princeton Univ. Press, 1994.

T. Huang, H. Peng, and K. Zhang. Model selection for Gaussian mixture models. Statistica
Sinica, 27(1):147–169, 2017.

F. K. Hui, D. I. Warton, and S. D. Foster. Order selection in finite mixture models: complete
or observed likelihood information criteria? Biometrika, 102(3):724–730, 2015.

Y. Hung, Y. Wang, V. Zarnitsyna, C. Zhu, and C. F. J. Wu. Hidden Markov models with
applications in cell adhesion experiments. Journal of the American Statistical Association,
108(504):1469–1479, 2013.

H. Ishitani. A central limit theorem for the subadditive process and its application to
products of random matrices. Publications of the Research Institute for Mathematical
Sciences, 12(3):565–575, 1977.

N. O. Jeffries. A note on ‘Testing the number of components in a normal mixture’.
Biometrika, 90(4):991–994, 2003.

R. I. Jennrich. Asymptotic properties of non-linear least squares estimators. The Annals
of Mathematical Statistics, 40(2):633–643, 1969.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical Association,
90(430):773–795, 1995.

C. Keribin. Consistent estimation of the order of mixture models. Sankhyā: The Indian
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Online Supplement

The Online Supplement below contains three parts. Section S1 gives the proofs of the
key lemmas in Appendix A.3 as well as other theoretical details related to the consistency
results. Section S2 presents simulation studies for estimating normalizing constants. Section
S3 gives proof of the robustness of the computational algorithm.

S1. Detail Proofs for the Consistency Theorems

This section contains three parts. Section S1.1 proves Lemmas 13 to 16 in the Appendix,
which completes the proof of Theorem 1. To simplify the presentation, some of the inter-
mediate steps in the proofs of these Lemmas are deferred to Section S1.2. Finally, Section
S1.3 proves Corollary 7.

S1.1 Proofs for the Key Lemmas in Appendix A

Proof [Proof of Lemma 13] Recall ΦK,α = ϕα(Γα), so we have∫
A−A+

∫
Γα

pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγdα

=

∫
∪α∈A−A+ΦK,α

pK(y1:n|φK)p0(φK)dφK

=

∫
ΦK−∪α∈A+ΦK,α

pK(y1:n|φK)p0(φK)dφK . (62)

In addition, recall Φ∗K and Φ
∗
K defined in Section A.1. For any δ > 0 and φK ∈ ΦK , let

Bδ(φK) := {φK : φK ∈ ΦK , ‖φ− φK‖ < δ} , (63)

and Φ∗K,δ =
⋃
φK∈Φ

∗
K
Bδ(φK). In other words, Bδ(φK) is a neighborhood of the “true”

values in Φ
∗
K . Then, by Lemma 18 provided in Section S1.2, we have∫

ΦK−Φ∗K,δ
pK(y1:n|φK)p0(φK)dφK

pK∗(y1:n|φ∗)
= OP ∗

(
e−εn

)
(64)

as n → ∞. Hence, by (62) and (64), we only need to show that Φ∗K,δ ⊂ ∪α∈A+ΦK,α for
some δ > 0, and (25) immediately follows.

Recall the v relationship defined in Section A.1. Consider any φK = (QK ;θ1, · · · ,θK) ∈
Φ
∗
K . Let {X1

n : n ≥ 0} be a Markov chain under the law govern by φK and initial distribution
µ(φK), and {X2

n : n ≥ 0} be a Markov chain under the law govern by φ∗ and initial
distribution µ(φ∗). Since φK v φ∗, we have θX1

1
follows the same law as θ∗

X2
1
. But θ∗

X1
1

takes value on T := {θk : 1 ≤ k ≤ K} with P{θX1
1

= θk} = µk(φ) for all k, and θ∗
X2

1
takes

value on T ∗ := {θ∗i : 1 ≤ i ≤ K∗} with P{θ∗
X2

1
= θ∗i } = µi(φ

∗) > 0 for all i. So, for θX1
1

to follow the same law of θ∗
X2

1
, we must have T ∗ = T , which means that for any φK in Φ

∗
K

and any 1 ≤ i ≤ K∗, there is a 1 ≤ `i ≤ K such that θ`i = θ∗i .
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In addition, by the construction of Θi, we know that there exists δ > 0 such that
Bδ(θ∗i ) ⊂ Θi for all 1 ≤ i ≤ K∗. As such, for any φ′K = (Q′K ;θ′1, · · · ,θ′K) ∈ Bδ(φK), we
have

θ′`i ∈ Bδ(θ`i) = Bδ(θ∗i ) ⊂ Θi

for any 1 ≤ i ≤ K∗. However, by the construction of ΦK,α defined in (44), this means that
φ′K must belongs to ΦK,α for some α = (S,W ) with S = (S1, S2, · · · , SK∗) satisfying

`i ∈ Si for all i = 1, 2, · · · ,K∗,

which means that Si 6= ∅, so that α ∈ A+ as defined in (58). As a consequence, we have
Φ∗K,δ ⊂ ∪α∈A+ΦK,α as desired. The proof is completed.

Proof [Proof of Lemma 14] a) For any α = (S,W ) ∈ A, it is straightforward to check that
ΦK,α = ϕα(Γα) and Γα has the same dimension. In addition, by (49), it is straightforward
to show that

Γα = Rα ×Θs(1) × · · · ×Θs(K), (65)

where
Rα = {R : ϕα(R;θ∗s(1), · · · ,θ

∗
s(K)) ∈ ΦK,α}; (66)

namely, the projection space of ϕ−1
α (ΦK,α) onto the space of R.

Now, each Θs(k) has dimension d. As for the dimension of Rα, note that, by (50), ψ−1
α

maps QK to a K∗-by-K∗ matrix satisfying

K∗∑
j=1

ψ−1
αij(QK) =

K∗∑
j=1

∑
k∈Si

∑
`∈Sj

µkqk` =
∑
k∈Si

∑
`∈∪K∗j=1Sj

µkqk` =
∑
k∈Si

K∑
`=1

µkqk` =
∑
k∈Si

µk, (67)

since S = (S1, · · · , SK∗) is a partition of {1, 2, · · · ,K}, and
∑K

`=1 qk` = 1. Hence, Rα is the
space of K∗-by-K∗ matrices subject to K∗ constraints given by (67), so it has dimension
(K∗)2 −K∗ = K∗(K∗ − 1). Thus, by (65), the dimension of Γα is

K∗(K∗ − 1) + dK = K∗(K∗ − 1) + dK∗ + d(K −K∗) = ∆K∗ + d(K −K∗) = ∆Γ,

and so does ΦK,α = ϕα(Γα).

b) By the argument leading up to (44) and (60), ϕα(Γα) ∩ Φ
∗
K = {ϕα(γ∗α)} defined

as in (60). In addition, a direct check shows that ϕα(γ∗α) = φ∗α = (QK ;θ1, · · · ,θK) with
QK ∈ QK , which is an ergodic transition matrix.

c) Recall γ∗α = (R∗;θs(1), · · · ,θs(K)). A direct check shows that ψα(R∗) is a transition
matrix with positive entries, and θ∗i is an interior of Θi for all i = 1, 2, · · · ,K∗. As such,
ϕα(γ∗α) is an interior point of ΦK,α, and therefore, γ∗α is an interior point of Γα.

d) Note that since φ∗ v φ∗α = ϕα(γ∗α), by Lemma 2 in Leroux (1992b), pK∗(y1:n|φ∗) =
pK(y1:n|ϕα(γ∗α)) and hence,

LHS of (27) =
n

∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγ

pK(y1:n|ϕα(γ∗α))
. (68)
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In addition, since ϕα(γ) is bijective, the inverse function theorem ensures that |Λα(γ)| > 0
for all α ∈ A+ and γ ∈ Γα. Thus, if p0(ϕα(γ∗α)) > 0, then

pα(·) :=
p0(ϕα(·))|Λα(·)|∫

Γα
p0(ϕα(γ))|Λα(γ)|dγ

(69)

is a prior distribution on Γα with positive density at γ∗α, and therefore

RHS of (68) =
n

∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))pα(γ)dγ

pK(y1:n|ϕα(γ∗α))pα(γ∗α)
× p0(ϕα(γ∗α))|Λα(γ∗α)|. (70)

Combining (70) with the Bernstein-von Mises theorem in Lemma 20 below to have

RHS of (70) =
(2π)∆Γ/2

|Jα|1/2
× p0(ϕα(γ∗α))|Λα(γ∗α)|+ oP ∗(1) = Cα + oP ∗(1),

where Jα is the Fisher information to be defined in Lemma 20, and

Cα :=
(2π)∆Γ/2

|Jα|1/2
× p0(ϕα(γ∗α))|Λα(γ∗α)|. (71)

It remains to handle the case when p0(ϕα(γ∗α)) = 0. For this purpose, let uα be any
continuous prior distribution on Γα such that uα(γ∗α) > 0. Then, for any ε > 0,

pεα(·) :=
p0(ϕα(·))|Λα(·)|+ εuα(·)∫

Γα
(p0(ϕα(γ))|Λα(γ)|+ ϕα(γ)) dγ

(72)

is a continuous prior distribution on Γα with positive density at γ∗α. Hence, by Lemma 20,

RHS of (68) ≤
n

∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ)) (p0(ϕα(γ))|Λα(γ)|+ ϕα(γ)) dγ

pK(y1:n|ϕα(γ∗α))

≤
n

∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))pεα(γ)dγ

pK(y1:n|ϕα(γ∗α))pεα(γ∗α)
× ϕα(γ∗α)|Λα(γ∗α)|

P ∗−−−→
n→∞

(2π)∆Γ/2

|Jα|1/2
× ϕα(γ∗α)|Λα(γ∗α)|. (73)

Since ε > 0 can be arbitrarily small, we get

RHS of (68) = 0 + op(1) = Cα + op(1),

since Cα = 0 due to (71) and the fact that p0(ϕα(γ∗α)) = 0 in this case. The proof is
completed.

Proof [Proof of Lemma 15] Recall QεK in condition 7), ψα defined in (46), and Rα defined
in (66). Let

A+
ε :=

{
α ∈ A+ : ψα(Rα) ∩QεK 6= ∅

}
, (74)
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which is the collection of α such that there exists some φK = (QK ;θ1, · · · ,θK) ∈ ΦK,α with
QK ∈ QεK . Note that for any α ∈ A+ −A+

ε , we have

ψα(Rα) ⊂ QK −QεK . (75)

In addition, by condtion 7), p0(φK) = 0 for any φK = (QK ;θ1, · · · ,θK) with QK ∈
QK −QεK . So by (75),

ψα(γ∗α) ∈ ψα(Rα) ⊂ QK −QεK ⇒ p0(ϕα(γ∗α)) = 0. (76)

Hence, by (71), we have
Cα = 0 for any α ∈ A+ −A+

ε , (77)

and hence ∫
α∈A+

Cαdα =

∫
α∈A+

ε

Cαdα.

In addition, since QεK is compact and ψα(γ) is continuous, A+
ε is compact. Furthermore

since Cα is continuous in α, we have∫
α∈A+

ε

Cαdα <∞,

which completes the proof.

Remark 17 As one can see from above, to ensure the finiteness in (28), one does not
actually need a stronger condition 7) but only needs to make the prior p0 vanishes quick
enough when it approaches the boundary of QK . To be more specific, if one can estimate
the rate of |Jα| as α approaches the boundary, then one can choose a p0 that vanishes
quick enough near the boundary to make (28) holds. Potential choices of priors include the
Dirichlet distribution with a certain order or priors that vanish exponentially fast near the
boundary. See Gassiat and Rousseau (2014) for examples.

However, priors with non-zero values near the boundary would raise a question of uni-
form convergence in Lemma 16. See Remark 25 for details.

Proof [Proof of Lemma 16] Recall A+
ε defined in (74). By (77), we have Cα = 0 for

any α ∈ A+ − A+
ε . In addition, through the same argument leading up to (76), for any

α ∈ A+ −A+
ε and any γ ∈ Γα, we have

ϕα(γ) /∈ Φε
K ⇒ p0(ϕα(γ)) = 0,

which means that ∫
Γα
pK(y1:n|ϕα(γ))p0(ϕα(γ))|Λα(γ)|dγ

pK∗(y1:n|φ∗)
= 0 = Cα.

In other words, as soon as we show that the convergence in (27) is uniform across A+
ε , we

immediately know that the convergence is also uniform across A+, and hence, (29) holds.

41



Chen, Fuh and Kao

To see why the convergence is uniform for α ∈ A+
ε , let us first review how the convergence

holds for any fixed α. Recall LK(y1:n|φK) = log pK(y1:n|φK), and pα defined in (69).
Note that the convergence in (27) comes from Lemma 20 below, which uses the Berstein-
von Mises theorem in De Gunst and Shcherbakova (2008), Theorem 3.1. This theorem is
obtained through the following steps:

a) Use the law of large numbers (LLN) for LK(y1:n|ϕα(γ)) for any γ ∈ Γα to show that,
for any δ > 0, as n→∞,∫

Γα
pK(y1:n|ϕα(γ))pα(γ)dγ

pK(y1:n|ϕα(γ∗α))
=

∫
Bδ,α(γ∗α) pK(y1:n|ϕα(γ))pα(γ)dγ

pK(y1:n|ϕα(γ∗α))
+ oP ∗(1), (78)

where Bδ,α(γ) = {γ′ ∈ Γα : ‖γ′ − γ‖ < δ}.

b) On Bδ,α(γ∗α), by Taylor expansion of LK to have

LK

(
y1:n

∣∣∣∣ϕα(γ∗α) +
v√
n

)
=LK(y1:n|ϕα(γ∗α)) + vt

DγLK(y1:n|ϕα(γ∗α))√
n

+ vt
D2
γLK(y1:n|ϕα(γ̃α,n))

2n
v, (79)

for some γ̃α,n between ϕα(γ∗α) and ϕα(γ∗α) + v√
n

, with Dγf and D2
γf denote the gradient

and the Hessian matrix of a function f with respect to γ, respectively.

c) Use the central limit theorem (CLT) for DγLK(y1:n|ϕα(γ∗α)) to control the first derivative
term in (79).

d) Use the LLN for D2
γLK(y1:n|ϕα(γ̃α,n) with γ̃α,n

P ∗−−→ γ∗α to control the second derivative
term in (79). Note that a) ensures the convergence of γ̃α,n.

Thus, if we want to show that the convergence in (27) is uniform across A+
ε , we need

the following three steps:

i) show that for any sufficiently small δ > 0, (78) holds uniformly for all α ∈ A+
ε ;

ii) show that the CLT in step c) is uniform for all α ∈ A+
ε . More precisely, we need to

show that
1√
n

sup
α∈A+

ε

∥∥∥DγLK(y1:n|ϕα(γ∗α))J−1/2
α

∥∥∥ = OP ∗(1), (80)

where Jα will be defined in Lemma 20.

iii) show that the LLN in step d) is uniform for all α ∈ A+
ε . That is, we need to show that,

for any γα,n with supα∈A+
ε
‖γα,n − γ∗α‖ → 0,

sup
α∈A+

ε

∥∥∥ 1

n
D2
γLK(y1:n|ϕα(γα,n)) + Jα

∥∥∥ P ∗−−−→
n→∞

0. (81)

We will prove i)-iii) through Lemma 22 - 26, respectively, which leads to the uniform
convergence of (27) and completes the proof.
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S1.2 Lemmas for Intermediate Steps

Lemma 18 (Likelihood Concentration Used in the Proof of Lemma 13) Assume that
conditions 1)-5) hold. Then, for any K ≥ K∗ and δ > 0, there exists ε > 0 such that

P ∗

{
sup

φ∈ΦK−Φ∗K,δ

1

n
(LK(y1:n|φ)− LK∗(y1:n|φ∗)) ≤ −ε

}
−−−→
n→∞

1, (82)

where Φ∗K,δ is defined right after (63). Consequently, as n→∞,∫
ΦK−Φ∗K,δ

pK(y1:n|φK)p0(φK)dφK

pK∗(y1:n|φ∗)
= OP ∗

(
e−εn

)
. (83)

Lemma 18 is used to prove (25) as we mentioned in Section A.3.

Proof [Proof of Lemma 18]

Define Q̃∗K = {q̃∗k`, 1 ≤ k, ` ≤ K} by

q̃∗k` =


q∗k` k, ` < K∗

1
K−K∗+1q

∗
kK∗ k < K∗, ` ≥ K∗

q∗K` k ≥ K∗, ` < K∗

1
K−K∗+1q

∗
KK∗ k, ` ≥ K∗

which is the transition matrix when we “split” state K∗ into states K∗,K∗+ 1, · · · ,K with
equal probabilities. Further, define

φ̃∗K = (Q̃∗K ;θ1, · · · ,θK∗−1,θK∗ ,θK∗ , · · · ,θK∗) ∈ ΦK .

Then, a direct computation shows that

pK(y1:n|φ̃∗K) = pK∗(y1:n|φ∗),

and therefore, LK∗(y1:n|φ∗) = LK(y1:n|φ̃∗K). In addition, let P̃ ∗K denotes the probability
when {Xi, i ≥ 0} is a Markov chain on XK , governed by Q̃∗K , with X0 follows the invariant
measure under Q̃∗K . Then, a direct computation shows that {Yi, i ≥ 1} has the same law
under P ∗ and P̃ ∗K . As such, for any δ > 0 and ε > 0, we have

P ∗

{
sup

φ∈ΦK−Φ∗K,δ

LK(y1:n|φ)− LK∗(y1:n|φ∗)
n

≤ −ε

}

=P̃ ∗K

{
sup

φ∈ΦK−Φ∗K,δ

LK(y1:n|φ)− LK(y1:n|φ̃∗K)

n
≤ −ε

}
. (84)

However, by using the argument in the proof of Theorem 3 in Leroux (1992b), we have that
under conditions 1)-5), for any δ > 0, there exists ε > 0 such that the second line in (84)
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goes to one as n → ∞, so (82) is proven. (83) immediately follows since, by (82), with
probability approaching to one, we have, as n→∞,∫

ΦK−Φ∗K,δ
pK(y1:n|φK)p0(φK)dφK

pK∗(y1:n|φ∗)
=

∫
ΦK−Φ∗K,δ

exp{LK(y1:n|φK)}p0(φK)dφK

exp{LK∗(y1:n|φ∗)}

≤ exp

{
sup

φK∈ΦK−Φ∗K,δ

LK(y1:n|φK)− LK∗(y1:n|φ∗)
n

× n

}
= OP ∗

(
e−εn

)
.

Remark 19 Note that the results in Leroux (1992b) do not require the probability measure
to be under the true number of states K∗. It also does not require the true parameters to be
unique in the parameter space, as its results are with respect to the quotient topology of the
equivalence class. See the last paragraph on page 142 of Leroux (1992b). Also note that its
definition of equivalent class φ v φ′ does not require φ and φ′ to correspond to the same
number of states; it only requires that {θXi : i ≥ 0} follow the same law under φ and φ′.

Lemma 20 (Generalized Bernstein–von Mises theorem for HMM) Assume condi-
tions 1)-5) holds and K ≥ K∗. Then, for any α ∈ A+ and any continuous prior distribution
pα on Γα with pα(γ∗α) > 0,

n
∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))pα(γ)dγ

pK(y1:n|ϕα(γ∗α))pα(γ∗α)

P ∗−−−→
n→∞

(2π)∆Γ/2

|Jα|1/2
, (85)

where

Jα = lim
n→∞

1

n
E∗
[
D2
γ log pK(y1:n|ϕα(γ∗α))

]
.

Proof Let P ∗α and E∗α denote the probability and expectation when {Yi, i ≥ 1} is govern
by the K-state HMM under φ∗α = ϕα(γ∗α), respectively. Since φ∗α v φ∗, by Lemma 2 in
Leroux (1992b), {Yi, i ≥ 1} has the same probability law under P ∗ and P ∗α, which implies
that

lim
n→∞

1

n
E∗
[
D2
γ log pK(y1:n|ϕα(γ∗α)

]
= lim

n→∞

1

n
E∗α
[
D2
γ log pK(y1:n|ϕα(γ∗α)

]
,

with the limit in the last line exists due to Lemma 2 of Bickel et al. (1998) under conditions
1)-5). Hence, Jα is well defined.

Now, we would like to show that the Berstein-von Mises theorem for HMM in Theorem
3.1 of De Gunst and Shcherbakova (2008) holds on Γα. To do so, we need to check the
conditions (B1)-(B6) in De Gunst and Shcherbakova (2008), which are true since

• (B1) holds since, by part c) of Lemma 14, γ∗α is an interior point of Γα;

• (B2)-(B5) are implied by conditions 1)-5);

• (B6) holds since, by part b) of Lemma 14, ϕα(Γα) ∩ Φ
∗
K contains exactly one point

φ∗α = ϕα(γ∗α).
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Thus, Theorem 3.1 in De Gunst and Shcherbakova (2008) gives

n
∆Γ
2

∫
Γα
pK(y1:n|ϕα(γ))pα(γ)dγ

pK(y1:n|ϕα(γ∗α))pα(γ∗α)

P ∗α−−−→
n→∞

(2π)∆Γ/2

|Jα|1/2
,

which immediately implies (85) since {Yi, i ≥ 1} has the same law under P ∗ and P ∗α. The
proof is completed.

Remark 21 For the results cited in the proof of Lemma 20:

• Leroux (1992b) studies consistency of the MLE for HMM. Its Lemma 2 shows that two
probability laws agree if and only if their corresponding parameters are in the same
equivalent class.

• Bickel et al. (1998) studies asymptotic normality of the MLE for HMM. Its Lemma 2
shows that the corresponding Fisher information exists.

• Theorem 3.1 in De Gunst and Shcherbakova (2008) is the Berstein-von Mises theorem
for HMM under the identifiability condition.

Lemma 22 (Uniform Concentration of LK) Assume conditions 1)—5). Then for any
δ > 0, (78) holds uniformly for all α ∈ A+

ε .

Proof As in the proof of Lemma 14, part d), we have LK(y1:n|ϕα(γ∗α)) = LK∗(y1:n|φ∗).
For any δ > 0, define

Vδ = ∪α∈A+
ε
ϕα (Γα − Bδ,α(γ∗α)) .

If we can show that, for any δ > 0, Vδ is bounded away from Φ
∗
K by some constant cδ > 0,

then we have

Vδ ⊂ ΦK − Φ∗K,cδ , (86)

with Φ∗K,δ being defined in the paragraph right before Lemma 18. In this case, Lemma 18
shows that there exists c > 0 such that

P ∗

{
sup
φ∈Vδ

LK(y1:n|φ)− LK(y1:n|ϕα(γ∗α))

n
≤ −c

}

=P ∗

{
sup
φ∈Vδ

LK(y1:n|φ)− LK∗(y1:n|φ∗)
n

≤ −c

}

≥P ∗
{

sup
φ∈ΦK−Φ∗K,cδ

LK(y1:n|φ)− LK∗(y1:n|φ∗)
n

≤ −c

}
−−−→
n→∞

1,

and the uniformity of (78) immediately follows through an argument similar to that in
Lemma 18.
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To see why such cδ > 0 exists, first note that, as shown in the proof of Lemma 4, A+
ε is

compact. Further note that

Φ
∗
K = Φ∗K ∪

(
Φ
∗
K − Φ∗K

)
. (87)

For Φ∗K , note that for each α ∈ A+
ε and γ ∈ Γα − Bδ,α(γ∗α), the closest φ ∈ Φ∗K to ϕα(γ) is

φ∗α = ϕα(γ∗α). Hence, Vδ is bounded away from Φ∗K by

c′δ := inf
{
‖ϕα(γ)− ϕα(γ∗α)‖ : α ∈ A+

ε , γ ∈ Γα − Bδ,α(γ∗α)
}
. (88)

As for Φ
∗
K − Φ∗K , note that

Φ
∗
K − ΦK ⊂ ∂QK ×ΘK .

On the other hand, since A+
ε is compact, ∪α∈A+

ε
ψα(Γ) is a compact subset of the open set

QK , which means that ∪α∈A+
ε
ψα(Γ) is bounded away from ∂QK by some cQ > 0. Combin-

ing with (87) and (88), we see that Vδ is bounded away from Φ
∗
K by cδ = min{c′δ, cQ} > 0,

so (86) holds. The proof is completed.

Remark 23 Note that this argument will not work when we replace A+
ε by A+, as cQ = 0

in this case, meaning that we can have α such that the likelihood in Γα concentrating to γ∗α
arbitrarily slow. This shows the importance of condition 7).

Lemma 24 (Uniform Convergence of D2LK in (81)) Assume conditions 1)—5). Then
(81) holds for any γα,n with supα∈A+

ε
‖γα,n − γ∗α‖ → 0 as n→∞.

Proof Fix such a family of sequence γα,n. Follow the steps in Bickel et al. (1998), we
extend {(Xi, Yi)}∞i=1 to {(Xi, Yi)}∞i=−∞, and let pK(Yn|Y−m:(n−1),φK) be the conditional
likelihood of Yn given Y−m:(n−1) and parameter φK . By Bickel et al. (1998), Lemma 10,
under conditions 1)-5), for α ∈ A, there exists an ergodic sequence ζα,n such that

D2
γ log pK(Yn|Y−m:(n−1), ϕα(γ∗α))

L1

−−−−→
m→∞

ζα,n.

The proof of Bickel et al. (1998), Lemma 2, shows that, for each α ∈ A,∥∥∥∥D2
γLK(y1:n|ϕα(γα,n))

n
−
∑n

i=1 ζα,i
n

∥∥∥∥ P ∗−−−→
n→∞

0, (89)

and ∑n
i=1 ζα,i
n

−−−→
n→∞

Jα (90)

with probability one for some non-singular matrix Jα.
To further extend (90) to an uniform version, we first show that

E∗

[
sup
α∈A+

ε

‖ζα,n‖

]
<∞ (91)
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for each n. As discussed in the proof of Lemma 15, W is bounded away from zero on A+
ε ,

so that ∪α∈A+
ε

ΦK,α is bounded away from ∂ΦK . Hence, by conditions 4) and 5), for any

α′ ∈ A+
ε , there exists an open neighborhood O(α′) such that

E∗

[
sup

α∈O(α′)
‖ζα,n‖

]
≤ E∗

[
‖ζα′,n‖

]
+ ε.

Since {O(α′) : α′ ∈ A+
ε } forms an open covering ofA+

ε , which is compact (as discussed in the
proof of Lemma 22), we can choose finitely many {αm, 1 ≤ m ≤ M} so that {O(αm),m =
1, · · · ,M} forms an open covering of A+

ε . As such, (91) holds since

E∗

[
sup
α∈A+

ε

‖ζα′,n)‖

]
≤ max

1≤m≤M
E∗

[
sup

α∈O(αm)
‖ζα,n‖

]
≤ max

1≤m≤M
E∗ [‖ζαm,n‖] + ε <∞.

We then show that

sup
α∈A+

ε

∥∥∥∥∑n
i=1 ζα,i
n

− Jα
∥∥∥∥ P ∗−−−→

n→∞
0. (92)

Notice that:

a) A+
ε is compact;

b) by condition 5), ζα,1 is continuous in α;

c) for each α, by (90), 1
n

∑n
i=1 ζα,i

n→∞−−−→ E∗ζα,1 with probability one;

d) by (91), supα∈A+
ε
‖ζα,n‖ ∈ L1.

Therefore, by the uniform law of large numbers provided in Lemma 27, (92) holds.

Finally, by using a similar open covering argument as proving (91), we can show that

sup
α∈A+

ε

∥∥∥∥D2
γLK(y1:n|ϕα(γα,n))

n
−
∑n

i=1 ζα,i
n

∥∥∥∥ P ∗−−−→
n→∞

0. (93)

The proof is completed by combining (92) and (93).

Remark 25 The above argument uses the fact that ∪α∈A+
ε

ΦK,α is bounded away from ∂ΦK ,

which ensures an uniform ergodicity across all φ∗α for all α ∈ A+
ε . If we replace A+

ε to A+,
then ΦK,α can be arbitrarily close to ∂ΦK , meaning that φ∗α can be arbitrarily close to
non-ergodic. This is another reason why the condition 7) is important. See Gassiat and
Rousseau (2014) for related discussions. The same issues happen in Lemma 26.

Lemma 26 (Uniform Convergence of DγLK in (80)) Assume conditions 1)–6). Then
(80) holds.
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Proof By the proof of Bickel et al. (1998), Lemma 1, under conditions 1)-5), for any α ∈ A,
there exists a sequence {ηα,i, i ≥ 1} such that∥∥∥∥∥DγLK(y1:n|ϕα(γ∗α))√

n
−
∑n

i=1 ηα,i√
n

∥∥∥∥∥ P ∗−−−→
n→∞

0, (94)

and

lim
n→∞

∑n
i=1 ηα,i√
n

d−−−→
n→∞

N (~0, Jα).

Define

Gs:t = sup
α∈A+

ε

t∑
i=s+1

ηα,iJ
−1/2
α .

Suppose we can prove that, as n→∞,

lim
n→∞

sup
α∈A+

ε

∑n
i=1 ηα,iJ

−1/2
α√

n
= lim

n→∞

G0:n√
n

= OP ∗(1), (95)

then by (94), (95) and a similar open covering argument as in the proof of Lemma 24, we
prove Lemma 26.

To prove (95), we use the central limit theorem of subadditive processes provided by
Ishitani (1977), Theorem 1. To check the conditions, first note that

Gs:t = sup
α∈A+

ε

t∑
i=s+1

ηα,iJ
−1/2
α ≤ sup

α∈A+
ε

u∑
i=s+1

ηα,iJ
−1/2
α + sup

α∈A+
ε

t∑
i=u+1

ηα,iJ
−1/2
α = Gs:u +Gu:t,

so G0:n is subadditive. The condition (2) in Ishitani (1977), Theorem 1, holds due to Lemma
28. In addition, note that the proof of Bickel et al. (1998), Lemma 1, shows that ηα,n is a
stationary, ergodic martingale increment sequence, so conditions (1), (3) and (4) hold. To
sum up, all conditions in Ishitani (1977), Theorem 1, are satisfied, so (95) holds. The proof
is completed.

Lemma 27 (Uniform Law of Large Numbers used in Lemma 24) Suppose, for each
α ∈ A, ζα,i is a sequence of random variables satisfying

(a) A is compact;

(b) ζα,1 is continuous in α at each α ∈ A with probability one;

(c) for each α, 1
n

∑n
i=1 ζα,i

n→∞−−−→ E∗ζα,1 with probability one;

(d) E∗
[
supα∈A ‖ζα,1‖

]
<∞.

Then, we have

sup
α∈A

∥∥∥∥∥ 1

n

n∑
i=1

ζα,i − E∗ζα,1

∥∥∥∥∥ P ∗−−−→
n→∞

0.
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Proof We will only prove the case with one dimensional ζα,i, as the higher dimensional
case can be proved similarly. Throughout this proof, for each α ∈ A and δ > 0, let
Bδ(α) = {α′ : ‖α′ − α‖ < δ}.

The proof is basically based on the proof of Jennrich (1969), Theorem 2, with minor
adjustments. First, for any α ∈ A, define

∆α
1 (δ) = sup

α′∈Bδ(α)
ζα′,1 − inf

α′∈Bδ(α)
ζα′,1.

Note that for each α ∈ A, (i) by condition (b), we have ∆α
1 (δ) ↓ 0 with probability one as

δ ↓ 0; (ii) ∆α
1 (δ) ≤ 2 supα∈A |ζα,1|; (iii) by condition (d), E∗

[
supα∈A |ζα,1|

]
<∞. Therefore

by (i)-(iii) and the dominated convergence theorem, we have E∗ [∆α
1 (δ)] ↓ 0 as δ ↓ 0. Hence,

for any ε > 0, for all α ∈ A, the exists δε(α) > 0 such that E∗ [∆α
1 (δε(α))] < ε.

Now, by (a), A is compact, and is covered by {Bδε(α)(α) : α ∈ A}, so we can choose

finitely many αk ∈ A (k = 1, · · · ,K) such that A ⊂
⋃K
k=1 Bδε(αk)(αk). Hence, we have

sup
α∈A

{
1

n

n∑
i=1

ζα,i − E∗ζα,1

}
= max

k
sup

α∈Bδε(αk)(αk)

{
1

n

n∑
i=1

ζα,i − E∗ζα,1

}

≤max
k

{
1

n

n∑
i=1

sup
α∈Bδε(αk)(αk)

ζα,i − E∗
[

inf
α∈Bδε(αk)(αk)

ζα,1

]}
. (96)

Since ζα,i are ergodic (as stated in (c)), so are supα∈Bδε(αk)(αk) ζα,i. Hence, by (d) and the

weak law of large numbers of ergodic sequence, as n→∞,

1

n

n∑
i=1

sup
α∈Bδε(αk)(αk)

ζα,i = E∗

[
sup

α∈Bδε(αk)(αk)
ζα,1

]
+ oP (1). (97)

Combining (96) and (97), we have

sup
α∈A

[
1

n

n∑
i=1

ζα,i − E∗ζα,1

]
≤max

k

{
E∗

[
sup

α∈Bδε(αk)(αk)
ζα,1

]
− E∗

[
inf

α∈Bδε(αk)(αk)
ζα,1

]}
+ oP (1)

= max
k

E∗[∆α
1 (δε)] + oP (1) ≤ ε+ oP (1).

A similar argument shows that

inf
α∈A

[
1

n

n∑
i=1

ζα,i − E∗ζα,1

]
≥ −ε+ oP ∗(1).

Since ε can be arbitrarily small, the proof is completed.

Lemma 28 (Mixing Condition used in Lemma 26) Recall P ∗ is the probability mea-
sure of {(Xi, Yi), i ≥ 1} under the true parameter φ∗. Suppose that under P ∗, {Xi, i ≥ 1}
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is ergodic (irreducible, aperiodic, and positive recurrent.) Then there exist constant C > 0
and ρ ∈ (0, 1) such that,∣∣∣P ∗ν {Y1:n ∈ A}P ∗ν {Yn+m:∞ ∈ B} − P ∗ν {Y1:n ∈ A, Yn+m:∞ ∈ B}

∣∣∣ ≤ Cρm × P ∗ν {Y1:n ∈ A},

for any A, B, m ≥ 0 and initial measure ν = (ν1, · · · , νK∗). Here,

P ∗ν {·} =
K∗∑
k=1

νkP
∗{·|X0 = k}.

Proof [Proof of Lemma 28] Let µ = (µ1, · · · , µK∗) be the invariant probability of Xn (under
true parameter φ∗.) Since Xn is ergodic under P ∗, there exist R > 0 and ρ ∈ (0, 1) such
that for any n,m,

max
1≤k,l≤K∗

∣∣∣P ∗ {Xn+m = l
∣∣Xn = k

}
− µl

∣∣∣ ≤ Rρm. (98)

As such, we have

P ∗ν {Y1:n ∈ A, Yn+m:∞ ∈ B}

=
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k,Xn+m = l, Yn+m:∞ ∈ B}

=
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} × P ∗ {Xn+m = l|Xn = k} × P ∗ {Yn+m:∞ ∈ B|Xn+m = l}

≤
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} × (µl +Rρm)× P ∗ {Yn+m:∞ ∈ B|Xn+m = l}

=
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} × µl × P ∗ {Yn+m:∞ ∈ B|Xn+m = l}

+
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} ×Rρm × P ∗ {Yn+m:∞ ∈ B|Xn+m = l}

≤
∑

1≤k≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} ×

∑
1≤l≤K∗

µlP
∗ {Yn+m:∞ ∈ B|Xn+m = l}

+
∑

1≤k,l≤K∗
P ∗ν {Y1:n ∈ A,Xn = k} ×Rρm

=P ∗ν {Y1:n ∈ A} × P ∗µ{Yn+m:∞ ∈ B}+K∗Rρm × P ∗ν {Y1:n ∈ A}.

A similar argument leads to the lower bound, and so we have∣∣∣P ∗ν {Y1:n ∈ A, Yn+m:∞ ∈ B} − P ∗ν {Y1:n ∈ A}P ∗µ {Yn+m:∞ ∈ B}
∣∣∣

≤K∗Rρm × P ∗ν {Y1:n ∈ A}. (99)
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On the other hand, we have

P ∗ν {Y1:n ∈ A}P ∗ν {Yn+m:∞ ∈ B}

=P ∗ν {Y1:n ∈ A}
∑

1≤l≤K∗
P ∗ν {Xn+m = l}P ∗

{
Yn+m:∞ ∈ B

∣∣Xn+m = l
}

≤P ∗ν {Y1:n ∈ A}
∑

1≤l≤K∗
(µl +Rρn+m)P ∗

{
Yn+m:∞ ∈ B

∣∣Xn+m = l
}

=P ∗ν {Y1:n ∈ A}P ∗µ {Yn+m:∞ ∈ B}

+ P ∗ν {Y1:n ∈ A}
∑

1≤l≤K∗
Rρn+mP ∗

{
Yn+m:∞ ∈ B

∣∣Xn+m = l
}

≤P ∗ν {Y1:n ∈ A}P ∗µ {Yn+m:∞ ∈ B}+K∗Rρn+m × P ∗ν {Y1:n ∈ A}
≤P ∗ν {Y1:n ∈ A}P ∗µ {Yn+m:∞ ∈ B}+K∗Rρm × P ∗ν {Y1:n ∈ A}.

A similar argument leads to the lower bound, and so we have∣∣∣P ∗ν {Y1:n ∈ A}P ∗ν {Yn+m:∞ ∈ B} − P ∗ν {Y1:n ∈ A}P ∗µ {Yn+m:∞ ∈ B}
∣∣∣

≤K∗Rρm × P ∗ν {Y1:n ∈ A}. (100)

Combining (99) and (100), we complete the proof for Lemma 28.

S1.3 Proof of Corollary 7

Recall that φ∗ is the true parameter, µ(φ∗) = (µ1(φ∗), · · · , µK∗(φ∗)) is the corresponding
invariant probability measure, and P ∗ is the probability law of {(Xi, Yi), i ≥ 1} under φ∗

and initial distribution µ(φ∗). In addition, for any K, recall

QmixK = {QK : q1k = q2k = · · · = qKk for all 1 ≤ k ≤ K},

and define Φmix
K =

{
φK = (QK ;θ1, · · · ,θK) : QK ∈ QmixK

}
. Note that for any φK ∈ Φmix

K

with qik = qk for all 1 ≤ k ≤ K, we have

p(y1:n|φK) =

n∏
i=1

K∑
xi=1

qxif(yi|θxi),

and hence, the log-likelihood

L(y1:n|φK) =
n∑
i=1

log

(
K∑
xi=1

qxif(yi|θxi)

)
,

which has an additive form. This ensures the asymptotic behavior of L as well as its
derivatives at any φK ∈ Φmix

K under P ∗.
Recall that we use the following three steps to prove (6):

(a) For K∗, the posterior distribution over ΦK∗ is asymptotically normal, centering at φ∗;
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(b) For K < K∗, the log-likelihood decays exponentially due to the fact that the entire ΦK

can be viewed as a subset of ΦK∗ , bounded away from φ∗;

(c) For K > K∗, we decompose ΦK into a family of ΦK,α so that the posterior distribution
over ΦK,α is asymptotically normal, centering at the unique “true” value φ∗α in ΦK,α.

Note that a reason for (a)-(c) hold is φ∗ belongs to ΦK∗ . However, in the case of Corollary 7,
φ∗ is generally not in Φmix

K∗ , so there is no way to have a posterior distribution concentrated
at φ∗.

To overcome this difficulty, we follow the argument in Bunke and Xavier (1998) to have
that the posterior distribution being asymptotically normal centering at some “pseudo-true”
value in Φmix

K∗ (note that the log-likelihood follows an additive structure in this case.) Hence,
by replacing all “true” values in the original proof of Theorem 1 with the corresponding
“pseudo-true” values, we get the proof. Details are as follows.
Proof [Part (a) under Corollary 7] Define

Q∗mix =


µ1(φ∗) µ2(φ∗) · · · µK∗(φ

∗)
µ1(φ∗) µ2(φ∗) · · · µK∗(φ

∗)
...

...
. . .

...
µ1(φ∗) µ2(φ∗) · · · µK∗(φ

∗)

 ,

and set φ∗mix = (Q∗mix;θ∗1, · · · ,θ∗K). A direct check shows that φ∗mix is “pseudo-true” value
in the sense that it is the unique point in Φmix

K∗ that obtains the minimum Kullback-Leibler
divergence to φ∗. Hence, by the argument in Bunke and Xavier (1998) (with all results
within related to i.i.d. data being replaced by the corresponding HMM version provided by
Bickel et al. (1998), De Gunst and Shcherbakova (2008) and Leroux (1992b)), the posterior
distribution over Φmix

K∗ is asymptotically normal, centering at φ∗mix, that is,

pK∗(y1:n|φ∗mix)p0(φ∗mix)

n∆mix
K∗ /2pK∗(y1:n)

= OP ∗(1) (101)

as n→∞, where
∆mix
K := Kd+ (K − 1) (102)

is the dimension of Φmix
K .

Proof [Part (b) under Corollary 7] Note that when K < K∗, the entire Φmix
K is a subset of

Φmix
K∗ , and is bounded away from φ∗mix. As such, we have

inf
φK∈ΦmixK

KL(φK ,φ
∗) > KL(φ∗mix,φ

∗)

with KL(·, ·) denotes the Kullback-Leibler divergence. As such, a similar argument as in
Section A.2 gives

pK(y1:n)

pK∗(y1:n|φ∗mix)
= OP ∗

(
e−cn

)
(103)

as n→∞ for some c > 0.
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Proof [Part (c) under Corollary 7] In Theorem 1, when K > K∗, we decompose ΦK into
∪αΦK,α so that each ΦK,α contains at most one “true” value. Similarly, here we will need
to decompose Φmix

K into ∪αΦmix
K,α so that each Φmix

K,α contains at most one “pseudo-true”
value. To do so, set α = (S,W ) with S = (S1, · · · , SK∗) being a partition of {1, 2, · · · ,K},
and W = (W1, · · · ,WK) ∈ (0, 1)K . Further recall the decomposition Θ = ∪K∗k=1Θk defined
before (43) so that θ∗k is an interior point for Θk for all k = 1, 2, · · · ,K∗, and the function
s(k) defined in (42). Then, similar to Example 1, for any α = (S,W ), we set

Φmix
K,α =

{
φK ∈ Φmix

K : for all ` ∈ {1, 2, · · · ,K∗},θk ∈ Θ` for all k ∈ S`

and for each i, j ∈ {1, 2, · · · ,K}, qij∑
k∈Ss(i) qik

= Wj

}
.

Then, a similar argument as in Section A.3 shows that Φmix
K,α forms a partition of Φmix

K , each

with dimension Kd+(K∗−1) = ∆mix
K∗ +(K−K∗)d, and contains at most one “pseudo-true”

value φ∗mix,α := (Q∗mix,α;θs(1), · · · ,θs(K)) with

Q∗mix,α :=


µs(1)(φ

∗)W1 µs(2)(φ
∗)W2 · · · µs(K)(φ

∗)WK

µs(1)(φ
∗)W1 µs(2)(φ

∗)W2 · · · µs(K)(φ
∗)WK

...
...

. . .
...

µs(1)(φ
∗)W1 µs(2)(φ

∗)W2 · · · µs(K)(φ
∗)WK

 ,

in the sense that φ∗mix,α obtains the minimum Kullback-Leibler divergence to φ∗ on Φmix
K,α.

Hence, similar to part (a), by Bunke and Xavier (1998) (with all necessary HMM replace-
ment), we have the asymptotic normality of the posterior distribution over Φmix

K,α. Thus,
through a similar procedure in Section A.3, we have, as n→∞,

n(∆mix
K∗ +(K−K∗)d)/2 pK(y1:n)

pK∗(y1:n|φ∗mix)
= OP ∗(1) (104)

Proof [Proof of Corollary 7] For K < K∗, combining (101) and (103), we have (5) holds. As
for K > K∗, combining (101) and (104), we have (6) holds. Hence, all results in Theorem
1 hold under the scenario in Corollary 7, which completes the proof.

S2. Simulation Studies for Estimation of Normalizing Constant

We use models with known normalizing constants to test the performance of our estimating
of normalizing constants proposed in Section 4.2. The first family of models is d-dimensional
Gaussian mixture models with three distinct components whose covariance matrices are
diagonal with diagonal elements all equal to 0.1, 2 ≤ d ≤ 30; the normalizing constant is set
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to be C1 = exp(10). The second family of models, with normalizing constant C2 = exp(2),
has three independent dimensions: the first dimension is Gaussian with mean 1 and variance
1, the second dimension is a student-t distribution with a degree of freedom 2, and the third
dimension is Gamma distribution with shape parameter 6 and scale parameter 2.

We perform repeated simulations on the two families of models as follows: first, simu-
late Nsim samples independently from the model, apply the importance sampling algorithm
mentioned in Section 4.2 with Nis samples from the fitted importance function, with the
Gaussian tail and the t-tail. For comparison, we also use the reciprocal importance sam-
pling with fitted Gaussian mixture and multivariate t-distribution mixture as the impor-
tance functions, respectively. The results are summarized in Table 3. It shows that the
importance sampling method, despite the more computational cost, gives better estimates
of the normalizing constant as compared to the reciprocal importance sampling, regardless
of the dimension of the parameter space and the complexity of the posterior, e.g. heavy
tail or multi-mode. The superior performance of the importance sampling that we see here
is more due to our adaptive choice of the importance function based on posterior samples,
such that the importance function covers the “regions of interest” very well.

M D Nsim Nis CI1 CI2 CI3 CI4

2 3 2,000 4,000 [-0.042, 0.023] [-0.035, 0.028] [-0.378, -0.237] [0.091, 0.265]
2 3 10,000 10,000 [-0.014, 0.013] [-0.017, 0.016] [-0.366, -0.282] [0.112, 0.210]

1 4 2,000 4,000 [-0.055, 0.042] [-0.069, 0.043] [-0.056, 0.035] [0.548, 0.643]
1 6 2,000 4,000 [-0.063, 0.046] [-0.070, 0.046] [-0.076, 0.014] [0.645, 0.738]
1 8 2,000 4,000 [-0.073, 0.021] [-0.076, 0.026] [-0.106, -0.011] [0.672, 0.791]
1 10 2,000 4,000 [-0.075, 0.018] [-0.087, 0.045] [-0.108, -0.023] [0.659, 0.833]

1 10 10,000 10,000 [-0.027, 0.020] [-0.035, 0.023] [-0.030, 0.001] [0.774, 0.847]
1 15 10,000 10,000 [-0.039, 0.012] [-0.047, 0.026] [-0.049, -0.015] [0.777, 0.924]
1 20 10,000 10,000 [-0.040, 0.012] [-0.052, 0.028] [-0.073, -0.032] [0.525, 0.975]
1 25 10,000 10,000 [-0.042, 0.003] [-0.069, 0.024] [-0.109, -0.067] [0.598, 1.010]
1 30 10,000 10,000 [-0.050, 0.003] [-0.064, 0.016] [-0.143, -0.104] [0.122, 1.069]

Table 3: Simulation results of the algorithm in Section 4.2

Simulation results of estimating normalizing constants of models 1 and 2 (M = 1, 2 in column 1) using the
algorithm in Section 4.2. the last four columns are the 95% confidence intervals of log(Ĉ/C), where Ĉ is
the estimator and C is the true value, in 100 repeated simulations using the importance sampling with
Gaussian tail (CI1), the importance sampling with t tail with a degree of freedom 2 (CI2), the reciprocal
importance sampling with Gaussian tail (CI3) and the reciprocal importance sampling with t tail degree of
freedom 2 (CI4). Nsim is the number of observations and Nis is the number of samples from the
importance function; D is the dimension of the space.

S3. Simulation Robustness

In Section 4, we propose an estimation procedure to approximate marginal likelihoods,
which results from viewing it as a problem of estimating normalization constants. Note
that the consistency theorem in the main text is for exact marginal likelihoods, whereas in

54



Det. the Num. of States in HMM via Marg. L.H.

K σ n
QK = P

(1)
K QK = P

(2)
K QK = P

(3)
K QK = P

(4)
K

ML BIC ML BIC ML BIC ML BIC

3 0.2 2000 98 100 96 100 97 100 100 100
3 0.3 2000 100 100 96 100 96.5 100 100 100
3 0.4 2000 99 46 100 100 99.5 100 100 100
3 0.5 2000 3.5 0 100 100 99 100 99.5 84

4 0.2 2000 93.5 100 97 100 100 99 99 100
4 0.3 2000 88.5 91.5 90.5 100 97 100 97.5 100
4 0.4 2000 6 0 98.5 100 100 100 85.5 11.5
4 0.5 2000 0 0 98.5 100 98 99 1 0

5 0.2 2000 93 100 98.5 100 98 89.5 95 100
5 0.3 2000 68 28.5 99 100 99.5 95 74.5 86.5
5 0.4 2000 0 0 97.5 100 100 94.5 0 0
5 0.5 2000 0 0 98.5 100 99 100 0 0

Table 4: Table 1 in the main text continued.

n = 2000 observations with homogeneous variances.

K σ n
QK = P

(1)
K QK = P

(2)
K QK = P

(3)
K QK = P

(4)
K

ML BIC ML BIC ML BIC ML BIC

3 0.2 2000 84.5 69 90 96 99 100 92.5 84.5
3 0.3 2000 55.5 29.5 91.5 76.5 98.5 94.5 84 56.5
3 0.4 2000 48 15 83 52.5 91 75 62.5 33.5
3 0.5 2000 42 10 69.5 34.5 79.5 60 47.5 16.5
4 0.2 2000 56 26 81.5 67 91.5 82.5 59 40.5
4 0.3 2000 24 6.5 64 48 75.5 59.5 36.5 16
4 0.4 2000 19.5 9 48 34.5 60 56 23.5 10
4 0.5 2000 10.5 5 31 29 54.5 48.5 16 8.5
5 0.2 2000 35 12 56.5 45.5 73.5 63.5 38.5 16
5 0.3 2000 20 2.5 46.5 38 59 51 21 7
5 0.4 2000 10 0.5 35 26.5 45.5 52.5 6 1
5 0.5 2000 2.5 0 23 12 34 40 4.5 1

Table 5: Table 2 in the main text continued.

n = 2000 observations with heterogeneous variances.
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practice, we can only approximate the marginal likelihoods using our proposed estimators.
We now present the robustness of this estimation procedure for marginal likelihoods, towards
estimating the number of hidden states. We first prove a general property for estimating
normalization constants in Section S3.1 (not limited to HMM). We then show the robustness
of the adopted estimator in Section S3.2 under the HMM setting in the main text.

S3.1 Property of the Normalizing Constant Estimator

The following is a general property of the normalizing constant estimator using the locally
restricted version, which is not limited to HMMs.

Let p̃(z) = p(z)/C be a pdf on Ω, for which we only know the un-normalized density
p(z); the normalizing constant C =

∫
p(z)dz is unknown. Let Z1:N = {Z1, · · · , ZN} be

independent random samples from p̃, and {g(·|t) : t ∈ T } be a family of densities indexed
by parameter t ∈ T . Given Z1:N = z1:N , define

T̂N = T̂N (z1:N ) := argmaxT

N∏
i=1

g(zi|T ).

Assume that V1:M = {V1, · · · , VM} are independent samples from g(·|T̂N ). In Section 4
we have shown that, given V1:M = v1:M , C can be approximated by the locally restricted
importance sampling estimator Ĉ locn,N defined as

Ĉ locM,N = Ĉ locM,N (z1:N , v1:M ) :=
1

MP̂Ωr

[ M∑
j=1

p(vj)

g(vj |T̂N )
1Ωr(vj)

]
, (105)

where Ωr ⊂ Ω and P̂Ωr = 1
N

∑N
i=1 1Ωr(zi).

Lemma 29 Let Ωr and Ĉ locM,N be defined as in (105). Assume that for any t ∈ T , 1
2 <∫

Ωr
g(z|t) < 1 and c̃l ≤ p̃(·)

g(·|t) ≤ c̃u on Ωr for some constants c̃u > c̃l > 0. Then, there exists
LM , LN > 0 such that for all M > LM and N > LN ,

V ar[Ĉ locM,N (Z1:N , V1:M )]

C2
≤
[

1

M
+

1

N

]
max

{
2c̃u
c̃l
,

2

c̃l

}
. (106)

Here C =
∫
p(z)dz is the normalizing constant.

Proof [Proof of Lemma 29] Note that the variance of Ĉ locM,N is the ratio of two indepen-

dent random variables 1
M

∑M
j=1

p(Yj)

g(Vj |T̂N )
1Ωr(Vj) and 1

N

∑N
i=1 1Ωr(Zi). The expectations and

variances of them can be computed as follows.

E

(
1

N

N∑
i=1

1Ωr(Zi)

)
=

∫
Ωr

p̃(z)dz,

V ar

[
1

N

N∑
i=1

1Ωr(Zi)

]
=

1

N

∫
Ωr

p̃(z)dz

[
1−

∫
Ωr

p̃(z)dz

]
;

56



Det. the Num. of States in HMM via Marg. L.H.

E

 1

M

M∑
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

 =E

E
 1

M

M∑
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

∣∣∣∣T̂N


=

∫
Ωr

p(z)dz = C

∫
Ωr

p̃(z)dz;

V ar

 1

M

M∑
j=1

p(yj)

g(Vj |T̂N )
1Ωr(Vj)

 =V ar

E
 1

M

M∑
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

∣∣∣∣T̂N


+ E

V ar
 1

M

M∑
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

∣∣∣∣T̂N


=E

[
1

M

∫
Ωr

p2(z)

g(z|T̂N )
dz

]
− 1

M

(∫
Ωr

p(z)dz

)2

=C2E

[
1

M

∫
Ωr

p̃2(z)

g(z|T̂N )
dz

]
− C2 1

M

(∫
Ωr

p̃(z)dz

)2

.

By delta method, we have

V ar(Ĉ locM,N ) =
V ar

[
1
M

∑M
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

]
[
E
(

1
N

∑N
i=1 1Ωr(Zi)

)]2

+
V ar

[
1
N

∑N
i=1 1Ωr(Zi)

] [
E
(

1
M

∑M
j=1

p(Vj)

g(Vj |T̂N )
1Ωr(Vj)

)]2

[
E
(

1
N

∑N
i=1 1Ωr(Zi)

)]4

+ o(M−1) + o(N−1)

=
C2

M


E
[∫

Ωr

p̃2(y)

g(z|T̂N )
dz
]

(∫
Ωr
p̃(z)dz

)2 − 1

+
C2

N

[(∫
Ωr

p̃(z)dz

)−1

− 1

]

+ o(M−1) + o(N−1). (107)

Now, by the condition on g(·|t), we have

c̃l

∫
Ωr

p̃(z)dz ≤
∫

Ωr

p̃2(z)

g(z|T̂N )
dz ≤ c̃u

∫
Ωr

p̃(y)dy,

1

c̃u
≤
[∫

Ωr

p̃(y)dy

]−1

≤ 2

c̃l
.

Plugging these back into (107) and taking M and N sufficiently large, we complete the
proof.
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S3.2 Robustness of Adopted Estimation Procedure

After having the result for general settings in Section S3.1, we now show the robustness
result under the HMM setting in the main text. Recall that for any number of state K,
given Y1:n = y1:n, pK(y1:n) denotes the corresponding marginal likelihood. In Section 4.2,
we propose a way of estimating pK(y1:n) via the importance sampling. Let N(n) and
M(n) be positive integers. Using the notations in Section S3.1, we first draw ZK1:N(n) from

pK(·|y1:n), the posterior distribution of φK given the observed trajectory, and choose an
importance function gK(·|T̂KN(n)) indexed by some parameter T̂KN(n) = T̂KN(n)(Z

K
1:N(n)). Then,

we draw V K
1:M(n) from gK(·|T̂KN(n)). Given V K

1:M(n) = vK1:M(n), Section 4.2 gives the estimated
marginal likelihood

p̂K(y1:n,v
K
1:M(n)) =

1

M(n)P̂Ωn,r

M(n)∑
j=1

pK(y1:n, v
K
j )

gK(vKj |T̂KN(n))
1Ωn,K,r(vj),

where Ωn,K,r ⊂ ΦK , the parameter space for a K-state HMM.
We claim that this estimated marginal likelihood can approximate the marginal likeli-

hood reasonably well so that the consistency of K̂n still holds if we replace the marginal
likelihood with its estimated one. Let P be the probability measure such that, for any n
and any K,

P{X1:n = x1:n,Y1:n ∈ dy1:n, Z
K
1:N(n) ∈ dz

K
1:N(n), V

K
1:M(n) ∈ dv

K
1:M(n)}

=P ∗ {X1:n = x1:n,Y1:n ∈ dy1:n} ×
N(n)∏
i=1

pK(zKi |y1:n)×
M(n)∏
j=1

gK(vKj |T̂KN(n)),

i.e., P is defined by the product of three measures (1) the probability measure under the true
parameter for (X1:n,Y1:n), which is denoted by P ∗, (2) given Y1:n = y1:n, the probability
measure for the vector ZK1:N(n) with i.i.d. components with density function pK(·|y1:n)

and (3) given ZK1:N(n) = zK1:N(n), the probability measure for the vector V K
1:M(n) with i.i.d.

components with density function gK(·|T̂KN(n)).

Theorem 30 Assume K 6= K∗ and that the following conditions hold.

(i) Under P ∗, pK(Y1:n)/pK∗(Y1:n)
n→∞−−−→ 0 in probability.

(ii) There exist c̃u > c̃l > 0 and D(n) → ∞ such that, for any N(n) ≥ D(n), we have
P{En,K} → 1 and P{En,K∗} → 1, where

En,K :=

{
∀φ ∈ Ωn,K,r,

pK(φ|y1:n)

g(φ|T̂KN(n))
∈ (c̃l, c̃u) and

∫
Ωn,K,r

g(φ|T̂KN(n))dφ > 1/2

}
.

Then, there exists A(n) → ∞ such that, for any sequences of M(n) and N(n) satisfying
M(n) ≥ A(n) and N(n) ≥ A(n), we have, under P ,

p̂K(Y1:n, V
K

1:M(n))/p̂K∗(Y1:n, V
K∗

1:M(n))
n→∞−−−→ 0in probability.
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Proof [Proof of Theorem 30] Let us first focus on K. For any n, let LM,n and LN,n
be the corresponding bounds in Lemma 29 so that (106) holds for all M(n) > LM,n and
N(n) > LN,n. Consider M(n) > LM,n, N(n) > max{LN,n, D(n)}. Since N(n) > D(n),
we have P{Ecn,K} → 0. Let σ̂2

K(y1:n) be the variance of p̂K(Y1:n, V
K

1:M(n)) conditioning on
Y1:n = y1:n. Set cn,K → 0 satisfying

cn,K

[
1

M
+

1

N

]
max

{
2c̃u
c̃l
,

2

c̃l

}
→∞.

Then, since M(n) > LM,n and N(n) > LN,n, by Lemma 29, we have

P
{
σ̂K(Y1:n) ≤ c1/2

n,KpK(Y1:n); En,K
}

n→∞−−−→ 1. (108)

Let {bn,K}n≥1 be a sequence of positive constants such that limn→∞ bn,Kcn,K = γ < 1 and
limn→∞ bn,K =∞. For any n and any y1:n, from the Chebychev’s inequality,

P
{
|p̂K(Y1:n, V

K
1:M(n))− pK(Y1:n)| > b

1/2
n,K σ̂K(Y1:n); En,K

∣∣∣Y1:n = y1:n

}
≤ b−1

n,K ,

and since this holds for all y1:n, we have

P
{
|p̂K(Y1:n, V

K
1:M(n))− pK(Y1:n)| > b

1/2
n,K σ̂K(Y1:n); En,K

∣∣∣Y1:n = y1:n

}
≤ b−1

n,K ,

As a consequence,

P

{
1− b1/2n,K

σ̂K(Y1:n)

pK(Y1:n)
≤
p̂K(Y1:n, V

K
1:M(n))

pK(Y1:n)
≤ 1 + b

1/2
n,K

σ̂K(Y1:n)

pK(Y1:n); En,k
; En,K

}
=1− P

{
|p̂K(Y1:n,ϕK)− pK(Y1:n)| > b

1/2
n,K σ̂K(Y1:n); En,k

}
≥1− b−1

n,K
n→∞−−−→ 1.

Together with Equation (108) and P{Ecn,K} → 0, we have

P

{
1− b1/2n,Kc

1/2
n,K ≤

p̂K(Y1:n, V
K

1:M(n))

pK(Y1:n)
≤ 1 + b

1/2
n,Kc

1/2
n,K

}
n→∞−−−→ 1. (109)

Similarly, we have

P

{
1− b1/2n,K∗c

1/2
n,K∗ ≤

p̂K∗(Y1:n, V
K∗

1:M(n))

pK∗(Y1:n)
≤ 1 + b

1/2
n,K∗c

1/2
n,K∗

}
n→∞−−−→ 1.

We complete the proof by noticing that (i) the condition implies that

pK(Y1:n)/pK∗(Y1:n)
n→∞−−−→ 0 in probability (under P ),

(ii) limn→∞ bn,Kcn,K → γ < 1, limn→∞ bn,K∗cn,K∗ → γ < 1.

59


	Introduction
	Recap of HMM and Notations
	Brief Literature Review
	Gaussian Hidden Markov Models
	Outline
	Contributions
	Model Selection via Marginal Likelihood
	Marginal Likelihood Method
	Discussions of Marginal Likelihood Methods

	Theoretical Study
	Consistency and Rate of Convergence
	Illustration of the Proof Strategy
	Connections with Model Selection of Mixture Models
	Computation
	Marginal Likelihood as a Normalizing Constant
	Estimation Procedure
	Simulation Studies for HMM Order Selection
	Discussion on Choice of Priors

	Applications

	Conclusions

	Proofs of Consistency Theorems
	Generalizing the Proof Strategy
	 Proof of (5) (K<K*)
	 Proof of (6) (K>K*)

	Detail Proofs for the Consistency Theorems
	Proofs for the Key Lemmas in Appendix A
	Lemmas for Intermediate Steps
	 Proof of Corollary 7
	 Simulation Studies for Estimation of Normalizing Constant
	 Simulation Robustness
	 Property of the Normalizing Constant Estimator
	 Robustness of Adopted Estimation Procedure




