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Abstract

When data are distributed across multiple sites or machines rather than centralized in
one location, researchers face the challenge of extracting meaningful information without
directly sharing individual data points. While there are many distributed methods for point
estimation using sparse regression, few options are available for estimating uncertainties or
conducting hypothesis tests based on the estimated sparsity. In this paper, we introduce a
procedure for performing selective inference with distributed data. We consider a scenario
where each local machine solves a lasso problem and communicates the selected predictors
to a central machine. The central machine then aggregates these selected predictors to
form a generalized linear model (GLM).

Our goal is to provide valid inference for the selected GLM while reusing data that
have been used in the model selection process. Our proposed procedure only requires low-
dimensional summary statistics from local machines, thus keeping communication costs
low and preserving the privacy of individual data sets. Furthermore, this procedure can
be applied in scenarios where model selection is repeatedly conducted on randomly sub-
sampled data sets, addressing the p-value lottery problem linked with model selection. We
demonstrate the effectiveness of our approach through simulations and an analysis of a
medical data set on ICU admissions.

Keywords: carving, data aggregation, generalized linear models, lasso, post-selection
inference, selective inference, selective likelihood

1. Introduction

In recent years, analyzing decentralized data spread across various sites or machines has
become increasingly important, particularly for collaborative research. This has created
a growing demand for distributed methods that enable researchers to extract meaningful
information from such data while respecting its decentralized nature, and to combine this
information using summary statistics for preserving privacy within the individual data sets.
One of the simplest and most popular approaches in the distributed framework is “divide-
and-conquer”, which is also known as the “split-and-merge” or the “one-shot” approach; see
for example the early work by Mcdonald et al. (2009); Zinkevich et al. (2010); Zhang et al.
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(2012). Most of these approaches use only one round of communication. Each local machine
estimates the unknown parameter using its subset of the training data, and communicates
the estimator to a central machine which merges the local estimators to obtain a global
estimator.

In our paper, we focus on a sparse regression setting where only a few of the measured
predictors affect the response. The goal in this setup is usually two-fold: (i) select relevant
predictors, and model the response by using the estimated sparsity, (ii) provide uncertainties
or conduct hypothesis tests for regression parameters in the estimated model, and all this
while, respect the distributed nature of data. Substantial progress has been made on the first
goal. For example, Lee et al. (2015) average locally computed, debiased lasso estimators,
and show that the averaged estimator achieves the same estimation rate as the full-sample
lasso, as long as the number of machines is not too large. Chen and Xie (2014) prove that the
models aggregated via majority voting, based on variables selected by local machines, are
consistent under some conditions. More recently, Battey et al. (2018) provide a debiased
approach for hypothesis testing in the distributed setting. However, these methods are
limited to models that are fixed before the selection of relevant predictors. As a result, the
communication cost in prior work scales with the number of original predictors, which can
be unnecessarily large in sparse settings.

We introduce a new procedure for conducting selective inference with distributed data.
Selective inference tools ensure valid inference by accounting for the fact that the same
data, used to select models, is reused when providing confidence intervals and p-values.
Several ingenious methods have been developed to provide selective inference in sparse
regression problems; see papers by Benjamini and Yekutieli (2005); Berk et al. (2013);
Belloni et al. (2015); Lee et al. (2016); Tian and Taylor (2018); Charkhi and Claeskens
(2018); Bachoc et al. (2019); Panigrahi et al. (2021). Our procedure in this paper reuses
data from all machines to form an asymptotic “selective likelihood”. This likelihood delivers
approximately-valid selective inference in a selected generalized linear model (GLM), which
is based on the predictors selected across different machines.

The proposed procedure has several important features:

1. It only requires low-dimensional summary statistics from each machine to conduct se-
lective inference. Thus, the techniques developed are applicable to settings when data
sets are distributed across different sites due to security, privacy, or ethical concerns,
as seen in the areas of differential privacy (Balcan et al., 2012) and federated learning
(McMahan et al., 2017). These sites can merge summary information without sharing
individual data, enabling inference in a GLM based on the estimated sparsity.

2. The communication cost of our inferential procedure is only linear in the dimension
of the selected model, which can be substantially smaller than the initial dimension
of the problem.

3. This procedure can be easily adapted to address the “p-value lottery” problem in
model selection, which arises when the selection process is repeated on randomly
subsampled data sets. We show that our procedure serves as an efficient alternative
to multi-splitting (Meinshausen et al., 2009) and multi-carving (Schultheiss et al.,
2021) without recourse to Markov chain Monte Carlo (MCMC) sampling.
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The remaining paper is structured as follows. We provide a slightly more technical
account of our contributions after outlining the problem setup, and review related work in
Section 2. In Section 3, we introduce our procedure for selective inference with distributed
data. In Section 4, we provide an asymptotic justification for our selective likelihood, which
forms the basis of our approach. We explore how our procedure can be modified to address
the p-value lottery problem in Section 5. Section 6 reports findings from the application of
our method on simulated data sets and a publicly available, medical data set on intensive
care unit (ICU) admissions. We conclude the paper with a discussion in Section 7. Proofs
of our technical results are collected in the Appendix.

2. Problem setup and background

In this section, we describe the distributed setup and introduce some background on selective
inference with a single machine. Other related work is summarized at the end.

2.1 Problem setup

We consider a distributed setup with K local machines, all connected to a central machine,
referred to as machine 0. Suppose that we observe n i.i.d. observations

(yi, xi,1, . . . , xi,p) ∈ Rp+1, i ∈ [n],

where [n] = {1, 2, . . . , n} for n ∈ N. Let C(k) ⊂ [n] denote the index set of the samples
stored at machine k, for k ∈ {0}∪ [K]. The index sets C(k) are disjoint and form a partition

of [n]. Let nk = |C(k)| be the cardinality of C(k). Let ρk =
nk
n

be the proportion of samples

store at machine k. Then we have

n =

K∑
k=0

nk, 1 =

K∑
k=0

ρk.

Let D(k) =
(
Y (k), X(k)

)
denote the data stored at machine k, where X(k) ∈ Rnk×p represents

the feature matrix and Y (k) ∈ Rnk represents the response vector.
Each local machine conducts variable selection with a loss function based on a GLM-

density. Let this loss function at machine k be denoted by

`(k)(β;D(k)) =
1√
nρk

∑
i∈C(k)

{A(xᵀi β)− yixᵀi β} ,

where A(·) is the log-partition function of the GLM density. That is, machine k solves the
following lasso problem:

β̂Λ,(k) = argmin
β∈Rp

`(k)(β;D(k)) + ‖Λ(k)β‖1, (1)

where Λ(k) = diag
(
λ

(k)
1 , . . . , λ

(k)
p

)
is the diagonal matrix of regularization parameters. Al-

though our procedure works when the regularization parameters differ across machines, for
simplicity, we assume Λ(k) = Λ for k ∈ [K].
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Let
Ê(k) =

{
j ∈ [p] : β̂

Λ,(k)
j 6= 0

}
.

represent the set of predictors with non-zero lasso coefficients selected at machine k for
1 ≤ k ≤ K. We will denote the realized value of Ê(k) with data D(k) as E(k). Let
d(k) = |E(k)| denote the number of selected variables at machine k. Note, for a vector
x ∈ Rp and E ⊂ [p], xE represents the subvector of x with entries in the set E, and for a
matrix X, XE is composed of the columns of X present in the set E.

2.2 Selected model

As described above, the K local machines return as output the selected predictors, which are
then communicated to the central machine. The central machine aggregates these selected
predictors as

Ê = Aggregate
({
Ê(k), k ∈ [K]

})
. (2)

We let E be the observed value of Ê and let d = |E|. Deferring the discussion on general
aggregation rules to Appendix D, now consider the union aggregation rule

Ê =
⋃
k∈[K]

Ê(k)

as a concrete example.
Given E, our response y is modeled using a selected GLM based on XE . The density

of y is given by:

f(y | xE , βE) = exp

(
yxᵀEβE −A(xᵀEβE)

σ2

)
· c(y;σ), (3)

where βE , the regression coefficient vector, is the parameter that we want to infer about. We
assume that the dispersion parameter, σ, is either known or can be consistently estimated.

Some immediate questions arise when we seek inference for βE :

• Can the central machine reuse data from the local machines to conduct selective
inference for βE? Of course, naive inference, which uses all the data without adjusting
for the bias from the model selection process, falls short of coverage guarantees, as
illustrated on one of our simulated instances in Figure 1. Section 6 provides the details
of this simulation.

• A procedure for making selective inference must respect the distributed nature of data,
as done at the time of selection. What information does the central machine require
from the local machines, and how many communication exchanges does it involve?

2.3 Some background when K = 1

We provide some background in a rather simple setup with K = 1. Consider the special
case of a Gaussian linear model, i.e., in (3), we have

A(xᵀEβE) =
1

2
(xᵀEβE)2, c(y;σ) = − y2

2σ2
.
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Figure 1: Coverage probabilities of “Dist-SI” (our procedure for selective inference with
distributed data), the “Splitting”, and “Näıve” methods for a Gaussian linear model, with
2 local machines and a central machine. The 2 local machines and the central machine each
have 1000 samples. The pre-specified level of coverage is 0.90, as indicated by the dotted
horizontal line at 0.9.

Post selection, we want to infer for βE .
We begin by noting that the regression problem in (1), at machine 1, can be rewritten

as

β̂λ,(1) = argmin
β∈Rp

1√
n

∑
i∈[n]

1

2
(yi − xᵀi β)2 + ‖Λβ‖1 −

√
nωᵀ

nβ, (4)

where

ωn =
1

n

∑
i∈[n]

xi(x
ᵀ
i β̂

λ,(1) − yi)−
1

nk

∑
i∈C(1)

xi(x
ᵀ
i β̂

λ,(1) − yi).

The term ωn is what we call a randomization variable. Regression of the form (4), with an
added randomization variable ωn, was termed the randomized lasso in Tian et al. (2016).

Suppose we have n observations in our response vector that are drawn as independent
Gaussian variables with the same variance. Further, suppose that we solved the randomized
lasso with a Gaussian randomization variable

√
nωn ∼ N (0p,ΣΩ). A recent procedure by

Panigrahi and Taylor (2023) constructs a “selective likelihood” by conditioning on a subset
of the selection event {

Ê = E
}
.

This approach enables valid selective inference in the selected linear model while allowing
for the re-use of data employed during model selection. This procedure centers interval
estimates around the maximum likelihood estimator (MLE) of the selective likelihood and

estimates its variance using the observed Fisher information matrix. If β̂
(S)
E and Î

(S)
E,E denote

the selective MLE and the observed Fisher information matrix, using the selective likelihood,
a two-sided 100 · (1− α)% confidence interval for βE,j is constructed as

β̂
(S)
E,j ± z1−α/2 ·

σ̂
(S)
j√
n
,
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where σ̂
(S)
j =

√(
Î

(S)
E,E

)−1

j,j
is the estimated standard deviation of

√
nβ̂

(S)
E,j , and z1−α/2 is the

(1 − α/2)-th quantile of a standard normal distribution. This procedure closely resembles
classical inference via maximum likelihood, with the exception that the standard estimators
are replaced by their selective analogs that adjust for bias from the model selection process.

2.4 Contributions and other related work

The contribution of the proposed method is threefold. First, we identify a simple repre-
sentation of the selection event by developing a randomization framework. A significant
challenge in conditional selective inference is the need for an explicit characterization of
the selection event, which is particularly difficult in distributed settings. By leveraging the
randomization framework, the selection event can be expressed in a simple closed form, mak-
ing conditional selective inference feasible for GLMs with selected predictors. Second, the
proposed method is efficient in both computation and communication. It requires only low-
dimensional summary statistics to be shared from local machines with a central machine.
After aggregating these summary statistics, the central machine solves a convex optimiza-
tion problem. Therefore, the proposed approach is suitable for scenarios where direct data
sharing between sites is not possible or inter-site communication is costly. Third, the pro-
posed method can be easily adapted to address the p-value lottery problem. In this sense,
our procedure is related to the multi-carving approach in Schultheiss et al. (2021), which
uses conditional techniques known as carving (Fithian et al., 2014; Panigrahi, 2023). How-
ever, existing carving and multi-carving implementations often depend on computationally
expensive MCMC sampling, while our method provides a more efficient alternative.

We conclude this section with some more related work. Within the distributed setting,
much work has been devoted to the averaged M-estimator (Mcdonald et al., 2009; Zinkevich
et al., 2010; Zhang et al., 2012; Rosenblatt and Nadler, 2016). Rosenblatt and Nadler
(2016) show that the averaged M-estimator is first-order equivalent to the centralized M-
estimator in the fixed-dimension setting. Dobriban and Sheng (2021) study the efficiency of
an estimator based on weighted average in the linear regression setting, as dimensions grow
with sample sizes. Some methods have taken a likelihood-centric approach, e.g., Jordan
et al. (2019) propose a surrogate likelihood where higher-order derivatives in a Taylor-series
expansion of the full log-likelihood are replaced by local approximations. Lin and Xi (2011)
propose an aggregated estimator for generalized linear models (GLM), where the locally
computed MLE and Hessian of the likelihood are merged for efficiency gains. In work
by Huang and Gelman (2005); Neiswanger et al. (2014); Wang and Dunson (2013); Scott
et al. (2016); Minsker et al. (2017); Srivastava et al. (2018), distributed MCMC algorithms
combine local posterior samples to obtain a global posterior distribution.

In the post-selection inference literature, a selective likelihood was appended to priors
for Bayesian inference post selection in Panigrahi and Taylor (2018); Panigrahi et al. (2021).
The focus in these settings was on a category of variable selection rules that can be written
as a set of polyhedral constraints on data. For the same category of selection rules, a
different body of work (Lee et al., 2016; Hyun et al., 2018; Le Duy and Takeuchi, 2022)
considers a truncated Gaussian distribution for inference from normal data. Moving beyond
normal data, Taylor and Tibshirani (2018) outline an asymptotic scheme to provide selective
inference in GLMs. For blackbox selection, Liu et al. (2022) obtain the selective likelihood
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by learning the selection event from bootstrapped data. We take a different approach in
the distributed setup by casting the problem into a randomized framework, and provide an
asymptotic likelihood function for the selected GLM. The use of a randomized framework
for selective inference was explored in Tian et al. (2016); Panigrahi et al. (2017) to improve
power. In Rasines and Young (2023); Panigrahi et al. (2022), a randomized framework for
selective inference was investigated for more efficient uses of data than sample splitting.
The connection between a randomized framework for selective inference and algorithmic
stability was explored in Zrnic and Jordan (2023).

3. Selective inference with distributed data

In this section, we first provide a characterization of the selection event with distributed
data. Then we introduce a selective likelihood that takes into account the aggregation of
predictors across machines to form the selected GLM.

3.1 The selection event

Fixing some notations, for z ∈ Rn, let ∇A(z) and ∇2A(z) denote the vectors in Rn whose
ith coordinates are the first and second derivatives of A(·) at zi, respectively. We recast the
regression problem (1) as a randomized lasso problem similar to (4). To do so, define the
randomization variables

ω(k) =
1

n
Xᵀ(∇A(Xβ̂Λ,(k))− Y )− 1

nk
X(k)ᵀ(∇A(X(k)β̂Λ,(k))− Y (k)) (5)

for k ∈ [K], where β̂Λ,(k) is the solution to the lasso problem at machine k. Let Ω =
(ω(1),ᵀ, . . . , ω(K),ᵀ)ᵀ ∈ RKp be the stack of the K randomization variables.

As reviewed earlier, an equivalent expression for the lasso problem on machine k is

β̂Λ,(k) = argmin
β∈Rp

1√
n

∑
i∈[n]

(A(xᵀi β)− yixᵀi β) + ‖Λβ‖1 −
√
nω(k)ᵀβ. (6)

This is because the Karush-Kuhn-Tucker (KKT) conditions of problem (1) and problem (6)
are the same. Note that the KKT conditions are given as follows:

1√
n
Xᵀ
(
∇A(Xβ̂Λ,(k))− Y

)
+ γ(k) =

√
nω(k),

γ
(k)

E(k) = ΛE(k)s(k), s(k) = sign
(
β̂

Λ,(k)

E(k)

)
,

γ
(k)

−E(k) = Λ−E(k)z(k), ‖z(k)‖∞ ≤ 1,

(7)

where the vector γ(k) represents the subgradient of the penalty ‖Λβ‖1 evaluated at the lasso
solution.

To perform inference for the selected GLM (3), we need some additional notations.

Let dk = |E(k)|, d = |E|, and d̄ =
∑

k∈[K] dk. Let b(k) = β̂
Λ,(k)

E(k) ∈ Rdk represent the

lasso solution from machine k with only the active variables E(k), and let B̂(k) denote the
corresponding random vector. Let B̂ ∈ Rd̄ be the random vector formed by stacking B̂(k)
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Local machine k Aggregated version
Variable R.V. Obs. Dim R.V. Obs. Dim

Selected variable set Ê(k) E(k) ⊆ [p] Ê E ⊆ [p]

Active variables of lasso solution B̂(k) b(k) dk B̂ b d̄

Signs of active variables Ŝ(k) s(k) dk Ŝ s d̄

Subgradients of inactive variables Ẑ(k) z(k) p− dk Ẑ z pK − d̄
Subgradients of lasso penalty ‖Λβ‖1 Γ̂(k) γ(k) p Γ̂ γ pK

Randomization variables ω(k) pK Ω pK

Table 1: Notations for the variables involved in selection. Columns 2-4 list the variables for
the lasso problem on local machine k, while columns 5-7 show the aggregated or stacked
versions. For the optimization variables (excluding selected variable sets and randomization
variables), the corresponding random variables (R.V.) are denoted by uppercase letters with
a hat, observed values (Obs.) by lowercase letters, and their dimensions (Dim) are also
provided. The relationship among the variables is given in Equation (7).

from all machines, and let b denote the realized value of B̂. Following the same scheme, we
denote random variables with uppercase letters, while lowercase letters will represent their
realized values, and bold letters will represent a vector obtained by stacking these variables
from all machines. To make it easier for readers, we have provided Table 1 that contains a
list of notations used in our paper.

Our method conditions on {
Γ̂(k) = γ(k) ∀ k ∈ [K]

}
, (8)

a proper subset of {Ê = E}, where Γ̂(k) is the subgradient of the lasso penalty with realized
value γ(k). In fact, event (8) is a subset of

{Ê(k) = E(k) ∀ k ∈ [K]},

and therefore a subset of the event {Ê = E}. Note that the conditional approach for
selective inference remains valid even when we work with a proper subset of the selection
event, and it is easier to characterize the event (8) than the event {Ê = E}, as shown in
the next result. In this result, note that Ŝ ∈ Rd̄ and Ẑ ∈ RpK−d̄ denote the signs of lasso
solutions at active variables and the subgradients at inactive variables, respectively, stacked
across K machines, with the realized values s and z (see Table 1).

Proposition 1 (Characterization of the selection event) The conditioning event (8)
can be characterized as{

Γ̂(k) = γ(k) ∀ k ∈ [K]
}

=
{

sign(B̂) = s, Ẑ = z
}
.

To avoid any confusion, we will hereafter refer to the conditioning event in (8) as the
selection event.
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3.2 Marginal distribution of the MLE

One common method to infer for βE is through a maximum likelihood approach. In a
distributed setting, we consider a maximum likelihood estimator (MLE) that is obtained
by aggregating local estimators from each of the machines. Assuming that E is a fixed
set, we derive the joint marginal distribution of this MLE and the randomization variables
Ω without considering the model selection process. This is the first step in obtaining our
selective likelihood, before we condition the marginal distribution on the selection event.

Let

β̂
(k)
E = argmin

β∈Rd

1√
nρk

∑
i∈Ck

A(xᵀi,Eβ)− yixᵀi,Eβ

be the local MLE at machine k, and let

Î(k)
E,E =

1

nk
(X

(k)
E )ᵀŴ kX

(k)
E , where Ŵ (k) = diag

(
∇2A(X

(k)
E β̂

(k)
E )
)
,

be the corresponding observed Fisher information (obs-FI) matrix. Let ÎE,E =
∑K

k=0 ρkÎ
(k)
E,E .

Define the aggregated MLE as

β̂E = Î−1
E,E

K∑
k=0

ρkÎ
(k)
E,E β̂

(k)
E . (9)

Let I denote the Fisher information E
[

1
nX

ᵀ diag(∇2A(XEβE))X
]
.

In order to derive this marginal distribution of the aggregated MLE β̂E , we state a few
conditions.

Assumption 1 For k ∈ [K], let Ẽ(k) = E \ E(k). For j ∈ Ẽ(k), either βE,j = O(n−1/2) or
XE(k)I−1

E(k),E(k)IE(k),j = Xj.

Assumption 2 The aggregated MLE β̂E can be written as
√
n(β̂E − βE) = −I−1

E,E∇`(βE) + op(1), n→∞.

Assumption 1 states conditions on predictors that are present in the selected model
but are not selected by machine k. This condition suggests that our asymptotic assertions
remain valid as long as these predictors are either weak in strength or have a high partial
correlation with a predictor in the selected set E(k). Assumption 2 states that the aggre-
gated MLE has an asymptotically linear representation. This condition is met when the
aggregated MLE is asymptotically equivalent to the standard MLE. The latter has been
shown to hold under some mild regularity conditions in Lin and Xi (2011).

The following result provides the asymptotic distribution of the randomization variables,
with a detailed proof in Appendix A.1.

Proposition 2 Suppose nk/n → ρk as n → ∞ for k ∈ [K] and
∑K

k=1 ρk < 1. Let U =
diag(ρ−1

1 , . . . , ρ−1
K ) − 1K×K , where 1K×K denotes the K ×K matrix with all entries equal

to 1. Define

ΣΩ = U ⊗ I,

9
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the Kronecker product of U and I. Under Assumptions 1 and 2, we have

√
nΩ

d⇒ NpK (0,ΣΩ) , n→∞.

The model selection process is not solely a function of the aggregated MLE and the
randomization variables, as it also depends on variables that were not included in the
selected GLM. Therefore, we consider an additional statistic, defined as:

β̂⊥−E =
1

n
Xᵀ
−E(∇A(XE β̂E)− Y ),

which involves variables that were not selected by the lasso.

The next theorem derives the marginal distribution of β̂E , β̂⊥−E , and Ω.

Theorem 3 Under the same assumptions as Proposition 2, it holds that

√
n

β̂E − βEβ̂⊥−E
Ω

 d⇒ Np(K+1)

0,

I−1
E,E 0 0

0 I/IE,E 0
0 0 ΣΩ

 ,

where I/IE,E = I−E,−E − I−E,EI−1
E,EIE,−E is the Schur complement of IE,E in I.

The proof of Theorem 3 is deferred to Appendix A.2.

It is worth noting from this result that β̂⊥−E is an ancillary statistic for the parameters
in the selected GLM. Furthermore, the randomization variables are independent of the
statistics β̂E and β̂⊥−E , which can be seen from the block diagonal covariance matrix in the
limiting Gaussian distribution.

3.3 Selective likelihood

In what follows, we base inference on a conditional likelihood in the selected GLM. This
likelihood, referred to as the selective likelihood, is stated in Theorem 4. It is derived
from the asymptotic distribution of the aggregated MLE, as stated in Theorem 3, after
conditioning on the event described in Proposition 1.

Before presenting this likelihood, we specify a technical condition and introduce the
matrices involved in this likelihood.

Assumption 3 Assume that the distribution of

√
n

β̂E − βE,nβ̂⊥−E
Ω


is absolutely continuous with respect to the Lebesgue measure on Rp(K+1). Let {pn}n≥1 be
the corresponding sequence of densities. Assume that {pn}n≥1 is uniformly equicontinuous
and bounded.
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The condition in Assumption 3 together with the weak convergence in Theorem 3 implies
that the density of (β̂E , β̂

⊥
−E ,Ω) converges to the corresponding limiting Gaussian density,

uniformly on compact subsets of Rp(K+1).

Define g
(j)
k = γ

(j)

E(k) ∈ Rdk for j, k ∈ [K], where g
(j)
k collects the coordinates of γ(j)

belonging to E(k). Define g(j) = γ
(j)
E ∈ Rd, where g(j) contains the coordinates of γ(j)

belonging to E. Let ρ0 = 1−
∑

k∈[K] ρk. Let the matrices

Ξ ∈ Rd̄×d̄, Ψ ∈ Rd̄×d, τ ∈ Rd̄, Θ ∈ Rd×d, Π ∈ Rd×d, κ ∈ Rd

be defined as follows. The (j, k) block of Ξ−1 is a d(j) × d(k) matrix given by

{
Ξ−1

}
j,k

=


(
ρk +

ρ2
k

ρ0

)
IE(k),E(k) if j = k,

ρjρk
ρ0
IE(j),E(k) if j 6= k.

The (k, 1) block of Ξ−1Ψ and Ξ−1τ are given by

{
Ξ−1Ψ

}
k

=
ρk
ρ0
IE(k),E ;

{
Ξ−1τ

}
k

= −ρkg
(k)
k −

ρk
ρ0

K∑
j=1

ρjg
(j)
k .

Further, let

Θ−1 =
1

ρ0
IE,E −ΨᵀΞ−1Ψ; Θ−1Π = IE,E ; Θ−1κ = ΨᵀΞ−1τ +

K∑
j=1

ρj
ρ0
g(j).

Let ϕ(·;µ,Σ) denote the density function of the normal distribution N (µ,Σ). Let O = {v ∈
Rd̄ : sign(v) = sign(s)} denote the orthant in Rd̄ based on the sign vector s.

Theorem 4 (Selective likelihood) Suppose that the conditions stated in Theorem 3 and
Assumption 3 hold. The selective likelihood function, based on the asymptotic distribution

of
√
nβ̂E

∣∣∣ {Γ̂(k) = γ(k) ∀ k ∈ [K]
}
, is equal to

f
(
βE ; β̂E , s, z

)
=
ϕ(
√
nβ̂E ; Π

√
nβE + κ,Θ)

P
[√

nB̂ ∈ O | Ẑ = z
] ,

where

P
[√

nB̂ ∈ O | Ẑ = z
]

=

∫
ϕ(
√
nβ̂E ; Π

√
nβE + κ,Θ)·

ϕ(
√
nB̂; Ψ

√
nβ̂E + τ,Ξ) · 1

{
B̂ ∈ O

}
dβ̂EdB̂.

The proof is provided in Appendix A.3.
With this selective likelihood, we proceed to compute the selective MLE and its asso-

ciated Fisher information to perform inference as outlined in Section 2.3. In Section 4, we
offer an approximation to this selective likelihood, which in turn enables an efficient way to
compute the selective MLE and the corresponding Fisher information matrix.
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3.4 Algorithm

To conclude this section, we identify and specify the information that must be exchanged
between the central machine and the local machines in order to carry out inferences in
the selected GLM. Three rounds of communication are required for the central machine to
perform selective inference:

1. Local machines send E(k) to the central machine.

2. The central machine sends the aggregated model E back to the local machines.

3. Local machines send local MLE β̂
(k)
E , local Fisher information Î(k)

E,E , and the subgra-

dient variables γ
(k)
E to the central machine.

This is summarized in Algorithm 1.

Note that the first two rounds of communication involve only the indices of the selected
variables, which lead to the selected model E.

It is obvious that the local MLE β̂
(k)
E and local Fisher information Î(k)

E,E are needed at
the central machine to compute the aggregated MLE and aggregated Fisher information,
as defined in Equation (9). Besides these statistics, the selective likelihood derived in

Theorem 4 involves the subgradients γ
(j)

E(k) and γ
(j)
E for j, k ∈ [K] in order to correct for the

bias from model selection. Hence, in order to calculate the selective likelihood, the central
machine needs the subgradients γ(j) with indices from E ∪

⋃
k∈[K]E

(k) sent from all local

machines. Since we assumed for simplicity that E =
⋃
k∈[K]E

(k), machine j simply needs

to send γ
(j)
E to the central machine.

Note that Î(k)
E,E has a size of d2, resulting in a communication cost of O(d2) for each local

machine, which does not depend on the original feature dimension p. Therefore, as long
as a sparse model is selected, the communication cost for making inferences in the selected
GLM remains relatively low. Extensions for more general aggregation rules are given in
Appendix D.

4. Approximate selective MLE

In the previous section, we obtained the selective likelihood function. As per Theorem 4,
the selective log-likelihood is equal to

logϕ
(√

nβ̂E ; Π
√
nβE + κ,Θ

)
− logP

[√
nB̂ ∈ O

∣∣∣ Ẑ = z
]
. (10)

The main focus of this section is to provide an approximation for the second term (in the
log-likelihood) by using a large-deviation limit for the log-probability. This approximation is
made under the following moment and regularity conditions, which are commonly assumed
to ensure the existence of the limit.

Consider a real-valued sequence an that goes to infinity as n → ∞, and an = o(n1/2).
Assume βE = βE,n satisfies that

√
nβE,n = anβ

∗
E ∈ R|E|, where β∗E does not depend on n.

12
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Algorithm 1: Communication of information

STEP 1: Variable selection at local machines

Machine k solves Problem (1) and sends E(k) = Support(β̂Λ,(k)) to the central

machine.

STEP 2: Model aggregation at the central machine

The central machine forms E =
⋃
k∈[K]E

(k) and sends E back to the local

machines.

STEP 3: Communication of summary statistics

Local machines communicate the following statistics to the central machine:

local MLE and Fisher information: β̂
(j)
E , Î(j)

E,E ; subgradient: γ
(j)
E

From the proof of Theorem 3, we have

√
n

β̂E − βE,nβ̂⊥−E
Ω

 =
√
nĒn +Rn, (11)

where Ēn = 1
n

∑n
i=1 ei,n is the average of n i.i.d. observations, and Rn = op(1).

Assumption 4 (Moment condition and convergence of remainder) Assume that

E [exp(λ‖e1,n‖2)] <∞

for some λ ∈ R+, and that

lim
n→∞

1

a2
n

logP
[

1

an
‖Rn‖2 > ε

]
= −∞

for any ε > 0, where ei,n and Rn are from the asymptotic linear representation in (11).

Assumption 4 assumes the existence of an exponential moment in a neighborhood of
zero, which is needed to justify a Laplace-type approximation for probabilities involving
the mean of n i.i.d. variables, which in our case is Ēn. The second condition in this
assumption helps extend this justification to Ēn with an added op(1) error term, Rn.

Assumption 5 For a fixed convex set R0 ⊆ Rp(K+1), and for O = Op(1), we impose the
condition that

lim
n→∞

1

a2
n

logP

 1

an

 √nβ̂E√
nβ̂⊥−E√
nΩ

 ∈ R0

− logP

 1

an

 √nβ̂E√
nβ̂⊥−E√
nΩ

+
1

an
O ∈ R0

 = 0.

13
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In terms of β̂E , β̂⊥−E , and Ω, the probability of the selection event takes the form

P

 1

an

 √nβ̂E√
nβ̂⊥−E√
nΩ

+
1

an
O ∈ R0

 ,
(see Appendix B.1). Therefore, Assumption 5 allows us to approximate the probability of
the selection event up to an op(1) remainder.

Theorem 5 Suppose that the conditions in Assumption 4 and Assumption 5 are met. De-
fine

Ln = inf
b,B

{
1

2

(
b−Πβ∗E −

1

an
κ

)ᵀ

Θ−1

(
b−Πβ∗E −

1

an
κ

)

+
1

2

(
B −Ψb− 1

an
τ

)ᵀ

Ξ−1

(
B −Ψb− 1

an
τ

)
+

1

a2
n

BarrO(anB)

}
,

where BarrO(x) =
∑

i log(1 + 1
sixi

). Then, we have

lim
n→∞

1

a2
n

logP
[√

nB̂ ∈ O
∣∣∣ Ẑ = z

]
+ Ln = C0,

where C0 is a constant that does not depend on β∗E.

The proof is provided in Appendix B.1. As a consequence of Theorem 5, we can substitute
the log-probability in (10) by

− inf
b,B

{
1

2
(anb− anΠβ∗E − κ)ᵀ Θ−1 (anb− anΠβ∗E − κ)

+
1

2
(anB − anΨb− τ)ᵀ Ξ−1 (anB − anΨb− τ) + BarrO(anB)

}
,

(12)

ignoring the additive constant in the limit. Finally, we reparameterize anb =
√
nv and

anB =
√
nV , which gives the following approximation of the selective log-likelihood

logϕ(
√
nβ̂E ; Π

√
nβE,n + κ,Θ)

+ inf
v,V

{
1

2

(√
nv −

√
nΠβE,n − κ

)ᵀ
Θ−1

(√
nv −

√
nΠβE,n − κ

)
+

1

2

(√
nV −

√
nΨv − τ

)ᵀ
Ξ−1

(√
nV −

√
nΨv − τ

)
+ BarrO(

√
nV )

}
,

The score and curvature of this selective likelihood yield the selective MLE and the
selective obs-FI matrix. The derivation of these two estimators follows the steps in Pani-
grahi and Taylor (2023) for the standard Gaussian regression problem. In the interest of
completeness, the expressions of these estimators are provided below.

14



Selective Inference with Distributed Data

Theorem 6 Consider solving the optimization problem

V̂ ?
β̂E

= argmin
V ∈Rd̄

1

2
(
√
nV −Ψ

√
nβ̂E − τ)ᵀΞ−1(

√
nV −Ψ

√
nβ̂E − τ) + BarrO(

√
nV ). (13)

The maximizer of the approximate selective likelihood and the observed Fisher information
matrix are equal to

Π−1β̂E −
1√
n

Π−1κ+ I−1
E,EΨᵀΘ−1

(
Ψβ̂E +

1√
n
τ − V̂ ?

β̂E

)
, (14)

IE,E
(

Θ−1 + ΨᵀΞ−1Ψ−ΨᵀΞ−1
(

Ξ−1 +∇2BarrO

(√
nV̂ ?

β̂E

))−1
Ξ−1Ψ

)−1

IE,E , (15)

respectively.

The proof is provided in Appendix B.2. In practice, the matrices Π, κ,Θ,Ψ, τ,Ξ are com-
puted with the observed Fisher information Î, which are then used to compute the selective
MLE and the selective obs-FI in (14) and (15), respectively. The algorithm for conducting
inference based on the approximate selective MLE is summarized in Algorithm 2.

Algorithm 2: Approximate selective MLE-based inference

Compute the aggregated MLE β̂E defined by Equation (9).

Solve the d̄-dimensional convex optimization in (13).

Compute β̂
(S)
E and Î(S)

E,E as stated in (14) and (15).

Let

σ̂
(S)
j =

√(
Î(S)
E,E

)−1

j,j
, j ∈ [d].

Compute the two-sided p-value for H0 : βE,j = 0 as

2 ·min

(
Φ

( √
n

σ̂
(S)
j

β̂
(S)
E,j

)
, Φ̄

( √
n

σ̂
(S)
j

β̂
(S)
E,j

))

where Φ = 1− Φ̄ is the CDF of the standard normal distribution.

Compute the two-sided 100 · (1− α)% confidence interval for βE,j as

β̂
(S)
E,j ± z1−α/2 ·

σ̂
(S)
j√
n
.

5. Addressing p-value lotteries

When dealing with sparse regression, it is often feasible to construct p-values after reducing
the number of variables to a manageable size. One common method is sample-splitting,
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as described in Wasserman and Roeder (2009), where variables are first selected on a sub-
set of the data and then p-values are reported using classical least squares estimation on
the remaining samples. Variables that are not selected are assigned a p-value equal to
1. A more powerful alternative to sample-splitting is carving, introduced in Fithian et al.
(2014) through conditioning. However, results produced by sample splitting or carving are
overly sensitive to the randomness involved in partitioning the data. This issue has been
widely reported in literature as the p-value lottery problem. See, for example, the paper by
Meinshausen et al. (2009).

To address the p-value lottery problem, Meinshausen et al. (2009) aggregate p-values
from repeated splitting, and more recently, Schultheiss et al. (2021) propose to aggregate
p-values after repeated carving on random splits of data. We refer to the former procedure
as multi-splitting and the latter procedure as multi-carving. With increasing numbers of
replicates, the results are expected to be less sensitive to the randomness from the splits.

Suppose one conducts multi-splitting or multi-carving B times, and obtains the p-values

p
(b)
j , for b ∈ [B], and j ∈ [p]. This is followed by aggregating the B p-values through their

empirical quantiles

Qj(γ) := qγ

({
1

γ
p

(b)
j , b ∈ [B]

})
∧ 1,

where qγ denotes the γ-th empirical quantile. One can also minimize over γ and use

Pj :=

[
(1− log(γmin)) inf

γ∈(γmin,1)
Qj(γ)

]
∧ 1. (16)

The aggregation scheme produces valid p-values as long as all p-values are individually
valid.

Below, we show that our proposal in the paper can be easily adapted to address the p-
value lottery problem without recourse to MCMC sampling. We proceed as multi-splitting
and multi-carving, i.e., we use a subsample of size n1 for variable selection. For inference,
we reuse data from selection by conditioning on the event of selection. We repeat this
procedure B times and aggregate the p-values as above. Moreover, in each replicate, we
can draw K random subsets of size n1 with replacement. A base model is selected using
each subset, and the K base models are aggregated as done in (2). To conduct selective
inference, a similar procedure can be used, with a slight modification in the distribution
of the randomization variable Ω. Specifically,

√
nΩ still converges to a normal distribution

but with a different covariance matrix, as stated in Lemma 7.

Lemma 7 If the K subsets D(1), . . . , D(K) are independent random samples of the data set
D (rather than disjoint partitions) and each subset has size [ρn], then Theorem 3 holds with

ΣΩ =
1− ρ
ρ

IK ⊗ I.

The proof is provided in Appendix C.
Following the same argument as in Theorem 4, the asymptotic selective likelihood func-

tion takes the same form as the expression in Theorem 4, with slightly different expressions
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Algorithm 3: Multiple carving

for k = 1, . . . ,K do

Perform n1-out-of-n subsampling to form data set D(k).

Solve the lasso problem with data D(k) and select variable set E(k).

Construct the aggregated model E = Aggregate(E(1), . . . , E(K)).

Compute the MLE β̂E and Fisher information ÎE,E in the selected GLM (3) using

all the data.

Compute matrices Ξ,Ψ, τ,Θ,Π, κ as given in Equation (17).

Perform selective inference for βE using the approximate selective-MLE based

method in Algorithm 2.

of the matrices Ξ,Ψ, τ,Θ,Π, κ due to the change of the covariance matrix ΣΩ. There ma-
trices are now calculated as

{Ξ−1}j,k = δj,k
ρ

1− ρ
IE(j),E(j) ; {Ξ−1Ψ}k =

ρ

1− ρ
IE(k),E ; {Ξ−1τ}k = − ρ

1− ρ
g

(k)
k ; (17)

Θ−1 =

(
1 +

Kρ

1− ρ

)
IE,E −ΨᵀΞ−1Ψ; Θ−1Π = IE,E ; Θ−1κ = ΨᵀΞ−1τ +

ρ

1− ρ

K∑
j=1

g(j).

The entire procedure is summarized in Algorithm 3.
When K = 1 subset is drawn in each of the B replicates, this procedure closely resembles

the multi-carving procedure described in Schultheiss et al. (2021). When B = 1 and K = 1,
it reduces to the data carving of Fithian et al. (2014). However, the multi-carving method
of Schultheiss et al. (2021) conditions on the indices of the samples used for selection which
results in a polyhedral event similar to the event in Lee et al. (2016). In contrast, our
method marginalizes over the randomness involved in subsampling instead of conditioning
on it. This is captured in the definition of our randomization variable Ω. As shown in
the simulation results in Section 6.2, our method achieves higher power compared to the
method that conditions on more.

6. Experiments

In this section, we demonstrate the numerical performance of our proposed procedure.
Our code can be accessed from the GitHub repository https://github.com/snigdhagit/

Distributed-Selectinf.

6.1 Experiments with distributed data sets

The data in our experiments is simulated as follows. For i ∈ [n], we draw xi ∼ Np(0,Σ),
where Σij = ρ|i−j| with ρ = 0.9, p = 100. In the first model, we draw a real-valued
response from a linear model as yi ∼ N (xᵀi β, σ

2) with σ2 = 1. The dispersion parameter

σ2 is estimated by σ̂2 = 1
n−d

∑n
i=1(yi − xᵀi,E β̂E)2. In our second model, we draw a binary

response from a logistic-linear model as yi ∼ Bernoulli(1/(1 + e−x
ᵀ
i β)). Observation i is
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independent of all the other observations in our data set. There are 5 non-zero coefficients
in our model; each non-zero βj is equal to ±

√
2c log p, where the sign is random and c is

referred to as the “signal strength.” Unless otherwise specified, the signal strength c is 0.7
for the linear model and 1 for the logistic model. The regularization parameter λ is set
to
√

2 log p for linear regression and
√

0.5 log p for logistic regression. The n observations
are partitioned into K + 1 disjoint subsets D(0), D(1), . . . , D(K). Subsets 1 through K,
representing the data stored at K local machines, are used for variable selection. Subset 0,
representing the data at the central machine, is used only at the time of selective inference.

We design three different scenarios to investigate the performance of our procedure. We
conduct 500 rounds of simulations in each scenario.

(I). In Scenario 1, we vary the number of distributed data sets K ∈ {2, 4, 6, 8}. Each
local machine has nk = [8000/K] samples, and the central machine has access to 1000
samples.

(II). In Scenario 2, we vary the signal strength c. For linear regression, we vary c among
{0.3, 0.5, 0.7, 0.9}; while for logistic regression, we vary c among {0.5, 1, 1.5, 2}. We
fix K = 2. The central machine has 2000 samples, and each of the two local machines
has 4000 samples.

(III). In Scenario 3, we vary the number of samples that are reserved only for selective
inference at the central machine. Specially, we vary n0 ∈ {250, 500, 1000, 2000}. We
fix K = 3 and nk = 2000 for 1 ≤ k ≤ K.

We report the coverage proportions and average interval lengths for βE in Figure 2 and
Figure 3, for the linear model and the logistic model, respectively. The target parameter
βE is defined as

βE := argmin
βE∈Rd

n∑
i=1

E
[
`(yi;x

ᵀ
i,EβE)

]
,

where ` represents the corresponding GLM loss and the expectation is taken over the true
distribution of yi. Specifically, for linear regression, `(yi; θ) = −1

2(yi − θ)2 and the true
distribution is y ∼ N (xᵀi β, σ

2). For logistic regression, `(yi; θ) = −[yi log 1
1+e−θ

+ (1 −
yi) log(1 − 1

1+e−θ
)] and the true distribution is yi ∼ Bernoulli((1 + e−x

ᵀ
i β)−1). The target

coverage of the confidence interval is 90%. The lengths of confidence intervals are indications
of the statistical power associated with selective inference for βE . Our method “Dist-SI”
constructs the confidence intervals based on the approximate selective MLE method as
introduced before. As a baseline for comparison, we consider the “Splitting” method, which
uses only the data at the central machine to construct standard Wald confidence intervals.
Error bars represent variations among 500 random replicates.

Observations. Across all scenarios, the confidence intervals produced by “Dist-SI”
(approximately) attain the desired coverage probability. The “Splitting” method produces
valid confidence intervals, but discards samples used by the local machines. The advantages
of reusing data from the local machines are quite evident in the plots for the lengths of the
confidence intervals. As expected, “Dist-SI” yields tighter confidence intervals and achieves
higher power than the baseline procedure based on “Splitting” in all three scenarios. We
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Figure 2: Coverage proportions (top panel) and average interval lengths (bottom panel)
for the linear model. Left panel: varying K. Middle panel: varying signal strength. Right
panel: varying n0.

observe that interval lengths for both methods increase with K. This is because the final
model, which is the union of the K models selected by local machines, is likely to be larger
for larger K. In this case, the variance of β̂j tends to be larger. For a similar reason,
interval lengths tend to increase with signal strengths as well. In Scenario 3, we see that
both methods produce longer intervals when n0 decreases, and as expected, the gap between
“splitting” and “Dist-SI” is more pronounced with fewer samples at the central machine.

6.2 Experiments on p-value lotteries

In this section, we apply the suitable adaptation of our procedure to solve the p-value lottery
problem, as described in Section 5. We compare our procedure with “Multi-carving” and
“Multi-splitting” as proposed by Schultheiss et al. (2021) and Meinshausen et al. (2009), re-
spectively. For the latter two algorithms, we use the implementation provided by Schultheiss
et al. (2021) with code available on GitHub1. To avoid any confusion, we continue to refer
our procedure as “Dist-SI”, though we are no longer simulating distributed data sets.

1. https://github.com/cschultheiss/Multicarving. The original code is written in R, and we load them
into Python when running our simulations, which might have contributed to slightly longer running times
as reported in our findings.
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Figure 3: Coverage proportions (top panel) and average interval lengths (bottom panel) for
the logistic model. Left panel: varying K. Middle panel: varying signal strength. Right
panel: varying n0.
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We generate our data from the same linear model as described before, but now we use
the same dimension as in Schultheiss et al. (2021). We take n = 100 and p = 200, and
consider s = 5 nonzero coefficients with βj = ±2

√
log p. We use B = 10 replicates, and

aggregate the p-values using formula (16) with γmin = 0.1. The proportion of samples used
for variable selection is varied in the set {0.5, 0.6, . . . , 0.9}. We fix the significance level at
0.1.

Again, the inferential target of these methods is not the actual generating β, unless the
selected set E contains all the nonzero coefficients of β. Nevertheless, we can compare these
methods by their accuracy in terms of detecting nonzero signals. Specifically, a coefficient
βj is predicted to be nonzero if the corresponding p-value is no larger than 0.1. We measure
the accuracy of this prediction by the F-score, which is defined as

F-score :=
2 · True Positive

2 · True Positive + False Positive + False Negative

Note that the positives and negatives are computed with respect to the true underlying
parameter β, which might be different from the inferential target post selection if the selected
E fails to contain some nonzero coefficients of β. Besides computing the F-score, we compare
the average run time for “Dist-SI” and “Multi-carving”. The results are shown in Figure 4.
In the left panel, we plot the F-scores of the three methods with varying proportions. The
error bars are once again reported for 500 random repetitions. In the right panel, we plot
the average run times of “Dist-SI” and “Multi-carving” on the log scale.

Observations. We find that our procedure has higher F-scores than the two previously
proposed alternatives, “Multi-carving” and “Multi-splitting”, for all values of sample pro-
portion. Especially, a p-value in every replicate uses the full data after carefully discarding
information that was used up for selecting predictors. The re-use of data from selection
results in larger power over “Multi-splitting”. Our procedure aligns with “Multi-carving”,
which also deploys conditional techniques to reuse data for hypothesis testing. However, a
key distinction of our procedure with “Multi-carving” lies in how we use the randomiza-
tion framework to characterize the selection event, and subsequently marginalize over this
randomness to construct our p-values. In particular, we note that “Multi-carving” condi-
tions on the randomization that is involved during variable selection on a random split of
the data, whereas our procedure explicitly characterizes the distribution of randomization
instead of simply conditioning on Ω. We believe that this difference between the two proce-
dures shows up in our simulated findings as we note higher values of F-score with “Dist-SI”.
Unsurprisingly, our proposal is also faster than “Multi-carving” by about 100 times. This is
because the latter procedure requires MCMC sampling, while our procedure only involves
solving a convex optimization problem.

6.3 Experiments on medical data set

We illustrate an application of our procedure on a real data set that is publicly available
on MIT’s GOSSIS database Raffa et al. (2022). This data set contains records on intensive
care unit (ICU) admissions from 192 hospitals, including patients’ demographic information,
and various medical measurements, and lab results. We only use the data sets from the
four largest hospitals, among which three data sets are used for variable selection and the
remaining one is reserved for selective inference. We focus on a regression problem with data
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Figure 4: Compare Dist-SI with multi-carving and multi-splitting. The left panel shows the
F-scores when using different proportions of samples for selection. The right panel shows
the average running time.

from the first 24 hours of intensive care. The response in this problem is binary, and takes
the value 1 if a patient admitted to an ICU has been diagnosed with Diabetes Mellitus, and
is 0 otherwise. The same problem appeared in the 2021 Women in Data Science Datathon
2. We remove variables with more than half missing values, and also remove rows with
missing values. After preprocessing, we end up with 81 predictors. The three data sets
used for variable selection have sample sizes ranging from 1633 to 1788, and the data set
reserved for inference has 2000 samples.

For model selection, we run the logistic regression with lasso penalty. The regularization
parameter is tuned with one extra data set with 893 samples. The selected GLM has 58
predictors. To construct confidence intervals for the 58 selected variables, we apply the
proposed “Dist-SI” algorithm and “Splitting” as done in simulations. The significance
level is set to be 0.1. “Dist-SI” reports 21 significant variables, while “Splitting” reports
13 significant variables, with 10 variables overlapping as significant in both methods. In
Figure 5, we plot the confidence intervals for the regression coefficients that are rejected by
either of the two procedures. The boxplot for the lengths of these intervals, in Figure 6, show
that the median length of the “Dist-SI” intervals is smaller than the “Splitting” intervals by
67%. Additionally, the coefficient of variation is 1.8 and 3.9 for “Dist-SI” and ”Splitting”,
respectively. This indicates that the dispersion of interval lengths for “Dist-SI” is smaller
than “Splitting”. On this instance, we see that “Splitting” yields a few very wide intervals.
This is because the Hessian matrix based on data present at the central machine (reserved
data set) is ill-conditioned. “Dist-SI” does not have this issue because it reuses data from
the three hospitals for more powerful selective inference.

2. https://www.kaggle.com/competitions/widsdatathon2021/data. Accessed on on Dec. 17, 2022.
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7. Conclusion

Model selection appears to be routine practice when analyzing big data sets. Inference for
data-dependent models and parameters is a very challenging goal, because sound proce-
dures must rigorously account for randomness from the selection process. To the best of
our knowledge, this paper is the first contribution that addresses selective inference with
distributed data. We provide a rigorous procedure to construct confidence intervals and
p-values when inference is sought in a generalized linear model with selected predictors.
We identify a representation for selection in a common distributed setup, and provide an
asymptotic selective likelihood by developing a novel randomized framework for our prob-
lem. Approximately-valid selective inference, based on our selective likelihood, takes a very
simple form: our confidence intervals for the selected regression coefficients are centered
around the MLE of the selective likelihood, and the variance of the MLE is estimated by
the observed Fisher information matrix.

An appealing feature of our proposed inferential procedure is that we only require some
aggregated information, with relatively low communication cost, from each machine. This
feature allows an adaptation of our procedure to settings where various sites may not be
willing to share their individual data sets. But, we note that there is room for improvement
here, specially if various sites have not measured the same set of predictors.

Our paper also provides an efficient solution for the p-value lottery problem without
relying on MCMC samplers. Our procedure bypasses the primary computational bottleneck
in the earlier proposal (Schultheiss et al., 2021) by reducing selective inference to the solution
of an optimization problem. The recently developed sampler in Liu (2023) is also applicable
in our distributed setup to perform sampling-based inference, as an alternative to the MLE-
based inference used in this paper.
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Appendix A. Proofs for Section 3

Supporting results are collected in Appendix A.3.1.

A.1 Proof of Proposition 2

Proof We write βE = βE,n in the asymptotic analysis as n → ∞. Define β∗
E(k),n

=

I−1
E(k),E(k)IE(k),EβE,n. We start with the decomposition

1

n
Xᵀ(∇A(Xβ̂Λ,(k))− Y ) =

1

n
Xᵀ(∇A(XEβE,n)− Y ) +R

(k)
1 +R

(k)
2 ,

where

R
(k)
1 =

1

n
Xᵀ(∇A(XE(k)β∗E(k),n

)−∇A(XEβE,n)),

R
(k)
2 =

1

n
Xᵀ(∇A(Xβ̂Λ,(k))−∇A(XE(k)β∗E(k),n

)).

In a similar fashion, we decompose the quantities based on local data D(k) as

1

nk
X(k)ᵀ(∇A(X(k)β̂Λ,(k))− Y (k)) =

1

nk
X(k)ᵀ(∇A(X

(k)
E βE,n)− Y (k)) + r

(k)
1 + r

(k)
2 .

The decomposition in the above two displays allow us to write

√
nω(k) =

√
n
{ 1

n
Xᵀ(∇A(XEβE,n)− Y )− 1

nk
X(k)ᵀ(∇A(X

(k)
E βE,n)− Y (k))

+R
(k)
1 +R

(k)
2 − r

(k)
1 − r(k)

2

}
=
√
nω̃(k) +

√
nR(k),

(18)

where
R(k) = R

(k)
1 +R

(k)
2 − r

(k)
1 − r(k)

2 ,

and

ω̃(k) =
1

n
Xᵀ(∇A(XEβE,n)− Y )− 1

nk
X(k)ᵀ(∇A(X

(k)
E βE,n)− Y (k)).

Let Ω̃ ∈ RpK be the stack of ω̃(k) for 1 ≤ k ≤ K. It suffices to show that

√
nΩ̃

d⇒ N (0,ΣΩ) and
√
nR(k) p→ 0. (19)

To proceed with the proof, let ei = xi(∇A(xᵀi,EβE,n)− yi). It is easy to see that ei are i.i.d.
for all 1 ≤ i ≤ n with E [ei] = 0 and Var [ei] → I under the selected model (3). It follows
that

√
nω̃(k) =

√
1− ρk

1√
n− nk

∑
i/∈Ck

ei −
1− ρk√
ρk

1
√
nk

∑
j∈Ck

ej .

Hence, we have
√
nω̃(k) d⇒ N

(
0,

1− ρk
ρk
I
)
,
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and

Cov
[√

nω̃(j),
√
nω̃(k)

]
→ −I

for j 6= k. This leads to

√
n

(
ω̃(j)

ω̃(k)

)
d⇒ N

(
0,

(
1−ρj
ρj
I −I

−I 1−ρk
ρk
I

))
,

which proves the first statement of (19). Lemma 8 and Lemma 9 below show that
√
nR(k) =

op(1), thereby concluding the proof of (19).

Lemma 8 (Rate of R
(k)
1 − r

(k)
1 ) Let

R
(k)
1 =

1

n
Xᵀ(∇A(XE(k)β∗E(k),n

)−∇A(XEβE,n)),

r
(k)
1 =

1

nk
X(k)ᵀ(∇A(X

(k)

E(k)β
∗
E(k),n

)−∇A(X
(k)
E βE,n)).

Then
√
n(R

(k)
1 − r

(k)
1 ) = op(1).

Proof [Proof of Lemma 8.] According to Lemma 12, we have

XE(k)β∗E(k),n
−XEβE,n = Op(n

−1/2).

By a Taylor approximation, we have

R
(k)
1 − r

(k)
1 =

1

n
Xᵀ diag(∇2A(XEβE,n))(XE(k)I−1

E(k),E(k)IE(k),E −XE)βE,n

− 1

nk
X(k)ᵀ diag(∇2A(X

(k)
E βE,n))(X

(k)

E(k)I−1
E(k),E(k)IE(k),E −XE)βE,n + op(n

−1/2).

By Assumption 1, there exists Ek ⊆ Ẽ(k) = E\E(k) such that for j ∈ Ẽ(k)\Ek, XE(k)I−1
E(k),E(k)IE(k),j =

Xj and βEk,n = O(n−1/2). So the last display simplifies as

R
(k)
1 − r

(k)
1 =

1

n
Xᵀ diag(∇2A(XEβE,n))(XE(k)I−1

E(k),E(k)IE(k),Ek −XEk)βEk,n

− 1

nk
X(k) diag(∇2A(X

(k)
E βE,n))(X

(k)

E(k)I−1
E(k),E(k)IE(k),Ek −XEk)βEk,n + op(n

−1/2).

If Ek is not empty, let

T1 = E
[

1

n
Xᵀ diag(∇2A(XEβE,n))(XE(k)I−1

E(k),E(k)IE(k),Ek −XEk)

]
.

Then

R
(k)
1 − r

(k)
1 =

[
1

n
Xᵀ diag(∇2A(XEβE,n))(XE(k)I−1

E(k),E(k)IE(k),Ek −XEk)− T1

]
βEk,n

−
[

1

nk
X(k)ᵀ diag(∇2A(X

(k)
E βE,n))(X

(k)

E(k)I−1
E(k),E(k)IE(k),Ek −XEk)− T1

]
βEk,n

+ op(n
−1/2).
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Note that βEk = O(n−1/2). Further, observe that

1

n
Xᵀ diag(∇2A(XEβE,n)(XE(k)I−1

E(k),E(k)IE(k),Ek −XEk)− T1 = op(1), and

1

nk
X(k)ᵀ diag(∇2A(X

(k)
E βE,n)(X

(k)

E(k)I−1
E(k),E(k)IE(k),Ek −XEk)− T1 = op(1).

Thus, we conclude that R
(k)
1 − r

(k)
1 = op(n

−1/2).

Lemma 9 (Rate of R
(k)
2 − r

(k)
2 ) Let

R
(k)
2 =

1

n
Xᵀ(∇A(Xβ̂Λ,(k))−∇A(XE(k)β∗E(k),n

)),

r
(k)
2 =

1

nk
X(k)ᵀ(∇A(X(k)β̂Λ,(k))−∇A(X

(k)

E(k)β
∗
E(k),n

)).

Then
√
n(R

(k)
2 − r

(k)
2 ) = op(1).

Proof [Proof of Lemma 9.] Based on the assertion in Lemma 12, we have

β̂
Λ,(k)

E(k) − β∗E(k),n
= Op(n

−1/2).

Taking a Taylor expansion of ∇A(Xβ̂Λ,(k)) at Xβ∗
E(k),n

for each coordinate, we obtain

R
(k)
2 − r

(k)
2 =

1

n
Xᵀ
[
diag(∇2A(XE(k)β∗E(k),n

))XE(k)(β̂
Λ,(k)

E(k) − β∗E(k),n
) + o(‖β̂Λ,(k)

E(k) − β∗E(k),n
‖))
]
−

1

nk
X(k)ᵀ

[
diag(∇2A(X

(k)

E(k)β
∗
E(k),n

))X
(k)

E(k)(β̂
Λ,(k)

E(k) − β∗E(k),n
) + o(‖β̂Λ,(k)

E(k) − β∗E(k),n
‖))
]
.

Letting

T = E
[

1

n
Xᵀ diag(∇2A(XE(k)β∗E(k),n

))XE(k)

]
,

we have
1

n
Xᵀ diag(∇2A(XE(k)β∗E(k),n

))XE(k) = T + op(1),

and
1

nk
X(k)ᵀ diag(∇2A(X

(k)

E(k)β
∗
E(k),n

))X
(k)

E(k) = T + op(1).

Hence,

R
(k)
2 − r

(k)
2 =

[
1

n
Xᵀ diag(∇2A(XE(k)β∗E(k),n

))XE(k) − T
]

(β̂
Λ,(k)

E(k) − β∗E(k),n
)

−
[

1

nk
X(k)ᵀ diag(∇2A(X

(k)

E(k)β
∗
E(k),n

))X
(k)

E(k) − T
]

(β̂
Λ,(k)

E(k) − β∗E(k),n
) + op(n

−1/2)

= op(n
−1/2).
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A.2 Proof of Theorem 3

Proof It follows from Assumption 2 that

√
n(β̂E − βE,n)

d⇒ N (0, I−1
E,E),

and from Theorem 2 we have
√
nΩ

d⇒ N (0, ΣΩ).
Note that

√
nβ̂⊥−E =

1√
n
Xᵀ
−E(∇A(XEβE,n)− Y ) +

1√
n
Xᵀ
−E(∇A(XE β̂E)−∇A(XEβE,n))

=
1√
n
Xᵀ
−E(∇A(XEβE,n)− Y ) +

1√
n
Xᵀ
−EWXᵀ

E(β̂E − βE,n) + op(1)

=
1√
n
Xᵀ
−E(∇A(XEβE,n)− Y )− I−E,EI−1

E,E

1√
n
Xᵀ
E(∇A(XEβE,n)− Y ) + op(1).

In particular, we have

Var

(
1√
n
Xᵀ
E(∇A(XEβE,n)− Y )

1√
n
Xᵀ
−E(∇A(XEβE,n)− Y )

)
=

(
IE,E IE,−E
I−E,E I−E,−E

)
.

Thus, we observe that the asymptotic variance of
√
nβ̂⊥−E is equal to

I−E,−E − I−E,EI−1
E,EIE,−E ,

and conclude that √
nβ̂⊥−E

d⇒ N (0, I/IE,E).

Further, it is easy see from the asymptotic representations of
√
n(β̂E − βE,n) and

√
nβ̂⊥−E

that they are mutually independent.
Now, observe that

√
n(β̂E − βE,n) and

√
nβ̂⊥−E are asymptotically equivalent to sums of

i.i.d. random variables zi, and that
√
nω(k) assumes the form in (18). Thus, we can write

Cov

√nω(k),
∑
i∈[n]

zi

 =
√
nCov

 1

n

∑
i∈[n]

ei −
1

nk

∑
i∈Ck

ei,
∑
i∈[n]

zi

+ op(1),

where ei = xi(∇A(xᵀi,EβE,n)− yi). The covariance term on the right-hand-side is 0, which
completes the proof.

A.3 Proof of Theorem 4

Proof We start by writing

√
nω(k) =

√
nω̄(k) + op(1),

established in Lemma 13, where

√
nω̄(k) = T(k)(

√
nB̂(k), Ẑ(k);

√
nβ̂E ,

√
nβ̂⊥−E).
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Let
√
nΩ = T(

√
nB̂, Ẑ;

√
nβ̂E ,

√
nβ̂⊥−E) denote the stack of

√
nω̄(k) for k ∈ [K].

We begin with pn, the Lebesgue density of(√
n(β̂E − βE,n),

√
nβ̂⊥−E ,

√
nΩ
)
.

We then apply the change of variables

√
nΩ→ (

√
nB̂, Ẑ)

through the mapping
√
nΩ = T(

√
nB̂, Ẑ;

√
nβ̂E ,

√
nβ̂⊥−E). Because the mapping is linear,

the density of (√
n(β̂E − βE,n),

√
nβ̂⊥−E ,

√
nB̂, Ẑ

)
is proportional to

pn(
√
n(β̂E − βE,n),

√
nβ̂⊥−E , T(

√
nB̂, Ẑ;

√
nβ̂E ,

√
nβ̂⊥−E)).

Now, the condition in Assumption 3 allows us to replace pn by the limiting Gaussian density
in Theorem 3 which gives us the corresponding asymptotic density function

ϕ(
√
nβ̂E ;

√
nβE,n, I−1

E,E)× ϕ(
√
nβ̂⊥−E ;0, (I/IE,E)−1)

× ϕ(T(
√
nB̂, Ẑ;

√
nβ̂E ,

√
nβ̂⊥−E); 0,ΣΩ).

(20)

Furthermore, if we condition on Ẑ = z and ignore constants, the asymptotic likelihood can
be simplified to

ϕ(
√
nβ̂E ; Π

√
nβE,n + κ; Θ) · ϕ(

√
nB̂; Ψ

√
nβ̂E + τ ; Ξ),

where Π, κ,Θ,Ψ, τ,Ξ are defined in Theorem 4. See details of the simplification in Lemma 10
below. The selection event, when conditioned on Ẑ = z, is equivalent to B̂ ∈ O. So the
conditional density of β̂E , B̂ is given by

ϕ(
√
nβ̂E ; Π

√
nβE,n + κ; Θ) · ϕ(

√
nB̂; Ψ

√
nβ̂E,n + τ ; Ξ) · 1

{
B̂ ∈ O

}
∫
ϕ(
√
nβ̂E ; Π

√
nβE,n + κ; Θ) · ϕ(

√
nB̂; Ψ

√
nβ̂E + τ ; Ξ) · 1

{
B̂ ∈ O

}
dβ̂EdB̂

.

Ignoring the factors that do not depend on βE,n gives the selective likelihood function.

Lemma 10 (Matrix simplification) The joint density of (
√
nβ̂E ,

√
nB̂, β̂⊥−E) when con-

ditioned on Ẑ = z is equal to

ϕ(
√
nβ̂E ; Π

√
nβE,n + κ; Θ) · ϕ(

√
nB̂; Ψ

√
nβ̂E + τ ; Ξ) · ϕ(

√
nβ̂⊥−E ; 0, (I/IE,E)−1).

Proof [Proof of Lemma 10.] Denote

Q1 =

I·,E...
I·,E

 , Q2 =


I·,E(1) 0 . . . 0

0 I·,E(2) . . . 0
. . .

0 . . . 0 I·,E(K)

 . (21)
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Let r(k) = Λ

(
s(k)

z(k)

)
+

(
0√
nβ̂⊥−E

)
, and let r be the stack of r(1), . . . , r(K). Observe, the

mapping T, given in Lemma 13, can be written as
√
nΩ = −Q1

√
nβ̂E + Q2

√
nB̂ + r. (22)

It follows from Equation (20) that the joint density of (
√
nβ̂E ,

√
nB̂) after conditioning on

Ẑ = z is proportional to

exp

[
−1

2
(
√
nβ̂E −

√
nβE,n)ᵀIE,E(

√
nβ̂E −

√
nβE,n)

−1

2
(−Q1

√
nβ̂E + Q2

√
nB̂ + r)ᵀΣ−1

Ω (−Q1

√
nβ̂E + Q2

√
nB̂ + r)

]
∝ exp

[
−1

2
(
√
nB̂)ᵀQᵀ

2Σ−1
Ω Q2(

√
nB̂) + (

√
nB̂)ᵀQᵀ

2Σ−1
Ω (Q1

√
nβ̂E − r)

−1

2
(
√
nβ̂E)ᵀ(IE,E + Qᵀ

1Σ−1
Ω Q1)(

√
nβ̂E) + (

√
nβ̂E)ᵀ(IE,E

√
nβE,n + Qᵀ

1Σ−1
Ω r)

]
.

For Ξ−1 = Qᵀ
2Σ−1

Ω Q2, Ψ = ΞQᵀ
2Σ−1

Ω Q1, τ = −ΞQᵀ
2Σ−1

Ω r, we observe that this density is
proportional to

ϕ(
√
nB̂; Ψ

√
nβ̂E + τ,Ξ) · exp

[
−1

2
(
√
nβ̂E)ᵀ(IE,E + Qᵀ

1Σ−1
Ω Q1 −ΨᵀΞ−1Ψ)(

√
nβ̂E)

+(
√
nβ̂E)ᵀ(ΨᵀΞ−1τ + IE,E

√
nβE,n + Qᵀ

1Σ−1
Ω r)

]
.

The density in the last display is proportional to

ϕ(
√
nβ̂E ; Π

√
nβE,n + κ; Θ) · ϕ(

√
nB̂; Ψ

√
nβ̂E + τ ; Ξ)

for Θ−1 = IE,E + Qᵀ
1Σ−1

Ω Q1 −ΨᵀΞ−1Ψ, Π = ΘIE,E , κ = Θ(ΨᵀΞ−1τ + Qᵀ
1Σ−1

Ω r).
To further simplifying the matrices in the likelihood, we note that Σ−1

Ω = U−1 ⊗ I−1.
Therefore, we can write Qᵀ

2Σ−1
Ω Q2 in the form of K ×K blocks, where the (j, k)-block is(

ρjρk
ρ0

+ ρjδj,k

)
IE(j),E(k) .

Similarly, Qᵀ
2Σ−1

Ω r has K blocks where the k-th block is

ρkJE(k)r(k) +
ρk
ρ0

K∑
j=1

ρjJE(k)r(j),

where JE is the matrix that selects the coordinates in E, i.e. JEx = xE . Since JE(k)

(
0E
β̂⊥−E

)
=

0 and JE(k)γ(j) = g
(j)
k , the above display is equal to ρkg

(k)
k +(ρk/ρ0)

∑
j∈[K] ρjg

(j)
k . Similarly,

Qᵀ
1Σ−1

Ω r =
∑

k∈[K]
ρk
ρ0
JEγ

(k) =
∑

k∈[K]
ρk
ρ0
g(k) and

Qᵀ
1Σ−1

Ω Q1 =

∑
k∈[K]

ρk +
∑

j,k∈[K]

ρjρk
ρ0

 IE,E =
1− ρ0

ρ0
IE,E .
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Thus Θ−1 = 1
ρ0
IE,E −ΨᵀΞ−1Ψ.

Remark 11 We note that when using the union aggregation rule, the quantities Π, κ,Θ,Ψ, τ,Ξ
do not depend on β̂⊥−E. If E(k) is not necessarily a subset of E, then

JE(k)

(
0E
β̂⊥−E

)
=

(
0E(k)∩E
β̂⊥
E(k)\E ,

)

and thus

JE(k)r(j) = JE(k)γ(j) +

(
0E(k)∩E
β̂⊥
E(k)\E

)
.

But, we only need to re-define g
(j)
k as

g
(j)
k = JE(k)γ(j) +

(
0E(k)∩E
β̂⊥
E(k)\E

)
,

and this change only affects τ . For the complete procedure when using general aggregation
rules, see Appendix D.

A.3.1 Supporting Results

Lemma 12 Let β∗
E(k),n

= I−1
E(k),E(k)IE(k),EβE,n. Under Assumption 1,

XE(k)β∗E(k),n
−XEβE,n = Op(n

−1/2), and

β̂
(k),Λ

E(k) − β∗E(k),n
= Op(n

−1/2).

Proof Note that

XE(k)β∗E(k) −XEβE = (XE(k)I−1
E(k),E(k)IE(k),E −XE)βE

=
(
XE(k)I−1

E(k),E(k)IE(k),E\E(k) −XE\E(k)

)
βE\E(k)+(

XE(k)I−1
E(k),E(k)IE(k),E∩E(k) −XE∩E(k)

)
βE∩E(k)

=
(
XE(k)I−1

E(k),E(k)IE(k),E\E(k) −XE\E(k)

)
βE\E(k) .

By Assumption 1, let Ek be the set such that if j ∈ (E \ E(k)) \ Ek,

XE(k)I−1
E(k),E(k)IE(k),j −Xj = 0,
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and βEk = O(n−1/2). Then we have

XE(k)β∗E(k),n
−XEβE = (XE(k)I−1

E(k),E(k)IE(k),Ek −XEk)βEk = Op(n
−1/2).

This proves the first claim.

By the KKT condition of lasso problem (1), we have

1

nk
X

(k)

E(k)

ᵀ
(∇A(X

(k)

E(k) β̂
Λ,(k)

E(k) )− Y (k)) = − 1√
n

ΛE(k)sk.

Denote the left-hand-side as ∇`(k)(β̂
Λ,(k)

E(k) ). Taking a Taylor expansion at β∗
E(k),n

, we get

− 1√
n

ΛE(k)sk = ∇`(k)(β̂
Λ,(k)

E(k) ) = ∇`(k)(β∗
E(k),n

) +∇2`(k)(β∗
E(k),n

)(β̂
Λ,(k)

E(k) − β∗E(k),n
)

+ o(‖β̂Λ,(k)

E(k) − β∗E(k)‖2).

(23)

Note that

∇`(k)(β∗
E(k)) =

1

nk
X

(k)

E(k)

ᵀ
(∇A(X

(k)

E(k)β
∗
E(k),n

)− Y (k))

=
1

nk
X

(k)

E(k)

ᵀ
(∇A(X

(k)

E(k)β
∗
E(k),n

)−∇A(X
(k)
E βE,n))+

1

nk
X

(k)

E(k)

ᵀ
(∇A(X

(k)
E βE,n)− Y (k)).

The first term is of order Op(n
−1/2) due to the first claim. The second term is of order

Op(n
−1/2) because it is an average of nk i.i.d. random variables of mean zero and finite

variance. This proves

∇`(k)(β∗
E(k)) = Op(n

−1/2).

Moreover,

∇2`(k)(β∗
E(k)) =

1

nk
X

(k)

E(k)

ᵀ
diag(∇2A(XE(k)β∗E(k)))X

(k)

E(k)

=
1

nk
X

(k)

E(k)

ᵀ
diag(∇2A(XEβE))X

(k)

E(k) +Op(n
−1/2)

= IE(k),E(k) +Op(n
−1/2).

Substituting into Equation (23) gives

√
n(β̂

Λ,(k)

E(k) − β∗E(k),n
) = Op(1).
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Lemma 13 The randomization variables have the expression
√
nω(k) =

√
nω̄(k) + op(1),

where
√
nω̄(k) = T(k)(

√
nB(k), Z(k);

√
nβ̂E ,

√
nβ̂⊥−E)

= I·,E(k)

√
nB(k) − I·,E

√
nβ̂E + Λ

(
S(k)

Z(k)

)
+

(
0√
nβ̂⊥−E

)
.

Proof The K.K.T. conditions of stationarity for the lasso on machine k are summarized
by

√
nω(k) =

1√
n
Xᵀ(∇A(Xβ̂(k),Λ)− Y ) + γ(k)

=
1√
n
Xᵀ(∇A(XE β̂E)− Y +∇A(XE(k)B(k))−∇A(XE β̂E)) + γ(k)

=

(
0√
nβ̂⊥−E

)
+

1√
n
Xᵀ diag(∇2A(XEβE,n))XE(k)B(k)

− 1√
n
Xᵀ diag(∇2A(XEβE,n))XE β̂E + γ(k) + op(1)

= I·,E(k)

√
nB(k) − I·,E

√
nβ̂E + Λ

(
S(k)

Z(k)

)
+

(
0√
nβ̂⊥−E

)
+ op(1)

=
√
nw̄(k) + op(1).

(24)

Appendix B. Proofs for Section 4

B.1 Proof of Theorem 5

Before proving Theorem 5, we provide a supporting result in Lemma 14.

First, let s(k) =

(
γ

(k)

E(k)

0

)
∈ Rp be the active components of the subgradient vector γ(k)

padded with a vector of all zeros. Now, let s ∈ RpK be formed by stacking the vectors s(k)

for k ∈ [K]. Recall that Ω is formed by stacking the vectors ω̄(k), k ∈ [K] that we previously
defined in Lemma 13. Suppose that

√
nΩ̃ =

√
nΩ− s.

Lemma 14 Define

Vn =


√
nβ̂E√
nβ̂⊥−E√
nΩ̃

 .

Let S be a convex subset of Rp(K+1). Under the conditions in Assumption 4 and Assumption
5, we have

lim
n→∞

− 1

a2
n

logP
[

1

an
Vn ∈ S

]
= inf

b,b⊥,ω∈S
R(b, b⊥, ω),
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where

R(b, b⊥, ω) =

{
1

2
(b− β∗E)ᵀIE,E(b− β∗E) +

1

2
(b⊥)ᵀ(I/IE,E)−1b⊥ +

1

2
ωᵀΣ−1

Ω ω

}
. (25)

Proof Because the difference between
√
nΩ̄ and

√
nΩ̃ is O(1), based on the condition in

Assumption 5, we have

lim
n→∞

1

a2
n

logP
[

1

an
Vn ∈ S

]
− logP

 1

an

 √nβ̂E√
nβ̂⊥−E√
nΩ

 ∈ S
 = 0. (26)

From the proof of Proposition 2, we have the representation

√
n

 β̂E
β̂⊥−E
Ω

 =
√
nĒn +Rn,

where the limiting density of
√
nĒn, at (b, b⊥, ω), is proportional to ϕ(b;β∗E , I

−1
E,E)·ϕ(b⊥; 0, I/IE,E)·

ϕ(ω; 0,ΣΩ). So we have the following large-deviation limit

lim
n→∞

− 1

a2
n

logP

 1

an

 √nβ̂E√
nβ̂⊥−E√
nΩ

 ∈ S
 = inf

b,b⊥,ω∈S
R(b, b⊥, ω)

under Assumption 4, where R is the rate function (25).

The assertion follows directly by using (26).

Now we are ready to prove Theorem 5.

Proof First let us define some notations which we need for the proof. Recall that r(k) =

Λ

(
s(k)

z(k)

)
+

(
0√
nβ̂⊥−E

)
, and that r is the stack of r(k) for k ∈ [K], and that s ∈ RpK is the

stack of s(k) =

(
γ

(k)

E(k)

0

)
. In matrix form, we can write

r = Q3Ẑ + Q4

√
nβ̂⊥−E + s

for fixed matrices Q3 and Q4. Let 1
an

z = ζ.

Let Q1, Q2 be defined according to (21). Then, note that we have

√
nΩ̃ =

√
nΩ̄− s

= −Q1

√
nβ̂E + Q2

√
nB̂ + r− s

= −Q1

√
nβ̂E + Q2

√
nB̂ + Q3Ẑ + Q4

√
nβ̂⊥−E .
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If we define:
h(B,Z; b, b⊥) = Q2B + Q3Z −Q1b+ Q4b

⊥.

then √
nΩ̃ = h(

√
nB̂, Ẑ;

√
nβ̂E ,

√
nβ̂⊥−E).

Denote by Un the vector 
√
nβ̂E√
nβ̂⊥−E√
nB̂

Ẑ

 ,

and consider Vn as defined in Lemma 14. Observe that

Vn =


√
nβ̂E√
nβ̂⊥−E

h
(√

nB̂, Ẑ;
√
nβ̂E ,

√
nβ̂⊥−E

)
 (27)

is a bijective linear function of Un. Let us define H : Rp(K+1) → Rp(K+1) as the function
such that

1

an
Vn = H(

1

an
Un).

Applying the contraction principle for large-deviation limit together with Lemma 14,
we conclude that the vector 1

an
Un = H−1( 1

an
Vn) satisfies a large deviation principle with

the rate function R ◦H, where R is the rate function of 1
an
Vn given in Equation (25). Thus,

it follows that

lim
n→∞

− 1

a2
n

logP
[√

n

an
B̂ ∈ O

∣∣∣ 1

an
Ẑ = ζ

]
= inf

b,b⊥,B∈O
R ◦H(b, b⊥, B, ζ)

= inf
b,b⊥,B∈O

R(b, b⊥, h(B, ζ; b, b⊥))

= inf
b,b⊥,B∈O

1

2
(b− β∗E)ᵀIE,E(b− β∗E) +

1

2
b⊥(I/IE,E)−1b⊥

+
1

2
h(B, ζ; b, b⊥)ᵀΣ−1

Ω h(B, ζ; b, b⊥).

By a similar matrix simplification as lemma 10, this is equal to (up to constant independent
of β∗E)

inf
b,B∈O

1

2
(b−Πβ∗E − κ̄)ᵀΘ−1(b−Πβ∗E − κ̄) +

1

2
(B −Ψb− τ̄)ᵀΞ−1(B −Ψb− τ̄),

where τ̄ = −ΞQᵀ
2Σ−1

Ω (Q3ζ + Q4b
⊥), κ̄ = Θ(ΨᵀΞ−1τ̄ + Qᵀ

1Σ−1
Ω (Q3ζ + Q4b

⊥)). The matrices
Π,Θ,Ψ,Ξ are the same as in Lemma 10.

It remains to show that

inf
b,B∈O

1

2
(b−Πβ∗E − κ̄)ᵀΘ−1(b−Πβ∗E − κ̄) +

1

2
(B −Ψb− τ̄)ᵀΞ−1(B −Ψb− τ̄)

= lim
n→∞

inf
b,B∈O

1

2
(b−Πβ∗E −

1

an
κ)ᵀΘ−1(b−Πβ∗E − κ̄) +

1

2
(B −Ψb− τ̄)ᵀΞ−1(B −Ψb− 1

an
τ)
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Recall from that Lemma 10 that Qᵀ
2Σ−1

Ω has (j, k) block equal to (
ρjρk
ρ0

+ ρkδj,k)JEj , and

Qᵀ
1Σ−1

Ω has (1, k) block equal to ρk
ρ0
JE . The matrix Q4 has block k equal to Jᵀ

−E . Thus,

Qᵀ
2Σ−1

Ω Q4 = 0, Qᵀ
1Σ−1

Ω Q4 = 0. So τ̄ = −ΞQᵀ
2Σ−1

Ω Q3ζ. Recall that z = anζ, so

τ = −ΞQᵀ
2Σ−1

Ω (Q3anz + s) = anτ̄ − ΞQᵀ
2Σ−1

Ω s.

Because an →∞, τ̄ = 1
an
τ + o(1). Similarly, κ̄ = 1

an
κ+ o(1). This proves the last claim.

To conclude the proof, we observe that

lim
n→∞

inf
b,B

{
1

2

(
b−Πβ∗E −

1

an
κ

)ᵀ

Θ−1

(
b−Πβ∗E −

1

an
κ

)

+
1

2

(
B −Ψb− 1

an
τ

)ᵀ

Ξ−1

(
B −Ψb− 1

an
τ

)
+

1

a2
n

BarrO(anB)

}
= lim

n→∞
inf

b,B∈O

1

2
(b−Πβ∗E −

1

an
κ)ᵀΘ−1(b−Πβ∗E −

1

an
κ) +

1

2
(B −Ψb− 1

an
τ)ᵀΞ−1(B −Ψb− 1

an
τ).

This is because the sequence of convex objectives in the left-hand side display converge (in
a pointwise sense) to the convex objective on the right-hand side display which has a unique
minimum.

B.2 Proof of Theorem 6

Proof Observe, the approximate selective likelihood is equal to

(
√
nβ̂E)ᵀΘ−1(

√
nΠβE,n + κ)−Q∗n

(
Θ−1(

√
nΠβE,n + κ)

)
,

where
Q∗n(α) = sup

v
(
√
nv)ᵀα−Qn(

√
nv) (28)

and

Qn(
√
nv) =

1

2
(
√
nv)ᵀΘ−1√nv + inf

V

{1

2

(√
nV −

√
nΨv − τ

)ᵀ
Ξ−1

(√
nV −

√
nΨv − τ

)
+ BarrO(

√
nV )

}
.

The score, based on the approximate selective likelihood, is equal to

√
nΠᵀΘ−1

(√
nβ̂E −∇Q∗n

(
Θ−1(

√
nΠβE,n + κ)

))
.

Thus, the selective MLE is given by

Θ−1(
√
nΠβ̂

(S)
E,n + κ) = (∇Q∗n)−1(

√
nβ̂E)

= ∇Qn(
√
nβ̂E)

= Θ−1√nβ̂E −ΨᵀΞ−1
(√

nV̂ ?
β̂E
−
√
nΨβ̂E − τ

)
.
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That is,

√
nβ̂

(S)
E =

√
nΠ−1β̂E −Π−1κ+ Π−1ΘΨᵀΞ−1

(
Ψ
√
nβ̂E + τ −

√
nV̂ ?

β̂E

)
=
√
nΠ−1β̂E −Π−1κ+ I−1

E,EΨᵀΘ−1
(

Ψ
√
nβ̂E + τ −

√
nV̂ ?

β̂E

)
.

Let v∗ be the solution of (28) when α =
√
nΠβ̂

(S)
E +κ. The selective obs-FI matrix, derived

from the curvature of the approximate selective likelihood, is given by

Î(S)
E,E = ΠᵀΘ−1∇2Q∗n

(√
nΠβ̂

(S)
E + κ

)
Θ−1Π

= ΠᵀΘ−1
(
∇2Qn

(√
nv∗
))−1

Θ−1Π

= ΠᵀΘ−1

(
Θ−1 + ΨᵀΞ−1Ψ−ΨᵀΞ−1

(
Ξ−1 +∇2Barr

(√
nV̂ ?

β̂E

))−1
Ξ−1Ψ

)−1

Θ−1Π

= IE,E
(

Θ−1 + ΨᵀΞ−1Ψ−ΨᵀΞ−1
(

Ξ−1 +∇2Barr
(√

nV̂ ?
β̂E

))−1
Ξ−1Ψ

)−1

IE,E .

Appendix C. Sampling subsets with replacement

Proof [Proof of Lemma 7] It suffices to prove that for j 6= k Cov
[√
nω(j),

√
nω(k)

]
→ 0.

Following the proof A.1, we only need to show

Cov

 1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(j)

ei,
1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(k)

ei

→ 0.

Let C(j) denote the index set of D(j). Since E
[

1√
n

∑n
i=1 ei −

1√
nρ

∑
i∈C(j) ei | C(j)

]
= 0, it

remains to show that

E

Cov

 1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(j)

ei,
1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(k)

ei | C(j), C(k)

 = 0.

Note that

Cov

 1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(j)

ei,
1√
n

n∑
i=1

ei −
1√
nρ

∑
i∈C(k)

ei | C(j), C(k)


= Cov [ei]− Cov [ei]− Cov [ei] + |C(j) ∩ C(k)| 1

nρ2
Cov [ei]

= (|C(j) ∩ C(k)| 1

nρ2
− 1) Cov [ei] .

The proof is completed by the fact that E
[
|C(j) ∩ C(k)|

]
= nρ2.
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In this setting, the matrices Ξ,Θ,Ψ, τ, ν,Π, κ are similarly found by Theorem 4 and its
proof with ΣΩ = 1−ρ

ρ IK ⊗ I. So now Σ−1
Ω = ρ

1−ρIK ⊗ I
−1. Then

{Ξ−1}j,k = {Q2Σ−1
Ω Q2}j,k =

ρ

1− ρ
IE(j),E(j)

if j = k and 0 otherwise. Other matrices are similarly computed.

Appendix D. Selective inference with general aggregation rules

D.1 Algorithm

In the main manuscript, we focused on the union aggregation rule, i.e., the final model E
is the union of selected variables in the base models E(k), 1 ≤ k ≤ K. We show that with a
slight modification, our procedure can be adapted to accommodate other aggregation rules.

The new procedure is summarized in Algorithm 4. We note that the procedure remains
almost the same, except that

g
(j)
k = JE(k)γ(j) +

(
0E(k)∩E
β̂⊥
E(k)\E

)
, (29)

where

β̂⊥ =
1

n
Xᵀ(Y −Xβ̂E).

If there exists a variable that is selected by machine k but is not selected in the final model
E, then we must compensate the subgradients by the correlation between that variable and
the residual vector for a more general aggregation rule.

To compute the vector g
(j)
k , we note that the central machine requires β̂⊥Eu\E , where

Eu = ∪k∈[K]E
(k) is the union of the base models. Thus, each local machine must send

β̂
⊥,(k)
Eu\E = X

(k),ᵀ
Eu\E(Y (k) −X(k)β̂E)

to the central machine. Because this quantity depends on the MLE β̂E , which is computed
on the central machine, the central machine must first send β̂E to the local machines. Our
modified procedure in Algorithm 4, therefore, involves two more exchanges between the
central machine and local machines: (1) the central machine sends β̂E to local machines;

(2) local machines send β̂
⊥,(k)
Eu\E to the central machine. In comparison with Algorithm 1,

the communication cost is |Eu ∪E| per local machine. Note that this cost is comparable to
the overall cost of order O(|E|2), as long as |Eu| is about the same order as |E|.

Of course, the modified g
(j)
k in (29) change some matrices in the optimization that we

solve for approximately-valid selective inference. Theoretically, our selective likelihood is
now obtained by conditioning further on β̂⊥Eu\E besides the information from the subgradient
vectors.
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Algorithm 4: General aggregation rules.

STEP 1: Variable Selection at Local Machines

Machine k solves (1) and sends E(k) = Support(β̂Λ,(k)) to the central machine.

STEP 2: Modeling with selected predictors

Central Machine aggregates E(k) to get the final model E and forms the aggregated

model E

STEP 3: Communication with Central Machine

Exchange 1: Central machine sends the set E as well as Eu = ∪k∈[K]E
(k) to the

local machines.

Exchange 2: Local machines send back the following information

local estimators: β̂
(k)
E , Î(k)

E,E ; subgradient at β̂Λ,(k): γ
(k)
Eu .

Exchange 3: Central Machine computes the MLE β̂E and sends to local machines.

Exchange 4: Local machines compute β̂
⊥,(k)
Eu\E = X

(k),ᵀ
Eu\E(Y (k) −X(k)β̂E) and send

to Central Machine.

STEP 4: Selective Inference at Central Machine

(A) Compute β̂⊥Eu\E = 1
nX

(0),ᵀ
Eu\E(Y (0) −X(0)β̂E) + 1

n

∑K
k=1 β̂

⊥,(k)
Eu\E

(B) Compute Ξ̂, Ψ̂, τ̂ , Θ̂, Π̂, κ̂ as defined in Theorem 4, with g
(k)
j defined according to

Equation (29).

(C) Apply Algorithm 2 to perform inference based on selective MLE.
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D.2 Experiments

We illustrate the performance of Algorithm 4 on simulated data. In the following experi-
ment, we consider the same setting as that in Section 6 with prespecified groups of correlated
predictors. More specifically, we consider 20 groups of predictors with size 5; distinct groups
of predictors are uncorrelated, while all pairs of predictors within the same group have cor-
relation equal to 0.9. As before, we assume there are 5 non-zero coefficients βj and these
nonzero coefficients are present in 5 different groups.

Suppose that

G =
⋃
k∈[K]

{Gj : j ∈ E(k)},

i.e., G contains groups which have at least one predictor selected by at least one of the K
local machines. Our final aggregated model is formed by randomly picking one predictor
from each of the selected groups (in G) with highly correlated predictors.

The results of our experiment are shown in Figure 7. We see that our proposed method
achieves the desired coverage probability. Similar patterns hold up for the lengths and
power of our confidence intervals as was already noted for the previous aggregation rule.
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(a) Varying K. Each local machine has [8000/K] data points for each K.
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(b) Varying signal strength. The nonzero βj equals ±
√

2c log p with random
signs for c = 0.3, 0.5, 0.7, 0.9 in the four signal regimes.
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(c) Varying n0, the sample size in the central machine.

Figure 7: Results for the grouped aggregation rule

41



Liu and Panigrahi

References

François Bachoc, Hannes Leeb, and Benedikt Pötscher. Valid confidence intervals for post-
model-selection predictors. The Annals of Statistics, 47(3):1475–1504, 2019.

Maria Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,
communication complexity and privacy. In Conference on Learning Theory, pages 26–1.
JMLR Workshop and Conference Proceedings, 2012.

Heather Battey, Jianqing Fan, Han Liu, Junwei Lu, and Ziwei Zhu. Distributed testing and
estimation under sparse high dimensional models. Annals of statistics, 46(3):1352, 2018.

Alexandre Belloni, Victor Chernozhukov, and Kengo Kato. Uniform post-selection inference
for least absolute deviation regression and other z-estimation problems. Biometrika, 102
(1):77–94, 2015.

Yoav Benjamini and Daniel Yekutieli. False discovery rate–adjusted multiple confidence
intervals for selected parameters. Journal of the American Statistical Association, 100
(469):71–81, 2005.

Richard Berk, Lawrence Brown, Andreas Buja, Kai Zhang, and Linda Zhao. Valid post-
selection inference. The Annals of Statistics, 41(2):802–837, 2013.

Ali Charkhi and Gerda Claeskens. Asymptotic post-selection inference for the Akaike in-
formation criterion. Biometrika, 105(3):645–664, 2018.

Xueying Chen and Min-ge Xie. A split-and-conquer approach for analysis of extraordinarily
large data. Statistica Sinica, pages 1655–1684, 2014.

Edgar Dobriban and Yue Sheng. Distributed linear regression by averaging. The Annals of
Statistics, 49(2):918–943, 2021.

William Fithian, Dennis Sun, and Jonathan Taylor. Optimal inference after model selection.
arXiv preprint arXiv:1410.2597, 2014.

Zaijing Huang and Andrew Gelman. Sampling for Bayesian computation with large datasets.
Available at SSRN 1010107, 2005.

Sangwon Hyun, Max G’Sell, and Ryan Tibshirani. Exact post-selection inference for the
generalized lasso path. Electronic Journal of Statistics, 12(1):1053–1097, 2018.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statis-
tical inference. Journal of the American Statistical Association, 2019.

Vo Nguyen Le Duy and Ichiro Takeuchi. More powerful conditional selective inference for
generalized lasso by parametric programming. Journal of Machine Learning Research, 23
(300):1–37, 2022.

Jason Lee, Yuekai Sun, Qiang Liu, and Jonathan Taylor. Communication-efficient sparse
regression: a one-shot approach. arXiv preprint arXiv:1503.04337, 2015.

42



Selective Inference with Distributed Data

Jason Lee, Dennis L Sun, Yuekai Sun, and Jonathan Taylor. Exact post-selection inference,
with application to the lasso. The Annals of Statistics, 44(3):907–927, 2016.

Nan Lin and Ruibin Xi. Aggregated estimating equation estimation. Statistics and Its
Interface, 4(1):73–83, 2011.

Sifan Liu. An exact sampler for inference after polyhedral model selection. arXiv preprint
arXiv:2308.10346, 2023.

Sifan Liu, Jelena Markovic, and Jonathan Taylor. Black-box selective inference via boot-
strapping. arXiv preprint arXiv:2203.14504, 2022.

Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon Mann. Effi-
cient large-scale distributed training of conditional maximum entropy models. Advances
in neural information processing systems, 22, 2009.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282. PMLR, 2017.

Nicolai Meinshausen, Lukas Meier, and Peter Bühlmann. P-values for high-dimensional
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