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Abstract

Gaussian processes are pervasive in functional data analysis, machine learning, and spatial
statistics for modeling complex dependencies. Scientific data are often heterogeneous in
their inputs and contain multiple known discrete groups of samples; thus, it is desirable to
leverage the similarity among groups while accounting for heterogeneity across groups. We
propose multi-group Gaussian processes (MGGPs) defined over Rp×C , where C is a finite
set representing the group label, by developing general classes of valid (positive definite)
covariance functions on such domains. MGGPs are able to accurately recover relationships
between the groups and efficiently share strength across samples from all groups during
inference, while capturing distinct group-specific behaviors in the conditional posterior
distributions. We demonstrate inference in MGGPs through simulation experiments, and
we apply our proposed MGGP regression framework to gene expression data to illustrate
the behavior and enhanced inferential capabilities of multi-group Gaussian processes by
jointly modeling continuous and categorical variables.
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1. Introduction

Gaussian processes (GPs, Rasmussen and Williams (2005)) are widely used in modeling
complex dependent data in diverse inferential settings including nonlinear regression (Ghosal
and Van der Vaart, 2017), spatial statistics (Stein, 1999), classification problems (Bernardo
et al., 1998) and, increasingly, in deep learning and reinforcement learning applications
(Damianou and Lawrence, 2013; Deisenroth et al., 2013). A GP endows an uncountable
collection of random variables with a probability law so that any finite subset is multivariate
Gaussian. This is achieved through a real-valued positive definite function K : X ×X → R,
which acts as a covariance function or kernel.

We develop GPs for analyzing “multi-group” data, where measurements belong to one
of k groups. Examples include biological measurements from distinct tissues or cell types
(Consortium et al., 2020; Regev et al., 2017); geospatial data from multiple locations defined
by discrete demarcations, such as state or country borders (Pan et al., 2020); and census
data from people of different races, ethnicities, and genders (Bureau, 2020). Models built
on Euclidean domains do not account for the discrete set of groups. While GPs on non-
Euclidean manifolds and graphs have attracted recent attention (Niu et al., 2019; Dunson
et al., 2020; Li et al., 2023) and machine learning (Borovitskiy et al., 2020, 2021), the
multi-group setting remains largely unaddressed.

For flexibly modeling k-group data, we seek a stochastic process over X : Rp × C to
drive the inference, where C = {c1, · · · , ck} is a finite set representing group labels. We
specifically extend three existing approaches over Euclidean domains (Park and Choi, 2010):
Separate Gaussian processes (SGPs), Union Gaussian processes (UGPs), and Hierarchical
Gaussian processes (HGPs). The SGP assumes independence across groups. Therefore,
the across-group correlation is set to zero: K((x, ci), (x

′, cj)) = 0 if i ∕= j. The SGP is
equivalent to modeling each group with a separate, independent GP. The UGP assumes the
same dependencies within and across groups, so the covariance function does not depend
on the members of C , i.e., K((x, ci), (x

′, cj)) = K0(x, x
′). It is equivalent to modeling all

groups jointly with a single GP. The HGP accommodates both across- and within-group
dependencies, where all within-group dependencies are assumed to be identical, and all
across-group dependencies are assumed to be identical as well. Here, K((x, ci), (x

′, cj)) =
K0(x, x

′) + 1{ci=cj}K1(x, x
′), where K0 and K1 are real-valued positive definite functions

(Park and Choi, 2010; Hensman et al., 2013). Each of the above models build covariance
functions based upon a standard GP over a Euclidean domain. These models are often
used in practice for their simplicity and extend beyond the context of GPs (Tsherniak
et al., 2017). However, each of these three GPs types impose restrictive conditions and
fail to model heterogeneous between-group dependencies. If the model is misspecified, the
inferential performance of these processes will be unsatisfactory, especially when the overall
sample size is small or the groups are imbalanced in terms of sample size.

We introduce multi-group Gaussian process (MGGP) models (Section 2) through the
construction of positive definite covariance functions over X := Rp × C (Section 3). The
multi-group process flexibly models heterogeneity across and within groups, leveraging vary-
ing levels of similarity between groups and allows us to exploit prior or expert knowledge.
Since the multi-group structure is encoded in the covariance function, we can use existing
methods and computational algorithms for fitting standard GP models.
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The MGGP contributes to the literature on joint modeling of continuous and categori-
cal variables (Dunson et al., 2003; Dunson, 2000; Teimourian et al., 2015; Ru et al., 2020;
Schulam et al., 2015; Murray and Reiter, 2016; Leroy et al., 2022, 2023) by avoiding ad-
ditive, hierarchical, and mixture models entirely. Instead, the MGGP explicitly modeling
dependencies within and among the continuous and categorical variables. This flexibility
allows straightforward conditioning on multiple categorical partitions, offering a tractable
conditional posterior, and enables us to exploit dependencies between groups when some
groups have small sample sizes. The inferential benefits of our approach are illustrated us-
ing maximum likelihood and full Bayesian inference through simulation experiments and an
analysis of gene expression data (Section 4). We conclude with some remarks in Section 6.
The Appendix includes proofs of theoretical results, code, data and additional analysis.

2. Multi-Group Gaussian Process Regression Models

We consider a dependent variable y(x; cj) generated from a latent stochastic process over
Rp × C for inputs x ∈ Rp and group j through the model

y(x; cj) = µ(x; cj) + Z(x; cj) + (x; cj) , (x; cj)
ind∼ N(0, τ2j ) , (1)

where µ(x; cj) is a mean function, Z(x; cj) is a zero-centered latent process, and (x; cj)
is a zero-centered white-noise process capturing measurement error or fine-scale variation
with group-specific variances. The mean function can be further modeled, if appropriate,
as µ(x; cj) = fj(x)

Tβj , where fj(x) is a qj × 1 vector of design variables possibly, but
not necessarily, depending on x, and each βj is a qj × 1 vector of group-specific regression
coefficients. This specification accommodates predictors or other explanatory variables that
need neither be continuous nor reside within Rp.

Equation (1) includes a parametric specification through the mean function and a
nonparametric specification through the latent process. Our focus in this paper is not
so much on modeling µ(x; cj), which can be built from standard linear model specifica-
tions, as it is on Z(x; cj) : X −→ R, where X = Rp × C . We will specify Z(·; ·) to
be a GP with zero mean and covariance function K((x; cj), (x

′; cj′)) : X × X −→ R so
that K((x; cj), (x

′; cj′)) = cov(Z(x; cj), Z(x′; cj′)) is a positive-definite covariance function.
We consider settings where data arise over a finite, possibly imbalanced, set of points
{(xi; cj)} for i = 1, 2, . . . , nj and j = 1, 2, . . . , k. Each group can have a different num-
ber, nj , of inputs. Given the covariance function, the realizations of the process over

the finite set of points is the n × 1 vector Z = (ZT
1 , . . . , Z

T
k )

T, where n =
k

j=1 nj and

Zj = (Z(x1; cj), . . . , Z(xnj ; cj))
T follows a multivariate Gaussian distribution with an n× 1

zero vector as the mean and an n × n covariance matrix K, whose (j, j′)th block is given
by the nj × nj′ matrix Kjj′ with (i, i′) element K((xi; cj), (xi′ ; cj′)) for i = 1, 2, . . . , nj and
i′ = 1, 2, . . . , nj′ .

Equation (1) enables likelihood-based inference and can be extended to a Bayesian
hierarchical framework (Cressie and Wikle, 2011; Banerjee et al., 2014). Assuming, for
elucidation purposes only, that µ(x; cj) = fj(x)

Tβj , a Bayesian model specifies the joint
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distribution

p({τ2j }, θ, {βj})×N(Z | 0,Kθ)×
k

j=1

nj

i=1

N(y(xi; cj) | fj(xi)Tβj + Z(xi; cj), τ
2
j ) , (2)

where θ denotes parameters in the covariance function, and p({τ2j }, θ, {βj}) is the prior on
the model parameters. Inference on these parameters and the latent process Z(·) proceeds
by drawing samples from the posterior distribution p({τ2j }, θ, {βj}, Z | {y(xi; cj)}, {fj(xi)}),
which is proportional to Equation (2).

Sampling from the joint posterior distribution including the process realizations Z will
be challenging due to the dimension of Z. Exploiting the Gaussian likelihood, we work with
the collapsed likelihood after integrating out Z from Equation (2), which yields

p(τ, θ,β | y, F ) ∝ p(τ, θ,β)×N(y |Fβ,Kθ +Dτ ) , (3)

where y is the n × 1 vector of observations, y(xi; cj), constructed analogous to Z, F is an

n× q block-diagonal matrix, q =
k

j=1 qj , with nj × qj blocks Fj = (fj(x1), . . . , fj(xnj ))
T,

β = (βT
1 , . . . ,β

T
k )

T is the q × 1 vector of stacked regression coefficients, τ = {τ2j } is the

collection of error variances, and Dτ is the n × n diagonal matrix with τ2j Inj as nj × nj

diagonal blocks. Markov chain Monte Carlo (MCMC) algorithms sample more efficiently
from Equation (3) because of the reduced parameter space relative to Equation (2).

We sample from p(Z | y, F ) = E[p(Z | {τ, θ,β}, y, F )] to carry out inference on the latent
process, where the expectation E[·] is taken with respect to the posterior distribution in
Equation (3); we draw one Z ∼ p(Z | {τ, θ,β}, y, F ) for each posterior drawn value of
{τ, θ,β}. This is straightforward because p(Z | {τ, θ,β}, y, F ) is of the form N(Mm,M),
where M−1 = K−1

θ +D−1
τ and m = y−Fβ, and the draws need to be made using only the

post-convergence samples of {τ, θ,β}.
To estimate the latent process at an unobserved input x0 ∈ Rp for a given group cj ∈ C ,

we evaluate the Bayesian posterior predictive distribution

p(Z(x0; cj) | {y(xi; cj)}, {fj(xi)}) ∝


p(Z(x0; cj) |Z, θ)× p(Z, {τ, θ,β} | y, F )dZd{τ, θ,β} ,

(4)
where we use the conditional independence p(Z(x0; cj) |Z, {τ, θ,β}, y, F ) = p(Z(x0; cj) |Z, θ)
derived from the hierarchical model in Equation (2). We sample from Equation (4) by
drawing one Z(x0; cj) ∼ p(Z(x0; cj) |Z, θ) for each drawn posterior sample of Z and θ,
where p(Z(x0; cj) |Z, θ) is Gaussian with mean Kθ((x0; cj); ·)TK−1

θ Z, Kθ((x0; cj); ·) is the
n × 1 vector with elements Kθ((x0; cj), (xi, cj′)) for j′ = 1, . . . , k and i = 1, 2, . . . , nj′ ,
and variance Kθ((x0; cj), (x0; cj))−Kθ((x0; cj); ·)TK−1

θ Kθ((x0; cj); ·). To predict Y (x0; cj),
we sample from the predictive distribution p(Y (x0; cj) | y, F ) by drawing one Y (x0; cj) ∼
N(fj(x0)

Tβj + Z(x0; cj), τ
2
j ) for each posterior sample of {βj , τ2j } and Z(x0; cj).

We need valid positive-definite functions to serve as Kθ((x; cj), (x
′; cj′)). This is crucial

for the above inferential framework as it ensures that the matrix Kθ in Equation (2) will be
positive definite for any finite set of distinct elements, observed or unobserved, in R×C . An
advantage of driving the inference through a latent process is the convenience of predictive
inference for the underlying process and the response at new inputs. Therefore, we focus
upon the construction of valid covariance functions to specify MGGPs.
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The computational bottleneck arises from the dimension of Kθ in GP models for large
data sets. There is a substantial literature on various approaches to build models that
scale up to massive data sets by building low-rank or sparsity-inducing processes (see, e.g.
Wikle, 2010; Banerjee, 2017; Heaton et al., 2019, for expository treatments) from any valid
covariance function. While our current focus is not specifically on processes that scale
inference to massive data sets, we note that constructing MGGPs using valid covariance
functions renders the resulting processes as “scalable-ready” since low-rank or sparsity-
inducing variants may be derived using existing approaches.

3. Multi-Group Gaussian Processes

Proofs of all theoretical results presented below are in the Appendix.

3.1 Separable multi-group GPs

We start with a simple case where the covariance function over Rp × C is separable.

Definition 1 K is said to be separable if K((x, ci), (x
′, cj)) = KRp(x, x′)KC (ci, cj), where

KRp and KC are over Rp and C , respectively.

Note that K is positive definite if and only if both KRp and KC are positive definite.
Constructing valid GPs over Rp is well known, so we focus on covariance functions KC ,
i.e., GPs over a categorical set. Also, C being finite, any function on C × C is completely
determined by the k × k positive definite matrix C with elements Cij = KC (ci, cj).

Proposition 2 KC is positive definite if and only if C is a positive definite matrix.

Thus, a positive definite function on Rp and a positive definite matrix C ∈ Rk×k ensures a
separable positive definite function on X . Homogeneous kernels arise as a special case.

Definition 3 A function KC : C × C → R is said to be homogeneous if KC (ci, cj) =
K0(1{ci ∕=cj}) for some function K0 on {0, 1}.
A homogeneous process is completely determined by two scalars a := KC (ci, ci), b :=
KC (ci, cj) with ci ∕= cj , which represent the within-group and across-group associations,
respectively. Without loss of generality, we assume a = 1; otherwise, we can rescale KC . In
this case, both within-group and between-group correlations are constants. A homogeneous
process is appropriate if we only want to distinguish pairs of observations in the same group
from those in different groups, while the specific group identities are irrelevant. Hence, K
is homogeneous if it is isotropic with respect to the discrete metric d(ci, cj) = 1{ci ∕=cj}.

Corollary 4 Let KC be homogeneous, then KC is positive definite if and only if − 1
k−1 ≤

b ≤ 1, where b = KC (ci, cj) with i ∕= j.

The inequality − 1
k−1 ≤ b ≤ 1 implies that across-group correlations should not dominate

the within-group correlations, which is intuitively reasonable. Separable models provide
computational benefits because the resulting covariance matrix for Z can be expressed as
a Kronecker product KR ⊗KC . However, such covariance functions tend to have “ridges”
or discontinuities (Stein, 2005) that lead to worse inference. They also assume that the
same covariance structure (KRp) is retained for all groups, which is restrictive in terms of
accommodating associations for different pairs of inputs in Rp × C .
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3.2 Isotropic multi-group GPs

In order to discuss “isotropic” covariance functions on Rp×C , we endow C with additional
structure. To facilitate our development, we introduce a metric d on C so that (C , d) is a
metric space.

Definition 5 Given two metric spaces (Y, d) and (Y ′, d′), a GP on Y × Y ′ is said to be
semi-isotropic if K((x1, x

′
1), (x2, x

′
2)) = K0(d(x1, x2), d

′(x′1, x
′
2)).

Intuitively, a semi-isotropic process is isotropic in Rd and C separately. Isotropy implies
semi-isotropy, but the other direction does not hold in general. In practice, d is usually
obtained from domain knowledge including prior, exterior, or expert knowledge. Thus, if
C = {North Carolina, New Jersey, California}, then the distance can be the geographical
distance between the centroids of these states. As another example, if C represents human
tissue types, then d can be constructed using prior biomedical knowledge; two tissue types
from the same organ (e.g., brain) might tend to be more similar to each other than from
different organs (e.g., brain and liver). If C is a weighted graph, then the graph distance
serves as a valid metric (Bouttier et al., 2003). If domain knowledge is unavailable, a
default noninformative distance, dij = 1 − δij , implying that all groups are equidistant,
can be adopted. Extensions to unknown dij , which are instead treated as parameters, are
discussed in Appendix I. Our next result creates a large family of semi-isotropic covariance
functions on X = Rp × C .

Theorem 6 Assume the Gram matrix defined as Gij := 1
2 (d(c1, ci) + d(c1, cj)− d(ci, cj))

is positive semi-definite, then if ϕ : R+ → R is a completely monotone function and ψ :
R+ → R+ is a positive function with a completely monotone derivative, then:

K((x, ci), (x
′, cj)) =

σ2


ψ(d2ij)

p/2
ϕ


x− x′2

ψ(d2ij)


. (5)

is a valid covariance function, where σ2 > 0 is the spatial variance. In particular, if
d(ci, cj) = 1− δij is the discrete metric, then

K((x, ci), (x
′, cj)) =

σ2

α
p
2
(1−δij)

ϕ


x− x′2

α1−δij


(6)

is a valid covariance function, where σ2 ∈ (0, 1] is the spatial variance and α > 0 controls
the interaction between Rp and C .

A simple form for G emerges when d(ci, cj) = 1 − δij . The resulting Gram matrix

is G =


0 01×(k−1)

0(k−1)×1
G


, where G = 1

2 Idk−1 + 1
21(k−1)×(k−1) and 1m×n denotes the

m× n matrix of ones. Some candidates for completely monotone functions φ and positive
functions with completely monotone derivatives ψ are in Table 1 (Gneiting, 2002). This
class of covariance functions is also known as the “Gneiting class”. Selecting φ and ψ
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φ(t) ψ(t)

exp(−ctγ) (atα + 1)β

(2ν−1Γ(ν))−1(ct1/2)νKν(ct
1/2) log(atα + b)/ log b

(1 + ctγ)−ν (atα + β)/(β(atα + 1))

2ν(exp(ct1/2) + exp(−ct1/2))−ν

Table 1: Candidate functions for completely monotone functions φ and positive
functions with completely monotone derivatives ψ. Here, a, c, ν > 0, b > 1, 0 <
α,β, γ ≤ 1.

from Table 1, we obtain the following semi-isotropic covariance functions on X (for more
covariance functions, see Section H):

K((x, ci), (x
′, cj)) =

σ2

(a2d2ij + 1)p/2
exp


−b2x− x′2

a2d2ij + 1


, (7)

K((x, ci), (x
′, cj)) =






σ22cp/2

(a2d2ij+1)ν(a2d2ij+c)p/2Γ(ν)


b
2


a2d2ij+1

a2d2ij+c

1/2

x− x′
ν

×Kν


b


a2d2ij+1

a2d2ij+c

1/2

x− x′


x ∕= x′

σ2cp/2

(a2d2ij+1)ν(a2d2ij+c)p/2
x = x′

,(8)

K((x, ci), (x
′, cj)) =

σ2cp/2

(a2d2ij + 1)1/2(a2d2ij + c)p/2
exp




−b


a2d2ij + 1

a2d2ij + c

1/2

x− x′




 .(9)

In the above functions, σ2 > 0 is the spatial variance, a ≥ 0 is the group similarity scale,
b ≥ 0 is the feature scale, c ≥ 0 is the separability scale, and ν > 0 is a smoothness
parameter. The covariance function in Equation (7) is analogous to the squared exponential
or radial basis functions (RBFs). The covariance function in Equation (8) is the analogue
of the Matérn covariance function. In particular, the covariance function in Equation (9) is
a special case of Equation (8) when ν = 1/2, which is the exponential covariance function.
The covariance function in Equation (8) becomes separable when c = 1. We supply a table
summarizing the kernel constructions in Appendix H.

It is important to clarify that φ and ψ are legitimate choices within the Gneiting class,
and modelers can select one independent of the other from the provided list. The final
decision on these parameters should be based on the specific problem at hand. We also
remark that our proposed framework is broader than the Gneiting class, and we do not
imply that the Gneiting class encompasses all possible choices. Appendix H provides more
examples of kernels within and beyond the Gneiting class.

3.3 Stationary multi-group GPs

We now weaken isotropy. Since (C , d) does not admit a natural algebraic structure, we
start with k = 2, which appears frequently in practice including in data sets where the
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two groups are male/female, adults/children, treatment/control, and so on. For the non-
isotropic case, C can be identified with Z2 when k = 2, an Abelian group. In this setting,
K is said to be stationary if K((x, d), (x′, l)) = K0(x−x′, d− l). We use K instead of K0 for
simplicity, where K is characterized by Kw = K(·, 0), the within-group covariance function,
and Kc = K(·, 1), the cross-group covariance function. Any covariance function on Rp×Z2

determines two covariance functions on Rp. On the other hand, not all pairs of covariance
functions on Rp define a valid covariance function on Rp×Z2. In order to construct a valid
covariance function on Rp ×Z2, we need a sufficient condition for K to be positive definite.

Theorem 7 Let Kw and Kc be two positive definite functions on Rp with spectral densi-
ties ρw and ρc such that K(x, 0) = Kw(x) =


Rp e

−2πiωxρw(ω)dω, K(x, 1) = Kc(x) =


Rp e

−2πiωxρc(ω)dω. Then, K(x, l) =


Kw(x) l = 0

Kc(x) l = 1
is positive definite on Rp × Z2 if and

only if ρw ≥ ρc.

Example 1 Recall the multi-group RBF in Equation (7). The two spectral densities are

ρw(ω) = σ2
 π

b2

 p
2
exp


−π2ω2

b2


and ρc(ω) = σ2

 π

b2

 p
2
exp


−π2(a2 + 1)ω2

b2


, where

ρw ≥ ρc.

The stationary MGGP assumes homogeneity in the within-group correlation. To ac-
count for heterogeneity, we introduce a weaker semi-stationary MGGP. This semi-stationary
process is stationary in Rp but not in C .

Definition 8 K is said to be semi-stationary if K((x, ci), (x
′, cj)) = K0(x−x′, ci, cj) where

K0 is defined on Rp × C × C .

A semi-stationary process is appropriate for applications where groups are expected to have
different within-group correlations, but the process is stationary once the group is fixed.
For semi-stationary MGGPs, K is determined by K0(x) = K(x, 0, 0), Kc(x) = K(x, 0, 1) =
K(x, 1, 0) and K1 = K(x, 1, 1), where K0 ∕= K1 in general; otherwise K becomes stationary.

Theorem 9 Let K0, Kc and K1 be positive definite functions on Rp with spectral densities

ρ0, ρc, and ρ1. Then K(x, l, l′) =






K0(x) l = l′ = 0

Kc(x) l + l′ = 1

K1(x) l = l′ = 1

is positive definite on Rp ×Z2 if and

only if ρ0ρ1 ≥ ρ2c .

Data sets with more than two groups are ubiquitous in scientific applications. Hence, we
generalize the above theory to k > 2 groups. The difficulty here is that C does not admit a
natural group structure for k > 2. A straightforward solution would be to identify C with
Zk, but the modular structure of Zk, i.e., 1−0 = 2−1 = · · · k−1− (k−1−1) ∕= k− (k−1),
is not satisfied in practice. Hence, Bochner’s Theorem (Rudin, 2017), which characterizes
positive definite functions on locally compact Abelian groups, is not applicable. Theorem 9
draws an equivalence between Bochner’s Theorem on Rp × Z2 and Cramér’s Theorem on
Rp with k = 2. Hence, we can use bivariate GPs to construct two-group GPs. Furthermore,
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given that Cramér’s Theorem (Cramér, 1940) holds for a general k-variate GP, we can
develop a general theory for an arbitrary number of groups with k > 2, which we do below.
We draw similarities between the MGGP with k groups and k-variate GPs, also known
as multi-task GPs. Recall that a k-variate random field Z on Y is characterized by its
cross-covariance function K : Y × Y → Rk×k: Cov( Z(x), Z(x′)) = K(x, x′).

Theorem 10 Let G be the space of all Gaussian random fields on Y × C , where C =
{c1, · · · , ck} and V is the space of all Gaussian k-variate random fields on Y. Then Φ : G →
V , (Φ(Z))i(x) := Z(x, ci), ∀Z ∈ G is a bijection, and its inverse Φ−1 is given by Φ−1 : V →
G , (Φ−1( Z))(x, ci) = Zi(x), ∀ Z ∈ V . The correspondence between the covariance function
of Z and the cross-covariance function of Z is given by K((x, ci), (x

′, cj)) = K(x, x′)ij.

Therefore, constructing a k-variate GP will produce a k-group GP, and vice versa. Exist-
ing constructions of multivariate GPs can be applied (see, e.g., Cressie and Huang, 1999;
Gneiting et al., 2010; Apanasovich and Genton, 2010; Gelfand and Banerjee, 2010; Genton
and Kleiber, 2015). While MGGPs and multi-task GPs are mathematically equivalent, they
focus on different aspects of statistical learning. The multi-task GP focuses on predicting
multiple tasks simultaneously by borrowing information across groups. On the other hand,
the MGGP models multiple groups that may or may not have shared underlying structure
by learning the kernel parameters explicitly. We prove the following related result.

Theorem 11 Let K : Rp × C × C → R be a function with Kij = K(·, ci, cj) being sta-
tionary on Rp and spectral densities ρij. Then, K is positive definite, hence defines a
semi-stationary GP on Rp × C , if and only if ρ(ω) = {ρ(ω)}ki,j=1 is positive semi-definite
for any ω ∈ Rp.

Theorem 9 is a special case of Theorem 11 when k = 2, but can be proved differently. As a
result, the connection between Bochner’s Theorem on Rp×C and Cramér’s Theorem on Rp

is analogous to the relationship between multi-group and multivariate GPs. The MGGP is
a non-trivial generalization of existing processes that allows substantial group heterogeneity
by accommodating a variety of flexible covariance functions.

3.4 Multivariate multi-group Gaussian processes

The construction of the MGGP can be extended to multivariate, or multi-output GPs. Let Z
be a k′-variate GP on Rp×C with cross-covariance function K : Rp×C ×Rp×C → Rk′×k′ ,
that is, Cov(Z(x, ci), Z(x′, cj)) = K((x, ci), (x, cj)). Similar to the construction of the
MGGP, first we assume that there exists a metric d′ between output variables with a
positive semi-definite Gram matrix.

Theorem 12 If ϕ : R+ → R is a completely monotone function and ψ1,ψ2 : R+ → R+ are
positive functions with completely monotone derivatives, then

K((x, ci), (x
′, cj))kl =

σ2


ψ1


d2ij

ψ2(d′
2
kl)

p/2 
ψ2(d′

2
kl)

1/2
ϕ




x− x′2

ψ1


d2ij

ψ2(d′
2
jl)







is a valid cross-covariance function, where σ2 > 0 is the spatial variance.

9



Li, Jones, Banerjee, and Engelhardt

Figure 1: Comparison between the Multi-Group, Separate, Union, and Hierar-
chical process models. Using two-group data generated from each of the four models, we
computed the log marginal likelihood of the data under each model. For the Multi-Group
model, we used the covariance function in Equation (7) and used a range of different values
the parameter a. In the rightmost plot, the dashed vertical line indicates the true value of
a used for data generation. We used an RBF kernel, which does not have an a parameter,
for the Separate and Union models. We repeated this experiment 20 times, and the bands
in each plot represent 95% confidence intervals.

4. Simulations

4.1 Comparing the MGGP with related models on simulations

We conducted an experiment to assess the MGGP’s ability to recover the Separate, Union,
and Hierarchical Gaussian processes as special cases. We generated data from each of these
models using Equation (1) with k = 2 groups. We specified a zero mean, i.e., µ(x; cj) = 0
for both groups, and specified the latent process using covariance functions for the three
models. We set b = σ2 = a = 1 in Equation (7). (Note that a is only used in the generation
of data from the MGGP.) We also assumed τ21 = τ22 = τ2 in Equation (1) and used τ2 = 0.1
to generate our data. Using these settings, we generated n1 = n2 = 100 measurements for
each group.

We computed the log marginal likelihood of the data, i.e., N(y | 0,Kθ + Dτ ), under
each model for each data set. For the SGP, UGP and HGP, we used the RBF, K(x, x′) =
σ2 exp{−b2x − x′2}. For the Multi-Group model we used the “multi-group” RBF in
Equation (7). When computing the likelihood under each model, we fix b,σ2, and τ2 to
their true values; for a we use a grid of values, a = 10−5, 10−4, . . . , 102, and we specify
Dτ = τ2In.

Our MGGP performs on par with the SGP, UGP and HGP in the expected regimes
(Figure 1). The MGGP matches the performance (as measured by the log marginal likeli-
hood) of the SGP when a is large, and the MGGP matches the performance of the UGP
as a → 0. For data generated from the MGGP, we find that the likelihood peaks at the
true value of a and is higher than all other models at this value. These results i) serve as a
demonstration of the role of a; ii) confirm numerically that the MGGP recovers these alter-
native models in certain regimes; and iii) suggest that the MGGP is a viable generalization
of the other three models.
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Figure 2: Covariance function parameter estimation. Using data generated from the
Separate and Union processes, we fit the Multi-Group process by finding the MLEs for the
true parameters of the kernel function in Equation (7). The boxes cover the interquartile
range; the lower border of the box is the 25th percentile, the upper border of the box is
the 75th percentile, and the middle line is the median. The whiskers extend 1.5 times the
interquartile range in each direction.

4.2 Estimation and inference for the MGGP

In our previous experiment, we used the multi-group covariance function in Equation (7)
with a fixed value of a. In practice, we will need to estimate a and all other covariance
parameters from the data. Next, we assess the parameter estimates of the MGGP using
both maximum likelihood and fully Bayesian posterior inference.

We first conducted an experiment where we generated data from the SGP and UGP
as in the previous section. We maximize the collapsed or marginalized likelihood corre-
sponding to Equation (1), i.e., N (y | 0,Kθ + τ2In), with respect to θ = {a, b,σ2}, and a
common measurement error variance τ2, where θ corresponds to the three parameters in
the multi-group covariance function in Equation (7). We used a conjugate gradient ascent
algorithm (Nocedal and Wright, 2006) to obtain the joint estimates of {θ, τ2} and executed
the algorithm in Python using the JAX software framework (Bradbury et al., 2018) designed
for fast computation, compilation, and automatic differentiation. Experiments were run on
an internal computing cluster using a 320 NVIDIA P100 Graphical Processing Unit. The
maximum likelihood estimates (MLEs) for a were consistently high for data generated from
the SGP and low for the UGP data, as expected (Figure 2, middle panel). Additionally,
our estimation was able to capture the true values for σ2 and b (Figure 2, left and right
panels).

Next, we generated four data sets from the MGGP for a ∈ {10−3, 10−2, 10−1, 100} with
sample size fixed at 100. We optimized all parameters jointly by maximizing the marginal
multi-group likelihood and examined the estimated value of a for each. We repeated this
experiment ten times and found that we could consistently estimate a reasonable value of a
(Figure 3). While the estimated values did not exactly coincide with the true values, they
showed a desirable monotone relationship. These results reveal that likelihood-based param-
eter estimation is feasible in the multi-group model and that existing estimation and com-
putational algorithms, such as gradient ascent, can be successfully applied to multi-group
models. A formal proof of the consistency of the MLE for a and other kernel parameters,
as well as the consistency of the posterior distribution, remains challenging. Consistently
estimating GP kernel parameters, even in Euclidean domains, is well-recognized in the lit-
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Figure 3: Recovering a with the MGGP MLE. We generated synthetic data from the
MGGP at different values for a and subsequently fit the MGGP to these data. We fix all
other parameters to their true values. We are able to recover a close approximation of the
true value of a.

erature as a difficult problem (Zhang, 2004; Tang et al., 2021; Li, 2022; Loh and Sun, 2023).
This issue remains an important area for future research, as discussed in Section 6.

Turning to the full Bayesian analysis, we generated a simulated data set in the same
manner as above for the MGGP described in Section 2. We include group-specific intercepts
for the k = 2 groups, denoted as β = (β1,β2)

T, and use β1 = 1,β2 = 2 along with group-
specific noise variances τ21 = 0.1, τ22 = 0.3 to generate the data. We form the (n1 + n2)× 2
binary design matrix F in order to apply the group-specific intercept in the model. For
computational efficiency, we fit the collapsed posterior distribution in Equation (3). With
θ = {a, b,σ2}, the prior distribution in Equation (3) is specified as

p(θ, {τ21 , τ22 },β) = IG(a |αa,α
′
a)× IG(b |αb,α

′
b)× IG(σ2 |ασ,α

′
σ)

×
2

j=1

IG(τ2j |ατj ,α
′
τj )×N(β |µβ , Vβ),

(10)

where we set αa = α′
a = αb = α′

b = ατ1 = α′
τ1 = ατ2 = α′

τ2 = 5, ασ = α′
σ = 1, µβ = 0 and

V −1
β = I. We set the values of these parameters for simplicity, but note that, in practice,

one may use external information, if available, to elicit prior information. For example, a
shrinkage prior on a could be used if there is evidence that the groups are similar.

For inference, we sample from the posterior distribution in Equation (3) using a Hamil-
tonian No U-Turn Sampling (Hoffman et al., 2014) algorithm as implemented in the Stan

programming environment (Stan Development Team, 2020; Riddell et al., 2021). We ran
four chains with dispersed initial values for 1, 200 iterations each. Convergence was diag-
nosed after 200 iterations using visual inspection of autocorrelation plots (Figure 10) and
computation of Gelman-Rubin R-hat and Monte Carlo standard errors. The subsequent
4, 000 samples were retained for posterior inference.
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Figure 4: Posterior predictive distribution from the multi-group Gaussian pro-
cess. The points represent training data; the solid lines show the means of the latent pro-
cesses F (x; c); the dashed lines represent the predictive means of Y (x; c); and the shaded
areas around the lines are twice the standard deviation of the posterior predictive distribu-
tion at the corresponding input points.

The posterior median and 95% credible intervals show that the covariance function
parameters capture their true values (Figure 11, Table 2). We also sample from the posterior
predictive distribution, p(Y (x0; cj) | y, F ) (see Section 2), for a collection of new inputs or
test cases (Figure 4). Because all of the MGGP assumptions are encoded in the covariance
function, any appropriate method for estimation and inference in standard GPs can be
applied.

We next evaluated the MGGP in terms of predicting held-out values in a GP regression
task. We generated data from a GP regression model, as in Equation (1), using the SGP,
UGP, HGP, and MGGP. We fit these models to each of the data sets using 50% of the data
for training, and we test our predictions over the remaining data. We use the predictive
mean µ = KXXK−1

XXy as a point prediction for each of the n held-out samples, where
KXX is the n × n matrix of covariance function evaluations for each pair of test and
training samples, and KXX is the n× n matrix of covariance function evaluations for each
pair of training samples. We center the data for each group around their mean. We compute
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Parameter True Posterior percentiles

a 1.0 1.66 (0.82; 4.29)

b 1.0 0.47 (0.29; 0.88)

σ2 1.0 1.41 (0.76; 2.98)

τ1 0.1 0.14 (0.09; 0.21)

τ2 0.3 0.29 (0.2; 0.47)

β1 1.0 0.73 (-0.38; 1.66)

β2 2.0 1.86 (0.77; 2.8)

Table 2: Parameter posterior summaries for simulated Bayesian analysis. Poste-
rior summaries are presented as 50(2.5; 97.5) percentiles in the third column.

Figure 5: GP predictions with simulated data. We generate data from each of the
four models—SGP, UGP, HGP and MGGP—and fit each of these models to all data sets.
Prediction error (MSE) was computed on a held-out data set. Figure 9 shows an analogous
experiment using the Matérn covariance function.

the mean squared error (MSE) of the predictions, E = 1
n

n

i=1(yi − µ
i )

2 to evaluate the
quality of predictive inference.

We find that the MGGP emulates the performance of the SGP, UGP and HGP on their
respective simulated data sets (Figure 5). With data generated from the MGGP itself, the
MGGP substantially outperforms the other models. While the SGP can be expected to
perform well when each group has a large sample size, a primary benefit of MGGPs is their
ability to share information across similar groups when the (group) sample size is limited.
Thus, we expect MGGPs to excel over SGP when some groups have a small number of
samples, but are closely related to other groups.

To test this claim, we conducted another multi-group regression experiment in which we
sought to predict the held-out values for one group that contained few samples. Specifically,
we generated synthetic data consisting of three groups, where group 1 and group 2 are similar
to one another, and group 3 is dissimilar from the other two. We then generate a series of
data sets, with sample size of group 2 and 3 being 50 and varying the number of samples
in group 1 to take values in {5, 10, 30, 50}. Then, we fit the SGP, UGP, HGP and MGGP
to each of the data sets, using 50% of the data for training, and testing predictions on the
other 50%. We find that the MGGP model outperforms the other methods, especially when

14



Multi-Group Gaussian Processes

Figure 6: Prediction using simulated data with imbalanced groups. We perform
a prediction experiment with k = 3 groups. To generate a series of data sets, we fix the
sample size of groups c2 and c3 to be 50, and we vary the sample size of group c1.

the sample size for group 1 is small (Figure 6). This result shows that the MGGP appears
to thrive when the sample size for some groups is limited, as it most effectively leverages
information from similar groups while acknowledging the group structure.

4.3 Partially observed coordinates

A key benefit of our process-based modeling framework is its versatility in dealing with
situations where we have partially observed coordinates. This setting arises in situations
where not all group labels cj ∈ C have yielded measurements on an identical set of xj ∈ X ,
which leads to an imbalance. Despite this, inference still proceeds seamlessly using the
framework described in Section 2. In fact, the simulated data in our experiments reflect
this exact setup: the xjs within each group rarely overlapped across groups, meaning that
almost all xjs were exclusive to a single group. For example, the observed measurements for
two groups in our previous example have minimal overlap (Figure 4), and the MSE values
(Figure 5) were computed under this disjoint groups of xjs setup.

5. Application to GTEx tissue samples

We applied the MGGP to a large gene expression data set collected by the Genotype-
Tissue Expression (GTEx) project (Consortium et al., 2020). The GTEx v8 data contain
measurements from 17,382 samples that span 52 tissue types collected from 838 human
donors; see Appendix K for a full list of tissue types and the sample size for each tissue.
Along with gene expression profiling, a variety of additional metadata characteristics are
collected, including demographic variables and tissue health measurements.

In these experiments, we use GP regression models to analyze the relationship between
a sample’s gene expression profile and its ischemic time–the duration of time between death
and tissue collection. Previous work has shown a robust relationship between gene expres-
sion and ischemic time (Musella et al., 2013; Ferreira et al., 2018); however, whether this
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relationship exhibits tissue-specific patterns remains largely untested. In these experiments,
the groups correspond to tissue of origin for each sample.

As an initial test with the GTEx data, we applied the MGGP to samples from just
two tissue types at a time. These experiments aim to validate that MGGP regression
can appropriately model known associations across similar groups and estimate pairwise
similarity between groups.

In a preliminary experiment, we examined three tissue types: anterior cingulate cortex
(n = 172), frontal cortex (n = 200), and coronary artery (n = 238). First, for each of
the three pairs of tissues, we fit the MGGP model with MLEs, as described in Section
4.2, using the multi-group RBF covariance function (Equation (7)). In this experiment, we
fixed a to one value in a preset range, and found the MLEs of the remaining parameters.
This experiment aims to justify our interpretation of a using a real data set where we know
the similarity between certain groups (i.e., tissues). In practice, a is estimated using an
MLE in all other simulations and applications. Using these MLEs and the fixed a, we

then computed the log marginal likelihood of the data, log p(y |X, a,b,σ2, τ2) = −k

2
2π −

1

2
det(KXX + τ2I)− 1

2
yT(KXX + τ2I)−1y, where KXX is the (n1 + n2)× (n1 + n2) matrix

of covariance function evaluations for each pair of samples. We also fit the SGP and UGP
for each pair of tissues using the standard RBF, and computed the log marginal likelihood
of the data under these models.

Examining the log marginal likelihood across varying values of a (Figure 7), we found
that two brain tissue types that are expected to be similar to one another—anterior cingulate
and frontal cortex—showed a higher marginal likelihood under small values of a (a  0.01),
while tissues that have unique expression patterns—anterior cingulate cortex and coronary
artery—showed a higher marginal likelihood under large values of a (a  10). In both cases,
the MGGP gracefully recovered the Separate and Union marginal likelihoods for a → ∞ and
a → 0, respectively. This result implies that MGGP is a viable strategy not only for sharing
information across groups, but also for quantifying the group relationships themselves.

We also conduct a similar experiment where we obtain MLEs of a (along with all other
model and covariance parameters) from the data. Here, we apply the model to all 52 tissue
types. We fit the MGGP for every pair of tissues, and extract aMLE for each pair. This
experiment yields 1

2(52 × 51) = 1326 estimated values of a (one for each pair of tissue
types). The estimated values of a reflect many of the expected relationships between the
tissue types (Figure 8). Notably, we report 11 regions of the brain yielding low values for
a, which suggests that gene expression in these tissue types changes in a similar manner as
ischemic time changes.

Finally, we conduct a fully Bayesian analysis of the GTEx data using the MGGP model.
Here, we analyze the 11 brain tissue types, which comprise a total of 2218 samples, using
Equation 3. For ease of visualization and demonstration, we use the expression of just
one gene, TXNIP, as our explanatory variable, and use each sample’s ischemic time as the
response as before. We use the same modeling approach as in our simulation study (Section
4.2), adapting the model for 11 groups. Again, we fit the collapsed likelihood in Equation 3
incorporating group-specific intercepts in F and group-specific variances in Dτ . We run
four chains with dispersed initial values for 300 iterations each. Convergence is diagnosed
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Figure 7: Likelihood of GTEx gene expression data under the MGGP model. For
each pair of tissues, we computed the log marginal likelihood of the data under the MGGP
model with a set to be a range of values. Similar tissue types (e.g., anterior cingulate
cortex and frontal cortex) prefer low values of a, while more dissimilar tissues (e.g., anterior
cingulate cortex and coronary artery) prefer high values of a.

after 100 iterations using visual inspection of autocorrelation plots. The subsequent 800
samples are retained for posterior inference.

Using posterior summaries of the covariance function parameters, intercepts, and noise
variances (Table 3), we find that the MGGP successfully models these relationships across
groups. Moreover, the predictive processes demonstrate the similarities and differences
between the groups (Supplementary Figures 13, 14). For example, we see that while all
brain regions tend to exhibit a similar relationship between gene expression levels and
ischemic time, this relationship shows a distinct trend in the cerebellum and putamen. We
find that the MGGP predictive processes capture these subtle group relationship differences.

6. Discussion

We develop multi-group Gaussian process (MGGP) models as a flexible approach for model-
ing complex dependencies in data sets with subgroup structure. We present several options
for constructing valid covariance functions on Rp × C , and we show that this structure
generalizes existing GP models. We emphasize that the MGGP novelty is in the construc-
tion of the covariance functions, enabling all GP inference strategies applicable to MGGPs.
We demonstrate the behavior of the MGGP through several simulation experiments and an
application to gene expression data with ischemic time measurements for 52 distinct tissues.

Several future directions remain to be explored. First, this paper lays the groundwork for
developing new positive definite covariance functions on Rp × C . An interesting direction
is to construct covariance functions whose within-group and between-group correlations
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Parameter Posterior percentiles Parameter Posterior percentiles

σ2 0.49 (0.28; 0.82) β11 -0.02 (-0.48; 0.67)

b 0.63 (0.32; 1.16) τ21 0.79 (0.63; 1.0)

a 0.45 (0.28; 0.93) τ22 0.97 (0.81; 1.14)

β1 -0.04 (-0.51; 0.56) τ23 0.89 (0.75; 1.12)

β2 -0.08 (-0.58; 0.47) τ24 0.86 (0.74; 1.07)

β3 0.01 (-0.46; 0.61) τ25 0.87 (0.75; 1.01)

β4 0.64 (0.07; 1.17) τ26 0.89 (0.74; 1.09)

β5 0.7 (0.12; 1.28) τ27 0.85 (0.68; 1.05)

β6 -0.0 (-0.46; 0.59) τ28 0.86 (0.74; 1.01)

β7 -0.04 (-0.46; 0.52) τ29 0.8 (0.67; 1.0)

β8 -0.1 (-0.48; 0.46) τ210 0.89 (0.67; 1.09)

β9 0.18 (-0.3; 0.68) τ211 0.88 (0.69; 1.14)

β10 -0.03 (-0.47; 0.51)

Table 3: Parameter posterior summaries for Bayesian analysis of GTEx data.
Posterior summaries are presented as 50(2.5; 97.5) percentiles in the second column. Sub-
scripts on parameter names indicate group labels.

exhibit fundamentally different structure (e.g., the within-group correlation may be Matérn
families, while the between group correlation may be RBF families). Second, as briefly
mentioned in Section 2, recent advances in classes of GPs that scale learning to massive
data sets can be applied to the MGGP. For example, sparsity-inducing GPs have received
much attention recently (see, e.g., Datta et al., 2016; Katzfuss and Guinness, 2021; Peruzzi
et al., 2022), and such methods can be applied to the class of multi-group models presented
here. Third, a linear, yet nonseparable, MGGP kernel remains to be explored: A naive
approach is to assign different linear coefficients to different groups; however, this leads to
a separable kernel.Fourth, there are opportunities to explore alternate GP representations
by adopting Mercer’s theorem, i.e., an eigenfunction-based decomposition, to help build
new covariance functions. The main challenge here is to identify the suitable eigenfunctions
with both continuous and categorical components. Fifth, the consistency of MLEs and the
posterior consistency of kernel parameters remain open and challenging problems. Sixth,
the multi-group kernels can serve as valid cross-covariance functions for multivariate spatial
processes by treating the categories as indices for the elements of a vector process. They
present sparser parametric forms than cross-covariance functions resulting from the widely
employed linear models of coregionalization in spatial statistics (see, e.g., Gelfand et al.,
2004; Banerjee and Johnson, 2006; Guhaniyogi et al., 2013, with applications in agronomy,
ecology and environmental sciences) and can also serve as alternatives in process-based
factor models (Zhang and Banerjee, 2022; Davies et al., 2022) and as candidates to build
highly multivariate graphical GPs (Dey et al., 2022). Finally, given that the MGGPs
are well-defined stochastic processes, they can be introduced in any process-based model,
perhaps replacing more customary choices that do not allow both continuous and categorical
variables simultaneously. Thus, there could be benefits from using a multi-group process in
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Figure 8: Estimation of a for each pair of GTEx tissue types. Cell ij in the heatmap
represents log10(aij), where aij is the MLE of a when fitting the MGGP model using tissues
i and j. Lower values of a (red) indicate higher similarity, while higher values of a (black)
indicate lower similarity.

classification, latent variable models, and other model types. We envision the MGGP being
a flexible tool in diverse contexts.
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Appendix A. Proof of Proposition 2

Proof

First, assume K2 is positive definite, and let the observation set be {c1, · · · , ck}. Then
the covariance matrix is exactly C, which is positive definite as well.

Then assume C is positive definite, and define X be a random variable that follows
a k-dimension Gaussian distribution: X ∼ N(0, C). Given observations a1, · · · , an ⊂
{c1, · · · , ck}, let Y be a n-dimensional random variable such that Yi = Xai , then K(ai, aj) =
Cai,aj = Cov(Xai , Xaj ) = Cov(Yi, Yj). That is, K is positive definite.
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Appendix B. Proof of Corollary 4

Proof By Proposition 2, K2 is positive definite if and only if C is positive definite. Under

the assumption of homogeneity, C =





1 b · · · b
b 1 · · · b
...

...
. . .

...
b b · · · 1




. We can rewrite C = (1−b)Ik+b1k×k.

Recall that 1k×k has eigenvalue p with multiplicity 1, and the corresponding eigenvector is
1k. Moreover, 0 is another eigenvalue with multiplicity k − 1. As a result, eigenvalues of Σ
are 1− b+ bk with multiplicity 1 and 1− b with multiplicity −1. We can conclude that C
is positive definite if and only if − 1

k−1 ≤ b ≤ 1.

Appendix C. Proof of Theorem 6

Restricting the GP to a subset of the original domain is again a GP (Rasmussen and
Williams, 2005). Hence, if we can isometrically embed C to an Euclidean space Rp′ by
some mapping ι : C → Rp′ such that dij := d(ci, cj) = ι(ci) − ι(cj), then an isotropic
GP on Rp′ induces a GP on the image ι(C ). To construct valid covariance functions, the
explicit form of ι is not necessary. As long as such embedding exists, we can construct
semi-isotropic covariance functions.

Lemma 13 (Maehara (2013)) Let Gij =
1

2
(d(c1, ci) + d(c1, cj)− d(ci, cj)) be the k × k

Gram matrix of d. Then there exists an isotropic embedding ι : C → Rp′ if and only if G is
positive semi-definite with rank at most p′.

Proof By the isometric embedding, finding K is equivalent to finding a semi-isotropic
covariance function K0 in Rp×Rp′ . For any completely monotone function ϕ : R+ → R and
positive function ψ : R+ → R+ with a completely monotone derivative, Gneiting (2002)

proved that K0((x1, x
′
1), (x2, x

′
2)) = σ2

(ψ(x′
1−x′

22))
p/2ϕ


x1−x22

ψ(x′
1−x′

22)


is positive definite for

any σ2 > 0. As a result, K((x, ci), (x
′, cj)) := K0((x, ι(ci)), (x

′, ι(cj))) is positive definite.

Appendix D. Proof of Theorem 7

Recall the general form of Bochner’s Theorem for a locally compact Abelian group:

Lemma 14 (Bochner’s Theorem) Let G be a locally compact Abelian group and G be
its dual group, then for any continuous positive-definite function K on G, there exists a
unique positive measure µ on G such that

K(g) =



G
ξ(g)dµ(ξ).
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Note that G = Rp×Z2 is a locally compact Abelian group and the dual group is G = Rp×U2,
where U2 is the group of second roots of unity, that is, U2 = {1,−1}. G acts on G as

(ω, z)((x, l)) = e−2πiωxzl.

The spectral measure of K, denoted by µ on Rp × U2 splits as µ1 × µ2 where µ1 is a
measure on Rp and µ2 is a measure on U2. Then we claim that

K(x, l) =


z∈U2



Rp

e−2πiωxzlρ(ω, z)dω,

where ρ(ω, 1) = 1
2ρw(ω)+

1
2ρc(ω) and ρ(ω,−1) = 1

2ρw(ω)−
1
2ρc(ω). We derive the left hand

side from the right hand side. First consider the case when l = 0:



z∈U2



Rp

e−2πiωxz0ρ(ω, z)dω

=
1

2



Rp

e−2πiωx(ρw(ω) + ρc(ω))dω +
1

2



Rp

e−2πiωx(ρw(ω)− ρc(ω))dω

=



Rp

e−2πiωxρw(ω)dω

= Kw(x) = K(x, 0).

Similarly, when l = 1,



z∈U2



Rp

e−2πiωxz1ρ(ω, z)dω

=
1

2



Rp

e−2πiωx(ρw(ω) + ρc(ω))dω − 1

2



Rp

e−2πiωx(ρw(ω)− ρc(ω))dω

=



Rp

e−2πiωxρc(ω)dω

= Kc(x) = K(x, 1).

As a result, K is positive definite ⇐⇒ ρ is a positive measure ⇐⇒ ρw ≥ ρc, and the
Theorem follows.

Appendix E. Proof of Theorem 9

The generalized spectral measure of K, denoted by µ (with density ρ) on Rp × U2 × U2,
splits as µ1 × µ2 where µ1 is a measure on Rp and µ2 is a positive semi-definite measure on
U2 × U2. Then

K(x, l, l′) =


z∈U2



z′∈U2



Rp

e−2πiωxzlz′l′ρ(ω, z, z′)dω.

We claim that ρ(ω, z, z′) =






1
4 (ρ0(ω) + 2ρc(ω) + ρ0(ω)) z = z′ = 1
1
4 (ρ0(ω)− ρ1(ω)) zz′ = −1
1
4 (ρ0(ω)− 2ρc(ω) + ρ1(ω)) z = z′ = −1.

.

26



Multi-Group Gaussian Processes

We work with the right hand side. First consider the case when l = l′ = 0:



z∈U2



z′∈U2



Rp

e−2πiωxz0z′0ρ(ω, z, z′)dω

=
1

4



Rp

e−2πiωx {ρ0(ω) + 2ρc(ω) + ρ1(ω)

+ρ0(ω)− ρ1(ω) + ρ0(ω)− ρ1(ω) + ρ0(ω)− 2ρc(ω) + ρ1(ω)} dω

=



Rp

e−2πiωxρ0(ω)dω = K0(x) = K(x, 0, 0).

Similarly, when l = 0, l′ = 1,



z∈U2



z′∈U2



Rp

e−2πiωxz0z′1ρ(ω, z, z′)dω

=
1

4



Rp

e−2πiωx (ρ0(ω) + 2ρc(ω) + ρ1(ω)

−ρ0(ω) + ρ1(ω) + ρ0(ω)− ρ1(ω)− ρ0(ω) + 2ρc(ω)− ρ1(ω)) dω

=



Rp

e−2πiωxρc(ω)dω = Kc(x) = K(x, 0, 1).

When l = l′ = 1,



z∈U2



z′∈U2



Rp

e−2πiωxz1z′1ρ(ω, z, z′)dω

=
1

4



Rp

e−2πiωx (ρ0(ω) + 2ρc(ω) + ρ1(ω)− ρ0(ω) + ρ1(ω)− ρ0(ω)

+ρ1(ω) + ρ0(ω)− 2ρc(ω) + ρ1(ω)) dω

=



Rp

e−2πiωxρ1(ω)dω = K1(x) = K(x, 1, 1).

As a result, K is positive definite ⇐⇒ ρ is a positive semi-definite measure ⇐⇒ (ρ0+2ρc+
ρ1)(ρ0 − 2ρc + ρ1)− (ρ0 − ρ1)

2 = 4(ρ0ρ1 − ρ2c) ≥ 0, and the Theorem follows.

Appendix F. Proof of Theorem 10

Proof Given a Gaussian random field Z on Y × C with covariance function K, we prove
that Z := Φ(Z) is a Gaussian k-variate random field on Y with cross-covariance function
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K. It suffices to check that Cov( Z(x), Z(x′)) = K(x, x′), for any x, x′ ∈ Y.

Cov( Z(x), Z(x′)) = Cov([Z(x, c1), · · · , Z(x, ck)]
T, [Z(x′, c1), · · · , Z(x′, ck)]

T)

=





K((x, c1), (x
′, c1)) K((x, c1), (x

′, c2)) · · · K((x, c1), (x
′, ck))

K((x, c2), (x
′, c1)) K((x, c2), (x

′, c2)) · · · K((x, c2), (x
′, ck))

...
...

. . .
...

K((x, ck), (x
′, c1)) K((x, ck), (x

′, c2)) · · · K((x, ck), (x
′, ck))





=





K11
K12 · · · K1k

K21
K22 · · · K2k

...
...

. . .
...

Kk1
Kk2 · · · Kkk





= K(x, x′).

Then assume Z is a Gaussian k-variate random field on Y. We prove that Z : Φ−1( Z)
is a Gaussian random field on Y × C with covariance function K. It suffices to check that
Cov(Z(x, ci), Z(x′, cj)) = K((x, ci), (x

′, cj)) for any x, y ∈ Y, i, j = 1, · · · , k. Then,

Cov(Z(x, ci), Z(x′, cj)) = Cov( Zi(x)), Zi(x
′)))

= K(x, x′)ij

= K((x, ci), (x
′, cj)).

Appendix G. Proof of Theorem 12

Similar to the proof of Theorem 6, it suffices to construct a covariance function on Rp ×
Rp′ × Rp′′ . Then the Theorem follows Proposition 1 in Apanasovich and Genton (2010)
naturally.

Appendix H. More covariance functions

We provide more semi-isotropic covariance functions below from Cressie and Huang (1999)
derived from spectral densities.

K((x, ci), (x
′, cj)) =

σ2

(adij + 1)p/2
exp


−b2x− x′2

adij + 1


, (11)

K((x, ci), (x
′, cj)) =

σ2(a2d2ij + 1)

[(a2d2ij + 1)2 + b2x− x′2]
p+1
2

, (12)

K((x, ci), (x
′, cj)) =

σ2(adij + 1)

[(adij + 1)2 + b2x− x′2]
p+1
2

, (13)

K((x, ci), (x
′, cj)) = σ2 exp


−a2d2ij − b2x− x′2 − cd2ijx− x′2


, (14)

K((x, ci), (x
′, cj)) = σ2 exp


−adij − b2x− x′2 − cdijx− x′2


. (15)

28



Multi-Group Gaussian Processes

Kernel Class Details

(7) Gneiting φ(t) = ebt
1/2

, ψ(t) = a2t+ 1

(8) Gneiting φ(t) = (bt1/2/
√
c)ν

2ν−1Γ(ν)
Kν(bt

1/2√c), ψ(t) = a2t+c
c(a2t+1)

(9) Gneiting Set ν = 1/2 in (8)

(11) Cressie & Huang Example 2

(12) Cressie & Huang Example 3

(13) Cressie & Huang Example 4

(14) Cressie & Huang Example 5

(15) Cressie & Huang Example 6

Table 4: Summary of constructions of kernel (7-9), (11-15).

Table 4 summaries the kernel constructions:

Appendix I. Extension to unknown distance dij

In the situation where dij is unknown, we instead parameters the kernels discussed in main
sections (Equations (7-9), (11-15)) as aij := adij , so that the parameters are (σ2, b, A) where
A = (aij) is a k by k matrix. The constraints on A are from the metric axioms:

Aii = 0, Aij = Aji, Aij +Ajl ≥ Ail, ∀i, j, l = 1, · · · , k.

The MLE is then over the new parameter space, under the above constraints. Fortunately,
these constraints are all linear, so optimization methods such as L-BFGS can still be ap-
plied. In this case, the parameter aij is purely data-driven, and can be interpreted as the
dissimilarity between group i and group j, as desired.

Appendix J. Code

Our GitHub repository is https://github.com/andrewcharlesjones/multi-group-GP.
This repository contains downloadable code for the models and experiments to reproduce
the analysis in the paper. We provide a Python package for model fitting, computing
covariance functions and carrying out estimation and prediction.

Appendix K. GTEx Data

The GTEx data can be downloaded from the GTEx portal: https://gtexportal.org/

home/datasets. We use 52 tissue types, listed below, although some experiments use a
subset of these tissue types. The sample size for each tissue type is shown in square brack-
ets. Adipose Subcutaneous [644], Adipose Visceral (Omentum) [539], Adrenal Gland [254],
Artery Aorta [424], Artery Coronary [238], Artery Tibial [657], Bladder [21], Brain Amyg-
dala [147], Brain Anterior cingulate cortex (BA24) [172], Brain Caudate (basal ganglia)
[230], Brain Cerebellar Hemisphere [208], Brain Cerebellum [241], Brain Cortex [255], Brain
Frontal Cortex (BA9) [200], Brain Hippocampus [188], Brain Hypothalamus [193], Brain
Nucleus accumbens (basal ganglia) [232], Brain Putamen (basal ganglia) [194], Brain Spinal
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cord (cervical c-1) [155], Brain Substantia nigra [133], Breast Mammary Tissue [456], Cells
Cultured fibroblasts [444], Cells EBV-transformed lymphocytes [174], Cervix Ectocervix [9],
Cervix Endocervix [10], Colon Sigmoid [373], Colon Transverse [406], Esophagus Gastroe-
sophageal Junction [375], Esophagus Mucosa [551], Esophagus Muscularis [515], Fallopian
Tube [9], Heart Atrial Appendage [422], Heart Left Ventricle [428], Kidney Cortex [85],
Kidney Medulla [4], Liver [224], Lung [573], Minor Salivary Gland [162], Nerve Tibial [615],
Ovary [180], Pancreas [37], Pituitary [283], Prostate [245], Skin Not Sun Exposed (Supra-
pubic) [595], Skin Sun Exposed (Lower leg) [665], Small Intestine Terminal Ileum [187],
Spleen [233], Stomach [359], Testis [359], Uterus [142], Vagina [156], Whole Blood [139].

Appendix L. Supplementary figures

copy.png

Figure 9: Prediction experiment with synthetic data using a Matérn covariance
function, as described in Section 4.2. The covariance function parameters were set as
σ2 = b = 1, ν = 1/2.
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Figure 10: Autocorrelation plots for MCMC samples from Multi-Group process
model’s posterior distribution, as described in Section 4.2. Gray bands cover
±0.05.
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Figure 11: Posterior samples of covariance function and model parameters from
the Bayesian analysis described in Section 4.2. Curves show the density of posterior
samples for each parameter and black horizontal bars show the highest 95% density intervals
for each set of samples. Red vertical lines indicate the parameter values used to generate
the data.

32



Multi-Group Gaussian Processes

Figure 12: Estimation of a for each pair of GTEx tissue types. Cell ij in the heatmap
represents log10(aij), where aij is the MLE of a when fitting the Multi-Group process using
tissues i and j. Lower values of a (red) indicate higher similarity, while higher values of a
(black) indicate lower similarity. Here, we allow each group its own noise variance τ2j .

Figure 13: Bayesian analysis of GTEx data across all brain tissues. Points show
the TXNIP expression and ischemic time for brain tissues. Each line shows the mean of
the group-specific predictive process estimated using the MGGP.
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Figure 14: Bayesian analysis of GTEx data for each brain tissue. Points belonging
to each group are colored in red. Points show the TXNIP expression and ischemic time for
brain tissues. The dashed line in each panel shows the mean of the group-specific predictive
process estimated using the MGGP, and the bands cover twice the standard deviation above
and below the mean.
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