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Abstract
Bernstein’s condition is a key assumption that guarantees fast rates in machine learning. For ex-
ample, under this condition, the Gibbs posterior with prior π has an excess risk in O(dπ/n), as
opposed toO(

√
dπ/n) in the general case, where n denotes the number of observations and dπ is a

complexity parameter which depends on the prior π. In this paper, we examine the Gibbs posterior
in the context of meta-learning, i.e., when learning the prior π from T previous tasks. Our main
result is that Bernstein’s condition always holds at the meta level, regardless of its validity at the
observation level. This implies that the additional cost to learn the Gibbs prior π, which will reduce
the term dπ across tasks, is in O(1/T ), instead of the expected O(1/

√
T ). We further illustrate

how this result improves on the standard rates in three different settings: discrete priors, Gaussian
priors and mixture of Gaussian priors.
Keywords: Bernstein’s condition, meta-learning, fast rates, PAC-Bayes bounds, information bounds,
the Gibbs algorithm, variational approximations.

1. Introduction

One of the greatest promises of artificial intelligence is the ability to design autonomous systems
that can learn from different situations throughout their lives and adapt quickly to new environ-
ments, as humans, animals and other living things naturally do. Based on the intuition that a new
problem often has significant similarities to previously encountered tasks, the use of past experi-
ence is particularly important in areas such as computer vision (Quattoni et al., 2008; Kulis et al.,
2011; Li et al., 2018; Achille et al., 2019), natural language processing (Huang et al., 2018; Gu
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et al., 2018; Dou et al., 2019; Qian and Yu, 2019) and reinforcement learning (Finn et al., 2017;
Mishra et al., 2018; Wang et al., 2016; Yu et al., 2020) where the learner has access to only a few
training examples for the task of interest, but for which a vast amount of data sets from a variety
of related tasks is available. In the area of digit recognition for example, it is possible to leverage
the experience gained from millions of similar open source image classification data sets, as the key
features needed to classify cats from dogs or pants from shirts can be used to classify handwritten
digits. This idea is at the heart of meta-learning (Thrun and Pratt, 1998; Baxter, 2000; Vanschoren,
2019), a field that has recently attracted a lot of attention due to its huge success in real-world appli-
cations, and which aims to improve performance on a particular task by transferring the knowledge
contained in different but related tasks.

Meta-learning has been widely studied in recent literature. It must be noted that meta-learning
was used to refer to a wide range of situations. Providing a precise definition of meta-learning is a
challenge. In particular, the terms transfer learning and multi-task learning, although distinct, are
often used interchangeably instead of meta-learning. Transfer learning is a very general concept
that involves two tasks that share similarities - a source and a target - and consists in transferring
the knowledge acquired on the source data set to better process the target data (Pan and Yang, 2010;
Zhuang et al., 2020). In practice, this can be formulated in many different ways, but the most popular
approach is to pre-train a model on the source data, e.g., images of cats and dogs, and then to fine-
tune it on the target training data set, e.g., images of handwritten digits. In particular, a challenging
problem in transfer learning is to find a measure that quantifies the similarity between the source
and target tasks. Multi-task learning adopts a different framework, where multiple learning tasks
are considered and the goal is to learn a model that can handle all tasks simultaneously (Caruana,
1997; Zhang and Yang, 2021). The model usually has a common representation, e.g., the first
layers of a deep neural network, and a task-specific component, e.g., the last layer of the network.
Meta-learning also considers a collection of data sets from a variety of tasks, but unlike multi-task
learning, we are not interested in learning the fixed number of tasks, but rather in being prepared
for future tasks that are not yet given. Also, unlike transfer learning, meta-learning exploits the
commonality of previous tasks rather than the similarity between some specific source and target
tasks. We use these metadata to design a meta-procedure that adaptively learns a predictor for any
new learning task that is a priori unknown, and the goal is to quickly learn to adapt a learning
procedure from past experience. Meta-learning is therefore sometimes referred to as learning-
to-learn, or lifelong learning in the online context. The implementation of this learning-to-learn
mechanism can take different forms, which we briefly describe in the following paragraph.

As the name suggests, meta-learning involves two levels of abstraction to improve learning over
time: a meta-level and a within-task level. At the within-task level, the new task of interest is pre-
sented and the corresponding pattern is learned from the training data set of the task at hand. This
learning process is greatly accelerated by a meta-learner, which has distilled the knowledge accu-
mulated in previous tasks into the within-task model. The meta-learning procedure can accelerate
the within-task algorithm in various ways, and three main categories stand out in the literature:
metric-based methods, which are based on non-parametric predictive models governed by a met-
ric that is learned using the meta-training data set (Koch et al., 2015; Vinyals et al., 2016; Snell
et al., 2017; Sung et al., 2018); model-based methods, which quickly update the parameters in a few
learning steps, which can be achieved by the model’s internal architecture or another meta-learning
model (Santoro et al., 2016; Munkhdalai and Yu, 2017; Mishra et al., 2018); and optimisation-based
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methods, which mainly involve learning the hyper-parameters of a within-task algorithm using the
meta-training set for fast adaptation (Hochreiter et al., 2001; Ravi and Larochelle, 2017; Finn et al.,
2017; Nichol et al., 2018; Qiao et al., 2018; Gidaris and Komodakis, 2018). Due to their perfor-
mance and ease of implementation, the optimisation-based family is the dominant class in the recent
literature, exploiting the idea that well-chosen hyperparameters can greatly speed up the learning
process and allow model parameters to be quickly adapted to new tasks with little data. For ex-
ample, it is possible to learn the task of interest using a gradient descent whose initialisation and
learning rate would have been learned from the metadata. Among the best known meta-strategies
is the model agnostic meta-learning procedure (MAML) (Finn et al., 2017) and its variants implicit
MAML (Rajeswaran et al., 2019), Bayesian MAML (Grant et al., 2018; Yoon et al., 2018; Nguyen
et al., 2020) and Reptile (Nichol et al., 2018). We refer the interested reader to the recent review by
Chen et al. (2023) for more details.

Our results will turn out to be useful in the regime where the number of tasks T is much larger
than the average sample size per task n. A typical example would be given by recommender sys-
tems (Candes and Plan, 2010) or toxicogenomics studies (Yamada et al., 2017). Recommendations
are usually based on matrix completion of the user-movie matrix. The main limit of this approach
is that the dimensions of the matrix are fixed, which means that we are working with a fixed number
of users. Using meta learning, we can see each user as a separate task for which the objective is to
build a model that would predict which movies will be liked by this user. The number of users T
is much larger than the average number of movies n rated by each user. In this case, meta learning
will use information from previous users to learn more efficiently the model of a new user from a
small sample size.

2. Approach and Contributions

In this paper, we focus on the Gibbs algorithms within tasks, or their variational approximations.
The Gibbs algorithm, also known as Gibbs posterior (Alquier et al., 2016) or exponentially weighted
aggregation (Dalalyan and Tsybakov, 2008), can also be interpreted in the framework of Bayesian
statistics as a kind of generalized posterior (Bissiri et al., 2016; Germain et al., 2016; Knoblauch
et al., 2022). PAC-Bayes bounds were developed to control the risk and the excess risk of such
procedures (Shawe-Taylor and Williamson, 1997; McAllester, 1998; Catoni, 2004; Zhang, 2006;
Catoni, 2007; Yang et al., 2019), see Guedj (2019); Alquier (2024) for recent surveys. More re-
cently, the related mutual information bounds (Russo and Zou, 2019; Haghifam et al., 2021) were
also used to study the excess risk of the Gibbs algorithms (Xu and Raginsky, 2017). Gibbs pos-
teriors are often intractable, and it is then easier to compute a variational approximation of such
a posterior. It appears that PAC-Bayes bounds can also be used on such approximations (Alquier
et al., 2016). Many recent publications built foundations of meta-learning through PAC-Bayes and
information bounds (Pentina and Lampert, 2014; Amit and Meir, 2018; Ding et al., 2021; Liu et al.,
2021; Rothfuss et al., 2021; Farid and Majumdar, 2021; Rothfuss et al., 2023; Guan and Lu, 2022a;
Rezazadeh, 2022). These works and the related literature are discussed in detail in Section 6. Most
of these papers proved empirical PAC-Bayes bounds for meta-learning. These bounds can be mini-
mized, and we obtain both a practical meta-learning procedure, together with a numerical certificate
on its generalization. However, these works did not focus on the rate of convergence of the excess
risk.
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Bernstein’s condition is a low-noise assumption reflecting the inherent difficulty of the learning
task (Mammen and Tsybakov, 1999; Tsybakov, 2004; Bartlett and Mendelson, 2006). While it was
initially designed to study the ERM (Bartlett and Mendelson, 2006), it characterizes the learning rate
of algorithms beyond the ERM. PAC-Bayes bounds and mutual information bounds show that the
excess risk of the Gibbs algorithm is inO(dπ,t/n) for a sample size n when Bernstein’s condition is
satisfied (Catoni, 2007; Grünwald and Mehta, 2020), as opposed to the slow rate O((dπ,t/n)1/2) in
the general case. The quantity dπ,t measures the complexity of task t. Importantly, it also depends
on the prior distribution π used in the algorithm. Similar results hold when we replace the Gibbs
algorithm by a variational approximation (Alquier et al., 2016).

In the meta-learning setting, we are given T tasks simultaneously. Using the Gibbs algorithm
with a fixed π in all tasks leads to an average excess risk inO(Et[(dπ,t/n)γ ]), where γ = 1 when
Bernstein’s condition holds for each task t ∈ {1, . . . , T}, and γ = 1/2 otherwise. Here, Et denotes
the expectation with respect to a future (out-of-sample) task t. This approach is referred to as
“learning in isolation”, because each task is solved regardless of the others. Of course, in meta-
learning we want to take advantage of the multiple tasks. For example, Pentina and Lampert (2014)
used the Gibbs algorithm at the meta-level, in order to learn a better prior. The expected benefit is
to reduce the complexity term dπ,t.

2.1 Overview of the Paper

• In Section 3, we recall existing PAC-Bayes bounds on the excess risk of the Gibbs algorithm
when learning tasks in isolation, and we introduce Bernstein’s condition, a fundamental as-
sumption under which the fast rate O(Et[dπ,t/n]) is achieved by the Gibbs algorithm.

• In Section 4, we prove that these PAC-Bayes bounds can be used to build a natural criterion
to define a meta-learning Gibbs algorithm. This criterion takes the form of a log-loss, which,
building on a classic analysis (Bartlett et al., 2006; Vijaykumar, 2021), satisfies Bernstein’s
condition. This leads to a striking result that the prior π can be learnt with fast rates, regardless
of the rate withing tasks. In other words, the meta-learning Gibbs algorithm achieves the
excess risk O(infπ∈M Et[(dπ,t/n)γ ] + 1/T ) with γ = 1 if Bernstein’s condition is satisfied
within tasks, and γ = 1/2 otherwise. We further raise the open question of the generalization
of this result to its variational approximations.

• In Section 5, we apply the previous results to various settings: learning a discrete prior,
learning a Gaussian prior and learning a mixture of Gaussians prior. We show that the gain
brought from the meta learning is blatant, as in some favorable situations, one can even have
infπ∈M Et[dπ,t/n] = 0.

• In Section 6, we provide a deeper comparison with the rich literature on meta-learning.

3. Problem Definition and Notations

Let Z be a space of observations, Θ a decision space and ` : Z ×Θ→ R+ a bounded loss function
defined on the previously defined sets. Let P(Θ) denote the set of all probability distributions on
Θ equipped with a suitable σ-field. The learner is given T tasks. For each task t ∈ {1, . . . , T},
the learner receives Nt observations Zt,i, i = 1, . . . , Nt, assumed to be drawn independently from a
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distribution Pt on the decision space Z . Conditions on Pt and Nt will be discussed at the beginning
of Section 4 as they are not required in the following discussion. The objective of the learner is to
find a parameter θ in the parameter space Θ which minimizes the so-called prediction risk associated
to Pt on Z , defined as

RPt(θ) = EZ∼Pt [`(Z, θ)].

We denote by R∗Pt the minimum of RPt(θ) and by θ∗t a minimizer:1

R∗Pt = inf
θ∈Θ

RPt(θ) = RPt(θ
∗
t ).

In Bayesian approaches, we seek for ρt ∈ P(Θ) such that

Eθ∼ρt [RPt(θ)]

is small. Defining, for any θ ∈ Θ, the empirical risk as

R̂t(θ) =
1

Nt

Nt∑
i=1

`(Zt,i, θ),

a standard choice for ρt is given by

ρt(π, α,F) = arg min
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
+

KL(ρ‖π)

αNt

}
, (1)

where π is the prior distribution on the parameter θ, α is some temperature parameter which will be
made explicit later, and F ⊆ P(Θ) . We denote

B̂t(ρ, π, α) = Eθ∼ρ
[
R̂t(θ)

]
+

KL(ρ‖π)

αNt
. (2)

Interestingly enough, in the unconstrained case where F = P(Θ), we recover the so-called Gibbs
posterior or Gibbs algorithm ρt(π, α,P(Θ)), which is given by

ρt(π, α,P(Θ))(dθ) ∝ exp
(
−αNtR̂t(θ)

)
π(dθ).

It is often interpreted as an extension of Bayesian inference to model-free statistical learning, where
the likelihood is replaced by the loss function. This connection directly follows from Donsker and
Varadhan’s variational formula (see Lemma 16), see e.g. Lemma 2.2 of Alquier (2024) for a proof.
In the sequel, we will use the following shortcut notation:

ρt(π, α) = ρt(π, α,P(Θ)).

In our study, we delve into the theoretical aspects of the Gibbs posterior in meta-learning, leav-
ing aside the issue of its computational feasibility, which nonetheless often arises as a concern in
practical scenarios. To briefly address this aspect in this introduction, tackling the computational

1. For the sake of simplicity, we will assume that such a minimizer always exists. By considering an ε-approximate
minimizer instead, all our results can be directly extended to the general case.
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challenges associated with posterior distributions typically involves employing Monte Carlo sam-
pling techniques. This encompasses widely-used approaches such as Markov Chain Monte Carlo
(MCMC) algorithms (Robert and Casella, 2004; Andrieu et al., 2003; Robert, 2007) and Sequential
Monte Carlo (Doucet et al., 2001; Doucet and Lee, 2018). Despite their effectiveness, these meth-
ods may encounter slower performance, particularly when confronted with very large data sets.
Consequently, there has been a notable surge in the development of faster approximation techniques
leveraging optimization routines over the past 25 years. These include methods like Expectation
Propagation (Minka, 2001) and variational inference (Jordan et al., 1999; Blei et al., 2017), which
aim to ascertain a deterministic approximation of the posterior distribution. Note that variational
inference can be recast as the minimization of (2) for a specific choice of F . We refer the reader to
Martin et al. (2020) for a recent review on Bayesian computation.

We give a complete list of all notations introduced throughout this paper in Appendix A.

3.1 Assumptions on the Loss and Bernstein’s Condition

Recall that we assumed that the loss function is bounded: there exists a constant C > 0 such that

∀(z, θ) ∈ Z ×Θ, `(z, θ) ≤ C. (3)

This is a classical assumption in machine learning, which is however restrictive. Here, we want to
highlight that PAC-Bayes bounds for unbounded losses are well-known, see Section 5 in (Alquier,
2024). In particular, Theorem 1 below can be extended without modification to sub-Gaussian and
sub-exponential variables. The extension to heavy-tailed variables requires adaptations, but is also
possible. On the other hand, our results on meta learning rely explicitly on the boundedness as-
sumption. We will thus make this assumption in the whole paper.

With such a bounded loss, in parametric settings, it is possible to prove generalization bounds
in 1/

√
Nt for various methods, including the empirical risk minimizer or ERM (Devroye et al.,

1996, Chapter 12). This is also true for the Gibbs posterior (Catoni, 2007, Chapter 1). However, in
some specific settings, it is possible to achieve faster bounds. For example, it is standard that the
ERM achieves a rate in 1/Nt when there is a perfect predictor, that is, R∗Pt = 0 (Devroye et al.,
1996, Section 12.1). It turns out that fast rates are possible under more general conditions. Bartlett
et al. (2006) proved this holds when the loss function is Lipschitz and strongly convex. Mammen
and Tsybakov (1999) proved this is also true for classification under margin conditions. It turns
out that these assumptions are all special cases of the so-called Bernstein’s condition (Bartlett and
Mendelson, 2006, Definition 2.6 with β = 1). In other words, either R∗Pt = 0, or Mammen and
Tsybakov’s margin assumption, or the smoothness and convexity assumption on the loss of Bartlett
et al. (2006) all imply Bernstein’s condition, which itself is enough to prove fast rates. We refer the
reader to (Alquier, 2024, Section 4) for more details on this topic in the study of the Gibbs posterior.
We now recall Bernstein’s condition. It requires to introduce the following variance term for task t
and for θ ∈ Θ:

Vt(θ, θ
∗
t ) := EZ∼Pt

[
|`(Z, θ)− `(Z, θ∗t )|

2
]
.

Assumption 1 (Bernstein’s condition) There exists a constant c > 0 such that, for any θ ∈ Θ,

Vt(θ, θ
∗
t ) ≤ c

(
RPt(θ)−R∗Pt

)
.
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This assumption characterizes the excess risk of Gibbs posterior, see Theorem 1 below. In this
paper, we will provide a bound on the excess risk both under this condition and without it.

3.2 Learning in Isolation

In the process of learning in isolation, we consider each of the tasks separately. We then fix
some t ∈ {1, . . . , T} and denote by St the sample of Nt i.i.d. observations from task t: St =
(Zt,1, . . . , Zt,Nt). We recall the following classic result (Alquier, 2024, Theorems 4.1 and 4.3),
whose proof is recalled in Appendix C for the sake of completeness.

Theorem 1 Assume that the loss ` satisfies the boundedness assumption (3) with constant C. Then,
the following bound holds, for any α ∈

(
0, 1

C

)
:

EStEθ∼ρt(π,α,F) [RPt(θ)]−R∗Pt

≤ 1

1− αcIB
2(1−Cα)

(
ESt

[
inf
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
− R̂t(θ∗t ) +

KL(ρ‖π)

αNt

}]
+
αC2(1− IB)

8

)
,

where ESt is a short notation for the expectation w.r.t. St , (Zt,1, . . . , Zt,Nt) i.i.d. from Pt, and IB
is equal to 1 if Assumption 1 (Bernstein’s condition) is satisfied, and 0 otherwise. In particular, if
Assumption 1 is satisfied with constant c, the choice α = 1

c+C yields the bound

EStEθ∼ρt(π,α,F)[RPt(θ)]−R∗Pt

≤ 2ESt
[

inf
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
− R̂t(θ∗t ) +

(C + c)KL(ρ‖π)

Nt

}]
.

Theorem 1 not only justifies the choice of ρt(π, α,F) as the within-task algorithm, but also paves the
way for its statistical analysis. Indeed, while it is known in the PAC-Bayes literature that the defini-
tion in (1) is actually a minimization program of a generalization bound over the risk Eθ∼ρ [RPt(θ)]
(see e.g. Corollary 2.3 in (Alquier, 2024) for an exact statement), this fact alone does not provide
any statistical rate for the risk of ρt(π, α,F). Theorem 1 formulates an oracle-type inequality whose
derivation, when specifying a model and a prior, leads to explicit convergence rates.

For example, a classic assumption in the Bayesian literature is that there are constants κ, d ≥ 0
such that, for s small enough, π({θ : δ(θ, θ∗t ) ≤ s}) ≥ sd/κ, where δ(θ, θ∗t ) is a measure of
the discrepancy between θ and θ∗t . When studying the contraction of the posterior in Bayesian
statistics, δ is usually the Kullback-Leibler divergence (Ghosal and Van der Vaart, 2017, Condition
(i) in Theorem 8.9). However, more general δ can be considered, such as Rényi divergences or
the Hellinger distance (Zhang and Gao, 2020, Condition C.3 in Theorem 2.1). In PAC-Bayesian
bounds, where the prediction risk is the main focus, the condition is often used with δ = Rt(θ) −
Rt(θ

∗
t ) (Alquier, 2024, Section 4.4). As this condition is usually applied to one task with a specific

prior, the notation d does not reflect the dependence with respect to π or t. However, in our context,
this dependence will be crucial, so we will write dπ,t instead of d. Under such an assumption, the
right-hand side in Theorem 1 can be made more explicit.

Corollary 2 Recall that the loss ` satisfies the boundedness assumption (3) with constant C. As-
sume that, for any 0 < s < s0, π({θ : RPt(θ) − R∗Pt ≤ s}) ≥ sdπ,t/κπ,t. Then, as soon as
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Nt ≥ dπ,t/(αs0),

ESt
[

inf
ρ∈P(Θ)

B̂t(ρ, π, α)− R̂t(θ∗t )
]
≤
dπ,t log αeNt

dπ,t
+ log κπ,t

αNt
.

In particular, if Bernstein’s condition (Assumption 1) is satisfied with constant c, the choice α =
1/(c+ C) gives

EStEθ∼ρt(π,α)[RPt(θ)] ≤ R∗Pt +
2(C + c)

Nt

(
dπ,t log

eNt

dπ,t(C + c)
+ log κπ,t

)
.

On the other hand, without Bernstein’s condition (Assumption 1),

EStEθ∼ρt(π,α)[RPt(θ)] ≤ R∗Pt +
dπ,t log αeNt

dπ,t
+ log κπ,t

αNt
+
αC2

8
,

and in particular, for α = 2
√

2dπ,t/(
√
NtC), we obtain

EStEθ∼ρt(π,α)[RPt(θ)] ≤ R∗Pt +
C

2

√
dπ,t
2Nt

(
1

2
log

8e4Nt

dπ,tC2
+

1

dπ,t
log κπ,t

)
.

Corollary 2 thus provides explicit rates of convergence for ρt(π, α): under Bernstein’s condition, we
recover the fast rate dπ,t/Nt for a good choice of α, while we obtain the general rate

√
dπ,t/Nt in

the general case. Yet, in both situations, the rate of convergence depends on the choice of the prior
π and on the given task through the complexity term dπ,t. In the following, we propose to improve
this dependence by meta-learning the prior π using all the data from the many other observed tasks.

4. Main Results

From this section onward, we focus on the meta learning. As opposed to the learning in isola-
tion, the meta learning considers all the tasks t ∈ {1, . . . , T} and takes advantage of possible
similarities between the T tasks to improve the learning in each task. More precisely, while as-
suming that for any t ∈ {1, . . . , T},St = (Zt,1, . . . , Zt,NT ) is a sample of Nt i.i.d observa-
tions from Pt, we further assume that the couples (P1, N1), . . . , (PT , NT ) are drawn indepen-
dently from a distribution P on distributions and sample sizes. A future (out-of-sample) task is
a couple (PT+1, NT+1) which is drawn from P , independently from (P1, N1), . . . , (PT , NT ), and
ST+1 = (ZT+1,1, . . . , ZT+1,NT+1

) will be a sample of NT+1 i.i.d draws from PT+1, conditionally
on (PT+1, NT+1). This task will be solved by the Gibbs algorithm ρT+1(π, α). Our objective is
to learn the prior π using the tasks t ∈ {1, . . . , T}, such that (PT+1, NT+1) would be solved more
efficiently. More formally, π should make the meta-risk

E(π) = EPT+1,NT+1
EST+1

Eθ∼ρT+1(π,α)[RPT+1
(θ)].

as small as possible, where EST+1
denotes the expectation w.r.t. ZT+1,1, . . . , ZT+1,NT+1

∼ PT+1

conditionally on (PT+1, NT+1), and EPt,Nt denotes the expectation w.r.t. (Pt, Nt) ∼ P for any
t ∈ {1, . . . , T + 1}. For a more detailed list of notations including the expectations, please see
Appendix A. We will compare the meta risk E(π) to the so-called oracle meta-risk

E∗ = EPT+1,NT+1
[R∗PT+1

],

which can only be reached by an oracle who would know the best classifier in each task in advance.
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4.1 Bernstein’s Condition at the Meta Level

In this subsection, we prove a version of Bernstein’s condition at the meta level. For any prior π, let

L̂t(π, α) = B̂t(ρt(π, α), π, α), (4)

and let
Lt(π, α) = ESt

[
L̂t(π, α)

]
,

where we recall that B̂t(ρ, π, α) is defined in (2). Let π∗α be the distribution minimizing the expec-
tation of the above quantity:

π∗α = arg min
π

EPt,Nt [Lt(π, α)] . (5)

At the within-task level, Assumption 1 is the key hypothesis to determine the rate of convergence,
as shown in Theorem 1. We would expect a similar assumption-theorem structure at the meta-level.
Surprisingly enough, this is not the case. The following result proves that a condition, formally very
similar to Bernstein’s condition, holds unconditionally at the meta-level. This will be used in the
proof of Theorem 5 below to show that one can always achieve fast rates when learning the prior.

Theorem 3 Assume that the loss ` satisfies the boundedness assumption (3) with constantC. Recall
that L̂t(π, α) and π∗α are defined as in (4) and (5) above. Then, for any α ∈

(
0, 1

C

)
and π ∈ P(Θ),

EPt,NtESt
[(
L̂t(π, α)− L̂t(π∗α, α)

)2
]
≤ 8eCEPt,NtESt

[
L̂t(π, α)− L̂t(π∗α, α)

]
.

Proof The proof relies on two arguments. First, we can rewrite the upper bound on the task risk as

L̂t(π, α) = − 1

Ntα
logEθ∼π

[
e−NtαR̂t(θ)

]
= −1

τ
log

(
Eθ∼π

[
e−NtαR̂t(θ)

] τ
Ntα

)
(6)

for any fixed τ > 0 (using, e.g., Lemma 16 in the Appendix). Under this form, we will be able
to use the arguments from Bartlett et al. (2006, Lemma 7) based on strong convexity. The strong
convexity of the function f(x) = −(1/τ) log(x) on a bounded interval is of course known, and
was indeed used to derive fast rates in machine learning before (Vijaykumar, 2021, Lemma 10). We
write it in the most convenient way for our proof in Lemma 4 (which we still prove in the appendix
for the sake of completeness). First, observe that, by the boundedness assumption (3), it holds that,
for any π ∈ P(Θ),

exp(−Cτ) ≤ Eθ∼π
[
e−NtαR̂t(θ)

] τ
Ntα ≤ 1.

Lemma 4 Let f : x 7→ − 1
τ log x. Then, for any x, y ∈ [exp(−Cτ), 1],

(f(x)− f(y))2 ≤ 8 exp(2Cτ)

τ

(
f(x) + f(y)

2
− f

(
x+ y

2

))
.

9
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An application of Lemma 4 to x = Eθ∼π
[
e−NtαR̂t(θ)

] τ
Ntα and y = Eθ∼π∗α

[
e−NtαR̂t(θ)

] τ
Ntα gives

(
L̂t(π, α)− L̂t(π∗α, α)

)2

=
(
B̂t(ρt(π, α), π, α)− B̂t(ρt(π∗α, α), π∗α, α)

)2

= (f(x)− f(y))2

≤ 8 exp(2Cτ)

τ

(
f(x) + f(y)

2
− f

(
x+ y

2

))
=

8 exp(2Cτ)

τ

[
B̂t(ρt(π, α), π, α) + B̂t(ρt(π

∗
α, α), π∗α, α)

2
+

1

τ
log

(
x+ y

2

)]
.

Taking expectations with respect to St on both sides yields

ESt
[(
L̂t(π, α)− L̂t(π∗α, α)

)2
]
≤ 8 exp(2Cτ)

τ

(
Lt(π, α) + Lt(π∗α, α)

2
− Lt

(
π + π∗α

2
, α

))
.

Integrating with respect to (Pt, Nt) ∼ P yields

EPt,NtESt
[(
L̂t(π, α)− L̂t(π∗α, α)

)2
]

≤ 8 exp(2Cτ)

τ

(
EPt,NtLt(π, α) + EPt,NtLt(π∗α, α)

2
− EPt,NtLt

(
π + π∗α

2
, α

))
. (7)

By definition of π∗α, it holds that, for any π′ ∈ P(Θ),

EPt,Nt [Lt(π∗α, α)] ≤ EPt,Nt [Lt(π′, α)].

In particular, this holds for π′ = (π + π∗α)/2 and plugging this into the right hand side of (7) gives

EPt,NtESt
[(
L̂t(π, α)− L̂t(π∗α, α)

)2
]
≤ 4 exp(2Cτ)

τ

(
EPt,NtLt(π, α)− EPt,NtLt(π∗α, α)

)
.

The (optimal) choice τ = 1
2C gives the desired bound

EPt,NtESt
[(
L̂t(π, α)− L̂t(π∗α, α)

)2
]
≤ 8eCEPt,NtESt

[
L̂t(π, α)− L̂t(π∗α, α)

]
.

4.2 PAC-Bayes Bound for Meta-learning

We will now seek a distribution Π on the set of priors π which allows to obtain a small meta-risk

Eπ∼Π[E(π)].

10
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In order to do so, we will fix a setM of possible priors, and a subset G of the set P(M) of distribu-
tions on these priors: G ⊆ P(M).2 Of course, G = P(M) is a possible choice. However, smaller
sets might be preferable for computational reasons (that is, we can use variational approximations
at the meta-level). Given a probability distribution Λ ∈ G called “prior on priors”, we define Gibbs
distribution on priors similarly as in (1), but at the meta-level:

Π̂ = arg min
Π∈G

{
1

T

T∑
t=1

Eπ∼Π

[
L̂t(π, α)

]
+

KL(Π‖Λ)

βT

}
, (8)

where β > 0 is some parameter made explicit in the next theorem. As a consequence of Theorem 3
comes the next result, whose proof is given in Appendix F.

Theorem 5 Assume that the loss ` satisfies the boundedness assumption (3) with constant C. The
choice β = 1

(1+8e)C yields, for any F ⊆ P(Θ) and any α ∈
(
0, 1

C

)
,

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗ ≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1,NT+1

[

Eπ∼Π

[
inf
ρ∈F

{
Eθ∼ρ[RPT+1

(θ)]−R∗PT+1
+

KL(ρ‖π)

αNT+1

}]
+

(1 + 8e)C ·KL(Π‖Λ)

T
+
αC2(1− IB)

8

]
,

where IB is equal to 1 if Assumption 1 holds and 0 otherwise, ES1:T
is a short notation for ES1 . . .EST

and EP1:T ,N1:T
is a short for EP1,N1 . . .EPT ,NT . In particular, if Assumption 1 holds with constant

c, the (optimal) choice α = 1
C+c yields, for any F ⊆ P(Θ),

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗ ≤ 4 inf
Π∈G

EPT+1,NT+1

[

Eπ∼Π

[
inf
ρ∈F

{
Eθ∼ρ[RPT+1

(θ)]−R∗PT+1
+

(c+ C)KL(ρ‖π)

NT+1

}]
+

(1 + 8e)CKL(Π‖Λ)

T

]
.

Remark 6 A special case of interest is when the sample size Nt and the distribution Pt of the ob-
servations are independent. Intuitively, this implies that the number of observations is independent
from the value of the optimal parameter θ∗t . In this case, the expectation EPt,Nt can be taken suc-
cessively and independently w.r.t. Pt and to Nt, as EPt,Nt = EPtENt . In particular, we can define
the harmonic expected sample size n by

1

n
= ENt

[
1

Nt

]
,

and by inverting ENT+1
and the block Eπ∼Π[infρ∈F{. . . }] in the right-hand side above, this yields

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗ ≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1

[
2. Note that measurability issues can arise when the set F is non parametric. However, in all our examples, the set F is

parametric.

11
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Eπ∼Π

[
inf
ρ∈F

{
Eθ∼ρ[RPT+1

(θ)]−R∗PT+1
+

(c+ C)KL(ρ‖π)

n

}]
+

(1 + 8e)CKL(Π‖Λ)

T

]
,

under Assumption 1. In this case, n quantifies the expected rate of convergence across tasks. Natu-
rally, this also holds in the more specific case where the sample size is constant, i.e., Nt = n almost
surely (in this case, we will write EP1:T

instead of EP1:T ,N1:T
). From now on, we will present several

applications of Theorem 5, and show how its bound improves upon the one from the learning in
isolation. For the sake of clarity, in the coming applications, we will work in the simpler setting
Nt = n a.s. for any task t ∈ {1, . . . , T + 1}. However, our results straightforwardly extend to the
general setting considered in Theorem 5.

Up to a constant factor, recall that the learning in isolation achieves a bound

EST+1

[
inf
ρ∈F

{
Eθ∼ρ

[
R̂T+1(ρ, π, α)

]
− R̂T+1(θ∗T+1) +

(
KL(ρ‖π)

n

)γ}]
,

where γ = 1 if Assumption 1 is satisfied, and 1
2 otherwise. While the bound in isolation depends

on the choice of prior π, in contrast, the meta learning achieves the above bound with π ∼ Π, for
the best possible Π. This comes at the cost of an additional (C+c)KL(Π‖Λ)

T term, which is of order
O
(

1
T

)
and hence very small in the case T � n. Interestingly enough, when Assumption 1 is not

satisfied, this additional term is very small in the more general T �
√
n regime, further pleading in

favor of the meta learning when the number of tasks T is large.
We point out that the bound in Theorem 5 is written as depending on an infimum on some subset

F ⊆ P(Θ). Of course, the tightest bound is reached for F = P(Θ). However, in all the practical
examples below, it is much easier to derive explicit rates by using a well-chosen F ( P(Θ). Thus,
we preferred to state the result directly with F . Note that this is simply a theoretical device helpful
to make the bound more explicit, and has nothing to do with possible variational approximations
within tasks. Indeed, the bound is on the excess risk of Π̂, which itself is based on the exact Gibbs
posterior ρt(π, α), and not on its variational approximation ρt(π, α,F).

In contrast, we can define a variational approximation of Π̂ based on ρt(π, α,F), as

Π̂(F) := arg min
Π∈G

{
1

T

T∑
t=1

Eπ∼Π

[
B̂t (ρt(π, α,F), π, α)

]
+

KL(Π‖Λ)

βT

}
.

In some settings, Π̂(F) is tractable while its Gibbs-based counterpart Π̂ is not, and it is a fundamen-
tal open question to determine under what condition on F we can replace Π̂ by Π̂(F) in Theorem 5.

Open Question 1 Under what conditions on F can we replace Π̂ by Π̂(F) in the left-hand side of
Theorem 5?

We would like to emphasize the significance of this question. As indicated in Section 3, computing
the within-task Gibbs posterior is typically challenging in many practical scenarios, and sampling
methods like MCMC can be expensive. Using variational inference within-task could simultane-
ously address the intractability of both the within-task Gibbs posterior ρt(π, α) and the meta-Gibbs
distribution Π̂. Therefore, extending Theorem 5 to any variational family F is crucial, and will be
the focus of future research.
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4.3 A Toy Example: Concurrent Priors

This subsection gives a toy application of Theorem 5 just to fix ideas. Here, we study the case
where M statisticians propose a different prior, all of which are assumed to satisfy a prior mass
condition as in Corollary 2. We denote byM = {π1, . . . , πM} the set of priors. We choose Λ as
the uniform distribution onM and G = P(M). Here again, for the sake of simplicity, we assume
that Bernstein’s condition (see Assumption 1) is satisfied at the within-task level, with constant c.
We also assume thatNt = n almost surely. A direct application of Theorem 5 and Corollary 2 gives

EP1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗

≤ 4(C + c) min
π∈M

EPT+1

dπ,T+1 log n
(C+c)dπ,T+1

+ log κπ,T+1

n
+

4(1 + 8e)C logM

T
.

In other words, we obtain the rate of convergence provided by the best prior among {π1, . . . , πM},
at the price of an additional O(log(M)/T ) term.

5. Applications of Theorem 5

In this section, by an application of Theorem 5, we derive explicit bounds on the excess risk of
the Gibbs algorithm in the case of discrete priors (the parameter set Θ is finite; Subsection 5.1),
Gaussian priors (Subsection 5.2) and mixtures of Gaussians priors (Subsection 5.3).

In all the cases below, Assumption 1 (Bernstein’s condition) holds with constant c (by proposi-
tion or assumption), and we will study the excess risk of the meta predictor Π̂ defined in (8) with
the fixed choices α = 1

C+c and β = 1
(1+8e)C throughout this section. Finally, in all this section, we

assume that Nt = n almost surely for the sake of simplicity (see Remark 6).

5.1 Learning Discrete Priors

In this subsection, we assume that |Θ| = M < ∞. Following Meunier and Alquier (2021), we
define A∗ as the smallest possible subset of Θ such that

∀P ∼ P, θ∗ := arg min
θ
RP (θ) ∈ A∗, (9)

and we denote m∗ := |A∗|. In general, A∗ = Θ and m∗ = M . However, in some favorable
situations, A∗ 6= Θ and m∗ �M , in which case, the meta-learning may improve upon the learning
in isolation. In the setting considered, Bernstein’s condition is trivially satisfied for some constant
c, and the excess risk of the Gibbs algorithm is 4(C+c) log(M)

n .
We define our set of priorsM as the set of probability distributions πA which are uniform on a

subset A ⊆ Θ and parameterized by A:

M = {πA|A ⊆ Θ} ,

and G is the set of all distributions onM. Our “prior on priors” Λ is then defined as follows: we
draw m ∈ {1, . . . ,M} with probability 2M−m

2M−1
∝ 2−m, then given m, draw a subset A ⊆ Θ of

cardinality m uniformly at random, and take πA. In other words, Λ is a distribution defined on F
such that Pπ∼Λ(π = πA) = 2M−m

2M−1
× 1

(Mm)
.

13
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Proposition 7 The excess risk of the meta predictor Π̂ defined in (8) is bounded as follows:

EP1:T
ES1:T

Eπ∼Π̂[E(π)] ≤ E∗ +
4(C + c) logm∗

n
+

4(1 + 8e)Cm∗ log 2eM
m∗

T
.

Remark 8 Let us compare the meta-learning rate above to the 4(C+c) logM
n rate achieved by the

learning in isolation. In the unfavorable case m∗ ∼M , the meta-learning bound is sensibly larger
than the learning in isolation one, by an O(M/T ) term which vanishes rapidly when T → +∞.

However, as soon as m∗ < M , there is an improvement at the task level, as 4 logM
αn is replaced

by 4 logm?

αn . This means that for T large enough, the meta learning will always bring an improvement
over the learning in isolation. In the very favorable casem∗ �M , the improvement might be huge,
and in the extreme case where m∗ = 1, we have

EP1:T
ES1:T

Eπ∼Π̂[E(π)] ≤ E∗ +
4(1 + 8e)C log(2eM)

T
.

As expected, the benefits of the meta learning appear in the T � n regime, with a potential gain of
an O(1/n) term in many different scenarios, at the cost of an additional O(M/T ) term in the least
favorable of them. This is in line with Meunier and Alquier (2021, Theorem 3) in the online setting.

Proof We first consider the learning in isolation. The classical choice is to take π uniform in each
task. Bernstein’s condition (Assumption 1) holds with constant c, and an application of Theorem 1
with α = 1

C+c gives

ESt
[
Eθ∼ρt(π,α)[RPt(θ)]

]
− E∗ ≤ 2 inf

ρ∈P(Θ)

{
Eθ∼ρ [RPt(θ)]−R∗Pt +

(C + c)KL(ρ‖π)

n

}
≤ 2 inf

ρ∈{δϑ|ϑ∈Θ}

{
Eθ∼ρ [RPt(θ)]−R∗Pt +

(C + c)KL(ρ‖π)

n

}
=

2(C + c) logM

n
.

In the meta-learning case, an application of Theorem 5 gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
1≤m≤M

inf
|A|=m

EPT+1

[
inf
θ∈A

{
RPT+1

(θ)−R∗Pt+1

}
+

(C + c) log(m)

n
+ (1 + 8e)C

m log 2 + log
(
M
m

)
T

]
.

Using (9), the choice A = A∗ of cardinality m∗ yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)] ≤ E∗ +
4(C + c) log(m∗)

n
+ (1 + 8e)C

4m∗ log(2) + 4 log
(
M
m∗

)
T

.

We conclude by using the classic bound log
(
M
m

)
≤ m log Me

m .
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5.2 Learning Gaussian priors

In the applications developed from here on (models of Gaussians and mixtures of Gaussians), we
will further make the following assumption: there exists L > 0 such that, for any Pt ∼ P and any
θ ∈ Θ,

RPt(θ)−R∗Pt ≤ L‖θ − θ
∗
t ‖2. (10)

Intuitively, Taylor’s expansion of RPt gives

RPt(θ) = RPt(θ
∗
t ) + dRPt(θ

∗
t ).(θ − θ∗t )︸ ︷︷ ︸

0

+O(‖θ − θ∗t ‖2) = RPt(θ
∗
t ) +O(‖θ − θ∗t ‖2),

and thus, we can expect (10) to be satisfied when the risk is smooth enough. However, note that this
assumption is not necessary for the main results of this paper to hold.

In this subsection, we consider the set of all Gaussian distributions

M =

{
pµ,σ2 =

d⊗
i=1

N (µi, σ
2
i ), µ = (µ1, . . . , µd) ∈ Rd, σ2 = (σ2

1, . . . , σ
2
d) ∈ (R∗+)d

}
. (11)

Thus, distributions on priors are actually defined as priors on µ and σ2, and we focus on the set G
of distributions on priors, defined as

G =

{
qτ,ξ2,b =

d⊗
i=1

N (τi, ξ
2
i )⊗ Γ(2, b)

}
, (12)

and we choose the prior on priors as Λ = q
0, ¯̄ξ2,¯̄b

, for some parameters ¯̄ξ2, ¯̄b .
From now on and until the end of this section, we assume that both (10) and Assumption 1

(Bernstein’s condition) hold, and we are looking for a distribution on priors Π from which to sample
π, such that ρT+1(π, α) concentrates as much as possible to the best parameter. Denoting µ∗ :=
EPT+1

[θ∗T+1] and Σ(P) := EPT+1

[
‖θ∗T+1 − µ∗‖2

]
, the following holds.

Proposition 9 Under Assumption 1, (3) and (10), the excess risk of Π̂ defined in (8) forM and G
defined as in (11) and (12) is bounded as follows:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ CVGaussian(d,Σ(P), n, T ) +O

(
d log T

T

)
,

where

CVGaussian(d,Σ, n, T ) = inf
1≤b≤T

{
2(c+ C)d

n
log

(
4nL

b(c+ C)
+ 1

)
+

2(c+ C)bΣ

n

}
.

In particular, the following convergence regimes are identifiable:

• if Σ(P) ≥ d
n , CVGaussian(d,Σ(P), n, T ) ≤ 2(c+C)d

n log
(

4nL
c+C + 1

)
+ 2(c+C)Σ(P)

n (obtained
for b = 1);

• if d
n ≥ Σ(P) ≥ dn

T 2 , CVGaussian(d,Σ(P), n, T ) ≤ (8L+ 2(c+ C))

√
dΣ(P)
n (obtained for

b =
√
dnΣ(P)−1);
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• if dn
T 2 ≥ Σ(P), CVGaussian(d,Σ(P), n, T ) ≤ 8Ld

T + 2(c+C)d
T (obtained for b = T ).

The detailed proof of this proposition is given in Appendix G.
Let us briefly analyze the above bound. In the favorable case Σ(P) ≤ dn

T 2 , a proper choice of
meta predictor Π̂ leads to the very fast rate of convergence O

(
d
T

)
, which considerably improves

upon the fast rate O
(
d
n + d

T

)
when n � T . On the other hand, when Σ(P) ≥ d

n , the gain of the
meta learning is undermined due to many variations across the tasks. In that case, the excess risk
of the meta learning and the learning in isolation are similar, up to a O

(
d log T
T

)
term, which we

interpret as the cost of the meta learning, and which is much smaller than the main O
(
d logn
n

)
term

of the excess risk.

5.3 Learning Mixtures of Gaussian Priors

In this subsection, we generalize the result of the previous subsection to priors that are mixtures of
Gaussians. We still assume that Assumption 1 (Bernstein’s condition), (3) and (10) hold. We first
assume that the number of components K in the mixture is known. Under these hypotheses, the set
of possible priors π is

M =

{
pw,µ,σ2 =

K∑
k=1

wk

d⊗
i=1

N (µk,i, σ
2
k,i) : ∀k ∈ [K], wk ≥ 0, 1>w = 1

}
, (13)

where [K] , {1, . . . ,K} . We add a Dirichlet prior Dir(δ) on the weights w of the components in
the mixture, and the set of distributions on priors becomes

G =

{
qδ,τ,ξ2,b = Dir(δ)⊗

⊗
k∈[K]
i∈[d]

N (τk,i, ξ
2
k)⊗

K⊗
k=1

Γ(2, bk) : δ = (δ1, . . . , δK) ∈ RK
}
, (14)

while the prior on priors is chosen as Λ = qIK ,0, ¯̄ξ2,¯̄b
, for some parameters ¯̄ξ2, ¯̄b and IK ,

(1, . . . , 1)> ∈ RK . We define

ΣK(P) := inf
τ1,...,τK

EPT+1

[
min
k∈[K]

‖θ∗T+1 − τk‖2
]
.

Proposition 10 Under Assumption 1, (3) and (10), the excess risk of Π̂ defined in (8) forM and G
defined in (13) and (14) is bounded as follows:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ CVfinite(K,n) + CVGaussian (d,ΣK(P), n, T )

+ CVmeta(T, n, d,K, ¯̄b, ¯̄ξ2),

where CVfinite(K,n) =
4(c+ C) log(2K)

n
; CVmeta(T, n, d,K, ¯̄b, ¯̄ξ2) = O

(
dK log T

T

)
.

Let us analyze each of the terms of the above bound. The first term CVfinite(K,n) is the bound we
had in the finite case of Subsection 5.1. Visualizing our K mixtures as the K points in the finite
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case, this term is the time required by our estimator to select the right mixture. While this term
makes the convergence rate of O

(
1
n + 1

T

)
notably worse than the O

(
1
T

)
we might hope for, it is

essentially unavoidable as it appears in the much simpler model of a finite set of K parameters
described in Subsection 5.1.

The next term CVGaussian (d,ΣK(P), n, T ) is exactly the main term of the bound obtained in the
Gaussian case of Subsection 5.2, with the exception that Σ(P) is replaced by ΣK(P), and scales
with the convergence time to the best Gaussian for every task t.

Eventually, the last term CVmeta(T, n, d,K,
¯̄b, ¯̄ξ2, τ) is the convergence term at the meta level

and is a O
(
dK log T

T

)
. This is the cost of the meta learning compared to the learning in isolation.

Since this term is very small in the T � n regime, it enables to sometimes shrink the rate of the
Gaussian term from O

(
1
n

)
down to O

(
1
T

)
in the most favorable cases, hence justifying the use of

the meta learning.

Remark 11 One may think, looking at the bounds in the two previous cases considered, that the
O
(

1
n + 1

T

)
convergence rate in the case of mixtures of Gaussians is slower than the one for Gaus-

sians which can be as fast as O
(

1
T

)
. In reality, the rate of convergence is (naturally) faster for the

model of mixtures of Gaussians, because in the case of mixtures of Gaussians, the convergence term
CVGaussian (d,ΣK(P), n, T ) is O

(
1
T

)
under the assumption that ΣK(P) ≤ dn

T 2 , while in the Gaus-
sian case, the much stronger assumption Σ(P) = Σ1(P) ≤ dn

T 2 is required. Under this assumption,
the similar rate O

(
1
T

)
is naturally achieved.

Remark 12 We would like to draw a parallel between the Gaussian mixture prior approach and
the conditional meta-learning (CML) framework (Denevi et al., 2020; Wang et al., 2020; Denevi
et al., 2022). In contrast to standard meta-learning, CML enhances adaptability by conditioning
learning on specific variables, such as task attributes or environmental contexts, allowing adaptive
strategies to be tailored to task requirements. This guarantees not only generalization of the model
across tasks, but also adaptation of strategies to unique environmental conditions, just as mixture
models and their ability to represent complex data distributions through combinations of simpler
distributions. Thus, learning a mixture of priors is conceptually similar to CML. Note however
that the hypotheses used in theoretical works on CML are based on convexity (Denevi et al., 2020,
2022), which is fundamentally different from the ones used in our PAC-Bayes analysis. It might be
interesting to develop a unified framework that encompasses both approaches and produces results
for both settings.

We now consider the case when the number of mixtures K is unknown. The set of priors hence
becomes the set of all (finite) mixtures of Gaussians:

M =

{
pw,µ,σ2 =

+∞∑
k=1

wk

d⊗
i=1

N (µk,i, σ
2
k,i) : ∃K ≥ 1 : ∀k ≥ K + 1, wk = 0

}
. (15)

In the definition of the set of distributions on priors G, we assume that K ≤ T (otherwise, there is
a high chance of overfitting). We then set a Dirichlet prior qx on the number of components K, and
given K, set the same model as before, denoted by qδ,τ,ξ2,b|K . Formally,

G =

{
qx,δ,τ,ξ2,b = qx × qδ,τ,ξ2,b|K

}
, (16)
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and we set the prior on priors Λ = q 1
T
IT ,IK ,0, ¯̄ξ2,¯̄b

. An application of Theorem 5 gives the next bound.

Proposition 13 Under the same conditions and using the same notations as in Proposition 10, the
excess risk of Π̂ defined in (8) forM and G defined as in (15) and (16) is bounded as follows:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗

≤ inf
K∈[T ]

{
CVfinite(K,n) + CVGaussian (d,ΣK(P), n, T ) + CVunknown

meta (T, n, d,K, ¯̄b, ¯̄ξ2)

}
,

where the convergence term at the meta level becomes

CVunknown
meta (T, n, d,K, ¯̄b, ¯̄ξ2) = CVmeta(T, n, d,K, ¯̄b, ¯̄ξ2) +

2(1 + 8e)C log T

T
.

Our estimator takes 2(1+8e)C log T
T to find the optimal number of mixtures at the meta level. This

is the price to pay to have the infimum on K in the bound. When T � n and when no prior
information on K is available, this clearly improves upon the bound of Proposition 10, and hence
justifies setting a prior on K at the meta level rather than choosing an isolated K, pleading again in
favor of the meta learning. The proof of all the results of this subsection is given in Appendix H.

6. Discussion

In recent years, the statistical guarantees of meta-learning have received increasing attention. In
the following paragraphs, we present a short review of the literature on the statistical theory of
meta-learning, followed by a brief discussion of three papers that are closely related to our analysis.

6.1 Theoretical Bounds in Meta-Learning

The first theoretical analysis of meta-learning goes back to Baxter (2000), who introduced the notion
of task environment and derived a uniform generalization bound based on the capacity and covering
number of the model. Following this i.i.d. task environment setting, many other generalization
bounds have since been provided for different strategies and proof techniques, including VC theory
(Baxter, 2000; Ben-David and Schuller, 2003; Maurer, 2009; Maurer et al., 2016; Guan and Lu,
2022b), algorithmic stability (Maurer and Jaakkola, 2005; Chen et al., 2020; Al-Shedivat et al.,
2019; Guan et al., 2022) and information theory (Jose and Simeone, 2021; Chen et al., 2021; Jose
et al., 2021; Rezazadeh et al., 2021; Hellström and Durisi, 2022). A related approach for deriving
such bounds is based on PAC-Bayes theory. First proposed in the meta-learning framework in
the pioneering paper of Pentina and Lampert (2014), this idea of learning a hyper-posterior that
generates a prior for the new task has been taken up several times in the recent years (Amit and Meir,
2018; Ding et al., 2021; Liu et al., 2021; Rothfuss et al., 2021; Farid and Majumdar, 2021; Rothfuss
et al., 2023; Guan and Lu, 2022a; Rezazadeh, 2022). In particular, Amit and Meir (2018) derived a
new PAC-Bayes bound, which they applied to the optimization of deep neural networks, albeit with
computational limitations. This latter concern was partially addressed by Rothfuss et al. (2021),
who also specified the hyper-posterior and extended the results to unbounded losses, and further
investigated their study in (Rothfuss et al., 2023). Some papers combined ideas from different
literatures, such as Farid and Majumdar (2021), who explored the link between PAC-Bayes and
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uniform stability in meta-learning, and provided a precise analysis of stability and generalization.
Excess risk bounds have also been provided in the i.i.d. task environment framework, see (Maurer
et al., 2016; Denevi et al., 2018a,b, 2019a,b, 2020; Balcan et al., 2019; Bai et al., 2021; Chen and
Chen, 2022). The task environment assumption has recently been challenged, for example by Du
et al. (2020) and Tripuraneni et al. (2021), who proposed to use assumptions on the distributional
similarity between the features and the diversity of tasks to control the excess risk, an idea further
explored by Fallah et al. (2021) who exploited a notion of diversity between the new task and
training tasks using the total variation distance. Finally, a detailed analysis of regret bounds in
lifelong learning has been carried out in recent years (Alquier et al., 2017; Denevi et al., 2018b,
2019b; Balcan et al., 2019; Khodak et al., 2019; Finn et al., 2019; Meunier and Alquier, 2021).

6.2 Comparison to (Denevi et al., 2019a)

and (Denevi et al., 2019a) is probably the study that is the most related to our paper. The authors
provide statistical guarantees for Ridge regression with a meta-learned bias, and focus on the use-
fulness of their strategy relative to single-task learning, proving that their method outperforms the
standard `2-regularized empirical risk minimizer. In particular, they can achieve an excess risk rate
of order O

(
1/
√
T
)

in the favorable case Σ(P) ≤ n
T , where Σ(P) is a variance term similar to the

one we defined in our Gaussian example.

6.3 Comparison to (Guan et al., 2022)

To the best of our knowledge, Guan et al. (2022) is the only work in the meta-learning literature that
addresses fast rates with respect to the number of tasks T under the task environment assumption.
However, we actually show in our paper that there is no need to extend Bernstein’s condition when
using exact Bayesian inference and that the final posterior naturally satisfies the extended Bernstein
assumption, thus giving fast rates with respect to T , while Guan et al. (2022) require an additional
Polyak-Łojasiewicz condition to achieve fast rates. Furthermore, their analysis is very different in
nature, relying on stability arguments to derive generalization bounds, while we use PAC-Bayes
theory to control the excess risk.

6.4 Comparison to (Guan and Lu, 2022a) and (Rezazadeh, 2022)

Finally, Guan and Lu (2022a) and Rezazadeh (2022) provide fast rate generalization bounds based
on another version of Catoni’s PAC-Bayes bound. While these are indeed very nice results, the cost
is that the empirical risk in the right-hand side of the bound is multiplied by a factor c > 1. In terms
of excess risk, this leads to fast rates only in the case where the optimal risk is null. On the other
hand, if the optimal risk is positive, this would not even prove consistency. To reduce the factor in
front of the empirical risk to 1 would return a slow rate.

7. Conclusion and Open Problems

We provided an analysis of the excess risk in meta-learning the prior via PAC-Bayes bounds. Sur-
prisingly, at the meta-level, conditions for fast rates are always satisfied if one uses exact Gibbs
posteriors at the task level. An important problem is to extend this result to variational approxima-
tions of Gibbs posteriors.
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Acknowledgments

The three authors thank the anonymous Reviewers and the AE for their very constructive comments.
BECA acknowledges funding from the ANR grant project BACKUP ANR-23-CE40-0018-01.

Appendix A. Notations

The following is a complete list of all the notations introduced throughout the paper.

Name Definition Page
Ensembles

Observation space Z p4
Decision space Θ p4
Set of all probability distribu-
tions on Θ

P(Θ) p4

Subset of potential posteriors
(often chosen to be parametric)

F ⊆ P(Θ) p5

Set of priors π M p11
Set of all probability distribu-
tions onM

P(M) p11

Subset of potential posteriors on
P(M)

G ⊆ P(M) p11

Loss function
Loss function ` : Z ×Θ→ R+ p4

Observations and Data Distributions at the within-task level
Sample size of task t Nt p4
Observations (i.i.d.) of task t Zt,1, . . . , Zt,Nt p4
Sample of (i.i.d.) observations
of task t

St , (Zt,1, . . . , Zt,Nt) p7

Distribution of the (i.i.d.) obser-
vations of task t

Pt p5

Distributions at the meta-level
Distribution of
(P1, N1), . . . , (PT , NT ) when
they are assumed to be i.i.d.

P p8

Expected sample size n p11
Expectations

Expectation with respect to one
observation from task t: Z ∼ Pt

EZ∼Pt p5

Expectation with respect to the
observations of task t: St =
(Zt,1, . . . , Zt,Nt) i.i.d. from Pt,
conditionally on (Pt, Nt)

ESt p7
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Expectation with respect to the
observations of all the tasks
t ∈ {1, . . . , T}: S1 ∼
P1, . . . ,ST ∼ PT , conditionally
on (P1, N1), . . . , (PT , NT )

ES1:T
= ES1 . . .EST p11

Expectation with respect to the
observations of an out-of-sample
task T + 1: ST+1 ∼ PT+1, con-
ditionally on (PT+1, NT+1)

EST+1
p8

Expectation with respect to a
task t ∈ {1, . . . , T + 1}:
(Pt, Nt) ∼ P

EPt,Nt p8

Expectation with respect to all
the tasks t ∈ {1, . . . , T}:
(P1, n1), . . . , (PT , Nt) ∼ P

EP1:T ,N1:T
p11

Short for EP1:T ,N1:T
when N =

1 = · · · = NT = n are deter-
ministic

EP1:T
p12

Expectation with respect to a pa-
rameter θ sampled from a distri-
bution ρ: θ ∼ ρ

Eθ∼ρ p5

Expectation with respect to a
prior π sampled from a prior on
priors Π: π ∼ Π

Eπ∼Π p10

Parameters
Parameter of Gibbs posterior at
the within-task level

α p5

Parameter of Gibbs distribution
on priors at the meta level

β p11

Bound on the loss C p6
Bernstein’s condition’s constant
(common to all tasks)

c p6

Empirical and Expected Risks at the within-task level
Prediction Risk of task t RPt(θ) , EZ∼Pt [`(Z, θ)] p5
Minimizer of the prediction risk
at task t (existence implicitly as-
sumed)

θ∗t , arg minθ∈ΘRPt(θ) p5

Optimal prediction risk of task t R∗Pt , infθ∈ΘRPt(θ) = RPt(θ
∗
t ) p5

Empirical Risk at task t R̂t(θ) , 1
Nt

∑Nt
i=1 `(Zt,i, θ) p5

Surrogate risk estimate of poste-
rior ρwith prior π and parameter
α at task t

B̂t(ρ, π, α) , Eθ∼ρ
[
R̂t(θ)

]
+ KL(ρ‖π)

αNt
p5
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Surrogate risk estimate of Gibbs
posterior with prior π and pa-
rameter α at task t

L̂t(π, α) , B̂t(ρt(π, α), π, α) p9

Expected surrogate risk of Gibbs
posterior with prior π and pa-
rameter α at task t

Lt(π, α) , ESt
[
L̂t(π, α)

]
p9

Minimizer of the expected surro-
gate risk of Gibbs posterior with
prior π and parameter α

π∗α , arg minπ EPt,Nt [Lt(π, α)] p9

Expected variability of the loss
at task t with respect to θ

Vt(θ, θ
∗
t ) , EZ∼Pt

[
|`(Z, θ)− `(Z, θ∗t )|2

]
p6

Empirical and Expected Risks at the meta level
Meta risk E(π) , EPT+1,NT+1

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]p8
Oracle meta risk E∗ , EPT+1,NT+1

[R∗PT+1
] p8

Prior and Bayesian Estimators at the within-task level
Within-task Prior (common to
all tasks)

π p5

Gibbs posterior at task t with
prior π and parameter α

ρt(π, α) , argminρ∈P(Θ) B̂t(ρ, π, α) p5

Variational approximation on F
of Gibbs posterior at task t with
prior π and parameter α

ρt(π, α,F) , argminρ∈F B̂t(ρ, π, α) p5

Prior and Bayesian Estimators at the meta level
Prior on the set of priors Λ p11

Gibbs distribution on priors Π̂ , argminΠ∈G

{
KL(Π‖Λ)

βT

+ 1
T

∑T
t=1 Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]} p11

Variational approximation
of Gibbs distribution on pri-
ors based on the variational
approximations ρt(π, α,F)

Π̂(F) , argminΠ∈G

{
KL(Π‖Λ)

βT

+ 1
T

∑T
t=1 Eπ∼Π

[
B̂t(ρt(π, α,F), π, α)

]} p12

Applications to the Models of Gaussians and Mixtures of Gaussians
Lipschitz constant of the loss
(only used when the loss is as-
sumed to be Lipschitz, in some
applications)

L p15

Parameter α of Gibbs posterior
at the observation level

α = 1
c+C p7

Parameter β of the prior on pri-
ors at the meta level

β = 1
(1+8e)C p11

Expectation of the optimal pa-
rameter

µ∗ , EPT+1
[θ∗T+1] p15

22



FAST RATES IN META-LEARNING WITH PAC-BAYES

Distributions and Parameters in the Gaussian Model
Joint distribution of d i.i.d.
Gaussians of expectations
µ1, . . . , µd and variances
σ2

1, . . . , σ
2
d

pµ,σ2 ,
⊗d

i=1N (µi, σ
2
i ) p15

Set of priors M ,
{
pµ,σ2 : ∀i ∈ [d], µi ∈ R, σ2

i > 0
}

p15

General parametric form of prior
on (µ, σ2) as the joint distribu-
tion of d i.i.d. Gaussians of
expectations τ1, . . . , τd and vari-
ances ξ2

1 , . . . , ξ
2
d , and an inde-

pendent gamma distribution of
parameters (2, b)

qτ,ξ2,b ,
(⊗d

i=1N (τi, ξ
2
i )
)
⊗ Γ(2, b) p15

Set of distributions on priors G ,
{
qτ,ξ2,b : ∀i ∈ [d], τi ∈ R, ξ2

i > 0, b > 0
}

p15
Prior on priors Λ , q

0, ¯̄ξ2,¯̄b
p15

Parameters of the prior on prior
Λ

¯̄ξ2, ¯̄b p15

Posterior of priors in the bound
Π̂

Π̂ , qτ̂ ,ξ̂2,b̂ p34

Parameters of Π̂ τ̂ , ξ̂2, b̂ p34
Variance of the optimal parame-
ter

Σ (P) , EPT+1

[
‖θ∗T+1 − µ∗‖2

]
p15

Model of Mixtures of Gaussians with Known Number of Mixtures
Number of mixtures K p16
Mixture of joint distribution of d
i.i.d. Gaussians

pw,µ,σ2 ,
∑K

k=1wk
⊗d

i=1N (µk,i, σ
2
k,i) p16

Set of priors M , {pw,µ,σ2 : µk,i ∈ R, σ2
k,i > 0, wk ≥

0, 1>w = 1}
p16

General parametric form of prior
on (w, µ, σ2)

qδ,τ,ξ2,b , Dir(δ)⊗

(⊗
i∈[d]
k∈[K]

N (τk,i, ξ
2
k)

)
⊗(⊗

k∈[K] Γ(2, bk)
) p16

Set of distributions on priors G , {qδ,τ,ξ2,b : ∀(i, k) ∈ [d] × [K], δk >
0, τk,i ∈ R, ξ2

k > 0, bk > 0}
p16

Prior on priors Λ , q
1K ,0,

¯̄ξ2,¯̄b
p16

Parameters of the prior on prior
Λ

¯̄ξ2 = (¯̄ξ2
1 , . . . ,

¯̄ξ2
K), ¯̄b = (¯̄b1, . . . ,

¯̄bK) p16

K-Variance of the optimal pa-
rameter

ΣK (P) ,
infτ1,...,τK EPT+1

[
mink∈[K] ‖θ∗T+1 − τk‖2

] p16

Model of Mixtures of Gaussians with Unknown Finite Number of Mixtures
Mixture of joint distribution of d
i.i.d. Gaussians

pw,µ,σ2 ,
∑∞

k=1

⊗d
i=1wkN (µk,i, σ

2
k,i) p17

Set of priors M , {pw,µ,σ2 : ∃K : ∀k ≥ K + 1, wk = 0} p17
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Prior on the number of mixtures
K

qx , Mult(x1, . . . , xT ) p17

Prior on the parameters given the
number of mixtures

qδ,τ,ξ2,b|K , Dir(δ) ⊗(⊗
i∈[d]
k∈[K]

N (τk,i, ξ
2
k)

)
⊗
(⊗

k∈[K] Γ(2, bk)
) p17

General parametric form of prior
on w, µ, σ2

qx,δ,τ,ξ2,b , qx × qδ,τ,ξ2,b|K p17

Set of priors on priors G , {qx,δ,τ,ξ2,b} p17
Prior on priors Λ , q 1

T
1T ,1K ,0,

¯̄ξ2,¯̄b
p18

Probability Distributions
Multinomial distribution of sup-
port [K] and parameters x =
(x1, . . . , xK)

Mult(x) p25

Gaussian distribution of mean µ
and variance σ2

N (µ, σ2) p25

Gamma distribution of parame-
ters (a, b)

Γ(a, b) p25

Dirichlet distribution of sup-
port [K] and parameters δ =
(δ1, . . . , δK)

Dir(δ) p25

Miscellaneous
First K positive integers [K] , {1, . . . ,K} p16
Vector of ones 1K , (1, . . . , 1)> ∈ RK p16
Kullback-Leibler divergence be-
tween distributions ρ and π

KL(ρ‖π) p25

Dirac distribution of parameter
ϑ

δϑ(x) ,

{
1 if x = ϑ
0 otherwise.

N/A

Indicator function of the validity
of Bernstein’s condition

IB ,
{

1 if Bernstein’s condition holds
0 otherwise.

p7

Entropy of distribution Mult(x) H(x) p25
Gamma function Γ(x) ,

∫∞
0 tx−1e−tdt p25

Digamma function ψ(x) , Γ′(x)
Γ(x) p25

Appendix B. Some Useful Formulas

The following (known) results are used throughout the text. They are recalled here without proof.

B.1 Concentration Inequalities

For Hoeffding and Bernstein see (Boucheron et al., 2013). For Donsker and Varadhan, see for
example (Catoni, 2007).
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Lemma 14 (Hoeffding’s inequality) Let U1, . . . , Un be i.i.d random variables taking values in an
interval [a, b]. Then, for any s > 0,

E
[
es
∑n
i=1[Ui−E(Ui)]

]
≤ e

ns2(b−a)2

8 .

Lemma 15 (Bernstein’s inequality) Let U1, . . . , Un be i.i.d random variables such that for any
k ≥ 2,

E
[
|Ui|k

]
≤ k!

2
V Ck−2. (17)

Then, for any s ∈ (0, 1/C],

E
[
es
∑n
i=1[Ui−E(Ui)]

]
≤ e

ns2V
2(1−sC) .

Note that in particular, if |Ui| ≤ C almost surely, (17) always holds with V = E(U2
i ).

B.2 Donsker and Varadhan’s Lemma

Lemma 16 (Donsker and Varadhan’s variational inequality, 1976) Let µ be a probability mea-
sure on Θ. For any measurable, bounded function h : Θ→ R, we have:

logEθ∼µ
[
eh(θ)

]
= sup

ρ∈P(Θ)

{
Eθ∼ρ[h(θ)]−KL(ρ‖µ)

}
.

Moreover, the supremum with respect to ρ in the right-hand side is reached for the Gibbs measure
µh defined by its density with respect to µ

dµh
dµ

(ϑ) =
eh(ϑ)

Eθ∼µ
[
eh(θ)

] .
B.3 KL Divergence of Some Known Distributions

Denoting byH(x) the entropy of (x1, . . . , xT ), recall that the KL divergence between a multinomial
distribution of parameters (x1, . . . , xT ) and a multinomial distribution of parameters

(
1
T , . . . ,

1
T

)
is

KL

(
Mult(x)‖Mult

(
1

T

))
= log T −H(x). (18)

Recall that the KL divergence between 2 normal distributions is

KL
(
N (µ, σ2)‖N (µ̄, σ̄2)

)
=

1

2

(
(µ− µ̄)2

σ̄2
+
σ2

σ̄2
− 1 + log

σ̄2

σ2

)
. (19)

Recall that the KL divergence between 2 Gamma distributions is

KL
(

Γ(a, b)‖Γ
(

¯̄a, ¯̄b
))

= (a− ¯̄a)ψ(a) + log
Γ (¯̄a)

Γ(a)
+ ¯̄a log

b
¯̄b

+ a
¯̄b− b
b

, (20)

where ψ denotes the digamma function, and Γ the gamma function. Recall that the KL divergence
between a Dirichlet distribution of parameter δ and a Dirichlet distribution of parameter 1K =
(1, . . . , 1) is

KL (Dir(δ)‖Dir(1K)) = log
Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
. (21)
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Appendix C. Proof of Theorem 1

We mostly follow the proof technique developed in (Catoni, 2007). For any s > 0, fix θ ∈ Θ and
let Ui = E[`(Zt,i, θ)]− `(Zt,i, θ)−E[`(Zt,i, θ

∗
t )] + `(Zt,i, θ

∗
t ) for any i ∈ {1, . . . , n}. We are going

to distinguish two cases, whether or not Assumption 1 (Bernstein’s condition) is satisfied.
If Assumption 1 is satisfied, we apply Lemma 15 to Ui. Note that in this case, V is actually the

variance term Vt(θ, θ
∗
t ). So, for any s > 0,

ESt
[
e
sn
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ e

ns2V (θ,θ∗t )

2(1−sC) .

We let s = λ/n, which gives

ESt
[
e
λ
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ e

λ2V (θ,θ∗t )

2(n−Cλ) .

Making use of Assumption 1 gives

ESt
[
e
λ
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ e

λ2c(RPt (θ)−R
∗
Pt

)
2(n−Cλ) .

If Assumption 1 is not satisfied, we apply Lemma 14 to Ui, which gives, for any s > 0,

ESt
[
e
sn
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ e

ns2C2

8 .

Letting s = λ/n gives

ESt
[
e
λ
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ e

λ2C2

8n .

Defining the general bound

W =
λ2c

(
RPt(θ)−R∗Pt

)
2(n− Cλ)

IB +
λ2C2

8n
(1− IB), (22)

where IB is equal to 1 if Assumption 1 is satisfied, and 0 otherwise, it holds in either case that

ESt
[
e
λ
(
RPt (θ)−R̂t(θ)−R

∗
Pt

+R̂t(θ∗t )
)]
≤ eW .

Rearranging the terms gives

ESt
[
e
λ
(
RPt (θ)−R

∗
Pt
−W
λ
−R̂t(θ)+R̂t(θ∗t )

)]
≤ 1.

Next, integrating this bound with respect to π and using Fubini’s theorem to exchange both integrals
gives

EStEθ∼π
[
e
λ
(
RPt (θ)−R

∗
Pt
−W
λ
−R̂t(θ)+R̂t(θ∗t )

)]
≤ 1.
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We then apply Lemma 16 to the argument of the expectation with respect to the sample, and we
have

ESt
[
e

supρ∈P(Θ)

{
λEθ∼ρ

[
RPt (θ)−R

∗
Pt
−W
λ
−R̂t(θ)+R̂t(θ∗t )

]
−KL(ρ‖π)

}]
≤ 1.

Jensen’s inequality implies

e
λESt

[
supρ∈P(Θ)

{
Eθ∼ρ

[
RPt (θ)−R

∗
Pt
−W
λ
−R̂t(θ)+R̂t(θ∗t )

]
−KL(ρ‖π)

λ

}]
≤ 1,

in other words,

ESt

[
sup

ρ∈P(Θ)

{
Eθ∼ρ

[
RPt(θ)−R∗Pt −

W

λ
− R̂t(θ) + R̂t(θ

∗
t )

]
− KL(ρ‖π)

λ

}]
≤ 0.

At this stage, we can replace W by its value given in (22) to obtain the bound:

ESt

[
sup

ρ∈P(Θ)

{
Eθ∼ρ

[(
1− λcIB

2(n− Cλ)

)(
RPt(θ)−R∗Pt

)
− λC2(1− IB)

8n
− R̂t(θ) + R̂t(θ

∗
t )

]
− KL(ρ‖π)

λ

}]
≤ 0.

Next, we rearrange the terms and replace the supremum on ρ by ρt(π, α):

EStEθ∼ρt(π,α) [RPt(θ)]−R∗Pt ≤
1

1− λcIB
2(n−Cλ)

×
(
ESt

[
Eθ∼ρt(π,α)

[
R̂t(θ)

]
− R̂t(θ∗t ) +

KL(ρt(π, α)‖π)

λ

]
+
λC2(1− IB)

8n

)
.

We then replace λ by αn and by definition of Gibbs posterior ρt(π, α), the above bound is the same
as

EStEθ∼ρt(π,α) [RPt(θ)]−R∗Pt ≤
1

1− αcIB
2(1−Cα)

×
(
ESt

[
inf
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
− R̂t(θ∗t ) +

KL(ρ‖π)

αn

}]
+
αC2(1− IB)

8

)
.

In particular, under Assumption 1, i.e., if IB = 1, the choice α = 1
C+c gives

ESt
[
Eθ∼ρt(π,α)[RPt(θ)]

]
−R∗Pt ≤ 2ESt

[
inf
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
− R̂t(θ∗t ) +

KL(ρ‖π)

αn

}]
.

Without Assumption 1, i.e., if IB = 0, rewriting the bound and taking the minimum over α yields

ESt
[
Eθ∼ρt(π,α)[RPt(θ)]

]
−R∗Pt ≤ inf

α
ESt

[
inf
ρ∈F

{
Eθ∼ρ

[
R̂t(θ)

]
− R̂t(θ∗t ) +

KL(ρ‖π)

αn
+
αC2

8

}]
,

and this concludes the proof. �
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Appendix D. Proof of Corollary 2

As this corollary is stated for one task only, let’s put n := Nt for the sake of clarity. First,

ESt
[

inf
ρ∈P(Θ)

B̂t(ρ, π, α)− R̂t(θ∗t )
]

= ESt
[

inf
ρ∈P(Θ)

{
Eθ∼ρ[R̂t(θ)] +

KL(ρ‖π)

αn

}
− R̂t(θ∗t )

]
≤ inf

ρ∈P(Θ)
ESt

[
Eθ∼ρ[R̂t(θ)] +

KL(ρ‖π)

αn
− R̂t(θ∗t )

]
= inf

ρ∈P(Θ)

[
Eθ∼ρ[RPt(θ)]−R∗Pt +

KL(ρ‖π)

αn

]
.

Now, for any s ∈ (0, s0], let ρs be the restriction of π to the set {θ : RPt(θ)−R∗Pt ≤ s}.

ESt
[

inf
ρ∈P(Θ)

B̂t(ρ, π, α)− R̂t(θ∗t )
]
≤ inf

0<s≤s0

[
Eθ∼ρs [RPt(θ)]−R∗Pt +

KL(ρs‖π)

αn

]
≤ inf

0<s≤s0

[
s+

log 1
π({θ:Rt(θ)−Rt(θ∗t )≤s})

αn

]

≤ inf
0<s≤s0

[
s+

dπ,t log 1
s + log κπ,t

αn

]

by assumption. An optimization with respect to s leads to s = dπ,t/(αn) ≤ s0 as soon as n ≥
dπ,t/(αs0) and we obtain the first statement:

ESt
[

inf
ρ∈P(Θ)

B̂t(ρ, π, α)− R̂t(θ∗t )
]
≤
dπ,t log neα

dπ,t
+ log κπ,t

αn
.

Plugging this into Theorem 1 leads immediately to the other statements.

Appendix E. Proof of Lemma 4

First, we note that f : x 7→ − 1
τ log(x) is differentiable on [exp(−Cτ), 1] and f ′(x) = − 1

τx . As a
consequence, |f ′(x)| = 1/(τx) is maximized at x = exp(−Cτ) and its maximum is exp(Cτ)/τ .
This implies that f is exp(Cτ)/τ -Lipschitz, that is, for any (x, y) ∈ [exp(−Cτ), 1]2,

|f(x)− f(y)| ≤ exp(Cτ)

τ
|x− y|.

Taking the square of both sides of the inequality yields

∀(x, y) ∈ [exp(−Cτ), 1]2, (f(x)− f(y))2 ≤ exp(2Cτ)

τ2
(x− y)2. (23)

Then, f ′′(x) = 1/(τx2) and thus, |f ′′(x)| ≥ 1/τ (minimum reached for x = 1). This implies that
f is 1/τ -strongly convex, that is, for any (x, y) ∈ [exp(−Cτ), 1]2 we have, for any θ ∈ [0, 1],

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− θ(1− θ)
2τ

(x− y)2.
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We apply this inequality to θ = 1/2 and rearrange terms, and we obtain

∀(x, y) ∈ [exp(−Cτ), 1]2,
1

8τ
(x− y)2 ≤ f(x) + f(y)

2
− f

(
x+ y

2

)
. (24)

Finally, combining (23) with (24) yields

∀(x, y) ∈ [exp(−Cτ), 1]2, [f(x)− f(y)]2 ≤ 8 exp(2Cτ)

τ

[
f(x) + f(y)

2
− f

(
x+ y

2

)]
,

concluding the proof of the lemma. �

Appendix F. Proof of Theorem 5

The proof of Theorem 5 is structured as follows: we first bound the excess risk by the expectation
of the infimum of the empirical risk B̂t(ρ, π, α) − R̂(θ∗t ) in Lemma 17. Using classic techniques,
we turn this bound into the prediction risk.

F.1 Lemma

Lemma 17 Assume that the loss ` satisfies the boundedness assumption (3) with constant C. Then,
the following bound holds with the choice β = 1

(1+8e)C :

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗ ≤ 2

1− αcIB
2(1−Cα)

EP1:T ,N1:T
ES1:T

[

inf
Π∈G

{
1

T

T∑
t=1

(
Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]
− R̂t(θ∗t )

)
+

8eCKL(Π‖Λ)

T

}
+
αC2(1− IB)

8

]
,

Proof For any t ∈ [T ], let

Ut := B̂t(ρt(π
∗
α, α), π∗α, α)− B̂t(ρt(π, α), π, α).

Note that
E[Ut] = EPt,Nt [Lt(π∗α, α)]− EPt,Nt [Lt(π, α)] ,

where E[Ut] is a short notation for EPt,NtESt [Ut]. Besides, note that, by the assumption on the
boundedness of `, it a.s. holds that |Ut| ≤ C. Applying Lemma 15 to Ut gives, for any β > 0,

EP1:T ,N1:T
ES1:T

[
eβ
∑T
t=1(Ut−E[Ut])

]
≤ e

β2TṼ (π)
2(1−βC) ,

and

Ṽ (π) = EPT+1,NT+1
EST+1

[(
B̂T+1(ρT+1(π, α), π, α)− B̂T+1(ρT+1(π∗α, α), π∗α, α)

)2
]
.

This factor can be bounded as Ṽ (π) ≤ 8eCE[−UT+1] by Theorem 3, which states that Bernstein’s
condition is satisfied at the meta level, so that the bound becomes

EP1:T ,N1:T
ES1:T

[
e
β
∑T
t=1(Ut−E[Ut])+

8eCβ2TE[UT+1]
2(1−βC)

]
≤ 1.
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Integrating with respect to the prior π ∼ Λ and using Fubini’s theorem yields

EP1:T ,N1:T
ES1:T

Eπ∼Λ

[
e
β
∑T
t=1(Ut−E[Ut])+

8eCβ2TE[UT+1]
2(1−βC)

]
≤ 1.

Next, by an application of Lemma 16, the left-hand side becomes

EP1:T ,N1:T
ES1:T

[
e

supΠ∈P(P(θ))

{
Eπ∼Π

[
β
∑T
t=1(Ut−E[Ut])+

8eCβ2TE[UT+1]
2(1−βC)

]
−KL(Π‖Λ)

}]
≤ 1.

We then make use of Jensen’s inequality and arrange terms, so that the bound becomes

EP1:T ,N1:T
ES1:T

[
sup

Π∈P(P(θ))

{

Eπ∼Π

[
1

T

T∑
t=1

(Ut − E[Ut]) +
8eCβE [UT+1]

2(1− βC)

]
− KL(Π‖Λ)

βT

}]
≤ 0.

We replace the supremum on Π by an evaluation of the term in Π̂ and arrange terms, so that the
bound becomes

EP1:T ,N1:T
ES1:T

Eπ∼Π̂

[
− 1

T

T∑
t=1

E[Ut] +
8eCβE [UT+1]

2(1− βC)

]

≤ EP1:T ,N1:T
ES1:T

[
− 1

T

T∑
t=1

Eπ∼Π̂[Ut] +
KL(Π̂‖Λ)

βT

]
,

which is identical to(
−1 +

8eCβ

2(1− Cβ)

)
EP1:T ,N1:T

ES1:T
Eπ∼Π̂EPT+1,NT+1

EST+1

[
UT+1,NT+1

]
≤ EP1:T ,N1:T

ES1:T

[
− 1

T

T∑
t=1

Eπ∼Π̂[Ut] +
KL(Π̂‖Λ)

βT

]
.

Then, we replace Ut by its value for t ∈ {1, . . . , T + 1}, yielding the bound

(
1− 8eCβ

2(1− Cβ)

)
EP1:T ,N1:T

ES1:T
Eπ∼Π̂EPT+1,NT+1

EST+1

[

B̂T+1(ρT+1(π, α), π, α)− B̂T+1(ρT+1(π∗α, α), π∗α, α)

]

≤ EP1:T ,N1:T
ES1:T

[
1

T

T∑
t=1

Eπ∼Π̂

[
B̂t(ρt(π, α), π, α)− B̂t(ρt(π∗α, α), π∗α, α)

]
+

KL(Π̂‖Λ)

βT

]
.
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Since the term B̂t(ρt(π
∗
α, α), π∗α, α) does not depend on π ∼ Π̂, we can simplify it on both sides of

the inequality, which gives(
1− 8eCβ

2(1− Cβ)

)
EP1:T ,N1:T

ES1:T
Eπ∼Π̂EPT+1,NT+1

EST+1

[
B̂T+1(ρT+1(π, α), π, α)

]
+

8eCβ

2(1− Cβ)
EP1:T ,N1:T

ES1:T

[
B̂T+1(ρT+1(π∗α, α), π∗α, α)

]
≤ EP1:T ,N1:T

ES1:T

[
1

T

T∑
t=1

Eπ∼Π̂

[
B̂t(ρt(π, α), π, α)

]
+

KL(Π̂‖Λ)

βT

]
. (25)

Theorem 1 provides the following lower bound for any π′, and any (PT+1, NT+1):

EST+1

[
B̂T+1(ρT+1(π′, α), π′, α)

]
≥
(

1− αcIB
2(1− Cα)

)
EST+1

Eθ∼ρT+1(π′,α)

[
RPT+1

(θ)
]

+
αcIB

2(1− Cα)
R∗PT+1

− αC2(1− IB)

8
. (26)

This further implies that

EST+1

[
B̂T+1(ρT+1(π′, α), π′, α)

]
≥
(

1− αcIB
2(1− Cα)

)
R∗PT+1

+
αcIB

2(1− Cα)
R∗PT+1

− αC2(1− IB)

8
(27)

for any π′, and (PT+1, NT+1). In particular, applying (26) to π′ = π and (27) to π = π∗α, and
injecting the results in the left-hand side of (25) gives(

1− αcIB
2(1− Cα)

)(
8eCβ

2(1− Cβ)
EPT+1,NT+1

[
R∗PT+1

]
+

(
1− 8eCβ

2(1− Cβ)

)
EP1:T ,N1:T

ES1:T
Eπ∼Π̂EPT+1,NT+1

EST+1
Eθ∼ρT+1(π′,α)

[
RPT+1

(θ)
])

+
αcIB

2(1− Cα)
EPT+1,NT+1

[
R∗PT+1

]
− αC2(1− IB)

8

≤ EP1:T ,N1:T
ES1:T

[
1

T

T∑
t=1

Eπ∼Π̂

[
B̂t(ρt(π, α), π, α)

]
+

KL(Π̂‖Λ)

βT

]
.

We remove E∗ = EPT+1,NT+1

[
R∗PT+1

]
from both sides of the inequality and arrange terms, so that

the bound becomes(
1− αcIB

2(1− Cα)

)(
1− 8eCβ

2(1− Cβ)

)(
EP1:T ,N1:T

ES1:T
Eπ∼Π̂ [E(π)]− E∗

)
− αC2(1− IB)

8
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≤ EP1:T ,N1:T
ES1:T

[
1

T

T∑
t=1

Eπ∼Π̂

[
B̂t(ρt(π, α), π, α)

]
− E∗ +

KL(Π̂‖Λ)

βT

]
.

By definition, Π̂ is the minimizer of the integrand of the right-hand side, and therefore,(
1− αcIB

2(1− Cα)

)(
1− 8eCβ

2(1− Cβ)

)(
EP1:T ,N1:T

ES1:T
Eπ∼Π̂ [E(π)]− E∗

)

≤ EP1:T ,N1:T
ES1:T

[
inf
Π∈G

{
1

T

T∑
t=1

(
Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]
− R̂t(θ∗t )

)
+

KL(Π‖Λ)

βT

}]

+
αC2(1− IB)

8
,

and the choice β = 1
(1+8e)C yields

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗ ≤ 2

1− αcIB
2(1−Cα)

EP1:T ,N1:T
ES1:T

[

inf
Π∈G

{
1

T

T∑
t=1

(
Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]
− R̂t(θ∗t )

)
+

(1 + 8e)CKL(Π‖Λ)

T

}

+
αC2(1− IB)

8

]
,

which concludes the proof of the lemma.

F.2 Proof of Theorem 5

From Lemma 17,

EP1:T ,N1:T
ES1:T

Eπ∼Π̂ [E(π)]− E∗

≤ 2

1− αcIB
2(1−Cα)

EP1:T ,N1:T
ES1:T

[
inf
Π∈G

{
1

T

T∑
t=1

(
Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]
− R̂t(θ∗t )

)
+

(1 + 8e)CKL(Π‖Λ)

T

}
+
αC2(1− IB)

8

]

≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EP1:T ,N1:T
ES1:T

{
1

T

T∑
t=1

(
Eπ∼Π

[
B̂t(ρt(π, α), π, α)

]
− R̂t(θ∗t )

)
+

(1 + 8e)CKL(Π‖Λ)

T
+
αC2(1− IB)

8

}

=
2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1,NT+1
EST+1

{(
Eπ∼Π

[
B̂T+1(ρT+1(π, α), π, α)

]
− R̂T+1(θ∗T+1)

)
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+
(1 + 8e)CKL(Π‖Λ)

T
+
αC2(1− IB)

8

}

≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1,NT+1
EST+1

{
Eπ∼Π inf

ρ∈P(Θ)

[
Eθ∼ρ[R̂T+1(θ)] +

KL(ρ‖π)

αNT+1

− R̂T+1(θ∗T+1)

]
+

(1 + 8e)CKL(Π‖Λ)

T
+
αC2(1− IB)

8

}

≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1,NT+1

{
Eπ∼Π inf

ρ∈P(Θ)
EST+1

[
Eθ∼ρ[R̂T+1(θ)] +

KL(ρ‖π)

αNT+1

− R̂T+1(θ∗T+1)

]
+

(1 + 8e)CKL(Π‖Λ)

T
+
αC2(1− IB)

8

}

≤ 2

1− αcIB
2(1−Cα)

inf
Π∈G

EPT+1,NT+1

{
Eπ∼Π inf

ρ∈P(Θ)

[
Eθ∼ρ[RPT+1

(θ)]−R∗PT+1
+

KL(ρ‖π)

αNT+1

]

+
(1 + 8e)CKL(Π‖Λ)

T
+
αC2(1− IB)

8

}
.

This ends the proof. �

Appendix G. Application of Theorem 5 to the Gaussian Case

In this section and until the end of this paper, we assume that Bernstein’s condition (Assumption 1),
(3) (the loss is bounded) and (10) are satisfied. For the sake of clarity, we recall (10): for any Pt and
any θ ∈ Θ,

RPt(θ)−R∗Pt ≤ L‖θ − θ
∗
t ‖2.

In this section and in the next one, we set α = 1
c+C and β = 1

(1+8e)C in order to compactify the
equations.

In this section, we assume that priors follow Gaussian distributions, and we consider the set of
all Gaussian distributions

M =

{
pµ,σ2 =

d⊗
i=1

N (µi, σ
2
i ) : ∀i ∈ [d], µi ∈ R, σ2

i ∈ R∗+

}
.

We choose the prior pµ̄,(σ̄2,...,σ̄2) ∈ F (and hence, the variances are the same for all coordinates). A
straightforward application of (19) gives

KL(pµ,σ2 |pµ̄,(σ̄2,...,σ̄2)) =
1

2

d∑
i=1

[
(µi − µ̄i)2

σ̄2
+
σ2
i

σ̄2
− 1 + log

(
σ̄2

σ2
i

)]
.

G.1 Bound in Isolation

We start from the bound in isolation from Theorem 1 at t = T + 1:
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EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

µ,σ2

{
Eθ∼pµ,σ2 [RPT+1

(θ)]−R∗PT+1

+
1

2αn

d∑
i=1

(
(µi − µ̄i)2

σ̄2
+
σ2
i

σ̄2
− 1 + log

σ̄2

σ2
i

)}
.

Using the assumption made in (10), the bound becomes

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

µ,σ2

{
LEθ∼pµ,σ2

[
‖θ − θ∗T+1‖2

]
+
‖µ− µ̄‖2

2αn
+

1

2αn

d∑
i=1

(
σ2
i

σ̄2
− 1 + log

σ̄2

σ2
i

)}
.

We can then perform an exact optimization on σ2 which yields σ2
i = σ̄2

1+2αLnσ̄2 , and after simplifi-
cations, the bound becomes

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

µ,σ2

{
LEθ∼pµ,σ2

[
‖θ − θ∗T+1‖2

]
+
‖µ− µ̄‖2

2αn
+

d

2αn
log(1 + 2αLnσ̄2)

}
.

We can easily compute the expectation

Eθ∼pµ,σ2

[
‖θ − θ∗T+1‖2

]
= ‖µ− θ∗T+1‖2 + ‖σ‖2,

and then perform an exact optimization in µ, which gives µi =
2Lθ∗T+1,i+

1
αnσ̄2 µ̄i

2L+ 1
αnσ̄2

, and replacing in

the bound yields, after simplifications,

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2L

2Lαnσ̄2 + 1
‖µ̄−θ∗T+1‖2+

d

αn
log(1+2αLnσ̄2). (28)

The objective is to see if we can achieve a better bound than the above with the meta-learning.

G.2 Bound for the Meta-Learning

For the meta-learning, we need to define our set of priors on the priors G, which we choose as the
family of distributions qτ,ξ2,b on (µ̄, σ̄2), where

qτ,ξ2,b(µ̄, σ̄
2) =

[
d⊗
i=1

N (µ̄i; τi, ξ
2
i )

]
⊗ Γ(σ̄2; 2, b).

Fix a prior on priors Λ = q
0, ¯̄ξ2,¯̄b

. We choose Π̂ = qτ̂ ,ξ̂2,b̂, where
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(τ̂ , ξ̂2, b̂) = argminτ,ξ2,b

{
E(µ̄,σ̄2)∼qτ,ξ2,b

[
1

T

T∑
t=1

min
µ(t),σ2(t)

{
Eθ∼N (µ(t),σ2(t))

[
R̂t(θ)

]
+

1

2αn

d∑
i=1

[
(µi(t)− µ̄i)2

σ̄2
+
σ2
i (t)

σ̄2
− 1 + log

σ̄2

σ2
i (t)

]}]

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
,

where Γ(·) is the gamma function and ψ(·) = Γ′(·)/Γ(·) is the digamma function. By an application
of Theorem 5,

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
τ,ξ2,b

{

E(µ̄,σ̄2)∼qτ,ξ2,bEPT+1

[
min
µ,σ2

{
Eθ∼pµ,σ2 [RPT+1

(θ)]−R∗PT+1

+
1

2αn

d∑
i=1

[
(µi − µ̄i)2

σ̄2
+
σ2
i

σ̄2
− 1 + log

σ̄2

σ2
i

]}]

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

The assumption made in (10) implies that

Eθ∼pµ,σ2 [RPT+1
(θ)]−R∗PT+1

≤ LEθ∼pµ,σ2

[
‖θ − θ∗T+1‖2

]
.

With the choice µ1 = · · · = µK = θ∗T+1, the previous bound becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
τ,ξ2,b

{
E(µ̄,σ̄2)∼qτ,ξ2,bEPT+1

[
min
µ,σ2

{
L‖σ‖2

+
1

2αn

d∑
i=1

[
(µi − µ̄i)2

σ̄2
+
σ2
i

σ̄2
− 1 + log

σ̄2

σ2
i

]}]

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

An exact optimization in σ2 gives σ2
i = σ̄2

2αLσ̄2n+1
, and after simplifications,

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
τ,ξ2,b

{
E(µ̄,σ̄2)∼qτ,ξ2,bEPT+1

[

min
µ

{
d

2αn
log
(
2αnLσ̄2 + 1

)
+

1

2αn

‖µ− µ̄‖2

σ̄2

}]
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+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

At this stage, we choose µ = θ∗T+1 which, by definition, satisfies RPT+1

(
θ∗T+1

)
= R∗PT+1

, and
choose τ = EPT+1

[θ∗T+1]. If θ∗T+1 = τ P-a.s., all the task have the same solution. On the other
hand, if θ∗T+1 has a lot of variations, then the tasks have very unrelated solutions. Replacing in the
infimum above yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
ξ2,b

{

E(µ̄,σ̄2)∼qτ,ξ2,b

[
d

2αn
log
(
2αnLσ̄2 + 1

)
+

1

2αn

EPT+1

[
‖θ∗T+1 − µ̄‖2

]
σ̄2

]

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

Let Σ(P) = EPT+1

[
‖θ∗T+1 − µ∗‖2

]
, this quantity will be very important in the rate. Using Fubini’s

theorem to invert the expectation w.r.t. µ̄ and the expectation w.r.t. PT+1 yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
ξ2,b

{

Eσ̄2∼Γ(2,b)

[
d

2αn
log
(
2αnLσ̄2 + 1

)
+

Σ(P) + ‖ξ‖2

2αnσ̄2

]

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

We can then bound the expectation w.r.t. σ̄2, as, by Jensen’s inequality,

Eσ̄2∼Γ(2,b)

[
d

2αn
log
(
2αnLσ̄2 + 1

)]
≤ d

2αn
log
(
2αnLE[σ̄2] + 1

)
=

d

2αn
log

(
4αnL

b
+ 1

)
,

and

Eσ̄2∼Γ(2,b)

[
Σ(P) + ‖ξ‖2

2αnσ̄2

]
=

(Σ(P) + ‖ξ‖2)b

2αn
.

We can then replace in the computation:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
ξ2,b

{
d

2αn
log

(
4αnL

b
+ 1

)
+

(Σ(P) + ‖ξ‖2)b

2αn

+
1

2βT

d∑
i=1

[
τ2
i

¯̄ξ2
+
ξ2
i

¯̄ξ2
− 1 + log

¯̄ξ2

ξ2
i

]
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.
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An exact optimization in ξ2 yields ξ2
i =

¯̄ξ2

1+ db ¯̄ξ2βT
αn

, and replacing ξ2 in the previous bound gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
b

{
d

2αn
log

(
4αnL

b
+ 1

)
+
bΣ(P)

2αn

+
‖τ‖2

2β ¯̄ξ2T
+

d

2βT
log

(
db ¯̄ξ2βT

αn

)
+

log b
¯̄b

+
¯̄b−b
b

βT

}
.

t We then restrict the above infimum to the values of b in [1, T ], and by noting that, for any 1 ≤ b ≤
T ,

d

2βT
log

(
db ¯̄ξ2βT

αn

)
≤ d

2βT
log

(
d ¯̄ξ2βT 2

αn

)

and

log b
¯̄b

+
¯̄b−b
b

βT
≤

log T
¯̄b

+ ¯̄b− 1

βT
,

we can replace those terms by their respective bounds in the above computation and extract them
from the infimum in 1 ≤ b ≤ T , and this yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ inf
1≤b≤T

{
2d

αn
log

(
4αnL

b
+ 1

)
+

2bΣ(P)

αn

}
+

2‖τ‖2

β ¯̄ξ2T
+

2d

βT
log

(
d ¯̄ξ2βT 2

αn

)
+ 4

log T
¯̄b

+ ¯̄b− 1

βT
.

In the specific regime Σ(P) ≤ dn
T 2 (d is here for dimension reasons), then the Gaussian is very

concentrated around its mean, and its variance is smaller than n
T 2 on each axis. This implies that the

optimal parameter of the new task T +1 is going to close to τ , and we can benefit from the previous
tasks t = 1, . . . , T to infer it. Hence, we expect a significant improvement over the learning in
isolation in this regime.

For our bound, this means that in the infimum in b, the term 2bΣ(P)
αn is very small, and we will

choose b large so that it minimizes the first term of the sum 2d
αn log

(
4αnL
b

)
, and we choose b = T .

We then bound the infimum on b by
8dL

T
+

2d

αT
,

where we used the majoration log(1 + x) ≤ x. This yields the bound

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 8dL

T
+

2d

αT
+

2‖τ‖2

β ¯̄ξ2T
+

2d

βT
log

(
d ¯̄ξ2βT 2

αn

)
+ 4

log T
¯̄b

+ ¯̄b− 1

βT

in the advantageous regime Σ(P) ≤ dn
T 2 .
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Appendix H. Application of Theorem 5 to the Case of Mixtures of Gaussians

Similarly as in the previous section, in this section, we assume that Bernstein’s condition (Assump-
tion 1), (3) (the loss is bounded) and (10) are satisfied. For the sake of clarity, we recall (10): for
any Pt and any θ ∈ Θ,

RPt(θ)−R∗Pt ≤ L‖θ − θ
∗
t ‖2.

Recall that we set α = 1
c+C and β = 1

(1+8e)C in order to compactify the equations.

H.1 Case where the Number of Mixtures is Known

We first assume that priors that are mixtures of K Gaussians, where K is known:

M =

{
pw,µ,σ2 =

K∑
k=1

wk

d⊗
i=1

N (µk,i, σ
2
k,i) :

∀(i, k) ∈ [d]× [K], µk,i ∈ R, σ2
k,i ∈ R∗+, wk ≥ 0, 1>w = 1

}
.

We set the prior π =
∑K

k=1 w̄kN (µ̄k, σ̄
2
kId). Then, denoting by g(x;µ, σ2) the pdf of the normal

distribution N (µ, σ2), (19) implies, for any w, µ, σ2,

KL(pw,µ,σ2‖π) =

∫
Rd

log

∑K
k=1wkg(x;µk, σ

2
k)∑K

k=1 w̄kg(x; µ̄k, σ̄
2
kId)

K∑
k=1

wkg(x;µk, σ
2
k)dx

≤
∫
Rd

K∑
k=1

log
wkg(x;µk, σ

2
k)

w̄kg(x; µ̄k, σ̄
2
kId)

wkg(x;µk, σ
2
k)dx

=
K∑
k=1

wk log
wk
w̄k

+
K∑
k=1

wkKL(N (µk, σ
2
k)‖N (µ̄k, σ̄

2
kId))

= KL(w‖w̄) +
1

2

K∑
k=1

wk

d∑
i=1

(
(µk,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)
,

where the inequality on the second line follows from the log sum inequality from Cover and Thomas
(2006), and the bound from Theorem 5 becomes, at t = T + 1,

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

w,µ,σ2

{
Eθ∼pw,µ,σ2 [RPT+1

(θ)]−R∗PT+1
+

KL(w‖w̄)

αn

+
1

2αn

K∑
k=1

wk

d∑
i=1

(
(µk,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)}
.

The assumption made in (10) implies that

Eθ∼N (µ,σ2)[RPT+1
(θ)]−R∗PT+1

≤ LEθ∼N (µ,σ2)

[
‖θ − θ∗T+1‖2

]
.

It follows that the previous bound with the choice µ1 = · · · = µK = θ∗T+1 becomes
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EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

w,σ2

{
L

K∑
k=1

wk‖σk‖2 +
KL(w‖w̄)

αn

+
1

2αn

K∑
k=1

wk

d∑
i=1

(
(θ∗T+1,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)}
.

While the choice µ1 = · · · = µK = θ∗T+1 may seem less meaningful than in the Gaussian case
(with one single component), it is completely natural as the best possible choice for the parameter θ
is µPT+1

. In the computation, each componentN (µk, σ
2
k) of the mixture brings an error term which

can be decomposed between a bias term and a variance term,

Eθ∼N (µk,σ
2
k)

[
‖θ − θ∗T+1‖2

]
= ‖µk − θ∗T+1‖2︸ ︷︷ ︸

bias term (first order)

+ σ2
k︸︷︷︸

variance term (second order)

,

for which the choice µk = θ∗T+1 minimizes the first order error term. Next, we set the family G of
distributions on F :

G =

{
qδ,τ,ξ2,b = Dir(δ)⊗

⊗
k∈[K]
i∈[d]

N (τk,i, ξ
2
k)⊗

K⊗
k=1

Γ(2, bk) :

δ = (δ1, . . . , δK) ∈ RK , ∀(k, i), ξ2
k > 0, τk,i ∈ R, bk > 0, δk > 0

}
,

where Dir(δ) is the Dirichlet distribution of parameter δ. We set the prior on priors Λ = q
1K ,0,

¯̄ξ2,¯̄b
,

where 1K = (1, . . . , 1) and ¯̄ξ2 =
(

¯̄ξ2
1 , . . . ,

¯̄ξ2
K

)
. Then, using (19), (20) and (21),

KL(qδ,τ,ξ2,b‖Λ) = log
Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+ 2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)
,

where ψ is the digamma function. We can next use the bound from Theorem 5 and we have

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗

≤ 4 inf
δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,bEPT+1

[
inf
w,σ2

{
L

K∑
k=1

wk‖σk‖2 +
KL(w‖w̄)

αn

+
1

2αn

K∑
k=1

wk

d∑
i=1

(
(θ∗T+1,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)}]

+
1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
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+
1

4βT

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

Next, minimizing over σ2
k,i gives the optimal value σ̄2

k

2αnLσ̄2
k+1

, and replacing in the above bound
gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,bEPT+1

[

inf
w

{
KL(w‖w̄)

αn
+

d

2αn

K∑
k=1

wk log
(
2αnLσ̄2

k + 1
)

+
1

2αn

K∑
k=1

wk
‖θ∗T+1 − µ̄k‖2

σ̄2
k

}]

+
1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

4βT

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

We are going to restrict the infimum infw to the set of w such that wk ∈ {0, 1} for any k ∈ [K].
In other words, we are selecting only the best component of the mixture in the optimization bound.
The reader can check that this is actually the exact solution to the minimization problem in the above
bound. As a result of this minimization, the bound becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,bEPT+1

[

min
k∈[K]

{
1

αn
log

1

w̄k
+

d

2αn
log
(
2αnLσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

}]

+
1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

4βT

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

Please note that the term inside the expectation is, up to the minimum on k ∈ [K], identical to
the one we had in the case of one single Gaussian mixture, except for the term 1

αn log 1
w̄k

, which
may be seen as a penalty for the choice of the component k ∈ [K] in the mixture. We then bound
the expectation term in the above bound by first using Fubini’s theorem, and then inverting the
minimum and the second expectation:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
δ,τ,ξ2,b

{
EPT+1

[
min
k∈[K]

{

E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αnLσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]}]
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+
1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

4βT

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
. (29)

We can then bound the expectation term, which we decompose as

E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αnLσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]

=
1

αn
Ew̄∼Dir(δ)

[
log

1

w̄k

]
+

d

2αn
Eσ̄2

k∼Γ(2,bk)

[
log
(
2αnLσ̄2

k + 1
)]

+
1

2αn
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b

[
‖θ∗T+1 − µ̄k‖2

σ̄2
k

]
.

Jensen’s inequality helps to bound both the first term

1

αn
Ew̄∼Dir(δ)

[
log

1

w̄k

]
≤ 1

αn
logEw̄∼Dir(δ)

[
1

w̄k

]
=

1

αn
log

1>δ − 1

δk − 1

and the second term

d

2αn
Eσ̄2

k∼Γ(2,bk)

[
log
(
2αnLσ̄2

k + 1
)]
≤ d

2αn
log
(

2αnLEσ̄2
k∼Γ(2,bk)

[
σ̄2
k

]
+ 1
)

=
d

2αn
log

(
4Lαn

bk
+ 1

)
in the decomposition. The third term can be computed as follows

1

2αn
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b

[
‖θ∗T+1 − µ̄k‖2

σ̄2
k

]
=

bk
2αn

Eµ̄k∼N (τk,ξ
2
kId)

[
‖θ∗T+1 − µ̄k‖2

]
=

bk
2αn

(
‖θ∗T+1 − τk‖2 + dξ2

k

)
.

The bound on the expectation then becomes

E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,a,b

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αnLσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]

≤ 1

αn
log

1>δ − 1

δk − 1
+

d

2αn
log

(
4Lαn

bk
+ 1

)
+

bk
2αn

(
‖θ∗T+1 − τk‖2 + dξ2

k

)
.

In our final bound, we wish to have as few terms as possible in O
(

1
n

)
while the terms in O

(
1
T

)
are

not so problematic, because they correspond to the fast convergence rate at the meta-level. For this
reason, we are going to take out of the infimum:
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• the term d
2αn log

(
4Lαn
bk

+ 1
)

, which is unavoidable and corresponds to the main term of the

bound in the worst case, with a O
(

1
n

)
speed of convergence;

• the term bkdξ
2
k

2αn , which will be handled through an optimization in ξ2
k and will be aO

(
1
T

)
term.

As a consequence, we bound the minimum on [K] by

min
k∈[K]

{
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αnLσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]}
≤

d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}
+

1

2αn

K∑
k=1

bkdξ
2
k+

1

αn
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}
,

(30)

and plugging this result in (29) gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
δ,τ,ξ2,b

{
d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}

+
1

2αn

K∑
k=1

bkdξ
2
k +

1

αn
EPT+1

[
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}]

+
1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

4βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

4βT

K∑
k=1

(
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

An exact optimization in ξ2
k gives

ξ2
k =

¯̄ξ2
k

1 +
2bk

¯̄ξ2
kβT

αn

,

and replacing in the bound yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
δ,τ,b

{
d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}
+

1

αn
EPT+1

[
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}]
+

1

2βT
log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+

1

4βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

4βT

K∑
k=1

log

(
1 +

2bk
¯̄ξ2
kβT

αn

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.
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From here, we set δk = 2 for any k ∈ [K], which implies

1

2βT

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
≤ 0

because ψ is increasing. Please also note that

log
Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

= log
Γ(2K)

Γ(K)
≤ K log(2K).

We can then deduce the bound

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
τ,b

{
d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}
+

log(2K)

αn

+
1

2αn
EPT+1

[
min
k∈[K]

{
bk‖θ∗T+1 − τk‖2

}]
+
K log(2K)

2βT
+

1

4βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

4βT

K∑
k=1

log

(
1 +

2bk
¯̄ξ2
kβT

αn

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

Let

ΣK(P) := inf
τ1,...,τK

EPT+1

[
min
k∈[K]

‖θ∗T+1 − τk‖2
]
,

it is clear that

EPT+1

[
min
k∈[K]

{
bk‖θ∗T+1 − τk‖2

}]
≤ ΣK(P) max

k∈[K]
bk.

By choosing τ1, . . . , τK minimizing ΣK(P), the previous bound becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
b

{
log(2K)

αn
+

d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}

+
ΣK(P)

2αn
max
k∈[K]

bk +
K log(2K)

2βT
+

1

4βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

4βT

K∑
k=1

log

(
1 +

2bk
¯̄ξ2
kβT

αn

)
+

1

βT

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)}
.

Please note that τ1, . . . , τK are characteristic of the distribution P . Intuitively, if the distribution
P has K modes, or K Gaussian mixtures, τ1, . . . , τK correspond to the centers of these modes or
mixtures up to a permutation. Consequently, they do not scale with n or T , but can be regarded as
problem parameters of constant order.

We now restrict the infimum in the above bound to all (bk)1≤k≤K such that b1 = · · · = bK and
1 ≤ b1 ≤ T . Replacing in the above bound gives
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EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
1≤b1≤T

{
log(2K)

αn
+

d

2αn
log

(
4αLn

b1
+ 1

)

+
b1ΣK(P)

2αn
+
K log(2K)

2βT
+

1

4βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

4βT

K∑
k=1

log

(
1 +

2b1
¯̄ξ2
kβT

αn

)
+

1

βT

K∑
k=1

(
log

b1
¯̄bk

+
¯̄bk − b1
b1

)}
.

Please note that the last two terms of this bound can be bounded, for any 1 ≤ b1 ≤ T , as

d

4βT

K∑
k=1

log

(
1 +

2b1
¯̄ξ2
kβT

αn

)
+

1

βT

K∑
k=1

(
log

b1
¯̄bk

+
¯̄bk − b1
b1

)

≤ d

4βT

K∑
k=1

log

(
1 +

2¯̄ξ2
kβT

2

αn

)
+

1

βT

K∑
k=1

(
log

T
¯̄bk

+ ¯̄bk − 1

)
.

Replacing in the above bound and extracting from the infimum the terms which do not depend on
b1 gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 log(2K)

αn
+ inf

1≤b1≤T

{
2d

αn
log

(
4αLn

b1
+ 1

)
+

2b1ΣK(P)

αn

}
+

2K log(2K)

βT
+

1

βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

βT

K∑
k=1

log

(
1 +

2¯̄ξ2
kβT

2

αn

)
+

4

βT

K∑
k=1

(
log

T
¯̄bk

+ ¯̄bk − 1

)
.

Let

CVfinite(K,n) =
4 log(2K)

αn
,

be the bound obtained in the finite case (when learning discrete priors) and let

CVGaussian(d,ΣK(P), n, T ) = inf
1≤b1≤T

{
2d

αn
log

(
4αLn

b1
+ 1

)
+

2b1ΣK(P)

αn

}
be the bound in the Gaussian case (with one component). Let also

CVmeta(T, n, d,K,
¯̄b, ¯̄ξ2) =

2K log(2K)

βT
+

1

βT

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

βT

K∑
k=1

log

(
1 +

2¯̄ξ2
kβT

2

αn

)

+
4

βT

K∑
k=1

(
log

T
¯̄bk

+
¯̄bk − T
T

)
.

Then, we can write the above bound as the sum of the three defined terms:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗

≤ CVfinite(K,n) + CVGaussian(d,ΣK(P), n, T ) + CVmeta(T, n, d,K,
¯̄b, ¯̄ξ2), (31)
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where an interpretation of each of the terms of the above bound is given in Remark 19.
Let us now identify one regime where the meta-learning brings a considerable improvement

over the learning in isolation. Assume that ΣK(P) ≤ dn
T 2 , where d is simply here for dimensionality

reasons. In this regime, the distribution is concentrated around τ1, . . . , τK and the variance of the
local distribution around each of those points is smaller than n

T 2 . As a result, the optimal parameter
in the new task T +1 is going to be closed to one of τ1, . . . , τK and we can infer it from the previous
tasks. For that reason, we expect a significant improvement from the meta-learning over the learning
in isolation in this regime.

In this case, in the decomposition of CVGaussian(d,ΣK(P), n, T ), the term 2b1ΣK(P)
αn is very

small compared to the other term d
2αn log

(
4αLn
b1

+ 1
)

. Therefore, we will choose b1 large so that it
minimizes the latter. The choice b1 = T provides the bound

CVGaussian(d,ΣK(P), n, T ) ≤ 8Ld

T
+

2d

αT
.

Besides the CVfinite(K,n) fast term required to find theK centers of the Gaussians, the convergence
at the Gaussian level is done in O

(
log T
T

)
, which is a clear improvement in the regime T � n, even

over the fast rate in the learning in isolation.

Remark 18 Please note that the general bound (31) comes as no surprise, because the process of
learning the parameter θ in the mixture of Gaussians framework consists of three different steps:

- first, identifying the K centers of the mixtures which, similarly to the finite case, is captured
in the CVfinite(K,n) = 4 log(2K)

αn term;

- then, identifying the right parameters of the Gaussian components centered on the points
identified in the previous step. Similarly to the Gaussian case, this is captured in the term
CVGaussian(d,ΣK(P), n, T ), and can be as small as a O

(
1
T

)
in some favorable cases.

- eventually, the convergence at the meta level is a CVmeta(T, n, d,K, ¯̄b, ¯̄ξ2) = O
(

log T
T

)
is

a small penalty in O
(

log T
T

)
to use the meta-learning, thanks to which the previous term

CVGaussian(d,ΣK(P), n, T ) can potentially achieve the very fast rate O
(

1
T

)
instead of the

much slower rate O
(

1
n

)
, which is the best one can hope for when learning in isolation.

Remark 19 Please note that the meta-learning penalty, CVmeta(T, n, d,K, ¯̄b, ¯̄ξ2), is a very small
term. Indeed, up to a logarithmic factor, it follows the very fast rate Õ

(
1
T

)
. Besides, in the T � n

regime, it is even much smaller than the fast rate O
(

1
n

)
at the within-task level. Recall that, as

described in the introduction part, the regime T � n is very common in many applications and is
one of the motivations for doing meta-learning.

Remark 20 It may seem paradoxical that the model of mixtures of Gaussians achieves, in the best
possible case, a rate of convergence O

(
logK
n

)
slower than the O

(
log T
T

)
rate achieved by a single

Gaussian in the regime n << T under optimal conditions. In reality, the latter rate of convergence
is also achievable in the model of mixtures of Gaussians, but similarly as in the case of a single
Gaussian component, it requires the strong assumption that

Σ1(P) ≤ dn

T 2
,
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which is much more restrictive. On the other hand, many distributions only satisfy

ΣK(P) ≤ dn

T 2

for someK ≥ 2, in which case the rate of convergenceO
(

logK
n

)
achieved here is much faster than

O
(
d logn
n

)
, which is the best possible rate achieved in the single Gaussian model in general.

H.2 What if the Number of Components in the Mixture is Unknown?

In practice, we do not know in advance how to choose the number of components K in the prior. In
this case, we are going to include insideM all the mixtures of Gaussians, i.e.,

M =

{
pw,µ,σ2 =

+∞∑
k=1

wk

d⊗
i=1

N (µk,i, σ
2
k,i) : ∃K ≥ 1 : ∀k ≥ K + 1, wk = 0

}
.

Note that the sum inside the definition of F is finite, since wk = 0 for any k beyond a certain rank
K. We still denote by π =

∑K
k=1 w̄kN (µ̄k, σ̄

2
kId) the prior in each task. By definition, for any

k ≥ K + 1, w̄k = 0. It still holds that, for any w, µ, σ2,

KL(pw,µ,σ2‖π) ≤ KL(w‖w̄) +
1

2

∞∑
k=1

wk

d∑
i=1

(
(µk,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)
,

where we denoted

KL(w‖w̄) =

∞∑
k=1

wk log
wk
w̄k
.

To put things clearly, the KL remains identical to the case where K is known except for the fact
that the sums on k are no longer stopping at a pre-determined K. This difference aside, the bound
remains identical to the one in the case whereK is known, and the bound from Theorem 1 becomes,
at t = T + 1,

EST+1
Eθ∼ρT+1(π,α)[RPT+1

(θ)]−R∗PT+1
≤ 2 inf

w,µ,σ2

{
Eθ∼pw,µ,σ2 [RPT+1

(θ)]−R∗PT+1
+

KL(w‖w̄)

αn

+
1

2αn

∞∑
k=1

wk

d∑
i=1

(
(µk,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)}
.

Next, we are going to define a prior on K within the prior of priors as follows. We assume that
the number of mixtures K is smaller than T , because even if it were not, it would be impossible to
identify them with enough confidence. We define the set of priors on priors

G =

{
qx,δ,τ,ξ2,b = qx × qδ,τ,ξ2,b|K

}
,
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where qx = Mult(x1, . . . , xT ) is the prior distribution on K and

qδ,τ,ξ2,b|K = Dir(δ1, . . . , δK)⊗
⊗
k∈[K]
i∈[d]

N (τk,i, ξ
2
k)⊗

K⊗
k=1

Γ(2, bk),

and we set the prior of prior as Λ = q 1
T

1T ,1K ,0,
¯̄ξ2,¯̄b

. We also need to re-compute the KL divergence
between the priors of priors, which becomes

KL(qx,δ,τ,ξ2,b‖Λ) = log T −H(x) + EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]
,

using (18). Please note that in any optimization on G, we optimize first in (x1, . . . , xT ) and then on
δ, τ, ξ2, b conditionally on K. This means that the latter parameters are allowed to depend on K.
While the infimum on G of any quantity should be written infx infδ,τ,ξ2,b∈σ(K), we will adopt the
shortcut notation infx,δ,τ,ξ2,b. We can next use the bound from Theorem 5 and (10), and we have

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗

≤ 4 inf
x,δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qx,δ,τ,ξ2,bEPT+1

[
inf
w,σ2

{
L
∞∑
k=1

wk‖σk‖2 +
KL(w‖w̄)

αn

+
1

2αn

∞∑
k=1

wk

d∑
i=1

(
(µk,i − µ̄k,i)2

σ̄2
k

+
σ2
k,i

σ̄2
k

− 1 + log
σ̄2
k

σ2
k,i

)}]

+
1

2βT
(log T −H(x)) +

1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

The optimization on σ2
k,i may be performed exactly by setting σ2

k,i =
σ̄2
k

2αLnσ̄2
k+1

, and the bound
becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qx,δ,τ,ξ2,bEPT+1

[

inf
w

{
KL(w‖w̄)

αn
+

d

2αn

∞∑
k=1

wk log
(
2αLnσ̄2

k + 1
)

+
1

2αn

∞∑
k=1

wk
‖θ∗T+1 − µ̄k‖2

σ̄2
k

}]

+
1

2βT
(log T −H(x)) +

1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
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+log
Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

We restrict the optimization in w to the set {(wk)k≥1 : ∃k0 ≤ K : wk0 = 1,∀k 6= k0, wk = 0}, and
the bound becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,δ,τ,ξ2,b

{
E(w̄,µ̄,σ̄2)∼qx,δ,τ,ξ2,bEPT+1

[

min
k∈[K]

{
1

αn
log

1

w̄k
+

d

2αn
log
(
2αLnσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

}]

+
1

2βT
(log T −H(x)) +

1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

Next, we classically decompose the expectation E(w̄,µ̄,σ̄2)∼qx,δ,τ,ξ2,b [X] as

E(w̄,µ̄,σ̄2)∼qx,δ,τ,ξ2,b [X] = EK∼Mult(x)

[
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b|K [X]

]
.

Applying Fubini’s theorem and inverting the infimum and the expectation yields the bound

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,δ,τ,ξ2,b

{
EK∼Mult(x)EPT+1

[
min
k∈[K]

{

E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b|K

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αLnσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]}]

+
1

2βT
(log T −H(x)) +

1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

The bound (30) from the previous section still holds:

min
k∈[K]

{
E(w̄,µ̄,σ̄2)∼qδ,τ,ξ2,b|K

[
1

αn
log

1

w̄k
+

d

2αn
log
(
2αLnσ̄2

k + 1
)

+
1

2αn

‖θ∗T+1 − µ̄k‖2

σ̄2
k

]}

≤ d

2αn
max
k∈[K]

{
log

(
4αLn

bk
+ 1

)}
+

K∑
k=1

bkdξ
2
k

2αn
+

1

αn
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}
,

and we can inject it in the computation so that the bound becomes
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EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,δ,τ,ξ2,b

{
d

2αn
EK∼Mult(x)

[
max
k∈[K]

log

(
4αLn

bk
+ 1

)]

+
d

2αn
EK∼Mult(x)

[
K∑
k=1

bkξ
2
k

]
+

1

αn
EK∼Mult(x)EPT+1

[
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}]

+
1

2βT
(log T −H(x)) +

1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

∑
k,i

(
τ2
k,i

¯̄ξ2
k

+
ξ2
k

¯̄ξ2
k

− 1 + log
¯̄ξ2
k

ξ2
k

)
+2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

An exact optimization in ξ2
k yields ξ2

k =
¯̄ξ2
k

1+
2bk

¯̄ξ2
k
βT

αn

and we can replace in the bound

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,δ,τ,b

{
d

2αn
EK∼Mult(x)

[
max
k∈[K]

log

(
4αLn

bk
+ 1

)]
+

1

αn
EK∼Mult(x)EPT+1

[
min
k∈[K]

{
bk
2
‖θ∗T+1 − τk‖2 + log

1>δ − 1

δk − 1

}]
+

1

2βT
(log T −H(x))

+
1

2βT
EK∼Mult(x)

[
K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
+ log

Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

+
1

2

K∑
k=1

‖τk‖2
¯̄ξ2
k

+
d

2

K∑
k=1

log

(
1 +

2bk
¯̄ξ2
kβT

αn

)
+ 2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

We choose δk = 2 for any k ≥ 1 and noting that both

K∑
k=1

(δk − 1)
(
ψ(δk)− ψ(1>δ)

)
≤ 0

and

log
Γ(1>δ)

Γ(K)×
∏K
k=1 Γ(δk)

= log
Γ(2K)

Γ(K)
≤ K log(2K),

we deduce the following bound:

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,τ,b

{
d

2αn
EK∼Mult(x)

[
max
k∈[K]

log

(
4αLn

bk
+ 1

)]
+

1

2αn
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[
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k∈[K]

{
bk‖θ∗T+1 − τk‖2

}]
+

1

αn
EK∼Mult(x) [log(2K)] +

1
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[
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¯̄ξ2
k

+
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1 +
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.
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Recall the (unchanged) definition of ΣK(P):

ΣK(P) = inf
τ1,...,τK

EPT+1

[
min
k∈[K]

‖θ∗T+1 − τk‖2
]
.

Recalling that τ (as well as b) is allowed to depend on K, we define (τ1, . . . , τK) as the argument
(up to a permutation) of ΣK(P). It follows that the bound becomes

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
x,b

{
d

2αn
EK∼Mult(x)

[
max
k∈[K]

log

(
4αLn

bk
+ 1

)]
+

1

2αn
EK∼Mult(x)

[
ΣK(P) max

k∈[K]
bk + 2 log(2K)

]
+

1

2βT
(log T −H(x))

+
1

2βT
EK∼Mult(x)

[
K log(2K) +

1

2
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k=1

‖τk‖2
¯̄ξ2
k

+
d

2
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k=1

log

(
1 +

2bk
¯̄ξ2
kβT

αn

)

+ 2

K∑
k=1

(
log

bk
¯̄bk

+
¯̄bk − bk
bk

)]}
.

At this stage, the proof slightly differs from the case where the number of mixtures is known. Now,
we choose to restrict the infimum on all the multinomial distributions Mult(x1, . . . , xT ) to all the
Dirac masses, i.e., all the (x1, . . . , xT ) such that there exists K ∈ {1, . . . , T} such that xK = 1. It
follows that H(x) = 0 and we deduce that

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
K∈[T ]

inf
b

{
d

2αn
max
k∈[K]

log

(
4αLn

bk
+ 1

)
+

1

2αn

(
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k∈[K]
bk + 2 log(2K)

)
+

log T
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K log(2K)
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+

1
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d
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(
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)

+
1
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(
log
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¯̄bk

+
¯̄bk − bk
bk

)}
.

Similarly as in the case of known number of mixtures, we restrict the infimum on (bk)1≤k≤K to the
sequences such that b1 = · · · = bK and 1 ≤ b1 ≤ T . We can then replace in the above equation,
and it yields

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ 4 inf
K∈[T ]

inf
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{
d
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log

(
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log T
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+
K log(2K)
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+
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k
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d

4βT
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)
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+
1

βT

K∑
k=1

(
log

b1
¯̄bk

+
¯̄bk − b1
b1

)}
.

Similarly as before, we bound the last two terms of the sum as follows:

d
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(
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2

αn

)
+

1

βT

K∑
k=1

(
log

T
¯̄bk

+ ¯̄bk − 1

)
,

and replacing in the bound gives

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗ ≤ inf
K∈[T ]

{
4 log(2K)

αn

+ inf
1≤b1≤T

{
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αn

}
+

2 log T
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+
2K log(2K)

βT
+

1

βT
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¯̄ξ2
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+
d

βT

K∑
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(
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2
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)

+
4

βT

K∑
k=1

(
log

b1
¯̄bk

+
¯̄bk − b1
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.

With the exact same notations as in the case where the number of mixtures K is known, we can
rewrite the bound as

EP1:T
ES1:T

Eπ∼Π̂[E(π)]− E∗

≤ inf
K∈[T ]

{
CVfinite(K,n) + CVGaussian (d,ΣK(P), n, T ) + CVunknown

meta (T, n, d,K, ¯̄b, ¯̄ξ2)

}
,

where CVfinite(K,n) and CVGaussian (d,K,ΣK(P), n, T ) are exactly the same terms as in the case
where the number of mixtures K is known, and the convergence term at the meta level becomes

CVunknown
meta (T, n, d,K, ¯̄b, ¯̄ξ2) = CVmeta(T, n, d,K,

¯̄b, ¯̄ξ2) +
2 log T

βT
.

Even when the number of mixtures K is unknown, the same bound as in the case of K known can
be achieved up to a 2 log T

βT term, which is the order of the time required to find the optimal number
of components in the mixture at the meta level.
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