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Abstract

Graph neural network (GNN) models have been widely used for learning graph-structured
data. Due to the permutation-invariant requirement of graph learning tasks, a basic element
in graph neural networks is the invariant and equivariant linear layers. Previous work
(Maron et al., 2019b) provided a maximal collection of invariant and equivariant linear
layers and a simple deep neural network model, called k-IGN, for graph data defined on
k-tuples of nodes. It is shown that the expressive power of k-IGN is at least as good as the
k-Weisfeiler-Leman (WL) algorithm in graph isomorphism tests. However, the dimension
of the invariant layer and equivariant layer is the k-th and 2k-th bell numbers, respectively.
Such high complexity makes it computationally infeasible for k-IGNs with k ≥ 3.

In this paper, we show that a much smaller dimension for the linear layers is sufficient
to achieve the same expressive power. We provide two sets of orthogonal bases for the
linear layers, each with only 3(2k − 1) − k basis elements. Based on these linear layers,
we develop neural network models GNN-a and GNN-b and show that for the graph data
defined on k-tuples of data, GNN-a and GNN-b achieve the expressive power of the k-
WL algorithm and the (k + 1)-WL algorithm in graph isomorphism tests, respectively. In
molecular prediction tasks on benchmark datasets, we demonstrate that low-order neural
network models consisting of the proposed linear layers achieve better performance than
other neural network models. In particular, order-2 GNN-b and order-3 GNN-a both have
3-WL expressive power, but use a much smaller basis and hence much less computation
time than known neural network models.

Keywords: Permutation invariant/equivariant, Expressive power, Graph isomorphism,
Weisfeiler-Leman, Graph neural networks

1. Introduction

Graph data arise from many different fields of science and engineering, such as the study
of social networks, citation networks, and molecular chemistry. Learning from graph-
structured data has become the core technology to enable powerful graph data analysis.
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Among others, graph neural networks have received the most attention due to their supe-
rior performance in graph learning tasks (e.g., Gilmer et al., 2017; Xu et al., 2019; Morris
et al., 2019), and some early successes have been reported in molecular prediction and social
network applications (Maron et al., 2019a).

Recent empirical success of graph neural networks also brought interest to theoretical
studies. Two lines of research attracted the most interest: one line of work focuses on the
universal approximation of permutation-invariant functions by GNNs, and the other line
focuses on the assessment of the expressive power of GNNs, mainly via graph isomorphism
tests. Since the Weisfeiler-Leman algorithm has been widely used in graph isomorphism
tests (Weisfeiler and Leman, 1968; Weisfeiler, 1976), a common practice is to measure the
expressive power of neural networks in equivalent k-WL expressiveness. Chen et al. (2019b)
introduced a language of sigma-algebra and unified the two lines by showing the equivalence
between graph isomorphism testing and function approximation. For graphs represented
as high-order tensors, Azizian and Lelarge (2021) characterized the set of functions that
can be approximated by finite dimension Linear GNNs and Folklore GNNs at fixed order
of tensors.

The search for neural network models that are highly expressive and able to approximate
permutation invariant functions on graphs has become a recent quest. There are several
independent lines of work towards this objective. Morris et al. (2019) developed neural
network models to generalize message passing to higher orders so that they possess the
expressiveness of higher-order WL tests. Although it surpassed the 1-WL expressiveness
of the original message passing network (Gilmer et al., 2017), it is still computationally
prohibitive to implement models with 3-WL expressiveness.

In a recent study, Maron et al. (2019b) introduced a hierarchy of Invariant Graph
Networks (IGNs) that leverage higher-order tensors. An IGN employing order-k tensors
is referred to as k-IGN. These networks typically use a maximal set of orthogonal bases to
construct linear layers, ensuring all equivalence relations defined on the multiset index are
covered.

The exhaustiveness comes at the cost of large dimensions for the linear layers. Although
k-IGNs achieved k-WL expressiveness, it is impractical for networks with k ≥ 3 in practice.
Maron et al. (2019a) proposed a simple GNN model using matrix multiplication and it
achieved 3-WL expressiveness. It is not easy to have a model with higher than 3-WL
expressiveness due to the complexity. In summary, due to the limited expressive power
of low-order GNNs, and the high computational complexity of high-order GNNs, there is
still large room to improve the expressive power of GNN models and reduce the model
complexity.

In this work, we propose a new set of orthogonal bases to construct linear layers for the
graph neural networks. This set of orthogonal bases is not exhaustive in terms of including
all equivalence relations defined on the multiset index,

but is enough to provide sufficient discriminative power for the neural networks. The
discriminative power of graph neural network models can be assessed based on their k-
WL expressiveness in graph isomorphism testing. The new orthogonal bases have much
smaller dimensions than the maximal set and yet have the same expressive power in graph
isomorphism testing. Specifically, we propose two types of GNN models: our type-a GNN
models of order k have k-WL expressiveness, and type-b GNN models of order k have k-
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FWL expressiveness. To our knowledge, this is the smallest set of bases for achieving the
same k-WL expressive power, which further leads to the following comparison with previous
models:

1. It is known that k-Folklore-WL (k-FWL) is equivalent to (k+1)-WL for k ≥ 2 (Morris
et al., 2019; Grohe, 2017; Cai et al., 1992). The general k-IGN is shown to have k-
WL expressiveness for k ≥ 2 (Maron et al., 2019b), and the PPGN based on matrix
multiplication is shown to have 3-WL expressiveness (Maron et al., 2019a). Therefore,
our order-k GNN-a has the same expressiveness as k-IGN, and order-k GNN-b has the
same expressiveness as (k+1)-IGN. Most importantly, the complexity of the proposed
GNN models is much less than IGNs of the same order. Our order-2 GNN-b also has
3-WL power but is much less complex than PPGN (Maron et al., 2019a).

2. It is shown that the popular message passing networks (Gilmer et al., 2017) cannot
distinguish between graphs that are indistinguishable by the 2-dimensional Weisfeiler-
Leman algorithm (Morris et al., 2019; Xu et al., 2019). Since the message-passing
network has only 2-WL power, our order-2 GNN-b and order-3 GNN-a models are
both more powerful than the family of message-passing networks.

2. Related work

Deep neural networks for graph learning The pioneering work for permutation in-
variant networks started from characterizing permutation equivariant and invariant linear
layers for sets (see Zaheer et al., 2017). About the same time frame, PointNet (Charles
et al., 2017) was proposed to achieve permutation invariance on point sets. Hartford et al.
(2018) extended it to learning interactions across sets, which can be conveniently modeled
as a graph. It uses a simple basis to produce permutation equivariant layers. Because of
the use of the basis, the trainable parameters are independent of graph size. However, due
to the extreme simplicity, the expressive power is very limited although the network is per-
mutation invariant. Maron et al. (2019b) provided a full characterization of all permutation
invariant and equivariant linear layers. The linear layers use a maximal set of bases and
can work with high-order tensors. Maron et al. (2019a) built upon the k-IGN from Maron
et al. (2019b) and present a reduced 2-order network containing a matrix multiplication
operation and proved it has 3-WL expressive power.

Another popular family of networks is the message-passing neural networks. Gilmer
et al. (2017) provides a common framework called MPNN that fits many existing GNN mod-
els, including Duvenaud et al. (2015), Kipf and Welling (2017), Li et al. (2016), Battaglia
et al. (2016), and Schütt et al. (2017). The features at each node are updated iteratively by
differentiable functions that take as input the previous features of the node itself, its neigh-
borhood, and edge features (if they exist). Recent advances (Morris et al., 2019; Bodnar
et al., 2021b) made progress from the 1-WL expressiveness, but it is still computationally
prohibitive for models with higher orders.

Although graph neural networks are the focus of recent studies and there are many note-
worthy works (e.g., Scarselli et al., 2009; Niepert et al., 2016; Kondor et al., 2018; Vignac
et al., 2020; Papp et al., 2021; Sun et al., 2019; Mallea et al., 2019; Veličković et al., 2018;
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Gao and Ji, 2019; Li et al., 2020; Zhang and Li, 2021; Chen et al., 2020; Liu et al., 2020;
Bouritsas et al., 2023), they are not the only representative in graph learning. Kernel-based
methods (e.g., Kondor et al., 2009; Shervashidze et al., 2011; Yanardag and Vishwanathan,
2015; Neumann et al., 2016) offered a competitive alternative. Yanardag and Vishwanathan
(2015), for example, provided a unified framework to learn latent representations of sub-
structures by using techniques from language modeling. Kernel-based methods are effective
in learning specific substructures. However, since the substructure space is of dimension
exponential to the number of nodes, it is infeasible to use kernel-based methods to learn a
large graph.

Expressive power of neural networks To study the expressive power of neural net-
works, one line of research examines the ability of graph neural networks to approximate
permutation-invariant functions on graphs (Keriven and Peyré, 2019; Maron et al., 2019c),
and another line of research studies their ability to distinguish non-isomorphic graphs
(Grohe, 2017; Huang and Villar, 2021; Xu et al., 2019; Morris et al., 2019; Maron et al.,
2019a). Morris et al. (2020) proposed local variants of the k-dimensional Weisfeiler-Leman
algorithm by considering only a subset of the original neighborhood, making them more
scalable and less prone to overfitting. One variant is shown to be more powerful than the
standard k-WL while taking the underlying graph’s sparsity into account. Recent work
Chen et al. (2019b) proposed to study the expressive power of graph neural networks by
their ability to count graph substructures, and it shows the equivalence between graph iso-
morphism testing and approximation of permutation-invariant functions by GNNs. Azizian
and Lelarge (2021) gave a general theoretical framework to compare the expressive power
of the GNN architectures. In particular, it shows that tensor-based GNNs augmented with
matrix multiplication, which are called Folklore Graph Neural Networks (FGNN) in the
paper, are the most expressive architectures proposed so far. Our type-b GNNs achieve
the same expressive power for a given tensor order while substituting matrix multiplication
with faster Boolean functions.

Recent advances The study of invariant graph networks has been extended to the spec-
tral domain by leveraging invariant features derived from eigenvectors and eigenvalues.
Zhang et al. (2024) introduced Spectral Invariant Graph Network and showed that spectral
k-IGN is as expressive as k-WL, and spectral k-FGNN is as expressive as k-FWL for k ≥ 2.

On the expressive power of graph neural networks, recent work has also considered
geometric graphs embedded in Euclidean space. Such graphs often occur in biochemical
or physical systems and are characterized by both geometry and relational structure. A
geometric version of the WL test named GWL test for discriminating geometric graphs has
been proposed in Joshi et al. (2023), in which the invariant or equivariant properties are
defined in terms of physical symmetries rather than node permutation. A similar conclusion
exists for geometric graphs, that is, high-order tensors enable maximally powerful geometric
GNNs.

3. Linear layers

The proposed graph neural network model falls under the category of order-k Linear GNN
as classified by Azizian and Lelarge (2021). In this model, graphs are represented as tensors
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of order-k and the network consists of a series of linear layers, i.e.,

F = LT ◦ LT−1 . . . L1.

Typically, each linear layer is followed by a non-linear activation function. An example
of this type of architecture is the k-IGN, which was introduced by Maron et al. (2019b). In

the k-IGN model, each layer is represented as a linear function L : Rnk → Rnl
. Our network

follows a similar architecture but differs from k-IGN in terms of the basis functions used.

In this following, we formally introduce our linear basis, the functionality of each basis
function, and the initial representation of a graph with tensors. At the end of this section,
we give a detailed comparison with previous work Maron et al. (2019b).

3.1 Orthogonal bases for the linear layers

A linear layer L : Rnk → Rnl
is a linear combination of a set of linear basis functions plus

the bias term,

L(X) =
∑
γ

wγhγ(X) +
∑
β

bβC
β, (1)

where wγ and bβ are learnable parameters. The input X is an order-k tensor and the output
L(X) is an order-l tensor, with l ∈ {0, 1, . . . , k}. hγ(X) = BγX is a linear basis function.
The tensor Bγ has a dimension of nk+l, while the tensor Cβ has a dimension of nl.

Bγ and Cβ both have binary entries. An entry in tensor Bγ is indexed by a (k+ l)-tuple
I = (i1, . . . , il+k). γ represents an equivalence class of the (k + l)-tuple indices. We defer
the definition of the equivalence classes to Section 3.2.

For each equivalence class γ, entries in tensor Bγ is set as follows

(Bγ)I =

{
1, if I ∈ γ,
0, otherwise.

Similarly, we can set the binary entries in tensor Cβ. An entry in tensor Cβ is indexed
by an l-tuple J = (i1, . . . , il). β represents an equivalence class of the l-tuple indices. For
each equivalence class β, entries in tensor Cβ is set as follows

(Cβ)J =

{
1, if J ∈ β,
0, otherwise.

The complexity of the neural network model depends on the dimension of the function
space of L(X), which depends on the cardinality of the set {γ} and {β}. We use dim(γ)
and dim(β) to denote them, respectively.

To generalize to d input features and d′ output features, the dimension of L : Rnk×d →
Rnl×d′ is dd′dim(γ) + d′dim(β). The parameter matrices are of dimension dd′dim(γ) and
d′dim(β), respectively.
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3.2 Equivalence classes

Consider L : Rnk → Rnl
. A linear basis function hγ(X) = BγX has a one-to-one corre-

spondence with an equivalence class γ, so the size of the basis is the number of equivalence
classes.

An equivalence class is uniquely represented by an equivalence relation on the multiset
{i1, . . . , ik+l}. An equivalence relation on the multiset specifies an equality pattern of the
elements, which defines a partition of the set, i.e., iu = iv for u, v ∈ [k+ l], and u 6= v if and
only if iu, iv belong to the same subset in the partition. Since all the (k + l)-tuple indices
that satisfy the same equivalence relation belong to the same equivalence class, we use the
equivalence relation, which is given in the form of set-partition, to represent an equivalence
class.

The equivalence class γ decides the functionality of the basis function hγ(X) = BγX.
The functionality of the basis function can be understood from a matrix-vector multiplica-
tion point of view. Recall that the Bγ in (1) has dimension nk+l. The input order-k tensor
can be viewed as a flattened vector of nk, similarly, the output tensor can be viewed as
a flattened vector of nl, and the tensor Bγ can be viewed as a matrix of nl × nk. Each
entry in Bγ is indexed by a (k + l)-tuple (i1, . . . , ik+l). Without loss of generality, we can
assume that the k-tuple (il+1, . . . , il+k) indexes the entries in the input tensor, and the l-
tuple (i1, . . . , il) indexes the entries in the output tensor. How different equivalence classes
translate to different functionalities of the basis functions can be easily observed from the
matrix-vector multiplication.

For a given pair of k and l, the IGN basis (Maron et al., 2019b) includes all the partitions
of the multiset {i1, . . . , ik+l}, so the size of the basis is equal to the total number of partitions
of the multiset. With a multiset of size k + l, the number of partitions is bell(k + l). Our
basis, on the other hand, only takes a subset of the partitions, therefore, it is smaller. The
selection criterion is based on the functionality of the corresponding basis function.

The member equivalence classes can be organized into three categories. In the following,
we list the member equivalence classes in each category. Equivalence classes are defined
using the general set-builder notation. We use { } to represent a multiset and use ( ) to
represent an ordered set (k-tuple). Two ordered sets are equal if and only if their lengths
are equal, the corresponding first elements are equal, the corresponding second elements are
equal, and so on, i.e., (i1, i2) = (i3, i4) if and only if i1 = i3 and i2 = i4.

Equivalence classes can also be represented by using the enumeration notation. For
instance, with k = l = 2, the class of

{
(i1, i2, i3, i4)

∣∣(i1, i2) = (i3, i4), i3 6= i4
}

can also be
written as {{1, 3}, {2, 4}}.

(I) Sum of elements along coordinate axes. There are

(
k

1

)
+
k−1∑
j=0

(
k

j

)
equivalence classes

in this category for output order l = 0, . . . , k. In this category, both case (a) and case
(b) require il+1 6= il+2 6= . . . 6= il+k.

6



Orthogonal Bases for Graph Learning

(a) For l = k. This is summation without dimension reduction. There are

(
k

1

)
= k

equivalence classes in γ(l) for summation along each axis and then output the
sum to different cells in the output tensor:

γ(l) =
{

(i1, . . . , il+k)
∣∣(il+1, . . . , il+k) = (i1, . . . , ij−1, i

′
j , ij+1, . . . , il), j ∈ [k]

and i′j 6= ij
}

(b) For l = k − 1, . . . , 0. This is a summation with dimension reduction. There are
k−1∑
j=0

(
k

j

)
equivalence classes in this category for summation along one axis (for

l = k − 1), up to along k axes, i.e., along the hyperplane spanned by k axes (for
l = 0), and then output each sum to one cell in the output tensor:

l = k − 1, γ(l) =
{

(i1, . . . , il+k)
∣∣(il+1, . . . , il+k) = (i1, . . . , il+j , . . . , il), j ∈ [k]

}
l = k − 2, γ(l) =

{
(i1, . . . , il+k)

∣∣(il+1, . . . , il+k) = (i1, . . . , il+j1 , . . . , il+j2 , . . . , il),

j1, j2 ∈ [k]
}

...

l = 0, γ(l) =
{

(i1, . . . , il+k)
∣∣il+1 6= il+2 6= . . . 6= il+k

}

(II) Replicate diagonals to a lower dimension. There are

k−2∑
j=0

(
k

j

)
equivalence classes in

this category for output order l = 1, . . . , k − 1.

l = k − 1, γ(l) =
{

(i1, . . . , il+k)
∣∣(il+1, . . . , il+k) = (i1, . . . , ij , i

′
j , . . . , il), j ∈ [l]

and i′j = ij
}

l = k − 2, γ(l) =
{

(i1, . . . , il+k)
∣∣(il+1, . . . , il+k) = (i1, . . . , ij , i

′
j , . . . , i

′′
j , . . . , il), j ∈ [l]

and i′j = i′′j = ij
}

...

l = 1, γ(l) =
{

(i1, . . . , il+k)
∣∣il = il+1 = . . . = il+k

}
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(III) Sum of diagonal elements. There are

k−2∑
j=0

(
k

j

)
equivalence classes in this category for

output order l = 0, . . . , k − 2.

l = k − 2, γ(l) =
{

(i1, . . . , il+k)
∣∣(il+1, . . . , il+k) = (i1, . . . , il+j1 , . . . , il+j2 , . . . , il),

j1, j2 ∈ [k] and il+j1 = il+j2 6= ij , ∀j ∈ [l]
}

...

l = 0, γ(l) =
{

(i1, . . . , il+k)
∣∣il+1 = il+2 = . . . = il+k

}
The selected equivalence classes provide either aggregation or dimension reduction, or

both. We select the equivalence classes that most efficiently implement the aforementioned
functions, and the rest that do not provide additional functionality beyond these are elim-
inated. For instance, with k = 2, and l = 2, the equivalence class {{i1, i2, i3}, {i4}} is
included in the IGN basis but not included in our basis, since our basis for l = 1 includes
an equivalence class {{i1, i2}, {i3}}, which serves the same purpose of aggregation. The
difference is that our basis also provides dimension reduction by outputting the sums to a
length-n vector, while the IGN basis outputs the sums to the diagonal of a tensor of size n2.
It is important to keep the basis small so that fewer trainable parameters are introduced in
the neural networks.

Let Γk represent the collection of equivalence classes for all linear operators L : Rnk →
Rnl

with l = 0, . . . , k, we have

Γk = {γ(l) | l = 0, . . . , k},

where γ(l) is the set of equivalence classes for output order l. The total dimension dim(Γk)
is the cardinality of the set Γk:

dim(Γk) =

(
k

1

)
+
k−1∑
j=0

(
k

j

)
+
k−2∑
j=0

(
k

j

)
+
k−2∑
j=0

(
k

j

)
= 3(2k − 1)− k.

The equivalence classes for k = 2, 3, 4 are presented in Appendices A.1, A.2, and A.3,
respectively. In practice, higher input orders (with k > 3) are rarely used. This is not only
because the number of basis functions will increase, and hence more trainable parameters,
but also due to the memory and computational power required to process high-order tensors
of size nk. Experiment results show that GNNs built with our order-3 bases are sufficient
for most applications and also computationally feasible.

It is worth noting that the identity function can be implemented by using a linear
operator L : Rnk → Rnk

with the equivalence class defined as

γ =
{

(i1, . . . , ik+k)
∣∣(i1, . . . , ik) = (ik+1, . . . , ik+k)

}
,

then the corresponding basis function hγ(X) = BγX = X. The unnecessary complexity of
multiplying X by Bγ can be avoided by using hγ(X) = X directly in implementation.
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3.3 Tensor representation of graphs

Since the neural network operates on input tensors of order k, in what follows, we describe
how to represent a graph by using order-k tensors.

A graphG = (V,E) can be represented as an adjacency matrix A ∈ Rn2
, where Ai1,i2 = 1

if (i1, i2) ∈ E, and otherwise 0. The matrix representation of a graph can be generalized to
use tensors with order k > 2: Let X be the input tensor that the invariant and equivariant
linear layers act on. X is binary (i.e., all entries of X ∈ {0, 1}). The input graph G = (V,E)

can be represented in the form of X ∈ Rnk×T , which has T channels with each channel being
an order-k tensor.

The index of an element in the order-k tensor is a k-tuple: I = (i1, i2, . . . , ik). Let the
notation [n] represent a set {1, . . . , n}. We use k − 1 channels to encode the link structure
according to E as follows:

XI,r = 1 if and only if (ir, ir+1) ∈ E, for r ∈ [k − 1].

The first channel represents the relation between i1 and i2, and the second channel
represents the relation between i2 and i3, and so on. A total of k − 1 channels are needed
for encoding E. This encoding scheme applies to not only undirected graphs but also
directed graphs. For directed graphs, X is no longer symmetric.

It is noteworthy that this linear transformation from adjacency matrix A to order-
k tensor X is also permutation-equivariant. It is equivalent to having a linear operator
L : Rn2 → Rnk

applied to each channel, which performs the multiplication of a basis
element B of dimension n2+k with a matrix A of dimension n2, and result in a tensor X of
dimension nk. The support in the basis element is defined based on the equality pattern in
the m-tuple index (with m = 2 + k). The proof follows the same argument in section 3.1
that the permutation operator g does not change the equivalence class of the m-tuple, i.e.,
L(g · A) = g · L(A). Therefore, the initialization step can be considered as an equivariant

linear transformation from Rn2
to Rnk

.

Node features and edge features The binary representation of a graph can be extended
to include additional fv node features and fe edge features. Let FV and FE represent the
set of node features and edge features, respectively. While the first k − 1 channels encode
the link structure of the graph according to E, additional node features and edge features
can use additional channels:

• If there are additional fe edge features, there will be additional fe(k − 1) channels
representing these edge features. The encoding of the edge features is similar to the
encoding of the adjacency matrix, with each feature corresponding to k− 1 channels.

• If there are fv node features, there will be additional fv channels to represent the node
features. Each channel is an order-k tensor, with the diagonal positions representing
the node features, and off-diagonal positions being zero.

With node and edge features, the total number of channels T = (k − 1)(1 + fe) + fv.

The encoding of input graph G = (V,E, FV , FE) in the form of X ∈ Rnk
can also be viewed

as the operation of a linear operator L : Rn2×(1+fe+fv) → Rnk×((k−1)(1+fe)+fv).

9
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For encoding E and edge features:

L(A)I,t(r,w) = Air,ir+1,w, r ∈ [k − 1], w ∈ [1 + fe],

where the linear index t(r, w) = (w − 1)(k − 1) + r identifies which tensor, and I identifies
which entry in the tensor.

For encoding node features:

L(A)I,(k−1)(1+fe)+w =

{
Aj,j,1+fe+w, j ∈ [n], w ∈ [fv], if I = (j, . . . , j);
0, otherwise.

(2)

This is a more efficient encoding scheme than the previous work (Maron et al., 2019b,a),
since it uses only k − 1 channels for each of the edge-related encodings, and uses only one
channel for each node feature, instead of using k2 channels as in Maron et al. (2019b,a).

3.4 Difference from k-IGN in Maron et al. (2019b)

The differences with previous work (Maron et al., 2019b) can be summarized in two major
points, which may contribute to the improved computational feasibility of the proposed
basis.

• Fewer number of equivalence classes are used for the linear basis. Previous work
(Maron et al., 2019b) has a much larger basis. It uses a maximal set of equivalence
classes in the sense that they include all the possible partitions of the set {1, 2, . . . , k+
l}, and there are no equality patterns of the input and output indices that are not
included in its collection. The number of equivalence classes for an equivariant layer
L : Rnk → Rnl

is bell(k + l). Despite its exhaustiveness, not all equivalence classes
are necessary, as many of them are not useful in training the neural network, which
results in wγ → 0 for the unused equivalence class.

Given a specific output order l, our basis is a subset of the maximal set. The total
dimension of our bases for l = 0, . . . , k is bounded by dim(Γk), and dim(Γk) �
k∑
l=0

bell(k + l). In fact, dim(Γk)� bell(2k) for k > 2, which is the dimension for only

one equivariant layer L : Rnk → Rnk
in k-IGN (Maron et al. (2019b)).

Even though our basis uses only a subset of the maximal set, it is not losing discrim-
inative power when it comes to distinguishing graphs. We next prove that our basis
has the same expressive power as the maximal set measured by the standard graph
isomorphism testing. In addition, it also preserves the orthogonality, invariance, and
equivariance properties.

• A Fewer number of tensors are used for initial tensor representation. To represent
a graph using order-k tensors, we use k − 1 tensors for representing the adjacency
matrix or an edge feature, while k-IGN uses k2 tensors for the same purpose. Note
that our representation does not require the adjacency matrix A to be symmetric, so
it can represent both undirected and directed graphs.

The reason why we can use only k − 1 tensors is that we use the multi-index of the
order-k tensor as an ordered k-tuple, so the r-th tensor encodes the relationship of

10
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vertex ir to vertex ir+1, with r ∈ [k−1]. In doing so, the order given in the multi-index
is being considered. k-IGN, on the other hand, uses the multi-index as an unordered
set, so it needs k × k tensors to encode the pair-wise relationship between vertex ir
and vertex is, with r, s ∈ [k].

3

2

4

5 61

Figure 1: An example for tensor representation of graphs.

For the 6-node graph in Figure 1, using order-3 tensors we only need k−1 = 2 tensors
to encode the graph adjacency matrix A, while k-IGN needs k2 = 9 tensors. Let
I = (i1, i2, i3) represent the 3-tuple index for entries in the tensor. We consider two
examples: I1 = (2, 3, 4) and I2 = (1, 5, 6).

Ours: XI,r = Air,ir+1 , r ∈ [k − 1] k-IGN: XI,r,s = Air,is , r, s ∈ [k]

X(2,3,4),1 = 1 X(2,3,4),1,1 = 0, X(2,3,4),1,2 = 1, X(2,3,4),1,3 = 0

X(2,3,4),2 = 1 X(2,3,4),2,1 = 1, X(2,3,4),2,2 = 0, X(2,3,4),2,3 = 1

X(2,3,4),3,1 = 0, X(2,3,4),3,2 = 1, X(2,3,4),3,3 = 0

X(1,5,6),1 = 0 X(1,5,6),1,1 = 0, X(1,5,6),1,2 = 0, X(1,5,6),1,3 = 0

X(1,5,6),2 = 1 X(1,5,6),2,1 = 0, X(1,5,6),2,2 = 0, X(1,5,6),2,3 = 1

X(1,5,6),3,1 = 0, X(1,5,6),3,2 = 1, X(1,5,6),3,3 = 0

4. Properties of the linear bases

We show the proposed linear bases satisfy the orthogonality, invariance, and equivariance
properties. In addition, the invariance and equivariance properties of the linear bases also
lead to the permutation invariant property of the neural network.

4.1 Orthogonality property

Given a linear layer L that maps from input order k to output order l, the set of basis
functions {BγX} are orthogonal to each other since their supports have no overlap, i.e.,
Bγi and Bγj have no overlap in the non-zero elements for i 6= j. We can easily prove the
orthogonal property since our basis is a subset of the maximal set in Maron et al. (2019b).
The maximal set is based on set partitions and there are no overlaps between the partitions.

Theorem 1 For any l ∈ {0, . . . , k}, tensors in the family of Bγ(l) form an orthogonal basis

for the linear layer L : Rnk → Rnl
.

11
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Proof. γ(l) = {γ(l)1 , γ
(l)
2 , . . .} is a set of pairwise disjoint subsets with each representing an

equivalence class. Since the supports of elements in Bγ(l) are pairwise disjoint, Bγ(l) forms
an orthogonal basis for L : Rnk → Rnl

. �

4.2 Invariance and equivariance property

Let X be a tensor representing the graph. Using the definition from Maron et al. (2019b),

a linear layer L : Rnk → Rnl
is called an equivariant layer if it satisfies

L(g ·X) = g · L(X),

and a linear layer L : Rnk → R is called an invariant layer if it satisfies

L(g ·X) = L(X).

That is, for the equivariant layer L, permutation on the graph is equivalent to permuta-
tion on the output of L; for the invariant layer L, permutation on the graph will not change
the output.

We now show that the linear layers consisting of the proposed basis functions are per-
mutation invariant or equivariant.

Theorem 2 For any l ∈ {0, . . . , k}, and any permutation operator g(·) acting on n ele-

ments, the linear operator L : Rnk → Rnl
in equation (1) is permutation invariant for l = 0

and equivariant for l ≥ 1 :
L(g ·X) = L(X), for l = 0;

L(g ·X) = g · L(X), for l ≥ 1.

Proof. See Appendix A.4 for the proof of Theorem 2.

Permutation invariant network A typical network F is a chain of multiple layers. If
each layer implements a mapping function, F can be written as a composite function:

F = m ◦ Ld ◦ . . . ◦ L1, (3)

where m is typically a multilayer perceptron (MLP), and L is defined above.

Theorem 2 leads to the following corollary:

Corollary 3 Let F be a graph neural network composed of linear layers based on the pro-
posed basis following the architecture of (3). Given two isomorphic graphs G = (V,E) and
G′ = (V ′, E′), F outputs the same result: F (G) = F (G′).

Proof. We show that a sufficient condition for F being permutation invariant is that
each Li : Rnki → Rnli (for i < d) is an equivariant layer, and Ld : Rnkd → R is an invariant
layer.

The deep neural network F is invariant since the equivariance property is propagated
from L1 to Ld−1. The last linear layer Ld makes it permutation invariant. Following each

12
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linear layer, there is an activation function σ, i.e., F = m ◦ (σ ◦ Ld) . . . (σ ◦ L1), Since σ is
an entry-wise activation function, it does not change the node order, and therefore it allows
the invariance property to propagate through the network. The MLP m is applied to the
output of Ld, which is already permutation invariant:

F (g ·X) = m(Ld(Ld−1 . . . L1(g ·X)))

= m(Ld(Ld−1 . . . g · L1(X)))

= m(Ld(g · Ld−1 . . . L1(X)))

= m(Ld(Ld−1 . . . L1(X)))

= F (X)

5. The expressive power of graph neural networks

In this section, we assess the discriminative power of graph neural networks built with our
basis by using k-WL graph isomorphism tests. For preliminaries of graph isomorphism tests
and k-WL/k-FWL algorithms, see Appendix A.5.

The k-WL algorithm is an iterative algorithm for graph-isomorphism testing (Weisfeiler
and Leman, 1968; Grohe, 2017). Given a graph, the algorithm outputs its color distribution
upon termination. In each iteration, the algorithm uses an injective hash function to update
the colors of the “nodes”. In the k-WL algorithm, the “nodes” are the k-tuples. When the
color update stabilizes, the algorithm terminates and outputs its color distribution. To
determine if two graphs G and H are isomorphic, we need to apply k-WL on each graph
separately, generating the color distribution of each, and then based on whether the color
distributions are the same or different, conclude if the two graphs are isomorphic.

A network F is said to have k-WL expressive power if F can distinguish any pair of
non-isomorphic graphs that are distinguishable by the k-WL algorithm. In other words, a
network with k-WL expressive power is at least as powerful as the k-WL algorithm in graph
isomorphism tests.

Using constructive proof, we will show that the graph neural networks using the pro-
posed order-k linear basis have k-WL expressive power, and then we will advance the
discriminative power to k-FWL by proposing a new building block.

5.1 k-WL discriminative power

To represent a graph, an input tensor X ∈ Rnk
has order k ≥ 2, i.e., the lowest order for

an input tensor is an adjacency matrix. In this section, we demonstrate that the order-k
neural networks using the proposed basis, have at least k-WL expressive power.

Theorem 4 Given two non-isomorphic graphs G = (V,E) and G′ = (V ′, E′), if G and G′

can be distinguished by the k-WL algorithm, then there exists an order-k network F so that
F (G) 6= F (G′).

Proof. We use inductive proof to show that for a given graph G = (V,E), the neural network
F would produce the same color distribution as the k-WL algorithm.
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Initialization: In the k-WL algorithm, the initial color assignment of a node is based on
the atomic type of the k-tuple (Morris et al., 2019; Grohe, 2017); in order-k GNN, each entry
of the tensor is indexed by a k-tuple and the entry is initialized with a color corresponding
to its atomic type. One-hot encoded binary vector can be used for representing multiple
colors.

We next show that each color update step in the k-WL algorithm is equivalent to a
linear layer constructed with our basis.

As shown in previous work (Maron et al., 2019a), a three-step procedure is what it takes
to implement an iteration in the k-WL algorithm. The first step is to find the colors of
the k-WL neighborhoods of each node. Since the colors of each k-WL neighborhood are
represented as a multiset, this amounts to using a linear operator to count the number of
nodes in each distinct color. The second step is to concatenate a node’s color with its k
neighborhoods’ multisets of colors to generate the input to the injective hash function. The
third step is to apply the hash function to update the colors of the nodes, thus completing
one color-updating step.

It is sufficient to show that there is a one-to-one correspondence between the linear
operator in the first step and a linear layer L : Rnk → Rnk−1

based on our basis. The
concatenation step is trivial. The injective hash function that performs color assignment in
the third step is approximated by an MLP (see Maron et al., 2019a, for more details).

The k-WL neighborhood is defined as an ordered k-tuple, with each element being an
unordered multiset of n elements. Let v = (i1, . . . , ik) be the node to be updated, and Nj(v)
be the j-th neighborhood of node v, for j ∈ [k],

Nj(v) = {(i1, . . . , ij−1, w, ij+1, . . . , ik) | w ∈ [n]}.

Then the injective hash function outputs the new color for node v in the l-th iteration:

clv = hash
(
cl−1v ,

(
{cl−1u | u ∈ Nj(v)}, j ∈ [k]

))
Since Nj(v) is an unordered multiset of size n, with each element in the set being a

“node” given by a k-tuple index, the colors of the nodes in Nj(v) can be described by color

counts, e.g., 4 blues, 2 reds, etc. A linear operator defined on our basis L(j) : Rnk → Rnk−1

that takes the sum of elements along the jth axis (j ∈ [k]) of the input tensor X exactly
outputs the colors of the jth neighborhood of a node as defined in the k-WL algorithm:

Yj = L(j)(X) =

n∑
w=1

Xi1,...,ij−1,w,ij+1,...,ik ,

where the summation over index w amounts to counting the colors in the j-th neigh-
borhood Nj(v).

The concatenation of (X,Y1, . . . , Yk) is then used as input to the hash function in the
k-WL algorithm. For an injective hash function, the output is uniquely determined by the
input. An MLP is used to approximate the hash function that maps k-tuple nodes to colors.
Thus, we established the equivalence of an update step in the k-WL algorithm and a linear
layer of the neural network.

If it takes T iterations in the k-WL algorithm until convergence, then the neural network
can use T equivariant linear layers Li : Rnk → Rnk−1

, for i = 1, . . . , T .
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Consider a k-tuple node v = (i1, . . . , ik) in k-WL and an entry at I = (i1, . . . , ik) of the
input tensor of the network F . Initially they have the same “color”, and we denote this by
c0v = c0I .

The correspondence between an iteration of k-WL and a linear layer of the neural
network indicates that if clv = clI , then cl+1

v = cl+1
I , for l = 0, . . . , T − 1.

After T iterations, the k-WL algorithm produces the same colors as F outputs.
Now we extend to the case when the graph has a non-empty set of node features. Node

features are handled by using one channel per pair of input-output features in the neural
network, and the above equivalence between an update step in k-WL and a linear layer in
the neural network holds for each channel.

Finally, the k-WL algorithm returns the colors of all nodes upon termination, which is
represented as a multiset, essentially giving the number of nodes in each distinct color. To
get the histogram of colors, we use a summing invariant layer h, i.e.,

F = h ◦ (m ◦ LT ) ◦ . . . ◦ (m ◦ L1).

If two graphs generate the same color distributions, the two graphs are indistinguishable.
A follow-up procedure will compare the color distributions from two graphs and conclude
the isomorphism test. The same procedure is applied to the two histograms generated by
the GNN.

We conclude that if the k-WL algorithm can distinguish between two non-isomorphic
graphs G and G′, then there exists a neural network F such that F (G) 6= F (G′). �

5.2 k-FWL discriminative power

We construct a family of networks that replaces the linear layer L : Rnk → Rnk−1
, which

implements one update step of a k-WL algorithm, with a building block as shown in Figure
2. The building block includes an equivariant layer L : Rnk → Rnk+1

, an element-wise
Boolean function, and another equivariant layer L : Rnk+1 → Rnk

. We call such a network
type-b network or GNN-b, and call the previous network type-a network or GNN-a. We
show that GNN-b networks with input order-k can have the expressive power of the k-FWL
algorithm.

Construction of type-b networks Figure 2 shows the building block for k = 2. The
first linear layer Rn2 → Rn3

does the following:

L1(X)w,i,j = Xw,j ; and L2(X)w,i,j = Xi,w.

Let A1 = L1(X) and A2 = L2(X). Then the element-wise Boolean function fj′ :

Rn3 × Rn3 → Rn3
, for j′ = 1, 2, 3, 4, are defined as:

Z1 = f1(A1, A2) = A1 ∨A2 ⊕ 1

Z2 = f2(A1, A2) = 1⊕A1 ∧A2

Z3 = f3(A1, A2) = 1⊕A2 ∧A1

Z4 = f4(A1, A2) = A1 ∧A2

where ∨ is logical OR operator, ∧ is logical AND operator, and ⊕ is logical exclusive OR
(XOR) operator. Each Boolean function fj′ turns on exactly one of the possible values of
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the 2-tuple. For instance, Z1 = 1 if and only if the input is (0,0); Z2 = 1 if and only if the
input is (0,1), and so on.

The second linear layer L : Rn3 → Rn2
uses the basis as defined in section 3.1 by

summing along one axis.

Yi,j,j′ =
n∑

w=1

Zw,i,j,j′ , j′ = 1, 2, 3, 4, (4)

where Yi,j,j′ is an entry in Yj′ indexed by a 2-tuple index (i, j), and Zw,i,j,j′ is an entry in
Zj′ indexed by a 3-tuple index (w, i, j), for j′ = 1, 2, 3, 4.

Since fj′ are element-wise functions, the implementation of a type-b building block does
not need to use higher order tensors As and Zs. The mapping from X to Y1, . . . , Y4 amounts
to the following operation:

Yi,j,j′ =

n∑
w=1

fj′(Xw,j , Xi,w), for j′ = 1, 2, 3, 4. (5)

Equations (4) and (5) are equivalent.

If the color representation uses c bits, then we use c channels in the neural network with
the above functions acting on each channel. For an order k type-b building block, the input
tensor X ∈ Rnk×c, A1, . . . , Ak ∈ Rnk+1×c, Z1, . . . , Z2k ∈ Rnk+1×c, and Y1, . . . , Y2k ∈ Rnk×c.
If we leave out the intermediate steps, the mapping from X to Y1, . . . , Y2k amounts to the
following operation, similar to equation (5),

Yi1,...,ik,j′ =
n∑

w=1

fj′(Xw,i2,...,ik , Xi1,w,i3,...,ik , . . . , Xi1,...,ik−1,w), for j′ = 1, . . . , 2k, (6)

where f1, . . . , f2k are the element-wise Boolean functions. Each Boolean function fj′ turns
on exactly one of the possible values of the k-tuple. i.e.,

f1(A1, . . . , Ak) = A1 ∨A2 ∨ . . . Ak ⊕ 1

...

f2k(A1, . . . , Ak) = A1 ∧A2 ∧ . . . Ak

Discriminative power of type-b networks

Theorem 5 Given two non-isomorphic graphs G = (V,E) and G′ = (V ′, E′), if G and G′

can be distinguished by the k-FWL algorithm, then there exists an order-k GNN-b network
F b so that F b(G) 6= F b(G′).

Proof. The k-FWL algorithm is also an iterative algorithm for graph isomorphism testing.
In each update step, the algorithm uses an injective hash function to update the color of a
node. However, it differs from the k-WL algorithm in its updating rule.

Let v = (i1, . . . , ik) be the node to be updated. The input to the hash function of
the k-FWL algorithm is the node’s color, concatenated with the colors of nodes in its
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Figure 2: A building block for GNN-b. The illustration is for k = 2, c = 1.

neighborhood. The k-FWL neighborhood is an unordered multiset of n elements {NF
j (v) |

j ∈ [n]} with each NF
j (v) being an ordered set of k elements (k-tuple).

NF
j (v) = ((j, i2, . . .), (i1, j, . . .), . . . , (. . . , ik−1, j))

Then the injective hash function outputs the new color for node v:

clv = hash
(
cl−1v ,

{
cl−1u | u ∈ NF

j (v), j ∈ [n]
})

We now demonstrate the correspondence between an update step of the k-FWL algo-
rithm and a building block in Figure 2. For an entry (i, j) in the input tensor X, L1 collects
colors from the same column (the j-th column), and L2 collects the colors from the same
row (the i-th row), and replicate the information to a tensor of order k+1. This step creates
k-tuples, with each k-tuple indexed by w, for w ∈ [n].

Subsequently, the element-wise Boolean functions fj′ get the possible color patterns of
the k-tuples and put them in different categories.

The second linear layer L aggregates the total number of occurrences in each category
by summing the n unordered elements.

The output of the building block in Figure 2 is the concatenation of (X,Y1, Y2, Y3, Y4)
for k = 2. For any k ≥ 2, the output of the building block is the concatenation of
(X,Y1, . . . , Y2k), which is exactly the neighborhood definition in the k-FWL algorithm.

Thus, we established the equivalence between an update step in the k-FWL algorithm
and a building block of a type-b network. Similarly, if it takes T b iterations for the k-FWL
algorithm to converge, it also needs T b building blocks in the neural network F b. There
will be an MLP m after each building block for color assignment. Using the same initial
color assignment as in k-WL, inductive proof leads to the conclusion that the output from
the type-b network is the same as the output from the k-FWL algorithm.

Similar to the proof of Theorem 4, there is an invariant layer h after the T b blocks, so
we have

F b = h ◦ (m ◦BT b) ◦ . . . ◦ (m ◦B1).

Using inductive proof, we can demonstrate that if the initial color assignment in the k-
FWL is the same as in the network F b, then after T b iterations, the k-FWL will produce the
same output as F b. This concludes that if the k-FWL algorithm can differentiate between
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two non-isomorphic graphs G and G′, then there must be a neural network F b such that
F (G) 6= F (G′).

5.3 Identifying isomorphic graphs

To fully characterize the expressive power GNN-b, it is also important to check its ability
to recognize isomorphic graphs.

Theorem 6 Given two isomorphic graphs G = (V,E) and G′ = (V ′, E′), the type-b network
F b constructed in Theorem 5 outputs the same result: F b(G) = F b(G′).

Proof. Since G and G′ are isomorphic graphs, G′ can be represented as G′ = g ·G, where g
is a permutation operator.

A type-b network F b = h ◦ BT b ◦ . . . ◦ B1 is permutation invariant since it is a chain
of the building blocks shown in Figure 2. Each building block is a chain of the equivariant
linear layers and Boolean functions. The equivariance property can propagate through the
building blocks since the element-wise functions fj′ do not change the equivariance property
as they act on elements. Therefore, F b(G′) = F b(g ·G) = F b(G). �

Corollary 7 Order-k GNN-a has the expressive power of the k-WL algorithm and order-k
GNN-b has the expressive power of the k-FWL algorithm in graph isomorphism testing.

Since k-FWL is equivalent to (k+1)-WL in graph isomorphism testing for k ≥ 2 (Grohe,
2017; Cai et al., 1992), we conclude that order-2 GNN-b has 3-WL expressiveness in graph
isomorphism testing.

5.4 Graph isomorphism testing examples

Theorems 4 and 5 indicate that in terms of distinguishing non-isomorphic graphs, GNN-a
is at least as discriminative as k-WL, and GNN-b is at least as discriminative as k-FWL.
Next, we verify their discriminative power using graph isomorphism tests (see Figure 3).

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 3: (a) and (b), non-isomorphic graphs not distinguishable by 2-WL test; (c) and (d),
non-isomorphic graphs not distinguishable by 3-WL test.

18



Orthogonal Bases for Graph Learning

Test 1 is a pair of 2-regular graphs; Test 2 is tweaked from test 1 by adding an edge
to the nodes in the middle; Test 3 is a pair of strongly regular graphs in the family of
SR(16,6,2,2), which means that they each have 16 nodes with node degree 6, every two
adjacent nodes have two common neighbors, and every two non-adjacent nodes have two
common neighbors. The graph on the right (Shrikhande graph) has a maximum clique of
size 3, and the graph on the left (Rooks’ 4× 4 graph) has a maximum clique of size 4. Test
3 has been used in Bouritsas et al. (2023) and Bodnar et al. (2021b). Test 4 from Grohe
(2017) is a pair of 3-regular graphs. It is known that 2-WL cannot distinguish the pair of
graphs in test 1 and test 2; 3-WL cannot distinguish the pair of graphs in test 3 and test 4
(Grohe, 2017).

Table 1: Graph isomorphism tests results. Y: succeeded; N: failed.

Test 1 Test 2 Test 3 Test 4

2-WL test N N N N
3-WL test Y Y N N
2-FWL test Y Y N N
PPGN Y Y N N

Order-2 GNN-a N N N N
Order-2 GNN-b Y Y N N

Order-2 GNN-a and order-2 GNN-b are constructed following the description in the
proofs for Theorem 4 and Theorem 5, respectively. Testing results show that order-2 GNN-a
has the same performance as 2-WL, and order-2 GNN-b has the same performance as 3-WL.
PPGN (Maron et al., 2019a) also has 3-WL power, but our models are significantly faster
due to having fewer trainable parameters and not requiring expensive matrix multiplication
operations.

6. Experiments

In this section, we assess the performance of the proposed type-a and type-b GNNs using
real-world datasets, considering both classification and regression tasks.

6.1 GNN models

We implement order-2 and order-3 GNN models as described in section 3. The imple-
mentation is carried out in TensorFlow framework using Keras neural network API. The
experiments were carried out using the Open Science Grid with AMD EPYC 7F52 16-Core
3.50 GHz Processor.

We use the order-2 GNN-b and order-3 GNN-a to learn the link structure. Node features
are represented as Rn vectors and are combined with the output of equivariant layer L :
Rnk → Rn before entering the next invariant layer.
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6.2 Classification tasks

We show the graph classification performance on real-world datasets and compare our meth-
ods (order-2 GNN-b and order-3 GNN-a) with other baseline methods from the literature:
WEGL (Kolouri et al., 2021), DGK (Yanardag and Vishwanathan, 2015), DGCNN (Zhang
et al., 2018), 2-IGN (Maron et al., 2019b), PPGN (Maron et al., 2019a), GIN (Xu et al.,
2019), DropGIN (Papp et al., 2021), 1-2-3 GNN (Morris et al., 2019), GFN (Chen et al.,
2019a), InfoGraph (Sun et al., 2019), BC + Capsules (Mallea et al., 2019), hGANet (Gao
and Ji, 2019), CCN (Kondor et al., 2018), CIN Bodnar et al. (2021a), GSN (Bouritsas et al.,
2023), and SIN (Bodnar et al., 2021b).

The TUDatasets include MUTAG, PTC, PROTEINS, NCI1, NCI109, COLLAB, IMDB-
B, and IMDB-M selected from Yanardag and Vishwanathan (2015). The first five datasets
include protein structures and chemical compounds from bioinformatics datasets, and the
last three datasets are from social networks.

6.2.1 Results

Classification accuracy The results on classification accuracy are reported in Table 2.
We follow the protocol of Xu et al. (2019) to perform a standard 10-fold cross-validation
with data splitting protocol from Zhang et al. (2018). Validation accuracies averaged over
10 validation folds from the best-performing epoch are reported. Hyper-parameters we
tuned for these datasets are: batch size ∈ {64, 128}, learning rate ∈ {0.00064, 0.00128,
0.00256}, learning rate decay ∈ {0.6, 0.7, 0.8}, and learning rate decay of every 40 epochs
is used. Hyper-parameter tuning is done within cross-validation with one training fold used
for hyper-parameter searching.

Accuracies for baseline methods are cited from the literature. Out of the eight datasets,
our methods achieved the highest accuracy on five datasets and the second highest on two
datasets.

Computation times We use PPGN (Maron et al., 2019a) as the baseline to compare
computational complexity since PPGN is the winner among other algorithms from the
literature. We report the training time per epoch and the number of training parameters
in the linear layers in Table 3. Our method order-3 GNN-a has a notable advantage since
the number of training parameters is significantly reduced compared to PPGN and hence
faster training time. Results are reported using the first four datasets as examples, and
other datasets have the same conclusion.

6.3 Regression tasks

6.3.1 QM9 dataset

For regression task, we first test our graph neural network models on a standard graph
learning benchmark dataset called QM9 (Ramakrishnan et al., 2014). The dataset consists
of 134K organic molecules with sizes ranging from 4 to 29 atoms. The task is to predict 12
real-valued physical quantities for each molecule. We compare our models (order-2 GNN-b,
and order-3 GNN-a) with other baseline methods. Results for 1-GNN and 1-2-3 GNN are
from Morris et al. (2019), and PPGN results are from Maron et al. (2019a).

20



Orthogonal Bases for Graph Learning

Table 2: Graph classification accuracy (%) on TUDatasets.

MUTAG PTC PROTEINS NCI1 NCI109 COLLAB IMDB-B IMDB-M

WEGL 88.3 67.5 76.5 - - 78.6 72.0 48.5
DGK 87.4 60 75.6 80.3 80.3 73.1 66.9 44.5
DGCNN 85.8 58.6 75.5 74.4 - 73.7 70.0 47.8
2-IGN 84.61 59 75.19 74.3 72.8 78.3 72.0 48.7
PPGN 90.6 66.2 77.2 83.2 82.2 81.3 73 50.4
GIN 89.4 64.6 76.2 82.7 - 80.2 75.1 52.3
1-2-3 GNN 86.1 60.9 75.5 76.2 - - 74.2 49.5
GFN 90.84 - 76.46 82.7 - 80.4 73.3 51.2
DropGIN 90.4 66.3 76.3 - - - 75.7 51.4
InfoGraph 89.01 61.65 - - - - 73.0 49.7
BC + Capsules 88.9 69 74.1 65.9 58.0 - - -
hGANet 90 65.02 78.65 - - 77.5 - 49.1
CCN 91.64 70.62 - 76.27 75.54 - - -
CIN 92.7 68.2 77 83.6 84 - 75.6 52.7
GSN 92.2 68.2 76.6 83.5 - 85.5 77.8 54.3
SIN - - 76.4 82.7 - - 75.6 52.4

Order-2 GNN-b 92 72.4 73.9 80 81 78.5 72.4 51
Order-3 GNN-a 94.4 72.1 77.8 85 83.4 80.7 74.9 52.5
Rank 1st 1st 2nd 1st 2nd 3rd 6th 3rd

Table 3: Top: training time per epoch (in seconds); Bottom: number of parameters in
linear layers.

MUTAG PTC PROTEINS NCI1

PPGN 10.56 44.8 865 900
Order-3 GNN-a 9 39.1 223 238

PPGN 2409600 2427600 2404800 2445600
Order-3 GNN-a 196500 211150 136500 214000

The experiment setup is the same as in Maron et al. (2019a). The dataset is randomly
split with 80% training data, 10% validation data, and 10% test data. Hyper-parameters are
searched by experimenting on the validation set, with learning rate in the set {0.001, 0.0001}
and batch size in the set {64, 128}.

We trained a separate neural network model for each quantity and minimized the mean
squared error during model training. The results reported from the baseline method PPGN
Maron et al. (2019a) are also from using an independent network for each quantity.

The mean absolute error (MAE) on test data is reported in Table 4. Our models achieved
the lowest error on 6 out of the 12 quantities. Moreover, the training time per epoch is also
reported in Table 5. PPGN is the winner of the four baseline methods, which achieved the
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lowest error on 4 out of the 12 quantities, however, our methods demonstrated significant
time reduction from PPGN as shown in Table 5.

Table 4: Regression on QM9 dataset. Mean Absolute Error (MAE) is reported.

Target 1-GNN 1-2-3 GNN PPGN Order-2 GNN-b Order-3 GNN-a Rank

µ 0.493 0.476 0.0934 0.120 0.112 2nd

α 0.78 0.27 0.318 0.463 0.369 3rd

εhomo 0.00321 0.00337 0.00174 0.00224 0.00172 1st

εlumo 0.0035 0.00351 0.0021 0.0020 0.0020 1st

∆ε 0.0049 0.0048 0.0029 0.0025 0.0033 1st〈
R2
〉

34.1 22.9 3.78 4.78 5.10 2nd

ZPV E 0.00124 0.00019 0.000399 0.000452 0.00036 2nd

U0 2.32 0.0427 0.022 0.039 0.026 2nd

U 2.08 0.111 0.0504 0.0521 0.0478 1st

H 2.23 0.0419 0.0294 0.0311 0.0281 1st

G 1.94 0.0469 0.024 0.029 0.024 1st

Cv 0.27 0.0944 0.144 0.152 0.144 2nd

Table 5: Training time (in seconds) per epoch on QM9 dataset.

PPGN Order-2 GNN-b Order-3 GNN-a

3300 70 178

6.3.2 Zinc12k dataset

We further test our model on a large-scale molecular dataset for a regression task. The
dataset is called ZINC 12k, which has been used for benchmarking GNNs for expressivity
by many (e.g., Sterling and Irwin, 2015; Dwivedi et al., 2023; Gómez-Bombarelli et al.,
2018). The dataset consists of 12k molecules with a graph size of up to 29 atoms. There
are 21 atom types and three bond types, which we use as node features and edge features.

The task is to predict the constrained solubility. We compare our model with other
models reported in Table 3 of Bevilacqua et al. (2022). The dataset is split into 10k−1k−1k
for training, validating, and testing. The validation set is used for hyper-parameter search,
with learning rate searched in {0.001, 0.005, 0.05}, and batch size searched in {64, 128}.

The MAE scores from test data are reported in table 6. Our models rank the 3rd
among all the models. All the baseline results are from recent years. PPGN results are
from Martinkus et al. (2023), and the others are from Bevilacqua et al. (2022).
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Table 6: Regression on ZINC12 dataset. MAE is reported.

Method ZINC (MAE)

PNA (Corso et al., 2020) 0.188± 0.004
DGN (Beaini et al., 2021) 0.168± 0.003
SMP (Vignac et al., 2020) 0.138
GIN (Xu et al., 2019) 0.252± 0.017
HIMP (Fey et al., 2020) 0.151± 0.006
GSN (Bouritsas et al., 2023) 0.140± 0.006
CIN-SMALL (Bodnar et al., 2021a) 0.094± 0.004
DSS-GNN (GIN) (EGO+) (Bevilacqua et al., 2022) 0.102± 0.003
PPGN (Maron et al., 2019a) 0.256± 0.054

Order-2 GNN-b 0.146± 0.007
Order-3 GNN-a 0.110± 0.005
Rank 3rd

7. Conclusion

This research contributes to graph neural network models with high expressive power and
low complexity. We introduced a compact set of orthogonal bases for linear layers as the
basic building blocks of GNNs and proved that the GNNs are permutation invariant. We
further compared the expressive power of these networks with the k-WL algorithm in graph
isomorphism testing. Specifically, we have a GNN model that uses order-k input tensors
and achieves k-WL expressiveness, and another GNN model achieves k-FWL expressiveness.
Their expressive power is theoretically proven and verified by real graph isomorphism tests.
The proposed GNN models also demonstrated superior discriminative power compared to
known graph neural network models when applied to graph classification on benchmark
datasets. While their ability to perform other tasks, such as counting graph substructures,
is unknown at this point, it could be an interesting topic for future work.
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Appendix A. Appendix

A.1 Equivalence classes for L : Rnk → Rnl
with k = 2

When k = 2, dim(Γk) = 3(2k − 1) − k = 7, there are a total of 7 equivalence classes for
output orders l = 0, 1, 2.
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• L : Rn2 → Rn2
. For the 4-tuple index I = {i1, i2, i3, i4}, there are 2 equivalence

classes γ(2) = {γ(2)1 , γ
(2)
2 }:

γ
(2)
1 = {{1, 3}, {2}, {4}}

γ
(2)
2 = {{2, 4}, {1}, {3}}

• L : Rn2 → Rn1
. For the 3-tuple index I = {i1, i2, i3}, there are 3 equivalence classes

γ(1) = {γ(1)1 , γ
(1)
2 , γ

(1)
3 }:

γ
(1)
1 = {{1, 2}, {3}}

γ
(1)
2 = {{1, 3}, {2}}

γ
(1)
3 = {{1, 2, 3}}

• L : Rn2 → Rn0
. For the 2-tuple index I = {i1, i2}, there are 2 equivalence classes

γ(0) = {γ(0)1 , γ
(0)
2 }:

γ
(0)
1 = {{1}, {2}}

γ
(0)
2 = {{1, 2}}

A.2 Equivalence classes for L : Rnk → Rnl
with k = 3

With k = 3, the dimension of the bases for all output orders l is bounded by dim(Γk) =
3(2k − 1)− k = 18, there are a total of 18 equivalence classes.

• L : Rn3 → Rn3
. For the 6-tuple index I = {i1, i2, i3, i4, i5, i6}, there are 3 equivalence

classes γ(3) = {γ(3)1 , γ
(3)
2 , γ

(3)
3 }:

γ
(3)
1 = {{2, 5}, {3, 6}, {1}, {4}}

γ
(3)
2 = {{1, 4}, {3, 6}, {2}, {5}}

γ
(3)
3 = {{1, 4}, {2, 5}, {3}, {6}}

• L : Rn3 → Rn2
. For the 5-tuple index I = {i1, i2, i3, i4, i5}, there are 6 equivalence

classes γ(2) = {γ(2)1 , γ
(2)
2 , γ

(2)
3 , γ

(2)
4 , γ

(2)
5 , γ

(2)
6 }:

γ
(2)
1 = {{1, 4}, {2, 5}, {3}}

γ
(2)
2 = {{1, 3}, {2, 5}, {4}}

γ
(2)
3 = {{1, 3}, {2, 4}, {5}}

γ
(2)
4 = {{1, 3, 4}, {2, 5}}

γ
(2)
5 = {{2, 4, 5}, {1, 3}}

γ
(2)
6 = {{2, 3, 5}, {1, 4}}
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• L : Rn3 → Rn1
. For the 4-tuple index I = {i1, i2, i3, i4}, there are 7 equivalence

classes γ(1) = {γ(1)1 , γ
(1)
2 , γ

(1)
3 , γ

(1)
4 , γ

(1)
5 , γ

(1)
6 , γ

(1)
7 }:

γ
(1)
1 = {{1, 2}, {3}, {4}}

γ
(1)
2 = {{1, 3}, {2}, {4}}

γ
(1)
3 = {{1, 4}, {2}, {3}}

γ
(1)
4 = {{1, 4}, {2, 3}}

γ
(1)
5 = {{1, 2}, {3, 4}}

γ
(1)
6 = {{1, 3}, {2, 4}}

γ
(1)
7 = {{1, 2, 3, 4}}

• L : Rn3 → Rn0
. For the 3-tuple index I = {i1, i2, i3}, there are 2 equivalence classes

γ(0) = {γ(0)1 , γ
(0)
2 }:

γ
(0)
1 = {{1}, {2}, {3}}

γ
(0)
2 = {{1, 2, 3}}

A.3 Equivalence classes for L : Rnk → Rnl
with k = 4

With k = 4, the dimension of the bases for all output orders is bounded by dim(Γk) =
3(2k − 1)− k = 41, so there are a total of 41 equivalence classes.

• L : Rn4 → Rn4
. For the 8-tuple index I = {i1, i2, i3, i4, i5, i6, i7, i8}, there are 4

equivalence classes γ(4) = {γ(4)1 , γ
(4)
2 , γ

(4)
3 , γ

(4)
4 }:

γ
(4)
1 = {{1, 5}, {2, 6}, {3, 7}, {4}, {8}}

γ
(4)
2 = {{1, 5}, {2, 6}, {4, 8}, {3}, {7}}

γ
(4)
3 = {{1, 5}, {3, 7}, {4, 8}, {2}, {6}}

γ
(4)
4 = {{2, 6}, {3, 7}, {4, 8}, {1}, {5}}
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• L : Rn4 → Rn3
. For the 7-tuple index I = {i1, i2, i3, i4, i5, i6, i7}, there are 10 equiva-

lence classes γ(3) = {γ(3)1 , . . . , γ
(3)
10 }:

γ
(3)
1 = {{1, 4}, {2, 5}, {3, 6}, {7}}

γ
(3)
2 = {{1, 4}, {2, 5}, {3, 7}, {6}}

γ
(3)
3 = {{1, 4}, {2, 6}, {3, 7}, {5}}

γ
(3)
4 = {{1, 5}, {2, 6}, {3, 7}, {4}}

γ
(3)
5 = {{1, 4, 5}, {2, 6}, {3, 7}}

γ
(3)
6 = {{1, 4, 6}, {2, 5}, {3, 7}}

γ
(3)
7 = {{1, 4, 7}, {2, 5}, {3, 6}}

γ
(3)
8 = {{1, 4}, {2, 5, 6}, {3, 7}}

γ
(3)
9 = {{1, 4}, {2, 5, 7}, {3, 6}}

γ
(3)
10 = {{1, 4}, {2, 5}, {3, 6, 7}}

• L : Rn4 → Rn2
. For the 6-tuple index I = {i1, i2, i3, i4, i5, i6}, there are 16 equivalence

classes γ(2) = {γ(2)1 , . . . , γ
(2)
16 }:

γ
(2)
1 = {{1, 5}, {2, 6}, {3}, {4}}

γ
(2)
2 = {{1, 4}, {2, 6}, {3}, {5}}

γ
(2)
3 = {{1, 4}, {2, 5}, {3}, {6}}

γ
(2)
4 = {{1, 3}, {2, 6}, {4}, {5}}

γ
(2)
5 = {{1, 3}, {2, 5}, {4}, {6}}

γ
(2)
6 = {{1, 3}, {2, 4}, {5}, {6}}

γ
(2)
7 = {{1, 3, 4, 5}, {2, 6}}

γ
(2)
8 = {{1, 3, 4, 6}, {2, 5}

γ
(2)
9 = {{1, 3, 5, 6}, {2, 4}}

γ
(2)
10 = {{2, 4, 5, 6}, {1, 3}}

γ
(2)
11 = {{1, 5}, {2, 6}, {3, 4}}

γ
(2)
12 = {{1, 4}, {2, 6}, {3, 5}}

γ
(2)
13 = {{1, 4}, {2, 5}, {3, 6}}

γ
(2)
14 = {{1, 3}, {2, 6}, {4, 5}}

γ
(2)
15 = {{1, 3}, {2, 5}, {4, 6}}

γ
(2)
16 = {{1, 3}, {2, 4}, {5, 6}}
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• L : Rn4 → Rn1
. For the 5-tuple index I = {i1, i2, i3, i4, i5}, there are 9 equivalence

classes γ(1) = {γ(1)1 , . . . , γ
(1)
9 }:

γ
(1)
1 = {{1, 2}, {3}, {4}, {5}}

γ
(1)
2 = {{1, 3}, {2}, {4}, {5}}

γ
(1)
3 = {{1, 4}, {2}, {3}, {5}}

γ
(1)
4 = {{1, 5}, {2}, {3}, {4}}

γ
(1)
5 = {{1, 2, 3, 4, 5}}

γ
(1)
6 = {{1, 5}, {2, 3, 4}}

γ
(1)
7 = {{1, 4}, {2, 3, 5}}

γ
(1)
8 = {{1, 3}, {2, 4, 5}}

γ
(1)
9 = {{1, 2}, {3, 4, 5}}

• L : Rn4 → Rn0
. For the 4-tuple index I = {i1, i2, i3, i4}, there are 2 equivalence

classes γ(0) = {γ(0)1 , γ
(0)
2 }:

γ
(0)
1 = {{1}, {2}, {3}, {4}}

γ
(0)
2 = {{1, 2, 3, 4}}

A.4 Proof of Theorem 2

Proof. To show that L is permutation invariant (for l = 0) or equivariant (for l ≥ 1), it

suffices to show that (1) Bγ(l)X is invariant or equivariant, and (2) Cβ
(l)

is invariant or
equivariant. It suffices to show the conclusion holds for any specific value of l ∈ {0, . . . , k}.
The superscript in γ(l) and β(l) denotes an equivalence class for the output order l.

Suppose the permutation operator is g. We know that the index for Bγ is an m-tuple
(i1, . . . , im) with m = k + l, and g(i1, . . . , im) = (g(i1), . . . , g(im)). If (i1, . . . , im) ∈ γ for
some γ defined in the equivalence classes, then (g(i1), . . . , g(im)) ∈ γ. This is due to the
facts that the equivalence class γ is defined based on the equality patterns of (i1, . . . , im) and
g is a bijective function (i.e., g(a) = g(b) if and only if a = b). Therefore, the permutation
operation does not change the equivalence class of an m-tuple index.

We exemplify it by using an example: Let (i1, . . . , i6) ∈ γ, in which i2 = i5, i3 = i6,
and i1 6= i2 6= i3 6= i4. Since g is a bijection, we have g(i2) = g(i5), g(i3) = g(i6), and
g(i1) 6= g(i2) 6= g(i3) 6= g(i4), then we have (g(i1), . . . , g(i6)) ∈ γ.

We can write (i1, . . . , im) as (i1, . . . , il, il+1, . . . , il+k), with (il+1, . . . , il+k) correspond
to an entry in the input tensor X, and (i1, . . . , il) correspond to an entry in the out-
put tensor. The permutation action moves an entry in X from position (il+1, . . . , il+k) to
g(il+1, . . . , il+k) = (g(il+1), . . . , g(il+k)), therefore Xil+1,...,il+k

= (g ·X)g(il+1),...,g(il+k), and it
is still multiplied by the same value of 1 in Bγ if (i1, . . . , im) ∈ γ (or 0 if (i1, . . . , im) /∈ γ).

For l = 0, Bγ(g · X) gives the same result as BγX, which is a scalar; for l ≥ 1, the
l-tuple index for the output tensor (g(i1), . . . , g(il)) = g(i1, . . . , il) serves to permute the
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output of BγX by g. Therefore, we have

Bγ(g ·X) = BγX, for l = 0;

Bγ(g ·X) = g · (BγX), for l ≥ 1.

The same argument also applies to the bias term tensor Cβ, which is considered as a
special case by setting k = 0 in m = k + l. �

A.5 Preliminary on the k-WL and k-FWL graph-isomorphism tests

A.5.1 k-WL

The classical Weisfeiler-Leman algorithm is a graph-isomorphism test based on the color
refinement algorithm in Weisfeiler and Leman (1968). Given a graph G = (V,E), the
algorithm outputs its color distribution upon termination. If two graphs have the same
color distribution, then the two graphs are considered isomorphic.

The k-WL algorithm is a generalization of the graph-isomorphism tests by defining
a node as a k-tuple, i.e., v = (i1, . . . , ik), with (i1, . . . , ik) ∈ V k (see Grohe and Otto,
2015; Grohe, 2017). Retrospectively, the classical WL is called 1-WL because each node is
represented by a 1-tuple, which is just the node id.

We refer to the singleton v = (i1) as a vertex, and refer to the k-tuple v = (i1, . . . , ik) as
a node. The classical WL keeps refining the color of one vertex by aggregating the colors
of its neighbors until there are no more updates; the k-WL updates the color of a k-tuple
node by using a similar manner, except that the neighborhood definition is different.

Nj(v), the j-th neighborhood of node v, for j ∈ [k], is given as

Nj(v) = {(i1, . . . , ij−1, w, ij+1, . . . , ik) | w ∈ [n]}.

In k-WL tests, the initial color assignment to a node is based on the node’s atomic type
(Grohe, 2017; Morris et al., 2019). During each iteration, the k-WL algorithm collects the
neighborhood color information and then concatenate the colors of the j-th neighborhood,
for j ∈ [k], to a node’s own color, and then a hash function is applied to update the node’s
color. With k = 2, the input to the hash function takes three arguments,

clv = hash
(
cl−1v , {cl−1u |u ∈ N1(v)}, {cl−1u |u ∈ N2(v)}

)
The first argument cl−1v is node v’s own color in previous iteration, the second argument is
the colors of nodes in N1(v), and the third argument is the colors of nodes in N2(v). The
colors of the j-th neighborhood is a multiset.

Next, we walk through an example using the two graphs in Test 1 (see Figure 4).
Consider 2-WL test. Each node v = (i1, i2) is a 2-tuple, so we use a matrix to visualize the
color map of the entire graph, with i1 being the row index, and i2 being the column index.

Initial color assignment. In graph H, initially there are two atomic types for all
nodes, {connected, disconnected}. We color the nodes in red (type 1, connected) and
yellow (type2, disconnected). See Figure 5(a) for initial color map. Graph G also has only
two atomic types, and is colored as in Figure 6(a).

k-WL neighborhood. Consider a node v = (i1, i2). The first neighborhood N1(v) =
{(w, i2)|w ∈ [n]}, and the second neighborhood N2(v) = {(i1, w)|w ∈ [n]}. In the matrix
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1

2 3

6 5

4

(a) H

1 6 5

2 3 4

(b) G

Figure 4: Graphs H and G in Test 1 with node ids.

(a) H(0) (b) v = (2, 3) (c) v = (2, 4) (d) H(1)

Figure 5: k-WL test for graph H. (a) initial color assignment, (b-c) k-WL neighborhood
for two nodes, and (d) an update step.

(a) G(0) (b) v = (2, 3) (c) v = (2, 4) (d) G(1)

Figure 6: k-WL test for graph G. (a) initial color assignment, (b-c) k-WL neighborhood
for two nodes, and (d) an update step.

representation, the first neighborhood N1(v) includes nodes in the same column as v, and
the second neighborhood N2(v) includes nodes in the same row as v.

Consider a node v = (2, 3) in graph H, the colors in the first and second neighborhoods
are shown in Figure 5(b). The colors in N1(v) are 3R+3Y (3 red, 3 yellow), and the colors
in N2(v) are 3R+3Y. Note that 3R+3Y=3Y+3R since a multiset is an unordered structure.

Color update. Across the entire graph H, there are only two atomic types: (R,
3R+3Y, 3R+3Y) as shown in node (2,3), and (Y, 3R+3Y, 3R+3Y) as shown in node (2,4).
The hash function is an injective function. If there are only two distinct input patterns to
the hash function, there will be only two distinct colors it outputs. We again color type 1
in red and type 2 in yellow.

R ← hash(R, 3R+3Y, 3R+3Y) and Y ← hash(Y, 3R+3Y, 3R+3Y)

Figures 5(d) and 6(d) show the results after one update step for graph H and G, re-
spectively.

After one update step, the color pattern of the matrix remains the same for both G and
H. The algorithm terminates. The 2-WL algorithm outputs the colors of all nodes in the
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matrix, which is 18R+18Y. Since graph G and H both have the same color distribution,
they are regarded as the same. Thus, 2-WL fails to distinguish the two graphs.

A.5.2 k-FWL

The test procedure studied in Cai et al. (1992); Morris et al. (2019) is referred to as k-
Folklore-WL (k-FWL for short), which is a variant of k-WL. As in k-WL, a node is also
defined as a k-tuple, and the procedure also iterates to update the colors of nodes until
there are no more updates. However, the k-FWL neighborhood definition is different from
the k-WL neighborhood. The k-FWL neighborhood is a multiset {NF

j (v)|j ∈ [n]}. With

k = 2, each element NF
j (v) = ((j, i2), (i1, j)) is an ordered 2-tuple.

The input to the hash function is also different from the k-WL algorithm. The hash
function takes two arguments regardless the value of k: the node’s own color and the
neighborhood’s color.

clv = hash
(
cl−1v ,

{
cl−1u | u ∈ NF

j (v), j ∈ [n]
})

Consider graph H. The initial color assignment is the same as in k-WL. The color of
the neighborhood for the node v = (2, 3) is 3RR+3YY (see Figure 7(b)), while for node
v = (2, 4) is 3YR+3RY (see Figure 7(c)). Across the graph H, there are two atomic types:
(R, 3RR+3YY) as in node v = (2, 3) and (Y, 3YR+3RY) as in node v = (2, 4). We color
type 1 in red and type 2 in yellow again.

R ← hash(R, 3RR+3YY) and Y ← hash(Y, 3YR+3RY)

After one updating step, the color pattern of the entire graph remains the same. So the
algorithm terminates, and outputs a color distribution of 18R+18Y.

(a) H(0) (b) v = (2, 3) (c) v = (2, 4) (d) H(1)

Figure 7: k-FWL test for graph H. (a) initial color assignment, (b-c) k-FWL neighborhood
for two nodes, and (d) an update step.

Now consider graph G. The initial color assignment is the same as in k-WL. However,
after the initial color assignment, there are four atomic types in graph G, represented by
nodes (3,3), (1,4), (2,3) and (2,4) (see Figure 8(c-f)). We add colors blue and green for type
3 and type 4.

• v = (3, 3), R ← hash(R, 3RR+3YY)

• v = (1, 4), Y ← hash(Y, 3RY+3YR)

• v = (2, 3), B ← hash(R, 2RR+2YY+1RY+1YR)
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(a) G(0) (b) G(1)

(c) v = (3, 3) (d) v = (1, 4) (e) v = (2, 3) (f) v = (2, 4)

Figure 8: k-FWL test for graph G. (a) initial color assignment, (c-f) k-FWL neighborhood
for four nodes, and (b) an update step.

• v = (2, 4), G ← hash(Y, 1RR+1YY+2RY+2YR)

Figure 8(b) shows the result after one updating step for graph G. The algorithm does
not terminate after one updating step. It will continue to update. It is easy to see that
there are already more than four atomic types at this point. 2-FWL can distinguish the
two graphs H and G since they have different color distributions.
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and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In Advances
in Neural Information Processing Systems, pages 2625–2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido Montufar, Pietro Liò,
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Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural net-
works. In Advances in Neural Information Processing Systems, volume 32, pages 7092–
7101, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

Soheil Kolouri, Navid Naderializadeh, Gustavo K Rohde, and Heiko Hoffmann. Wasserstein
embedding for graph learning. In International Conference on Learning Representations,
2021.

Risi Kondor, Nino Shervashidze, and Karsten M Borgwardt. The graphlet spectrum. In
International Conference on Machine Learning, pages 529–536, 2009.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi.
Covariant compositional networks for learning graphs. In International Conference on
Learning Representations, Workshop Track, 2018.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding–design
provably more powerful gnns for structural representation learning. In Advances in Neural
Information Processing Systems, 2020.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. In International Conference on Learning Representations, 2016.

Xin Liu, Haojie Pan, Mutian He, Yangqiu Song, Xin Jiang, and Lifeng Shang. Neural
subgraph isomorphism counting. In SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1959–1969, 2020.

33



He and Cheng

Marcelo Daniel Gutierrez Mallea, Peter Meltzer, and Peter J Bentley. Capsule neu-
ral networks for graph classification using explicit tensorial graph representations.
arXiv:1902.08399, 2019.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. In Advances in Neural Information Processing Systems, 2019a.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equiv-
ariant graph networks. In International Conference on Learning Representations, 2019b.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of
invariant networks. In International Conference on Machine Learning, pages 4363–4371,
2019c.

Karolis Martinkus, Pál András Papp, Benedikt Schesch, and Roger Wattenhofer. Agent-
based graph neural networks. In International Conference on Learning Representations,
2023.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph
neural networks. In AAAI Conference on Artificial Intelligence, pages 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse:
Towards scalable higher-order graph embeddings. In Advances in Neural Information
Processing Systems, pages 21824–21840, 2020.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propaga-
tion kernels: efficient graph kernels from propagated information. Machine Learning, 102
(2):209–245, 2016.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neu-
ral networks for graphs. In International Conference on Machine Learning, pages 2014–
2023. PMLR, 2016.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn:
random dropouts increase the expressiveness of graph neural networks. In Advances in
Neural Information Processing Systems, 2021.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1
(1):1–7, 2014.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Mon-
fardini. The graph neural network model. IEEE Transactions on Neural Networks, 20
(1):61–80, 2009.
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