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Abstract

Bayesian networks (BNs) are a powerful tool for knowledge representation and reasoning,
especially for complex systems. A critical task in the applications of BNs is conditional
inference or inference in the presence of selection bias. However, post-conditioning, the
conditional distribution family of a BN can become complex for analysis, and the corre-
sponding induced subgraph may not accurately encode the conditional independencies for
the remaining variables. In this work, we first investigate the conditions under which a
BN remains closed under conditioning, meaning that the induced subgraph is consistent
with the structural information of conditional distributions. Conversely, when a BN is not
closed, we aim to construct a new directed acyclic graph (DAG) as a minimal I-map for
the conditional model by incorporating directed edges into the original induced graph. We
present an equivalent characterization of this minimal I-map and develop an efficient algo-
rithm for its identification. The proposed framework improves the efficiency of conditional
inference of a BN. Additionally, the DAG minimal I-map offers graphical criteria for the
safe integration of knowledge from diverse sources (subpopulations/conditional distribu-
tions), facilitating correct parameter estimation. Both theoretical analysis and simulation
studies demonstrate that using a DAG minimal I-map for conditional inference is more
effective than traditional methods based on the joint distribution of the original BN.

Keywords: causal Bayesian network, conditioning, conditional inference, DAG minimal
I-map, selection bias

1. Introduction

Bayesian networks (BNs; Maathuis et al., 2018; Neapolitan, 2004; Pearl, 1988), also known
as directed acyclic graph (DAG) models or recursive graphical models (Evans, 2016; Kiiveri
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et al., 1984; Wermuth and Lauritzen, 1983), are a popular type of graphical models used
to represent conditional independence relations or causal relations among a set of variables.
They have been extensively studied and have found increasing applications in various fields,
including causal inference (Drton and Maathuis, 2017; Glymour et al., 2019; Heinze-Deml
et al., 2018; Pearl, 2009; Spirtes et al., 2001), machine learning (Xie et al., 2006; Yu et al.,
2019), and engineering (Cowell et al., 2007; Vila-Francés et al., 2013).

A BN is built upon a DAG, which is a tuple ~G = (V, ~E) consisting of a vertex set V
and a directed edge set ~E. Suppose XV is a random vector with its components indexed by
the vertices in V , and XV takes values in the product space XV ≡ ×v∈V Xv, where each Xv
is either a finite-dimensional vector space (e.g., the real line R) or a finite discrete space.
We use XA to denote a subvector of XV indexed by A(⊆ V ) with a range XA ≡ ×v∈AXv.
A distribution P over XV is compatible with ~G (or factorizes according to ~G) if it can be
written as

P (XV ) =
∏
w∈V

P (Xw|Xpa~G(w)
). (1)

In words, for any component Xw in XV , its conditional distribution depends only on the
subvector Xpa~G(w)

, indexed by the parent set pa ~G(w) of w in ~G. A BN is a pair consisting

of a DAG ~G and a distribution family P(~G), denoted by B = (~G,P(~G)), such that any
distribution within P(~G) is compatible with ~G. The graph ~G is known as the I-map of P(~G),
which means that the conditional independencies among the components in XV (under any
distribution within P(~G)) hold whenever the corresponding d-separation assertions among
the vertices in V are true in ~G.

Motivations. A BN is usually exploited to perform efficient joint distribution inference,
using the conditional independence structure to reduce the number of parameters and lower
computational complexity. In various applications of BNs, a key task is conditional infer-
ence. However, developing systems that can respond efficiently and accurately to conditional
queries is a challenging research problem.

In practice, data is often only available from a conditional distribution rather than a
joint distribution. For instance, when analyzing the location of bullet holes on fighter jets
returning from the battlefield, the analysis is conditioned on the fact that the aircraft was
not shot down. In medical diagnosis data analysis, the collected data exclusively pertains to
individuals who have sought medical care, while those who have not received medical atten-
tion are not observed. Similarly, conducting social surveys at universities is conditioned on
the fact that the respondents have attended the university. These examples underscore the
importance of adapting BNs to accurately answer probabilistic queries in such conditional
settings.

In addition, even in cases where data is available from the joint distribution, a BN system
may face frequent probability queries regarding a specific subpopulation. For example, when
studying specific subgroups, such as males or females aged 25 to 35 years, we can generate
numerous related queries regarding the probability of certain diseases after observing several
specific symptoms. These diseases and symptoms can be selected in various combinations,
representing subsets of all the possible conditions and symptoms. Adapting BNs for efficient
and accurate computation in these scenarios is crucial for handling such subpopulation-
specific queries.
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Furthermore, we are also interested in conditional queries in the presence of do-intervention
in a causal BN. The do-intervention, denoted as do(XA = xA), refers to an action of set-
ting the random vector XA to a specific value xA, overriding the probabilistic mechanisms
of XA defined by the original BN via Equation (1). For a detailed distinction between
conditioning and intervention, refer to Glymour and Meek (1994), Koller and Friedman
(2009, pp.1009–1010), Pearl (2009) and Hitchcock (2016). Specially, we are interested in
the conditional intervention distribution P (XR\A|do(XA = xA), XC = xC), which corre-
sponds to the post-interventional conditional distribution of XR\A given XC = xC (Tian,
2004; Shpitser and Pearl, 2006; Kivva et al., 2023). Essentially, this concerns condi-
tional inferences on the intervened DAG. After performing do-intervention, we can view
P (xV \A|do(XA = xA)) as a “joint distribution” over XV \A of the DAG ~GV \A. Our goal is

to perform further conditional inference based on the intervened BN with DAG ~GV \A and
distribution P (xV \A|do(XA = xA)).

Conditional queries in the presence of do-interventions are also of practical relevance.
The following example is based on the one presented in Koller and Friedman (2009). If a
patient takes a specific medication and subsequently develops coughing symptoms, what is
their chance of recovery? This question can be formulated as the conditional probability
P (XH | do(XM = xM ), XC = xC), where XH represents the patient’s health status, XM =
xM indicates that the patient has taken the medication, and XC = xC reflects the presence
of coughing symptoms. It is important to note that this query differs from P (XH | XM =
xM , XC = xC). For example, patients who choose to take medication on their own may
tend to be more health-conscious and thus have a generally higher likelihood of recovery. As
a result, P (XH | XM = xM , XC = xC) may overestimate the chances of recovery compared
to P (XH | do(XM = xM ), XC = xC), which isolates the effect of the intervention.

Solution via the Minimal I-map. Unlike the common approach of calculating condi-
tional distributions using the ratio of joint and marginal distributions, we construct a new
BN for efficient conditional inference based on the notion of a minimal I-map (Pearl, 1988;
Koller and Friedman, 2009). Suppose V is partitioned into two subsets R and C, and we
have the corresponding XR and XC as subvectors of XV . It is well known that conditioning
on XC tends to induce dependence among the random components in XR. This means ~GR
is generally not a valid I-map for the conditional distribution P (XR|XC = xC), where ~GR
is the subgraph of ~G induced by removing the vertices in C and the related edges. We aim
to construct a DAG ~G∗R over R that encodes all induced dependencies for P (XR|XC = xC),

allowing for redundancy but ensuring that none are omitted. The DAG ~G∗R is constructed

by adding a minimal set of directed edges to the original subgraph ~GR, rendering ~G∗R as a
minimal I-map for the conditional distributions of the BN B. For the conditional model of
a causal BN over XV , this approach retains as much conditional independence information
as possible to improve the efficiency of conditional inference, while maintaining the original
causal interpretability. To distinguish the added non-causal edges from the original causal
edges, we use dashed arrows to represent the added non-causal edges, and solid arrows to
represent the original causal edges.

Our exploration of the minimal I-map is accompanied by our examination of the closure
properties of BNs under conditioning. Let P(~G)C denote the collection of conditional
distributions P (XR|XC = xC) computed from any P ∈ P(~G). Due to changes in the
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dependence structure, the pair (~GR,P(~G)C) generally does not form a BN, indicating that
the original BN B is not closed under conditioning on XC . In this work, we investigate
the conditions under which B is closed under conditioning. In scenarios where B is not
closed, we propose to redirect our focus to another BN over XR, B∗R = (~G∗R,PC(~G∗R)),

where ~G∗R is the minimal I-map and PC(~G∗R) encompasses all conditional distributions

P (XR|XC = xC) that are compatible with ~G∗R. To address statistical inference for P(~G)C ,
practitioners can employ efficient inference techniques suitable for the constructed BN B∗R.

Due to the inclusion relationship P(~G)C ⊆ PC(~G∗R), the procedure leads to accurate and

consistent inference results for any distribution within P(~G)C .

Illustrative Example. We illustrate the utility of the DAG minimal I-map on conditional
probability queries through the example below, which serves purely for demonstration pur-
poses. In the example, the number of vertices in ~G is small and XC is univariate. More
complicated examples are provided in Section 7 to demonstrate the effectiveness of our
proposed algorithm and theoretical results. In some scenarios, for A,B,C as disjoint sub-
sets of V (B is possibly empty), we are interested in computing the conditional probability
P (XA|XB, XC = xC), for some fixed xC and varying values of XA, XB. The standard
approach is based on the following conditional formula:

P (XA|XB, XC = xC) =
P (XA, XB, XC = xC)

P (XB, XC = xC)
, (2)

where the marginal distribution of the denominator on the right hand side is computed by
applying existing procedures to the original BN B = (~G,P(~G)), e.g., see Chapters 9–10
of Koller and Friedman (2009). This can be computationally challenging, especially when
the dimensionality of the related variables is relatively high (see Section 7 for details).
Fortunately, finding the minimal I-map and constructing the BN B∗R = (~G∗R,PC(~G∗R)) help
compute P (XA | XB, XC = xC). This is because we can exploit the structure of B∗R for
efficient and accurate computation. Here, we illustrate it using an example based on the
one presented in Druzdzel and Dı́ez (2003).

Example 1 Consider an expert system whose DAG, shown in Figure 1(a), has been con-
structed for two diseases D1, D2, three symptoms S1, S2, S3 and a vertex variable H indi-
cating whether a patient is admitted to the hospital. We aim to construct a decision system
for patients admitted to the hospital (XH = 1). Based on our algorithm (see Section 5.5),
we find a minimal I-map ~G∗R for the remaining vertices R = {D1, D2, S1, S2, S3} as shown

in Figure 1(b). For the new BN B∗R = (~G∗R,PC(~G∗R)), any member within P(~G)C factors

according to the minimal I-map ~G∗R (see our Theorem 19):

P (XD1 , XD2 , XS1 , XS2 , XS3 |XH = 1)

= P (XS1 |XD1 , XS2 , XS3 , XH = 1)P (XS2 |XD1 , XS3 , XH = 1)

× P (XS3 |XD2 , XH = 1)P (XD1 |XS3 , XH = 1)P (XD2 |XH = 1). (3)

We can estimate each factor on the right side of (3) based on the data collected from the
hospitalized patients. Instead of (2), P (XD1 , XD2 , XS1 , XS2 , XS3 |XH = 1) can be evaluated
more efficiently based on the factorization (3). Other conditional probability queries can

4



DAGs as Minimal I-maps for Conditional Models of Causal BNs

also be computed efficiently. Consider, for example, the conditional query

P (XD1 , XD2 |XS1 , XS2 , XS3 , XH = 1) =
P (XD1 , XD2 , XS1 , XS2 , XS3 |XH = 1)

P (XS1 , XS2 , XS3 |XH = 1)
.

To compute the marginal distribution in the above denominator, we can employ the existing
procedure for the new BN B∗R = (~G∗R,PC(~G∗R)).

S1
S2

H

D1

S3

D2

(a)

S1
S2

D1

S3

D2

(b)

Figure 1: (a) The causal DAG ~G related to diseases D1, D2 with H conditioned on; (b) A
minimal I-map ~G∗R of P (XD1 , XD2 , XS1 , XS2 , XS3 |XH = 1) obtained from ~G in
(a) by our algorithm.

Our Contributions. In this work, we approach the conditional inference of a BN B =
(~G,P(~G)) via a DAG minimal I-map. The minimal I-map ~G∗R identifies a minimal set of
edges for potential dependence structure change of P (XR|XC). The statistical inference
for P (XR|XC) is facilitated by the constructed BN (~G∗R,PC(~G∗R)), where PC(~G∗R) is a set
of conditional distributions over XR. Druzdzel and Dı́ez (2003) considered the topic when
XC is univariate. The current work considers a multivariate conditional vector XC , and is
a more systematic investigation from both algorithmic and theoretical perspectives. Our
contributions are fourfold as follows:

• We examine the closure property of a BN under conditioning in Section 4. An efficient
algorithm is developed to check the closure property of a BN in Section 4.1. Equiva-
lent characterizations of the closure property are derived from several perspectives in
Section 6.

• We introduce a concept called minimal filling edge set, and connect it with the minimal
I-maps for the conditional distributions of BNs in Section 5.2. We further characterize
the minimal filling edge set by vertex pairs called terminal connecting pairs. These
pairs can be found by applying a converging vertex sweeping operator to the paths.
See Section 5.4 for details.

• We develop a low-order polynomial time complexity algorithm to identify minimal I-
maps in Section 5.5. For a sparse causal DAG, the algorithm has linear computational
complexity.
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• In Section 5.3, we discuss the benefits of employing the minimal I-map ~G∗R, especially
using graphical criteria to determine whether knowledge or data sets from different
sources can be safely combined into the conditional model. We use simulation studies
to demonstrate the advantages of employing a DAG minimal I-map to conduct condi-
tional inference. Simulation studies also shows its advantages in repeated conditional
queries with different conditioning sets and conditional inference in the presence of
do-intervention. For more details, refer to Section 7.

Related Works. In the literature, various methods exist for capturing the conditional
independence structure of a BN under conditioning. A commonly used method involves
moralizing DAGs into undirected graphs (UGs) that are closed under conditioning (Lau-
ritzen, 1996). Alternatively, extended graph classes such as summary graphs (Cox and
Wermuth, 1996; Wermuth, 2011), MC graphs (Koster, 2002), ancestral graphs (Richardson
and Spirtes, 2002), and chain mixed graphs (Sadeghi, 2016) have been explored. These
classes incorporate various types of edges, not just directed edges. Although one can find
an optimal graph representation of the conditional model of a given BN from these graph
classes in their own frameworks, these graph classes often lack straightforward parameteri-
zations of their associated distributions, which complicates quantitative inference. This is a
significant drawback, because a primary goal of studying graphical models is to effectively
address distribution-related problems.

Compared with the above, our approach to modifying the original DAGs to obtain DAG
minimal I-maps offers several advantages. First, a BN has a relatively simpler definition of
the Markov property than other graphical models, as its joint distribution can be factored
into a series of local conditional distributions for individual variables, rather than potential
functions. Second, the number of parameters required to describe a BN grows linearly
with the size of the local conditional distributions, while that of the joint distribution itself
increases exponentially. Luckily, a more detailed representation of the local conditional
distributions, such as noisy-or models (Peng and Reggia, 1986), soft CPD (Lerner et al.,
2001), tree-CPDs (Boutilier et al., 1996), DAG-structured CPDs (Chickering et al., 1997),
and neural networks (Monti and Cooper, 1996), can achieve further savings.

A Remark on the Prerequisite. In this work, a prerequisite is that the original DAG
~G over all variables is known. Our analysis focuses on the structural changes among the
remaining variables after conditioning on a subset of random variables, and the minimal
I-map is obtained from ~G. In practice, the DAG ~G may be pre-established in scenarios
such as the one illustrated in Example 1. It is either hypothesized or constructed based
on expert knowledge. Our proposed method is also relevant when the entire BN B has
been estimated, but there is interest in constructing a new BN B′R for efficient conditional
computation. For example, a system may encounter frequent probability queries regarding
a specific subpopulation. In these scenarios, our algorithm aids in identifying the minimal
I-map ~G∗R from the original ~G, and facilitates further statistical inference (see Section 7 for
details).

For scenarios where the original DAG ~G is unavailable, it becomes compelling to estimate
the minimal I-map ~G∗R directly from data sets collected under specific conditions (i.e., where
XC = xC). Exploring BN structure learning from the data affected by selection bias is a
promising direction for future research. For further discussion, see Section 8.
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The remainder of this paper is organized as follows. Section 2 reviews the notations and
terminologies of DAGs. Section 3 introduces several concepts related to a BN, its minimal
I-map and conditional model. Section 4 studies the closure of a BN under conditioning
and its equivalent characterizations. In Section 5, we examine the DAG minimal I-map
when a BN is not closed under conditioning. Its equivalent characterizations and an effi-
cient algorithm for its identification are developed. Section 6 proposes additional equivalent
characterizations for the closure of a BN under conditioning. Section 7 demonstrates the
benefits of performing conditional inference using a DAG minimal I-map through simula-
tions. Finally, we conclude with a discussion in Section 8, and provide technical proofs and
additional results in the appendices. A table of notations introduced in this work can be
found in Appendix A.

2. Review of Directed Acyclic Graph

In this section, we review the basic concepts and notations for DAGs. Interested readers
can refer to Neapolitan (2004) for a comprehensive introduction to this topic. A DAG
~G = (V, ~E) is characterized by its set of vertices V and its set of directed edges ~E. This
structure is defined such that there are no directed cycles; that is, it is impossible to start at
any vertex v ∈ V and follow a consistent directional path that eventually returns to v. We
employ (u, v) or u→ v to represent a directed edge from u to v. If (u, v) ∈ ~E or (v, u) ∈ ~E,

we say that u, v are adjacent in ~G, denoted by u
~G∼ v. Otherwise, we say that u, v are

nonadjacent in ~G, denoted by u
~G� v. We denote by ~GA = (A, ~EA) as an induced subgraph

of ~G = (V, ~E) over A, i.e., A ⊆ V and ~EA = ~E ∩ (A × A). The DAG ~G is assumed to be
simple throughout this work, which means that it has no multiple edges and self loops.

A topological order α of a DAG ~G = (V, ~E) is a mapping α from V to [p] such that
α(vi) < α(vj), if there exists an edge (vi, vj) in ~G, where [p] = {1, 2, . . . , p = |V |} and

i, j ∈ [p]. If all the directed edges in a DAG ~G represent directed causal relationships, we
call ~G a causal DAG. For a set F of edges, we use G+F to represent the graph (V, ~E ∪F ),
consisting of the original vertex set but with more edges included. If F consists of a single
edge (x, y), we simplify G+{(x, y)} to G+(x, y). Similarly, we use G−F and G− (x, y) for
the removal of edge(s) from G. To emphasize that we connect x and y by their topological
orders, we apply x

α∼ y to denote the newly added edge (x, y) if α(x) < α(y), and (y, x)
alternatively. It is evident that ~G+ x

α∼ y is also a DAG.
We define a path connecting x and y, denoted by lxy, as a sequence of distinct vertices

(x = v1, v2, . . . , vk−1, vk = y) such that vi → vi+1 or vi ← vi+1 for i = 1, 2, . . . , k − 1 in ~G.
The length of a path lxy is denoted by ρ(lxy), which is the number of edges contained in
it. In particular, a single vertex x is considered a path of length zero. We also represent a

path lxy as lxy = {x = v1
~G∼ v2

~G∼ · · ·
~G∼ vk−1

~G∼ vk = y} to emphasize that lxy is a path in
~G. We define V s(lxy) = {v ∈ V : {u → v → w} ⊆ lxy or {u ← v ← w} ⊆ lxy}, V d(lxy) =
{v ∈ V : {u← v → w} ⊆ lxy} and V c(lxy) = {v ∈ V : {u→ v ← w} ⊆ lxy}. We state that
V s(lxy), V

d(lxy), and V c(lxy) are the sets of the serial, diverging, and converging connection
vertices, respectively, on the path lxy. We use V o(lxy) = V s(lxy) ∪ V d(lxy) ∪ V c(lxy) to
represent the set of the interior vertices of lxy, and V (lxy) the set of all the vertices of lxy,
i.e., V (lxy) = V o(lxy) ∪ {x, y}. A path luv is a v-path if V c(luv) 6= ∅; otherwise we call it
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a trek (Sullivant et al., 2010). For a path lxy = (x = v1, v2, . . . , vk−1, vk = y) in ~G, if it
satisfies vi → vi+1 for i = 1, 2, . . . , k − 1, we refer to it a directed path or an s-path from x
to y in ~G, denoted by ~lxy. The path lxy is called an o-o path if x→ v2 and vk−1 ← y. Here
“o” represents the outgoing direction of x or y on the path lxy.

We define the sets of parents, children, ancestors, descendants and non-descendants of
a vertex u in ~G as follows

pa ~G(u) = {w ∈ V \ u : (w, u) ∈ ~E}, ch ~G(u) = {w ∈ V \ u : (u,w) ∈ ~E},

an ~G(u) = {w ∈ V \ u : ∃ ~lwu in ~G}, de ~G(u) = {w ∈ V \ u : ∃ ~luw in ~G},
nd ~G(u) = {w ∈ V \ u : w /∈ de ~G(u)}.

For a subset A ⊆ V , we define the sets of parents and ancestors of A in ~G to be pa ~G(A) =⋃
u∈A pa ~G(u) \ A and an ~G(A) =

⋃
u∈A an ~G(u) \ A, respectively. Further, we use An ~G(A)

to denote an ~G(A) ∪ A. We say that a vertex u is a root vertex in ~G if pa ~G(u) = ∅, and a

set of vertices A is a root set in ~G if pa ~G(A) = ∅.

3. Bayesian Network, Its Minimal I-map and Conditional Model

Recall that a BN B = (~G,P(~G)) consists of a DAG ~G and a distribution family P(~G) that is
compatible with ~G (see (1)). Suppose A,B, and S as pairwise disjoint subsets of V , the two
sets A and B are d-separated by S in ~G if and only if every path lab connecting any a(∈ A)
and any b(∈ B) in ~G is blocked by S, i.e., (V s(lab)∪ V d(lab))∩S 6= ∅ or V c(lxy) * An ~G(S).

For any distribution P over XV , we define

I(P ) = {〈U,W |S〉 : XU |= XW |XS [P ] with pairwise disjoint subsets U,W,S ⊆ V }

as the set of triplets 〈U,W |S〉 such that XU and XW are conditionally independent given
XS under P . If P ∈ P(~G), the corresponding conditional independence relations in P hold
whenever the d-separation assertions are true in ~G.

Based on the d-separation assertions, we define the independence model induced by the
DAG ~G as follows:

Definition 1 (Independence model) The independence model induced by ~G is the set

I(~G) = {〈U,W |S〉 : U |= W |S[~G] with pairwise disjoint subsets U,W,S ⊆ V },

where U |= W |S[~G] denotes that U,W are d-separated by S in ~G.

For a BN B = (~G,P(~G)) and P ∈ P(~G), it holds that I(~G) ⊆ I(P ) (Lauritzen, 1996).
This means that for any P ∈ P(~G), we can read the conditional independence relations
in P from the d-separations in ~G. Consequently, the DAG ~G is called an I-map of P(~G).
In fact, ~G is recognized as a minimal I-map for the entire distribution family P(~G) (Pearl
et al., 1989).

Definition 2 (Pearl, 1988) Let ~G = (V, ~E) be a DAG and P be a family of probability
distributions over XV . The graph ~G is called a minimal I-map of P if ~G is an I-map,
though ~G− (x, y) is not an I-map of P for any (x, y) ∈ ~E.
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The property of ~G being a minimal I-map for P(~G) implies that the removal of any
edge from ~G induces a conditional independence relation that does not align with at least
one distribution within P(~G). Consequently, I(~G) serves as an optimal representation of
the independence structure encapsulated by P(~G). When a specific distribution P ∗ ∈ P(~G)
exists such that I(~G) = I(P ∗), P(~G) is known to be faithful to ~G. This faithfulness indicates
a precise correspondence between the structural dependencies in ~G and the dependence
relations observed in some P ∗ ∈ P(~G).

When a BN B = (~G,P(~G)) is conditioned on a subvector XC of XV , both its distribution
model P(~G) and independence model I(~G) are altered. To study the changes due to
conditioning, we define their conditional counterparts.

Definition 3 (Conditional distribution model) Let B = (~G,P(~G)) be a BN with a
DAG ~G = (V, ~E), and let C be a subset of V . The conditional distribution model (CDM)
P(~G)C of P(~G) consists of all conditional distribution P (XV \C |XC = xC), where the dis-
tribution P (XV \C |XC) is determined by the following relation∫

F
P (XV \C ∈ E|xC)dP (xC) = P (XV \C ∈ E,XC ∈ F ) for some P ∈ P(~G),

for any measurable subsets E and F of XV \C and XC , respectively.

In the rest of this work, we use R to represent V \ C, i.e., R ≡ V \ C. For two disjoint
subsets A,B ⊆ R, we will use the shorthand notation PC(XA|XB) ≡ P (XA|XB, XC = xC)
to represent the conditional distribution P (XA|XB, XC = xC) for some fixed xC ∈ XC , if
no confusion arises. Specifically, PC(XR) ≡ P (XR|XC = xC).

Definition 4 (Conditional independence model) Let ~G = (V, ~E) be a DAG and C
be a subset of V . We define I(~G)C as the conditional independence model (CIM) of the
independence model I(~G) under conditioning on C, i.e.,

I(~G)C =
{
〈U,W |S〉 : U |= W |(S,C)[~G] with pairwise disjoint subsets U,W,S ⊆ R

}
.

We can compare I(~G)C with I(~GR). The latter is the (unconditional) independence
model induced by the subgraph ~GR. Obviously, it holds that I(~G)C ⊆ I(~GR), while the
converse is not true. Meanwhile, we can consider the relationship between the CDM P(~G)C

and the CIM I(~G)C , which is entailed by Proposition 5 below.

Proposition 5 (Lossless representation) Let B = (~G,P(~G)) be a BN with a DAG ~G =
(V, ~E). Suppose that P(~G) is faithful to ~G. For any subset C of V , we have

(a) I(~G)C ⊆ I(PC) for all PC ∈ P(~G)C ;

(b) there exists a conditional distribution PC ∈ P(~G)C such that I(~G)C = I(PC).

9
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Remark 6 The concept of faithfulness is originally defined for the purpose of causal infer-
ence (Pearl, 1988; Spirtes et al., 2001), which is a key property in both structure learning
and estimation procedures for graphical models. It is known that there are distributions that
are faithful to the DAG concerned for discrete and normal distributions according to Meek
(1995). In general, we can also determine the validity of the faithfulness assumption to a
DAG for an arbitrary distribution by applying Corollary 34 in Sadeghi (2017).

When P(~G) is faithful to ~G, Proposition 5 implies that the conditional independence
model I(~G)C continues to maintain the property of being an optimal representation of the
conditional independence relations described by distributions within P(~G)C . This rela-
tionship parallels that of their unconditional counterparts, where I(~G) acts as the optimal
representation for the conditional independence structure of distributions within P(~G).

Although I(~G)C is an optimal representation of the conditional independence structure
of the distributions within P(~G)C , it may not be intuitive for us to understand I(~G)C since
its d-separation assertions may not be readily read off from some DAG over R. One may
attempt to use ~GR as a minimal I-map of P(~G)C . However, it is possible that I(~G)C ⊆
I(~GR) with strict inclusion, which means that the subgraph ~GR can fail to serve as a
minimal I-map of P(~G)C in general. We explore the conditions under which ~GR maintains
a minimal I-map of P(~G)C in Section 4. Additionally, when ~GR fails to meet the criteria
of being a minimal I-map for P(~G)C , we investigate the modifications required to satisfy
this criterion in Section 5.

4. Closure of Bayesian Network under Conditioning

In this section, we begin by introducing a few concepts of closure for a BN under condition-
ing, and then explore their equivalent characterizations. An algorithm to determine their
closure is proposed and a special case is studied when the conditioning set C is a root set.

We have discussed that, for a BN B = (~G,P(~G)) conditional on XC = xC for some
fixed xC , a distribution within P(~G)C may no longer be compatible with the corresponding
subgraph ~GR. We let PC(~GR) be the set of conditional distributions that are compatible
with ~GR. In general, it holds that PC(~GR) ⊆ P(~G)C (see Proposition 37). If the equality
holds, we say that P(~G) is closed under conditioning on C.

Definition 7 (Closure of a distribution model) Let B = (~G,P(~G)) be a BN with a
DAG ~G = (V, ~E), and C be a subset of V . The distribution model P(~G) is closed under
conditioning on C if P(~G)C = PC(~GR).

The concept of closure has several implications. First, we can see that (~GR,PC(~GR))
is a Bayesian network by the definition of a BN. If P(~G) is closed under conditioning, this
directly implies that (~GR,P(~G)C) also forms a BN. For scenarios such as that in Example 1,
if we know the closure property holds, we can safely conclude that there are no structural
changes among the remaining vertices caused by the operation of conditioning. Second, any
conditional distribution PC(xR) ∈ P(~G)C can be represented as

PC(xR) =
∏
w∈R

PC
(
xw|xpa~GR (w)

)
, (4)

10
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where the product is factored exactly according to the subgraph ~GR. As explained in
Section 1, the factorization (4) facilitates computation and parameter estimation (see Ex-
ample 1 and the discussion afterward).

We can also define the concept of closure for the conditional independence model I(~G)C .

Definition 8 (Closure of an independence model) Let ~G = (V, ~E) be a DAG and C
be a subset of V . We define that the independence model I(~G) is closed under conditioning
on C if I(~G)C = I(~GR).

In Section 3, we stated that it holds that I(~G)C ⊆ I(~GR) in general. The closure of
an independence model implies that the d-separation assertions within I(~G)C are exactly
those described by ~GR. By Proposition 5, under faithfulness, the closure of the independence
model I(~G) under conditioning implies that ~GR is a minimal I-map of P(~G)C .

A BN is closed under conditioning on C if both the conditional distribution model and
the conditional independence model are closed under conditioning.

Definition 9 (Closure of a Bayesian network) Let B = (~G,P(~G)) be a BN with a
DAG ~G = (V, ~E), and C be a subset of V . The BN B is closed under conditioning on
C if both P(~G)C = PC(~GR) and I(~G)C = I(~GR) hold.

For a BN, if P(~G) is faithful to ~G, the closure of P(~G) and the closure of I(~G) under
conditioning are equivalent.

Theorem 10 (Transformation theorem I) Let B = ( ~G,P(~G)) be a BN with a DAG
~G = (V, ~E) and C be a subset of V . Suppose that P(~G) is faithful to ~G. Then P(~G) is
closed under conditioning on C if and only if I(~G) is closed under conditioning on C, i.e.,

P(~G)C = PC(~GR)⇔ I(~G)C = I(~GR).

Remark 11 If I(~G)C = I(~GR), it becomes evident that P(~G)C is a subset of PC(~GR).
This is because ~GR serves as an I-map for P(~G)C . Furthermore, let NC = (C, ∅) be a null
graph over C and PC(NC) be the set of distributions that are compatible with NC . Then
we can choose a joint distribution as P (xR)P (xC) in P(~G), where P (xR) ∈ PC(~GR) and
P (xC) ∈ PC(NC). Because any probability distribution within PC(~GR) can be achieved by
conditioning on any value of XC , it follows that PC(~GR) is contained in P(~G)C .

Based on Theorem 10, rather than examining the distributions in P(~G), we can analyze
the graph ~G to verify the closure property under conditioning, which is more accessible.
Building on this insight, in the subsequent subsection, we develop several equivalent con-
ditions and propose an algorithm to aid practitioners in checking the closure property of a
BN.

4.1 Characterization by C-configuration

We continue to determine the equivalent conditions for I(~G)C = I(~GR). Recall in Exam-
ple 1 that, the non-closure of a BN can occur if the conditional vertex is a collider, i.e., it is
an interior vertex of a v-structure. How can we generalize these well-known results to general
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settings where the conditioning set C contains multiple vertices? Our investigation exam-

ines the set V(~G) of all v-structures in ~G, defined as V(~G) =
{
{x→ w ← y} ⊆ ~G : x

~G� y
}

.
Our key observation is that not only do v-structures with endpoints in V \ C matter, but
all v-structures with their colliders in An ~G(C) also play an important role. Specifically, we
refer to these v-structures as C-configurations.

Definition 12 (C-configuration) The conditioning configuration (C-configuration) with
respect to (w.r.t.) C in ~G is a v-structure in the set AV ~G(C), which is defined as

AV ~G(C) =
{
{x→ w ← y} ∈ V(~G) : x, y ∈ V \ C,w ∈ An ~G(C)

}
.

Note that in the above, w is in An ~G(C) whereas x, y are out of C. It is reasonable to
consider x, y in the outside of C, since conditioning on C can only change the structure
between the vertex pairs in V \C. Our next result verifies the equivalence between AV ~G(C)

being empty and the closure of the independence model I(~G) under conditioning.

Proposition 13 Let ~G = (V, ~E) be a DAG and C be a subset of V . The following state-
ments are equivalent:

(a) I(~G)C = I(~GR);

(b) for any x, y ∈ R with x
~G� y, there exists an S0 ⊆ R \ {x, y} such that x |= y|(S0, C)[~G];

(c) AV ~G(C) = ∅, i.e., there are no C-configurations in ~G.

It should be noted that the equivalence of (a) and (c) in Proposition 13 can be implied
from the existing work, see Borboudakis and Tsamardinos (2015), Richardson and Spirtes
(2002). The condition (b) is a characterization of (a) from the local d-separation viewpoint
of nonadjacent vertex pairs in ~GR.

Remark 14 It enjoys a clear rationale for the equivalence between AV ~G(C) being empty

and the closure of the independence model I(~G) under conditioning. Suppose that there
exists a C-configuration {x → w ← y} in ~G. Conditioning on C and any subset Z ⊆
V \ (C ∪ {x, y}), the nonadjacent vertex pair {x, y} cannot be d-separated in ~G. This
implies 〈x, y|Z〉 /∈ I(~G)C for any Z ⊆ V \ (C ∪ {x, y}). On the other hand, there exists a
subset Z0 ⊆ R\{x, y} (which is possibly empty) such that the nonadjacent vertex pair {x, y}
is d-separated in ~GR, which means 〈x, y|Z0〉 ∈ I(~GR). The above reasoning indicates that,
the existence of C-configurations in ~G leads to I(~G)C 6= I(~GR).

Remark 15 Proposition 13 indicates that the closure of an independence model can be
verified by examining whether AV ~G(C) = ∅ holds. According to Theorem 10, when the
faithful condition holds, the closure of an independence model implies the closure of the
corresponding BN under conditioning.

Based on Proposition 13 (c), we develop Algorithm 1 to check the closure of an indepen-
dence model under conditioning. Algorithm 1 iterates through all the vertices in AV ~G(C)
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and checks whether they form a v-structure. The algorithm has a complexity at most
O(m2|An ~G(C)|), where m is the maximal number of parents of every vertex in An ~G(C).

When ~G is a causal DAG, the number of parents of each vertex is usually small (therefore,
k is small) and our algorithm is linear in the number of ancestors of the conditioning set.
In general, the complexity of our algorithm is at most cubic in the number of ancestors of
the conditioning set.

Algorithm 1 Check the closure of an independence model under conditioning

Input: A DAG ~G = (V, ~E), a topological order α of ~G, and a subset C of V .
Output: Z = 0 if I(~G) is closed under conditioning on C; Z = 1 otherwise.
1: Initialize A = An ~G(C) and Z = 0;
2: for u ∈ A do
3: if pa ~G(u) \ C is not complete then
4: Z = 1 and break;
5: end if
6: end for
7: return Z.

4.2 Conditioning on a Root Set

For the simple case where C is a root set in the DAG of a BN B = (~G,P(~G)), it can be
demonstrated that the closure of B under conditioning on C, i.e., I(~G) and P(~G) are both
closed under conditioning on C. This result is presented in Proposition 16.

Proposition 16 Let B = (~G,P(~G)) be a BN with a DAG ~G = (V, ~E) and C be a subset of
V . If C is a root set in ~G, then

(a) I(~G)C = I(~GR);

(b) P(~G)C = PC(~GR).

It is worth noting that (a) in Proposition 16 can be derived directly from Proposition 13;
and if the faithfulness assumption is additionally imposed, (b) can be derived from Theo-
rem 10. We employ an alternative technical proof approach to remove the necessity of the
faithfulness assumption in Proposition 16.

Note that, when C is a root set in ~G, the corresponding conditional model is called
a conditional BN in Koller and Friedman (2009). Conditional BNs are useful in several
settings and can be used to define encapsulated conditional probability distributions, which
can significantly simplify the model from a cognitive perspective (Koller and Friedman,
2009; Langseth and Bangsø, 2001; Marella and Vicard, 2013; Mortera et al., 2013; Srinivas,
1994).

5. Minimal Filling Edge Set for Non-Closure Bayesian Network

In most practical applications, Bayesian networks are not closed under conditioning. In
scenarios where the closure property is not satisfied, ~GR is no longer a minimal I-map
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of P(~G)C . Our approach involves adding the fewest possible directed edges to ~GR to
transform it into a DAG minimal I-map of P(~G)C . In this section, we start with an
illustrative example to show how edges can be added. In Section 5.2, we formalize this
concept by defining the minimal filling edge set and demonstrate that this set leads to the
DAG minimal I-map. In Section 5.3, we discuss the benefits of the proposed DAG minimal
I-map for conditional inference of a BN. Some characterizations of the minimal filling edge
set are presented in Section 5.4. Finally, an efficient algorithm, termed reverse order search
(ROS) algorithm, is proposed to find the DAG minimal filling edge set in Section 5.5.

5.1 An Example for the Main Idea of Finding a Minimal I-map

We begin with a simple example to illustrate our main idea of finding a DAG minimal
I-map by adding new edges.

Example 2 Consider a causal BN B = (~G,P(~G)) with a causal DAG ~G = (V, ~E), as
shown in Figure 2. Let C = {e} ⊆ V . Suppose that we have two BNs (~G,P(~G)) and
(~GR,PC(~GR)). Then, we have the independence relation X{a,c} |= X{b,d} in the joint prob-

ability distribution P , for any P ∈ P(~G). However, given XC = xC , we have Xc |6= Xd

in some conditional distribution PC ∈ P(~G)C . This implies that ~GR is not an I-map of
P(~G)C . To maintain ~GR as an I-map of P(~G)C , we need to add a directed edge (c, d) into
~G, while keeping the existing directed edges unchanged. However, this operation introduces
a new incompatibility Xb |6= Xc[P

C ] for some PC ∈ P(~G+(c, d))C . Therefore, it is necessary
to add a directed edge (b, c) into ~G+ (c, d). Similarly, we need to add a directed edge (a, b)
into ~G + (c, d) + (b, c). Let ~G

′
= ~G + (c, d) + (b, c) + (a, b). We can verify that ~G

′
R is a

minimal I-map of P(~G)C under the faithfulness assumption.

The procedure in Example 2 is in fact the process of eliminating C-configurations in
~G. Recall from Proposition 13 that I(~G)C = I(~GR) if and only if AV ~G(C) = ∅. This

means that the existence of C-configurations in ~G leads to the “wrong representation” of
the conditional independence relations for some conditional distribution PC ∈ P(~G)C . To
eliminate the “wrong representation”, we add edges between the endpoints of every C-
configuration in ~G. Given a topological order α, the edge directions can be assigned such
that each edge points toward the vertex with a higher topological order. Meanwhile, after
each directed edge being added into ~G, there may emerge new C-configurations. Thus, we
need to add more edges recursively until there are no C-configurations in the final DAG.

5.2 Minimal Filling Edge Set

Based on the discussion in the previous subsection, we can see that a set of edges can be
added to eliminate C-configurations in the final DAG. We refer to the set of minimally
added edges as the minimal filling edge set. In the following, we formalize the concept of
minimal filling edge set and then examine its relationship with minimal I-map.

Given a DAG ~G with a topological order α, we define ~Eαc (R) = {x α∼ y : x, y ∈ R, x
~G� y}

to be the complementary set of ~E(~GR) with respect to a complete graph ~KR including ~GR,
i.e., ~KR = ~GR + ~Eαc (R).

14



DAGs as Minimal I-maps for Conditional Models of Causal BNs

a

c d

b

e

~G

a

c d

b

e

~G
′

Figure 2: In the left part, ~G is a causal DAG over V = {a, b, c, d, e} with a topological order
α such that α(a) < α(b) < · · · < α(e), and C = {e} ⊆ V . Under faithfulness,
the DAG ~G

′
R (in the right part) is obtained by adding edges to ~GR such that

~G
′
R is a minimal I-map of P(~G)C while keeping the existing directed edges in ~G

unchanged.

Definition 17 (Minimal filling edge set) Let ~G = (V, ~E) be a DAG with a topological
order α, and C be a subset of V . The edge set 4α

~G
(R) (⊆ ~Eαc (R)) is called a minimal

filling edge set of ~GR with respect to (w.r.t.) α if it satisfies that for any nonadjacent
vertices x, y in ~G, x

α∼ y ∈ 4α
~G
(R) ⇔ x, y are the endpoints of a C-configuration w.r.t. C

in ~G+4α
~G
(R)− x α∼ y.

Definition 17 formalizes the added edges in Example 2. Our intention is to “moral-
ize” the parents by iteratively adding directed edges between the two endpoints of the
C-configurations under the acyclic constraint, until no C-configurations remain in the final
DAG ~G+4α

~G
(R). Indeed, we can verify the close relationship between the minimal filling

edge set and minimal I-map.

Theorem 18 (Transformation theorem II) Let B = (~G,P(~G)) be a BN with a DAG
~G = (V, ~E) and C be a subset of V . Suppose that P(~G) is faithful to ~G and 4α

~G
(R) ⊆ ~Eαc (R),

where α is a topological order of ~G. Then ~GR +4α
~G
(R) is a minimal I-map of P(~G)C if

and only if 4α
~G
(R) is a minimal filling edge set of ~GR w.r.t. α.

Theorem 18 presents an equivalent characterization for a DAG minimal I-map of P(~G)C .
This implies that, under faithfulness, finding a DAG minimal I-map for P(~G)C by adding
edges in ~GR is equivalent to finding a minimal filling edge set 4α

~G
(R). This result is of

significance. Finding a DAG-minimal I-map for the conditional distribution model P(~G)C

is challenging, as it requires analyzing all conditional distributions within P(~G)C and sys-
tematically mapping their independence relations to a corresponding graph structure. On
the other hand, finding a minimal filling edge set is much more intuitive and operable by
looking into the graph structure alone. Theorem 18 establishes the link between the task
of finding a minimal I-map and that of finding a minimal filling edge set.
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5.3 Benefits of DAG Minimal I-map

In Section 3, we discuss the various advantages of BNs being closed under conditioning.
When a BN is not closed under conditioning, our proposal is to identify a minimal filling
edge set 4α

~G
(R) and to construct ~GαR = ~GR +4α

~G
(R) as a DAG minimal I-map for P(~G)C .

This approach offers practical benefits similar to those observed when BNs are closed under
conditioning.

First, even if the original BN B = (~G,P(~G)) is not closed under conditioning, we can
shift our analysis to the BN Bα = (~Gα,P(~Gα)), where ~Gα = ~G+4α

~G
(R). In fact, we know

that ~Gα is a DAG which has fewest edges added to satisfy that ~G ⊆ ~Gα and that I(~Gα)
is closed under conditioning on C (see Corollary 43 in Appendix D.1). Since P(~G)C ⊆
P(~Gα)C = PC(~GαR), practitioners can employ existing efficient inference procedure for the

BN (~GαR,PC(~GαR)), which are applicable to the conditional model P(~G)C due to the inclusion

relationship. Furthermore, the induced BN (~GαR,PC(~GαR)) itself can also be used for the
efficient computation of conditional probabilities, as shown in Theorem 19.

In addition, when developing medical diagnostic systems in independently conducted
projects or other similar scenarioes, a causal graph is typically constructed based on expert
knowledge, and the parameters are obtained from data, textbooks, and expert estimates.
As the data in practice is often from a conditional distribution/subpopulation, we are
interested in profiting from the subpopulation data for parameter estimation. The BN BαR =

(~GαR,PC(~GαR)) offers a powerful framework for integrating evidence from different sources
(Druzdzel and Dı́ez, 2003; Flores et al., 2011; Lappenschaar et al., 2013; Yet et al., 2014).
This capability is crucial for improving the accuracy of parameter estimation by combining
data from different sources, especially for the cases where each source (subpopulation) has
a small sample size.

The next result indicates that: 1) the conditional probabilities within P(~G)C can be
factored as a product of the local conditional probabilities according to the graph structure
of ~GαR, and 2) how the minimal I-map ~GαR provides graphical criteria to determine whether
knowledge or data sets from different sources can be safely combined into the conditional
distribution model PC(~GαR).

Theorem 19 Let B = (~G,P(~G)) be a BN with a DAG ~G = (V, ~E) and C be a subset of V .
Suppose that P(~G) is faithful to ~G. Let ~Gα = ~G+4α

~G
(R) and ~GαR = ~GR +4α

~G
(R), where α

is a topological order of ~G and 4α
~G
(R) is the minimal filling edge set of ~GR w.r.t. α. Then

we find

(a) ∀PC ∈ P(~G)C , it holds that PC(xR) =
∏
w∈R P

C(xw|xpa~Gα
R
(w));

(b) ∀PC ∈ P(~G)C , it follows that

PC(xR) = φC(xA)×
∏

w∈R\(an~G(C)∪ch~G(C))

P (xw|xpa~GR (w)),

where φC(xA) =
∏
w∈an~G(C)∪ch~G(C) P (xw|xpa~Gα (w), xC∩deo~Gα (w)) and deo~Gα(w) = {u ∈

V \ w : ∃ ~lwu ⊆ ~Gα, s.t. V o(~lwu) ∩ C = ∅}.
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Theorem 19 provides valuable insights by using the structural information of conditional
distributions. First, result (a) shows that one can obtain the conditional distribution of
interest without relying on the joint distribution. This is important as what we are interested
in is conditional probability query, rather than the joint probability query.

Result (b) of Theorem 19 provides graphical criteria for determining whether knowledge
or data sets from different sources can be safely combined into the conditional distribution
model PC(~GαR). This capability is crucial for enhancing the efficiency of model parameter
estimations across diverse applications. Specifically, the local conditional parameters in
{P (xw|xpa~GR (w)) : w ∈ R\ (an ~G(C)∪ch ~G(C))} are not affected by conditioning on XC and

can be estimated by combining conditional data sets that share same structure but have
different setting values of conditional random vector XC . Similarly, the local conditional
parameters in {P (xw|xpa~Gα (w), xC∩deo~Gα (w)) : w ∈ an ~G(C) ∪ ch ~G(C)} can be estimated by

combining conditional data sets that share same structure but have different setting values
of Xpa~Gα

R
(w), in the context XC∩pa~Gα (w) = xC∩pa~Gα (w) and XC∩deo~Gα (w)

= xC∩deo~Gα (w)
,

which still has more samples than that in the context of XC = xC .
When ~G is a causal DAG, our approach has a particular benefit of retaining the original

causal interpretability as much as possible, because we find a DAG minimal I-map of P(~G)C

under the constraint of keeping the existing directed edges in the original DAG unchanged.
For scenarios such as that in Example 1, our approach can help researchers to identify a
minimal number of potential structure changes due to selection bias. Our aim is to find
a DAG minimal I-map of the conditional model of a causal BN by adding directed edges,
and the added edges generally do not have a causal interpretation.

5.4 Characterizing Minimal Filling Edge Set by Terminal Connecting Pair

This section characterizes the minimal filling edge set from the perspective of paths in the
graph ~G. Our main idea is to develop an operator called the converging vertex sweeping
operator, which maps a path into a union of representation paths. Adding the new edges of
the representation paths to the original graph helps eliminate v-structures on the graph. By
repeatedly applying the operator to a specific set of paths, we identify a set of vertex pairs
called terminal connecting pairs. It turns out the terminal connecting pairs are exactly the
vertex pairs to be connected for the minimal filling edge set.

5.4.1 Representation path

Consider a DAG ~G = (V, ~E) with a topological order α, and a path lxy = (v1, v2, . . . , vk)

in ~G. Based on the diverging connection vertices V d(lxy) = {d1, d2, . . . , dm} along the path
lxy, we can split the path lxy into several subpaths:

lxy = (x = d0, . . . , d1, . . . , dm, . . . , dm+1 = y) =

m⋃
i=0

ldidi+1
, (5)

Note that if V d(lxy) = ∅, we let m = 0. For simplicity, we call a path luv a unit path in ~G if

luv is an s-path or an o-o path with |V c(luv)| = 1 in ~G. Obviously, each subpath ldidi+1
in (5)

is a unit path in ~G (for i ∈ {0, 1, 2, . . . ,m}). From these discussions, we can see that a path
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in ~G can be split into several unit paths. For each unit path, we define its representation
path as follows.

For a unit path luv in ~G, let

∼
V (luv) =

{
V (luv) \ {u} if α(u) < α(v),

V (luv) \ {v} if α(v) < α(u),

and define w = arg min
z∈

∼
V (luv)

{α(z)} as the representation vertex of luv. Without loss of

generality we assume that α(u) < α(v); otherwise, in the subsequent procedure, we can
simply swap the positions of “u” and “v”. If w is an interior vertex of luv, we define the
representation path lruv of the unit path luv as

lruv ≡ ~luw ∪~lwv.

In the above equation, ~luw and ~lwv are defined as follows. If luv is an s-path in ~G, ~luw and
~lwv are both simply the original subpaths of luv split by w. If luv is not an s-path in ~G, ~luw is
exactly the original subpath of luv and ~lwv is a newly added edge “w → v”. Taking the path
lv1v5 = (v1, v3, v7, v6, v5) in ~G (as shown in Figure 3) for an example, we can verify that the
representation vertex of lv1v5 is v3, and hence lrv1v5 = ~lv1v3 ∪ (v3, v5) = (v1, v3) ∪ (v3, v5) =
(v1, v3, v5), where (v3, v5) is a newly added edge.

Consider the case when the representation vertex w is one of the two endpoints of the
path luv. Again, without loss of generality, we assume α(u) < α(v) and it follows w = v.
We define ~lvv = (v, v) as a degenerate directed edge or a degenerate path of length zero.
Then we specify that ~luv ∪ (v, v) ≡ ~luv. In this case, luv = lruv = ~luv represents the original
s-path.

5.4.2 Sweeping operator

We now define the converging vertex sweeping operator T for a path lxy in ~G. Based on
the path split in (5), T maps each unit path ldidi+1

to its representation path lrdidi+1
, and

T (lxy) is the union of these representation paths.

Definition 20 (Sweeping operator) Suppose that ~G = (V, ~E) is a DAG with a topologi-
cal order α. For any path lxy =

⋃m
i=0 ldidi+1

in ~G, we define the (converging vertex) sweeping
operator T as

T (lxy) =

m⋃
i=0

T (ldidi+1
) =

m⋃
i=0

lrdidi+1
.

Furthermore, we define T k(lxy) = T (T k−1(lxy)) for any integer k ≥ 1, where T 0(lxy) = lxy.

By the definition of the sweeping operator, T maps a trek lxy to itself, i.e., T (lxy) = lxy
if lxy is not a v-path. In other words, T is not an identical mapping for v-paths only.

For a path lxy in ~G, we can see that V (T k(lxy)) ⊆ V (lxy) and ρ(T k(lxy)) ≤ ρ(lxy) for

any integer k ≥ 0. Given a topological order α of ~G, there exists a minimum integer
N0 ≥ 0 such that V c(T N0(lxy)) = ∅, for any path lxy in ~G. Equivalently, we have N0 =
min{j : T j(lxy) = T j+1(lxy)}. We denote T N0(lxy) by T ∞(lxy) for simplicity in the rest
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of the text. In other words, by repeated applications of T on lxy, we get a path l∗xy with
V c(l∗xy) = ∅. On the whole graph level, if we repeatedly apply the operator to each path

lxy in ~G, no v-structures remain in the finally obtained DAG ~G
′

= ~G + ~E∗, where ~G
′

has

the edges added from all possible representation paths ~E∗ =
{

(u, v) ∈
⋃
a,b∈V Zab : Zab =⋃N0

k=1
~E(T k(lab))\ ~E, lab is a path in ~G

}
. This is why we call T a converging vertex sweeping

operator.
We now provide an intuitive illustration of the sweeping operator T using Example 3.

Example 3 Let ~G = (V, ~E) be a DAG with a topological order α such that α(v1) < α(v2) <

· · · < α(v9), as shown in Figure 3. For the o-o path lv3v6 = {v3
~G∼ v7

~G∼ v6} in ~G, it holds
that T (lv3v6) = {v3

α∼ v6} and T 2(lv3v6) = T (lv3v3). Thus, for the path lv3v6, it holds N0 = 1.

Similarly, for the o-o path lv1v4 = {v1
~G∼ v3

~G∼ v7
~G∼ v6

~G∼ v5
~G∼ v8

~G∼ v4}, we have

T (lv1v4) = T (lv1v5) ∪ T (lv5v4) = {v1
~G∼ v3

α∼ v5
α∼ v4}, i.e., v1, v3 are adjacent in ~G,

v3 → v5 and v4 → v5 are connected according to α owing to the action of the sweeping

operator, where lv1v5 = {v1
~G∼ v3

~G∼ v7
~G∼ v6

~G∼ v5} and lv5v4 = {v5
~G∼ v8

~G∼ v4}. Moreover,

T 2(lv1v4) = T (T (lv1v4)) = {v1
~G∼ v3

α∼ v4} and T 3(lv1v4) = T 2(lv1v4), implying N0 = 2 for
path lv1v4.

v1
v2

v3

v4
v5

v6
v7

v8

v9

~G

v1
v2

v3

v4
v5

v6
v7

v8

v9

~G
′

Figure 3: A DAG ~G with a topological order α, such that α(v1) < α(v2) < · · · < α(v9),
and ~G

′
is the corresponding DAG obtained from ~G by repeated applications of

the operator T on paths until V(~G
′
) = ∅. The directed, dashed edges represent

newly added edges in ~G.

We now introduce the terminal connecting property of paths.

Definition 21 (Terminal connecting property) For a path lxy in ~G with x
~G� y, the

path lxy has the terminal connecting property with respect to α (TCP w.r.t. α) if T ∞(lxy) =

{x α∼ y}. Otherwise, it has the non-TCP w.r.t. α.

Recall the cases in Example 3, it shows that the path lv3v6 has the TCP w.r.t. α and the
path lv1v4 has the non-TCP w.r.t. α. Note that only o-o paths can have the TCP, and the
TCP depends on the given topological order of ~G. Proposition 22 provides an equivalent
characterization of the TCP.

19



Xie, Guo and Sun

Proposition 22 Let ~G = (V, ~E) be a DAG with a topological order α, and x, y be two non-
adjacent vertices such that α(x) < α(y) in ~G. For any path lxy in ~G, lxy has the TCP w.r.t.
α if and only if y is the representation vertex of lxy, i.e., y = arg minw∈V (lxy)\{x}{α(w)}.

5.4.3 Characterizing Minimal Filling Edge Set

Next, we shall show the relation between the TCP property and the minimal filling edge
set. First, we introduce the concept of active o-o paths, which are exactly the paths we
need only to consider when finding a minimal filling edge set via the terminal connecting
property of paths.

Definition 23 (Active o-o path) Let ~G = (V, ~E) be a DAG and C be a subset of V . For
an o-o path lxy such that x, y ∈ R in ~G, the path lxy is called an active o-o path conditioning

on C in ~G if V o(lxy) ∩ C ⊆ V c(lxy) ⊆ An ~G(C).

As shown in Figure 3, the path lv1v4 = (v1, v3, v2, v6, v5, v8, v4) is an active o-o path
conditioning on C = {v7, v9} in ~G. For convenience, let

APo~G(C) = {lxy : lxy is an active o-o path conditioning on C in ~G}

denote the set of all active o-o paths conditioning on C in ~G. Particularly, C-configurations
aforementioned are special active o-o paths, which are exactly v-structures satisfying certain
conditions.

Building on the concepts of terminal connecting property and active o-o paths, we intro-
duce the notion of a tc-pair to characterize the minimal filling edge set. This characterization
is based on a specific property of a particular type of paths in DAGs under conditioning.

Definition 24 (Tc-pair) Let ~G = (V, ~E) be a DAG with a topological order α and C be a

subset of V . For any x, y ∈ R such that x
~G� y, the pair {x, y} is called a terminal connecting

pair under conditioning on C with respect to (tc-pair w.r.t.) α in ~G if there exists a path
lxy ∈ APo~G(C) such that it has the TCP w.r.t. α in ~G.

We denote the set of all tc-pairs under conditioning on C w.r.t. α in ~G as

PStc~G (C;α) ≡ {{x, y} : {x, y} is a tc-pair w.r.t. α in ~G},

and we denote the corresponding filling edge set of tc-pairs under conditioning on C w.r.t. α
in ~G as

4tc
~G
(C;α) ≡ {x α∼ y : {x, y} ∈ PStc~G (C;α)}.

We then find that it is exactly the minimal filling edge set of ~GR w.r.t. α, as shown in the
following proposition.

Proposition 25 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset of
V . Then 4tc

~G
(C;α) is a minimal filling edge set of ~GR w.r.t. α.
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Combining Propositions 22 and 25, we know that x
α∼ y ∈ 4tc

~G
(C;α) if and only if there

exists a path lxy ∈ APo~G(C) such that α(w) > max{α(x), α(y)} for any w ∈ V o(lxy). It is
an intuitive characterization for a minimal filling edge set from the paths with the property
of TCP, which implies a minimal filling edge set can be determined by considering only the
paths in APo~G(C). However, finding a minimal filling edge set by searching all active o-o
paths with the property of TCP is not an efficient strategy. This motivates us to design an
efficient algorithm in the following subsection.

5.5 Reverse Order Search Algorithm

In this section we will devise an efficient reverse order search (ROS) algorithm (see Algo-
rithm 2) to find the minimal filling edge set 4α

~G
(R) and the minimal I-map ~GR+4α

~G
(R) for

a given DAG ~G with a topological order α. Recall in Example 2, we have stated our main
idea of the algorithm in the case where the conditional set is a single vertex. We formally
describe the algorithm in a general setting in this subsection.

c1 c2

c3

(1)

c1 c2

b1
b2
bm

c3

(2)

c1 b1

c2

(3)

c1 b1
b2
b3
bm

c3

(4)

Figure 4: Four structures that are not allowed to be considered when we search for v-
structures layer by layer, where bi ∈ an ~G(C) for i ∈ [m],m ≥ 1 and cj ∈ C for
j = 1, 2, 3.

Before presenting the algorithm, we consider the four types of v-structures in Figure 4.
The v-structures satisfy that w ∈ An ~G(C) in ~G but do not form C-configurations. Thus,
our algorithm should not join x and y to form a minimal I-map. In these cases, the four
types of v-structure are redundant for our minimal I-map searching algorithm. To improve
the algorithm efficiency, we can eliminate these types of v-structures by removing the related
edges, which start from a vertex in C. For this purpose, we derive Theorem 26.

Theorem 26 (Reduction invariance) Suppose that B = (~G,P(~G)) is a BN with a DAG
~G = (V, ~E) and C is a subset of V . For any subset C

′
of C, it holds that

(a) I(~GC
′
)C = I(~G)C ;

(b) P(~GC
′
)C = P(~G)C .

In the above, ~EC ≡ {(x, y) ∈ ~E : x ∈ C, y ∈ V } and ~GC ≡ ~G− ~EC .
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In particular, when C
′

= C, we discover that I(~GC)C = I(~G)C and P(~GC)C = P(~G)C ,
which reflects that we can simplify the analysis for a BN under conditioning. The lemma
below shows that the edge set ~EC is redundant in ~G for finding the minimal filling edge
set 4tc

~G
(C;α). The result helps in the algorithm design to find the minimal filling edge set

4tc
~G
(C;α).

Lemma 27 Suppose that ~G = (V, ~E) is a DAG with a topological order α and C is a subset
of V . Then 4tc

~G
(C;α) = 4tc

~GC
(C;α).

In what follows, we formally present the ROS algorithm (Algorithm 2) for determining
a minimal filling edge set. Compared with the primary idea in Example 2, Algorithm 2
includes two additional steps: Steps 1 and 2. To avoid searching the four cases in Figure 4,
it is sufficient to initialize ~G0 as ~GA in Step 1 of Algorithm 2, where A = An ~GC (C). Step 2
of Algorithm 2 is also beneficial as we can reduce the graph searching complexity according
to a reverse order of the topological orders of converging connection vertices (colliders) in
the v-structures concerned. Overall, the ROS algorithm is executed locally by completing
the pa ~GC (w) for all w ∈ An ~GC (C) consecutively, according to the reverse order of the
topological orders of the elements in An ~GC (C).

Note the results from the ROS algorithm depends on the given topological order α in
general. However, a special case is when I(~G) is closed under conditioning on C, and
the output of the ROS algorithm does not depend on the given topological order α. This
is because ~GR is exactly the minimal I-map for P(~G)C in such a situation. In essence,
our algorithm aims to find a minimal DAG ~G∗ over V in the sense that ~G∗ is a minimal
DAG including ~G such that I(~G∗)C = I(~G∗R). It should be noticed that the tentative
algorithm described in Example 2 and the formal Algorithm 2 generate the same result,
while Algorithm 2 exhibits lower computational complexity.

Now we illustrate the proposed algorithm using Example 4 as follows.

Example 4 Let ~G = (V, ~E) be a DAG with a topological order α such that α(a) < α(b) <
· · · < α(j) and C = {d, f, i}, as shown in Figure 5. Using the ROS algorithm, we can find
the minimal filling edge set of ~GR w.r.t. α, denoted as ~EαR = {(a, b)}, and the corresponding

minimal I-map for the CDM P(~G)C under α, denoted as ~GαR = ~GR + ~EαR. In fact, the

obtained ~EαR by the algorithm is exactly the minimum edge set that is added to ~G to eliminate

all the C-configurations by adding edges in the dynamically updated graphs ~Gj for j ∈ [5].

Next we shall discuss the correctness and complexity of the proposed ROS algorithm.
Proposition 28 demonstrates the correctness of Algorithm 2. Proposition 29 shows that
for a given causal DAG, the proposed algorithm is quite efficient duo to its linear time
complexity, as m is usually small for a causal DAG. The simulation results in Table 1 also
support this point. The six real-world BNs listed in Table 1 are available in the bnlearn
repository (Scutari, 2024). The topological order of each network is arbitrarily given and
the conditional vertex set C includes two vertices.The runtime in the table is the average
value of 100 repetitions and all the values are rounded to three decimal places.

Proposition 28 Suppose that ~G = (V, ~E) is a DAG with a topological order α and C is a
subset of V . Then ~EαR = 4tc

~G
(C;α), where ~EαR is the edge set obtained by the ROS algorithm

under α.
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Algorithm 2 ROS Algorithm for Finding a Minimal I-map (ROS Alg(~G, α,C))

Input: A DAG ~G = (V, ~E), a topological order α of ~G, and a subset C of V .
Output: A minimal filling edge set: ~EαR and a minimal I-map: ~GαR.

1: Initialize ~GαR = ~GR, ~E0 = ∅ and ~G0 = ~GA, where A = An ~GC (C);

2: Rearrange vertices in ~G0 as {uj , j ∈ [k] : α(uj) > α(uj+1),∀j ∈ [k − 1]}, where

k is the number of vertices in ~G0;
3: if k ≥ 3 then
4: for j = 1 to k − 2 do
5: repeat
6: Find v-structure {x → uj ← y} in ~Gj−1 and then join x and y as x → y if

α(x) < α(y) or x← y if α(x) > α(y);
7: Update ~Ej by ~Ej−1 ∪ {x

α∼ y} and ~Gj−1 by ~Gj−1 + {x α∼ y};
8: until no more edges to join;
9: Update ~Gj by ~Gj−1 − {uj};

10: end for
11: end if
12: return ~EαR = ~Ej and ~GαR = ~GR + ~EαR.

a b

c
de
f

g

h i j
~G

a b

c
de
f

g

h i j
~GC

a b

c
de
f

i
~G0

a b

c
de
f

~G1

a b

c
de

~G2

a b

c
d

~G3

a b

c

~G4

a b

~G5

a b

c
e g

h j
~GαR = ~GR + ~EαR

Figure 5: ~G: An original DAG with a topological order α such that α(a) < α(b) <
· · · < α(j); ~GC : The obtained graph from ~G by removing the edge set ~EC =
{(d, e), (f, i), (f, j)}; ~G0: The induced subgraph over An ~GC (C) of ~G; ~Gi: The

obtained graph from ~Gi−1 by adding the edge set ~Ei \ ~Ei−1 and then removing w
and the edges incident with w in ~Gi−1 + ~Ei \ ~Ei−1 for i ∈ [5] and w ∈ {i, f, e, d, c};
~GαR: The obtained graph from ~GR by adding edge set ~EαR = ~E5 = {(a, b)}.

Proof. By Definition 17, we know ~EαR = 4tc
~GC

(C;α). Lemma 27 yields that 4tc
~GC

(C;α) =

4tc
~G
(C;α), which gives ~EαR = 4tc

~G
(C;α).
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Proposition 29 Algorithm 2 has a complexity at most O(m2|k− 2|), where m is the max-
imal number of parents of every vertex in An ~GC (C) and k is the number of vertices in
An ~GC (C).

Network Asia Insurance Alarm Win95pts Andes Munin

|V | 8 27 37 76 223 1041

|An ~G(C)| 8 23 26 42 101 125

Runtime (s) 0.004 0.044 0.047 0.359 3.669 4.849

Table 1: Average runtime of ROS algorithm for different DAGs. The runtime in the table
is measured in seconds.

6. Other Characterizations of Closure

In Section 4, we have provided a necessary and sufficient condition for the the closure of
the independence models of BNs under conditioning by Proposition 13. In this section, we
will discuss other several equivalent characterizations.

Recall Proposition 25, which states that the edge x
α∼ y is needed for a minimal I-

map if and only if there exists a path lxy ∈ APo~G(C) such that lxy has the TCP w.r.t. a
given topological order α. We can equivalently develop a characterization from the opposite
perspective. In other words, we can consider the situations where the additional edge x

α∼ y
is not required for a minimal I-map. For any x, y ∈ an ~G(C) such that x, y are nonadjacent

in ~G, we call {x, y} a conditioning permissible pair (cp-pair) under conditioning on C with
respect to (w.r.t.) α in ~G if lxy has the non-TCP w.r.t. α in ~G for any lxy ∈ APo~G(C). In

fact, any nonadjacent vertices {x, y} ⊆ an ~G(C) without terminal connecting property form

a conditioning permissible pair in ~G. We denote the set of all cp-pairs under conditioning
on C w.r.t. α in ~G as

PScp~G (C;α) ≡
{
{x, y} : {x, y} is a cp-pair under conditioning on C w.r.t. α in ~G

}
.

Now, we define an important concept of C-completeness through cp-pairs.

Definition 30 (C-completeness) Suppose that ~G = (V, ~E) is a DAG with a topological
order α and C is a subset of V . Let A be a subset of an ~G(C). The set A is C-complete

with respect to (w.r.t.) α in ~G (where “C” means “conditioning”) if for any x, y ∈ A, x, y
are adjacent in ~G or {x, y} is a cp-pair under conditioning on C w.r.t. α in ~G.

The concept of C-completeness can be viewed as an extension of the completeness in
undirected graphs. It states that all vertex pairs should be adjacent, except those satis-
fying the non-terminal connecting property (non-TCP). See Corollary 53 and the related
statements in Appendix E.1 for more details. Proposition 31 demonstrates the equivalence
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between C-completeness and the closure of I(~G) under conditioning, indicating that the
concept of C-completeness is independent of the topological order of ~G.

Proposition 31 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset
of V . Then I(~G) is closed under conditioning on C if and only if an ~G(C) is C-complete

w.r.t. α in ~G.

To gain a better understanding of the concept of C-completeness, we can recall the DAG
~G
′

in the right panel of Figure 3. Suppose that ~G
′

has the same topological order α as ~G
in Figure 3 and C = {v7, v9}. We can verify that an ~G′ (C) is C-complete w.r.t. α in ~G

′
. For

example, v1, v2 are adjacent in ~G
′
, there are no active o-o path conditioning on C with the

endpoints v6, v8, and lv1v4 has the non-TCP w.r.t. α in ~G
′

for the path lv1v4 ∈ APo~G′ (C).

The C-completeness implies I(~G
′
) is closed under conditioning.

We proceed to characterize the closure of independence models of BNs from several
other perspectives. First, we propose a concept called covered set, which can be viewed as
another description of the property that there is no C-configuration w.r.t. C in ~G.

Definition 32 (Covered set) Let ~G = (V, ~E) be a DAG and C be a subset of V . The
set C is called a covered set in ~G if pa ~G(w) \ C is complete in ~G for any w ∈ An ~G(C).

Specifically, for a single vertex u ∈ V , we call u a covered vertex in ~G if pa ~G(w) is complete

in ~G for any w ∈ An ~G(u).

It is evident that a root set is a covered set, but the converse is not true. We also observe
the fact that C is a covered set in ~G if and only if C is a covered set in ~GC (see Lemma 54 in
Appendix E.1). This insight sheds light on the rationality of considering ~GC in the designing
of the ROS algorithm from a different perspective. We will show in Proposition 33 that the
closure of the independence model is equivalent to C being a covered set.

Moreover, we can also characterize the closure of independence models from the view-
point of the Markov equivalent class. For two DAGs ~G1 = (V, ~E1) and ~G2 = (V, ~E2), we say
that they are I-equivalent (or Markov equivalent), denoted by ~G1 ≈ ~G2, if I(~G1) = I(~G2).
We call the set of all DAGs which are I-equivalent to ~G an I-equivalent class of ~G, denoted
by M(~G), i.e., M(~G) = {~G′ : ~G

′ ≈ ~G}. Now we summarize the different characterizations
for the closure of independence models of BNs under conditioning as follows.

Proposition 33 Let B = (~G,P(~G)) be a BN with a DAG ~G = (V, ~E) and α be a topological
order of ~G. Suppose that P(~G) is faithful to ~G. For any C ⊆ V , the following statements
are equivalent:

(a) I(~G) is closed under conditioning on C, i.e., I(~G)C = I(~GR);

(b) ~GR is a minimal I-map of P(~G)C ;

(c) ~EαR = ∅, where ~EαR is the edge set obtained by the ROS algorithm under α;

(d) ~EβR = ∅ for any topological order β of ~G, where ~EβR is the edge set obtained by the ROS
algorithm under β;

25



Xie, Guo and Sun

(e) C is a covered set in ~G;

(f) for any w ∈ An ~GC (C), there exists a DAG ~G
′ ∈ M(~GC) such that w is a root vertex

in ~G
′
;

(g) for any w ∈ An ~GC (C), there exists a DAG ~G
′′ ∈ M(~GC) such that {e1, e2, . . . , em}

is sequentially reversible in ~G
′′
, where pa ~GC (w) = {u1, u2, . . . , um} such that α(u1) >

α(u2) > · · · > α(um) and ei = (ui, w) for i ∈ [m];

(h) for any w ∈ An ~GC (C), there exists a DAG ~G∗ ∈M(~GC) such that pa ~G∗(w) is complete
and pa ~G∗(w) = an ~G∗(w).

Under the faithfulness assumption, either condition (a) or (b) of Proposition 33 implies
that the pair (~GR,P(~G)C) is also a BN, which is independent of its topological order. This
fact is also indicated by condition (d). The condition (c) describes the avenue to judge the
closure of I(~G) based on the output ~EαR of Algorithm 2, while the condition (e) can help

us judge whether I(~G) is closed under conditioning in an intuitive way. Furthermore, the
conditions (f), (g), and (h) provide certain equivalent characterizations for when I(~G) is
closed under conditioning, from the viewpoint of I-equivalent class.

7. Numerical Examples

In this section, via simulation studies, we will illustrate the benefits of using a DAG minimal
I-map to perform conditional inference for a BN.

7.1 Computing Conditional Distribution

We begin by introducing three methods for performing conditional inference of a BN, via
Example 5

a

b
c

d
e

f g

~G

a

b
c

f g

~GαR

Figure 6: ~G: a DAG with a topological order α such that α(a) < α(b) < · · · < α(g); ~GαR: a

DAG over R obtained by adding edges (a, b) and (b, c) to ~GR.

Example 5 Consider a DAG ~G = (V, ~E) with a topological order α such that α(a) < α(b) <
· · · < α(g), as shown in Figure 6. Let C = {d, e} and R = {a, b, c, f, g}. Applying the ROS
algorithm, we can obtain a minimal filling edge set of ~GR w.r.t. α, and a minimal I-map
for the CDM P(~G)C w.r.t. α, denoted by ~EαR = {(a, b), (b, c)} and ~GαR = ~GR+ (a, b) + (b, c),

26



DAGs as Minimal I-maps for Conditional Models of Causal BNs

respectively. Suppose that the true distribution of the related problem is P (xV ) ∈ P(~G), and
we are interested in P (xR|xC) = P (xR|xd, xe). Without loss of generality, we assume that
the distributions in question are discrete and P (xC) > 0.

We can compute P (xR|xC) using the J-Method, which takes advantage of the structural
information of the joint distribution P (xV ) and calculates the conditional distribution of
interest using the ratio of the joint distribution P (xV ) to marginal distribution P (xC), i.e.,

P (xR|xC) =
P (xR, xC)

P (xC)
=

P (xR, xC)∑
xR
P (xR, xC)

=
P (xR, xd, xe)∑
xR
P (xR, xd, xe)

,

where P (xR, xd, xe) = P (xa)P (xb)P (xc|xa)P (xd|xb, xc)P (xe|xb)P (xf |xb, xd, xe)P (xg|xa, xc).
Alternatively, we consider a method called C-Method as follows. we can calculate it

directly according to the corresponding conditional distribution PC(xR) of the true distri-
bution P (xV ) in the CDM P(~G)C ⊆ P(~Gα)C = PC(~GαR). That is, taking advantage of the
structural information of the conditional distribution PC(xR) directly, i.e.,

P (xR|xC) = PC(xR) = PC(xa)P
C(xb|xa)PC(xc|xa, xb)PC(xf |xb)PC(xg|xa, xc).

Regardless of the J-Method or C-Method, we can always obtain the correct conditional
probability distribution P (xR|xC) when the available data sets are from the joint distribution
P (xV ). However, in practice, data sets may only be available from a conditional distribution
instead of a joint one. In such cases, we cannot use the J-Method to obtain the conditional
probability.

Also, one may adopt the IC-Method in practice, which ignores the changes of the struc-
ture over R caused by conditioning on C and calculates P (xR|xC) using directly the structure
of the subgraph of the original graph over R. That is,

P (xR|xC) = PC(xR) = PC(xa)P
C(xb)P

C(xc|xa)PC(xf |xb)PC(xg|xa, xc).

However, this naive approach is not necessarily correct, as ~GR may not be an I-map of
P (xR|xC).

Example 5 presents three methods to compute the global conditional distribution in-
terested using the structural information of the distribution. It is important to note that
the edges in ~E(~GR) represent the dependencies induced by the causal influences, while the
edges added in ~EαR = {(a, b), (b, c)} represent the dependencies induced by the selection
mechanism. It is crucial to understand this when performing causal discovery from data
with selection bias.

Conditioning on XC = xC restricts the sample space of all the random variables in
XR under the context XC = xC . On the other hand, the conditioning on XC = xC may
also change the structure of variables in XR. This is an important consideration for local
parameter estimation problems. Ignoring the changes in the structure of the remaining
variables under conditioning can lead to completely wrong conclusions. Druzdzel and Dı́ez
(2003) showed this phenomenon for the single conditioning variable in the discrete case,
and we will further confirm this assertion for multiple conditioning variables under both
discrete and continuous circumstances in the following subsection.
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7.2 Conditional Probability Queries

In this subsection, we present numerical experiments to demonstrate the benefits of per-
forming conditional inference by using the minimal I-map of the conditional model, under
a given causal DAG. For this purpose, we consider the ASIA (LUNG CANCER) network
proposed by Lauritzen and Spiegelhalter (1988) as the causal DAG ~G of a causal BN, as
illustrated in Figure 7. For convenience, we use the first letter of each variable name to
represent the corresponding variable.
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either

xray dysp

~G
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Figure 7: ~G: the causal DAG structure of ASIA network, the conditioning set C =
{xray, dysp} and the remaining set R = {asia, tub, smoke, lung, either, bronc};
~GαiR : the DAG over R obtained by the ROS algorithm w.r.t. αi, where αi is a

topological order of ~G for i ∈ [4].

We conduct and analyse two types of simulation studies: one for discrete data and
one for continuous data. We generate data sets from multinomial distributions and nor-
mal distributions (because the performance is similar to that of discrete cases, in order to
save space, we does not provide results for continuous cases in the paper). The code is
implemented in R language, and we perform simulations mainly based on bnlearn (Scu-
tari and Denis, 2014) and gRain (Højsgaard, 2012) R packages. Our code is available at
https://github.com/xiexd569/BNs_under_Conditioning. The CPU of the computer to
conduct experiments in this paper is an AMD Ryzen 7 7840HS processor (8-cores, 3.8-GHZ).

In the discrete data setting, we assume that all variables are binary variables, taking
values in {yes, no}. We generate a joint distribution P from P(~G) by randomly generating
a group of values from the uniform distribution U(0, 1) as the values of its local condi-
tional probability tables. Then, we sample simulation data from P according to its local
conditional probability tables. This sampling method is called the forward sampling of the
joint distribution. For a distribution P (a, b, e, s, t, x, d) ∈ P(~G), assume that we are inter-
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ested in the conditional probability value P (a = no, b = no, e = yes, l = yes, s = no, t =
yes|x = yes, d = yes), simply denoted by P̂ , we compare the behavior of the J-Method, the
C-Method and the IC-Method (as mentioned in Example 5) by computing the conditional
probability value of interest, respectively.

We conduct simulations in two scenarios: probabilistic reasoning for the interested con-
ditional probability value P̂ , and local parameter estimation followed by probabilistic rea-
soning. To compare the sensitivity of the results under different topological orders, we
conduct experiments under four different topological orders αi for i ∈ [4] (as mentioned
in Figure 7). We use C-Method i to denote applying C-Method under the ith topological
order αi for i ∈ [4].
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Figure 8: The scatter plot of the relative biases of computing P (a = no, t = yes, s = no, l =
yes, e = yes, b = no|x = yes, d = yes) by applying the C-Method and IC-Method
in the 100 randomly generated multinomial distributions from P(~G), under four
different topological orders αi, i ∈ [4].

In the first scenario, we assume that each local conditional probability value (local
parameter) is known and take the conditional probability value calculated by the J-Method
as the true value P0. We then compare the performances of the C-Method and IC-Method.
We randomly generate 100 multinomial distributions from P(~G). For j ∈ [100] and w ∈
{C, IC}, let P̂ jw represent the conditional probability value obtained by applying w-Method
in the jth multinomial distribution, and P j0 denote the true value corresponding to the jth
distribution. Then we calculate the relative bias of applying w-Method in the jth discrete
distribution, which can be expressed as

RB(w; j) =
bias(w; j)

P j0
=
P̂ jw − P j0
P j0

.

Figure 8 shows the scatter plot of relative biases of the C-Method and IC-Method for the
100 multinomial distributions. It can be seen from the figure that the posterior probability
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reasoning P̂ obtained by the C-Method performs as well as that of J-Method (P0) for
αi, i = 1, 2, 3, 4. However, when applying the IC-Method, there are significant biases of the
results relative to the true values for the most elements among the 100 distributions, even
the relative bias can reach more than 30 times of the true value for some distribution. This
indicates that performing conditional inference by using its I-maps can always obtain the
same result as that obtained from the joint one in terms of probability reasoning, while it
usually leads to a larger bias or even a wrong conclusion if we adopt the incorrect structure
information, as the structure involved in the IC-Method may not be an I-map of the CDM.
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Figure 9: The biases and RMSEs of computing P (a = no, b = no, e = yes, l = yes, s =
no, t = yes|x = yes, d = yes) by applying the J-Method, C-Method and IC-
Method for the 100 multinomial distributions with different sample sizes, under
four different topological orders αi, i ∈ [4].

In the second scenario, we first estimate the local parameters from simulation data and
then compare the performances of the three methods under different sample sizes. We
randomly generate 100 multinomial distributions from P(~G), and for each fixed sample
size n = 100, 500, . . . , 10000, we obtain the local parameter estimations for the jth discrete
distribution by averaging Bayesian estimations over r = 100 repetitions for j ∈ [100]. For
i, j ∈ [100] and w ∈ {J,C, IC}, let P̂ i,jw denote the conditional probability value obtained by
applying w-Method in the ith sample from the jth discrete distribution, and P j0 represent
the true value corresponding to the jth discrete distribution. Then, we can calculate the
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bias of employing the w-Method in the jth discrete distribution by

B(w; j) =
1

r

r∑
i=1

(P̂ i,jw − P
j
0 ).

The root mean square error (RMSE) of applying the w-Method in the jth discrete distri-
bution can be written as

RM(w; j) =

√√√√1

r

r∑
i=1

(P̂ i,jw − P j0 )2.

Figure 9 shows that for both the J-Method and the C-Method, in all 100 multinomial
distributions, the biases and RMSEs gradually decrease as the sample size increases under
the four different topological orders. The estimates of the two methods are asymptotically
unbiased relative to the true values, and have smaller RMSEs than these of the IC-Method.
However, there are always some distributions in the 100 distributions where the biases
and RMSEs obtained by the IC-Method perform very poorly, and the large biases and
RMSEs cannot be eliminated by increasing the sample size. These results demonstrate
that if the effect of conditioning on the structure of the remaining variables is ignored, it
can sometimes lead to larger biases or incorrect conclusions in the sense of the family of
distributions. Furthermore, in smaller samples, the C-Method tends to have smaller biases
than these of the J-Method. The reason is that when the sample size is small, there may
exist certain bias in each parameter estimation. Since the C-Method has fewer parameters
than the J-Method, the results calculated using the C-Method tend to have better accuracy
compared to the J-Method when the sample size is small.

Next, we compare the runtime of the different methods. All values are rounded to three
decimal places and all values represent the cumulative runtime. Each repetition of the
J-Method consists of the three steps outlined below:

• Step 1. Use the sample to estimate the parameters.

• Step 2. Use the network structure and the estimated parameters to construct the
clique tree (Koller and Friedman, 2009, p.346).

• Step 3. Use the clique tree and the parameters to calculate the conditional probability
value P̂ .

In particular, we consider three versions of J-method regarding Step 3:

• J-Method cd. Set the evidence on the clique tree according to the values of the
conditional variables, and then directly query the conditional probability value P (a =
no, b = no, e = yes, l = yes, s = no, t = yes|x = yes, d = yes).

• J-Method cr. First query the joint distribution value P (a = no, b = no, e = yes, l =
yes, s = no, t = yes, x = yes, d = yes) using directly the clique tree, then query the
marginal distribution value P (x = yes, d = yes) (i.e., the normalization constant),
and finally compute the conditional probability by taking the ratio of the two values.
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• J-Method fr. Use the clique tree to query each local conditional probability value
and normalization constant P (x = yes, d = yes), then calculate the joint distribution
value P (a = no, b = no, e = yes, l = yes, s = no, t = yes, x = yes, d = yes) by
multiplying the local conditional probabilities according to Equation 1, and finally
compute the conditional probability by taking the ratio of the joint distribution value
to the normalization constant.

Table 2 displays the cumulative CPU times in seconds for the three implementations of
the J-Method, which are called J-Method cd, J-Method cr and J-Method fr. For each fixed
sample size n, we generate data from 100 multinomial distributions, and report the cumula-
tive runtime of these 100 repetitions. This includes 100 repetitions for the local parameter
estimation of a distribution (the “Est.T” table column), 100 repetitions for constructing a
clique tree (the “Cli.T” column), and 100 repetitions for other components involved in com-
puting P̂ for each distribution (the “Com.T1” columns). Since J-Method fr is the fastest, it
is used to implement J-Method in the simulation for the rest of this paper. Unless otherwise
specified, J-Method in this paper refers to J-Method fr.

n Est.T Cli.T
Com.T1

J-Method cd J-Method cr J-Method fr

100 7.254 156.536 223.583 941.987 31.268
500 7.394 155.305 225.113 943.185 32.907
1000 7.551 155.914 225.570 947.081 32.901
2500 8.090 156.123 225.839 948.225 32.732
5000 9.140 155.759 225.283 948.112 32.885
7500 10.290 156.083 224.234 948.144 33.075
10000 11.433 155.075 234.087 948.835 33.815

Table 2: Cumulative runtime of three implementations of J-Method (in seconds). Est.T:
the cumulative time for parameter estimation; Cli.T: the cumulative time to con-
struct the clique tree; Com.T1: the cumulative total time to compute the nor-
malization constant using the clique tree and calculate the conditional probability
values using the normalization constant and parameters.

Next, we compare the cumulative runtime of each component for the J-Method fr, IC-
Method, and C-Method. For the IC-Method, at each fixed sample size, we report the
cumulative runtime for the results obtained from 100 multinomial distributions. This in-
cludes 100 repetitions for the local parameter estimation of each distribution (the “Est.T”
table column), and 100 repetitions of using the estimated parameters to compute P̂ (the
“Com.T” column). For the C-Method, at each fixed sample size, we also report the cumu-
lative runtime for the 100 repetitions. This includes 100 repetitions for running the ROS
algorithm for each distribution (the “ROS.T” table row), 100 repetitions for the local pa-
rameter estimation (the “Est.T” table column), and 100 repetitions for using the estimated
parameters to compute P̂ (the “Com.T” column).
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Table 3 shows the cumulative runtime of the J-Method fr and the IC-Method. Here
the cumulative runtime of the J-Method fr is the same as that of J-Method fr in Table 2,
and we have Com.T1=Nor.T+Com.T2. Meanwhile, Table 4 presents the runtime of
the C-Method i, i ∈ [4]. The results illustrate that the C-Method has significantly faster
runtime than the J-Method and almost the same runtime as the IC-Method. Importantly,
the simulations in Table 4 indicate that the performance of the C-Method is stable for
different topological orders.

n
J-Method fr IC-Method

Est.T Cli.T Nor.T Com.T2 Est.T Com.T

100 7.254 156.536 20.493 10.775 4.003 7.413
500 7.394 155.305 21.652 11.255 4.324 7.430
1000 7.551 155.914 21.419 11.482 4.586 7.571
2500 8.090 156.123 21.160 11.572 5.057 7.302
5000 9.140 155.759 21.464 11.421 5.891 7.735
7500 10.290 156.083 21.639 11.436 6.852 7.754
10000 11.433 155.075 21.689 12.126 8.033 7.618

Table 3: Cumulative runtime of J-Method fr and IC-Method (in seconds). Nor.T: the cu-
mulative time required to compute the normalization constant using the clique
tree; Com.T2: the cumulative time to calculate the conditional probability val-
ues using the normalization constant and estimated parameters; Com.T: the cu-
mulative time to calculate the conditional probability values using the estimated
parameters.

n
C-Method 1 C-Method 2 C-Method 3 C-Method 4

Est.T Com.T Est.T Com.T Est.T Com.T Est.T Com.T

100 4.284 7.759 4.383 7.938 4.287 8.014 4.320 8.412
500 4.374 7.979 4.407 8.051 4.394 8.044 4.375 8.504
1000 4.836 7.751 4.567 8.167 4.520 8.262 4.670 8.361
2500 5.438 7.824 5.168 8.209 5.360 7.995 5.208 8.562
5000 6.311 7.984 6.236 8.143 6.235 8.125 6.117 8.628
7500 7.035 8.033 7.184 8.236 6.988 8.441 7.106 8.473
10000 8.181 8.202 8.167 8.636 8.389 8.621 8.402 9.053

ROS.T 23.478 25.421 24.918 29.784

Table 4: Cumulative runtime of C-Method i, i∈ [4] (in seconds). ROS.T: the cumulative
time required to run the ROS algorithm based on ~G under the topological order
αi, i ∈ [4].
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7.3 Repeated Conditional Queries of a BN

In the previous subsection, we have discussed the advantages of using the C-Method for
handling a single conditional probability query. When it comes to repeated queries with
different conditioning sets, it is known that a clique tree is efficient for queries involving
repeated probability calculations, as it can reuse computations across different conditioning
sets. Meanwhile, the C-Method requires running the ROS algorithm once for each condi-
tioning set to find a DAG minimal I-map, it might seem less efficient than using a clique
tree. Through simulation examples, we demonstrate this is not the case. In fact, our method
also exhibits competitive strength when dealing with repeated queries involving various sets
of conditional variables.

The setup of the simulation is as follows:

1. A distribution over XV , V = {asia, smoke, tub, lung, bronc, either, xray, dysp} is ran-
domly generated, and its corresponding conditional distribution under a conditioning
set is then generated. Two data sets, each with a sample size of 10,000, are randomly
generated based on this distribution and its conditional distribution, respectively.

2. The cumulative runtime for J-Method fr and C-Method 1 are reported, with each
method running 10,000 times based on the generated data.

Con.set
J-Method fr C-Method 1

Est.T Cli.T Nor.T Com.T2 ROS.T Est.T Com.T

x 11.843 156.048 5.390 14.117 15.881 9.030 9.832
x,d - - 21.548 11.889 24.364 8.294 8.642
x,d,a - - 37.201 11.851 26.891 7.155 8.125
x,d,a,s - - 63.302 11.847 23.036 6.054 6.262
x,d,a,s,t - - 115.825 11.611 22.587 5.022 4.941
x,d,a,s,t,l - - 223.608 11.709 22.582 3.867 3.115
x,d,a,s,t,l,b - - 448.504 11.617 21.889 3.024 1.506

Table 5: Cumulative runtime of repeated conditional queries (in seconds). Con.set: the
conditioning sets for conditional queries. The symbol “-” represents that by ap-
plying the J-Method fr, the processes of parameter estimation and clique tree
construction are performed only once, after which repeated queries under different
conditional sets can be conducted. Therefore, the table lists only the cumulative
runtime for parameter estimation and clique tree construction when the condi-
tional set is x for the J-Method fr.

The cumulative runtime is reported in Table 5. The table shows the cumulative runtime
for two methods. Our method is denoted as C-Method 1 and the clique tree algorithm is
denoted as J-Method fr. The first column represents the set of conditional variables. The
rest of the columns are organized into two groups. One group is denoted “J-Method fr”
for the clique tree algorithm. This group has four columns reporting four parts of the cu-
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mulative running time: parameter estimation (the “Est.T” table column), clique tree con-
struction (the “Cli.T” column), normalization constant calculation (the “Nor.T” column),
and the computation of P̂ using the estimated parameters and normalization constant (the
“Com.T2” column). Note in each replicate of the clique tree algorithm, the steps are only
executed once for parameter estimation and clique tree construction. Then, we perform
seven queries with different conditioning sets. The other column group for our method is
denoted as “C-Method 1”. It contains three parts for the cumulative runtime: running
ROS algorithm (the “ROS.T” table column), parameter estimation (the “Est.T” column)
and using the estimated parameters to compute P̂ (the “Com.T” column).

Table 5 shows that using the clique tree is efficient for repeated conditional probability
queries when the number of conditional variables is small. However, as the number of
conditional variables grows, the clique tree approach gradually becomes time-consuming.
For the J-Method fr, the average time for these seven different conditioning sets, excluding
the parameter estimation and the construction of the clique tree, is 142.860 seconds. On
the other hand, for the C-Method 1, the average time for these seven different conditioning
sets is 34.596 seconds (including the ROS algorithm). This example demonstrates the
competitive advantages of our method, even in the cases of repeated queries with various
conditioning sets.

From Tables 3, 4 and 5, it can be seen that the main reasons why C-Method is much
faster than J-Method fr are mainly twofold:

• J-Method fr requires constructing the clique tree.

• J-Method fr needs to calculate the normalization constant.

Next we will analyze in detail the reason why calculating the normalization constant is
usually time-consuming by an example. Without loss of generality, we take the case under
the topological order α1 as an example. By the C-Method, we have

P (a, t, s, l, e, b|x = yes, d = yes) = PC(a)PC(t|a)PC(s)PC(l|s)PC(e|l, t)PC(b|s), (6)

where PC(·|·) = P (·|·, x = yes, d = yes). The number of independent parameters needed by
the C-Method is 1 + 2 + 1 + 2 + 4 + 2 = 12.

By the J-Method,

P (a, t, s, l, e, b|x = yes, d = yes) =
P (a, t, s, l, e, b, x = yes, d = yes)

P (x = yes, d = yes)
, (7)

where

P (a, t, s, l, e, b, x = yes, d = yes)

= P (a)P (t|a)P (s)P (l|s)P (e|l, t)P (b|s)P (x = yes|e)P (d = yes|b, e) (8)

and

P (x = yes, d = yes)

=
∑

a,t,s,l,e,b

P (a, t, s, l, e, b, x = yes, d = yes)

=
∑

a,t,s,l,e,b

P (a)P (t|a)P (s)P (l|s)P (e|l, t)P (b|s)P (x = yes|e)P (d = yes|b, e). (9)
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The number of independent parameters needed by J-Method is 1+2+1+2+4+2+2+4 = 18.
For calculating p(a = no, t = yes, s = no, l = yes, e = yes, b = no|x = yes, d = yes) by

C-Method, one only needs to do 5 multiplications according to (6). However, for calculating
p(a = no, t = yes, s = no, l = yes, e = yes, b = no|x = yes, d = yes) by the J-Method, one
needs to compute first (8) and (9), and then divide P (a, t, s, l, e, b, x = yes, d = yes) by
P (x = yes, d = yes). Besides 7 multiplications and 1 division, one also has to compute the
normalized constant P (x = yes, d = yes), which is the most complex part of calculating (7)
after constructing a clique tree.

In general, if every variable considered is binary, one needs
∑

w∈V 2|pa~G(w)\C| inde-

pendent parameters by using the J-Method, while one only needs
∑

w∈R 2
|pa~Gα

R
(w)|

=∑
w∈R 2|pa~Gα (w)\C| by using the C-Method. Thus, one can save the time of calculating

at most (
∑

w∈C 2|pa~G(w)\C| − 1) multiplications and one division, and the time of calculat-
ing the normalized constant P (xC), to compute a query P (XR = xR|XC = xC) for any fixed
xR ∈ XR and any fixed value xC ∈ XC by using the C-Method instead of the J-Method.

7.4 Conditional Intervention Queries of a Causal BN

Similar to the case of conditional probability queries, it is also helpful to estimate the
conditional distribution based on an interventional distribution. Suppose that ~G = (V, ~E)
is a causal DAG. Then we have

P (xV \A|do(XA = xA)) =
∏

w∈V \A

P (xw|xpa~G(w))I{XA=xA} (10)

Equation (10) is known as the g-formula (Robins, 1986), the manipulated distribution for-
mula (Spirtes et al., 2001) or the truncated factorization formula (Pearl, 2009) in the lit-
erature. Then we can view P (xV \A|do(XA = xA)) as a “joint distribution” over XV \A
of the DAG ~GV \A after performing do-intervention. Thus, we can apply our method to
compute its conditional distribution P (XR\A|do(XA = xA), XC = xC), based on the BN

(~GV \A, P (xV \A|do(XA = xA))).

For the causal DAG structure of the ASIA network (denoted as ~G) depicted in Figure 10,
assume that variable “t” has been intervened and set to level “no”. In this scenario, we are
interested in determining the interventional mean of the variable “e”. Let I{t=no} be the
indicator of the t component of the vector V = {a, b, d, e, s, t, x} being equal to no when V
takes a group of values v ∈ XV .

When t is intervened and set to level no, the distribution of the variables obtained from
the conditional model of the BN B = (~G,P(~G)) under conditioning on {x = yes, d = yes}
is

P (a, b, e, l, s|do(t = no), x = yes, d = yes)

=
P (a, b, e, l, s, x = yes, d = yes|do(t = no))

P (x = yes, d = yes|do(t = no))

=
P (a, b, e, l, s, x = yes, d = yes|do(t = no))∑

a,b,e,l,s P (a, b, e, l, s, x = yes, d = yes|do(t = no))
,
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where

P (a, b, e, l, s, x = yes, d = yes|do(t = no))

=
∏
w∈R

P (w|pa ~G(w))I{t=no}

= I{t=no}P (a)P (b|s)P (e|l, t = no)P (l|s)P (s)P (x = yes|e)P (d = yes|b, e), (11)

Then, we can calculate the interventional mean by the J-Method as E[e|t(no)] =
∑

a,b,e,l,s e ·
P (a, b, e, l, s|x = yes, d = yes, do(t = no)) =

∑
e e · φ(e), where

φ(e) =

∑
a,b,l,s P (a, b, e, l, s, x = yes, d = yes|do(t = no))∑
a,b,e,l,s P (a, b, e, l, s, x = yes, d = yes|do(t = no))

,

and P (a, b, e, l, s, x = yes, d = yes|do(t = no)) = I{t=no}P (a)P (b|s)P (l|s)P (s)P (e|l, t =
no)P (x = yes|e)P (d = yes|b, e). The number of independent parameters is 1 + 2 + 2 + 1 +
2 + 2 + 4 = 14.
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Figure 10: ~G: the causal DAG structure of ASIA network, the intervention vertex
tub, the conditioning set C = {xray, dysp} and the remaining set R

′
=

{asia, smoke, lung, either, bronc}; ~Gt: the corresponding mutilated graph by
applying do-intervention on tub; ~Gαi,∗

R′
: the DAG over R

′
obtained by the ROS

algorithm w.r.t. αi based on ~Gt, where αi is a topological order of ~G for i ∈ [4].

Essentially, the conditional intervention distribution described above is exactly comput-
ing a conditional distribution after the do-intervention. Therefore, we can still simplify the
calculation by using the DAG minimal I-map. Next we will verify this point through a
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simulation below. By applying the C-Method under the topological order α1 based on the
mutilated graph ~Gt in Figure 10, we have

P (a, b, e, l, s|do(t = no), x = yes, d = yes)

= I{t=no}P
C(a)PC(b|e, s)PC(e|l, s, t = no)PC(l|s, t = no)PC(s|t = no)

= PC(a|t = no)PC(b|e, s, t = no)PC(e|l, s, t = no)PC(l|s, t = no)PC(s|t = no)

=
∏
w∈R′

PC
′
(w|pa ~Gα1,∗

R
′

(w)),

where R
′

= {asia, bronc, either, lung, smoke}, C ′ = {x, d, t} and ~Gα1,∗
R′

is the DAG shown
in Figure 10. We can calculate the interventional mean by the C-Method as

E[e|t(no)] =
∑

a,b,e,l,s

e · P (a, b, e, l, s|x = yes, d = yes, do(t = no))

=
∑
e

e · φ′(e),

where φ
′
(e) =

∑
a,b,l,s I{t=no}P

C(a)PC(b|e, s)PC(e|l, s, t = no)PC(l|s, t = no)PC(s|t = no).
The number of independent parameters is 1 + 4 + 4 + 2 + 1 = 12.
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Figure 11: Based on ~Gt, the scatter plot of the relative biases of computing P (a = no, b =
no, l = yes, e = yes, s = no|do(t = no), x = yes, d = yes) by applying the
C-Method and IC-Method in the 100 multinomial distributions, under four dif-
ferent topological orders αi, i ∈ [4].
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By the IC-Method based on ~Gt, we can calculate the interventional mean as

E[e|t(no)] =
∑

a,b,e,l,s

e · P (a, b, e, l, s|do(t = no), x = yes, d = yes)

=
∑

a,b,e,l,s

e · I{t=no}PC(a)PC(b|s)PC(e|l, t = no)PC(l|s)PC(s)

=
∑
e

e · φ′′(e),

where
φ
′′
(e) =

∑
a,b,l,s

I{t=no}P
C(a)PC(b|s)PC(e|l, t = no)PC(l|s)PC(s).

The number of independent parameters is 1 + 2 + 2 + 2 + 1 = 8.
For simplicity, we only compare the performances of the J-Method, the C-Method i for

i ∈ [4], and the IC-Method in computing the conditional intervention distribution value
P (a = no, b = no, l = yes, e = yes, s = no|do(t = no), x = yes, d = yes).

According to Figure 11, we can see that when calculating the interventional distribution
value P (a = no, b = no, l = yes, e = yes, s = no|do(t = no), x = yes, d = yes), based on the
mutilated graph ~Gt, the intervention posterior probability reasoning P (a = no, b = no, l =
yes, e = yes, s = no|do(t = no), x = yes, d = yes) obtained by the C-Method performs
as well as that of J-Method (base line) for αi, i = 1, 2, 3, 4. However, if we apply the IC-
Method, there are significant biases of the results relative to the true values for the most
elements among the 100 distributions, even the relative bias can reach more than 80 times
of the true value for some distribution.

Although it is a single variable intervention, it shows the possibility that this approach
is also beneficial for estimating conditional interventional means interested. The impor-
tance of this discovery is for saving the computational time of conditional inferences after
intervention. This is the main reason why we aim to find a DAG minimal I-map of the
conditional model of a causal BN, under the constraint that keeping the directed edges in
the original causal DAG unchanged. It retains the causal interpretability among the original
edges, and one can make as much use of the structural information of the conditional model
as possible to improve the efficiency of conditional inference. Meanwhile, it is important to
note that, in the DAG minimal I-map, the extra added edges are not causal.

8. Discussion and Future Work

In this paper, we analyze the conditioning operation of a BN and present ROS, a polynomial-
time algorithm that can find a DAG as a minimal I-map for the conditional distributions
of a BN. We discuss the multiple benefits of using a DAG minimal I-map to perform
conditional statistical inference of a BN. Additionally, we have provided the necessary and
sufficient conditions for the closure of conditioning in a BN from multiple perspectives,
which can be easily verified by examining the graph structure.

Our idea of adding new edges into the original DAG is to extend the distribution family
P(~G)C instead of extending the class of DAGs. Either the idea of extending the class
of DAGs or the idea of extending the distribution family is to find a graph over R with
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which the conditional distribution family P(~G)C is compatible, as ~GR may not be an I-
map of P(~G)C . Although the minimal I-map obtained by adding edges in the original
DAG may have a loss of the conditional independence (CI) information, it inherits all the
advantages of a BN. In this paper, we focus on finding a minimal I-map of a causal BN under
conditioning, with the restriction of keeping the existing directed causal edges unchanged.
This is useful especially for the practical applications where one also needs as many simple
causal explanations as possible besides CIs, such as medical diagnosis, financial analysis
and government decision-making.

Investigating the issue of BNs under conditioning within the framework of DAGs is
valuable for causal interpretability, causal discovery and inference, in the presence of selec-
tion bias. DAGs under conditioning can represent generating mechanisms of selection bias
(Borboudakis and Tsamardinos, 2015; Cooper, 2000; Spirtes et al., 1995; Zhang, 2008) and
missingness (Daniel et al., 2012; Gain and Shpitser, 2018; Mohan et al., 2013; Liu and Con-
stantinou, 2022; Squires and Uhler, 2022; Strobl et al., 2018; Tu et al., 2019), which enables
researchers to reason about spurious correlations and develop strategies to address them by
formulating and testing causal hypotheses. However, attempting to analyze data causally
without good background knowledge of the subject area and plausible causal mechanisms,
including those giving rise to data with selection bias, is unfeasible (Daniel et al., 2012).

Admittedly, there are also some limitations to using DAGs as minimal I-maps of condi-
tional models. First, DAGs cannot be used to deal with problems with feedback mechanisms
due to the property of acyclicity. Second, using DAGs as minimal I-maps under condition-
ing may induce more edges than other types of graphs, and may not be optimal in terms
of capturing conditional independencies in the corresponding distributions.

Throughout the current work, the original DAG ~G over all variables is known, and we
examine the effect of conditioning. In some applications, it is interesting to estimate the
DAG structure based on data with selection bias. Although there are various BN learning
algorithms available in the literature, as discussed in recent review papers such as Glymour
et al. (2019), Kitson et al. (2023), Vowels et al. (2022) and Zanga et al. (2022), structural
learning of DAGs is challenging in the presence of selection bias. Therefore, we have divided
this problem into two steps for investigation: (1) Given a DAG over the full variable set,
explore what the DAG minimal I-map for the conditional model looks like; (2) When
the DAG over the full variable set is unknown and only selection biased data is available,
investigate how to learn directly a DAG minimal I-map. We have accomplished the first
step in this work. Our theoretical findings can serve as the foundation for DAG structure
learning, especially for selection biased data. Regarding the second step, we have obtained
some preliminary results and plan to conduct further research in the near future.

One of our referees points out that, given a predetermined variable order (not necessarily
a topological order), one can obtain a minimal I-map by checking d-separations, based on
a given full DAG or a data set with selection bias. This is similar to the unconditional
case (Koller and Friedman, 2009, p.79), but with the selection variables included in the
conditioning set during d-separation checking. When the full DAG is known, using the
local Markov property to obtain a DAG minimal I-map of the conditional model by d-
separation checks is a plausible alternative. When the vertex order is the same as some
inverse topological order of the DAG, the DAG minimal I-map obtained by local Markov
property is consistent with the one sought by our proposed ROS algorithm. Through an
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initial exploration, we have found that the proposed ROS algorithm executes more efficiently
(see Appendix F for details). This is because our method avoids the exhaustive checking
of d-separation assertions for specific subsets within the Markov boundary of each vertex
in the updated graph. When the full DAG is unknown and we only have access to a set of
selection biased data, learning a DAG minimal I-map with a given order of vertices and by
using the local Markov property can be a valuable direction for future research. The referee
also suggests that, for the global viewpoint, there are algorithms (e.g., GES, Chickering
and Meek, 2002) to learn a minimal I-map from distributions that satisfy the composition
property. This is also a valuable direction for future exploration. Due to the limited length
of the article, we will not elaborate further here.

The DAG framework offers an avenue for efficient estimation of conditional intervention
distribution under causal BNs with selection bias. The previous study in Guo et al. (2022),
based on a DAG minimal I-map of the marginal model of a BN, investigated the effective
estimation of causal effects. Inspired by their work, in the presence of selection bias, we
can explore the effective estimation of conditional causal effects based on a DAG minimal
I-map of the conditional model of a BN. Thus, our results in this paper provide a potential
foundation for extending this approach to improve the efficiency of conditional causal effect,
which is partially supported by some simulation results in Section 7.

It is important to note that the results introduced here only deal with the conditional
independence constraints. Under conditioning in a BN, Lauritzen (1998) showed that there
exist non-CI factorization constraints, and Evans and Didelez (2015) showed the existence of
non-CI, non-factorization constraints in a certain categorical case. In addition, the concept
of closure for a BN under conditioning in this paper differs from that described in Richardson
and Spirtes (2002), in which the closure of a BN is a more general concept than that in
this paper. A potential direction of future work is to investigate the topic based on the
general version of the closure of a BN under conditioning. Meanwhile, it is interesting
to find minimal I-maps for BNs under both marginalization and conditioning within the
DAG framework in the future. Moreover, based on the results obtained in this paper, there
are several other possibilities for further research. For example, similar to the undirected
graphical model (Liu and Guo, 2012), by combining with the marginalization of a BN, we
can investigate the collapsibility of a conditional model of a BN.
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Appendix A. Symbol List

For the readability of the paper, below is a list of newly defined symbols, their explanations,
and the specific page numbers where they are defined.

Symbol Definition Page

B = (~G,P(~G)) Bayesian network 2
~G = (V, ~E) directed acyclic graph over V 7

P(~G)C the conditional distribution model 9
R the set V \ C 9

I(~G)C the conditional independence model 9
PC(XA|XB) the conditional distribution P (XA|XB, XC = xC) 9

PC(~GR) the set of conditional distributions that are compatible with ~GR 10

V(~G) the set of all v-structures in ~G 12

AV ~G(C) the set of all C-configurations w.r.t. C in ~G 12
~Eαc (R) the complement set of edge set ~E(~GR) under α 14

4α
~G
(R) a minimal filling edge set of ~GR w.r.t. α 15

APo~G(C) the set of all active o-o paths under conditioning on C in ~G 20

PStc~G (C;α) the set of all tc-pairs under conditioning on C w.r.t. α in ~G 20
~GC the graph obtained by removing the outgoing edges of C from ~G 21

PScp~G (C;α) the set of all cp-pairs under conditioning on C w.r.t. α in ~G 24

M(~G) the Markov equivalent class of ~G 25

Table 6: List of symbols. The last column provides the page numbers where the symbols
are defined.

Appendix B. Proof of Claims in Section 3

For further study, we use XU |= XW |(XS , XC)[P ] to represent XU |= XW |(XS , XC = xC)[P ]
for some xC ∈ XC . We define

I(P )C = {〈U,W |S〉 : XU |= XW |(XS , XC)[P ] with pairwise disjoint subsets U,W,S ⊆ R},

where I(P )C is the set of triplets 〈U,W |S〉 that are entailed by the conditional independen-
cies XU |= XW |(XS , XC) in a probability distribution P . In order to prove Proposition 5,
we first give two lemmas below.

Lemma 34 Suppose that P is a joint probability distribution over the random variable
vector XV and C is a subset of V . Let PC be the corresponding conditional probability
distribution of P given XC . Then we have I(P )C = I(PC).

Proof. Without loss of generality we assume that the density of P is f and the condi-
tional density of PC is fC . For XU |= XW |(XS , XC)[P ], it follows that f(xU |xW , xS , xC) =
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f(xU |xS , xC). Thus

fC(xU |xW , xS) =
fC(xU , xW , xS)

fC(xW , xS)
=
f(xU , xW , xS , xC)/f(xC)

f(xW , xS , xC)/f(xC)

=
f(xU , xW , xS , xC)

f(xW , xS , xC)
= f(xU |xW , xS , xC)

= f(xU |xS , xC) =
f(xU , xS , xC)

f(xS , xC)

=
f(xU , xS |xC)f(xC)

f(xS |xC)f(xC)
=
f(xU , xS |xC)

f(xS |xC)

=
fC(xU , xS)

fC(xS)
= fC(xU |xS),

which means XU |= XW |XS [PC ]. Since all the equations in the proof above are reversible,
we complete this proof.

Lemma 35 (Lauritzen, 1996) Suppose that ~G = (V, ~E) is a DAG and P is a family
of probability distributions with strictly positive densities over XV . For any P ∈ P, P
factorizes according to ~G if and only if ~G is an I-map of P .

B.1 Proof of Proposition 5

Proof. To prove (a), for any P ∈ P(~G), Lemma 35 together with that P factorizes
according to ~G yields I(~G) ⊆ I(P ). It follows from Lemma 34 that I(~G)C ⊆ I(P )C =
I(PC). To prove (b), under the faithfulness assumption, there exists a distribution P∗ ∈
P(~G) such that I(~G) = I(P∗), implying that there exists a distribution PC∗ ∈ P (~G)C such
that I(~G)C = I(P∗)

C = I(PC∗ ).

Appendix C. Proof of Claims in Section 4

To prove Theorem 10, we must first prove Proposition 37. We begin by considering two
BNs that share the same variable set. Our intuition tells us that conditioning on the same
variable subset of both networks, when one network’s set of edges includes that of the
other, should yield a result that the induced models of BNs under conditioning also have
an inclusion relationship. This insight forms the foundation for the proof of Proposition 37,
which will prove valuable for future proofs.

To prove Proposition 37, we first propose a lemma as follows.

Lemma 36 (Monotonicity) Suppose that Bi = (~Gi,P(~Gi)) is a BN with a DAG ~Gi =
(V, ~Ei) for i = 1, 2. For any subset C of V , if ~E1 ⊆ ~E2, we find that

(a) I(~G1)
C ⊇ I(~G2)

C ;

(b) P(~G1)
C ⊆ P(~G2)

C .

Proof. For any 〈X,Y |S〉 ∈ I(~G2)
C , let lxy ⊆ ~G1 be any path connecting x and y for any

x ∈ X and y ∈ Y . From ~E1 ⊆ ~E2 and V (~G1) = V (~G2) = V , it follows that lxy ⊆ ~G2,
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implying that lxy is blocked by S ∪C in ~G2. Since An ~G1
(S ∪C) ⊆ An ~G2

(S ∪C), it follows

also that lxy is blocked by S ∪ C in ~G1, proving (a).
To prove (b), for any w ∈ V , let Aw = pa ~G2

(w) \ pa ~G1
(w). Then it follows from the

acyclicity of ~G1 that Aw ⊆ nd ~G1
(w) \ pa ~G1

(w), which implies w |= Aw|pa ~G1
(w)[~G1]. For

any P (xV ) ∈ P(~G1), we have P (xV ) =
∏
w∈V P (xw|xpa~G1

(w)) =
∏
w∈V P (xw|xpa~G2

(w)) ∈

P(~G2). Therefore, P(~G1) ⊆ P(~G2), which implies P(~G1)
C ⊆ P(~G2)

C .

Proposition 37 (Heritability) Suppose that B = (~G,P(~G)) is a BN with a DAG ~G =
(V, ~E) and C is a subset of V . Then

(a) I(~G)C ⊆ I(~GR);

(b) P(~G)C ⊇ PC(~GR).

Proof. Let ~G∗ = ~GR∪NC , where NC = (C, ~EC) is a null graph over C, i.e., ~EC = ∅. From
Lemma 36, it follows that I(~G)C ⊆ I(~G∗)C and P(~G)C ⊇ P(~G∗)C , implying I(~G)C ⊆
I(~G∗)C = I(~GR). Since we can choose P (xV ) = PC(xR)P 0(xC) to be a distribution in
P(~G∗) for any PC(xR) ∈ PC(~GR), where P 0(xC) is a distribution compatible with NC , it
holds PC(~GR) ⊆ P(~G∗)C ⊆ P(~G)C .

C.1 Proof of Theorem 10

Proof. From (a) of Proposition 5, it follows that I(~GR) = I(~G)C ⊆ I(PC) for any
PC ∈ P(~G)C . By Lemma 35, we have that PC ∈ PC(~GR), which gives P(~G)C ⊆ PC(~GR).
According to (b) of Proposition 37, we can arrive at PC(~GR) ⊆ P(~G)C , implying PC(~GR) =
P(~G)C .

Conversely, for all PC ∈ PC(~GR), it follows that I(~GR) ⊆ I(PC) from Lemma 35.
Under the faithfulness assumption, there exists a conditional distribution PC∗ in P(~G)C

such that I(~G)C = I(PC∗ ) by (b) of Proposition 5. Consider P(~G)C = PC(~GR), which
implies PC∗ ∈ PC(~GR) and thus I(~GR) ⊆ I(PC∗ ) follows. Therefore, we can derive that
I(~GR) ⊆ I(PC∗ ) = I(~G)C . This combined with (a) of Proposition 37 yields that I(~G)C =
I(~GR).

For any path lxy in ~G, we can write it as lxy = (x = c0, . . . , c1, . . . , cm+1 = y), where
V c
<(lxy) = {c1, c2, . . . , cm}, denoting the set of ordered converging connection vertices in the

direction from x to y of the path lxy (If V c(lxy) = ∅, let m = 0). For simplicity, we also
use lxy = {x→ w ← y} to represent a path lxy = (x,w, y) with (x,w), (y, w) being directed

edges in ~G.
To prove Proposition 13, we first give three lemmas below.

Lemma 38 Let ~G = (V, ~E) be a DAG and C be a subset of V . The following statements
are equivalent:

(a) AV ~G(C) = ∅;

(b) APo~G(C) = ∅ or for all x, y ∈ R, there exists a trek l
′
xy ⊆ ~GR such that V (l

′
xy) ⊆ V (lxy)

for any path lxy ∈ APo~G(C).
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Proof. To prove (a) implies (b), since AV ~G(C) ⊆ APo~G(C), it holds naturally AV ~G(C) =

∅ if APo~G(C) = ∅. For the case APo~G(C) 6= ∅, without loss of generality we can as-

sume that lxy = (x, . . . , u1, c1, v1, . . . , u2, c2, v2, . . . , um, cm, vm, . . . , y), where V c
<(lxy) =

{c1, c2, . . . , cm} ⊆ An ~G(C) and (V (lxy) \ V c(lxy)) ∩ C = ∅. Note that w /∈ An ~G(C) for

all {u → w ← v} ∈ V(~G), it holds that ui
~G∼ vi for i ∈ [m]. Since V c(lxy) ⊆ An ~G(C)

and (V (lxy) \ V c(lxy)) ∩ C = ∅, we have V (lxy) \ V c(lxy) ⊆ an ~G(C) ⊆ R. Thus, l1xy =

(x, . . . , u1, v1, . . . , u2, v2, . . . , um, vm, . . . , y) is a path in ~GR such that V (l1xy) ⊆ V (lxy), which
is obtained from lxy by removing the elements in V c

<(lxy). If V c(l1xy) = ∅, we are done.
Otherwise, redefine l1xy as l1xy = (x, . . . , u11, c

1
1, v

1
1, . . . , u

1
2, c

1
2, v

1
2, . . . , u

1
m1
, c1m1

, v1m1
, . . . , y),

where V c
<(l1xy) = {c11, c12, . . . , c1m1

}. Note that V c(l1xy) = V c
<(l1xy) ⊆ {{ui, vi} : i ∈ [m]} ⊆

an ~G(C) ⊆ An ~G(C) and (V s(l1xy) ∪ V d(l1xy)) ∩ C ⊆ (V s(lxy) ∪ V d(lxy)) ∩ C = ∅, it follows

that l1xy ∈ APo~G(C). Analogously, we finally get a path lkxy in ~GR such that V c(lkxy) = ∅ and

V (lkxy) ⊆ V (lxy) for some positive integer k.
To prove (b) implies (a), suppose for contradiction that AV ~G(C) 6= ∅. If APo~G(C) = ∅,

a contradiction. Otherwise, for any lxy = {x → w ← y} ∈ APo~G(C), it holds that x, y are

adjacent in ~G, also a contradiction.

Lemma 39 (Borboudakis and Tsamardinos, 2015) Let ~G = (V, ~E) be a DAG and C

be a subset of V . For any x, y ∈ R such that x
~G� y, the following statements are equivalent:

(a) x |6= y|(S,C)[~G] for all S ⊆ R \ {x, y};

(b) there exists {x → w ← y} ∈ AV ~G(C), i.e. there exists a C-configuration with ending

points x and y in ~G.

Now we are ready to provide a characterization of the closure of the independence model
of a BN under conditioning, in terms of conditional independence.

Lemma 40 Let ~G = (V, ~E) be a DAG and C be a subset of V . Then I(~G)C = I(~GR) if

and only if for any x, y ∈ R such that x
~G� y, there exists a subset S0 of R \ {x, y} such that

x |= y|(S0, C)[~G].

Proof. The necessity is trivial. We will give the proof of sufficiency. It follows from
Lemma 39 that AV ~G(C) = ∅. It suffices to show that 〈X,Y |S〉 ∈ I(~G)C for any 〈X,Y |S〉 ∈
I(~GR). For any x ∈ X and any y ∈ Y , it is enough to prove that lxy is blocked by S ∪ C

in ~G for any lxy ⊆ ~G. Suppose that there exists a path lxy in ~G with x
~G� y such that

it cannot be blocked by S ∪ C in ~G. There are two cases to be considered. For the case
V o(lxy) ∩ C = ∅, consider that 〈X,Y |S〉 ∈ I(~GR), from which it follows that x |= y|S[~GR],
which gives

(V s(lxy) ∪ V d(lxy)) ∩ S 6= ∅ or V c(lxy) * An ~GR
(S). (12)

Based on the hypothesis that lxy cannot be blocked by S∪C in ~G, we know that (V s(lxy)∪
V d(lxy)) ∩ (S ∪ C) = ∅ and V c(lxy) ⊆ An ~G(S ∪ C). By applying (12), it follows that

∅ 6= V c(lxy) ⊆ An ~G(C). Since AV ~G(C) = ∅, there must exist a trek l
′
xy in ~GR such that
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V (l
′
xy) ⊆ V (lxy) by Lemma 38. Therefore, we obtain a path l

′
xy which satisfies (V s(l

′
xy) ∪

V d(l
′
xy)) ∩ S 6= ∅, a contradiction.

For the case V o(lxy)∩C 6= ∅, if (V s(lxy)∪V d(lxy))∩C 6= ∅, it contradicts our hypothesis.
Hence, we can derive that (V s(lxy) ∪ V d(lxy)) ∩ C = ∅. Further, if V c(lxy) ∩ C = ∅,
we obtain a contradiction with the hypothesis from (a). Hence, we have V c(lxy) ∩ C 6=
∅. For simplicity, let lxy = (x, . . . , u1, c1, v1, . . . , u2, c2, v2, . . . , um, cm, vm, . . . , y), for which
V c(lxy) = {c1, c2, . . . , cm} ⊆ An ~G(S ∪ C) and (V (lxy) \ V c(lxy)) ∩ C = ∅. Without loss
of generality, we can assume that V c(lxy) ∩ C = {c1, c2, . . . , ci}, i ≤ m. Thus, lxy can
be rewritten as lxy = lxvi ∪ lviy, where lxvi = (x, . . . , u1, c1, v1, . . . , u2, c2, v2, . . . , ui, ci, vi)

and lviy = (vi, . . . , ui+1, ci+1, vi+1, . . . , um, cm, vm, . . . , y) in ~GR. Using Lemma 38 again, we

know that there exists a trek l∗u1vi in ~GR such that V (l∗u1vi) ⊆ V (lu1vi). This gives us a path

l∗xy = lxu1 ∪ l∗u1vi ∪ lviy in ~GR. Consider that (V s(lxy)∪V d(lxy))∩ (S∪C) = ∅ and V c(lxy) ⊆
An ~G(S ∪ C), it holds that (V s(l∗xy) ∪ V d(l∗xy)) ∩ (S ∪ C) = ∅ and V c(l∗xy) ⊆ An ~G(S ∪ C).

These statements imply that l∗xy cannot be blocked by S in ~GR, as desired.

C.2 Proof of Proposition 13

Proof. It holds obviously by Lemmas 38, 39 and 40.

C.3 Proof of Proposition 16

Proof. To prove (a), Proposition 37 yields I(~G)C ⊆ I(~GR). It suffices to prove that
〈X,Y |S〉 ∈ I(~G)C for any 〈X,Y |S〉 ∈ I(~GR). For any x ∈ X and any y ∈ Y , it is enough
to show that lxy is blocked by S ∪C in ~G for any path lxy in ~G. There are two cases to be

considered. If lxy ⊆ ~GR, since 〈X,Y |S〉 ∈ I(~GR), it holds that x |= y|S[~GR]. That C is a root

set in ~G yields V c(lxy) ∩An ~G(C) = ∅. Note that An ~GR
(S) ∪An ~G(C) = An ~G(S ∪ C), we

can derive that lxy is blocked by S ∪C in ~G, as desired. If lxy * ~GR, since V c(lxy)∩C = ∅,
it holds that (V s(lxy) ∪ V d(lxy)) ∩ C 6= ∅, which gives that lxy is blocked by S ∪ C in ~G.

To prove (b), by Proposition 37, it holds that PC(~GR) ⊆ P(~G)C . It suffices to show
that PC ∈ PC(~GR) for any PC ∈ P(~G)C . From (a) of Proposition 5, it follows that
I(~GR) = I(~G)C ⊆ I(PC) for any PC ∈ P(~G)C . Combining this with Lemma 35, we know
that P(~G)C ⊆ PC(~GR).

Appendix D. Proofs of Claims in Section 5

Before the proof of Theorem 18, we first need to prove two lemmas below.

Lemma 41 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset of V .
Suppose that 4α

~G
(R) ⊆ ~Eαc (R). Then 4α

~G
(R) is a minimal filling edge set of ~GR w.r.t. α if

and only if I(~G+4α
~G
(R)) is closed under conditioning on C but I(~G+4α

~G
(R)− (x, y)) is

not closed under conditioning on C for any edge (x, y) ∈ 4α
~G
(R).

Proof. To prove the sufficiency, by contradiction, suppose that 4α
~G
(R) is not a minimal

filling edge set of ~GR w.r.t. α. By Proposition 13, we obtain that x, y are the endpoints of a
C-configuration in DAG ~G+4α

~G
(R)−(x, y) and there are no C-configurations in ~G+4α

~G
(R).
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There are two cases to be considered. If there exist (x, y) ∈ 4α
~G
(R) and S0 ⊆ R \ {x, y}

such that x |= y|(S0, C)[~G + 4α
~G
(R) − (x, y)], it follows that x or y is not an endpoint of

a C-configuration in ~G + 4α
~G
(R) − (x, y), a contradiction. If there exist x, y ∈ R with

x
~G+4α~G(R)
� y such that x |6= y|(S,C)[~G+4α

~G
(R)− (x, y)] for all S ⊆ R \{x, y}, implying that

x, y are the endpoints of a C-configuration in ~G+4α
~G
(R), also a contradiction.

Conversely, we can see that x or y is not an endpoint of a C-configuration in ~G+4α
~G
(R)

for any x, y ∈ R with x
~G� y, otherwise a contradiction. This implies that I(~G+4α

~G
(R)) is

closed under conditioning on C. For any (x, y) ∈ 4α
~G
(R), it follows from the definition of

minimal filling edge set that x, y are the endpoints of a C-configuration in ~G+4α
~G
(R)−(x, y),

which gives that I(~G + 4α
~G
(R) − (x, y)) is not closed under conditioning on C for any

(x, y) ∈ 4α
~G
(R).

Lemma 42 Let ~G = (V, ~E) be a DAG with a topological order α, and C be a subset of
V . Suppose that 4α

~G
(R) is a minimal filling edge set of ~GR w.r.t. α. Then, for any edge

(x, y) ∈ 4α
~G
(R), we have that x |6= y|(pa ~GR+4α~G(R)−(x,y)(y), C)[~G].

Proof. Since (x, y) ∈ 4α
~G
(R), there exists a C-configuration {x→ w ← y} in ~G+4α

~G
(R)−

(x, y) by Lemma 39. If {x→ w = w1 ← y} ∈ V(~G), there exists a path l1xy = {x→ w1 ← y}
in APo~G(C) such that α(z) < α(y) for any z ∈ V o(l1xy). Otherwise, there exists a C-

configuration {x → w1
2 ← w1} or {y → w2

2 ← w1} in ~G +4α
~G
(R) − (x,w1) − (y, w1). This

implies that there exists a path l2xy = {x → w1
2 ← w1 ← y} or {y → w2

2 ← w1 ← x} or
{x → w1

2 ← w1 → w2
2 ← y} in APo~G(C) such that α(z) < α(y) for any z ∈ V o(l2xy) if

{x→ w1
2 ← w1} ∈ V(~G) or {y → w2

2 ← w1} ∈ V(~G).
Analogously, we can derive that there exists a path lkxy ∈ APo~G(C) such that α(z) < α(y)

for any z ∈ V o(lkxy) for some integer k. By the acyclicity of ~G + 4α
~G
(R) − (x, y), we

arrive at V o(lkxy) ∩ (pa ~GR+4α~G(R)−(x,y)(y) ∪ C) = ∅. From the definition of APo~G(C), it

follows that (V s(lkxy)∪ V d(lkxy))∩ (pa ~GR+4α~G(R)−(x,y)(y)∪C) = ∅ and V c(lkxy) ⊆ An ~G(C) ⊆

An ~G(pa ~GR+4α~G(R)−(x,y)(y)∪C). Thus, there exists a path lkxy being not blocked by pa ~G∗R
(y)∪

C in ~G, where ~G∗R = ~GR +4α
~G
(R)− (x, y). We complete the proof.

D.1 Proof of Theorem 18

Proof. First, Lemma 41 provides us with I(~GR + 4α
~G
(R)) = I(~G + 4α

~G
(R))C , which

implies that ~GR + 4α
~G
(R) is an I-map of P(~G)C by Proposition 5. It suffices to show

that I(~GR +4α
~G
(R)− (x, y)) * I(~G)C for any (x, y) ∈ 4α

~G
(R). Since x, y are nonadjacent

in ~GR + 4α
~G
(R) − (x, y) and α(x) < α(y), we have that x |= y|pa ~GR+4α~G(R)−(x,y)(y)[~GR +

4α
~G
(R) − (x, y)]. By Lemma 42, we know that x |6= y|(pa ~GR+4α~G(R)−(x,y)(y), C)[~G], which

gives I(~GR +4α
~G
(R)− (x, y)) * I(~G)C , as desired.
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Conversely, Proposition 5 yields that I(~GR +4α
~G
(R)) ⊆ I(~G)C and I(~GR +4α

~G
(R) −

(x, y)) * I(~G)C for any (x, y) ∈ 4α
~G
(R). By Lemma 36, we have I(~G+4α

~G
(R)− (x, y))C ⊆

I(~G)C , which implies I(~GR +4α
~G
(R)− (x, y)) * I(~G+4α

~G
(R)− (x, y))C . It follows from

Lemma 41 that there exists a minimal filling edge set 4′~G(R) of ~GR w.r.t. α such that

4′~G(R) ⊆ 4α
~G
(R). Suppose for contradiction that 4α

~G
(R) 6= 4′~G(R). Using Lemma 41

again, it holds that I(~GR +4′~G(R)) = I(~G+4′~G(R))C . This implies that ~GR +4′~G(R) is

an I-map of P(~G)C by Proposition 5, a contradiction with that ~GR +4α
~G
(R) is a minimal

I-map of P(~G)C .
Here, we shall discuss a property on a minimal I-map of P(~G)C w.r.t. any given topo-

logical order α.

Corollary 43 Let B = (~G,P(~G)) be a BN with a DAG ~G = (V, ~E) and C be a subset of
V . Suppose that P(~G) is faithful to ~G and 4α

~G
(R) ⊆ ~Eαc (R), where α is a topological order

of ~G. Let ~Gα = ~G+4α
~G
(R). If ~GR +4α

~G
(R) is a minimal I-map of P(~G)C , then we find

that

(a) I(~Gα)C = I(~GαR);

(b) P(~Gα)C = PC(~GαR).

Proof. Theorem 18 combined with Lemma 41 yields that I(~Gα)C = I(~GαR). From Theo-

rem 10 it follows that P(~Gα)C = PC(~GαR).

D.2 Proof of Theorem 19

Proof. According to Lemma 36, Theorem 18 and Corollary 43, we have that P(~G)C ⊆
P(~Gα)C = PC(~GαR), implying that (a) holds. To prove (b), since x, y ∈ an ~G(C) for any

(x, y) ∈ ~EαR, we know that an ~Gα(C) = an ~G(C) and ch ~Gα(C) = ch ~G(C). Thus it suffices
to consider the factorization of PC by the partition an ~G(C) ∪ ch ~G(C) ∪ Z of R for any

PC ∈ P(~G)C ⊆ P(~Gα)C . For any w ∈ ch ~G(C) \ an ~G(C), it holds that Cw ⊆ nd ~Gα(w),

where Cw = C ∪ pa ~GαR
(w) \ pa ~Gα(w). From which we know that w |= Cw|pa ~Gα(w)[~Gα].

Since I(~Gα) ⊆ I(~G) ⊆ I(P ) for any P ∈ P(~G), it holds that Xw |= XCw |Xpa~Gα (w)
[P ] for

any w ∈ ch ~G(C) \ an ~G(C). This implies that for any w ∈ ch ~G(C) \ an ~G(C),

PC(xw|xpa~Gα
R
(w)) = P (xw|xpa~Gα (w), xCw)

= P (xw|xpa~Gα (w))

= P (xw|xpa~Gα
R
(w), xC∩pa~Gα (w)).

For any w ∈ an ~G(C) \ ch ~G(C), since pa ~Gα(w) = pa ~GαR
(w), we know that

PC(xw|xpa~Gα
R
(w)) = P (xw|xpa~Gα

R
(w), xC) = P (xw|xpa~Gα

R
(w), xC∩de~Gα (w)).

For any w ∈ an ~G(C) ∩ ch ~G(C), we know that

PC(xw|xpa~Gα
R
(w)) = P (xw|xpa~Gα

R
(w), xC∩pa~Gα (w), xC∩de~Gα (w)).

48



DAGs as Minimal I-maps for Conditional Models of Causal BNs

Let deo~Gα(w) = {u ∈ V \ w : ∃ ~lwu ⊆ ~Gα, s.t. V o(~lwu) ∩ C = ∅}. Note that w |= de ~Gα(w) \
deo~Gα(w)|deo~Gα(w)[~G], for any w ∈ an ~G(C) ∪ ch ~G(C), we have

PC(xw|xpa~Gα
R
(w)) = P (xw|xpa~Gα

R
(w), xC∩pa~Gα (w), xC∩de

o
~Gα

(w))

= P (xw|xpa~Gα (w), xC∩deo~Gα (w)).

Since C ⊆ nd ~Gα(w) and C ∩ pa ~Gα(w) = ∅ for any w ∈ Z, it follows that∏
w∈Z

PC(xw|xpa~Gα
R
(w)) =

∏
w∈Z

P (xw|xpa~Gα
R
(w), xC) =

∏
w∈Z

P (xw|xpa~GR (w)).

Combining these with PC(xR) =
∏
w∈R P

C(xw|xpa~Gα
R

(w)), we complete the proof.

Before the proof of of Proposition 22, we first list certain trivial properties of the con-
verging vertices sweeping operator without proof. Lemma 44 indicates that the sweeping
operator works only on a v-path.

Lemma 44 Suppose that ~G = (V, ~E) is a DAG. For any path lxy in ~G, the following results
are equivalent:

(a) V c(lxy) = ∅;

(b) T (lxy) = lxy;

(c) ρ(T (lxy)) = ρ(lxy).

D.3 Proof of Proposition 22

Proof. (if) From Lemma 44 and the definition of T , it follows that T ∞(lxy) = ~lxy or ~lwx ∪
~lwy for some w ∈ V s(lxy) ∪ V d(lxy), where V (~lxy) ⊆ V (lxy) and V (~lwx ∪ ~lwy) ⊆ V (lxy).

Note that α(x) < α(y) and y = arg minw∗∈V (lxy)\{x}{α(w∗)}, it holds that T ∞(lxy) = ~lxy
and V o(lxy) = ∅, which gives T ∞(lxy) = (x, y).

(only if) Since lxy has the TCP w.r.t. α and α(x) < α(y), T ∞(lxy) = T N0(lxy) =

T N0+1(lxy) = (x, y) holds. This implies that lxy is an o-o path and T N0−1(lxy) = ~lxv ∪ ~lyv
for some v ∈ V s(lxy) ∪ V d(lxy). Thus x = arg minw∈V (T N0−1(lxy))\{y}{α(w)}.

Without loss of generality we assume that lxy =
⋃m
i=0 ldidi+1

, where d0 = x, dm+1 =
y and V d

<(lxy) = {d1, d2, . . . , dm}. Then T (lxy) =
⋃m
i=0 T (ldidi+1

) =
⋃m
i=0 l

r
didi+1

. From
which we can derive that V (T (ldidi+1

)) ⊆ V (ldidi+1
), implying V (T (lxy)) ⊆ V (lxy). By the

definition of representation path, we have that α(u) > max{α(di), α(di+1)} for any u∗ ∈
V (T (ldidi+1

)) and α(u∗) < max{α(di), α(di+1)} for any u∗ ∈ V (T (ldidi+1
)). As a result,

for any u∗ ∈ V (T (ldidi+1
)) and any u ∈ V (ldidi+1

) \ V (T (ldidi+1
)), we have that α(u∗) <

α(u). From which it follows that α(u∗) < α(u) for any u∗ ∈ V (T (lxy)) and any u ∈
V (lxy) \ V (T (lxy)).

Analogously, for any i ∈ [N0 − 1], we can obtain that V (T i(lxy)) ⊆ V (T i−1(lxy)) and
α(u∗) < α(u) for any u∗ ∈ V (T i(lxy)) and any u ∈ V (T i−1(lxy)) \ V (T i(lxy)). This com-
bined with y = arg minw∈V (T N0−1(lxy))\{x}{α(w)} yields that y = arg minw∈V (lxy)\{x}{α(w)}.

To prove Proposition 25, we first give Lemma 45.
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Lemma 45 Suppose that ~G = (V, ~E) is a DAG with a topological order α, and C is a

subset of V . For any x, y ∈ R such that x
~G� y, x

α∼ y ∈ 4tc
~G
(C;α) if and only if x, y are the

endpoints of a C-configuration in ~G+4tc
~G
(C;α)− x α∼ y.

Proof. Without loss of generality, suppose that α(x) < α(y). (if) Lemma 39 yields that
there exists {x→ w ← y} ∈ AV~G∗(C), where ~G∗ = ~G+4tc

~G
(C;α)−(x, y). By contradiction,

suppose that (x, y) /∈ 4tc
~G
(C;α). Then we have T ∞(lxy) 6= (x, y) for any path lxy ∈ APo~G(C)

with x
~G� y. There are two cases to be considered:

1. If (x,w) ∈ ~E and (y, w) ∈ ~E, there exists a path lxy = {x→ w ← y} ∈ APo~G(C). By

Proposition 22, T ∞(lxy) = (x, y) holds, a contradiction.

2. Otherwise, there exists lxw ∈ APo~G(C) such that w = arg minw∗∈V (lwx)\{x}{α(w∗)} and

α(w) > α(x) or there exists lwy ∈ APo~G(C) such that w = arg minw∗∈V (lwy)\{y}{α(w∗)}
and α(w) > α(y). From which we can derive that there exists lxy = lxw ∪ (y, w)
such that y = arg minw∈V (lxy)\{x}{α(w)} or there exists lxy = (x,w) ∪ lwy such that
α(y) < α(w∗) for any w∗ ∈ V (lxy)\{x} or there exists lxy = lxw ∪ lwy ∈ APo~G(C) such

that α(y) < α(w∗) for any w∗ ∈ V (lxy) \ {x}, a contradiction.

(only if) Since (x, y) ∈ 4tc
~G
(C;α), we know that there exists lxy in APo~G(C) such that

y = arg minw∈V (lxy)\{x}{α(w)}. There are two cases to be considered:

1. If V o(lxy) = ∅, it follows from Lemma 39 that x, y are the endpoints of a C-configuration

in ~G+4tc
~G
(C;α)− (x, y).

2. Otherwise, without loss of generality we can assume u = arg minw∈V (lxy)\{x,y}{α(w)}.
Then there exist lxu ∈ APo~G(C) such that u = arg minw∈V (lxu)\{x}{α(w)} and α(u) >

α(x), and luy ∈ APo~G(C) such that α(z) > α(u) > α(y) for any z ∈ V o(luy), respec-

tively. This implies that T ∞(lxu) = (x, u) ∈ ~E(~G+4tc
~G
(C;α)) and T ∞(luy) = (y, u) ∈

~E(~G +4tc
~G
(C;α)), which gives {x → u ← y} ∈ V(~G∗). Since u ∈ An ~G∗(C), we have

that x, y are the endpoints of a C-configuration in ~G+4tc
~G
(C;α)− (x, y).

D.4 Proof of Proposition 25

Proof. It follows directly from Definition 17 and Lemma 45.
The following corollary shows that we need only to search in an ~G(C) in order to find

4tc
~G
(C;α).

Corollary 46 Suppose that ~G = (V, ~E) is a DAG with a topological order α and C is a
subset of V . For any edge (x, y) ∈ 4tc

~G
(C;α), we find that α(x) < α(y) and x, y ∈ an ~G(C).

Proof. We need to prove that x, y ∈ an ~G(C) since α(x) < α(y) is trivial. By Propo-
sitions 22 and 25, there exists a path lxy ∈ APo~G(C) for any (x, y) ∈ 4tc

~G
(C;α). This
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implies that there exists an o-o path lxy such that ∅ 6= V c(lxy) ⊆ An ~G(C), which gives
x, y ∈ an ~G(C).

Before proving Theorem 26, we first need to present Lemma 47.

Lemma 47 Let ~G = (V, ~E) be a DAG and C be a subset of V . For any subset C
′

of C and
any subset S of R \ {x, y}, we have An ~GC

′ (S ∪ C) = An ~G(S ∪ C).

Proof. For any S ⊆ R \ {x, y}, it is trivial that An ~GC′ (S ∪ C) ⊆ An ~G(S ∪ C). We need
to show that An ~G(S ∪ C) ⊆ An ~GC

′ (S ∪ C). Suppose that there exists S0 ⊆ R \ {x, y}
such that An ~G(S0 ∪ C) * An ~GC

′ (S0 ∪ C). Then there exists w ∈ An ~G(S0 ∪ C) but

w /∈ An ~GC
′ (S0 ∪ C). Frow which we derive that there exists a directed path ~lwu such that

u ∈ S0∪C and V o(~lwu)∩C ′ 6= ∅ in ~G, i.e., there exists a directed path ~lwc in ~GC
′

such that
V (~lwc) ⊆ V (~lwu) and V o(~lwc) ∩ C

′
= ∅, a contradiction with w /∈ An ~GC

′ (S0 ∪ C).

D.5 Proof of Theorem 26

Proof. To prove (a), first of all, Lemma 36 together with ~GC
′
⊆ ~G yields I(~G)C ⊆ I(~GC

′
)C .

So, it suffices to prove that 〈X,Y |S〉 ∈ I(~G)C for any 〈X,Y |S〉 ∈ I(~GC
′
)C . For any x ∈ X

and y ∈ Y , let lxy be an arbitrary path connecting x and y in ~G.

If lxy ⊆ ~GC
′
, it follows that lxy is blocked by S ∪ C in ~GC

′
since 〈X,Y |S〉 ∈ I(~GC

′
)C .

This combined with Lemma 47 yields that lxy is blocked by S ∪ C in ~G.
Otherwise, there exist c1, c2 ∈ C

′
such that (c1, c2) ⊆ lxy or c1 ∈ C

′
, u ∈ R such that

(c1, u) ⊆ lxy. Thus we have c1 ∈ V s(lxy)∪ V d(lxy), which gives that lxy is blocked by S ∪C
in ~G. As a consequence, I(~GC

′
)C ⊆ I(~G)C holds.

To prove (b), it is trivial that P(~GC
′
)C ⊆ P(~G)C . What we need is to prove P(~G)C ⊆

P(~GC
′
)C . For any P (xR|xC) ∈ P(~G)C , without loss of generality we can assume that

P (xC) > 0 for any fixed xC ∈ XC , then we have that P (xR|XC = xC) = P (xV )
P (xC)

=

c1
∏
w∈V P (xw|xpa~G(w)), where c1 = 1

P (xC)
is a constant. For any w ∈ V , there are two

cases to be considered:

1. If {w} ∪ pa ~G(w) ⊆ C, let cw = P (Xw = xw|Xpa~G(w)
= xpa~G(w)), where cw is a

constant. Let A1 = {w ∈ V : {w} ∪ pa ~G(w) ⊆ C}. It follows that
∏
w∈A1

cw =∏
w∈A1

P (Xw = xw|Xpa~G(w)∩C = xpa~G(w)∩C) =
∏
w∈A1

φ(Xw = xw).

2. Otherwise, there are three cases to be considered. LetA2 = {w ∈ V : w ∈ R,pa ~G(w) ⊆
C}, A3 = {w ∈ V : w ∈ R,pa ~G(w) * C} and A4 = {w ∈ V : w ∈ C,pa ~G(w) * C}.
Then we have that

∏
w∈A2

P (xw|Xpa~G(w)
= xpa~G(w)) =

∏
w∈A2

P (xw|Xpa~G(w)∩C =
xpa~G(w)∩C) =

∏
w∈A2

φ(xw),∏
w∈A3

P (xw|xpa
~GC
′ (w), Xpa~G(w)∩C = xpa~G(w)∩C) =

∏
w∈A3

φ(xw|xpa
~GC
′ (w)) and

∏
w∈A4

P (Xw = xw|xpa
~GC
′ (w), Xpa~G(w)∩C = xpa~G(w)∩C) =

∏
w∈A4

φ(Xw = xw|xpa
~GC
′ (w)).
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Thus, there exists φ(xV ) ∈ P(~GC
′
) such that φ(xR|XC = xC) = P (xR|XC = xC), which

gives P(~G)C ⊆ P(~GC
′
)C .

D.6 Proof of Lemma 27

Proof. Let A1 = {x, y ∈ R : x
~G� y} and A2 = {x, y ∈ R : x

~GC� y}. It follows from the
definition of ~GC that A1 = A2 and ~GC also has a topological order α. By Propositions 22
and 25, it is enough to prove APo~G(C) = APo~GC (C). Using Lemma 49, we complete the
proof.

D.7 Proof of Proposition 29

Proof. Since the most complex part of the algorithm is Step 5, we can use the complexity
of Step 5 to represent the complexity of the whole algorithm. In the worst case, we have that
|Pj | = |pa ~Gj−1

(uj)| = k− j for j ∈ [k− 2]. Let m be the maximal number of elements in Pj

for j ∈ [k−2]. To find ~Ej for all j ∈ [k−2], we have to check no more than |k−2|
(
m
2

)
vertex

pairs except the vertex pairs in C. Hence the complexity of the algorithm can be calculated
by |k − 2|

(
m
2

)
− |C|(|C| − 1)/2. Thus we obtain that the complexity of the algorithm is at

most O(m2|k − 2|).

Appendix E. Proofs of Claims in Section 6

For any x, y ∈ an ~G(C) with x
~G� y, Proposition 48 implies that conditioning on C does not

change qualitatively the information transitivity between x and y since {x, y} is a cp-pair
w.r.t. α in ~G. That is, if x |= y|(pa ~GR({x, y}), C)[~G], we have that {x, y} is a cp-pair under

conditioning on C w.r.t. α in ~G. Thus, we do not need to make such pairs adjacent after
conditioning on C for a minimal I-map.

Proposition 48 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset of
V . For any x, y ∈ an ~G(C), {x, y} is a cp-pair in ~G if x |= y|(pa ~GR({x, y}), C)[~G].

Proof. Suppose for contradiction that there exists lxy ∈ APo~G(C) such that lxy has the TCP

w.r.t. α. From Proposition 22 it follows α(w) > max{α(x), α(y)} for any w ∈ V o(lxy). Note

that x |= y|(pa ~GR({x, y}), C)[~G], we know that for any path l
′
xy in ~G, (V s(l

′
xy) ∪ V d(l

′
xy)) ∩

(pa ~GR({x, y}) ∪ C) 6= ∅ or V c(l
′
xy) * An ~G(pa ~GR({x, y}) ∪ C). Since lxy ∈ APo~G(C), we

have that (V s(lxy) ∪ V d(lxy)) ∩ C = ∅ and V c(lxy) ⊆ An ~G(C). Thus, (V s(lxy) ∪ V d(lxy)) ∩
pa ~GR({x, y}) 6= ∅, a contradiction with y = arg minw∈V (lxy)\{x}{α(w)}.

To prove Proposition 50, we first give a lemma below.

Lemma 49 Let ~G = (V, ~E) be a DAG and C be a subset of V . Then APo~G(C) = APo~GC (C).

Proof. For any lxy in APo~G(C), we know that lxy is an o-o path such that it is not blocked

by C in ~G. From the definition of ~EC , it follows that An ~G(C) = An ~GC (C) and u ∈ C for

any (u, v) ∈ ~EC . Thus lxy ∈ APo~GC (C), which gives APo~G(C) ⊆ APo~GC (C).
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Next we will show APo~GC (C) ⊆ APo~G(C). For any lxy ∈ APo~GC (C), it holds that lxy is

an o-o path in ~G such that (V s(lxy)∪V d(lxy))∩C = ∅ and V c(lxy) ⊆ An ~GC (C). Note that
An ~GC (C) = An ~G(C), we have that lxy ∈ APo~G(C), implying APo~GC (C) ⊆ APo~G(C).

Proposition 50 Suppose that ~G = (V, ~E) is a DAG with a topological order α, and C is a
subset of V . Then PScp~G (C;α) = PScp~GC (C;α).

Proof. It follows that APo~GC (C) = APo~G(C) from Lemma 49. For any x, y ∈ R, note that

x
~G∼ y if and only if x

~GC∼ y, we can derive that PScp~G (C;α) = PScp~GC (C;α) by the definition
of cp-pair.

Proposition 50 shows us that it is equivalent to considering the cp-pairs in ~GC instead
of those in the original graph ~G, which is more convenient for verifying the set of cp-pairs
under conditioning on C in ~G.

Next, we will give certain simple properties of C-completeness.

Corollary 51 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset of
V . Then an ~G(C) is C-complete w.r.t. α in ~G if and only if an ~GC (C) is C-complete w.r.t.

α in ~GC .

Proof. For any x, y ∈ R, we know that x
~G∼ y if and only if x

~GC∼ y. This combined with
Proposition 50 completes the proof.

Proposition 52 Let ~G = (V, ~E) be a DAG with a topological order α, and C be a subset of
V . For A ⊆ D ⊆ an ~G(C), if D is C-complete w.r.t. α in ~G, then A is C-complete w.r.t. α

in ~G.

Proof. Suppose for contradiction that A is not C-complete w.r.t. α in ~G. Then there exist

x, y ∈ A such that x
~G� y and {x, y} /∈ PScp~G (C;α), a contradiction.

E.1 Proof of Proposition 31

Proof. To prove the necessity, suppose for contradiction that an ~G(C) is not C-complete

w.r.t. α in ~G. Then there exist x, y ∈ an ~G(C) with x
~G� y such that {x, y} /∈ PScp~G (C;α),

implying there exists lxy ∈ APo~G(C) such that lxy has the TCP w.r.t. α. Proposition 22

yields that α(w) > max{α(x), α(y)} for any w ∈ V o(lxy), a contradiction with Lemma 38
and Proposition 13.

Conversely, since an ~G(C) is C-complete w.r.t. α in ~G, it holds that PStc~G (C;α) = ∅.
Combining this with Theorem 18 and Proposition 25, we know that I(~G)C = I(~GR).

Corollary 53 reminds us of the marginal collapsibility condition of the undirected graph
models. Particularly, for an undirected graph model (G,P(G)) with an undirected graph
G = (V,E), under the condition that P is closed under marginalization, i.e., the joint and
marginal distributions belong to the same type of distribution. P(G) or G is collapsible onto
V \A if and only if for each connected component A∗ of A, the neighbors of A∗, denoted by
neG(A∗), is complete in G, that is, neG(A∗) \A is complete in G since neG(A∗) ∩A = ∅.
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Corollary 53 Let ~G = (V, ~E) be a DAG with a topological order α and C be a subset of
V . Then the following statements are equivalent:

(a) I(~G) is closed under conditioning on C;

(b) for any connected component C∗ of C, an ~G(C∗) \ C is C-complete w.r.t. α in ~G.

Proof. To prove (a) implies (b), it follows from Proposition 31 that an ~G(C) is C-complete

w.r.t. α in ~G. Note that an ~G(C∗) \C ⊆ an ~G(C) for any connected component C∗ of C, we

know that an ~G(C∗) \ C is C-complete w.r.t. α in ~G by Proposition 52.
To prove (b) implies (a), by Proposition 31, it suffices to prove that an ~G(C) is C-

complete w.r.t. α in ~G. By contradiction, suppose that an ~G(C) is not C-complete w.r.t. α

in ~G. It holds that there exist x, y ∈ an ~G(C) with x
~G� y such that {x, y} /∈ PScp~G (C;α).

This leads to a contradiction with an ~G(C) =
⋃
C∗⊆C an ~G(C∗) \C, where C∗ is a connected

component of C in ~G.
To prove Proposition 33, we still need three lemmas as follows. For convenience, let

fa ~G(u) = pa ~G(u) ∪ {u}. We define ~Gr((u1,v1)) = ~G − (u1, v1) + (v1, u1), ~Gr((u1,v1),(u2,v2)) =
~Gr((u1,v1))−(u2, v2)+(v2, u2), . . . , ~Gr((u1,v1),...,(um,vm)) = ~Gr((u1,v1),...,(um−1,vm−1))−(um, vm)+
(vm, um) for m ≥ 2.

Lemma 54 Suppose that ~G = (V, ~E) is a DAG and C is a subset of V . Then the following
statements are equivalent:

(a) I(~G) is closed under conditioning on C;

(b) C is a covered set in ~G;

(c) C is a covered set in ~GC ;

(d) V(~GCT ) = ∅, where T = An ~GC (C);

(e) for any w ∈ An ~GC (C), w is a covered vertex in ~GC .

Proof. To prove (a) implies (b), it follows that AV ~G(C) = ∅ from Proposition 13. This

implies that pa ~G(w) \C is complete for any w ∈ An ~G(C), that is, C is a covered set in ~G.
To prove (b) implies (c), it holds that pa ~G(w) \C is complete for any w ∈ An ~G(C). By

the definition of ~GC , we know that An ~GC (C) = An ~G(C) and pa ~GC (w) = pa ~G(w) \ C for

any w ∈ An ~GC (C). From which we derive that C is a covered set in ~GC .

To prove (c) implies (d), suppose for contradiction that V(~GCT ) 6= ∅. Then there exists
w ∈ An ~GC (C) such that pa ~GC (w) is not complete, a contradiction.

To prove (d) implies (e), by contradiction, suppose that there exists w ∈ An ~GC (C) such

that w is not a covered vertex in ~GC . That is, there exists u ∈ An ~GC (w) ⊆ An ~GC (C) such
that pa ~GC (u) is not complete, a contradiction.

To prove (e) implies (a), suppose for contradiction that I(~GR) 6= I(~G)C . It follows from
Proposition 13 that there exists a C-configuration {x → w ← y} in ~G. This implies that
there exists w ∈ An ~G(C) = An ~GC (C) such that w is not a covered vertex in ~GC , which
leads to a contradiction.
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Lemma 55 Suppose that ~G = (V, ~E) is a DAG with a topological order α and u ∈ V .
Let pa ~G(u) = {u1, u2, . . . , um} such that α(u1) > α(u2) > · · · > α(um) and ei = (ui, u)

for i ∈ [m]. Then {e1, e2, . . . , em} is sequentially reversible in ~G if and only if pa ~G(u) is
complete and pa ~G(u) = an ~G(u).

Proof. (if) For any i ∈ [m], it is obvious that w ∈ paG(u) for any w ∈ pa ~G(ui). Since
α(u1) > α(u2) > · · · > α(um), pa ~G(u) = fa ~G(u1) holds. Otherwise, suppose that there

exists w such that w ∈ pa ~G(u) but w /∈ pa ~G(u1), a contradiction. Since ~Gr(e1) is a
DAG, we have that pa ~Gr(e1)

(u) = pa ~G(u) \ {u1} = an ~G(u) \ {u1} = an ~Gr(e1)
(u) and

pa ~Gr(e1)
(u) is complete. Similarly, note that α(u2) > · · · > α(um) in ~Gr(e1), it holds that

pa ~Gr(e1)
(u) = fa ~Gr(e1)

(u2).

Applying the same logic to the rest, it holds pa ~Gr(e0,e1,e2,...,ei−1)
(u) = fa ~Gr(e0,e1,e2,...,ei−1)

(ui)

for i ∈ [m], where ~Gr(e0) = ~G and ~Gr(e0,e1,e2,...,ei) = ~Gr(e0,e1,e2,...,ei−1) − (ui, u) + (u, ui) for

i ∈ [m]. By the definition of reversible edge, ei is reversible in ~Gr(e0,e1,e2,...,ei−1) for i ∈ [m],

implying that {e1, e2, . . . , em} is sequentially reversible in ~G.
(only if) It is obvious that pa ~Gr(e0,e1,e2,...,ei−1)

(u) = fa ~Gr(e0,e1,e2,...,ei−1)
(ui) for i ∈ [m]. By

contradiction, suppose that pa ~G(u) is not complete or pa ~G(u) 6= an ~G(u). If pa ~G(u) is not

complete, there exist k, s ∈ [m] such that k > s and (uk, us) /∈ ~E. Note that us, uk are in
pa ~Gr(e0,e1,...,es−1)

(u), we have pa ~Gr(e0,e1,...,es−1)
(u) 6= fa ~Gr(e0,e1,...,es−1)

(us), a contradiction. If

pa ~G(u) 6= an ~G(u), there must exist some j ∈ [m] such that w ∈ pa ~G(uj) but w /∈ pa ~G(u),
also a contradiction.

Lemma 56 Suppose that ~G = (V, ~E) is a DAG with a topological order α and u ∈ V . Let
pa ~G(u) = {u1, u2, . . . , um} such that α(u1) > α(u2) > · · · > α(um) and ei = (ui, u) for
i ∈ [m]. Then the following statements are equivalent:

(a) u is a covered vertex in ~G;

(b) there exists a DAG ~G
′ ∈M(~G) such that pa ~G′ (u) = ∅;

(c) there exists a DAG ~G
′′ ∈ M(~G) such that {e1, e2, . . . , em} is sequentially reversible in

~G
′′
;

(d) there exists a DAG ~G∗ ∈M(~G) such that pa ~G∗(u) is complete and pa ~G∗(u) = an ~G∗(u).

Proof. To prove (a) implies (b), by contradiction, suppose that pa ~G′ (u) 6= ∅ for any
~G
′ ∈M(~G). Then there exists an edge (t, u) ∈ ~E(~G

′
) for any ~G

′ ∈M(~G). From which we
can derive that there exists a v-structure {t→ w ← s} ∈ AV~G(u), a contradiction.

To prove (b) implies (c), suppose for contradiction that {e1, e2, . . . , em} is not sequen-
tially reversible in ~G

′′
for any ~G

′′ ∈M(~G). This implies that there exists at least one edge
of {e1, e2, . . . , em} being not reversible in ~G

′′
. Without loss of generality we assume that e1

is not reversible in ~G
′′
. Consider that we can choose ~G

′′
to be ~G

′
, a contradiction.

To prove (c) implies (d), it holds obviously by Lemma 55. To prove (d) implies (a),
suppose for contradiction that u is not a covered vertex in ~G. There exists w ∈ An ~G(u)
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such that pa ~G(w) is not complete. Without loss of generality we assume that x, y ∈ pa ~G(w)

and x
~G� y. Then it holds that {x → w ← y} ∈ V(~G). Since ~G∗ ∈ M(~G), we have that

w ∈ An ~G∗(u) and {x→ w ← y} ∈ V(~G∗), a contradiction.

E.2 Proof of Proposition 33

Proof. By Proposition 5, we have that (a) and (b) are equivalent. According to The-
orem 18, Propositions 25 and 28, we know that (b) and (c) are equivalent. It is trivial
that (d) implies (c). To prove (c) implies (d), suppose for contradiction that there exists

a topological order β0 of ~G such that ~Eβ0R 6= ∅. This implies that I(~G)C 6= I(~GR). Since
~EαR = ∅, it holds that I(~G)C = I(~GR), a contradiction.

Lemma 54 yields that (a) and (e) are equivalent. Combining this with Lemma 56, we
know that (e), (f), (g) and (h) are all equivalent. This completes the proof.

Appendix F. Additional Experiments

To compare the computational complexity of our approach and the local Markov method
relying on d-separation checks, we conduct a simulation study here.

For each network in this experiment, two vertex variables are randomly selected as condi-
tional variables and the topological order is also randomly selected. The average runtime of
100 repetitions is shown in Table 7 below. The column “ROS Time” is the average runtime
of our method, and the column “LMP Time” is the average runtime of Algorithm 3 based
on local Markov property (LMP). These results demonstrate the efficiency of our algorithm,
with running times being negligible in these examples. Our experiment deomonstrates that
our ROS algorithm is sufficiently efficient for our purpose.

In this example, the local Markov method takes longer time because it involves exhaus-
tive checking of d-separation assertions for specific subsets within the Markov boundary
of each vertex in the updated graph. Nevertheless, we believe that the research direction
based on local Markov property holds promising potential for future studies to realize its
full capacity.

Network Vertex Number ROS Time LMP Time Ratio of Runtime

Asia 8 0.004 0.007 1.750
Insurance 27 0.044 13.859 314.977
Alarm 37 0.047 15.516 330.128

Table 7: Average runtime for DAG minimal I-maps by two methods (in seconds). The
ROS Time is the average runtime of our proposed algorithm, and the LMP time
refers to the average runtime of the algorithm based on d-separation checks by
using local Markov property. Runtime Ratio is calculated as LMP Time divided
by ROS Time. All values are rounded to three decimal places.
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Algorithm 3 Finding Minimal I-maps of Conditional Models by Local Markov Property

Input: A DAG ~G = (V, ~E) with a topological order α, conditional set C ⊆ V .
Output: A minimal I-map of P(~G)C under α: ~Gα,∗R .
1: Reorder the vertices in R according to the reverse of the topological order α, i.e.,
R = {ri, i ∈ [k] : α(ri) > α(rj), i < j, i, j ∈ [k]}, where k = |R|;

2: for j=1 to k do
3: Dj ←mb ~G(rj) \ (pa ~G(rj) ∪ ch ~G(rj) ∪ C);
4: if Dj = ∅ then
5: R← R \ rj and continue;
6: else
7: for Fj ⊆ Dj do
8: Zj ← Fj ∪ pa ~G(rj);

9: if rj |= R \ (Zj ∪ {rj})|(Zj , C)[~G] and Fj 6= ∅ then
10: for u ∈ Fj do

11: Add u→ rj to ~G;
12: end for
13: end if
14: end for
15: end if
16: R← R \ rj ;
17: end for
18: ~Gα,∗R ← ~GR;

19: return ~Gα,∗R .
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F. R. Guo, E. Perković, and A. Rotnitzky. Variable elimination, graph reduction and the
efficient g-formula. Biometrika, 2022. asac062.

C. Heinze-Deml, M. H. Maathuis, and N. Meinshausen. Causal structure learning. Annual
Review of Statistics and Its Application, 5(1):371–391, 2018.

C. Hitchcock. Conditioning, intervening, and decision. Synthese, 193(4):1157–1176, 2016.

S. Højsgaard. Graphical independence networks with the grain package for R. Journal of
Statistical Software, 46(10):1–26, 2012.

H. Kiiveri, T. P. Speed, and J. B. Carlin. Recursive causal models. Journal of the Australian
Mathematical Society, 36(1):30–52, 1984.

N. Kitson, A. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of Bayesian
network structure learning. Artificial Intelligence Review, 56(8):8721–8814, 2023.

Y. Kivva, J. Etesami, and N. Kiyavash. On identifiability of conditional causal effects.
In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence,
pages 1078–1086, 2023.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, Cambridge, MA, 2009.

J. T. A. Koster. Marginalizing and conditioning in graphical models. Bernoulli, 8(6):
817–840, 2002.

H. Langseth and O. Bangsø. Parameter learning in object-oriented Bayesian networks.
Annals of Mathematics and Artificial Intelligence, 32(1):221–243, 2001.

M. Lappenschaar, A. J. Hommersom, P. J. Lucas, J. Lagro, S. Visscher, J. C. Korevaar, and
F. G. Schellevis. Multilevel temporal Bayesian networks can model longitudinal change
in multimorbidity. Journal of Clinical Epidemiology, 66(12):1405–1416, 2013.

S. L. Lauritzen. Graphical Models, volume 17 of Oxford Statistical Science Series. The
Clarendon Press, Oxford University Press, New York, 1996.

S. L. Lauritzen. Generating mixed hierarchical interaction models by selection. Technical
Report R-98-2009, Dept. Mathematics, Univ. Aalborg, 1998.

S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society:
Series B (Statistical Methodological), 50(2):157–194, 1988.

59



Xie, Guo and Sun

U. Lerner, E. Segal, and D. Koller. Exact inference in networks with discrete children
of continuous parents. In Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, pages 319–328, 2001.

B. Liu and J. Guo. Collapsibility of conditional graphical models. Scandinavian Journal of
Statistics, 40(2):191–203, 2012.

Y. Liu and A. C. Constantinou. Greedy structure learning from data that contain systematic
missing values. Machine Learning, 111(10):3867–3896, 2022.

M. Maathuis, M. Drton, S. Lauritzen, and M. Wainwright. Handbook of Graphical Models.
CRC Press, 2018.

D. Marella and P. Vicard. Object-oriented Bayesian networks for modeling the respondent
measurement error. Communications in Statistics—Theory and Methods, 42(19):3463–
3477, 2013.

C. Meek. Strong completeness and faithfulness in Bayesian networks. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence, pages 411–418, 1995.

K. Mohan, J. Pearl, and J. Tian. Graphical models for inference with missing data. In
Advances in Neural Information Processing Systems, pages 1277–1285, 2013.

S. Monti and G. F. Cooper. Learning Bayesian belief networks with neural network es-
timators. In Proceedings of the Ninth International Conference on Neural Information
Processing Systems, pages 578–584, 1996.

J. Mortera, P. Vicard, and C. Vergari. Object-oriented Bayesian networks for a decision
support system for antitrust enforcement. The Annals of Applied Statistics, 7(2):714–738,
2013.

R. E. Neapolitan. Learning Bayesian Networks, volume 38. Pearson Prentice Hall Upper
Saddle River, 2004.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

J. Pearl. Causality: Models, Reasoning and Inference, 2nd edn. Cambridge University
Press, Cambridge, UK, 2009.

J. Pearl, D. Geiger, and T. Verma. Conditional independence and its representations.
Kybernetika, 25(7):33–44, 1989.

Y. Peng and J. A. Reggia. Plausibility of diagnostic hypotheses: the nature of simplicity.
In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, pages
140–145, 1986.

T. Richardson and P. Spirtes. Ancestral graph Markov models. The Annals of Stastics, 30
(4):962–1030, 2002.

60



DAGs as Minimal I-maps for Conditional Models of Causal BNs

J. M. Robins. A new approach to causal inference in mortality studies with a sustained ex-
posure period—application to control of the healthy worker survivor effect. Mathematical
Modelling, 7(9-12):1393–1512, 1986.

K. Sadeghi. Marginalization and conditioning for LWF chain graphs. The Annals of Stastics,
44(4):1792–1816, 2016.

K. Sadeghi. Faithfulness of probability distributions and graphs. Journal of Machine Learn-
ing Research, 18(1):5429–5457, 2017.

M. Scutari. Bayesian network repository, 2024. URL https://www.bnlearn.com/

bnrepository/. Accessed: 2024-11-20.

M. Scutari and J. B. Denis. Bayesian Networks with Examples in R. Chapman and
Hall/CRC, 2014.

I. Shpitser and J. Pearl. Identification of conditional interventional distributions. In Pro-
ceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence, pages
437–444, 2006.

P. Spirtes, C. Meek, and T. Richardson. Causal inference in the presence of latent variables
and selection bias. In Proceedings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 499–506, 1995.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search, 2nd Edition.
MIT Press, Cambridge, MA, 2001.

C. Squires and C. Uhler. Causal structure learning: a combinatorial perspective. Founda-
tions of Computational Mathematics, 23(5):1781–1815, 2022.

S. Srinivas. A probabilistic approach to hierarchical model-based diagnosis. In Proceedings
of the Tenth International Conference on Uncertainty in Artificial Intelligence, pages
538–545, 1994.

E. V. Strobl, S. Visweswaran, and P. L. Spirtes. Fast causal inference with non-random
missingness by test-wise deletion. International Journal of Data Science and Analytics,
6(1):47–62, 2018.

S. Sullivant, K. Talaska, and J. Draisma. Trek separation for Gaussian graphical models.
The Annals of Statistics, 38(3):1665–1685, 2010.

J. Tian. Identifying conditional causal effects. In Proceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence, pages 561–568, 2004.

R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellström, and K. Zhang. Causal discov-
ery in the presence of missing data. In Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, pages 1762–1770, 2019.

J. Vila-Francés, J. Sanchis, E. Soria-Olivas, A. J. Serrano, M. Martinez-Sober, C. Bonanad,
and S. Ventura. Expert system for predicting unstable angina based on Bayesian networks.
Expert Systems with Applications, 40(12):5004–5010, 2013.

61

https://www.bnlearn.com/bnrepository/.
https://www.bnlearn.com/bnrepository/.


Xie, Guo and Sun

M. J. Vowels, N. C. Camgoz, and R. Bowden. D’ya like DAGs? A survey on structure
learning and causal discovery. ACM Computing Surveys, 55(4):1–36, 2022.

N. Wermuth. Probability distributions with summary graph structure. Bernoulli, 17(3):
845–879, 2011.

N. Wermuth and S. L. Lauritzen. Graphical and recursive models for contingency tables.
Biometrika, 70(3):537–552, 1983.

X. Xie, Z. Geng, and Q. Zhao. Decomposition of structural learning about directed acyclic
graphs. Artificial Intelligence, 170(4-5):422–439, 2006.

B. Yet, Z. B. Perkins, T. E. Rasmussen, N. Tai, and D. W. R. Marsh. Combining data
and meta-analysis to build Bayesian networks for clinical decision support. Journal of
Biomedical Informatics, 52:373–385, 2014.

Y. Yu, J. Chen, T. Gao, and M. Yu. DAG-GNN: DAG structure learning with graph neural
networks. In International Conference on Machine Learning, pages 7154–7163, 2019.

A. Zanga, E. Ozkirimli, and F. Stella. A survey on causal discovery: Theory and practice.
International Journal of Approximate Reasoning, 151:101–129, 2022.

J. Zhang. On the completeness of orientation rules for causal discovery in the presence of
latent confounders and selection bias. Artificial Intelligence, 172(16):1873–1896, 2008.

62


	Introduction
	Review of Directed Acyclic Graph
	Bayesian Network, Its Minimal I-map and Conditional Model
	Closure of Bayesian Network under Conditioning
	Characterization by C-configuration
	Conditioning on a Root Set

	Minimal Filling Edge Set for Non-Closure Bayesian Network
	An Example for the Main Idea of Finding a Minimal I-map
	Minimal Filling Edge Set
	Benefits of DAG Minimal I-map
	Characterizing Minimal Filling Edge Set by Terminal Connecting Pair
	Representation path
	Sweeping operator
	Characterizing Minimal Filling Edge Set

	Reverse Order Search Algorithm

	Other Characterizations of Closure
	Numerical Examples
	Computing Conditional Distribution
	Conditional Probability Queries
	Repeated Conditional Queries of a BN
	Conditional Intervention Queries of a Causal BN

	Discussion and Future Work
	Symbol List
	Proof of Claims in Section 3
	Proof of Proposition 5

	Proof of Claims in Section 4
	Proof of Theorem 10
	Proof of Proposition 13
	Proof of Proposition 16

	Proofs of Claims in Section 5
	Proof of Theorem 18
	Proof of Theorem 19
	Proof of Proposition 22
	Proof of Proposition 25
	Proof of Theorem 26
	Proof of Lemma 27
	Proof of Proposition 29

	Proofs of Claims in Section 6
	Proof of Proposition 31
	Proof of Proposition 33

	Additional Experiments

