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Abstract

Recent studies have validated that pruning hard-to-learn examples from training im-
proves the generalization performance of neural networks (NNs). In this study, we investigate
this intriguing phenomenon—the negative effect of hard examples on generalization—in
adversarial training. Particularly, we theoretically demonstrate that the increase in the
difficulty of hard examples in adversarial training is significantly greater than the increase
in the difficulty of easy examples. Furthermore, we verify that hard examples are only fitted
through memorization of the label in adversarial training. We conduct both theoretical and
empirical analyses of this memorization phenomenon, showing that pruning hard examples
in adversarial training can enhance the model’s robustness. However, the challenge remains
in finding the optimal threshold for removing hard examples that degrade robustness perfor-
mance. Based upon these observations, we propose a new approach, difficulty proportional
label smoothing (DPLS), to adaptively mitigate the negative effect of hard examples, thereby
improving the adversarial robustness of NNs. Notably, our experimental result indicates
that our method can successfully leverage hard examples while circumventing the negative
effect.
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1. Introduction

The structural regularities of classification datasets have been investigated in several stud-
ies (Jiang et al., 2021; Paul et al., 2021; Wu et al., 2018), and measures have been proposed for
identifying the regularities of training samples through training statistics. For example, Jiang
et al. (2021) discovered that the learning speed of training examples is strongly correlated
with the structural regularities, i.e., regular examples are learned quickly, whereas irregular
examples are learned slowly. Paul et al. (2021) measured the difficulty of a training example
by using the loss gradient norm. Based on the proposed measures, the aforementioned studies
clarified the relationship between example difficulty and generalization in the context of
deep neural networks (DNNs). In particular, a compelling finding among their observations
motivates our study: memorizing hard-to-learn/irregular examples can deteriorate the gen-
eralization ability of DNNs. In other words, hard-to-learn examples are unrepresentative
outliers of a class or data with corrupted labels, and thus, these examples can result in the
degradation of generalization. In this study, we explore this intriguing phenomenon—the
negative effect of hard examples on generalization—in adversarial settings.
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Figure 1: The test accuracy (for clean examples)
of the standard (STD) models and the test accu-
racy (for adversarial examples) of the adversarial
(PGD (Madry et al., 2017)) models trained on
the subsets of CIFAR-10. On pruning hard exam-
ples from training, test accuracy increases both
in the STD and PGD models, but the increase
in the PGD model is greater than that in the
STD model.

Adversarial training differs from stan-
dard training: it uses adversarial exam-
ples as the training data. Notably, ad-
versarial training requires more data than
standard training (Schmidt et al., 2018).
Additionally, the improvement in gener-
alization rendered by using more data is
observably greater in an adversarial set-
ting than in a standard setting (Lee et al.,
2021; Gowal et al., 2021b). Therefore, re-
cent studies on adversarial training have
focused on approaches for using more data
effectively to bridge the gap between train
and test inferences of DNNs (Carmon et al.,
2019; Gowal et al., 2021b). Nevertheless,
in this study, we demonstrate that the im-
provement in generalization performance
could be achieved by regularizing the use
of data. Specifically, we demonstrate that
the improvement achieved by regularizing
the training of hard examples is greater in
adversarial training.

Fig. 1 illustrates the difference between the effect of pruning hard examples in standard
training (denoted as STD) and adversarial training by using projected gradient descent (Madry
et al., 2017) (denoted as PGD). After training models on subsets of CIFAR-10 (Krizhevsky
et al., 2009) for 100 epochs, we either pruned hard examples from the training dataset or
continued by training on the entire training data.∗ We evaluated the test accuracy for clean

∗Example difficulty is measured by accumulating 0-1 loss along the training trajectory. For further details,
refer to Appendix B.2.
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examples in the STD models and the test accuracy for adversarial examples in the PGD
models. Observably, pruning hard examples during training can improve the generalization
performance, which is consistent with the previous study’s result that training of hard
examples can deteriorate generalization. However, the result indicates that the performance
increase is greater in adversarial training. It can be inferred that the negative effect of hard
examples on training is intensified by adversarial perturbations, and thus, the improvement
by pruning hard examples is more substantial in adversarial training.

In this study, we verify that the cause of this result is the negative effect of hard examples
in adversarial training. We theoretically prove that the difficulty of each example increases
in an adversarial setting and that the increase is more significant for hard examples than for
easy examples. In this context, we demonstrate that hard examples are fitted only through
memorization in adversarial training and that pruning them from the training process
improves robustness. Based on this, we conduct a theoretical analysis of the memorization
phenomenon of hard examples, proving that including hard examples in adversarial training
reduces robustness performance. To demonstrate this empirically, we perform analytical
experiments on the assumptions and outcomes of the theoretical analysis, showing that the
theoretical analysis aligns with actual results. Consequently, we show that hard examples
negatively impact the model’s robustness. However, the challenge remains that finding the
optimal difficulty threshold for removing hard examples that deteriorate robustness is an
intractable proposition.

To address this problem, we propose a regularization method, difficulty proportional
label smoothing (DPLS), to mitigate the negative effect of hard examples. Label smooth-
ing (LS) (Szegedy et al., 2016) regularizes the prediction of each example to prevent the
memorization of the one-hot label. In this perspective, DPLS extends this LS approach to
adopt a smoothing factor that is proportional to the difficulty of the example for regularizing
the training of each example. Using the results of experiments on a variety of datasets and
algorithms, we assess our proposed methodology and find that DPLS could successfully
leverage hard examples while avoiding the negative effect.

In Section 2, we introduce the background and previous studies related to the topic
addressed in this paper. In Section 3, we conduct a theoretical and empirical analysis of
learning hard examples in adversarial training. In Section 4, we analyze approaches for
effectively learning hard examples in adversarial training and propose a methodology. In
Section 5, we demonstrate the effectiveness of the proposed methodology through experiments
on various algorithms and datasets. Finally, in Section 6, we present the conclusions of the
paper.

2. Related work

Adversarial robustness Adversarial training (Madry et al., 2017) employs adversarial
examples as training data to improve robustness. For a dataset D = {(xi, yi)}ni=1, where
xi ∈ Rd represents a clean data, and yi ∈ {1, ..., C} denotes its corresponding label of C
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classes. Adversarial training can be formulated in an empirical risk minimization form
featuring the following optimization:

min
θ

n∑
i=1

max
δ∈S
L(f(xi+ δ), yi; θ). (1)

Here, θ denotes the parameter of a model f , L represents the loss function, and S =
{δ ∈ Rd : ||δ|| ≤ ε} where ε is an adversarial budget, which depicts an upper bound of
adversarial perturbations. Another form of adversarial training is TRADES (Zhang et al.,
2019), which controls the trade-off between robustness and standard accuracy by dividing
training loss into the loss of clean examples and regularization for robustness. For adversarial
attacks, fast gradient sign method (FGSM) is a general method for generating adversarial
examples (Goodfellow et al., 2014). PGD is a multi-step version of FGSM (Madry et al.,
2017). Adaptive auto attack (A3) is an efficient and reliable attack which utilizes adaptive
random starts and statistics-based discarding strategy (Liu et al., 2022b).

Robust and non-robust feature In Tsipras et al. (2018), certain data features were
defined as moderately or slightly correlated with the data labels. These features are useful for
improving performance when training a standard classifier, but they have the characteristic
of reducing the classifier’s performance because they can be manipulated by adversarial
attacks. Such features are referred to as ‘non-robust features.’ In contrast, features that are
not manipulated by adversarial attacks and maintain their correlation with the data labels
are referred to as ‘robust features.’ Ilyas et al. (2019) formulated a mathematical definition
of robust and non-robust features based on their correlation with the labels. Specifically, for
a data pair (x, y) from a dataset D, a feature g is defined as a ρ-useful feature if it satisfies
E[y · g(x)] ≥ ρ, where ρ > 0. Here, for an adversarial perturbation δ, a useful feature g is
defined as a robust feature if it satisfies E [infδ y · g(x+ δ)] ≥ ρ, and as a non-robust feature
if it does not satisfy this condition. We conduct a theoretical analysis utilizing these concepts
of robust and non-robust features as defined in previous studies.

Overfitting and memorization in adversarial training Wong et al. (2020) conducted
analysis on overfitting in adversarial training, termed robust overfitting. Chen et al. (2020)
utilized a smoothing method that combines knowledge distillation (Hinton et al., 2015) and
stochastic weight average (Izmailov et al., 2018). Dong et al. (2022) also used a knowledge
distillation method to mitigate overfitting caused by distribution shift and label noise. Yu
et al. (2022) proposed a method to prevent overfitting of small-loss data combined with
adversarial weight perturbation (Wu et al., 2020). In Huang et al. (2020); Liu et al. (2021);
Dong et al. (2021), they used the exponential moving average of predictions as a label for
training to prevent robust ovefitting. In particular, Dong et al. (2021) demonstrated that
DNNs are sufficient to memorize training adversarial examples with random labels; reportedly
the causes of robust overfitting may be the memorization of one-hot labels.

Measurement on difficulty of examples Paul et al. (2021) demonstrated that the norm
of the error vector (EL2N score) can be used to identify important and difficult training
data. They discovered that examples with high score tend to be hard to learn but important
for improving the performance. However, pruning certain examples with the highest score
can improve generalization performance, indicating that the highest score examples tend
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to be unrepresentative. Jiang et al. (2021) proposed consistency score (C-score), which is
the expected accuracy of each instance for the models trained with various data subsets
excluding the given instance. While these scores can be utilized in several applications (Lee
et al., 2022), we use these scores as the example difficulty in our study.

3. Analysis

In this section, we conduct a theoretical and empirical analysis of the effect of hard examples
on training. Through this analysis, we reveal that in adversarial training, learning from hard
examples primarily occurs through memorization. Next, we perform a theoretical analysis of
the memorization of hard examples that occurs in adversarial training. Finally, we demon-
strate the theoretical analysis through various empirical verifications of the memorization of
hard examples.

3.1 Analysis on the effect of hard examples

We first demonstrate through a theoretical analysis of hard examples that training hard
examples becomes more difficult as the adversarial budget in adversarial training increases,
and we illustrate this theoretical analysis with experimental evidence. Next, we compare the
learning patterns of hard examples in standard and adversarial training, confirming that in
adversarial training, the learning of hard examples primarily occurs through memorization.

3.1.1 Theoretical analysis of the effect of hard examples
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Figure 2: The schematic il-
lustration of easy (x2) and
hard examples (x1).

We theoretically analyze the effect of hard examples in both
standard and adversarial training. A simple model is designed
to demonstrate the manner in which adversarial perturbations
affect hard examples in adversarial training. We aim to design
examples featuring different difficulties in learning. Specifically,
we define a binary classification model f(x) = σ(w>x + b),
which is a mapping function f : X → Y from input space
X to output space Y, where (x, y) ∈ Rd × {±1} and σ(·)
represents a sigmoid function. To ensure simplicity, we assume
that ‖w‖ = 1. Thereafter, we set the loss function as cross-
entropy loss and define easy and hard examples by controlling
the distance between each example and the decision boundary.
The hard example is set as (x1, y1 = +1) where

∥∥w>x1 + b
∥∥ = d1, and the easy example

is set as (x2, y2 = +1) where
∥∥w>x2 + b

∥∥ = d2 and d1 < d2. The differences between the
gradient norm of the examples in standard and adversarial settings are as follows:

Definition 1 (Gradient difference) The differences between the loss gradient norm on
x1 and x2 in standard and adversarial training are defined as follows:

Dstd(x1,x2) =
∥∥∥(1− σ(w>x1 + b))x1

∥∥∥− ∥∥∥(1− σ(w>x2 + b))x2

∥∥∥
Dadv(x1,x2, ε) =

∥∥∥(1− σ(w>(x1 + δ) + b))(x1 + δ)
∥∥∥− ∥∥∥(1− σ(w>(x2 + δ) + b))(x2 + δ)

∥∥∥.
(2)
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Here, δ represents an adversarial perturbation, where
∥∥w>δ∥∥ = ε. Dstd denotes the

difference between the loss gradient norm on inputs in standard training and Dadv denotes
that in adversarial training. The following theorem and corollary demonstrate that the
difference between the loss gradient norm of hard and easy examples in adversarial training
is more significant than that in standard training:

Theorem 2 Let the gradient norm of easy examples is smaller than the gradient norm of hard
examples in both standard and adversarial training. Then, if w>x1 ≥ 0 and 0 < ε < (d1+d2)

2 ,
it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ε). (3)

Corollary 3 The increase in gradient difference by an adversarial attack is proportional
to the difficulty of the example and the size of the upper bound of adversarial perturbations.
Thus, if

∥∥w>x3

∥∥ = d3 and d2 < d3, it satisfies

Dadv(x1,x2, ε) < Dadv(x1,x3, ε), (4)

and if ε1 < ε2, it satisfies

Dadv(x1,x2, ε1) < Dadv(x1,x2, ε2). (5)

We have reported the proof in Appendix A.1. In the model whose training loss is
sufficiently converged, the outputs of easy examples are saturated, where σ(w>x2) ≈ 1.
Thus, the loss gradient norm of easy examples in standard training is assumed to be similar
to that in adversarial training. The assumption is validated through empirical analysis.
The change in the gradient norm of hard examples through the addition of adversarial
perturbation is larger than that of easy examples. According to Paul et al. (2021), the
gradient norm can be used as the difficulty (importance) score. In other words, the difficulty
increment of hard examples is more significant than that of easy examples.

3.1.2 Empirical analysis of the effect of hard examples

The preliminary analysis verifies that the increase in the difficulty of hard examples is greater
than the increase in that of easy examples in adversarial training, and we demonstrated that
hard examples exerts a negative effect on generalization (Fig. 1). We accordingly hypothesize
that a major factor deteriorating generalization in adversarial training is the large increase
in the difficulty of hard examples. We empirically verify this hypothesis.

We select hard examples according to the average loss of the models along the training
trajectory in accordance with the strategy reported by Jiang et al. (2021). The loss can be
of any kind, which is a measure of the error of each example. We employ 0-1 loss as the
measurement of difficulty. For a clear representation, the model trained with standard training
is denoted as STD, and the model trained via adversarial training as PGD. We represent the
accuracy for clean examples as standard accuracy and the accuracy for adversarial examples
as robust accuracy.
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Figure 3: Average error vector norm (EL2N score (Paul
et al., 2021)) of training examples.

Comparing the difficulty of
hard examples We initially con-
duct an empirical study on the dif-
ficulty of hard examples by compar-
ing the gradient norm in standard
and adversarial training. Paul et al.
(2021) reported that the average er-
ror vector norm (EL2N score) can
approximate the expected training
loss gradient norm of each example.
Thus, we employ this to compare
the gradient norm in both training. We select the top 10k hard and top 10k easy example
subsets from the training dataset of CIFAR-10 and subsequently calculate the average error
vector norm of examples in each subset during training, where the error vector norm of an
input pair (x, y) is defined as E‖f(x)− y‖2 for the one-hot label vector y. We train several
models by varying the adversarial budget ε = 8 (PGD), 4, 2, and 0 (STD), and the result is
obtained after the learning rate decay epoch, which is the training point indicating that the
model is sufficiently trained.

As illustrated in Fig. 3 (left), the average norm values of easy examples are small in
all models, and the difference in the average norm of easy examples between models is
also comparatively small. However, for the results of hard examples, the average norm of
hard examples increases significantly as the adversarial budget ε increases. In the PGD
model (right), greater difference is observed between clean and adversarial examples of hard
examples than that of easy examples. This result indicates that the loss gradient norm of
hard examples is rendered greater in adversarial training while that of easy examples does
not, which demonstrates our theoretical analysis presented in Section 3.1.

Comparing the training of hard examples The difficulty of hard examples is signifi-
cantly amplified in adversarial training. We therefore investigate whether hard examples are
fitted normally in adversarial training. Figs. 4a and 4b show the test accuracy and training
accuracy of the top 10k hard, top 10k easy, and entire training examples in the STD and
PGD models. Observably, test accuracy decreases marginally following the learning rate
decay (epoch 100) in the STD model. In contrast, the result of the PGD model indicates that
when the training robust accuracy of hard examples starts to increase (at the decay epoch
100), the test robust accuracy starts to decrease rapidly. Moreover, the training accuracy of
the easy examples remains unchanged after the decay, indicating that the decrease in the
test performance is mostly attributed to the training of hard examples.

Fig. 4c shows the training accuracy of hard examples and the test accuracy of the models
with varying adversarial budget ε. The decrease in test accuracy and the increase in training
accuracy of hard examples after the learning rate decay are observed to be severe as the ε
increases. Therefore, given these characteristics in the learning patterns, we can regard this
phenomenon as the memorization of hard examples that occurs in adversarial training, in
contrast to standard training. Specifically, as the adversarial budget ε increases in adversarial
training, it suggests that an increasing number of hard examples are being learned through
memorization.
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Figure 4: (a) and (b) show the training and test accuracy curves in the STD and PGD
models, respectively. (c) shows the training accuracy of hard examples and test accuracy of
the models with different adversarial budgets ε.

Table 1: Performance of
models with and without
pruning 10k hard or easy ex-
amples.

Model Std. Rob.

None 87.19 51.80
Easy pruning 87.27 49.71
Hard pruning 84.70 53.36

Pruning hard examples from training We observed the
phenomenon of hard examples being memorized after the learn-
ing rate decay, as shown in Fig. 4b. Next, we conducted
experiments to verify whether the hard examples fitted through
memorization actually contribute to the model’s performance.
To do this, as in Fig. 1, we trained the model after excluding
the hard examples from the training dataset and then compared
the performance. Specifically, we pruned the top 10k easy and
top 10k hard examples from the training dataset of CIFAR-10,
respectively.

Table 1 shows the standard and robust accuracies of the PGD (None) and PGD pruning
models (Easy and Hard pruning). From the robust accuracy results, we can see that excluding
easy examples from the training dataset results in the expected decrease in robust accuracy.
In contrast, when hard examples are excluded, robust accuracy increases. This suggests that
learning hard examples may reduce the model’s robustness. However, when focusing on
standard accuracy, we observe that excluding hard examples from the training process leads
to a decrease in standard performance. Taking this into consideration, learning hard examples
appears to increase standard accuracy but decrease robust accuracy. This characteristic
resembles the robustness-accuracy trade-off observed by Tsipras et al. (2018). Therefore, it
implies that the model may be learning non-robust features through the memorization of
hard examples.

3.2 Theoretical analysis on the training of hard examples

In Section 3.1, we demonstrated that learning hard examples is challenging in adversarial
training and observed that these hard examples are primarily learned through memorization.
Subsequently, through hard example pruning experiments, we observed that the memoriza-
tion of hard examples exhibits patterns similar to the learning of non-robust features. In
this section, we conduct a theoretical analysis of this phenomenon in adversarial training.
Specifically, we perform a theoretical analysis of the effects of learning through the mem-
orization of hard examples in a binary classification task. We investigate the impact of
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hard examples on the model’s performance in adversarial training, and through this, we
theoretically demonstrate that including hard examples in the training process leads to a
decrease in robustness performance.

Definition of data distributions in binary classification task We first define the
task for the theoretical analysis of learning through the memorization of hard examples.
Following Tsipras et al. (2018) and Ilyas et al. (2019), we define a binary classification task
consisting of the following input-output pair (x, y).

Definition 4 (Normal example data distribution)

y
u.a.r.∼ {−1,+1}, x ∈ Rd+2 =


x0∼N (ηy, 1),

xi∈{1,...,d}
i.i.d.∼ N (βηy, 1),

xd+1 = 0,

(6)

where β is a constant that satisfies 0 < β < 1. Here, assuming βη < ε < η, x0 corre-
sponds to a robust feature, while xi∈{1,...,d} correspond to non-robust features. Additionally,
we introduce a ‘memorization feature’ corresponding to xd+1. The memorization feature
represents a feature that exists only in specific data, specifically in hard examples, but does
not exist in normal examples. If a model learns a memorization feature, it can be considered
that the model has memorized it. We define that data sampled from the normal example
data distribution does not exhibit memorization features. Therefore, we refer to examples
without memorization features sampled from the distribution of Equation 6 as a ‘normal
example.’ Here, the set of datasets that can be generated from this distribution is defined as
Xnormal.

Next, we define the distribution of hard examples in the above binary classification
task. In Section 3.1, we observed that hard examples are learned through memorization.
Additionally, we observed that this memorization seems to involve the learning of non-robust
features. Based on this, we make the following assumptions about hard examples.

Assumption 1 (Properties of hard examples from the perspective of adversarial
robustness) A hard example, difficult for the model to learn, consists only of non-robust
and memorization features. The memorization feature functions as a robust feature during
the training phase but acts as a non-robust feature for unseen data during the test phase.

These assumptions describe hard examples that become more difficult to learn as the
adversarial budget increases, aligning them with the properties of non-robust features. Their
learning through memorization corresponds to memorization features, which act as robust
features during training by avoiding zero assignment in adversarial training (Tsipras et al.,
2018). However, during testing on unseen data, these features behave as non-robust features,
increasing standard accuracy but decreasing robust accuracy. Based on these assumptions,
we define the distribution of hard examples.
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Definition 5 (Hard example data distribution)

y
u.a.r.∼ {−1,+1}, xhard ∈ Rd+2 =


x0 = 0,

xi∈{1,...,d}
i.i.d.∼ N (βηy, 1),

xd+1 =

{
N (ηy, 1), training phase
N (βηy, 1), test phase, unseen data

(7)

The hard example data distribution is characterized by the robust feature x0 taking a
value of 0. The memorization feature, while being a non-robust feature, is defined to behave
like a robust feature during training. We define the set of datasets that can be generated
from this distribution as Xhard.

Analysis on the effect of training hard examples Next, we compare the performance
of a binary classification model trained on datasets sampled from the data distributions
introduced above. To train the model, we sample m normal examples to form the training
dataset X trainnormal ⊂ Xnormal and sample n hard examples to construct a hard example training
set X trainhard ⊂ Xhard. We then examine the case where the model is trained using the combined
dataset X trainnormal∪X trainhard , consisting ofm+n data points. For simplicity, we redefine the model
f as f = sign(w>x + b) and assume ‖x‖ ≤ 1. Here, the weight wadv of the adversarially
trained model fadv (with βη < ε < η) is learned, and the model’s standard and robust
accuracies are expressed as follows.
w0 = m

Zadv(m+n) ,

wi∈{1,...,d} = 0,

wd+1 = n
Zadv(m+n) ,


Pr
[
fadv(x) = y

]
= Pr

[
1

Zadv

(
m

m+n · N (η, 1)

)
+ by > 0

]
,

P r
[
fadv(x+ δ) = y

]
= Pr

[
1

Zadv

(
m

m+n · N (η − ε, 1)

)
+ by > 0

]
,

(8)
Here, Zadv is a constant that satisfies ‖w‖ = 1. The model’s performance is measured on a
subset of the normal example data distribution, X testnormal ⊂ (Xnormal \ X trainnormal), which does
not include the training data. Since normal examples do not have memorization features, the
results are as above. Then, based on Equation 8, the following theorem holds when m > 0.

Theorem 6 (Degradation of normal test accuracy with increasing hard examples
in training) For a model fadv adversarially trained on the combined dataset X trainnormal∪X trainhard ,
where X trainnormal consists of m normal examples and X trainhard consists of n hard examples, both
the standard accuracy Pr

[
fadv(x) = y

]
and the robust accuracy Pr

[
fadv(x+ δ) = y

]
on the

normal example test dataset X testnormal are monotonically decreasing with respect to n.

The above theorem demonstrates that including additional hard examples during training
does not contribute to improving the performance on normal examples in adversarial training.
Now, we similarly evaluate the models’ performance on hard examples. The performance is
measured on a subset of the hard example data distribution, X testhard ⊂ (Xhard \ X trainhard ).

Pr
[
fadv(xhard) = y

]
= Pr

[
1

Zadv

(
n

m+n · N (βη, 1)

)
+ by > 0

]
,

P r
[
fadv(xhard + δ) = y

]
= Pr

[
1

Zadv

(
n

m+n · N (βη − ε, 1)

)
+ by > 0

]
,

(9)
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Hard examples do not contain robust features, and their performance is determined by
the model weight corresponding to the memorization feature. Then, based on Equation 9,
the following theorem holds when n > 0.

Theorem 7 (Trade-off in hard test accuracy with increasing hard examples in
training) For a model fadv adversarially trained on the combined dataset X trainnormal ∪ X trainhard ,
where X trainnormal consists of m normal examples and X trainhard consists of n hard examples, the
standard accuracy Pr

[
fadv(x) = y

]
on the hard example test dataset X testhard is monotonically

increasing with respect to n, but the robust accuracy Pr
[
fadv(x+ δ) = y

]
is monotonically

decreasing with respect to n.

To summarize Theorem 6 and Theorem 7, including hard examples in adversarial training
can lead to either an increase or decrease in standard accuracy. This is because the perfor-
mance on normal examples decreases, while the performance on hard examples increases.
However, robust accuracy always decreases because performance declines across all types of
examples. The derivation process of the equations introduced in this section, as well as the
proofs of the theorems and corollaries, can be found in Appendix A.2.

3.3 Empirical verification on the training of hard examples

In this section, we conduct an empirical analysis to validate the assumptions and theorems
discussed in Section 3.2. We first verify the assumptions regarding hard examples, and then
we empirically examine the theorems.

3.3.1 Empirical verification of the properties of hard examples

We proceed with the validation of Assumption 1. If the assumption holds, the properties of
a model learning hard examples are characterized as follows.

1. Memorization: For the hard example dataset X trainhard , the model fadv,hard, which was
adversarially trained with X trainhard included, exhibits high robust accuracy on X trainhard .
However, the model fadv,\hard, which was adversarially trained without X trainhard , shows
nearly 0% robust accuracy on unseen X trainhard .

2. Infeasibility of adversarial training: Standard training is possible with only hard
examples, but adversarial training is not. Specifically, let f̄ be the model trained solely
on X trainhard . Then, Pr

[
f̄std(x)

]
> Pr

[
f̄adv(x)

]
> 1

C , while Pr
[
f̄adv(x+ δ)

]
< 1

C , where
C is the number of class.

3. Trade-off : As the proportion of hard examples in the training dataset increases, the
test robust accuracy decreases, while the test standard accuracy increases.

Property 1: Memorization Based on Assumption 1, when a hard example dataset
X trainhard is included in adversarial training, the memorization feature acts as a robust feature
for the hard examples included in the training. As a result, even when adversarial attacks
are applied to these hard examples, the memorization feature enables high robust accuracy
on these examples. In contrast, if the same dataset X trainhard is not included in adversarial
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training, the memorization feature acts as a non-robust feature for these hard examples or
may not have been learned at all. In this case, when adversarial attacks are applied to these
unseen hard examples, the memorization feature cannot be utilized, leaving no available
features for prediction, resulting in 0% accuracy. To illustrate this, we conduct the following
experiment.
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Figure 5: Comparison of the memoriza-
tion property in adversarial training.
Only hard examples exhibit the memo-
rization property.

For the CIFAR-10 dataset, the hard example
data subset X trainhard is composed of the top 5k hard
examples. Two models are trained: one including
the top 5k hard examples (fadv,hard) and the other
excluding them (fadv,\hard). The dataset including
the hard examples was trained using all 50k CIFAR-
10 data points, while the dataset excluding the hard
examples was trained using the remaining 45k data
points after removing the top 5k hard examples.
After training, the performance of both models was
evaluated on the top 5k hard examples X trainhard . Ad-
ditionally, for comparison with normal examples, a
normal example data subset was composed of the
top 5k easy examples, and the same experiments
were conducted.

Fig. 5 compares the memorization property in adversarial training. Observably, normal
examples show significant accuracy on data not included in the training, even if they were not
part of the training process. In contrast, when hard examples are included in the training,
the model can achieve up to 100% accuracy on these hard examples. However, when they
are not included in the training, the model shows 0% accuracy. This demonstrates that,
unlike normal examples, hard examples exhibit the memorization property. Additional details
regarding Fig. 5 can be found in Appendix B.4.

Property 2: Infeasibility of adversarial training From the Assumption 1, when
adversarial training is conducted using only hard examples, the model only learns the
memorization feature; it leads to the robust accuracy that is lower than random prediction
due to the memorization feature acting as a non-robust feature. Conversely, standard
accuracy is higher than random prediction because of the same memorization feature. In
contrast, standard training, which learns both non-robust and memorization features, will
show higher standard accuracy compared to the adversarially trained model. To illustrate
this, we conduct the following experiment.

Table 2: Performance of
models trained with 10k ex-
amples.

Method STD PGD
Std. Rob.

Normal 78.46 61.63 39.56
Hard 77.60 19.92 8.68

We construct a hard example data subset using the top
10k hard examples and a normal example data subset using
the top 10k easy examples. Then, instead of using the entire
dataset, we train models using only these respective subsets
through standard training and adversarial training to compare
their performance. We measure the standard (Std.) and robust
(Rob.) accuracy for the standard (STD) and adversarial (PGD)
models.
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In Table 2, the STD model trained with the hard example data subset exhibits performance
comparable to that of the STD model trained with the easy example data subset. On the
other hand, the PGD model trained with the hard example data subset shows lower standard
accuracy than the STD model. As expected, in terms of robust accuracy, the model performs
worse than random prediction (10%). Therefore, it can be concluded that standard training
is possible with only hard examples, but adversarial training is not. Additional details can
be found in Appendix B.4.
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Figure 6: The standard and robust accuracies of the models
whose labels of subsets are corrupted.

Property 3: Trade-off We
have already demonstrated in
Table 1 through the hard exam-
ples pruning experiment that
learning hard examples exhibits
the robustness-accuracy trade-
off. To further support this, we
additionally conduct a label cor-
ruption (shuffling) experiment,
where the labels of hard ex-
amples are randomly changed.
When label corruption is ap-
plied to hard examples, the corresponding weight of the memorization feature is learned
incorrectly but does not become zero. Consequently, while this does not increase standard
accuracy, the vulnerability of the non-robust feature remains, so unlike with pruning, robust
accuracy is expected to remain unchanged rather than increase.

We construct a hard example data subset using the top 5k hard examples and a normal
example data subset using the top 5k easy examples. We replace only the labels of data
in each subset with random labels. We then conduct adversarial training on each of these
datasets.

The models trained using the dataset with corrupted labels for normal and hard examples
are shown in Fig. 6, along with their standard (left) and robust (right) accuracy curves.
Examining the results for standard accuracy (left), it is evident that performance decreases
for both normal and hard examples when label corruption is applied. In the results for robust
accuracy (right), it is observed that while the performance of the models with corrupted
normal examples consistently declines during training, the performance of the model with
corrupted hard examples behaves similarly to that of the PGD model (None). This indicates
that even when the labels of hard examples are corrupted, they do not significantly affect
the robust accuracy of the adversarial training model. Additional details regarding Fig. 6
can be found in Appendix B.4.

Consequently, we empirically verify that the various characteristics that can arise in the
learning of hard examples, as suggested by Assumption 1, appear as expected. Therefore,
we confirm that Assumption 1—which posits that hard examples consist only of non-robust
features and memorization features, with the memorization feature acting as a robust feature
in the training data and as a non-robust feature in the test data—is supported to a certain
degree.
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Figure 7: (a) and (b) show the standard and robust accuracies of STD and PGD models
where subset of training data is pruned. (c) shows the results that repeat the experiment (a)
or (b) for different adversarial budgets.

3.3.2 Empirical verification of the training of hard examples

In this section, we conduct an empirical analysis of Theorem 6 and Theorem 7, which
provide a theoretical analysis of the effect of increasing the number of hard examples in the
training data during adversarial training. We empirically verify the theory through further
experiments related to Fig. 1 and Table 1. We prune the top n% easy examples (⊂ Xnormal)
and the top n% hard examples (⊂ Xhard) from the training dataset of CIFAR-10, respectively
(0 ≤ n ≤ 35). Figs. 7a and 7b show the standard and robust accuracies of the PGD pruning
models.

In Fig. 7b, pruning hard examples improves the robust accuracy. This aligns with the
theoretical analysis presented in Section 3.2, which suggests that the robustness of adversarial
training models decreases as the number of hard examples in the training dataset increases.
In contrast to hard examples, pruning normal examples leads to a decrease in performance.
This outcome is likely due to the increased proportion of hard examples in the overall dataset.

Fig. 7c demonstrates that the improvement from pruning hard examples decreases as the
adversarial budget ε decreases. Therefore, the performance improvement observed by pruning
hard examples from the training dataset can be considered a characteristic of adversarial
training.

Through Theorem 6 and Theorem 7, we observed that increasing the number of hard
examples in the training dataset decreases the standard accuracy on normal examples but
increases the standard accuracy on hard examples. Fig. 7a further confirms that the increase
in standard accuracy is indeed predominant. To verify this, we conduct a theoretical analysis
comparing the increase and decrease in standard accuracy as presented in Theorem 6 and
Theorem 7. As noted in Corollary 2 in Appendix A.3, when the number of normal examples
is sufficiently greater than the number of hard examples, increasing the number of hard
examples in the training dataset leads to an increase in overall standard accuracy, as observed
in Fig. 7a. Since typical datasets are assumed to have more normal examples than hard
examples, this condition appears to be probable.
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4. Method

In this section, we explore approaches to mitigate the negative effects of learning hard
examples. We evaluate the effectiveness of methodologies that regularize the learning of
hard examples based on label smoothing (LS). Through this evaluation, we find that basic
regularization techniques like label smoothing are inadequate for regularizing the learning of
hard examples. To address this, we theoretically demonstrate that the appropriate direction
for label smoothing regularization in the context of hard examples is to allocate the label
smoothing factor in proportion to the difficulty of the hard examples. Accordingly, we
propose Difficulty Proportional Label Smoothing (DPLS), a method that properly regularizes
hard examples and enables effective adversarial training.

4.1 Mitigation of the negative effect of hard examples

Although training hard examples impairs the performance in adversarial training, simply
pruning hard examples from training is not the optimal solution. In Section 3.2, we defined
normal and hard examples as disjoint distributions, but in real data, this may not be the
case. As shown in Fig. 7b, pruning the top 20% of hard examples improves performance,
but beyond that point, performance starts to decline. Moreover, according to Fig. 7c, the
point at which performance degradation begins varies depending on the adversarial budget ε.
These results suggest that finding the appropriate hard example pruning point depends on
the type of dataset and the adversarial budget, making the task of identifying the optimal
difficulty threshold for removing hard examples that deteriorate robustness an intractable
proposition.

Thus, instead of pruning hard examples, we applied label smoothing (LS) (Szegedy et al.,
2016) to subsets of the dataset to mitigate the negative effect of hard examples. Label
smoothing (LS) is a technique aimed at reducing model overconfidence by assigning a value
of λ to the correct label while distributing the value 1−λ uniformly across all labels. Here, λ
represents the label smoothing factor and lies within the range [ 1

C , 1], where C is the number
of class. Following the above pruning experiment, we applied LS (λ = 0.9) to the top n% of
hard examples during training and then evaluated the model’s performance.

Figures. 8b depict the test robust accuracy of the PGD LS models. As a result of pruning
models, applying LS to the hard example subset increases robust accuracy, but applying
LS to the normal example subset decreases performance. Fig. 8c shows that the increase
in robust accuracy is similar to that observed with pruning. According to Fig. 8a, only
marginal decreases are observed in standard accuracy. This implies that LS produces effects
similar to pruning; however, the decrease in standard accuracy is less pronounced compared
to pruning. Nevertheless, considering the performance drop observed when LS is applied to
normal examples, it is expected that continuing to increase the proportion of hard examples
to which LS is applied will eventually lead to a decrease in performance. Consequently,
similar to pruning, determining the optimal difficulty threshold for applying LS to hard
examples that negatively impact robustness is a challenging and complex task.
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Figure 8: (a) the test standard accuracy and (b) robust accuracy of the PGD LS models. (c)
the performance comparisons of the PGD LS and pruning models.

4.2 Our method to mitigate the negative effect of hard examples

Since it is difficult to accurately measure and define the difficulty of data, it is challenging
to precisely determine whether a given data point is a hard example that does not contain
robust features. We can expect that there will be data points on the boundary between hard
and normal examples, depending on the difficulty of learning the data. Therefore, considering
this difficulty, we define an input-label pair distribution that includes both hard and normal
examples as follows.

Definition 8 (Data distribution with difficulty)

y
u.a.r.∼ {−1,+1}, x ∈ Rd+2 =


x0 = N (αηy, 1),

xi∈{1,...,d}
i.i.d.∼ N (βηy, 1),

xd+1 =

{
N (γηy, 1), training phase
N (βηy, 1), test phase, unseen data

(10)

Here, 0 ≤ α ≤ 1 represents the difficulty of the data, with each data point having a
different value. This reflects the difficulty through the coefficient of the robust feature, with
lower difficulty corresponding to a higher value of α. When αη ≤ ε, the data point can be
considered a hard example. 0 ≤ γ ≤ 1 represents the coefficient of the memorization feature,
which is inversely related to the robust feature coefficient α; when γη > ε, the data point is
classified as a hard example.

Next, we explore approaches to mitigate the negative effects of hard examples (data with
low α) when training a model using a dataset composed of data points with varying levels of
difficulty. Unlike pruning, LS sacrifices standard accuracy less and also allows for adjusting
the intensity of the method through the LS factor λ (λ ∈ [ 1

C , 1]). Therefore, we explore an
approach that adaptively mitigates the negative effects of hard examples by leveraging these
characteristics of LS.

It is established that during adversarial training, the optimal weight configuration for
achieving high robust accuracy is one where the weight values corresponding to features
other than the robust feature are zero, i.e., w∗ = (1, 0, 0, . . . ). Therefore, when training
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a model using a dataset composed of data with varying levels of difficulty, we explore an
LS approach that aims to train the model’s weight w to be as close as possible to w∗. Let
Xdifficulty denote the set of datasets that can be generated by sampling from Equation 10,
and let the training dataset be X traindifficulty ⊂ Xdifficulty. Then, the optimal LS factor for each
data point that trains the model’s weight w to be close to w∗ during adversarial training
with X traindifficulty follows the theoretical principles outlined below.

Theorem 9 Let the robust feature coefficients of each data point in the dataset X traindifficulty,
consisting of k data points x1,x2, . . . ,xk, be denoted as α1, α2, . . . , αk. Then, when per-
forming adversarial training using X traindifficulty, the optimal LS factors λ1, λ2, . . . , λk for each
training example are proportional to their respective robust feature coefficients α1, α2, . . . , αk.

The proof of Theorem 9 can be found in Appendix A.4. Theorem 9 demonstrates
that applying LS in proportion to the robust feature coefficient of each data point during
adversarial training is the optimal learning approach for achieving robustness. In other words,
this suggests that the optimal LS approach for adversarial training is to decrease the LS
factor as the difficulty of the data increases, making the intensity of smoothing regularization
proportional to the difficulty. Therefore, based on Theorem 9, we propose a regularization
approach that adjusts the LS factor for each example during training.

We modify the LS method to ensure that the training of hard examples is regularized,
but the training of other examples is less affected. We use the LS factor that is proportional
to the difficulty of each example and control the intensity of regularization, which we term
as difficulty proportional label smoothing (DPLS). The difficulty is calculated by using the
average loss of the training models along the training trajectory. We train the model and
accumulate the difficulty until the difficulty calculation epoch T , and the training progresses
with the application of DPLS using the calculated difficulty. We establish the LS factor of
the easiest example as λ = 1 (no smoothing) and the factor of the most difficult example as
λ ∈ [ 1

C , 1), where C represents the number of the class. The procedure of DPLS is described
in Algorithms 1 and 2.

Our method maintains the training effect of each training example, but it avoids the
negative effect of hard examples. We could utilize several loss types for difficulty measurement
including cross-entropy loss, the norm of the error vector (EL2N score) (Paul et al., 2021),
consistency score (C-score) (Jiang et al., 2021), and 0-1 loss. Applying DPLS via any error
measure is an effective strategy for mitigating the negative effect of hard examples (refer to
Table 5). However, in our experiments, as the 0-1 loss exhibits a higher performance than
the other loss types, we mainly use the 0-1 loss as the difficulty measurement loss. Notably,
our method calculates the difficulty using clean examples because the adversarial examples
are different from training algorithms and training epochs.
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Algorithm 1 DPLS adversarial training
Require: Dataset D, model parameter θ,

batch size n, difficulty calculation epoch
T , total training epoch K, learning rate α,
difficulty loss storage S

1: for t = 1 to K do
2: for batch in D do
3: batch and indices:
4: {xi,yi}ni=1, I ∼ D
5: compute or apply DPLS:
6: if t < T then
7: S [I]← {Ldifficulty(xi,yi)}ni=1

8: else
9: {yi}ni=1 ← DPLS(S [I])
10: end if
11: adversarial training:
12: {δi}ni=1 ← arg maxδi Ladv(xi + δi,yi)

13: L ← 1
n

∑n
i=i Ladv(xi + δi,yi)

14: θ ← θ − α · ∇θL
15: end for
16: end for
17: Output: robust classifier f

Algorithm 2 Calculation of DPLS
Require: Dataset D, Dataset size N ,

number of class C, loss storage S,
DPLS factor λ

1: Initialization:
2: apply min-max normalization:
3: S ← S−min(S)

max(S)−min(S)
4: for i = 1 to N do
5: (xi,yi)← D[i]
6: apply LS using S:
7: yi ← LS(yi, 1− (1−λ)S[i], C)
8: D[i]← (xi,yi)
9: end for
10: function LS(y, λ, C)
11: for i = 1 to C do
12: if y[i] = 1 then
13: y[i]← λ
14: else
15: y[i]← 1−λ

C−1
16: end if
17: end for
18: return y

5. Experiment

Implementation details We conducted experiments on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates et al., 2011) by employing
PGD (Madry et al., 2017) and TRADES (Zhang et al., 2019) as the baseline adversarial
training algorithms. We utilized WideResNet28-10 (Zagoruyko and Komodakis, 2016) as
the architecture of our models. We set the LS factor of the most difficult example in DPLS
considering the average difficulty score of each dataset and algorithm. We selected the
difficulty calculation epoch as T = 90 for stability, which is 10 epochs before the first learning
rate decay. To evaluate the robustness of the models, we employed the PGD and adaptive
auto attack (A3) (Liu et al., 2022b). Further details are presented in Appendix B.1.

Improvement in robustness We compared four mitigation methods: baseline (-), pruning
hard examples (pruning), label smoothing (LS), and our proposed method (DPLS). We
pruned the top 10% of examples with high difficulty for pruning models. For LS models, we
applied the same LS factor with the average factor of DPLS. Thus, with the same LS budget,
our method assigns a large portion of the budget to the hard examples and LS assigns it
uniformly to every example. We trained the baseline model until epoch 90 and continued this
training with the application each method. Table 3 shows that pruning hard examples and
DPLS are effective for mitigating the effect of hard examples and improving the robustness
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Table 3: Performance of the models for mitigation methods. The best results are indicated
in bold.

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 87.19 56.44 51.80 TRADES 85.66 58.46 54.08
+Pruning 86.44 56.18 52.56 +Pruning 84.07 58.04 54.64
+LS 86.96 57.20 51.99 +LS 86.32 58.72 54.02
+DPLS 87.13 58.43 54.03 +DPLS 85.36 59.33 55.19

CIFAR-100

PGD 62.88 31.82 27.36 TRADES 60.78 33.19 28.05
+Pruning 62.28 31.64 28.05 +Pruning 60.61 33.53 29.01
+LS 63.02 32.26 27.67 +LS 62.43 33.29 27.83
+DPLS 62.95 35.10 29.33 +DPLS 63.32 34.53 29.68

SVHN

PGD 92.96 52.88 35.20 TRADES 91.84 59.14 47.46
+Pruning 92.68 55.52 40.87 +Pruning 91.54 60.27 47.79
+LS 92.65 66.20 38.44 +LS 92.27 59.65 46.37
+DPLS 92.94 76.53 42.01 +DPLS 92.33 59.40 49.05

STL-10

PGD 66.95 36.49 33.12 TRADES 66.40 36.27 33.16
+Pruning 66.75 35.27 33.15 +Pruning 65.39 37.39 34.91
+LS 66.90 35.66 32.05 +LS 66.49 37.89 33.99
+DPLS 66.16 38.27 34.75 +DPLS 65.63 39.94 36.06

(a) ε = 8

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 91.78 72.60 71.96 TRADES 90.36 74.37 73.50
+Pruning 91.24 73.03 72.64 +Pruning 89.12 73.76 73.32
+LS 92.21 72.39 71.55 +LS 90.92 74.78 73.67
+DPLS 92.07 74.90 74.01 +DPLS 90.43 75.38 74.47

(b) ε = 4

Dataset Method Std. Robust Robust Method Std. Robust Robust
(PGD) (A3) (PGD) (A3)

CIFAR-10

PGD 94.17 83.20 83.04 TRADES 93.32 84.42 84.29
+Pruning 92.95 82.73 82.70 +Pruning 92.08 83.84 83.69
+LS 94.56 83.46 83.13 +LS 93.14 84.33 83.96
+DPLS 94.06 84.87 84.51 +DPLS 92.94 85.18 84.79

(c) ε = 2

generalization. The performance improvement of the pruning models demonstrates that the
negative effect of hard examples appears in various datasets and algorithms. The results
of LS models show no improvements in the robustness performance. Contrarily, the DPLS
increases the robustness of the models across different training algorithms and datasets for
all adversarial budgets ε. The robustness performance difference between LS and DPLS
indicates that regularization without considering the effect of each example on training is
difficult to improve robust generalization.

Fig. 9 illustrates the training and test robust accuracy results (left) of the PGD and
PGD with DPLS (denoted as DPLS) models and training accuracy of top N% (right) hard
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Table 4: Performance compari-
son with other robust overfitting
mitigation methods.

Method Std. Robust
(PGD)

Robust
(A3)

PGD 87.19 56.44 51.8
+SAT 86.94 57.52 52.94
+KD+SWA 88.28 57.93 53.49
+TE 85.83 58.31 52.84

+DPLS 86.17 58.14 53.98
+DPLS+SWA 87.14 60.07 55.91

Table 5: Robust accuracy of
DPLS according to various
difficulty measurement.

Method PGD TRADES

- 51.8 54.08
C-score 52.9 54.71
CE loss 52.73 54.45
EL2N 53.38 54.32
0-1 loss 54.03 55.19

Table 6: Performance im-
provements in other adver-
sarial training algorithms.

Method Std. Robust
(PGD)

Robust
(A3)

AWP 84.82 60.19 55.54
+DPLS 84.4 60.26 56.09

MART 83.9 59.05 52.19
+DPLS 83.81 59.54 53.18

RST 84.82 61.53 57.26
+DPLS 84.43 62.03 57.81

examples of the 50,000 training examples of CIFAR-10 (e.g. (0-20%) denotes the top 10k
hard examples). Observably, comparing DPLS with PGD, the decrease in the training
accuracy of the DPLS model coincides with the increase in the test accuracy. DPLS (right)
prevents overfitting of hard examples and causes the fast convergence of comparatively easy
examples. This result indicates that our method prevents the memorization of hard examples
and mitigate the negative effect of hard examples, thereby leading to decrease in the gap
between training and test accuracy by improving the generalization performance.
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Figure 9: The training and test accuracy curves of the PGD
and the PGD with DPLS model on CIFAR-10.

Comparison with other mit-
igation methods We com-
pared DPLS with the previ-
ous robust overfitting mitiga-
tion methods: self-adaptive
training (SAT) (Huang et al.,
2020), knowledge distillation
with stochastic weight averag-
ing (KD+SWA) (Chen et al.,
2020), and temporal ensemble
(TE) (Dong et al., 2021). We
trained the PGD model combined with each method and with total training epoch 200. The
details on the settings of each method are described in Appendix B.5. The results listed in
Table 4 indicate that all the methods are effective at mitigating robust overfitting. Among
the methods, DPLS exhibits the highest improvement in the test robust accuracy against A3.
Additionally, because our method is orthogonal to SWA (Izmailov et al., 2018), we trained
the model with the method combining DPLS and SWA. Further improvement is observed
when combined with SWA. These results indicate that our method successfully mitigates the
memorization of hard examples and prevents overfitting.

Applying DPLS to other training algorithms We applied our method to other ad-
versarial training algorithms to verify that DPLS can consistently increase the robustness
generalization performance independent of algorithms. We combined DPLS with three
algorithms: adversarial weight perturbation (AWP) (Wu et al., 2020), misclassification aware
adversarial training (MART) (Wang et al., 2019), and robust self training (RST) (Car-
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mon et al., 2019). We trained each algorithm model combined with TRADES+DPLS and
evaluated the trained models. Table 6 shows that all training algorithms combined with
DPLS yield improvements in robustness. For the RST models, we calculated the difficulty of
the unlabeled dataset as the ratio of number of training iterations to the number of right
predictions. The result shows that DPLS successfully mitigates the negative effect of hard
examples for the unlabeled dataset and improves the robust accuracy for the A3 and PGD
attacks.

Various difficulty loss on DPLS We compared the loss types of the difficulty for DPLS.
Table 5 shows the performance of the TRADES models that apply DPLS with several loss
functions: C-score, cross-entropy loss (CE loss), EL2N score, and 0-1 loss. All models in
which DPLS was applied exhibited a better performance than the baseline models. The
difficulty calculated from another model (e.g. C-score from STD) was also effective on
mitigation. Any difficulty loss was effective, and DPLS with the 0-1 loss offered the best
performance. The results indicate that the 0-1 loss leverages comparatively objective values
because the 0-1 loss is less affected by scale or variance at each checkpoint of the model. As
the calculation process can be detached from the training, further improvement is achievable
by using the better difficulty measurement loss. Further experiments and ablation studies on
DPLS can be found in Appendix B.5 and Appendix D.

6. Conclusion

In this study, we analyzed the effect of hard examples in adversarial training. We demonstrated
that training hard examples can deteriorate the performance in adversarial training and
verified that the cause is the memorization of hard examples. We accordingly conducted
an analysis of the memorization phenomenon and observed that increasing the number of
hard examples during adversarial training leads to a decrease in the model’s robust accuracy.
While we found that pruning hard examples from the training process enhances the model’s
robustness, the difficulty lies in identifying the optimal threshold for removing hard examples
that weaken robustness performance. Thus, we proposed a method, DPLS, which adaptively
mitigates the memorization of hard examples. Through experiments on various datasets and
algorithms, we verified that our method could successfully leverage hard examples, thereby
improving robustness.
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Appendix A. Proofs

A.1 Section 3.1 proofs

Definition 1 (Gradient difference) The differences between the loss gradient norm on
x1 and x2 in standard and adversarial training are defined as follows:

Dstd(x1,x2) =
∥∥∥(1− σ(w>x1 + b))x1

∥∥∥− ∥∥∥(1− σ(w>x2 + b))x2

∥∥∥
Dadv(x1,x2, ε) =

∥∥∥(1− σ(w>(x1 + δ) + b))(x1 + δ)
∥∥∥− ∥∥∥(1− σ(w>(x2 + δ) + b))(x2 + δ)

∥∥∥.
(11)

Proof
∂L(f(x), y)

∂w
= − ∂

∂w

(
y log f(x) + (1− y) log(1− f(x))

)
= − ∂

∂w

(
y log σ(w>x+ b) + (1− y) log

(
1− σ(w>x+ b)

))
= −

(
y(1− σ(w>x+ b)) + (1− y)(−σ(w>x+ b))

)
x.

Here, y = +1 for x1 and x2

∂L(f(x), y = +1)

∂w
= −(1− σ(w>x+ b))x. (12)

The gradient norm difference between x1 and x2 in standard training is represented as:∥∥∥∥∂L(f(x1), y1)

∂w

∥∥∥∥− ∥∥∥∥∂L(f(x2), y2)

∂w

∥∥∥∥ =
∥∥∥(1− σ(w>x1 + b))x1

∥∥∥− ∥∥∥(1− σ(w>x2 + b))x2

∥∥∥.
(13)

Thus, the gradient norm difference between the adversarial examples is represented as:∥∥∥∥∂L(f(x1 + δ), y1)

∂w

∥∥∥∥− ∥∥∥∥∂L(f(x2 + δ), y2)

∂w

∥∥∥∥
=
∥∥∥(1− σ(w>(x1 + δ) + b))(x1 + δ)

∥∥∥− ∥∥∥(1− σ(w>(x2 + δ) + b))(x2 + δ)
∥∥∥. (14)

Theorem 1 Let the gradient norm of easy examples is smaller than the gradient norm
of hard examples in both standard and adversarial training. Then, if w>x1 + b ≥ 0 and
0 < ε < (d1+d2)

2 , it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ε). (15)

Proof
Because the gradient norm of easy examples is smaller than the gradient norm of hard

examples in both standard and adversarial training, Dstd(x1,x2) > 0 and Dadv(x1,x2, ε) > 0.
Then, we can rewrite Equation 16 as

Dstd(x1,x2)

Dadv(x1,x2, ε)
< 1. (16)
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Let the prediction for x1 is not incorrect, where w>x1 + b ≥ 0. Here, we assume the norm
of every input x that is defined in the input space X is almost the same. Then, the above
inequality is represented as

Dstd(x1,x2)

Dadv(x1,x2, ε)
=

∥∥(1− σ(w>x1 + b))x1

∥∥− ∥∥(1− σ(w>x2 + b))x2

∥∥
‖(1− σ(w>(x1 + δ) + b))(x1 + δ)‖ − ‖(1− σ(w>(x2 + δ) + b))(x2 + δ)‖

(17)

=
(1− σ(w>x1 + b))‖x1‖ − (1− σ(w>x2 + b))‖x2‖

(1− σ(w>(x1 + δ) + b))‖(x1 + δ)‖ − (1− σ(w>(x2 + δ) + b))‖(x2 + δ)‖
(18)

=
(1− σ(w>x1 + b))− (1− σ(w>x2 + b))

(1− σ(w>(x1 + δ) + b))− (1− σ(w>(x2 + δ) + b))
(19)

=
σ(−w>x1 − b)− σ(−w>x2 − b)

σ(−w>(x1 + δ)− b)− σ(−w>(x2 + δ)− b)
(20)

=
σ(−d1)− σ(−d2)

σ(−(d1 − ε))− σ(−(d2 − ε))
(21)

=
σ(−d1)− σ(−(d1 + (d2 − d1)))

σ(−(d1 − ε))− σ(−(d1 − ε+ (d2 − d1)))
. (22)

Here, it satisfies Equation 16 if the function h(x) = σ(−x)− σ(−(x+ (d2 − d1))) is mono-
tonically decreasing for input x ≥ d1 − ε, where ε > 0. Let a denote (d2 − d1), where
a = (d2 − d1). Then,

d

dx

(
σ(−x)− σ(−(x+ a))

)
=

d

dx

(
1

1 + ex
− 1

1 + ex+a

)
(23)

= ex
(

ea

(1 + ex+a)2
− 1

(1 + ex)2

)
(24)

= ex
(

(ea − 1)(1− e2x+a)

(ex + 1)2(ex+a + 1)2

)
< 0. (25)

Since a > 0, Equation 25 can be represented as 1 − e2x+a < 0. Then, we can rewrite
Equation 25 as

x > −d2 − d1

2
. (26)

Thus, the fuctnion h(x) = σ(−x) − σ(−(x+ (d2 − d1))) is monotonically decreasing for
x > −d2−d1

2 , and here, the minimum value of x is d1 − ε. Therefore, if d1 − ε > −d2−d1
2 ,

which can be rewritten as ε < d1+d2
2 , it satisfies

Dstd(x1,x2) < Dadv(x1,x2, ε). (27)

Corollary 1 The increase in gradient difference by an adversarial attack is proportional
to the difficulty of the example and the size of the upper bound of adversarial perturbations.
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Thus, if
∥∥w>x3

∥∥ = d3 and d2 < d3, it satisfies

Dadv(x1,x2, ε) < Dadv(x1,x3, ε), (28)

and if ε1 < ε2, it satisfies

Dadv(x1,x2, ε1) < Dadv(x1,x2, ε2). (29)

Proof In the equation 23 of the above proof, it satisfies Equation 28 if the function
h(x) = σ(−(d1 − ε))− σ(−(d1 − ε+ (x− d1))) is monotonically increasing for input x > d1.
Then,

d

dx

(
σ(−(d1 − ε))− σ(−(d1 − ε+ (x− d1)))

)
=

d

dx

(
− 1

1 + ex−d1

)
(30)

=

(
ex−d1

(1 + ex−d1)2

)
> 0. (31)

In the same way, it satisfies Equation 29 if the function h(x) = σ(−(d1 − ε))−σ(−(d1 − ε+ (d2 − d1)))
is monotonically increasing for input ε ≥ 0. Let x denote ε− d1 and a denote d2 − d1. Then,
if ε− d1 <

d2−d1
2 , which can be rewritten as ε < d1+d2

2 , it satisfies

d

dx

(
σ(x)− σ(x− a))

)
=

d

dx

(
1

1 + e−x
− 1

1 + e−x+a

)
(32)

= ex−a
(

(ea − 1)(1− e2x−a)

(ex + 1)2(ex−a + 1)2

)
> 0. (33)

A.2 Section 3.2 proofs

Next, we proceed with the proofs of Theorems 6 and 7. Before the proof, we will examine
the derivation process of the adversarial training model weight wadv in Equation 8, which
represents the weights of models trained with m normal examples and n hard examples.
Following Tsipras et al. (2018), we utilize a soft-margin SVM classifier. The optimization
problem for the model is as follows.

min
w

E
[

max(0, 1− yw>x)
]

subject to ‖w‖ = 1
(34)

Given that ‖x‖ ≤ 1 and βη < ε < η, the weight learning process for the adversarial training
model is as follows.

E
[

max(0, 1− yw>(x+ δ))
]

= E
[
1− yw>(x+ δ)

]
(35)

= E
[
1− w0N (η − ε, 1)−

d∑
i=1

wiN (sign(wi) · (βη − ε), 1)− wd+1N (η − ε, 1)
]

(36)

= 1− m

m+ n
w0(η − ε)−

d∑
i=1

wisign(wi) · (βη − ε)−
n

m+ n
wd+1(η − ε) (37)
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According to the above equation, in adversarial training, the optimal solution is to assign
a value of 0 to the weights corresponding to the non-robust features, which is consistent with
what was demonstrated by Tsipras et al. (2018). Therefore, when wi∈1,...,d = 0, Equation 34
can be simplified as follows.

min
w
− m

m+ n
w0(η − ε)− n

m+ n
wd+1(η − ε)

subject to w2
0 + w2

d+1 = 1
(38)

Using the Lagrange multiplier method, we define the above equation, and the partial
derivatives with respect to each term are as follows.

L(w0, wd+1, µ) = − m

m+ n
w0(η − ε)− n

m+ n
wd+1(η − ε) + µ(w2

0 + w2
d+1 − 1) (39)

∂L
∂w0

= − m

m+ n
(η − ε) + 2µw0 = 0 (40)

∂L
∂wd+1

= − n

m+ n
(η − ε) + 2µwd+1 = 0 (41)

∂L
∂µ

= w2
0 + w2

d+1 − 1 = 0 (42)

Given that − m
m+n(η − ε) = a0 and − n

m+n(η − ε) = a1, we can rewrite the equations
as a0 = −2µw0 and a1 = −2µwd+1. Dividing the two equations gives a0

a1
= w0

wd+1
, so

wd+1 = a1
a0
w0. Substituting this into w2

0 +w2
d+1 − 1 = 0 gives w2

0 =
a20

a20+a21
and w2

d+1 =
a21

a20+a21
.

Therefore, to obtain the minimum values, w0 = − a0√
a20+a21

and wd+1 = − a1√
a20+a21

. Dividing

a0 and a1 by −(η − ε) gives w0 = 1
Zadv

m
m+n and wd+1 = 1

Zadv

n
m+n .

Next, we proceed with the proof of Theorem 2.

Theorem 2 For a model fadv adversarially trained on the combined dataset X trainnormal∪X trainhard ,
where X trainnormal consists of m normal examples and X trainhard consists of n hard examples, both
the standard accuracy Pr

[
fadv(x) = y

]
and the robust accuracy Pr

[
fadv(x+ δ) = y

]
on the

normal example test dataset X testnormal are monotonically decreasing with respect to n.

Proof First, the standard accuracy Pr
[
fadv(x) = y

]
of fadv on X testnormal is expressed as

follows. Here, the bias b is assumed to be b 6= 0, and it is also assumed that the proportions
of the two classes in the test data are equal.
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Pr
[
fadv(x) = y

]
= Pr

[
y(w>x) + b > 0

]
(43)

= Pr
[

1

Zadv

(
m

m+ n
· N (η, 1)

)
+ y · b > 0

]
(44)

= Pr
[

m√
m2 + n2

· N (η, 1) + y · b > 0

]
(45)

= Pr
[
N (0, 1) > −y · b

√
m2 + n2

m
− η
]

(46)

=
1

2
Pr
[
N (0, 1) > −b

√
m2 + n2

m
− η
]

+
1

2
Pr
[
N (0, 1) >

b
√
m2 + n2

m
− η
]

(47)

Let the CDF Φ(·) represent the cumulative distribution function, and the PDF φ(·)
represent the probability density function. Additionally, for readability, we substitute
g(n) = b

√
m2+n2

m . Then,

Pr
[
fadv(x) = y

] Φ(·) is CDF
=

1

2

(
2− Φ(−g(n)− η)− Φ(g(n)− η)

)
(48)

=
1

2

(
1 + Φ(g(n) + η)− Φ(g(n)− η)

)
(49)

φ(·) is PDF→
derivative w.r.t. n

1

2

(
φ(g(n) + η) · g′(n)− φ(g(n)− η) · g′(n)

)
(50)

=
g′(n)

2
√

2π

(
exp

(
−(g(n) + η)2

2

)
− exp

(
−(g(n)− η)2

2

))
≤ 0 (51)

When b < 0, g′(n) ≤ 0 and −
(
g(n) + η

)2
> −

(
g(n)− η

)2, so the above result is negative.
Similarly, when b > 0, g′(n) ≥ 0 and −

(
g(n) + η

)2
< −

(
g(n)− η

)2, so the above result is
also negative. Consequently, with respect to the size n of the hard example training dataset,
the standard accuracy Pr

[
fadv(x) = y

]
of fadv on the normal example test dataset X testnormal

is monotonically decreasing as n increases.
For robust accuracy Pr

[
fadv(x + δ) = y

]
, since η − ε > 0, replacing η with η − ε in

the above proof regarding standard accuracy does not change the outcome of the proof.
Therefore, similar to standard accuracy, the robust accuracy Pr

[
fadv(x + δ) = y

]
is also

monotonically decreasing with respect to n.

Theorem 3 For a model fadv adversarially trained on the combined dataset X trainnormal∪X trainhard ,
where X trainnormal consists of m normal examples and X trainhard consists of n hard examples, the
standard accuracy Pr

[
fadv(x) = y

]
on the hard example test dataset X testhard is monotonically

increasing with respect to n, but the robust accuracy Pr
[
fadv(x+ δ) = y

]
is monotonically

decreasing with respect to n.

Proof
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First, the standard accuracy Pr
[
fadv(x) = y

]
of fadv on X testhard is expressed as follows. As

before, it is assumed that the bias b is b 6= 0, and that the two classes in the test data are
equally represented.

Pr
[
fadv(x) = y

]
= Pr

[
y(w>x) + b > 0

]
(52)

= Pr
[

1

Zadv

(
n

m+ n
· N (βη, 1)

)
+ y · b > 0

]
(53)

= Pr
[

n√
m2 + n2

· N (βη, 1) + y · b > 0

]
(54)

= Pr
[
N (0, 1) > −y · b

√
m2 + n2

n
− βη

]
(55)

=
1

2
Pr
[
N (0, 1) > −b

√
m2 + n2

n
− βη

]
+

1

2
Pr
[
N (0, 1) >

b
√
m2 + n2

n
− βη

]
(56)

As with the above, let the CDF Φ(·) represent the cumulative distribution function,
and the PDF φ(·) represent the probability density function. Additionally, we substitute
g(n) = b

√
m2+n2

n . Then,

Pr
[
fadv(x) = y

] Φ(·) is CDF
=

1

2

(
2− Φ(−g(n)− βη)− Φ(g(n)− βη)

)
(57)

=
1

2

(
1 + Φ(g(n) + βη)− Φ(g(n)− βη)

)
(58)

φ(·) is PDF→
derivative w.r.t. n

1

2

(
φ(g(n) + βη) · g′(n)− φ(g(n)− βη) · g′(n)

)
(59)

=
g′(n)

2
√

2π

(
exp

(
−(g(n) + βη)2

2

)
− exp

(
−(g(n)− βη)2

2

))
≥ 0 (60)

(61)

The CDF Φ(·) represents the cumulative distribution function, and the PDF φ(·) represents
the probability density function. For readability, we substitute g(n) = b

√
m2+n2

n . Since the
sign of g′(n) in this result is opposite to that in the proof of Theorem 2, the outcome is
also opposite. When b < 0, g′(n) ≥ 0 and −

(
g(n) + η

)2
> −

(
g(n) − η

)2, so the result is
positive. Similarly, when b > 0, g′(n) ≤ 0 and −

(
g(n) + η

)2
< −

(
g(n)− η

)2, so the result is
also positive. Consequently, with respect to the size n of the hard example training dataset,
the standard accuracy Pr

[
fadv(x) = y

]
of fadv on the hard example test dataset X testhard is

monotonically increasing with n.
For robust accuracy Pr

[
fadv(x + δ) = y

]
, since η − ε < 0, replacing η with η − ε in

the proof for standard accuracy results in −
(
g(n) + η

)2 and
(
g(n) − η

)2 being replaced
by −

(
g(n) + η − ε

)2 and
(
g(n)− η + ε

)2, respectively, which reverses the order of the two
terms. Consequently, the result is the opposite of that for standard accuracy, and the robust
accuracy Pr

[
fadv(x+ δ) = y

]
is monotonically decreasing with n.
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A.3 Section 3.3 proofs

Next, by comparing the relative increases and decreases in standard accuracy in Theorem 2
and Theorem 3, we can derive the following corollary.

Corollary 2 For a model fadv adversarially trained on the combined dataset X trainnormal∪X trainhard ,
where X trainnormal consists of m normal examples and X trainhard consists of n hard examples, the
standard accuracy Pr

[
fadv(x) = y

]
on the overall test dataset X testnormal∪X esthard is monotonically

increasing with respect to n, if n3 ≤ βm3.

Proof
To compare the expressions for the increase and decrease in standard accuracy derived

from the proofs of the two theorems above, we approximate each value using a first-order
Taylor expansion. The results are as follows.

g′(n)

2
√

2π

(
exp

(
−(g(n) + η)2

2

)
− exp

(
−(g(n)− η)2

2

))
=

g′(n)

2
√

2π
(−2g(n)η), (normal)

g′(n)

2
√

2π

(
exp

(
−(g(n) + βη)2

2

)
− exp

(
−(g(n)− βη)2

2

))
=

g′(n)

2
√

2π
(−2g(n)βη), (hard)

(62)

Here, we examine the sign of the sum of the two terms above. It is assumed that the
ratio of normal examples to hard examples in the test phase is m : n. Let g(n) for hard
examples be denoted as ghard(n), which can be expressed as follows.

m · g
′(n)

2
√

2π
(−2g(n)η) + n ·

g′hard(n)

2
√

2π
(−2ghard(n)βη) =

1

2
√

2π

(
− 2nb2η

m
+

2m2b2βη

n2

)
(63)

=
b2η√

2πmn2

(
− n3 + βm3

)
(64)

Therefore, if n3 ≤ βm3, increasing the number of hard examples n in the training dataset
will lead to an increase in standard accuracy, whereas in the opposite case, it will decrease.
Since datasets collected under normal circumstances usually have a higher proportion of
normal examples compared to hard examples, it can generally be assumed that the condition
n3 ≤ βm3 is satisfied. Consequently, increasing the number of hard examples n in the
training dataset will typically result in an increase in standard accuracy.
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A.4 Section 4.2 proofs

We proceed with the proof of the following theory discussed in Section 4.1.

Theorem 4 Let the robust feature coefficients of each data point in the dataset X traindifficulty,
consisting of k data points x1,x2, . . . ,xk, be denoted as α1, α2, . . . , αk. Then, when per-
forming adversarial training using X traindifficulty, the optimal LS factors λ1, λ2, . . . , λk for each
training example are proportional to their respective robust feature coefficients α1, α2, . . . , αk.

Proof
First, the weight of the adversarially trained model using the data given in Theorem 4

is derived through the same process as the weight wadv of the above fadv, and is given as
follows.

w =
1

Z


w0 =

∑k
i=1−(2λi − 1)(αiη − ε)

wi∈1,...,k = 0

wd+1 =
∑k

i=1−(2λi − 1)(γiη − ε)
(65)

Here, Z is a normalization term tuned to satisfy ‖w‖ = 1. To ensure that the weight
parameter w is close to w∗ = (1, 0, ..., 0), the LS factor is assigned in such a way that w0

increases and wd+1 decreases. Therefore, the optimization equation to be solved can be
expressed as follows.

min
λ
wd+1 − w0

subject to 0.5 ≤ λi ≤ 1, i = 1, ..., k
(66)

Here, λ = (λ0, ..., λk). The optimization objective can be expressed in the form of a
vector operation with respect to λ as follows.

wd+1 − w0 = 2ηλ>(α− γ)− η(α− γ)>1 (67)

Therefore, the optimization objective is minimized when λ is proportional to (α − γ).
Here, let c1, c2 > 0 be constants. Since γ is inversely proportional to α, it can be expressed
as γ = −c1α. Consequently, λ satisfies λ = min(0.5,max(1, c2(1 + c1)α)). Therefore, the
optimal LS factor can ultimately be said to be proportional to the robust feature coefficient.

Appendix B. Additional implementation and experimental details

B.1 Implementation details

Datasets CIFAR-10 (Krizhevsky et al., 2009) consists of 50,000 training images and 10,000
test images with 10 classes. CIFAR-100 (Krizhevsky et al., 2009) consists of 50,000 training
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images and 10,000 test images with 100 classes. CIFAR-10 and CIFAR-100 images have
sizes of 32 × 32 pixels. The CIFAR datasets are subsets of the 80 million tiny images
dataset (Torralba et al., 2008), and the 80 million tiny images dataset contains images
downloaded from seven independent image search engines: Altavista, Ask, Flickr, Cydral,
Google, Picsearch, and Webshots. SVHN (Netzer et al., 2011) consists of 73,257 training
images and 26,032 test images with 10 classes. SVHN images have sizes of 32× 32 pixels.
SVHN is obtained from a very large set of images from urban areas in various countries by
using Google Street View. STL-10 (Coates et al., 2011) consists of 5,000 training images
and 8,000 test images with 10 classes. Additionally, it provides 100,000 unlabeled images to
support unsupervised learning. STL-10 images have sizes of 96× 96 pixels, which is larger
than the typical 32× 32 images found in datasets like CIFAR-10 (Krizhevsky et al., 2009). In
our experiments, we resized the STL-10 dataset images to 64× 64 pixels for model training.
Further details can be found in https://paperswithcode.com/datasets.

Implementation details We conducted experiments on CIFAR-10, CIFAR-100 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011), and STL-10 (Coates et al., 2011). We used
PGD (Madry et al., 2017) and TRADES (Zhang et al., 2019) as the baseline adversarial
training algorithms. We used WideResNet28-10 (Zagoruyko and Komodakis, 2016) as the
architecture of our models. The learning rates for CIFAR-10, CIFAR-100, and STL-10 are set
to 0.1 and 0.01 for SVHN, and the decay at 100 and 105 of the total training epoch 110 with
decay factor 0.1 following Pang et al. (2021). We additionally conducted experiments with
the learning rate decay at 50% and 75% of the total training epoch 200 with decay factor 0.1
following Madry et al. (2017). We used stochastic gradient descent optimizer with the weight
decay factor 5e-4 and the momentum 0.9. The upper bounds of adversarial perturbation
were set to 0.031 (ε = 8), 0.0155 (ε = 4), and 0.00775 (ε = 2), and the step-size of training
adversarial examples of each model were set to one fourth of the `∞-bound of each model
with 10 steps. To evaluate robustness of the models, we used the 10-step and 20-step PGD
attacks, and adaptive auto attack (A3) (Liu et al., 2022b) for reliable evaluation. We used a
single RTX 8000 GPU with CUDA11.6 and CuDNN7.6.5 in our experiments.

B.2 Experiment details and futher experiments on subset training

Figure 1 For the experiments in Fig. 1, we executed 200 training epochs on the CIFAR-10
dataset in both standard and adversarial training. We constituted datasets for both standard
and adversarial (Madry et al., 2017) training by selecting 5k hard and 5k random examples
from the training set, where the difficulty of data is measured by accumulating 0-1 loss along
the training trajectory of the models trained with standard and adversarial training until
epoch 90. Considering that the size of the dataset is small and to prevent overfitting before
the learning rate decay in both standard and adversarial training, we used the ResNet-18 (He
et al., 2016) architecture. The `∞-bound and step-size of adversarial examples were set to
0.0155, and 0.0035, respectively, with 5 steps. The adversarial training time on the 5k+5k
subset of the CIFAR-10 dataset is 2 hours for 200 epochs. The adversarial training time on
the 5k subset (hard excluded) of the CIFAR-10 dataset is 0.5 hours for 100 epochs (after the
learning rate decay epoch 100).

For further experiments in adversarial training, we constituted a new dataset as in Fig. 1,
with only using top 10k hard and 10k random examples (total 20k). We trained the PGD
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model until learning rate decay, then progress training for the models with the dataset: (1)
entire examples, (2) 10k random examples (hard pruning), (3) top 10k hard examples (hard
only). We used 10k instead of 5k to prevent overfitting before pruning. In Fig. 10, the models
trained with the dataset that includes hard examples show decrease in test robust accuracy;
however, the model trained with the dataset that hard examples are pruned shows increases
in test robust accuracy. Thus, pruning hard examples improves robustness, indicating that
hard examples degrades the performance in adversarial training. The implementation details
for Fig. 10 are same with those of Fig. 3. The adversarial training time on the 10k+10k
subset of the CIFAR-10 dataset is 20 hours for 200 epochs. The adversarial training time
on the 10k subset (hard excluded) of the CIFAR-10 dataset is 5 hours for 100 epochs (after
learning rate decay epoch 100).

B.3 Experiment details for comparing el2n score
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Figure 10: Test accuracy of PGD mod-
els trained with subsets of CIFAR-10.

Figure 3 For the experiments in Fig. 3, we exe-
cuted 200 training epochs on the CIFAR-10 dataset
in each training. The other experimental details are
summarized in Appendix B.1. The adversarial train-
ing time on the entire CIFAR-10 dataset is 47 hours
for 200 epochs. The full results of Fig. 3 can be seen
in Fig. 11. For the results of the PGD model before
the learning rate decay, because hard examples are
difficult to learn also in the perspective of standard
accuracy with high learning rate, the result shows
large EL2N score for hard clean examples. After
the learning rate decay, where the model starts to
fit hard examples, the difficulty difference between
clean and adversarial examples of hard examples starts to increase.
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Figure 11: Average error vector norm (EL2N score) of hard and easy examples.

B.4 Experiment details and further experiments on other analyses

Figure 4 We executed 200 training epochs on the CIFAR-10 dataset in each training. The
other experimental details are summarized in Appendix B.1. The hard and easy examples
are selected according to the difficulty of each model. The training and test accuracy results
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and loss results for the PGD model with ε = 4 and ε = 2 can be seen from Fig. 12. The
robust overfitting phenomenon is observed to be severe as the adversarial budget of the
training setting increases.
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Figure 12: (a) presents the training and test loss curves in the PGD model. (b) shows the
training and test accuracy in the PGD models with ε = 4. (c) shows the training and test
accuracy in the PGD models with ε = 2.

Figure 5 We executed 200 training epochs on the CIFAR-10 dataset in each training.
The other experimental details are summarized in Appendix B.1. We select top 5k easy
and top 5k hard examples. We then trained the models with the dataset that prunes top
5k easy examples and that prunes top 5k hard examples, respectively. The memorization
results including experiments on adversarial training with ε = 4, ε = 2, and ε = 0 (STD) are
described in Fig. 13.

These results illustrate the necessity of a memorization feature. To explain this, let us
consider the possibility that the results in Fig. 5 could be explained solely by the presence
of robust and non-robust features, without the need for a memorization feature. First, if
we assume that hard examples possess robust features, then it should be possible to predict
the adversarial examples of hard examples through the training of the remaining 45k data
points of CIFAR-10 in Fig. 5, even if these hard examples are not included in the adversarial
training. However, since the model trained without the hard examples shows 0% accuracy
on them, this assumption contradicts the idea that hard examples contain robust features.
Second, let us assume that hard examples are composed solely of non-robust features. In this
case, the train accuracy for these examples should be 0%. However, Fig. 5 shows 100% train
accuracy, which contradicts this assumption. Therefore, the assumption that the results can
be explained solely by the presence of robust and non-robust features without a memorization
feature is difficult to support. To explain the results in Fig. 5, the existence of a feature that
“acts as a robust feature during training but as a non-robust feature during testing”—in other
words, a memorization feature—is necessary.

Table 2 For the experiments in Table 2, we executed 110 training epochs on the CIFAR-10
dataset in each model. The other experimental details are summarized in Appendix B.1.
Table 7 shows the performance of the models trained with top 10k easy and top 10k hard
examples as Table 2 with varying the adversarial budget ε. The robust accuracy is evaluated
using A3 (Liu et al., 2022b). As the adversarial budget decreases, the standard accuracy
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Figure 13: Memorization of easy and hard examples in each setting. Clean example results
for a standard setting and adversarial example results for adversarial settings.

of the models that prunes hard examples increases, which suggests that the number of
anti-correlated features which were slightly correlated features decreases.

Table 7: Performance of models trained with 10k examples.

Method STD PGD (ε = 2) PGD (ε = 4) PGD (ε = 8)
Std. Rob. Std. Rob. Std. Rob. Std. Rob.

Easy 78.46 - 75.66 62.00 69.65 51.51 61.63 39.56
Hard 77.60 - 45.47 22.54 32.17 9.04 19.92 8.68

Figure 6 We assigned random labels to the hard examples for the corruption model from
the beginning of the training, and we pruned the hard examples from the beginning of the
training for the pruning model. The robust accuracy is evaluated using A3 (Liu et al., 2022b).
Table 8 shows the final accuracy for the models trained with applying random labels to the
top 5k hard examples. We compared the results with the performance of the normal models
and the models that prunes top 5k hard examples for PGD and TRADES. Observably,
assigning random labels to hard examples does not change the robustness performance.

Table 8: Performance comparison of the final accuracy for models with label corruption.

Dataset
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

Normal 86.82 50.25 46.07 84.83 51.43 46.69
Corrupted 82.31 49.32 45.67 82.11 50.64 46.15
Pruned 85.99 52.36 48.81 84.71 53.44 48.78

Distinguishing hard examples In Section 3.2, we assumed properties of hard examples
and conducted a theoretical analysis on the impact of learning hard examples on model
performance. Based on this theoretical analysis, we can distinguish hard examples using the
following metrics:
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1. Prf∼A(Dadv)[arg max f(xi) = yi]− Prf∼A(Dadv\{i})[arg max f(xi) = yi]

2. E(x,y)∼Dstd
[Pr (fstd(x;A(Dstd)) = y)− Pr (fstd(x;A(Dstd \ {i})) = y)]

− E(x,y)∼Dadv
[Pr (fadv(x;A(Dadv)) = y)− Pr (fadv(x;A(Dadv \ {i})) = y)]

3. E(x,y)∼Dstd
[Pr (fadv(x;A(Dadv)) = y)− Pr (fadv(x;A(Dadv \ {i})) = y)]

− E(x,y)∼Dadv
[Pr (fadv(x;A(Dadv)) = y)− Pr (fadv(x;A(Dadv \ {i})) = y)]

In all the above metrics, a higher value indicates a stronger representation of the properties
presented in Assumption 1. The first metric is the same as the memorization score (Feldman,
2020), which reflects the difference in performance for a data point (xi, yi) when it is included
in training versus when it is not. The second metric compares the difference for the data point
(xi, yi) between standard training (with and without inclusion in training) and adversarial
training (with and without inclusion). The third metric measures the trade-off (xi, yi) by
comparing the standard accuracy and adversarial accuracy in adversarial training when the
data point is included versus when it is excluded from training.

While the metrics above can identify data with high values as hard examples, it is
challenging to train every model with and without each data point for comparison. Therefore,
as in Section 3.1, we conducted analyses in Section 3.3 using hard examples identified through
0-1 loss to check whether data that is difficult to learn actually exhibits the properties
assumed for hard examples in Assumption 1.

Figure 7 For the experiments in Fig. 7, We executed 110 training epochs on the CIFAR-10
dataset in each model. The other experimental details are summarized in Appendix B.1. We
trained the baseline models until epoch 90, which is the 10 epoch before the learning rate
decay for the stability of the training, then we continued by the training using the dataset
with the subset pruned as the experiments in Fig. 1. We evaluated the performance of the
best checkpoint in each model using A3 (Liu et al., 2022b).

B.5 Experiment details and ablation studies of DPLS

Table 3 We executed 110 training epochs on the CIFAR-10 dataset in adversarial training.
The other experimental details are summarized in Appendix B.1. We mainly use 0-1 loss as
difficulty measurement loss for DPLS. We set the label smoothing factor of the most difficult
example in DPLS considering the average difficulty score of each dataset and algorithm.
We tuned the factor such that the average label smoothing factor is between 0.8 and 0.9 in
10-class datasets (CIFAR-10, SVHN, and STL-10) and is between 0.7 and 0.9 in a 100-class
dataset (CIFAR-100). We selected difficulty calculation epoch as T = 90, which is 10 epochs
before the first learning rate decay. The label smoothing factor hyperparameter λ of the
most difficult example for the DPLS models and the label smoothing factor for LS models in
Table 3 of the main paper is summarized in Table 9. The PGD model in SVHN with label
smoothing methods shows a result similar to gradient masking effect (Athalye et al., 2018).
We applied DPLS only to the labels of outer maximization loss to reduce the effect. However,
it is considered as the properties of the SVHN dataset with PGD and label smoothing
because the experiments on other datasets and algorithms do not show gradient masking.
Furthermore, the results of our method still show improvement also against A3 for SVHN by
6.81%p, which could ignore gradient masking and evaluate true robustness. It means that
our method increases the true robustness of the model also for SVHN.
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Table 9: The smoothing factor λ and the average of label smoothing factor for each model in
Table 3 in the main paper.

Dataset Model Method λ (smoothing factor) Avg. smoothing

CIFAR-10
PGD LS 0.900 0.900

DPLS 0.500 0.897

TRADES LS 0.900 0.900
DPLS 0.500 0.893

CIFAR-100
PGD LS 0.900 0.900

DPLS 0.700 0.862

TRADES LS 0.700 0.700
DPLS 0.300 0.703

SVHN
PGD LS 0.900 0.900

DPLS 0.100 0.940

TRADES LS 0.900 0.900
DPLS 0.100 0.927

STL-10
PGD LS 0.800 0.800

DPLS 0.500 0.788

TRADES LS 0.800 0.800
DPLS 0.500 0.797

Figure 9 and Table 4 For the experiments of previous robust overfitting mitigation
methods, we used the code uploaded in the official Github by the author of each method. The
initial learning rate was set to 0.1, and the learning rate decay was applied at the learning
rate decay scheduling of each method with total training epochs 200 and with a decay factor
of 0.1. The learning rate decay was applied at 50 and 150 epochs for the method of knowledge
distillation with stochastic weight averaging (KD+SWA) (Chen et al., 2020) and the learning
rate decay was applied at 100 and 150 epochs for the other methods (the baseline model, our
method (DPLS), self-adpative training (SAT) (Huang et al., 2020), and temporal ensemble
(TE) (Dong et al., 2021)). We executed 200 training epochs on the CIFAR-10 dataset in
adversarial training. The other experimental details are summarized in Appendix B.1.

Table 10: Performance of DPLS according to various difficulty measurement losses.

Method
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

- 87.19 56.44 51.8 85.66 58.46 54.08
C-score 88.05 57.58 52.9 86.6 59.0 54.71
CE loss 87.51 57.47 52.73 86.02 58.64 54.45
EL2N 87.27 58.89 53.38 86.94 58.94 54.32
0-1 loss 87.13 58.43 54.03 85.36 59.33 55.19
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Table 5 For the experiments in Table 5, we executed 110 training epochs on the subsets
of CIFAR-10 dataset in each model. The other experimental details are summarized in
Appendix B.1. We employed the pre-calculated C-score (Jiang et al., 2021) from a standard
model, and the difficulty from the other losses was calculated during training according to
the procedure described in Algorithm 1. The detailed results of the performance of DPLS
according to various difficulty losses are listed in Table 10.

Table 11: Applying DPLS to MART (Wang
et al., 2019). DPLS model denotes the model
that calculate the difficulty of training exam-
ples for DPLS.

Method DPLS
model Standard Robust

(A3)

MART
- 83.9 52.19

MART 83.18 52.84
TRADES 83.81 53.2

Table 12: Applying DPLS to RST (Carmon
et al., 2019). DPLS dataset denotes the
dataset to which DPLS is applied.

Method DPLS
dataset Standard Robust

(A3)

RST

- 84.82 57.26
Sup 84.36 57.35

Unsup 85.2 57.62
Sup+Unsup 84.43 57.81

Table 6 For the experiments of applying DPLS to other adversarial training algorithms,
we used the code uploaded in the official Github by the author of each method. We executed
110 training epochs on the CIFAR-10 dataset in adversarial training. The other experimental
details are summarized in Appendix B.1. Table 11 and Table 12 show the experimental
details of applying DPLS to misclassification aware adversarial training (MART) (Wang
et al., 2019) and robust self training (RST) (Carmon et al., 2019). We use the 1,000k extra
data generated by a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) as
in Gowal et al. (2021a). For the MART models, we used the difficulty score calculated from
the TRADES model because MART uses weighted loss considering difficulty (ground-truth
class confidence) of each sample, in which the trained model by MART can be biased and
miscalculate the difficulty of each sample. The MART model combined with DPLS where
the difficulty is calculated from TRADES shows higher performance than the other models.
It can be inferred that calculating accurate difficulty score is important, but applying DPLS
with approximate difficulty is also effective at improving robustness. For the RST models, we
applied DPLS to both labeled and unlabeled dataset (Sup+Unsup), only the labeled dataset
(Sup), and only the unlabeled dataset (Unsup). We calculated difficulty of the unlabeled
dataset as the ratio of the number of training to the number of right predictions. For the
DPLS (Sup) model, it is inferred that the model is trained to depend on the unlabeled
dataset because of regularization only on the labeled data. For the DPLS (Unsup) model,
although the difficulty of the unlabeled dataset is not calculated from the full trajectory, the
DPLS successfully mitigates the negative effect of hard examples for the unlabeled dataset.

B.6 Other experiment details

Additional details of easy and hard examples Fig. 14 shows the class distributions
of 10k easy and 10k hard examples in the training dataset of CIFAR-10 selected by using
accumulated 0-1 loss difficulty along the training trajectory of TRADES Zhang et al. (2019).
Fig. 15 shows the 0-1 loss distributions of the training datasets for CIFAR-10, CIFAR-100,
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Figure 14: The class distributions of 10k easy and 10k hard examples in CIFAR-10 selected
by using accumulated 0-1 loss difficulty.
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Figure 15: The 0-1 loss distributions of the each training dataset: CIFAR-10, CIFAR-100,
and SVHN.

and SVHN, which are calculated with the training trajectory of TRADES. The value of 0-1
loss is normalized by using min-max normalization. Fig. 16 shows easy and hard examples
in the training dataset of CIFAR-10.

Appendix C. Related work

Wong et al. (2020) conducted analysis on overfitting in adversarial training, which is termed
as robust overfitting. They applied various data augmentation and regularziation methods
to reduce the generalization gap between training and test robust accuracy, concluding
that the effect of early stopping can be matched by other methods. Chen et al. (2020)
utilized smoothing of both logits and weights in adversarial training. They applied knowledge
distillation (Hinton et al., 2015) to logits instead of label smoothing (Szegedy et al., 2016)
with robust-trained and standard-trained models as teacher models and used stochastic weight
average (Izmailov et al., 2018) as a weight smoothing method by averaging weights in another
model along the training trajectory. They demonstrated that the smoothing methods are
effective at mitigating robust overfitting. Rebuffi et al. (2021) combined data augmentation
methods and weight averaging and significantly improved robust accuracy. They noted that
weight averaging is effective when robust accuracy between training iterations is maintained.
They experimented on several heuristics-driven augmentation such as cutout (DeVries and
Taylor, 2017), mixup (Zhang et al., 2018), and cutmix (Yun et al., 2019). Dong et al.
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Original Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

Prediction Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

Prediction Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

(a) Easy examples
Original Airplane Car Bird Cat Deer Dog Frog Horse Ship Truck

Prediction Car Ship Airplane Deer Truck Bird Cat Brid Frog Airplane

Prediction Frog Brid Deer Dog Car Cat Deer Deer Cat Bird

(b) Hard examples

Figure 16: Easy and hard examples in CIFAR-10 Krizhevsky et al. (2009) selected by
using accumulated 0-1 loss difficulty. Original denotes the ground-truth class of images and
prediction denotes the most frequently predicted class of images at each epoch of training
until the calculation epoch.

(2021) demonstrated that DNNs are sufficient to memorize training adversarial examples
with random labels. They showed that the memorization of hard training examples leads
to decrease in training loss but increase in test error, noting that the causes of robust
overfitting may be the memorization of one-hot labels. Specifically, they showed that training
adversarial examples with completely random labels are possible when the training algorithm
is TRADES (Zhang et al., 2019). For the PGD (Madry et al., 2017) models, when the
label noise ratio exceeds a certain threshold, the generalization gap between train and test
accuracy becomes zero and the model exhibits a performance similar to that of the random
prediction.

In Liu et al. (2022a), they utilize average training loss as difficulty measurement and
analyze overfitting mitigation methods in adversarial training. However, instead of using
difficulty score to improve the performance of adversarial training, they proposed Adpative
Target and Reweight by using moving average predictions as in Huang et al. (2020); Dong
et al. (2021) and ground truth prediction as in Wang et al. (2019). Because the performance
for standard adversarial training is not provided in the paper, but the performance only
for fast adversarial training and fine-tuning with extra data is provided, we trained and
evaluated their models for the comparison. The results of Table 13 shows that Reweight is
not applicable to the standard adversarial training and Adaptive Target shows the same
performance as SAT Huang et al. (2020) because it is simply a linear combination of SAT
and one-hot label. In Liu et al. (2022a), they constituted a subset dataset in a balanced
form between classes. However, the difficulty of classes can be imbalanced, and selecting the
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Table 13: Performance comparison with the methods in Liu et al. (2021). The models trained
using the code in Liu et al. (2021) are denoted as (*).

Method Std. Robust
(PGD)

Robust
(A3)

PGD 87.19 56.44 51.8
+DPLS 86.17 58.14 53.98

PGD (*) 86.75 56.24 51.81
+Reweight (*) 25.91 22.16 21.93
+Adaptive Target (*) 86.04 58.21 52.87
+Reweight+Adaptive Target (*) 30.49 25.81 25.6

most difficult data considering the balance between classes can result in a deviation from
correct observations. As noted in Xu et al. (2021), adversarial training differently increases
the robustness of each class in a dataset, so the performance imbalance between classes
becomes more significant in adversarial training. Thus, it can be negligible in standard
training to balance the number of each class in training example subsets, but it can be
non-trivial in adversarial training. The distributions of hard and easy example subsets in
our paper are plotted in Fig 14. The distributions of easy and hard example subsets are
highly class-imbalanced. The comparison study on the pruning balanced or imbalanced
training subsets with different difficulty losses can be seen in Table 19, where the models
that prune imbalanced subsets consistently show higher performance than the models that
prune balanced subsets. Furthermore, we showed that our method does not only exploit the
performance increase of the easy classes, but increases the both performance of easy and
hard classes as shown in Table 20.

Table 14: Performance of DPLS according
to the DPLS calculation epoch T .

T
PGD TRADES

Std. Rob. Std. Rob.

10 84.13 53.34 84.88 54.69
50 86.33 54.05 85.56 55.0
90 87.13 54.03 85.36 55.19
100 86.94 53.8 85.53 54.77

Table 15: Performance of DPLS according to
the re-initialized epoch, where DPLS is pre-
calculated by using DPLS of the calculation
epoch 90.

T Reinit. PGD TRADES
Std. Rob. Std. Rob.

90

0 86.62 53.69 84.99 55.05
50 86.68 54.09 84.89 55.11
90 87.13 54.03 85.36 55.19
100 86.76 53.76 85.26 54.93

Appendix D. Additional ablation study

Ablation on the DPLS calculation epoch In Table 14, we conducted experiments
varying the calculation epoch of DPLS. The results show that applying DPLS at any epoch
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is effective at increasing robustness. However, the results show that the improvement is
slightly higher when using the difficulty calculated until higher epoch. Additionally, when
DPLS is applied after the learning rate decay, the result shows that the increase in robustness
is diminished, but it still shows better performance than the baseline model. Thus, the
application of DPLS before memorization of hard examples can maximize the mitigation
effect of the method, which indicates the overfitting prevention effect of DPLS.

Ablation on the re-initialization of training by using DPLS In Table 15, we con-
ducted ablation study varying the training re-initialization epoch with pre-calculated DPLS
by using the difficulty of that calculated until the training epoch 90. There are small
differences between the results. Comparing the result in Table 14 with the result in Table 15,
it indicates that the difficulty score is important for DPLS and the applying checkpoint is
less important after fitting training examples and before memorization of hard examples.
However, all models still show the improvement in the robustness performance of the model
as in the above DPLS calculation epoch ablation study.

Table 16: Performance of DPLS applying to the PGD model on CIFAR-10 according to the
smoothing factor λ.

Model λ
(smoothing factor) Avg. smoothing Standard Robust

(PGD)
Robust
(A3)

PGD

- 1.0 87.19 56.44 51.8
0.9 0.98 87.73 56.8 52.37
0.7 0.939 87.25 57.58 53.17
0.5 0.898 87.13 58.43 54.03
0.3 0.857 86.09 58.51 54.29
0.1 0.816 85.2 58.36 53.92

Table 17: Performance of DPLS applying to the TRADES model on CIFAR-10 according to
the smoothing factor λ.

Model λ
(smoothing factor) Avg. smoothing Standard Robust

(PGD)
Robust
(A3)

TRADES

- 1.0 85.66 58.46 54.08
0.9 0.979 85.49 58.74 54.39
0.7 0.935 85.41 59.08 54.8
0.5 0.893 85.36 59.33 55.19
0.3 0.85 84.95 59.29 55.22
0.1 0.807 84.06 59.25 55.38

Ablation study on the factor of DPLS Table 16 and Table 17 show the performance of
DPLS applying to the PGD and TRADES models on CIFAR-10, respectively. We calculated
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the average value for the smoothing factor of DPLS. In both results, it is observed that
applying DPLS with the factor of high value further increases the robustness performance.

Ablation study on the regularization of DPLS We used an LS approach for mitigating
the effect of hard examples, instead of simply reweighting the loss of hard examples. Pruning
hard examples corresponds to assigning zero values to the loss of hard examples, so we
compare the performance of DPLS with the reweighting method. We applied the difficulty of
each example to the loss to reweight the loss of each example, which is the same difficulty with
DPLS. Because TRADES utilized the robustness loss without labels, we applied DPLS to
cross-entropy loss for clean examples and reweighted the robust loss with the same difficulty;
thus, the difference between DPLS and the reweighting method in TRADES is the difference
of application of the method to the loss for clean examples. Table18 lists the result of
applying difficulty proportional reweight (DPR) and DPLS. In the results of both PGD
and TRADES, DPLS shows higher standard accuracy. It is inferred that because the DPR
method still ensures that the predictions are identical to one-hot labels and that the method
focuses on the memorization of examples, the method improves robustness and deteriorates
accuracy depending on robustness-accuracy trade-off. In contrast, instead of memorizing
hard examples with one-hot label, our method takes advantage of hard examples by allowing
soft labels and learns distributions that smoothly include hard examples, which results in
improving robustness with decreasing the reduction of standard performance.

Table 18: Performance comparison of DPLS with reweighting methods.

Method
PGD TRADES

Std. Robust Robust Std. Robust Robust
(PGD) (A3) (PGD) (A3)

- 87.19 56.44 51.8 85.66 58.46 54.08
DPR 86.1 57.32 53.2 84.63 58.54 54.88
DPLS 87.13 58.43 54.03 85.36 59.33 55.19

Study on balancing the number of data in each class for pruning In our experi-
ments, we selected easy and hard examples without consideration of class imbalance. The
class distributions of 10k easy and 10k hard examples in our experiment are shown in
Figure 14. We conducted the ablation study on the effect of balancing the class distribution
of the hard examples subset. Table 19 shows the results of the pruning models of TRADES,
which pruned top 10% examples with high difficulty from the training dataset of CIFAR-10.
We experimented with varying the difficulty measurement loss and the balance of the number
of pruned data for each class (the number of pruned data for each class in balanced subset is
500). We extracted the balanced pruning subset by selecting top 10% examples with high
difficulty from the training subset of each class. It is observed that while the pruning models
without consideration of class imbalance improve robustness, the pruning models with the
balanced pruning subset show the similar robustness performance with that of the baseline
model. It indicates that when selecting hard examples which have the negative effect to
training, it is less effective for the improvement of the robustness performance to consider
the balance of the number of data for each class.
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Table 19: Performance of pruning models according to various difficulty losses with and
without balancing the excluded data number of each class.

Model Method Balancing Standard Robust
(PGD)

Robust
(CW)

Robust
(A3)

TRADES

- - 85.66 58.46 56.53 54.08
C-score © 85.2 57.87 56.72 53.97
C-score × 85.35 58.52 56.82 54.25
CE loss © 83.7 57.49 56.76 54.01
CE loss × 83.82 58.37 57.31 54.45
EL2N © 83.8 57.76 56.89 54.07
EL2N × 83.25 57.86 56.9 54.28
0-1 loss © 83.81 57.84 56.76 54.22
0-1 loss × 84.07 58.04 57.4 54.64

Study on the robust fairness In Xu et al. (2021), they indicated that adversarial training
differently increases robustness of each class in a dataset, which effectively increases the
robustness of easy classes but not effectively increases the robustness of hard classes. They
noted that the performance imbalance between classes, which is termed as the robustness
fairness problem, becomes more significant in adversarial training. Because DPLS regularizes
hard examples, it can be assumed that the increase in the robustness performance is attributed
to the increase in the performance of easy classes. Thus, we compared the robustness
performance of easy and hard classes in Table 20. We divide the class of CIFAR-10 into
5 easy and 5 hard class subsets. We referred to the class distributions of easy and hard
examples from Figure 14 and divide them into easy (class 0, 1, 7, 8, 9) and hard (class 2, 3,
4, 5, 6). From Table 20, it is observed that the performance increase is attributed to the
increase in the robustness improvement of both the easy and hard class subsets in the DPLS
models. It indicates that our method does not only exploit the performance increase of the
easy classes, but increases the both performance of easy and hard classes.

Table 20: Robustness performance against adversarial attacks for easy class and hard class
subsets of CIFAR-10.

Model Method PGD PGD
(easy)

PGD
(hard) A3 A3

(easy)
A3

(hard)

PGD - 56.54 70.5 42.58 51.8 67.62 35.98
DPLS 58.49 71.82 45.16 54.05 68.66 39.44

TRADES - 58.52 71.42 45.62 54.08 68.64 39.52
DPLS 59.32 72.9 45.74 55.19 70.22 40.16
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Table 21: Performance evaluation of DPLS using MD (Jiang et al., 2020) and RayS (Chen
and Gu, 2020) attacks.

Method
PGD TRADES

Std. Robust Robust Robust Std. Robust Robust Robust
(MD) (RayS) (A3) (MD) (RayS) (A3)

- 87.19 51.93 61.13 51.80 85.66 54.17 60.84 54.08
DPLS 87.13 54.07 62.14 54.03 85.36 55.25 62.11 55.19

Appendix E. Additional comparison study

Additional comparative study using existing evaluation attack methods We pri-
marily evaluated our models against AutoAttack (Croce and Hein, 2020) because it provides
an accurate assessment without giving a false sense of security due to issues like gradient
obfuscation. Since the MD ensemble attack (Jiang et al., 2020), which includes margin
decomposition (MD), appears to be a variant of AutoAttack, we also measured the CIFAR-10
model’s performance against this attack. The results are presented in Table 21. As shown in
the table, the MD ensemble attack yields performance results and patterns very similar to
those of AutoAttack, demonstrating that our method, DPLS, is also robust against the MD
attack.

Furthermore, we evaluated our models against RayS (Chen and Gu, 2020), an attack
method that can reveal vulnerabilities leading to a false sense of security. The results, also
presented in Table 21, indicate that our methodology, DPLS, is robust against RayS and
shows improved performance compared to the baseline model.

Table 22: Performance evaluation of DPLS combined with Diffpure (Nie et al., 2022) on
RobustBench (Croce et al., 2020)

Dataset
PGD TRADES

Std. Robust Std. Robust
(A3) (A3)

Baseline 88.28 53.32 86.13 56.05
Baseline + DPLS 86.72 56.25 85.15 56.84
Baseline + DiffPure 88.28 66.87 87.11 66.80
Baseline + DPLS + DiffPure 87.50 68.61 86.72 71.09

Additional comparative study combining existing defense methods DiffPure (Nie
et al., 2022) is an image purification method that leverages pre-trained diffusion-based models.
Since the classifier model operates independently of the image purification method, it can be
combined with any adversarial training-based approach. We applied the DiffPure method
to two models: one trained using baseline adversarial training methods without DPLS, and
another trained using adversarial training methods with DPLS. In the CIFAR-10 setting of
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DiffPure, we measured the performance by replacing the classifier model and evaluated its
robustness using RobustBench (Croce et al., 2020).

As shown in Table 22, we compared the performance of adding only DiffPure to the
PGD and TRADES baseline models with the performance when both DiffPure and DPLS
are added together. We observed that the models with DPLS added achieved relatively
higher performance. Since DiffPure operates independently of the classifier model to enhance
adversarial defense performance, utilizing a model trained with DPLS—which is comparatively
more robust—appears to result in better defense performance.
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