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Abstract

Deep ResNets are recognized for achieving state-of-the-art results in complex machine
learning tasks. However, the remarkable performance of these architectures relies on a
training procedure that needs to be carefully crafted to avoid vanishing or exploding gradients,
particularly as the depth L increases. No consensus has been reached on how to mitigate
this issue, although a widely discussed strategy consists in scaling the output of each layer
by a factor αL. We show in a probabilistic setting that with standard i.i.d. initializations,
the only non-trivial dynamics is for αL = 1/

√
L—other choices lead either to explosion or

to identity mapping. This scaling factor corresponds in the continuous-time limit to a
neural stochastic differential equation, contrarily to a widespread interpretation that deep
ResNets are discretizations of neural ordinary differential equations. By contrast, in the
latter regime, stability is obtained with specific correlated initializations and αL = 1/L.
Our analysis suggests a strong interplay between scaling and regularity of the weights as
a function of the layer index. Finally, in a series of experiments, we exhibit a continuous
range of regimes driven by these two parameters, which jointly impact performance before
and after training.

Keywords: ResNets, deep learning theory, neural ODE, neural network initialization,
continuous-time models

1. Introduction

We begin by introducing the general context on deep residual networks, before stating our
contributions and discussing related work.
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1.1 Deep Residual Neural Networks

Residual neural networks (ResNets), introduced by He et al. (2016a) in the field of computer
vision, were the first deep neural network models successfully trained with several thousand
layers. Since then, extensive empirical evidence has shown that increasing the depth leads to
significant improvements in performance, while raising new challenges in terms of training
(e.g., Wang et al., 2024). From a high-level perspective, the key feature of ResNets is the
presence of skip connections between successive layers. In mathematical terms, this means
that the (k + 1)-th hidden state hk+1 ∈ Rd follows sequentially from the previous hidden
state via the recurrence relation

hk+1 = hk + f(hk, θk+1), 0 6 k 6 L− 1, (1)

where f(·, θk+1) : Rd → Rd is the layer function parameterized by θk+1 ∈ Rp and L is the
number of layers. The skip connection corresponds to the addition of hk on the right-hand
side of (1), which is absent in classical feedforward networks. This refinement prevents
instability issues during training when L is large, provided training is performed in a careful
way (He et al., 2015). The idea of adding skip connections has become common practice
in the field of deep learning, and is today incorporated in many other models such as
Transformers in natural language processing (Vaswani et al., 2017). For simplicity, in the
rest of the paper, we continue to use the terminology ResNets to denote any architecture of
the form (1), keeping in mind that this framework goes beyond the original model of He
et al. (2016a).

The most common architectures have 50-150 layers, but ResNets can be trained with
depths up to the order of thousand layers (He et al., 2016b). Yet, the training procedure
needs to be carefully crafted to avoid vanishing or exploding gradients, particularly as the
depth increases. As pointed out by, e.g., Shao et al. (2020), these instabilities are related to
a shift in the magnitude of the variance of a signal as it passes through the network. In the
original approach of He et al. (2016a), the issue was mitigated by adding a normalization
step, called batch normalization (Ioffe and Szegedy, 2015), which rescales the output of
each layer via centering and unit variance normalization. However, this normalization stage
introduces practical and theoretical difficulties, among which computational overhead and
strong dependence on the batch size (see Brock et al., 2021, and the references therein). A
widespread alternative to stabilize training in deep models, explored for example by Yang
and Schoenholz (2017), Arpit et al. (2019), Zhang et al. (2019b), and De and Smith (2020),
is to incorporate a scaling factor αL in front of the residual term in (1), yielding the model

hk+1 = hk + αLf(hk, θk+1), 0 6 k 6 L− 1. (2)

There is strong evidence that this scaling factor αL should depend on L, without however any
consensus to date on the exact form of this dependence, nor on the mathematical grounding
of the approach. Thus, despite progresses on the empirical side, the mathematical forces in
action behind the stability of deep ResNets are still poorly understood, although they are
key to unlock training at arbitrary depth.

Our goal in the present paper is to take a step forward towards a better theoretical
understanding of deep ResNets by providing a thorough probabilistic analysis of the sequence
(hk)06k6L at initialization when L is large, and by leveraging a continuous-time interpretation
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of model (2) via the so-called neural ordinary differential equation (neural ODE, Chen et al.,
2018) paradigm. In a nutshell, our results highlight the intimate connection that exists at
initialization between stability of the learning process, the regularity of the weights, and the
scaling factor αL. We offer in particular a proper mathematical grounding on why and how
to choose the parameter αL as a function of the depth L and the distribution of the weights.

1.2 Our Contributions

Scaling at initialization. The optimal parameters of ResNets are learned by minimizing some
empirical risk function via a gradient descent algorithm. As highlighted for example by Yang
and Schoenholz (2017), Hanin and Rolnick (2018), and Arpit et al. (2019), a good parameter
initialization of this learning phase plays a major role in the quality of the learned model, in
particular to avoid vanishing gradients and deadlock at initialization, or exploding gradients
and quick divergence of the model parameters at the beginning of training. Moreover, a
good initialization allows the use of larger learning rates, which have been shown to correlate
with better generalization (Jastrzkebski et al., 2017). It is thus of great interest to study and
understand the role played by scaling of deep ResNets at initialization. This is the context
in which we place ourselves in the sequel.

At initialization stage, the weights (θk)16k6L are usually chosen as (realizations of)
independent and identically distributed (i.i.d.) random variables, which typically follow a
uniform or Gaussian distribution on Rp. Accordingly, the sequence (hk)06k6L that results
from the recursion (2) for a given input to the network takes the form of a sequence of
random variables that are not i.i.d. but are actually a martingale. Thus, denoting informally
by L the differentiable loss associated with the learning task (classification or regression),
the distributions of (hk)06k6L and ( ∂L

∂hk
)06k6L as L becomes large carry useful information

on the stability of training. For instance, exploding gradients in the backpropagation phase
of learning correspond to the fact that, with high probability, ‖ ∂L

∂h0
‖ � ‖ ∂L

∂hL
‖, where ‖ · ‖

denotes the Euclidean norm. Our first contribution, in Section 2, is to provide thorough
mathematical statements on the behavior of these distributions (both for finite and infinite L),
depending on the value of αL. Among other results, we show that only the choice αL ≈ 1/

√
L

yields a non-trivial behavior at initialization, thereby confirming empirical findings in the
literature (Arpit et al., 2019; De and Smith, 2020). For αL � 1/

√
L, the norms explode

exponentially fast with L, which is inappropriate for training. For αL � 1/
√
L, the network

is almost equivalent to identity, that is, hL ≈ h0. The analysis of the different cases as a
function of αL is mathematically involved and makes extensive use of concentration tools
from random matrix theory.

The continuous approach. As noticed by several authors (Chen et al., 2018; E et al., 2019;
Thorpe and van Gennip, 2023), model (2) with a scaling factor αL = 1/L (and not 1/

√
L)

is formally similar to the discretization of a differential equation. Thus, when L tends to
infinity, the weights and hidden states change continuously with the layer according to the
equation

dHt

dt
= f(Ht,Θt), t ∈ [0, 1]. (3)

Here, time t is the continuous analogue of the layer index k, H : [0, 1]→ Rd is a continuous-
time hidden state, and Θ : [0, 1] → Rp a continuous-time parameter. This important
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connection between ResNets and differential equations has been identified in the past years
under the umbrella name of neural ODE. Since the original article of Chen et al. (2018), this
point of view has led to the development of a variety of new continuous-time models, together
with innovative architectures and efficient training algorithms (Chang et al., 2019; Grathwohl
et al., 2019; Kidger et al., 2021). The neural ODE paradigm also enabled to leverage the
rich theory of differential equations to better understand the mechanisms at work behind
deep ResNets (E et al., 2019; Fermanian et al., 2021). However, there is a debated question
in the neural ODE community about the choice αL = 1/L, which guarantees convergence of
the discrete model (2) to its continuous-time counterpart (3). As a matter of fact, it seems
that this choice is guided by more mathematical than practical considerations, and several
authors have suggested that it is inconsistent with what is done in practice (Cohen et al.,
2021; Bayer et al., 2023). Moreover, letting αL = 1/L is somewhat contradictory with the
results discussed above, which highlighted that the only non-trivial limit at initialization is
αL = 1/

√
L. Thus, as a second contribution, we clarify the problem in Section 3 by leveraging

our previous results on stability. We show that the value αL = 1/
√
L corresponds in the

continuous world to a neural stochastic differential equation (SDE) of the form (3), where
now Θ : [0, 1] → Rp takes the form of a continuous-time stochastic process, typically a
Brownian motion. By contrast, we also prove that the neural ODE regime with αL = 1/L
corresponds to the limit of a ResNet, not with i.i.d. weights as considered before, but with
more complex and correlated weight distributions. For these weight distributions, the scaling
αL = 1/L is also a critical value between explosion and identity.

Going further, our third contribution is to exhibit in Section 4 a continuous range of
regimes that are controlled by the choice of αL (beyond the cases 1/

√
L and 1/L) and the

distribution of (θk)16k6L at initialization, derived from a continuous-time process Θ with
a regularity different from a Brownian motion. More precisely, we show experimentally
that there is a strong interplay (with the same three cases—explosion, identity mapping,
non-trivial behavior) between the choice of αL and the regularity of (θk)16k6L as a function
of the layer index k. In addition, empirical evidence suggests that this interplay impacts
both the behavior and performance of the networks during training, beyond initialization.

1.3 Related Work

The choice of scaling for ResNets has been discussed in many papers, without however
reaching a clear consensus on the form this scaling factor should take. For instance, Hanin
and Rolnick (2018) state that stability requires αL 6 1/L, while Zhang et al. (2019b) show
that αL 6 1/

√
L is enough to ensure stability. On the other hand, Cohen et al. (2021) claim

that the scaling factor observed in practice in trained ResNets is of the form 1/Lβ with
β ≈ 0.7. Other authors have proposed more complex choices for αL (e.g., Zhang et al., 2019a;
Shao et al., 2020). Taking another point of view, De and Smith (2020) observe that batch
normalization is empirically equivalent to taking a 1/

√
L normalization factor. Bachlechner

et al. (2021) suggest learning a scaling parameter αk that is allowed to vary from one layer
to another, whereas, in (4), αL is kept constant across layers. These authors observe a great
acceleration for training compared to traditional ResNets with no scaling. They also suggest
a similar architecture for Transformers and then notice that αk ≈ 1/L at the end of training.
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Closest to our analysis at initialization are the papers of Arpit et al. (2019) and Zhang et al.
(2019b). Arpit et al. (2019) develop a theoretical analysis based on mean field approximation
that suggests that a scaling factor αL = 1/

√
L prevents vanishing/exploding gradients at

initialization, and provide experimental evidence that this approach is competitive with
batch normalization. However, the authors do not provide rigorous mathematical statements
for the three different cases αL � 1/

√
L, αL ≈ 1/

√
L, and αL � 1/

√
L, nor do they highlight the

connection with the continuous-time interpretation. Interestingly, the idea of exploiting the
martingale structure to analyze the magnitude of the hidden states is present in Zhang et al.
(2019b), who study the convergence of gradient descent for over-parameterized ResNets with
different values of αL. Nevertheless, they consider a specific model with Gaussian weights,
and only provide asymptotic results when both width and depth tend to infinity. The
asymptotic limit in this particular regime has been studied by, e.g., Allen-Zhu et al. (2019)
and Hayou et al. (2021). We depart from this point of view by considering a finite-width
setting.

The connection between the choice of scaling and the continuous-time point of view has
previously been noticed by Zhang et al. (2019c), then studied in detail by Cohen et al. (2021)
and Cont et al. (2022). These authors show that, under assumptions on the form of the
weights, it is possible to derive limiting (stochastic or ordinary) differential equations for the
hidden states. However, they do not discuss the transition between these two regimes, nor
do they link differential equations regimes with the stability of the network.

2. Scaling at Initialization

Our goal in this section is to study the effect of the scaling factor αL on the stability of
ResNets at initialization, assuming that the weights are i.i.d. random variables. We start by
making more precise the model and the learning problem introduced in (1).

2.1 Model and Assumptions

Model. The data is a sample of n pairs (xi, yi)16i6n, where xi is the input vector in Rnin

and yi ∈ Rnout is the output vector to be predicted. This setting includes regression and
classification (after one-hot encoding of the labels). Specifying the informal recurrence (1),
for any input x ∈ Rnin , we consider the output Fπ(x) ∈ Rnout of the ResNet model defined
by

h0 = Ax,

hk+1 = hk + αLVk+1g(hk, wk+1), 0 6 k 6 L− 1,

Fπ(x) = BhL,

(4)

where αL > 0 is the scaling factor of the ResNet and π = (A,B, (wk)16k6L, (Vk)16k6L) are
its parameters, with A ∈ Rd×nin , B ∈ Rnout×d, wk ∈ Rp and Vk ∈ Rd×d for k = 1, . . . , L.
The almost-everywhere differentiable function g : Rd × Rp → Rd encodes the choice of
architecture. We note that the model includes initial and final linear layers in order to map
the input space Rnin into the space of hidden states Rd, and symmetrically to map the last
hidden state hL into the output space Rnout . These two transformations are of little interest
to us, since we mostly focus on the behavior of the sequence of hidden states (hk)06k6L. Let
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us finally notice that the results of this section can be adapted to hidden layers that do not
have the same width, at the cost of increased technicality.

An important feature of model (4) is that the layer function takes the form of a matrix-
vector multiplication, which will prove crucial to make use of concentration results on random
matrices. We stress that this setting is standard in practice and that it encompasses many
types of ResNets. It includes for example simple ResNets where g(h,w) = σ(h) with σ the
activation function, and the original ResNets from He et al. (2016a), which have

g(h,w) = ReLU(Wh+ b),

where the parameter is a pair w = (W, b) with W ∈ Rd×d a weight matrix and b ∈ Rd a
bias, and ReLU: x 7→ max(x, 0) is applied element-wise. This setting also includes attention
layers, where g corresponds to the scaled dot-product between keys and queries, as well as
convolutional layers. The assumptions made below do not cover these latter cases, making
it an interesting avenue for future research to adapt our approach to these cases.

Throughout the article, we let ` : Rnout × Rnout → R+ be a loss function, differentiable
w.r.t. its first parameter, for example the squared loss or the cross-entropy loss. The
objective of learning is to find the optimal parameter π that minimizes the empirical risk
L (π) =

∑n
i=1 `(Fπ(xi), yi).

Probabilistic setting at initialization. The minimization of the empirical risk is usually
performed by stochastic gradient descent or one of its variants (Goodfellow et al., 2016,
Chapter 8). The gradient descent is initialized by choosing the weights as (realizations
of) i.i.d. random variables. The parameters w1, V1, . . . , wL, VL in model (4) are therefore
assumed to be an i.i.d. collection of random variables, where we recall that wk ∈ Rp and
Vk ∈ Rd×d parameterize the k-th layer of the network. In this stochastic context, the
successive hidden states h0, . . . , hL given a fixed input x are also random variables, but
their distribution is not i.i.d.—in fact, under our assumptions, this sequence is a martingale.
To avoid unnecessary technicalities, we assume that the sequence (hk)06k6L is non-atomic.
This is for example the case if the distribution of the parameters is absolutely continuous
w.r.t. the Lebesgue measure. In particular, this ensures that the sequence (hk)06k6L almost
surely does not hit the non-differentiability points of g.

It is stressed that the distribution of the parameters are assumed to be independent
of the depth, so that all the dependence on L is captured in the scaling factor αL. This
model enables us to consider multiple architectures at once, via the function g. By contrast,
some authors formulate the problem of scaling as a choice of the variance at initialization
(e.g., Yang and Schoenholz, 2017; Wang et al., 2024), which makes the analysis architecture-
dependent. However, for a given architecture, these two approaches are essentially equivalent
since Var(αLVk) = α2

L Var(Vk).

The quantity ‖hL − h0‖/‖h0‖ carries key information on the behavior of the network
at initialization. On the one hand, if ‖hL − h0‖ � ‖h0‖, the network is essentially equal
to the identity function. On the other hand, if ‖hL − h0‖ � ‖h0‖, the output of the
network explodes. An intermediate situation is when ‖hL−h0‖ ≈ ‖h0‖. In addition, another
source of information is provided by the gradients of the hidden states with respect to
the empirical risk L . If ‖ ∂L

∂h0
− ∂L

∂hL
‖ � ‖ ∂L

∂hL
‖, the gradients do not change as they flow

through the network, which means that the exact same information is backpropagated
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throughout the network. Conversely, if ‖ ∂L
∂h0
− ∂L

∂hL
‖ � ‖ ∂L

∂hL
‖, the gradients explode during

backpropagation. By exploiting the martingale structure of (‖hk‖)06k6L, as well as state-of-
the-art concentration inequalities for random matrices with sub-Gaussian entries, we provide
in this section probabilistic bounds on the magnitude of these various quantities.

Assumptions. Some assumptions are needed on the choices of architecture and initialization.
Recall that a centered real-valued random variable X is said to be s2 sub-Gaussian (van
Handel, 2016, Chapter 3) if for all λ ∈ R, E(exp(λX)) 6 exp(λ2s2/2). The sub-Gaussian
property is a constraint on the tail of the probability distribution. As an example, Gaussian
random variables on the real line are sub-Gaussian and so are bounded random variables.

The following assumptions will be needed throughout the section: for any 1 6 k 6 L,

(A1) For some s > 1, the entries of
√
dVk are centered i.i.d. s2 sub-Gaussian random

variables, independent of d and L, with unit variance.

(A2) For some C > 0, independent of d and L, and for any h ∈ Rd,

‖h‖2
2

6 E
(
‖g(h,wk)‖2

)
6 ‖h‖2 and E

(
‖g(h,wk)‖8

)
6 C‖h‖8.

Assumption (A1) is mild and satisfied by all initializations used in practice. For example,
the classical Glorot initialization (Glorot and Bengio, 2010)—which is the default imple-
mentation in the Keras package (Chollet et al., 2015)—takes the entries of Vk as uniform
U(−

√
3/d,

√
3/d) variables. This means that

√
dVk is initialized with U(−

√
3,
√

3) random
variables, which satisfy (A1). Other examples include the Gaussian N (0, 1/d) initialization
of He et al. (2015) and, for example, initialization with Rademacher variables.

The first part of Assumption (A2) ensures that g(·, wk) is not too far away from being
an isometry in expectation. The second part is more technical and, roughly, allows to upper
bound the deviations of the norm of g(hk−1, wk). Our next Proposition 1 shows that most
classical ResNet architectures verify Assumption (A2). For the sake of readability, these
models, together with their parameters, are summarized in Table 1 below.

Name Recurrence relation Parameters of g

res-1 Simple ResNet hk+1 = hk + αLVk+1σ(hk) wk+1 = ∅
res-2 Parametric ResNet hk+1 = hk + αLVk+1σ(Wk+1hk) wk+1 = Wk+1

res-3 Original ResNet hk+1 = hk + αLVk+1 ReLU(Wk+1hk) wk+1 = Wk+1

Table 1: Examples of ResNet architectures considered in the paper. In the first two cases,
the activation function σ is such that, for all x ∈ R, a|x| 6 |σ(x)| 6 b|x|, 1/

√
2 6

a < b 6 1. In the last two cases, Wk+1 ∈ Rd×d.

Proposition 1 Let res-1, res-2, and res-3 be the models defined in Table 1. Then

(i) Assumption (A2) is satisfied for res-1.
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(ii) Assumption (A2) is satisfied for res-2 and res-3, as soon as the entries of
√
dWk+1,

0 6 k 6 L − 1, are centered i.i.d. sub-Gaussian random variables, independent of d
and L, with unit variance.

In the models res-1 and res-2, σ can be, for instance, taken as the parametric ReLU
function, i.e., σ(x) = x+ + sx−, where x+ (resp. x−) denotes the positive (resp. negative)
part and the slope s ∈ [1/

√
2, 1] is a parameter of the model. Parametric ReLU, also known

as leaky ReLU (Maas et al., 2013), has been shown to outperform standard ReLU for
image datasets (Xu et al., 2015). Observe also that res-2 differs from res-3 since the
classical ReLU function is defined by ReLU(x) = x+ and thus does not satisfy the condition
|σ(x)| > a|x|. Note that there is no bias term in these three models, as this term is commonly
initialized to zero, and we are interested in the behavior at initialization.

Remark 2 An important architecture that is not covered by our setting is hk+1 = hk +
αLσ(Wk+1hk), where compared to res-1 the weight matrix is located inside the activation
function σ. This is due to the fact that the residual branch writes as a matrix-vector product
in our model (4), which enables us to leverage matrix concentration inequalities (see, e.g.,
Lemmas 21 and 22). However, we check numerically that qualitatively similar results are
obtained in this case (see Appendix D). This leads us to believe that similar concentration
results should hold true when the matrix-vector product is followed by an element-wise
activation function. We leave this mathematical study for future work.

2.2 Probabilistic Bounds on the Norm of the Hidden States

The next two propositions describe how the quantity ‖hL − h0‖/‖h0‖ changes as a function
of Lα2

L. Proposition 3 provides a high-probability bound of interest when Lα2
L � 1. In this

case, we see that, with high probability, the network acts as the identity function, directly
mapping h0 to hL. On the other hand, Proposition 4 provides information in the two cases
Lα2

L � 1 and Lα2
L ≈ 1. When Lα2

L � 1, the lower bound (i) indicates an explosion with
high probability of the norm of the last hidden state. On the other hand, when Lα2

L ≈ 1, the
bounds (i) and (ii) show that hL randomly varies around h0 with fluctuation sizes bounded
from below and above.

Proposition 3 Consider a ResNet (4) such that Assumptions (A1) and (A2) are satisfied.
If Lα2

L 6 1, then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL − h0‖2
‖h0‖2

6
2Lα2

L

δ
.

Proposition 4 Consider a ResNet (4) such that Assumptions (A1) and (A2) are satisfied.

(i) Assume that d > 64 and α2
L 6 2

(
√
Cs4+4

√
C+16s4)d

. Then, for any δ ∈ (0, 1), with

probability at least 1− δ,

‖hL − h0‖2
‖h0‖2

> exp

(
3Lα2

L

8
−
√

11Lα2
L

dδ

)
− 1,
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provided that

2L exp

(
− d

64α2
Ls

2

)
6

δ

11
. (5)

(ii) Assume that α2
L 6 1√

C(d+128s4)
. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL − h0‖2
‖h0‖2

< exp

(
Lα2

L +

√
5Lα2

L

dδ

)
+ 1.

We recall that the constants s and C appearing in Proposition 4 are defined respectively
by Assumptions (A1) and (A2). Moreover, note that the assumptions of Proposition 4 on d
and αL are mild, since in the learning tasks where deep ResNets are involved, one typically
has αL = 1/Lβ with β > 0, d > 102 and L > 102. Furthermore, the assumption on αL is
a technical assumption used to simplify the final expression. It is also possible to derive
a proof without this assumption, at the cost of a more intricate result. Note also that
condition (5) is not severe since, when d and L are large, it encompasses all reasonable
values of δ. Propositions 3 and 4 are interesting in the sense that they provide finite-depth
high-probability bounds on the behavior of the hidden states, depending on the magnitude
of Lα2

L. The results become clearer by letting αL = 1/Lβ, with β > 0, as shown in the
following corollary.

Corollary 5 Consider a ResNet (4) such that Assumptions (A1) and (A2) are satisfied,
and let αL = 1/Lβ, with β > 0.

(i) If β > 1/2, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

0.

(ii) If β < 1/2 and d > 9, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

∞.

(iii) If β = 1/2, d > 64, L > (1
2

√
Cs4 + 2

√
C + 8s4)d + 96

√
Cs4, then, for any δ ∈ (0, 1),

with probability at least 1− δ,

exp

(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2
‖h0‖2

< exp

(
1 +

√
10

dδ

)
+ 1,

provided that

2L exp
(
− Ld

64s2

)
6

δ

11
.

Corollary 5 highlights three different asymptotic behaviors for ‖hL‖, depending on the
values of β. For β > 1/2, statement (i) tells that hL converges towards h0 in probability,
as L tends to infinity, which means that the neural network is essentially equivalent to
an identity mapping. On the other hand, for β < 1/2, the norm of hL explodes with high
probability. Finally, for the critical value β = 1/2, we see that hL fluctuates around h0, with
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Figure 1: Evolution of ‖hL − h0‖/‖h0‖ as a function of L for different values of β and an
i.i.d. U(−

√
3/d,

√
3/d) initialization of model res-3, with d = 40. The input

is a random Gaussian observation x in dimension nin = 64. The experiment is
repeated with 50 independent randomizations.
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Figure 2: Empirical distributions of the norms for β = 1/2, L = 103, d = 100. The experiment
is repeated with 104 independent randomizations.
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a fluctuation size independent of L. Observe that the lower bound in (iii) is not trivial as
soon as exp(3/8−

√
11/dδ) > 1, i.e., d > 99/64δ. The message of Corollary 5 is that the only

scaling leading to a non-degenerate distribution at initialization is for β = 1/2.
The three statements of Corollary 5 are illustrated in Figure 1. In this experiment,

we consider model res-3, a random Gaussian observation x in dimension nin = 64, and
parameters initialized with a uniform distribution U(−

√
3/d,

√
3/d). We refer to Appendix D

for a detailed setup of all the experiments of the paper. Figure 2a shows the empirical
distribution of ‖hL‖/‖h0‖ when β = 1/2 for a large number of realizations. This figure
illustrates in particular that our bounds are reasonably sharp, since the bounds indicate
that the first quartile of the distribution is larger than 0.87 (whereas the first quartile of the
empirical histogram is equal to 1.21) and the third quartile is less than 2.06 (whereas the
third quartile of the empirical histogram is equal to 1.34). Determining the exact distribution
of ‖hL‖/‖h0‖ is an interesting avenue for future research that is beyond the scope of the
present article. There is however a strong indication that the ratio follows a log-normal
distribution, as confirmed by a normality test on (the log of) the empirical distribution.

In a nutshell, the proofs of Propositions 3 and 4 rest upon controlling of the norm of the
hidden states, which obeys the recurrence

‖hk+1‖2 = ‖hk‖2 + α2
L‖Vk+1g(hk, wk+1)‖2 + 2αL〈hk, Vk+1g(hk, wk+1)〉, (6)

where 〈·, ·〉 denotes the standard scalar product in Rd. Taking the expectations on both side,
one deduces with Assumptions (A1) and (A2) that

E
(
‖Vk+1g(hk, wk+1)‖2

)
= E

(
E
(
‖Vk+1g(hk, wk+1)‖2

) ∣∣hk, wk+1

)
= E

(
‖g(hk, wk+1)‖2

)
≈ ‖hk‖2 (7)

and
E
(
〈hk, Vk+1g(hk, wk+1)〉

)
= E

(
E
(
〈hk, Vk+1g(hk, wk+1)〉

∣∣hk, wk+1

))
= 0. (8)

The equalities (7) and (8) allow deriving without further work bounds in expectation on
‖hL‖, as already observed in an informal manner by Arpit et al. (2019). However, the results
we are after are stronger since they involve precise quantification of the fluctuations induced
by the initialization through high-probability bounds. A finer control of the deviations of
‖Vk+1g(hk, wk+1)‖2 and 〈hk, Vk+1g(hk, wk+1)〉 is then needed. This involves concentration
inequalities on random matrices with sub-Gaussian entries, and martingale arguments. This
probabilistic derivation allows improvements over earlier works in the literature that only
show stability for β ≥ 1 (Hanin and Rolnick, 2018; Allen-Zhu et al., 2019). A similar
proof technique was already used in Zhang et al. (2019b) to show in an asymptotic setting
explosion of the forward pass for β < 1/2 and stability for β ≥ 1/2, in accordance with our
results. We extend their result in several ways, most notably by considering a sub-Gaussian
initialization relaxing their Gaussian assumption, a more general architecture, and obtaining
fully non-asymptotic bounds, while their approach is asymptotic both in width and depth.
This makes the mathematical analysis significantly more challenging. We also introduce a
novel distinction between the stability case β = 1/2 and the identity case β > 1/2, showing
the presence of non-vanishing fluctuations only for β = 1/2. For completeness, we note that
a revised version of their paper does provide non-asymptotic bounds (Zhang et al., 2022),
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albeit still in the more restrictive setting of a Gaussian initialization, a specific architecture,
and without separating the cases β = 1/2 and β > 1/2.

We next show precise non-asymptotic bounds for the gradients, using the martingale
structure of the forward differentiation recurrence, a novel proof technique.

2.3 Probabilistic Bounds on the Gradients

Propositions 3 and 4 provide insights on the output of the network when L is large. However,
they do not carry information on the backwards dynamics of propagation of the gradients
of the loss pk = ∂L

∂hk
∈ Rd. Assessing the dynamics of the (pk)06k6L as a function of L

is important since the behavior of this sequence impacts trainability of the network at
initialization. Thus, in this subsection, we are interested in quantifying the magnitude of
‖p0−pL‖/‖pL‖, when L is large. Notice that, contrarily to the previous subsection where we
were mostly interested in the last hidden state hL, the quantity of interest is now p0 (not pL),
the gradient at index 0. The reason is that the sequence (pk)06k6L is defined backwardly, as
we will see below. We also stress that (pk)06k6L is the sequence of derivatives of the loss
w.r.t. the hidden states hk, and not w.r.t. the parameters. The reason for considering this
sequence is that the pk are involved in the backpropagation algorithm and are therefore
essential for assessing the stability of the gradient descent (see, e.g., Arpit et al., 2019).

Analyzing the behavior of the sequence (pk)06k6L is challenging since, according to the
backpropagation (or reverse-mode differentiation) formula, one has

pk = pk+1 + αL
∂g(hk, wk+1)>

∂h
V >k+1pk+1.

Taking the norm,

‖pk‖2 = ‖pk+1‖2 + α2
L

∥∥∥∂g(hk, wk+1)>

∂h
V >k+1pk+1

∥∥∥2
+ 2αL

〈
pk+1,

∂g(hk, wk+1)>

∂h
V >k+1pk+1

〉
.

Although the equation looks qualitatively similar to (6), it has the unpleasant feature that
pk+1 depends on the whole sequence of weights w1, V1, . . . , wL, VL. This forbids applying
directly the same proof techniques as for the hidden states due to the lack of adaptation of the
pk to the filtration of the hidden state process. Simplifying assumptions have sometimes been

made to analyze this recurrence equation, for instance assuming independence of
∂g(hk,wk+1)

∂h
and hk (see, e.g., Yang and Schoenholz, 2017). However, such assumption remains a strong
requirement, which is not verified for many network architectures (for example model res-1).
Other authors resort to an ε-net argument (Allen-Zhu et al., 2019; Zhang et al., 2019b). We
tackle the problem from a different point of view and propose an alternative approach based
on forward-mode differentiation, valid under a much weaker assumption. The cost we pay is
that we obtain results in expectation and not in high probability.

Let us sketch our approach before stating the results more formally. We denote by z ∈ Rd
an independent random variable that will be used to assess the magnitude of the gradients.
For any 0 6 i, j 6 L, let

∂hj
∂hi
∈ Rd×d be the Jacobian matrix of hj with respect to hi. Recall

that the (m,n)-th entry of this matrix equals the derivative of the m-th coordinate of hj
w.r.t. the n-th coordinate of hi. Then, letting qk(z) = ∂hk

∂h0
z, we have, by the chain rule,

qk+1(z) =
∂hk+1

∂hk
qk(z) = qk(z) + αLVk+1

∂g(hk, wk+1)

∂h
qk(z). (9)
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Identity (9), which is similar to (4), expresses qk+1(z) as a function of qk(z), and therefore
respects the flow of information. Next, assuming that z is random with a Gaussian distribu-
tion, it is possible to express one of our quantities of interest, ‖p0‖/‖pL‖, as a function of
the last vector qL(z). Indeed,

‖p0‖2
‖pL‖2

=
1

‖pL‖2
Ez∼N (0,Id)

(∣∣p>0 z∣∣2) = Ez∼N (0,Id)

(∣∣∣( pL
‖pL‖

)>
qL(z)

∣∣∣2), (10)

where Id is the identity matrix in Rd and the second equality is a consequence of

p>0 z =
(∂L

∂h0

)>
z =

(∂L

∂hL

)>∂hL
∂h0

z = p>LqL(z).

In summary, the recurrence (9) allows us to derive bounds on the norm of qL(z), which
can then transfer to ‖p0‖/‖pL‖ via (10). For this, it is necessary to make the following
assumption on the ratio pL/‖pL‖:

(A3) Let b = pL/‖pL‖. Then E(b|hL) = 0 and E(b>b|hL) = Id/d.

It is a mild assumption, which is verified for instance if nout = 1 with squared error (for
regression) or cross-entropy (for binary classification). In these cases, pL/‖pL‖ = B>/‖B‖F ,
where ‖ · ‖F is the Frobenius norm and B is the weight matrix of the last layer. We finally
need the following assumption, which is the equivalent of Assumption (A2) for the gradients.

(A4) One has, almost surely,

‖qk‖2
2

6 E
(∥∥∥∂g(hk, wk+1)

∂h
qk

∥∥∥2∣∣∣hk, qk) 6 ‖qk‖2.

Assumption (A4) is satisfied by all the standard architectures listed in Table 1, as shown
by the next proposition.

Proposition 6 Let res-1, res-2, and res-3 be the models defined in Table 1. Assume
that (A1) is satisfied and σ is almost everywhere differentiable, with a 6 σ′ 6 b. Then

(i) Assumption (A4) is satisfied for res-1.

(ii) Assumption (A4) is satisfied for res-2 and res-3, when the entries of
√
dWk, 1 6 k 6

L, are centered i.i.d. random variables, independent of d and L, with unit variance.

The next two propositions are the counterparts of Proposition 3 and Proposition 4 for
the gradient dynamics.

Proposition 7 Consider a ResNet (4) such that Assumptions (A1)-(A4) are satisfied. If
Lα2

L 6 1, then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖p0 − pL‖2
‖pL‖2

6
2Lα2

L

δ
.
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Proposition 8 Consider a ResNet (4) such that Assumptions (A1)-(A4) are satisfied. Then

(
1 +

1

2
α2
L

)L − 1 6 E
(‖p0 − pL‖2
‖pL‖2

)
6 (1 + α2

L)L − 1.

A simple corollary of the propositions above is as follows.

Corollary 9 Consider a ResNet (4) such that Assumptions (A1)-(A4) are satisfied, and
take αL = 1/Lβ, with β > 0. Then

(i) If β > 1/2,

‖p0 − pL‖
‖pL‖

P−−−−→
L→∞

0.

(ii) If β < 1/2,

E
(‖p0 − pL‖2
‖pL‖2

)
L→∞−−−−→∞.

(ii) If β = 1/2,

exp
(1

2

)
− 1 6 E

(‖p0 − pL‖2
‖pL‖2

)
6 exp(4)− 1.

Corollary 9 is illustrated in Figure 3. The experimental protocol is the same as in
Figure 1, but we now track p0 and pL, the gradients of the loss L with respect to the
first and the last hidden states. In accordance with our results, when β > 1/2, the gradient
remains the same from one layer to another (left plot). On the other hand, the middle plot
clearly shows that when β < 1/2 the gradient explodes. Once again, the case β = 1/2 (right
plot) is the only one for which the distribution of gradients at initialization is non-trivial.
Figure 2b illustrates that the empirical distribution of gradients in this case also seems to
be log-normal.

Our findings extend results from the literature showing explosion of the backward pass
for β < 1/2 and stability for β ≥ 1/2, both in an asymptotic setting (Allen-Zhu et al., 2019;
Zhang et al., 2019b; Hayou et al., 2021) and a non-asymptotic setting (Zhang et al., 2022).
Similar comparisons can be drawn with these papers as in the previous section (see end
of Section 2.2). Furthermore, we emphasize again that making use of the forward-mode
formulation of the gradients differs from these previous works, which resorted either to an
infinite-width setting or to backward-mode differentiation and an ε-net argument.

In summary, this and the previous subsection both point towards the same conclusion:
there are three different cases, depending on the value of β—explosion when β < 1/2, non-
degenerate limit when β = 1/2, and identity when β > 1/2. In the explosion case, it is well
known that the network cannot be trained (Yang and Schoenholz, 2017). The theory thus
points out that the value 1/2 plays a pivotal role. Remarkably, this value has a specific
interpretation in the continuous-time point of view of ResNets, in terms of SDE. This is the
topic that we address in the next section.
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Figure 3: Evolution of ‖p0 − pL‖/‖pL‖ as a function of L for different values of β and an
i.i.d. U(−

√
3/d,

√
3/d) initialization of model res-3, with d = 40. The input

is a random Gaussian observation x in dimension nin = 64. The experiment is
repeated with 50 independent randomizations.

3. Scaling in the Continuous-time Setting

Starting with the discrete ResNet (4), it is tempting to let L go to infinity and consider the
network as the discretization of a differential equation where the layer index k ∈ {0, . . . , L}
is replaced by the time index t ∈ [0, 1]. This interpretation of deep neural networks has
been popularized by Chen et al. (2018) and is often referred to as the neural ODE paradigm.
Notice that this setting is different from the so-called mean-field analysis, where the width
of the network is assumed to be infinite beforehand. In our setting, the width d is assumed
to be finite and fixed.

3.1 Convergence Towards a SDE in the Large-depth Regime

One of the main messages of Section 2 is that the standard initialization with i.i.d. parameters
leads to a non-degenerate model for large values of L only if Lα2

L ≈ 1 (Propositions 3 and 4),
or, equivalently, if β = 1/2 when αL = 1/Lβ (Corollary 5). Remarkably, in the continuous-time
limit, this regime corresponds to the discretization of a SDE. Indeed, consider for simplicity
the (discrete) ResNet model res-1

h0 = Ax, hk+1 = hk +
1√
L
Vk+1σ(hk), 0 6 k 6 L− 1, (11)

where the entries of all (Vk)16k6L are assumed to be i.i.d. N (0, 1/d). Recall the following
definition:

Definition 10 A one-dimensional Brownian motion (Bt)t∈[0,1] is a continuous-time stochas-
tic process with B0 = 0, almost surely continuous, with independent increments, and such
that for any 0 6 s < t 6 1, Bt −Bs ∼ N (0, t− s).

Now, let B : [0, 1] → Rd×d be a (d × d)-dimensional Brownian motion, in the sense
that the (Bij)16i,j6d are independent one-dimensional Brownian motions. Thus, for any
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0 6 k 6 L− 1 and any 1 6 i, j 6 d, we have

B(k+1)/L,i,j −Bk/L,i,j ∼ N
(

0,
1

L

)
,

and the increments for different values of (i, j, k) are independent. As a consequence, the
recurrence (11) is equivalent in distribution to the recurrence

h>k+1 = h>k +
1√
d
σ(h>k )(B(k+1)/L −Bk/L), 0 6 k 6 L− 1.

(Note that this is true because Vk+1 has the same distribution as V >k+1.) We recognize the
Euler-Maruyama discretization (Kloeden and Platen, 1992) on the {k/L, 0 6 k 6 L} mesh
of the SDE

H0 = Ax, dH>t =
1√
d
σ(H>t )dBt, t ∈ [0, 1], (12)

where the output of the network is now a function of the final value of H, that is, H1. The
link between the discrete ResNet (11) and the SDE (12) is formalized in the next proposition.

Proposition 11 Consider the res-1 model, where the entries of Vk are i.i.d. Gaussian
N (0, 1/d) random variables. Assume that the activation function σ is Lipschitz continuous.
Then the SDE (12) has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

c√
L
,

for some c > 0.

Notice that the requirement that σ is Lipschitz continuous is satisfied by most classical
activation functions, including ReLU. This proposition is interesting for several reasons.
First, the scaling β = 1/2, which is exactly the one that yields a non-trivial dynamics
at initialization, corresponds in the continuous world to a remarkably ‘simple’ model of
diffusion. This shows that very deep neural networks properly initialized with i.i.d. weights
are equivalent to solutions of SDE. This analogy opens interesting perspectives for training
deep networks using automatic differentiation for solutions of neural SDE (Li et al., 2020).

Second, we stress that the emergence of a SDE instead of an ODE carries an important
message. Several authors (including, e.g., Thorpe and van Gennip, 2023) have shown that,
under appropriate assumptions, a deep ResNet converges in the large depth limit to an ODE
and not a SDE. The reason why we obtain a SDE here is intrinsically connected with the
choice of i.i.d. initialization for the weights, which makes a Brownian motion appear at the
limit, as highlighted above. In other words, the i.i.d. initialization, the choice β = 1/2 (the
relevant critical value exhibited in Section 2), and the emergence of a SDE are intimately
linked together. On the other hand, the case β = 1 matches with an ODE if the initialization
is not i.i.d., as we will see in Subsection 3.2.

Finally, we point out that Proposition 11 states the convergence of a ResNet towards a
SDE for the basic architecture res-1 and for Gaussian initialization. The extension to more
general settings is an interesting direction of research, although clearly beyond the scope of
the present paper (see, e.g., Peluchetti and Favaro, 2020, and Cohen et al., 2021, for results
in this direction).
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3.2 Scaling in the Neural ODE Setting

Convergence towards an ODE. The basic message of our Proposition 11 is that an i.i.d. ini-
tialization, together with β = 1/2, leads to a SDE rather than an ODE. A natural question
is then whether a different choice of weight distributions (at initialization) and scaling can
lead to a classical neural ODE.

To answer this question and leave the world of i.i.d. initialization, we assume that the
weights (Vk)16k6L and (wk)16k6L are discretizations of smooth functions V : [0, 1]→ Rd×d
and W : [0, 1]→ Rp. We then consider the general iteration (4) with αL = 1/L, that is,

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, wk+1), 0 6 k 6 L− 1, (13)

where Vk = Vk/L and wk = Wk/L. Of course, it is still possible to consider (Vk)16k6L (resp.
(wk)16k6L) as random variables, by letting (Vt)t∈[0,1] (resp. (Wt)t∈[0,1]) be a continuous-time
stochastic process. In this model, we shall need the following assumption:

(A5) For any 1 6 k 6 L, one has Vk = Vk/L and wk = Wk/L, where the stochastic processes
V and W are almost surely Lipschitz continuous.

More precisely, almost surely, there exist KV ,KW such that, for any s, t ∈ [0, 1],

‖Vt − Vs‖ 6 KV |t− s|, ‖Wt −Ws‖ 6 KW |t− s|.

A typical model that satisfies Assumption (A5) is obtained by letting the entries of V
and W be independent Gaussian processes with expectation zero and squared exponential

covariance K(x, x′) = exp(− (x−x′)2
2`2

), where ` > 0 (Lederer et al., 2019). Note that the
Lipschitz constants may themselves be random, depending on the Gaussian process sample.

We shall also need the following requirement on g, which is satisfied by all our models as
soon as σ is Lipschitz continuous:

(A6) The function g is Lipschitz continuous on compact sets, in the sense that for any
compact P ⊆ Rp, there exists KP > 0 such that, for all h, h′ ∈ Rd, w ∈P,

‖g(h,w)− g(h′, w)‖ 6 KP‖h− h′‖,

and for any compact D ⊆ Rd, there exists KD ,P > 0 such that, for all h ∈ D ,
w,w′ ∈P,

‖g(h,w)− g(h,w′)‖ 6 KD ,P‖w − w′‖.

Under Assumptions (A5) and (A6), the recurrence (13) almost surely converges towards
the neural ODE given by

H0 = Ax, dHt = Vtg(Ht,Wt)dt, t ∈ [0, 1], (14)

as shown by the proposition below.

Proposition 12 Consider model (13) such that Assumptions (A5) and (A6) are satisfied.
Then the ODE (14) has a unique solution H, and, almost surely, there exists some c > 0
such that, for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c

L
.
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It should be stressed that the transition from the discrete recurrence (13) to the
continuous-time differential equation (14) relies on the assumptions that the weight se-
quences (wk)16k6L and (Vk)16k6L are the discretizations of smooth limiting processes W
and V on the one hand, and that the scaling αL is chosen as 1/L on the other hand. From a
practical perspective, Proposition 12 shows that it is possible to initialize ResNets in the
ODE regime, by choosing a smooth stochastic process, discretizing it at each layer, and
taking a 1/L scaling. This is in sharp contrast with the results of Sections 2 and 3.1, which
show that the usual i.i.d. procedure leads to a neural SDE.

Stability and scaling. Assuming that the weights of the network are discretizations of a
smooth function (Assumption (A5)), it is possible to obtain stability results, depending on
the value of β, similarly to what has been done in Section 2. We show below that β = 1
is a critical value, by examining the hidden states, in the same way as β = 1/2 is a critical
value in the i.i.d. setting. Similar results can be shown for the gradients. We begin by a
proposition handling the cases β > 1 and β = 1.

Proposition 13 Consider a ResNet (4) such that Assumptions (A5) and (A6) are satisfied.
Let αL = 1/Lβ, with β > 0.

(i) If β > 1, then, almost surely,

‖hL − h0‖
‖h0‖

L→∞−−−−→ 0.

(ii) If β = 1, then, almost surely, there exists some c > 0 such that

‖hL − h0‖
‖h0‖

6 c.

The explosion case (β < 1) is more delicate to deal with. We prove it for a linear model,
and leave for future work the extension to more general cases.

Proposition 14 Consider the res-1 model, taking σ as the identity function. Assume that
Assumption (A5) is satisfied and that V T

0 has a positive eigenvalue. Let αL = 1/Lβ, with
β ∈ (0, 1). Then, almost surely,

max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞.

The assumption of the existence of a positive eigenvalue for V >0 is mild. For instance,
if the entries of V0 are i.i.d. random variables with finite moments of all order, Götze and
Jalowy (2021) show that such an eigenvalue exists with probability at least 1− 1/d for d large
enough. Essentially, the proof relies on showing divergence of the hidden states along the
eigenvector associated to a positive eigenvalue of V T

0 . The extension to models that do not
have an identity activation function is delicate. Indeed, while we expect such divergence to
generally occur with a non-linear activation function, it is technically delicate to show as one
has to rule out cases where the non-linearity of the activation function induces compensations
that prevent divergence.

18



Scaling ResNets in the Large-depth Regime

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

0.025

0.030

β = 2.0

0 250 500 750 1000
L

0

1

2

3

×108 β = 0.5

0 250 500 750 1000
L

0.29

0.30

0.31

0.32

0.33
β = 1

Figure 4: Evolution of ‖hL − h0‖/‖h0‖ as a function of L for different values of β and
a smooth initialization of model res-3, with d = 40. The input is a random
Gaussian observation x in dimension nin = 64. The experiment is repeated with
50 independent randomizations.
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Figure 5: Evolution of ‖p0 − pL‖/‖pL‖ as a function of L for different values of β and
a smooth initialization of model res-3, with d = 40. The input is a random
Gaussian observation x in dimension nin = 64. The experiment is repeated with
50 independent randomizations.

19



Marion, Fermanian, Biau, and Vert

In this setting, we observe experimentally a behavior of the output and of the gradients
when L grows large similar to the one explored in Section 2. This is illustrated in Figures 4
and 5, which mirror Figures 1 and 3 in Section 2. The figures clearly show that there exist
three cases for the output and for the gradients: an identity case (left plots), an explosion
case (middle), and a non-trivial case separating explosion and identity (right). However, the
remarkable point is that the separation occurs for β = 1, and not β = 1/2, as predicted by
Propositions 13 and 14.

4. Experiments

We experimentally investigate in this section two questions. The first one is to know whether
there exists a range of scaling factors β > 0 and weight initializations, beyond the i.i.d. and
the smooth regimes. The second question is whether our analysis, which pertains to the
initialization phase, provides insights into the training phase, beyond initialization.

4.1 Intermediate Regimes

In order to describe the transition between the i.i.d. and smooth cases, a possible route is to
consider that the weights are increments of a γ-Hölder stochastic process. This model is
interesting insofar as the Brownian motion (SDE regime) is (1/2− ε)-Hölder (ε > 0) and a
Lipschitz continuous stochastic process (ODE regime) is 1-Hölder.

In line with the above, in a series of experiments, we initialize the weights as increments
of a fractional Brownian motion (BH

t )t∈[0,1]. Recall that BH is a continuous-time Gaussian
process, starting at zero, with zero expectation for all t ∈ [0, 1], and covariance function

E(BH
s B

H
t ) =

1

2
(|s|2H + |t|2H − |t− s|2H), 0 6 s, t 6 1,

where H ∈ (0, 1) is called the Hurst index. This index describes the raggedness of the process,
with a higher value leading to a smoother process. When H = 1/2, the process is a standard
Brownian motion (Definition 10), whose increments are independent by construction. When
H > 1/2, the increments of the process are positively correlated, while if H < 1/2 the
increments are negatively correlated. Importantly, a fractional Brownian motion with Hurst
index H is (H−ε)-Hölder continuous for any ε > 0. In the limit when H → 1, the trajectories
converge to linear functions (whose increments satisfy (A5)). As an illustration, Figure 6
depicts three realizations of a fractional Brownian motion with H = 0.2 (left), H = 0.5
(middle), and H = 0.8 (right).

In order to assess the effect of the scaling factor β and the Hurst index H, we initialize
a neural network res-3 with d = 40, L = 1000, various values of β ∈ [0.2, 1.3], and with
weights taken as increments of fractional Brownian motions with various Hurst indices
H ∈ (0, 1). Figure 7 depicts the empirical magnitude of the output and the gradients at
initialization as a function of the Hurst index H and the scaling factor β. First note that we
recover the two regimes (i.i.d. and smooth) discussed so far. For H = 1/2, the i.i.d. regime
kicks in, with explosion (β < 1/2, orange zone), non-trivial behavior (β = 1/2, black zone),
and identity (β > 1/2, blue zone). Likewise, we see at H = 1 a similar pattern in the smooth
regime, with, as predicted by Proposition 13, a critical value β = 1. Beyond these two
specific cases, we observe for an index H varying in (1/2, 1) a whole range of intermediate
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Figure 6: Examples of realizations of a fractional Brownian motion BH for different Hurst
indexes H. Note that the smaller the value of H, the more irregular the trajectory
is.
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Figure 7: Magnitude of the outputs and of the gradients as a function of the regularity of the
weights (Hurst index H) and of the scaling factor β. The orange zone corresponds
to the explosion case, i.e., ‖hL−h0‖ � ‖h0‖ and ‖p0−pL‖ � ‖pL‖. The blue zone
corresponds to the identity case, i.e., ‖hL − h0‖ � ‖h0‖ and ‖p0 − pL‖ � ‖pL‖.
Finally, the black zone is an intermediate case, where ‖hL − h0‖ ≈ ‖h0‖ and
‖p0 − pL‖ ≈ ‖pL‖.

situations, where the transition between identity and explosion seems to happen for a critical
β = H. Interestingly, for H < 1/2, the transition seems to saturate at the value β = 1/2.

The take-home message is that the choice of the scaling of a ResNet seems to be closely
linked to the regularity of the weights as a function of the layer. More precisely, for all
regimes, the critical scaling factor between explosion and identity seems to have a natural
interpretation as the (Hölder) regularity of the underlying continuous-time stochastic process.
We believe that the mathematical understanding of this connection, beyond the fractional
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Brownian motion case, is a promising research direction for the future. Finally, these
experiments suggest that it is sensible to initialize a ResNet for any value of the scaling
β ∈ (1/2, 1), while avoiding the identity and explosion situations, by simulating a fractional
Brownian motion of Hurst index H = β and initializing the weights as the increments of
this process.

4.2 Beyond Initialization

At initialization, before the gradient descent, the distribution of the weights (wk)16k6L and
(Vk)16k6L is chosen by the practitioner. By contrast, during and after training, control is
lost on these distributions, making the picture more complex. In particular, the existence
and characterization of a continuous-time stochastic process whose discretization matches
the trained ResNet is an interesting but difficult problem. Attacking this question requires
a fine understanding of the interaction between training dynamics and the regularity of the
sequence of the weights during the gradient descent. However, there is experimental evidence
that the trained weights exhibit strong structure as a function of the layer index k (Cohen
et al., 2021; Bayer et al., 2023), and that their regularity strongly depends on the choice of
initialization. Interesting theoretical preliminary results in the ODE case are reported in
Sander et al. (2022) for a linear activation and further generalized by Marion et al. (2024).
Figure 8 depicts this mechanism by plotting a given coordinate of wk as a function of the
layer index k ranging from 1 to the depth L = 1000, after training. Note that, in this
experiment, there is no bias term in the residual layers, following the formulations from
Table 1. We check that adding a bias term gives qualitatively similar plots (see Appendix D).

To investigate the link between regularity of the weights at initialization, scaling, and
performance after training, we train ResNets on the datasets MNIST (Deng, 2012) and
CIFAR-10 (Krizhevsky, 2009). As in Subsection 4.1, we initialize the ResNets with various
scaling factors and weights that are increments of fractional Brownian motions with different
regularities. Then, for each combination of weight initialization and scaling factor, the ResNet
is trained using the Adam optimizer (Kingma and Ba, 2015) for 10 epochs. The model
includes a zero-initialized bias term on each residual layer. The results in terms of accuracy
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(a) β = 1, smooth initialization
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(b) β = 1, i.i.d. initialization
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(c) β = 1/2, i.i.d. initialization

Figure 8: Plot of a given coordinate of wk, after training, as a function of the layer index
k ranging from 1 to the depth L = 1000 for three different choices of β and
initializations.
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Figure 9: Accuracy after training as a function of the regularity of the weights at initialization
and scaling. For each point of the heatmap, the model was trained on a grid of
learning rates, and the best performance is shown.

are presented in Figure 9 (light orange = good performance, blue = bad performance). We
observe a pattern similar to the one of Figure 7. This means that, for a given regularity,
the network is unable to learn if it is initialized with a scaling too far below the critical
value, which of course is connected with the gradient explosion issue discussed previously.
On the other hand, and perhaps more surprisingly, the performance seems to be more or
less stable in the identity region, with perhaps a small degradation in the case of CIFAR-10.
This somewhat contrasts with the results from Yang and Schoenholz (2017), who exhibit a
decrease in performance for i.i.d. initialization and a large scaling factor β. Note however
that, in the experiments reported in Figure 7, we adapt the learning rate of the gradient
descent on a grid by cross-validation. When taking a fixed learning rate, we also observe a
decrease in performance for large scaling factor β. The interplay between the learning rate
and the scaling factor is one of the keys to better assess how the performance of the trained
network is connected with the scaling.
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Appendix A. Proofs

Throughout the proofs, the i-th coordinate of a vector v is denoted by vi. Similarly, the i-th
row of a matrix M is denoted by Mi, and its (i, j)-th entry by Mij .

A.1 Proof of Proposition 1

Statement (i) is clear (with C = 1) since, for any h ∈ Rd,

‖σ(h)‖2 ∈
[
a2‖h‖2, b2‖h‖2

]
⊆
[1
2
‖h‖2, ‖h‖2

]
.

With respect to statement (ii), it is enough to show that for any h ∈ Rd and any random
matrix W satisfying the assumptions of the proposition, one has

‖h‖2
2

6 E
(
‖σ(Wh)‖2

)
6 ‖h‖2 and E

(
‖σ(Wh)‖8

)
6 C‖h‖8,

as well as

E
(
‖ReLU(Wh)‖2

)
=
‖h‖2

2
and E

(
‖ReLU(Wh)‖8

)
6 C‖h‖8.

The two claims with the squared norms are consequences of Lemmas 17 and 18 in Appendix B,
together with the fact that the variance of the entries of W equals 1/d. In order to prove the
other two statements, first note that E(‖σ(Wh)‖8) 6 E(‖Wh‖8) and E(‖ReLU(Wh)‖8) 6
E(‖Wh‖8). The results are then consequences of Lemma 22 in Appendix B, which states
that

E
(‖Wh‖8
‖h‖8

)
6 1 +

384s4

d
+

3072s6

d2
6 1 + 384s4 + 3072s6.

A.2 Proof of Proposition 3

According to Lemma 15 below, one has

E
(‖hL − h0‖2
‖h0‖2

)
6
((

1 + α2
L

)L − 1
)
.

But, for Lα2
L 6 1, we have (1 + α2

L)L − 1 6 exp(Lα2
L)− 1 6 2Lα2

L. Therefore,

E
(‖hL − h0‖2
‖h0‖2

)
6 2Lα2

L,

and the result follows from Markov’s inequality.

Lemma 15 Consider a ResNet (4) such that Assumptions (A1) and (A2) are satisfied.
Then ((

1 +
α2
L

2

)L
− 1

)
6 E

(‖hL − h0‖2
‖h0‖2

)
6
((

1 + α2
L

)L − 1
)
.

24



Scaling ResNets in the Large-depth Regime

Proof (Lemma 15). Taking the squared norm of the forward update rule (4) and dividing by
‖h0‖2 yields

‖hk+1‖2
‖h0‖2

=
1

‖h0‖2
(
‖hk‖2 + α2

L‖Vk+1g(hk, wk+1)‖2 + 2αL〈hk, Vk+1g(hk, wk+1)〉
)
. (15)

We deduce by Assumptions (A1) and (A2) that(
1 +

α2
L

2

)
E
(‖hk‖2
‖h0‖2

)
6 E

(‖hk+1‖2
‖h0‖2

)
6 (1 + α2

L)E
(‖hk‖2
‖h0‖2

)
.

Therefore, by recurrence, we are led to(
1 +

α2
L

2

)k
6 E

(‖hk‖2
‖h0‖2

)
6 (1 + α2

L)k. (16)

Now, observe that hL = h0 + αL
∑L−1

k=0 Vk+1g(hk, wk+1). Thus, we have

E
(‖hL − h0‖2
‖h0‖2

)
= α2

L

L−1∑
k,k′=0

E
(g(hk, wk+1)>V >k+1Vk′+1g(hk′ , wk′+1)

‖h0‖2
)
.

By conditioning on all random variables except Vk′+1 for k < k′ (and Vk+1 for k > k′), it is
easy to see that the only non-zero terms are when k = k′. This yields

E
(‖hL − h0‖2
‖h0‖2

)
= α2

L

L−1∑
k=0

E
(‖Vk+1g(hk, wk+1)‖2

‖h0‖2
)

6 α2
L

L−1∑
k=0

E
(‖hk‖2
‖h0‖2

)
(by Assumptions A1 and A2)

6 α2
L

L−1∑
k=0

(1 + α2
L)k

(by (16))

=
((

1 + α2
L

)L − 1
)
.

Similarly,

E
(‖hL − h0‖2
‖h0‖2

)
>
α2
L

2

L−1∑
k=0

E
(‖hk‖2
‖h0‖2

)
=
((

1 +
α2
L

2

)L
− 1
)
.
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A.3 Proof of Proposition 4

Dividing (15) by ‖hk‖2 and taking the logarithm leads to

ln(‖hk+1‖2) = ln(‖hk‖2)+ ln

(
1+α2

L

‖Vk+1g(hk, wk+1)‖2
‖hk‖2

+2αL

〈 hk
‖hk‖

,
Vk+1g(hk, wk+1)

‖hk‖
〉)

.

Let

Yk,1 = α2
L

‖Vk+1g(hk, wk+1)‖2
‖hk‖2

, Yk,2 = 2αL

〈 hk
‖hk‖

,
Vk+1g(hk, wk+1)

‖hk‖
〉
,

and Yk = Yk,1 + Yk,2. The proof of Proposition 4 strongly relies on the following lemma,
which provides technical information on the moments of Yk,1 and Yk,2. For the sake of clarity,
its proof is postponed to Appendix A.13.

Lemma 16 Assume that Assumptions (A1) and (A2) are satisfied. Then

(E1) E(Yk,2|hk) = 0.

(E2)
α2
L
2 6 E(Yk,1|hk) 6 α2

L.

(E3) E(Yk,1Yk,2|hk) = 0.

(E4) E(Y 2
k,2|hk) 6 4

α2
L
d .

(E5) E(Y 4
k,2|hk) 6 2048

s4α4
L

d2
.

(E6) E(Y 4
k,1|hk) 6 C

(
3072 s

6

d2
+ 384 s

4

d + 1
)
α8
L.

(E7) E(Y 2
k,1|hk) 6

√
C
(

128 s
4

d + 1
)
α4
L.

For c > 0, we have

P
(‖hL‖2
‖h0‖2

> c
)

= P
(

ln(‖hL‖2)− ln(‖h0‖2) > ln(c)
)

= P
( L−1∑
k=0

ln(1 + Yk) > ln(c)
)

6 P
( L−1∑
k=0

Yk > ln(c)
)

(using ln(1 + x) 6 x for x > −1).

Let S =
∑L−1

k=0 Yk − E(Yk|hk). By (E1) and (E2),

L−1∑
k=0

E(Yk|hk) 6 Lα2
L.

So, for c > exp(Lα2
L),

P
(‖hL‖2
‖h0‖2

> c
)
6 P

(
S > ln(c)−

L−1∑
k=0

E(Yk|hk)
)

6 P(S > ln(c)− Lα2
L)

6 P
(
S2 >

(
ln(c)− Lα2

L

)2)
6

E(S2)

(ln(c)− Lα2
L)2

(17)

(by Markov’s inequality.)
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It remains to upper bound E(S2). To this aim, note that

E(S2) =
L−1∑
k=0

E
((
Yk − E(Yk|hk)

)2)
6

L−1∑
k=0

E
(
Y 2
k

)
6 4

Lα2
L

d
+ 128

√
C
Lα4

Ls
4

d
+
√
CLα4

L

(by (E3), (E4), and (E7))

6 5
Lα2

L

d
.

The last inequality is true for α2
L 6 1√

C(d+128s4)
. Therefore, by inequality (17), we obtain,

for c > exp(Lα2
L),

P
(‖hL‖2
‖h0‖2

> c
)
6

5Lα2
L

d
(
ln(c)− Lα2

L

)2 .
We conclude that, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL‖2
‖h0‖2

< exp

(
Lα2

L +

√
5Lα2

L

dδ

)
.

This shows statement (ii) of the proposition.
Next, to prove statement (i), observe that c > 0,

P
(‖hL‖2
‖h0‖2

6 c
)

= P
(

ln(‖hL‖2)− ln(‖h0‖2) 6 ln(c)
)

= P
( L−1∑
k=0

ln(1 + Yk) 6 ln(c)
)

= P
( L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∀k, Yk > −
1

2

)
+ P

( L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∃k, Yk < −
1

2

)
.

Using the inequality ln(1 + x) > x− x2 for x > −1/2, we obtain

P
(‖hL‖2
‖h0‖2

6 c
)
6 P

( L−1∑
k=0

Yk − Y 2
k 6 ln(c) and ∀k, Yk > −

1

2

)
+ P

( L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∃k, Yk < −
1

2

)
.

Thus,

P
(‖hL‖2
‖h0‖2

6 c
)
6 P

( L−1∑
k=0

Yk − Y 2
k 6 ln(c)

)
+
L−1∑
k=0

P
(
Yk,2 < −

1

2

)
. (18)
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We handle the two terms above on the right-hand side separately. For the first term, let
Zk = Yk − Y 2

k and S =
∑L−1

k=0 Zk − E(Zk|hk). Observe that, by (E1)-(E4) and (E7),

L−1∑
k=0

E(Zk|hk) >
Lα2

L

2
− 4

Lα2
L

d
− 128

√
C
Lα4

Ls
4

d
−
√
CLα4

L >
3

8
Lα2

L, (19)

where the last inequality is valid for d > 64 and α2
L 6 1

16
√
C(2s4+1)

. Hence, for 0 < c <

exp(3Lα2
L/8),

P
( L−1∑
k=0

Yk − Y 2
k 6 ln c

)
= P

(
S 6 ln(c)−

L−1∑
k=0

E(Zk|hk)
)

6 P
(
S 6 ln(c)− 3Lα2

L

8

)
6 P

(
S2 >

(
ln(c)− 3Lα2

L

8

)2)
6

E(S2)(
ln(c)− 3Lα2

L
8

)2
(by Markov’s inequality.)

Using the cr-inequality (a+ b)n 6 2n−1(an + bn) respectively for n = 2 and n = 4, we see
that

E(S2) =

L−1∑
k=0

E
((
Zk − E(Zk|hk)

)2)
6

L−1∑
k=0

E
(
Z2
k

)
6 2

L−1∑
k=0

E
(
Y 2
k

)
+ E

(
Y 4
k

)
6 2

L−1∑
k=0

E(Y 2
k,1) + E(Y 2

k,2) + 2E(Yk,1Yk,2) + 8E(Y 4
k,1) + 8E(Y 4

k,2).

By (E3)-(E7), it is easy to verify that, for d > 64 and α2
L 6 1

(
√
Cs4/16+2

√
C+8s4)d

,

E(S2) 6 10
Lα2

L

d
.

This shows that, for c < exp(3Lα2
L/8),

P
( L−1∑
k=0

Yk − Y 2
k 6 ln(c)

)
6

10Lα2
L

d
(

ln(c)− 3Lα2
L

8

)2 .
To conclude the proof, it remains to upper bound the second term of inequality (18).
According to inequality (21) in the proof of Lemma 16 (with t = 1/2), one has

L−1∑
k=0

P
(
Yk,2 < −

1

2

)
6 2L exp

(
− d

64α2
Ls

2

)
.
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Putting everything together, we are led to

P
(‖hL‖2
‖h0‖2

6 c
)
6

10Lα2
L

d
(

ln(c)− 3Lα2
L

8

)2 + 2L exp
(
− d

64α2
Ls

2

)
.

Take δ ∈ (0, 1). Then, if 2L exp
(
− d

64α2
Ls

2

)
6 δ

11 , with probability at least 1− δ,

‖hL‖2
‖h0‖2

> exp

(
3Lα2

L

8
−
√

11Lα2
L

dδ

)
.

Notice that this inequality is valid under the assumption α2
L 6 2

(
√
Cs4+4

√
C+16s4)d

.

A.4 Proof of Corollary 5

Statement (i) is a consequence of Proposition 3, whereas (ii) is a consequence of Propo-
sition 4 (i). The latter is valid under the conditions d > 64 and αL 6 2

(
√
Cs4+4

√
C+16s4)d

,

which is automatically satisfied for all L large enough. Furthermore, an inspection of the
proof of Proposition 4 reveals that the divergence in high probability of ‖hL‖ can be proved
under the relaxed assumption d > 9. Indeed, the main constraint on d comes from the lower

bound (19), where one needs to make sure that
Lα2

L
2 − 4

Lα2
L
d > 0, which is the case for d = 9.

To prove (iii), we use a union bound on both statements of Proposition 4.

A.5 Proof of Proposition 6

The first claim follows from the observation that

∂g(hk, wk+1)

∂h
qk =


σ′(hk,1) 0 . . . 0

0 σ′(hk,2) . . . 0
...

...
. . .

...
0 0 . . . σ′(hk,d)

 qk,

from (A1), and from the assumption on σ′.

Let us now prove (ii). In the rest of the proof, the subscript k is ignored to lighten the
notation. Observe that

∂g(h,w)

∂h
q = V


σ′(〈W1, h〉) 0 . . . 0

0 σ′(〈W2, h〉) . . . 0
...

...
. . .

...
0 0 . . . σ′(〈Wd, h〉)

Wq.

Denote by D the matrix in the middle of the right-hand side. Then

E
(∥∥∥∂g(h,w)

∂h
q
∥∥∥2∣∣∣h, q) = E

(
‖V DWq‖2|h, q

)
= E

(
‖DWq‖2|h, q

)
(by (A1))
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For model res-2, we have

E
(∥∥∥∂g(h,w)

∂h
q
∥∥∥2∣∣∣h, q) = E

( d∑
i=1

( d∑
j=1

Wijqj

)2
σ′(〈Wi, h〉)

∣∣∣∣h, q).
The conclusion follows from the hypothesis that a 6 σ′ 6 b and E

(
‖Wq‖2|q

)
= ‖q‖2. For

model res-3, we have

E
(∥∥∥∂g(h,w)

∂h
q
∥∥∥2∣∣∣h, q) = E

( d∑
i=1

( d∑
j=1

Wijqj

)2
1∑d

j=1Wijhj>0

∣∣∣∣h, q).
Since the (Wij)16i,j6d are centered random variables, we conclude that

E
(∥∥∥∂g(h,w)

∂h
q
∥∥∥2∣∣∣h, q) =

1

2
E
( d∑
i=1

( d∑
j=1

Wijqj

)2
∣∣∣∣q) =

1

2
E
(
‖Wq‖2|q

)
=
‖q‖2

2
.

A.6 Proof of Proposition 7

Letting b = pL/‖pL‖, as in Assumption (A3), and taking expectation in (10), we obtain

E
( ‖p0‖2
‖pL‖2

)
= E(|b>qL(z)|2) =

1

d
E(‖qL(z)‖2) (20)

(by (A3)).

The rest of the proof is similar to the proof of Proposition 3. From (9), we have

‖qk+1(z)‖2 = ‖qk(z)‖2+α2
L

∥∥∥Vk+1
∂g(hk, wk+1)

∂h
qk(z)

∥∥∥2
+2αL

〈
qk(z), Vk+1

∂g(hk, wk+1)

∂h
qk(z)

〉
.

By independence of Vk+1 from qk(z) and
∂g(hk,wk+1)

∂h ,

E
(〈
qk(z), Vk+1

∂g(hk, wk+1)

∂h
qk(z)

〉)
= 0.

Next,

E
(∥∥∥Vk+1

∂g(hk, wk+1)

∂h
qk(z)

∥∥∥2)
= E

(
E
(∥∥∥Vk+1

∂g(hk, wk+1)

∂h
qk(z)

∥∥∥2∣∣∣hk, wk+1, qk(z)
))

= E
(∥∥∥∂g(hk, wk+1)

∂h
qk(z)

∥∥∥2
)

(by (A1))

= E
(
E
(∥∥∥∂g(hk, wk+1)

∂h
qk(z)

∥∥∥2∣∣∣hk, qk(z))) .
By Assumption (A3), we are led to(

1 +
1

2
α2
L

)
E(‖qk(z)‖2) 6 E(‖qk+1(z)‖2) 6 (1 + α2

L)E(‖qk(z)‖2),
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and thus, by induction, since q0(z) = z and E(‖z‖2) = d,

d
(
1 +

1

2
α2
L

)k
6 E(‖qk(z)‖2) 6 d(1 + 4α2

L)k.

In particular, for k = L,

d
(
1 +

1

2
α2
L

)L
6 E(‖qL(z)‖2) 6 d(1 + α2

L)L.

Therefore, by (20), (
1 +

1

2
α2
L

)L
6 E

( ‖p0‖2
‖pL‖2

)
6 (1 + α2

L)L.

To finish the proof, observe that

1

‖pL‖
(p0 − pL)>z = b>(qL(z)− z).

Using arguments similar to (20), we may write

E
(‖p0 − pL‖2
‖pL‖2

)
=

1

d
E
(‖qL(z)− z‖2

‖z‖2
)
.

Now, upon noting that qL(z)− z = qL(z)− q0(z) = αL
∑L−1

k=0 Vk+1
∂g(hk,wk+1)

∂h qk(z),

E(‖qL(z)− z‖2) = α2
L

L−1∑
k,k′=0

E
(
qk(z)

>∂g(hk, wk+1)>

∂h
V >k+1Vk′+1

∂g(h′k, wk′+1)

∂h
qk′(z)

)

= α2
L

L−1∑
k=0

E

(∥∥∥∥Vk+1
∂g(hk, wk+1)

∂h
qk(z)

∥∥∥∥2
)

6 dα2
L

L−1∑
k=0

(1 + α2
L)k

= d
(
(1 + α2

L)L − 1
)
6 d
(

exp(Lα2
L)− 1

)
6 2dLα2

L,

for Lα2
L 6 1. Note that the second equality is obtained by conditioning on every random

variable except Vk′+1 for k < k′ (and Vk+1 for k > k′). Finally, by using Markov’s inequality,
we conclude that, for any ε > 0,

P
(
‖p0 − pL‖2 > ε‖pL‖2

)
6

2Lα2
L

ε
.

A.7 Proof of Proposition 8

The proof of Proposition 7 reveals that

E
(‖p0 − pL‖2
‖pL‖2

)
6 (1 + α2

L)L − 1.

Using similar arguments, one has

E
(‖p0 − pL‖2
‖pL‖2

)
=

1

d
E
(‖qL(z)− z‖2

‖z‖2
)
> α2

L

L−1∑
k=0

(
1 +

1

2
α2
L

)k
=
(
1 +

1

2
α2
L

)L − 1.
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A.8 Proof of Corollary 9

The first statement is an immediate consequence of Proposition 7. The second one is a
consequence of Proposition 8 and the fact that, for β < 1,(

1 +
1

Lβ

)L
= exp

(
L ln

(
1 +

1

Lβ

))
∼ exp

(
L1−β)→∞.

Finally, (iii) follows from Proposition 8.

A.9 Proof of Proposition 11

The proposition is a consequence of Kloeden and Platen (1992, Theorems 4.5.3 and 10.2.2)
for the SDE

dH>t =

√
1

d
σ(H>t )dBt.

Letting a(h, t) = 0 and b(h, t) =
√

1
dσ(h), we need to check the following assumptions:

(H1) The functions a(·, ·) and b(·, ·) are jointly measurable on Rd × [0, 1].

(H2) There exists a constant C1 > 0 such that, for any x, y ∈ Rd, t ∈ [0, 1],

‖a(x, t)− a(y, t)‖+ ‖b(x, t)− b(y, t)‖ 6 C1‖x− y‖.

(H3) There exists a constant C2 > 0 such that, for any x ∈ Rd, t ∈ [0, 1],

‖a(x, t)‖+ ‖b(x, t)‖ 6 C2(1 + ‖x‖).

(H4) E
(
‖H0‖2

)
<∞.

(H5) There exists a constant C3 > 0 such that, for any x ∈ Rd, s, t ∈ [0, 1],

‖a(x, t)− a(x, s)‖+ ‖b(x, t)− b(x, s)‖ 6 C3(1 + ‖x‖)|t− s|1/2.

Assumptions (H1), (H4), and (H5) readily follow from the definitions. Assumption (H2) is
true since σ is Lipschitz continuous, and (H3) follows from

‖σ(x)‖ 6 b‖x‖ 6 ‖x‖ 6 1 + ‖x‖.

A.10 Proof of Proposition 12

Let ψ : Rd × [0, 1]→ Rd be defined for any h ∈ Rd, t ∈ [0, 1], by ψ(h, t) = Vtg(h,Wt). With
this notation, the ODE (14) is equivalent to the initial value problem

dHt = ψ(Ht, t)dt, H0 = Ax.

By Assumptions (A5) and (A6), ψ is Lipschitz continuous in its first argument, in the sense
that there exists K > 0 (which may depend on the realization of V and W ) such that, for
all h, h′ ∈ Rd, t ∈ [0, 1],

‖ψ(h, t)− ψ(h′, t)‖ 6 K‖h− h′‖.
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In addition, it is continuous in its second one. Thus, according to the Picard-Lindelöf
theorem (Theorem 23 in Appendix C), this is enough to show that the neural ODE (14) has
a unique solution on [0, 1]. Note that the solution H is continuous on [0, 1] and is therefore
bounded by a constant M > 0.

In order to prove the approximation bound of Proposition 12, we start by proving that
both ψ and H are Lipschitz continuous in t. Under (A5) and (A6), this is clear for ψ since
H is bounded. Moreover, for any [s, t] ⊂ [0, 1], we have

‖Ht −Hs‖ =
∥∥∥∫ t

s
ψ(Hu, u)du

∥∥∥ 6
∫ t

s
‖ψ(Hu, u)‖du

6 (t− s) sup
u∈[0,1]

h∈Rd,‖h‖6M

‖ψ(h, u)‖.

Now, let K1 and K2 denote the Lipschitz constants of ψ (in both arguments) and H
respectively, and, for any 0 6 k 6 L, let tk = k/L. Then we have, for k > 1,

‖Htk − hk‖

=
∥∥Htk−1

+

∫ tk

tk−1

ψ(Hu, u)du− hk−1 −
1

L
ψ(hk−1, tk−1)

∥∥
6 ‖Htk−1

− hk−1‖+

∫ tk

tk−1

‖ψ(Hu, u)− ψ(hk−1, tk−1)‖du

6 ‖Htk−1
− hk−1‖+K1

∫ tk

tk−1

‖Hu − hk−1‖du+K1

∫ tk

tk−1

|u− tk−1|du

6
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+K1

∫ tk

tk−1

‖Hu −Htk−1
‖du+K1

∫ tk

tk−1

|u− tk−1|du

6
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+ (K2 + 1)K1

∫ tk

tk−1

|u− tk−1|du

=
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+
(K2 + 1)K1

2L2
.

By recurrence, we obtain

‖Htk − hk‖ 6
k−1∑
j=0

(
1 +

K1

L

)j
× (K2 + 1)K1

2L2
6 L

(
1 +

K1

L

)L
× (K2 + 1)K1

2L2

6 eK1
(K2 + 1)K1

2L
,

which concludes the proof.

A.11 Proof of Proposition 13

Starting from (4) and using Assumption (A6), one easily obtains the existence of C1 and C2

(whose values depend on the realization of V and W ) such that

‖hk+1‖ 6 (1 + C1αL)‖hk‖+ C2αL.
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By recurrence,

‖hk+1‖ 6 (1 + C1αL)k
(
‖h0‖+

C2

C1

)
.

Hence, using αL 6 1/L,

‖hk+1‖ 6 exp(C1)
(
‖h0‖+

C2

C1

)
.

Since g is Lipschitz continuous on compact sets, it is bounded on every ball of Rd×Rp. The
result is then a consequence of the identity

hL − h0 = αL

L−1∑
k=0

Vk+1g(hk, wk+1),

since we showed that each term in the sum is bounded by some constant C3 > 0, independent
of L and k. Hence we have that

‖hL − h0‖ 6 C3LαL = C3L
1−β,

yielding the results depending on the value of β.

A.12 Proof of Proposition 14

In the linear case, (4) can be written

hk+1 = hk + αLVk+1hk, 0 6 k 6 L− 1.

Take y a unit-norm eigenvector of V >0 with associated eigenvalue λ > 0. Then

〈hk+1, y〉 = 〈hk + αLVk+1hk, y〉
= 〈hk, y〉+ αL〈hk, V >k+1y〉
= 〈hk, y〉+ λαL〈hk, y〉+ αL〈hk, (Vk+1 − V0)>y〉.

Since V is Lipschitz and Vk+1 = Vk+1/L, there exists c such that ‖Vk+1−V0‖ 6 ck+1
L . Hence

|〈hk+1, y〉| > (1 + λαL)|〈hk, y〉| − cαL
k + 1

L
‖hk‖.

Then, by recurrence,

|〈hL, y〉| > (1 + λαL)L|〈h0, y〉| − c
αL
L

L−1∑
k=0

(k + 1)(1 + λαL)k‖hk‖

> (1 + λαL)L|〈h0, y〉| − cαL(1 + λαL)L max
k
‖hk‖.

Let M = |〈h0,y〉|
2cαL

, and suppose that ‖hk‖ 6M for all 0 6 k 6 L. Then

‖hL‖ > |〈hL, y〉|
(by the Cauchy-Schwartz inequality)

> (1 + λαL)L
(
|〈h0, y〉| − cMαL

)
.
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Then, for λαL 6 1,

‖hL‖ >
1

2
(1 + λαL)L|〈h0, y〉| >

1

2
exp

(λLαL
2

)
|〈h0, y〉|.

Thus, since LαL = L1−β, we have that ‖hL‖ → ∞, which contradicts our assumption that
‖hk‖ 6M for all 0 6 k 6 L. We deduce that, for all L large enough,

max
k
‖hk‖ >

|〈h0, y〉|
2cαL

L→∞−−−−→∞.

Furthermore,

max
k

‖hk − h0‖
‖h0‖

>
|〈h0, y〉|

2c‖h0‖αL
− 1

L→∞−−−−→∞.

A.13 Proof of Lemma 16

(E1) and (E2) are simple consequences of Assumptions (A1) and (A2).
To prove (E3), let f(hk, wk+1) = Vk+1g(hk, wk+1). Then

E(Yk,2Yk,1|hk) =
1

‖hk‖4
E
(
‖f(hk, wk+1)‖2〈hk, f(hk, wk+1)〉

∣∣hk)
= E

( d∑
i=1

d∑
j=1

f(hk, wk+1)2
i (hk)jf(hk, wk+1)j

∣∣∣hk).
It is easy to verify that, under Assumption (A1), each term of the sum above has zero
expectation. This shows (E3).

To establish (E4), we start by noting that

E
(〈 hk
‖hk‖

,
f(hk, wk+1)

‖hk‖
〉2∣∣∣hk) =

1

‖hk‖4
E
(
h>k f(hk, wk+1)f(hk, wk+1)>hk|hk

)
=

1

‖hk‖4
h>k E

(
f(hk, wk+1)f(hk, wk+1)>|hk

)
hk.

Clearly, E(f(hk, wk+1)if(hk, wk+1)j) = 0 for i 6= j. Since, furthermore, the coordinates of
f(hk, wk+1) are identically distributed conditionally on hk, we obtain

E
(
f(hk, wk+1)f(hk, wk+1)>|hk

)
=

1

d
E(‖f(hk, wk+1)‖2|hk)Id.

Thus,

E
(〈 hk
‖hk‖

,
f(hk, wk+1)

‖hk‖
〉2∣∣∣hk) =

1

d‖hk‖4
E(‖f(hk, wk+1)‖2|hk)h>k hk 6

1

d
,

by Assumptions (A1) and (A2).

To prove (E5), let ϕ =
〈Vk+1g(hk,wk+1),hk〉
‖g(hk,wk+1)‖‖hk‖ . Then, for any t > 0,

P(|Yk,2| > t) = P
(
|ϕ| > t‖hk‖

2αL‖g(hk, wk+1)‖
)

= E
(
P
(
|ϕ| > t‖hk‖

2αL‖g(hk, wk+1)‖
∣∣∣hk, wk+1

))
.
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So, by Lemma 21 in Appendix B,

P(|Yk,2| > t) 6 E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2‖g(hk, wk+1)‖2
))

= E
(
E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2‖g(hk, wk+1)‖2
)∣∣∣hk))

6 E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2E(‖g(hk, wk+1)‖2|hk)
))

,

by Jensen’s inequality. Finally, using Assumption (A2), we deduce that

P(|Yk,2| > t) 6 E
(

2 exp
(
− dt2

16α2
Ls

2

))
= 2 exp

(
− dt2

16α2
Ls

2

)
. (21)

In particular, for all q > 1 (see, e.g., Pauwels, 2020),

E(Y 2q
k,2) 6 q!

(32s2α2
L

d

)q
.

The result is obtained by taking q = 2.

Finally, (E6) and (E7) are consequences of Lemma 22 in Appendix B.

Appendix B. Concentration of Sub-Gaussian Random Matrices

In this appendix, we are interested in concentration of moments of sub-Gaussian matrices.
We begin by two simple lemmas on second-order moments of random matrix-vector products.

Lemma 17 Let W ∈ Rd×d be a matrix whose entries are centered i.i.d. random variables,
with finite variance, and let σ be an activation function such that, for all x ∈ R, a|x| 6
|σ(x)| 6 b|x|, 1/

√
2 6 a < b 6 1. Then, for any x ∈ Rd,

1

2
E
(
‖Wx‖2

)
6 E

(
‖σ(Wx)‖2

)
6 E

(
‖Wx‖2

)
and E

(
‖ReLU(Wx)‖2

)
=

1

2
E
(
‖Wx‖2

)
.

Proof The first part is a consequence of the assumption on σ. To prove the equality, let
Xi =

∑d
j=1Wijxj . Then

E
(
‖ReLU(Wx)‖2

)
= E

( d∑
i=1

( d∑
j=1

Wijxj

)2
1∑d

j=1Wijxj>0

)
= E

( d∑
i=1

X2
i 1Xi>0

)
.

Since the (Wij)16j6d are centered and independent random variables, Xi is also centered.
Hence E(X2

i 1Xi>0) = 1/2E(X2
i ), which concludes the proof.

Lemma 18 Let W ∈ Rd×d be a matrix whose entries are centered i.i.d. random variables,
with finite variance s2. Then, for any x ∈ Rd, E

(
‖Wx‖2

)
= s2d‖x‖2.
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Proof For any 1 6 i 6 d,

|Wx|2i =
( d∑
j=1

Wijxj

)2
=

d∑
j,j′=1

WijWij′xjxj′ .

Thus, by independence,

E
(
|Wx|2i

)
= E

( d∑
j,j′=1

WijWij′xjxj′
)

=
d∑
j=1

E(W 2
ij)x

2
j = s2‖x‖2. (22)

The result follows by summing over all i ∈ {1, . . . , d}.

We now aim at deriving more involved results on concentration of linear and quadratic
forms of sub-Gaussian matrices (Lemma 21 and Lemma 22). These two propositions
are byproducts of the main result of Kontorovich (2014), which generalizes McDiarmid’s
inequality to sub-Gaussian variables. We start by a technical result regarding the sub-
Gaussian diameter introduced by Kontorovich (2014), whose definition is recalled below.

Definition 19 Let X be a real-valued random variable, X ′ an independent copy of X, and ε
a Rademacher random variable, independent of X and X ′. Then the sub-Gaussian diameter
of X is defined as the smallest t such that ε|X −X ′| is t2 sub-Gaussian.

Lemma 20 Let X be an s2 sub-Gaussian centered random variable. Then the sub-Gaussian
diameter of X is less than

√
2s.

Proof Let λ ∈ R. Then, using the notation of Definition 19, one has

E(expλε|X−X
′|) = E(expλ(X−X′) 1ε=1) + E(expλε(X

′−X) 1ε=−1)

= E(expλ(X−X′))

= E(expλX)2

6 exp2λ2s2 ,

where the last equality is a consequence of the symmetry of X.

We are now ready to prove the two main results of this appendix.

Lemma 21 (Bound on the deviation of linear forms) Let V be a Rd×d matrix whose
entries are i.i.d s2/d sub-Gaussian random variables. Then, for any x, y ∈ Rd, x, y 6= 0,

P
(〈V x, y〉
‖x‖‖y‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

Proof For any 1 6 i, j 6 d, set Xij =
xiVijyj
‖x‖‖y‖ . Let X = Rd2 endowed with the `1 norm, let

X be the vector in X whose (id+ j)-th coordinate is Xij , and let the function ϕ be defined
by

ϕ : X 3 Y 7−→
d2∑
i=1

Yi.
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By the triangle inequality, ϕ is a Lipschitz continuous function, with Lipschitz constant
equal to 1. Observe also that Xij is a x2i s

2y2j/d‖x‖2‖y‖2 sub-Gaussian. Thus, according to
Lemma 20, the sub-Gaussian diameter of Xij is less than

√
2xisyj/

√
d‖x‖‖y‖. By Kontorovich

(2014, Theorem 1), for any t > 0, one has

P (ϕ(X) > t) 6 2 exp

(
− t2

2
∑d

i,j=1

2s2x2i y
2
j

d‖x‖2‖y‖2

)
,

that is

P
(〈V x, y〉
‖x‖‖y‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

Lemma 22 (Bound of moments of quadratic forms) Let V be a Rd×d matrix whose
entries are i.i.d s2/d sub-Gaussian random variables, with variance 1/d. Then, for any x ∈ Rd,
x 6= 0,

E
(‖V x‖4
‖x‖4

)
6 1 +

128s4

d
and E

(‖V x‖8
‖x‖8

)
6 1 +

384s4

d
+

3072s6

d2
.

Proof The proof is similar to the one of Lemma 21, with Xij =
Vijxj
‖x‖ , X = Rd, and

ϕi : X 3 X 7→
d∑
j=1

Xij .

Each function ϕi is a Lipschitz continuous function, with Lipschitz constant equal to 1.
Observe now that the random variable Xij is x2js

2/d‖x‖2 sub-Gaussian. Thus, according to
Lemma 20, the sub-Gaussian diameter of Xij is less than

√
2xjs/

√
d‖x‖. Therefore, according

to Kontorovich (2014, Theorem 1), for any t > 0,

P (ϕi(X) > t) 6 2 exp

(
− t2

2
∑d

j=1

2s2x2j
d‖x‖2

)
,

that is

P
( |〈Vi, x〉|
‖x‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

Hence (see, e.g., Pauwels, 2020),

E
((〈Vi, x〉

‖x‖

)2q)
6 q!

(
8s2

d

)q
. (23)

From identity (22) in the proof of technical Lemma 18, we obtain that, for q = 1,

E
((〈Vi, x〉

‖x‖

)2)
=

1

d
, (24)
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which is an improvement by a factor 8s2 over the previous upper bound. To conclude, it
remains to conclude ‖V x‖4 and ‖V x‖8 with the 〈Vi, x〉. To do so, observe that

‖V x‖4 =

( d∑
i=1

〈Vi, x〉2
)2

=
d∑

i,j=1
i 6=j

〈Vi, x〉2〈Vj , x〉2 +
d∑
i=1

〈Vi, x〉4.

Hence, by independence of the (Vi)16i6d,

E
(‖V x‖4
‖x‖4

)
=

d∑
i,j=1
i 6=j

E
(〈Vi, x〉2
‖x‖2

)
E
(〈Vj , x〉2
‖x‖2

)
+

d∑
i=1

E
(〈Vi, x〉4
‖x‖4

)

= d(d− 1)
1

d2
+ d

2(8s2)2

d2
6 1 +

128s4

d
(by (23) and (24))

Similarly,

‖V x‖8 =

( d∑
i=1

〈Vi, x〉2
)3

=
d∑

i,j,k=1
i 6=j 6=k

〈Vi, x〉2〈Vj , x〉2〈Vj , x〉2 +
d∑

i,j=1
i 6=j

〈Vi, x〉2〈Vj , x〉4 +
d∑
i=1

〈Vi, x〉8.

Hence,

E
(‖V x‖8
‖x‖8

)
=

d∑
i,j,k=1
i 6=j 6=k

E
(〈Vi, x〉2
‖x‖2

)
E
(〈Vj , x〉2
‖x‖2

)
E
(〈Vk, x〉2
‖x‖2

)

+

d∑
i,j=1
i 6=j

E
(〈Vi, x〉4
‖x‖4

)
E
(〈Vj , x〉2
‖x‖2

)
+

d∑
i=1

E
(〈Vi, x〉8
‖x‖8

)

= d(d− 1)(d− 2)
1

d2
+ 3d(d− 1)

2(8s2)2

d3
+ d

6(8s2)3

d3

6 1 +
384s4

d
+

3072s6

d2
.

Appendix C. A Version of the Picard-Lindelöf Theorem

Theorem 23 Assume that f is Lipschitz continuous in its first argument and continuous
in its second one. Then, for any z ∈ Rd, the initial value problem

dHt = f(Ht, t)dt, H0 = z, (25)

admits a unique solution H : [0, 1]→ Rd.
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Proof Let C ([s, t],Rd) be the set of continuous functions from [s, t] to Rd. For any
[s, t] ⊂ [0, 1], ζ ∈ Rd, let Ψ be the function

Ψ : C ([s, t],Rd)→ C ([s, t],Rd)

Y 7→
(
v 7→ ζ +

∫ v

s
f(Yu, u)du

)
.

For any Y, Y ′ ∈ C ([s, t],Rd), v ∈ [s, t], one has, denoting by Kf the Lipschitz constant of f
in its first argument,

‖Ψ(Y )v −Ψ(Y ′)v‖ 6
∫ v

s

∥∥(f(Yu, u)− f(Y ′u, u)
)
du
∥∥

6
∫ v

s
Kf‖Yu − Y ′u‖du

6 Kf

∫ v

s
‖Y − Y ′‖∞du

6 Kf‖Y − Y ′‖∞(t− s).

This yields
‖Ψ(Y )−Ψ(Y ′)‖∞ 6 Kf (t− s)‖Y − Y ′‖∞,

which means that the function Ψ is Lipschitz continuous on C ([s, t],Rd) endowed with the
supremum norm, with Lipschitz constant Kf (t − s). So, on any interval [s, t] of length
smaller than δ = 1/2Kf , the function Ψ is a contraction. Thus, by the Banach fixed-point
theorem, for any initial value ζ, Ψ has a unique fixed point. Hence, there exists a unique
solution to (25) on any interval of length δ with any initial condition. To obtain a solution
on [0, 1] it is sufficient to concatenate these solutions.

Appendix D. Detailed Experimental Setting and Additional Plots

Our code is available at https://github.com/PierreMarion23/scaling-resnets.
To obtain Figures 1 to 3, we initialize ResNets from res-3 with the hyperparameters of

Table 2.

Name Value

d 40
nin 64
nout 1
L 10 to 1000
β 0.25, 0.5, 1

weight distribution U(−
√

3/d,
√

3/d)
data distribution standard Gaussian

Table 2: Hyperparameters of Figures 1 to 3
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Figure 10: Evolution of ‖hL − h0‖/‖h0‖ as a function of L for different values of β and for
the model hk+1 = hk + αLσ(Wkhk). Hyperparameters are as in Figure 1.
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Figure 11: Empirical distributions of the norms for the model hk+1 = hk + αLσ(Wkhk).
Hyperparameters are as in Figure 2.
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Figure 12: Evolution of ‖p0 − pL‖/‖pL‖ as a function of L for different values of β and for
the model hk+1 = hk + αLσ(Wkhk). Hyperparameters are as in Figure 3.
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Figure 13: Evolution of ‖hL − h0‖/‖h0‖ as a function of L for different values of β and a
smooth initialization of the model hk+1 = hk + αLσ(Wkhk). Hyperparameters
are as in Figure 4.
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Each experiment is repeated 50 times, with independent data and weight sampling.

For Figures 4 and 5, we take the same hyperparameters except for β, which now
takes values in {0.5, 1, 2}, and for the weight distribution. The weights are now initialized
as discretizations of a Gaussian process. More precisely, each entry of V and W is an
independent Gaussian process with zero mean and an RBF kernel of variance 10−2.

We also perform the same experiments with the model hk+1 = hk + αLσ(Wkhk), and
report the result in Figures 10–14. Although this formulation is not covered by our theoretical
results (see discussion at the end of Section 2.1), we observe qualitatively similar results as
Figures 1–5.

To obtain Figure 7, we take the hyperparameters of Table 3.

Name Value

d 40
nin 64
nout 1
L 1000
β 0.2 to 1.3

weight distribution fractional Brownian motion
with Hurst index from 0.05 to 0.97

data distribution standard Gaussian

Table 3: Hyperparameters of Figure 7

More precisely, for each 1 6 i, j 6 d, we let (Vk+1,i,j)06k6L−1 be the increments of a
fractional Brownian motion (fBm), where the various fBm involved are independent. The
procedure is the same for w.

In Figure 9, we use res-1, with the hyperparameters of Table 4. Each residual layer
also includes a bias term, initialized to zero, and trained with the same learning rate as the
other weights. We train on MNIST1 and CIFAR-102 using the Adam optimizer (Kingma
and Ba, 2015) for 10 epochs. The learning rate is divided by 10 after 5 epochs. The best
performance on the learning rate grid is reported in the figure.

Name Value

d 30
L 1000
β 0.2 to 1.3

weight distribution fractional Brownian motion
with Hurst index from 0.05 to 0.97

learning rate grid 10−4, 10−3, 10−2, 10−1, 1

Table 4: Hyperparameters of Figure 9

1. http://yann.lecun.com/exdb/mnist
2. https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 14: Evolution of ‖p0 − pL‖/‖pL‖ as a function of L for different values of β and a
smooth initialization of the model hk+1 = hk + αLσ(Wkhk). Hyperparameters
are the same as in Figure 5.
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Figure 15: Plot of a given coordinate of wk, after training, as a function of the layer index
k ranging from 1 to the depth L = 1000 for three different choices of β and
initializations. A bias term is trained in each residual layer.
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Figure 8 is obtained by plotting a random coordinate of wk, after training on MNIST.
While there is no bias term in the model trained for this figure, we show below the result of
the same experiment when additionally training a zero-initialized bias term in each residual
layer. We observe that adding a bias term does not qualitatively change the results.
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