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Abstract

Sparse regression models are increasingly prevalent due to their ease of interpretability and
superior out-of-sample performance. However, the exact model of sparse regression with
an ℓ0-constraint restricting the support of the estimators is a challenging (NP -hard) non-
convex optimization problem. In this paper, we derive new strong convex relaxations for
sparse regression. These relaxations are based on the convex-hull formulations for rank-
one quadratic terms with indicator variables. The new relaxations can be formulated as
semidefinite optimization problems in an extended space and are stronger and more gen-
eral than the state-of-the-art formulations, including the perspective reformulation and
formulations with the reverse Huber penalty and the minimax concave penalty functions.
Furthermore, the proposed rank-one strengthening can be interpreted as a non-separable,
non-convex, unbiased sparsity-inducing regularizer, which dynamically adjusts its penalty
according to the shape of the error function without inducing bias for the sparse solutions.
In our computational experiments with benchmark datasets, the proposed conic formula-
tions are solved within seconds and result in near-optimal solutions (with 0.4% optimality
gap on average) for non-convex ℓ0-problems. Moreover, the resulting estimators also out-
perform alternative convex approaches, such as lasso and elastic net regression, from a
statistical perspective, achieving high prediction accuracy and good interpretability.

Keywords: sparse regression, best subset selection, lasso, elastic net, conic formulations,
non-convex regularization

1. Introduction

Given a model matrix X = [x1, . . . ,xp] ∈ Rn×p of explanatory variables, a vector y ∈ Rn of
response variables, regularization parameters λ, µ ≥ 0 and a desired sparsity level k ∈ Z+,
we consider the least squares regression problem

min
β∈Rp

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 s.t. 󰀂β󰀂0 ≤ k, (1)

where 󰀂β󰀂0 denotes cardinality of the support of β. Problem (1) encompasses a broad range
of regression models. It includes as special cases: ridge regression (Hoerl and Kennard,
1970), when λ > 0, µ = 0 and k ≥ p; lasso (Tibshirani, 1996), when λ = 0, µ ≥ 0 and k ≥ p;
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elastic net (Zou and Hastie, 2005) when λ, µ > 0 and k ≥ p; best subset selection

(Miller, 2002), when λ = µ = 0 and k < p. Additionally, Bertsimas and Van Parys (2020)
propose to solve (1) with λ > 0, µ = 0 and k < p for high-dimensional regression problems,
while Mazumder et al. (2022) study (1) with λ = 0, µ > 0 and k < p for problems with low
Signal-to-Noise Ratios (SNR). The results in this paper cover all versions of (1) with k < p;
moreover, they can be extended to problems with non-separable regularizations of the form
λ󰀂Aβ󰀂22 + µ󰀂Cβ󰀂1, resulting in sparse variants of the fused lasso (Padilla et al., 2017;
Tibshirani et al., 2005), generalized lasso (Lin et al., 2014; Tibshirani and Taylor, 2011)
and smooth lasso (Hebiri et al., 2011), among others.

1.1 Regularization Techniques

The motivation and benefits of regularization and sparsity are well-documented in the lit-
erature. In particular, generalization and interpretability are the key drivers of sparsity in
machine learning models. Generalization refers to the ability of a model to perform well
out-of-sample. The principle of parsimony postulates that observed phenomena often admit
simple explanations, and thus sparse models are preferable as they are more likely to capture
such explanations; in fact, Hastie et al. (2001) coined the bet on sparsity principle, i.e., using
an inference procedure that performs well in sparse problems since no procedure can do well
in dense problems. Interpretability, on the other hand, is becoming increasingly important
due to the deployment of machine learning models in high-stakes situations (Rudin, 2019),
where complex models can sometimes lead to results that are unfair, discriminatory, or
otherwise undesirable. As such, interpretability is critical in healthcare (Ustun and Rudin,
2016, 2019; Wanjiru et al., 2021) and public policy (Aghaei et al., 2019; Azizi et al., 2018;
Zeng et al., 2017) settings for example. Moreover, interpretable learning models are also
preferable when the output of the model is intended to serve as input to a downstream
decision-making process (Cozad et al., 2014; Lombardi et al., 2017; Maragno et al., 2021).

Best subset selection with k < p and λ = µ = 0 is the direct approach to enforce
sparsity without introducing bias. In contrast, ridge regression with λ > 0 (Tikhonov reg-
ularization) is known to induce shrinkage and bias, which can be desirable, for example,
when X is not orthogonal, but it does not encourage sparsity. On the other hand, lasso,
employs ℓ1 regularization with µ > 0 to achieve both shrinkage and sparsity. However, the
inability to separately control for shrinkage and sparsity may result in subpar performance
in some cases (Kelner et al., 2024; Miller, 2002; Zhang et al., 2008, 2012, 2014; Zhao and
Yu, 2006; Zou, 2006). Moreover, achieving a target sparsity level k with lasso requires sig-
nificant experimentation with the penalty parameter µ (Chichignoud et al., 2016). When
k ≥ p, the ℓ0 cardinality constraint becomes redundant, and (1) reduces to a convex opti-
mization problem and can be solved easily. On the other hand, when k < p, problem (1)
is non-convex and NP -hard (Natarajan, 1995), thus finding an optimal solution may re-
quire excessive computational effort and methods to solve it approximately are used instead
(Huang et al., 2018; Nevo and Ritov, 2017), often relying on local heuristics (Hazimeh and
Mazumder, 2020; Zhu et al., 2022, 2020). Due to the perceived difficulties of tackling the
non-convex ℓ0 constraint in (1), lasso-type simpler approaches continue to be preferred for
inference problems with sparsity (Hastie et al., 2015), and have also been incorporated with
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other learning models such as deep neural networks (Cherepanova et al., 2024; Dinh and
Ho, 2020; Lemhadri et al., 2021).

Nonetheless, there has been a substantial effort to develop sparsity-inducing method-
ologies that do not incur as much shrinkage and bias as lasso does. These efforts have led
to optimization problems of the form

min
β∈Rp

󰀂y −Xβ󰀂22 +
p󰁛

i=1

ρi(βi) (2)

where ρi : R → R represent non-convex regularization functions. Examples of such regu-
larization functions include ℓq penalties with 0 < q < 1 (Frank and Friedman, 1993) and
Smoothly Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001). Although op-
timal solutions of (2) with non-convex regularizations may substantially improve upon the
estimators obtained by lasso, solving (2) to optimality is still a difficult task (Hunter and
Li, 2005; Mazumder et al., 2011; Zou and Li, 2008), and suboptimal solutions may not ex-
hibit the improved statistical properties. To mitigate such difficulties, Zhang et al. (2010)
propose the minimax concave penalty (MC+), a class of sparsity-inducing penalty func-
tions where the non-convexity of ρ is offset by the convexity of 󰀂y −Xβ󰀂22 for sufficiently
sparse solutions, so that (2) remains convex – Zhang et al. (2010) refer to this property
as sparse convexity. Thus, in the ideal scenario (and with proper tuning of the parameter
controlling the concavity of ρ), the MC+ penalty is able to retain the sparsity and unbiased-
ness of best subset selection while preserving convexity, resulting in the best of both
worlds. However, due to the separable form of the regularization term, the effectiveness of
MC+ greatly depends on the diagonal dominance of the matrix X⊤X (this dependency will
be discussed in more detail in §3), and may result in poor performance when the diagonal
dominance is low.

Yet, in many practical applications, the matrix X⊤X has low eigenvalues and lacks
diagonal dominance. To illustrate, Table 1 presents the diagonal dominance of five datasets
from the UCI Machine Learning Repository (Dheeru and Karra Taniskidou, 2017) used by
Gómez and Prokopyev (2021) and Miyashiro and Takano (2015), as well as the diabetes

dataset with all second interactions used by Bertsimas et al. (2016) and Efron et al. (2004).
The diagonal dominance of a positive semidefinite matrix A is computed as

dd(A) := (1/tr(A)) max
d∈Rp

+

e⊤d s.t. A − diag(d) ≽ 0,

where e is the p-dimensional vector of ones, diag(d) is the diagonal matrix such that
diag(d)ii = di and tr(A) denotes the trace of A. Accordingly, the diagonal dominance
is the trace of the largest diagonal matrix that can be extracted from A without violating
positive semidefiniteness, divided by the trace of A. Table 1 shows that the diagonal dom-
inance of X⊤X is low or even 0% in some instances, and MC+ struggles for these datasets
as we demonstrate in §5.

1.2 Mixed-Integer Optimization Formulations

An alternative to using nonconvex regularizers is to leverage recent advances in mixed-
integer optimization (MIO) to tackle (1) directly (Bertsimas and King, 2015; Bertsimas
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dataset p n dd×100%

housing 13 506 26.7%
servo 19 167 0.0%

auto MPG 25 392 1.5%
solar flare 26 1,066 8.8%
breast cancer 37 196 3.6%

diabetes 64 442 0.0%
crime 100 1993 13.5 %

Table 1: Diagonal dominance of X⊤X for benchmark datasets.

et al., 2016; Cozad et al., 2014). By introducing binary indicator variables z ∈ {0, 1}p,
where zi = βi ∕=0, problem (1) can be reformulated as

y⊤y + min
β,z,u

− 2y⊤Xβ + β⊤
󰀓
X⊤X + λI

󰀔
β + µ

p󰁛

i=1

ui (3a)

s.t.

p󰁛

i=1

zi ≤ k (3b)

βi ≤ ui, −βi ≤ ui i = 1, . . . , p (3c)

βi(1− zi) = 0 i = 1, . . . , p (3d)

β ∈ Rp, z ∈ {0, 1}p, u ∈ Rp
+. (3e)

The nonconvexity of (1) is captured by the complementary constraints (3d) and the inte-
grality constraints z ∈ {0, 1}p. In fact, one of the main challenges to solve (3) is handling
constraints (3d). A standard approach in the MIO literature is to replace (3d) with the
so-called big-M constraints

−Mzi ≤ βi ≤ Mzi (4)

for a sufficiently large number M to bound the variables βi. However, these big-M con-
straints (4) are poor approximations of constraints (3d), especially in the case of regression
problems where no natural big-M value is available. Bertsimas et al. (2016) propose ap-
proaches to compute provable big-M values, but such values often result in prohibitively
large computational times even in problems with a few dozens variables (or, even worse, may
lead to numerical instabilities and cause convex solvers to crash). Alternatively, heuristic
values for the big-M values can be estimated, e.g., by setting M = τ󰀂β̂󰀂∞, where τ ∈ R+

and β̂ is a feasible solution of (1) found via a heuristic method1. While using such heuristic
values yield reasonable performance for small enough values of τ , they may eliminate opti-
mal solutions. Due to the modeling power of MIO, formulation (3) can be further extended
to incorporate additional considerations such as outliers (Insolia et al., 2022), or graphical
structures arising when learning Bayesian networks (Küçükyavuz et al., 2023).

1. This method with τ = 2 was used in the computations of Bertsimas et al. (2016).
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Branch-and-bound algorithms for MIO leverage strong convex relaxations of problems
to prune the search space and reduce the number of sub-problems to enumerate (and, in
some cases, eliminate the need for enumeration altogether). Additionally, strong relaxations
can also be used to design exact screening rules that quickly identify critical explanatory
variables and provably eliminate irrelevant ones to reduce the dimension of the inference
problems to solve (Atamtürk and Gómez, 2020; Deza and Atamtürk, 2022). Thus, a critical
step to speed up the solution times for (3) is to derive convex relaxations that approximate
the non-convex problem well (Atamtürk and Narayanan, 2007). Such strong relaxations can
also be used directly to find good estimators for the inference problems (without branch-and-
bound); in fact, it is well known that the natural convex relaxation of (3) with λ = µ = 0
and big-M constraints is precisely lasso, see (Dong et al., 2015) for example. Therefore,
sparsity-inducing techniques that more accurately capture the properties of the non-convex
constraint 󰀂β󰀂0 ≤ k can be found by deriving tighter convex relaxations of (1). Pilanci
et al. (2015) exploit the Tikhonov regularization term and convex analysis to construct an
improved convex relaxation using the reverse Huber penalty. In a similar vein, Bertsimas
and Van Parys (2020) leverage Tikhonov regularization and duality to give an efficient
algorithm for high-dimensional sparse regression. We refer the reader to the recent paper
by Tillmann et al. (2024) for a survey of solution approaches to problems with sparsity
constraints, such as (3).

1.3 The Perspective Relaxation

Problem (3) is a mixed-integer convex quadratic optimization problem with indicator vari-
ables, a class of problems which has received a fair amount of attention in the optimization
literature. In particular, the perspective relaxation (Aktürk et al., 2009; Frangioni and
Gentile, 2006; Günlük and Linderoth, 2010) is, by now, a standard technique that can be
used to substantially strengthen the convex relaxations by exploiting separable quadratic
terms. Specifically, consider the mixed-integer epigraph of a one-dimensional quadratic
function with an indicator constraint,

Q1 =
󰀋
z ∈ {0, 1},β ∈ R, t ∈ R+ : β2

i ≤ t, βi(1− zi) = 0
󰀌
·

The convex hull of Q1 is obtained by relaxing the integrality constraint to bound con-
straints and using the closure of the perspective function2 of β2

i , expressed as a rotated
cone constraint:

cl conv(Q1) =

󰀝
z ∈ [0, 1],β ∈ R, t ∈ R+ :

β2
i

zi
≤ t

󰀞
·

2. We use the convention that
β2
i

zi
= 0 when βi = zi = 0 and

β2
i

zi
= ∞ if zi = 0 and βi ∕= 0.

5



Atamtürk and Gómez

Xie and Deng (2020) apply the perspective relaxation to the separable quadratic
regularization term λ󰀂β󰀂22, i.e., reformulate (3) as

y⊤y + min
β,z,u

− 2y⊤Xβ + β⊤
󰀓
X⊤X

󰀔
β + λ

p󰁛

i=1

β2
i

zi
+ µ

p󰁛

i=1

ui (5a)

s.t.

p󰁛

i=1

zi ≤ k (5b)

βi ≤ ui, −βi ≤ ui, i = 1, . . . , p (5c)

β ∈ Rp, z ∈ {0, 1}p, u ∈ Rp
+. (5d)

Moreover, they show that the continuous relaxation of (5) is equivalent to the continuous
relaxation of the formulation used by Bertsimas and Van Parys (2020). Dong et al. (2015)
also study the perspective relaxation in the context of regression: first, they show
that using the reverse Huber penalty (Pilanci et al., 2015) is, in fact, equivalent to just
solving the convex relaxation of (5) — thus the relaxations of (Bertsimas and Van Parys,
2020; Pilanci et al., 2015; Xie and Deng, 2020) all coincide; second, they propose to use
an optimal perspective relaxation, i.e., by applying the perspective relaxation to a
separable quadratic function β⊤Dβ, where D is a nonnegative diagonal matrix such that
X⊤X + λI −D ≽ 0; finally, they show that solving this stronger convex relaxation of the
optimal perspective relaxation is, in fact, equivalent to using the MC+ penalty (Zhang
et al., 2010). However, the authors also point out that if λ = 0 and a suitable matrix D
cannot be found, then the optimal perspective relaxation reduces to lasso. For example,
from Table 1, we see that the optimal perspective relaxation would reduce to lasso in the
servo and diabetes datasets.

The perspective relaxation is now a state-of-the-art method to convexify problems with
separable terms and indicator variables. Recent works have extended perspective relaxations
to more general classes of problems, such as inference problems with grouped variable selec-
tion constraints (Hazimeh et al., 2023b). However, there are relatively few convexification
techniques for problems without separable terms (Frangioni et al., 2020; Gómez, 2021; Han
et al., 2023; Jeon et al., 2017). In fact, among the previously discussed methods for sparse
regression, the optimal perspective relaxation of Dong et al. (2015) is the only one that
does not explicitly require the use of the Tikhonov regularization λ󰀂β󰀂22. Nonetheless, as
the authors point out, if λ = 0 then the method is effective only when the matrix X⊤X is
sufficiently diagonally dominant, which, as illustrated in Table 1, is not necessarily the case
in practice. As a consequence, perspective relaxation techniques may be insufficient to
tackle problems when large shrinkage is undesirable and, λ is small.

1.4 Contributions

In this paper we derive stronger convex relaxations of (3) than the optimal perspective
relaxation. These relaxations are obtained from the study of ideal (convex-hull) formu-
lations of the mixed-integer epigraphs of non-separable rank-one quadratic functions with
indicators. Since the perspective relaxation corresponds to the ideal formulation of
a one-dimensional rank-one quadratic function, the proposed relaxations generalize and

6



Rank-one convexification for sparse regression

strengthen the existing results. In particular, they dominate perspective relaxation ap-
proaches for all values of the regularization parameter λ and, critically, are able to achieve
high-quality approximations of (1) even in low diagonal dominance settings with λ = 0.
Alternatively, our results can also be interpreted as a new non-separable, non-convex, un-
biased regularization penalty ρR1(β) which: (i) imposes larger penalties than the separable
minimax concave penalty (Zhang et al., 2010) ρMC+(β) to dense estimators, thus achieving
better sparsity-inducing properties; and (ii) the nonconvexity of the penalty function is off-
set by the convexity of the term 󰀂y −Xβ󰀂22, and the resulting continuous problem can be
solved to global optimality using convex optimization tools. In fact, they can be formulated
as semidefinite optimization and, in certain special cases, as conic quadratic optimization.
We point out that in recent papers, some of the relaxations proposed in this paper have
been extended to more general settings with non-quadratic functions, low rank (but not
necessarily rank-one) functions, and side constraints (Han and Gómez, 2024; Shafiee and
Kılınç-Karzan, 2024).

To illustrate the regularization point of view for the proposed relaxations, consider a
two-predictor regression problem in Lagrangian form:

min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 + κ󰀂β󰀂0, (6)

where X⊤X =

󰀕
1 + δ 1
1 1 + δ

󰀖
and δ ≥ 0 is a parameter controlling the diagonal domi-

nance. Figure 1 depicts the graphs of well-known regularizations including lasso (λ = κ =
0, µ = 1), ridge (µ = κ = 0, λ = 1), elastic net (κ = 0, λ = µ = 0.5), the MC+penalty for
different values of δ and the proposed rank-one R1 regularization. The graphs of MC+ and
R1 are obtained by setting λ = µ = 0 and κ = 1, and using the appropriate convex strength-
ening, see §3 for details. Observe that the R1 regularization results in larger penalties than
MC+for all values of δ, and the improvement increases as δ → 0. In addition, Figure 2 shows
the effect of using the lasso constraint 󰀂β󰀂1 ≤ k, the MC+ constraint ρMC+(β) ≤ k, and the
rank-one constraint ρR1(β) ≤ k in a two-dimensional problem to achieve sparse solutions
satisfying 󰀂β󰀂0 ≤ 1. Specifically, let

ε∗ = min
󰀂β󰀂0≤1

󰀂y −Xβ󰀂22

be the minimum residual error of a sparse solution of the least squares problem. Figure 2
shows in gray the (possibly dense) points satisfying 󰀂y − Xβ󰀂22 ≤ ε∗, and it shows in
color the set of feasible points satisfying ρ(β) ≤ k, where ρ is a given regularization and
k is chosen so that the feasible region (color) intersects the level sets (gray). We see that
neither lasso nor MC+ is able to exactly recover an optimal sparse solution for any diagonal
dominance parameter δ, despite significant shrinkage (k < 1). In contrast, the rank-one
constraint ρR1(β) ≤ k adapts to the curvature of the error function 󰀂y −Xβ󰀂22 to induce
higher sparsity: in particular, the “natural” constraint ρR1(β) ≤ 1, with the target sparsity
k = 1, results in exact recovery without shrinkage in all cases.

Finally, Figure 3 shows the strength of relaxations of (1) discussed in this paper. The
“big-M” relaxation is the natural convex relaxation of (3) obtained by replacing z ∈ {0, 1}p
by z ∈ [0, 1]p, used by Bertsimas et al. (2016); Cozad et al. (2014). The perspective
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(c) lasso
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(d) MC+, δ = 1.0
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(e) MC+, δ = 0.3
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(f) MC+, δ = 0.1
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(g) R1, δ = 1.0
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(h) R1, δ = 0.3
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(i) R1, δ = 0.1

Figure 1: Graphs of regularization penalties with p = 2. The horizontal axes correspond to val-
ues of β1 and β2, and the vertical axis corresponds to the regularization penalty. The
ridge, elastic net, and lasso (top row) regularizations do not depend on the diago-
nal dominance, but induce substantial bias. The MC+ regularization (second row) does
not induce as much bias, but it depends on the diagonal dominance (δ). The new non-
separable, non-convex R1 regularization (bottom row) induces larger penalties than MC+
for all diagonal dominance values and is a closer approximation for the exact ℓ0 penalty.
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Figure 2: The axes correspond to the sparse solutions satisfying 󰀂β󰀂0 ≤ 1. In gray: level sets given
by 󰀂y − Xβ󰀂22 ≤ ε∗; in red: feasible region for 󰀂β󰀂1 ≤ k; in green: feasible region for
ρMC+(β) ≤ k; in blue: feasible region for ρR1(β) ≤ k. All lasso and MC+ solutions above
are dense even with significant shrinkage (k < 1). Rank-one constraint attains sparse
solutions on the axes with no shrinkage (k = 1) for all diagonal dominance values δ.
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relaxation is the natural convex relaxation of (5), which is the basis of recent methods
(Bertsimas and Van Parys, 2020; Hazimeh et al., 2022; Pilanci et al., 2015; Xie and Deng,
2020; Hazimeh et al., 2023a) – note that this formulation may only be used if λ > 0. The
“optimal perspective” relaxation, also referred to as sdp1 in this paper, was explicitly given
by Dong et al. (2015). Interestingly, it was recently shown (Han et al., 2022) that sdp1 is
equivalent to the standard Shor’s SDP relaxation (Shor, 1987) for problem (3)– a convex
relaxation that has been proven to be very effective at approximating discrete optimization
problems (Goemans and Williamson, 1995). This paper proposes new relaxations sdpr,
discussed in §2, which dominate all existing relaxations in terms of strength. It also proposes
the new formulation sdpLB, discussed in §4, which is easier to solve than sdpr but still
compares favorably with the “big-M” and perspective formulations.

Outline The rest of the paper is organized as follows. In §2 we derive convex relaxations
based on ideal formulations for rank-one quadratic terms with indicator variables. We also
give an interpretation of the convex relaxations as unbiased regularizers and propose an
explicit semidefinite optimization (SDP) formulation in an extended space, which can be
implemented with off-the-shelf conic optimization solvers. In §3 we derive an explicit form
of the regularization penalty for the two-dimensional case. In §4 we discuss the imple-
mentation of the proposed relaxation in a conic quadratic framework. In §5 we present
computational experiments with synthetic as well as benchmark datasets, demonstrating
that (i) the proposed formulation delivers near-optimal solutions (with provable optimality
gaps) of (1) in most cases, (ii) using the proposed convex relaxation results in superior

“Big-M” 
relaxation

Perspective 
relaxation 
(𝜆 ≥ 0)

“Optimal”
perspective
(MC+/Shor)

𝑠𝑑𝑝𝑟
(𝑟 ≥ 2)

𝑠𝑑𝑝𝐿𝐵

Figure 3: Strength of relaxations discussed in the paper. “A ⇒ B” indicates that B is a stronger
relaxation than A, i.e., is a better approximation for the non-convex problem (1). Blue
boxes correspond to the new formulations proposed in this paper.
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statistical performance when compared with the usual convex estimators such as elastic
net. In §6, we conclude the paper with a few final remarks.

Notation Define P = {1, . . . , p} and e ∈ Rp be the vector of ones. Given T ⊆ P and a
vector a ∈ Rp, define aT as the subvector of a induced by T , ai = a{i} as the i-th element
of a, and define a(T ) =

󰁓
i∈T ai. Given a symmetric matrix A ∈ Rp×p, let AT be the

submatrix of A induced by T ⊆ P , and let ST
+ be the set of |T | × |T | symmetric positive

semidefinite matrices, i.e., AT ≽ 0 ⇔ AT ∈ ST
+. We use aT or AT to make explicit that

a given vector or matrix is indexed by the elements of T or T × T , respectively. Given
matrices A, B of the same dimension, A ◦B denotes the Hadamard product of A and B,
and 〈A,B〉 denotes their inner product. Given a vector a ∈ Rn, let diag(a) be the n × n
diagonal matrix A with Aii = ai. For a set X ⊆ Rp, cl conv(X) denotes the closure of the
convex hull of X. Throughout the paper, we adopt the following convention for division
by 0: given a scalar s ≥ 0, s/0 = ∞ if s > 0 and s/0 if s = 0. For a scalar a ∈ R, let
sign(a) = a/|a|.

2. Convexification

In this section we introduce the proposed relaxations of problem (1). First, in §2.1, we
describe the ideal relaxations for the mixed-integer epigraph of a rank-one quadratic term.
Then, in §2.2, we use the relaxations derived in §2.1 to give strong relaxations of (1).
Next, in §2.3, we give an interpretation of the proposed relaxations as unbiased sparsity-
inducing regularizations. In §2.4 we present an explicit SDP representation of the proposed
relaxations in an extended space. Finally, in §2.5, we comment on the strength of the
proposed relaxations.

2.1 Rank-one Case

We first give a valid inequality for the mixed-integer epigraph of a convex quadratic function
defined over the subsets of P . Given AT ∈ ST

+, consider the set

QT =
󰁱
(z,β, t) ∈ {0, 1}|T | × R|T | × R+ : β⊤ATβ ≤ t, βi(1− zi) = 0, ∀i ∈ T

󰁲
.

Proposition 1 The inequality

β⊤ATβ

z(T )
≤ t (7)

is valid for QT .

Proof Let (z,β, t) ∈ QT , and we verify that inequality (7) is satisfied. First observe that
if z = 0, then β = 0 and inequality (7) reduces to 0 ≤ t, which is satisfied. Otherwise,

if zi = 1 for some i ∈ T , then z(T ) ≥ 1 and we find that β⊤ATβ
z(T ) ≤ β⊤ATβ ≤ t, and

inequality (7) is satisfied again.

Observe that if T is a singleton, i.e., T = {i}, then (7) reduces to the well-known perspective
inequality Aiiβ

2
i ≤ tzi. Moreover, if T = {i, j} and AT is rank-one, i.e., AT = aTa

⊤
T with

11
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aT = (ai aj)
⊤ and β⊤ATβ = |Aij |

󰀓
aβ2

i ± 2βiβj + (1/a)β2
j

󰀔
for Aij= aiaj and a = ai/aj ,

then (7) reduces to
|Aij |

󰀃
aβ2

i ± 2βiβj + (1/a)β2
j

󰀄
≤ t(zi + zj), (8)

one of the inequalities proposed by Jeon et al. (2017) in the context of quadratic optimization
with indicators and bounded continuous variables. Note that inequality (8) is, in general,
weak for bounded continuous variables as non-negativity or other bounds can be used to
strengthen the inequalities (Atamtürk and Gómez, 2018); and inequality (7) is, in general,
weak for arbitrary matrices AT ∈ ST

+. Nonetheless, as we show next, inequality (7) is
sufficient to describe the ideal (convex hull) description for QT if AT= aTa

⊤
T is a rank-one

matrix. Consider the special case of QT defined with a rank-one matrix:

Qr1
T =

󰁱
(z,β, t) ∈ {0, 1}|T | × R|T | × R+ : (a⊤

T β)2 ≤ t, βi(1− zi) = 0, ∀i ∈ T
󰁲
.

Theorem 2 If ai ∕= 0 for all i ∈ T , then

cl conv(Qr1
T ) =

󰀝
(z,β, t) ∈ [0, 1]|T | × R|T | × R+ : (a⊤

T β)2 ≤ t,
(a⊤

T β)2

z(T )
≤ t

󰀞
·

Proof Consider the optimization of an arbitrary linear function over Qr1
T and Q̄T :=󰁱

(z,β, t) ∈ [0, 1]|T | × R|T | × R+ : (a⊤
T β)2 ≤ t,

(a⊤
T β)2

z(T ) ≤ t
󰁲
:

min
(z,β,t)∈Qr1

T

u⊤
T z + v⊤

T β + κt, (9)

min
(z,β,t)∈Q̄T

u⊤
T z + v⊤

T β + κt, (10)

where uT ,vT ∈ R|T | and κ ∈ R. We now show that either there exists an optimal solution
of (10) that is feasible for (9), hence also optimal for (9) as Q̄T is a relaxation of Qr1

T , or
that (9) and (10) are both unbounded.

Observe that if κ < 0, then letting z = β = 0 and t → ∞ we see that both problems
are unbounded. If κ = 0 and vT = 0, then (10) reduces to minz∈[0,1]|T | u⊤

T z, which has an
optimal integral solution z∗, and (z∗,0, 0) is optimal for (9) and (10). If κ = 0 and vi ∕= 0
for some i ∈ T , then letting βi → ±∞, zi = 1, and βj = zj = t = 0 for j ∕= i, we find
that both problems are unbounded. Thus, we may assume, without loss of generality that
κ > 0, and, by scaling, κ = 1.

Additionally, as aT has no zero entry, we may assume, without loss of generality, that
aT = eT , since otherwise β and vT can be scaled by letting β̄i = aiβi and v̄i = vi/ai to
arrive at an equivalent problem. Moreover, a necessary condition for (9)–(10) to be bounded
is that

−∞ < min
β∈R|T |

v⊤
T β s.t. β(T ) = ζ (11)

for any fixed ζ ∈ R. It is easily seen that (11) has an optimal solution if and only if vi = vj
for all i ∕= j. Thus, we may also assume without loss of generality that v⊤

T β = v0β(T ) for
some scalar v0. Performing the above simplifications, we find that (10) reduces to

min
z∈[0,1]|T |,β∈R|T |,t∈R

u⊤
T z + v0β(T ) + t s.t. β(T )2 ≤ t, β(T )2 ≤ tz(T ). (12)

12
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Since the one-dimensional optimization minβ∈R
󰀋
v0β + β2

󰀌
has an optimal solution, it fol-

lows that (12) is bounded and has an optimal solution. We now prove that (12) has an
optimal solution that is integral in z and satisfies β ◦ (e− z) = 0.

Let (z∗,β∗, t∗) be an optimal solution of (12). First note that if 0 < z∗(T ) < 1,
then (γz∗, γβ∗, γt∗) is feasible for (10) for γ sufficiently close to 1, with objective value

γ
󰀓
u⊤
T z

∗
+ v0β

∗(T ) + t∗
󰀔
. If u⊤

T z
∗
+ v0β

∗(T ) + t∗ ≥ 0, then for γ = 0, (γz∗, γβ∗, γt∗) has

an objective value equal or lower. Otherwise, for γ = 1/z∗(T ), (γz∗, γβ∗, γt∗) is feasible
and has a lower objective value. Thus, we find that either 0 is optimal for (12) (and the
proof is complete), or there exists an optimal solution with z∗(T ) ≥ 1. In the later case,
observe that any (z̄,β∗, t∗) with z̄ ∈ argmin{u⊤

T z : z∗(T ) ≥ 1, z ∈ [0, 1]|T |} is also optimal
for (12), an in particular there exists an optimal solution with z̄ integral.

Finally, let i ∈ T be any index with z̄i = 1. Setting β̄i = β∗(T ) and β̄j = 0 for i ∕= j, we
find another optimal solution (z̄, β̄, t∗) for (12) that satisfies the complementary constraints,
and thus is feasible and optimal for (9).

Remark 3 Observe that describing cl conv(Qr1
T ) requires two nonlinear inequalities in the

original space of variables. More compactly, we can specify cl conv(Qr1
T ) using a single

convex inequality, as

cl conv(Qr1
T ) =

󰀝
(z,β, t) ∈ [0, 1]|T | × R|T | × R+ :

(a⊤
T β)2

min{1, z(T )} ≤ t

󰀞
·

Finally, we point out that cl conv(Qr1
T ) is conic quadratic representable, as (z,β, t) ∈

cl conv(Qr1
T ) if and only if there exists w such that the system

z ∈ [0, 1]|T |, β ∈ R|T |, t ∈ R+, w ∈ R+, w ≤ 1, w ≤ z(T ), (a⊤
T β)2 ≤ tw

is feasible, where the last constraint is a rotated conic quadratic constraint and all other
constraints are linear.

2.2 General Case

Now consider again the mixed-integer optimization (3)

y⊤y + min
β,z,u

− 2y⊤Xβ + µ
󰀓
e⊤u

󰀔
+ t (13a)

s.t. β⊤
󰀓
X⊤X + λI

󰀔
β ≤ t (13b)

e⊤z ≤ k (13c)

β ≤ u, −β ≤ u (13d)

β ◦ (e− z) = 0 (13e)

β ∈ Rp, z ∈ {0, 1}p, u ∈ Rp
+, t ∈ R (13f)

where the nonlinear terms of the objective is moved to constraint (13b). A direct application
of (7) yields the inequality β⊤ 󰀃

X⊤X + λI
󰀄
β ≤ tz(P ), which is weak and has no effect

13
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when z(P ) ≥ 1. Instead, a more effective approach is to decompose the matrix X⊤X +λI
into a sum of low-dimensional rank-one matrices, and use inequality (7) to strengthen each
quadratic term in the decomposition separately, as illustrated in Example 1 bellow.

Example 1 Consider the example with p = 3 and X⊤X + λI =

󰀳

󰁃
25 15 −5
15 18 0
−5 0 11

󰀴

󰁄 . Then,

it follows that

β⊤
󰀓
X⊤X + λI

󰀔
β =(5β1 + 3β2 − β3)

2 + (3β2 + β3)
2 + 9β2

3

and we have the corresponding valid inequality

(5β1 + 3β2 − β3)
2

min{1, z1 + z2 + z3}
+

(3β2 + β3)
2

min{1, z2 + z3}
+ 9

β2
3

z3
≤ t. (14)

The decomposition of X⊤X + λI illustrated in Example 1 is not unique. Since one
does not obtain a strengthening when the denominator is one, it is important to have
decomposition both rank-one and sparse. This motivates the question of how to find a
decomposition that results in the best convex relaxation, i.e., that maximizes the left-hand
side of (14). Specifically, let P ⊆ 2P be a subset of the power set of P , i.e.,

P = {T1, . . . , Tm}

with Th ⊆ P , h = 1, . . . ,m. For each h, define a matrix variable Ah whose nonzero elements
correspond to the submatrix induced by Th, and consider the valid inequality φP(z,β) ≤ t,
where φP : [0, 1]p × Rp → R is defined as

φP(z,β) := max
Ah,R

β⊤Rβ +

m󰁛

h=1

β⊤Ahβ

min{1, z(Th)}
(15a)

s.t.

m󰁛

h=1

Ah +R = X⊤X + λI (15b)

(Ah)ij = 0 ∀h = 1, . . . ,m, i ∕∈ Th or j ∕∈ Tj (15c)

Ah ∈ SP
+ ∀h = 1, . . . ,m (15d)

R ∈ SP
+ , (15e)

where strengthening (7) is applied to each low-dimensional quadratic term β⊤Ahβ. For a
fixed value of (z,β), problem (15) finds the best decomposition of the matrix X⊤X + λI
as a sum of positive semidefinite matrices Ah, h = 1, . . . ,m, and a remainder positive
semidefinite matrix R to maximize the strengthening.

For a given decomposition, the objective (15a) is convex in (z,β), thus φP is a supremum
of convex functions and is convex on its domain. Observe that the inclusion or omission of
the empty set does not affect function φP , and we assume for simplicity that ∅ ∈ P.

Since inequalities (7) are ideal for rank-one matrices, inequality φP(z,β) ≤ t is particu-
larly strong if matrices Ah are rank-one in optimal solutions of (15). As we now show, this
is indeed the case if P is downward closed.
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Proposition 4 If Pis downward closed, i.e., V ∈ P =⇒ U ∈ P for all U ⊆ V , then there
exists an optimal solution to (15) where all matrices Ah are rank-one.

Proof Let T ∈ P, let AT be the matrix variable associated with T , and suppose AT is not
rank-one in an optimal solution to (15), also suppose for simplicity that T = {1, . . . , p0} for
some p0 ≤ p, and let T̄i = {i, . . . , p0} for i = 1, . . . , p0. Since AT is positive semidefinite,
there exists a Cholesky decomposition AT = LL⊤ where L is a lower triangular matrix
(possibly with zeros on the diagonal if AT is not positive definite). Let Li denote the i-the
column of L. Since AT is not a rank-one matrix, there exist at least two non-zero columns
of L. Let Lj with j > 1 be the second non-zero column. Then

β⊤
T ATβT

min{1, z(T )} =
β⊤
T

󰀓󰁓
i ∕=j(LiL

⊤
i )

󰀔
βT

min{1, z(T )} +
β⊤
T (LjL

⊤
j )βT

min{1, z(T )}

≤
β⊤
T

󰀓󰁓
i ∕=j(LiL

⊤
i )

󰀔
βT

min{1, z(T )} +
β⊤
T (LjL

⊤
j )βT

min{1, z(T̄j)}
· (16)

Finally, since T̄j ∈ P, the (better) decomposition (16) is feasible for (15), and the proposi-
tion is proven.

By dropping the complementary constraints (13e), replacing the integrality constraints
z ∈ {0, 1}p with bound constraints z ∈ [0, 1]p, and utilizing the convex function φP to
reformulate (13b), we obtain the convex relaxation of (1)

y⊤y + min
β,z,u

− 2y⊤Xβ + µ
󰀓
e⊤u

󰀔
+ φP(z,β) (17a)

e⊤z ≤ k (17b)

β ≤ u, −β ≤ u (17c)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+ (17d)

for a given P ⊆ 2P . In the next section, we give an interpretation of formulation (17) as a
sparsity-inducing regularization penalty.

2.3 Interpretation as Regularization

Note that the relaxation (17) can be rewritten as:

min
β∈Rp

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 + ρR1(β; k)

where

ρR1(β; k) := min
z∈[0,1]p

φP(z,β)− β⊤(X⊤X + λI)β s.t. e⊤z ≤ k. (18)

is the (non-convex) rank-one regularization penalty. Observe that ρR1(β; k) is the difference
of two convex functions: the quadratic function β⊤(X⊤X + λI)β arising from the fitness
term and the Tikhonov regularization; and the projection of its convexification φP(z,β)
in the original space of the regression variables β. As we now show, unlike the usual ℓ1
penalty, the rank-one regularization penalty does not induce a bias when β is sparse.
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Theorem 5 If 󰀂β󰀂0 ≤ k, then ρR1(β; k) = 0.

Proof Let (β, z) ∈ Rp× [0, 1]p, and let R and Ah, h = 1, . . . ,m, correspond to an optimal
solution of (15). Since

β⊤(X⊤X + λI)β = β⊤Rβ +

m󰁛

h=1

β⊤Ahβ

≤ β⊤Rβ +

m󰁛

h=1

β⊤Ahβ

min{1, z(Th)}
= φP(z,β),

it follows that ρR1(β; k) ≥ 0 for any β ∈ Rp. Now let β̂ satisfy 󰀂β̂󰀂0 ≤ k, let T̂ =󰁱
i ∈ P : β̂i ∕= 0

󰁲
be the support of β̂ and let ẑ such that ẑi = i∈T̂ be the indicator vector

of T̂ . By construction, e⊤ẑ ≤ k and ẑ is feasible for problem (18). Moreover

ρR1(β̂; k) ≤ φP(ẑ, β̂)− β̂⊤(X⊤X + λI)β̂

=
󰁛

1≤h≤m

Th∩T̂ ∕=∅

󰀣
β̂⊤Ahβ̂

min{1, ẑ(Th)}
− β̂⊤Ahβ̂

󰀤
= 0.

Thus, ρR1(β̂; k) = 0.

The rank-one regularization penalty ρR1 can also be interpreted from an optimization
perspective: note that problem (15) is the separation problem that, given (β, z) ∈ Rp ×
[0, 1]p, finds a decomposition that results in a most violated inequality after applying the
rank-one strengthening. Thus, the regularization penalty ρR1(β; k) is precisely the violation
of this inequality when z is chosen optimally.

In §3 we derive an explicit form of ρR1(β; k) when p = 2; Figure 1 plots the graphs of the
usual regularization penalties and ρR1 for the two-dimensional case, and Figure 2 illustrates
the better sparsity inducing properties of regularization ρR1. Deriving explicit forms of ρR1
is cumbersome for p ≥ 3. Fortunately, problem (17) can be explicitly reformulated in an
extended space as an SDP and tackled using off-the-shelf conic optimization solvers.

2.4 Extended SDP Formulation

To state the extended SDP formulation, in addition to variables z ∈ [0, 1]p and β ∈ Rp, we
introduce variables w ∈ [0, 1]m corresponding to terms wh := min{1, z(Th)} and B ∈ Rp×p

corresponding to terms Bij = βiβj .
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Theorem 6 Problem (17) is equivalent to the SDP

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (19a)

s.t. e⊤z ≤ k (19b)

β ≤ u, −β ≤ u (19c)

wh ≤ e⊤Th
zTh ∀h = 1, . . . ,m (19d)

whBTh − βThβ
⊤
Th

∈ STh
+ ∀h = 1, . . . ,m (19e)

B − ββ⊤ ∈ SP
+ (19f)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, w ∈ [0, 1]m, B ∈ Rp×p. (19g)

Observe that (19) is indeed an SDP, as

whBTh − βThβ
⊤
Th

∈ STh
+ ⇔

󰀕
wh β⊤

Th

βTh BTh

󰀖
≽ 0. (20)

Indeed, from Schur’s complement, the right-hand side of (20) is equivalent to wh ≥ 0
(automatically satisfied) and BTh − 1

wh
βThβ

⊤
Th

≽ 0. Similarly, constraint (19f) can be

modeled as

󰀕
1 β⊤

β B

󰀖
≽ 0. Thus, constraints (19e) and (19f) are indeed SDP-representable,

and the remaining constraints and objective are linear.
Proof It is easy to check that (19) is strictly feasible (set β = 0, z = e, w > 0 and B = I).
Adding surplus variables Γ, Γh for h = 1, . . . ,m, write (19) as

y⊤y + min
(β,z,u,w)∈C

󰁱
− 2y⊤Xβ + e⊤u+ min

B,Γh,Γ
〈X⊤X + λI,B〉

󰁲

s.t. whBTh − Γh = βThβ
⊤
Th

∀h (Ah)

B − Γ = ββ⊤ (R)

Γh ∈ STh
+ ∀h

Γ ∈ SP
+

B ∈ Rp×p,

where C =
󰀋
β ∈ Rp, z ∈ [0, 1]p,u ∈ Rp

+,w ∈ [0, 1]m : (19b), (19c), (19d)
󰀌
. Using conic du-

ality for the inner minimization problem, we find the dual

y⊤y + min
(β,z,u,w)∈C

󰁱
− 2y⊤Xβ + e⊤u+ max

Ah,R
〈ββ⊤,R〉+

m󰁛

h=1

〈ββ⊤,Ah〉
󰁲

s.t.

m󰁛

j=1

whAh +R = X⊤X + λI

(Ah)ij = 0 for i ∕∈ Th or j ∕∈ Th

Ah ∈ SP
+ ∀T ∈ P

R ∈ SP
+ .

After substituting Āh = whAh and noting that there exists an optimal solution with
wh = min{1, z(Th)}, we obtain formulation (15).
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Note that if P = {∅}, there is no strengthening and (19) is equivalent to elastic net

(λ, µ > 0), lasso (λ = 0, µ > 0), ridge regression (λ > 0, µ = 0) or ordinary least

squares (λ = µ = 0). As |P| increases, the quality of the conic relaxation (19) for the
non-convex ℓ0-problem (1) improves, but the computational burden required to solve the
resulting SDP also increases. In particular, the full rank-one strengthening with P = 2P

requires 2p semidefinite constraints and is impractical. Proposition 4 suggests using down-
monotone sets P with limited size

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (21a)

s.t. e⊤z ≤ k (21b)

β ≤ u, −β ≤ u (21c)

(sdpr) 0 ≤ wT ≤ min{1, e⊤T zT } ∀T : |T | ≤ r (21d)

wTBT − βTβ
⊤
T ∈ ST

+ ∀T : |T | ≤ r (21e)

B − ββ⊤ ∈ SP
+ (21f)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, B ∈ Rp×p,w ∈ Rm (21g)

for some r ∈ Z+, where m = | {T ⊆ P : |T | ≤ r} |. Note that in the above formulation, wT

is a scalar corresponding to the T -th coordinate of the m-dimensional vector w. If r = 1,
then sdp1 reduces to the formulation of the optimal perspective relaxation proposed
by Dong et al. (2015), which is equivalent to using MC+ regularization. Our computations
experiments show that whereas sdp1 may be a weak convex relaxation for problems with
low diagonal dominance, sdp2 achieves excellent relaxation bounds even for the case of low
diagonal dominance within reasonable computing times. For clarity, we give the explicit
form of the case sdp2:

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (22a)

s.t. e⊤z ≤ k (22b)

β ≤ u, −β ≤ u (22c)
󰀕
zi βi
βi Bii

󰀖
≽ 0 ∀i = 1, . . . , p (22d)

(sdp2) 0 ≤ wij ≤ min{1, zi + zj} ∀i < j (22e)
󰀳

󰁃
wij βi βj
βi Bii Bij

βj Bij Bjj

󰀴

󰁄 ≽ 0 ∀i < j (22f)

󰀕
1 β⊤

β B

󰀖
≽ 0 (22g)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, B ∈ Rp×p,w ∈ Rp(p−1)/2. (22h)

Constraints (22e) and (22f) correspond exactly to constraints (21d)-(21e) for the cases
with |T | = 2. Moreover, for cases where T is a singleton, that is, T = {i} for some

18



Rank-one convexification for sparse regression

i ∈ {1, . . . , p}, constraints 0 ≤ wi ≤ zi can be omitted since it can be easily verified that
wi = zi in any optimal solution; thus constraints (21e) reduce, after substitution of wi,
to constraints (22d). Finally, constraints (22b), (22c) and (22g) correspond to constraints
(21b), (21c) and (21f), respectively.

2.5 Additional Comments

Just like lasso can be interpreted as the best possible convex relaxation obtained from
the set with bounded continuous variables {z ∈ {0, 1},β ∈ [0, 1] : β(1 − z) = 0} and the
perspective relaxation is the best possible relaxation obtained from set Q1, the relax-
ations proposed in this section are the best possible convex relaxations obtained from study
of Qr1

T . Since Qr1
T generalizes these two simpler sets, it follows that the proposed formu-

lations are a better approximation of (3) than lasso and the perspective relaxation.
Nonetheless, Qr1

T is still considerably simpler than the feasible region of (3) – which involves
constraints on the binary variables and general convex quadratic functions as described in
set QT . We now briefly discuss two recent results that shed additional light on the strength
of the formulations.

Wei et al. (2022) consider a generalization of Qr1
T in which the binary variables are

subject to additional constraints. The authors find that with the k-sparsity constraint󰁓p
i=1 zi ≤ k, the rank-one relaxation described in Theorem 2 is still the best possible

formulation. Moreover, the authors show that the convex hull for other classes of constraints
has a similar structure to cl conv(Qr1

T ), and formulation sdpr can be extended to those cases.

Wei et al. (2024) study set QT , and show that cl conv(QT ) can be described in an
extended formulation with O(p2) additional variables as the intersection of a single conic
constraint and a polyhedron Ψ. The proof of this result is not constructive: an explicit
description of Ψ is not given, as it requires an exponential number of linear inequalities.
Nonetheless, the authors show that formulations sdpr can be interpreted as relaxations in
this extended space obtained by adding linear inequalities that are guaranteed to define
high-dimensional faces of Ψ – the dimension of the face is larger for small values of r,
providing additional theoretical justification that the nonlinear inequalities (22d) and (22f)
are in fact strong approximations of cl conv(QT ).

3. Regularization for the Two-Dimensional Case

To better understand the properties of the proposed conic relaxations, in this section, we
study them from a regularization perspective. Consider formulation (17b) in Lagrangean
form with multiplier κ:

y⊤y +min − 2y⊤Xβ + e⊤u+ φP(z,β) + κe⊤z (23a)

β ≤ u, −β ≤ u (23b)

β ∈ RP , z ∈ [0, 1]P , u ∈ RP
+, (23c)

where p = 2, and

X⊤X + λI =

󰀕
1 + δ1 1

1 1 + δ2

󰀖
· (24)
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Observe that assumption (24) is without loss of generality, provided that X⊤X is not
diagonal: given a two-dimensional convex quadratic function a1β

2
1 +2a12β1β2 + a2β

2
2 (with

a12 ∕= 0), the substitution β̄1 = αβ1 and β̄2 = (a12/α)β2 with |a12|/a2 ≤ α ≤ a1 yields a
quadratic form satisfying (24). Also note that we are using the Lagrangian form instead
of the cardinality constrained form given in (18) for simplicity; however, since φP(z,β) is
convex in z, there exists a value of κ such that both forms are equivalent, i.e., result in the
same optimal solutions β̂ for the regression problem, and the objective values differ by the
constant κ · k.

If P = {∅, {1}, {2}}, then (23) reduces to a perspective strengthening of the form

y′y + min
z∈[0,1]2,β∈R2,

−2y′Xβ + (β1 + β2)
2 + δ1

β2
1

z1
+ δ2

β2
2

z2
+ µ󰀂β󰀂1 + κ󰀂z󰀂1. (25)

The links between (25) and regularization were studied3 in Dong et al. (2015).

Proposition 7 (Dong et al. (2015)) Problem (25) is equivalent to the regularization prob-
lem

min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 + ρMC+(β;κ, δ)

where

ρMC+(β;κ, δ) =

󰀻
󰁁󰀿

󰁁󰀽

󰁓2
i=1

󰀃
2
√
κδi|βi|− δiβ

2
i

󰀄
if δiβ

2
i ≤ κ, i = 1, 2

κ+ 2
√
κδi|βi|− δiβ

2
i if δiβ

2
i ≤ κ and δjβ

2
j > κ

2κ if δiβ
2
i > κ, i = 1, 2.

Regularization ρMC+ is non-convex and separable. Moreover, as pointed out by Dong et al.
(2015), the regularization given in Proposition 7 is the same as the Minimax Concave
Penalty given by Zhang et al. (2010); and, if λ = δ1 = δ2, then the regularization given in
Proposition 7 reduces to the reverse Huber penalty derived by Pilanci et al. (2015). Observe
that the regularization function ρMC+ is highly dependent on the diagonal dominance δ:
specifically, in the low diagonal dominance setting with δ = 0, we find that ρMC+(β;κ,0) = 0.

We now consider conic formulation (23) for the case P = {∅, {1}, {2}, {1, 2}}, corre-
sponding to the full rank-one strengthening:

y⊤y + min
z∈[0,1]2,β∈R2,

−2y⊤Xβ +
(β1 + β2)

2

min{1, z1 + z2}
+ δ1

β2
1

z1
+ δ2

β2
2

z2
+ µ󰀂β󰀂1 + κ󰀂z󰀂1. (26)

Proposition 8 Problem (26) is equivalent to the regularization problem

min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 + ρR1(β;κ, δ)

3. The case with µ = 0 is explicitly considered in Dong et al. (2015), but the results extend straightforwardly
to the case with µ > 0 . The results presented here differ slightly from those by Dong et al. (2015) to
account for a different scaling in the objective function.
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where

ρR1(β;κ, δ) =

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

2
√
κ
󰁴
β′(X⊤X + λI)β + 2

√
δ1δ2|β1β2|− β′(X⊤X + λI)β

if β′(X⊤X + λI)β + 2
√
δ1δ2|β1β2| < κ

κ+ 2
√
δ1δ2|β1β2|
if

󰀃√
δ1|β1|+

√
δ2|β2|

󰀄2 ≤ κ ≤ β′(X⊤X + λI)β + 2
√
δ1δ2|β1β2|󰁓2

i=1

󰀃
2
√
κδi|βi|− δiβ

2
i

󰀄

if
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄2
> κ & δiβ

2
i ≤ κ, i = 1, 2

κ+
√
κδi|βi|− δiβ

2
i if δiβ

2
i ≤ κ & δjβ

2
j > κ

2κ if δiβ
2
i > κ, i = 1, 2.

Proof We prove the result by projecting out the z variables in (26), i.e., giving closed-form
solutions for them. There are three cases to consider, depending on the optimal value for
z1 + z2.

• Case 1: z1 + z2 < 1 In this case, we find by setting the derivatives of the objective in
(26) with respect to z1 and z2 that

κ− δ1
β2
1

z21
− (β1 + β2)

2

(z1 + z2)
2 = 0

κ− δ2
β2
2

z22
− (β1 + β2)

2

(z1 + z2)
2 = 0

󰀼
󰁁󰁁󰁁󰁀

󰁁󰁁󰁁󰀾
=⇒ z2 =

󰁵
δ2
δ1

|β2|
|β1|

z1.

Define z̄ := z1√
δ1|β1|

, so z2 =
√
δ2|β2|z̄, and z1 + z2 =

󰀃√
δ1|β1|+

√
δ2|β2|

󰀄
z̄. Moreover, we

find that (26) reduces to

y⊤y + min
z̄>0,β∈R2

− 2y⊤Xβ + µ󰀂β󰀂1

+
(β1 + β2)

2 +
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄2
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄
z̄

+ κ
󰀓󰁳

δ1|β1|+
󰁳

δ2|β2|
󰀔
z̄. (27)

An optimal solution of (27) is attained at

z̄∗ =

󰁹󰁸󰁸󰁸󰁷
(β1+β2)

2+(
√
δ1|β1|+

√
δ2|β2|)

2

(
√
δ1|β1|+

√
δ2|β2|)

κ
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄 =

󰁴
(β1 + β2)

2 +
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄2
√
κ
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄

with objective value

y⊤y + min
β∈R2

−2y⊤Xβ + µ󰀂β󰀂1 + 2
√
κ

󰁵
(β1 + β2)

2 +
󰀓󰁳

δ1|β1|+
󰁳

δ2|β2|
󰀔2

= min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1

+

󰀣
2
√
κ

󰁵
(β1 + β2)

2 +
󰀓󰁳

δ1|β1|+
󰁳

δ2|β2|
󰀔2

− (β1 + β2)
2 − δ1β

2
1 − δ2β

2
2

󰀤
·

Finally, this case happens when z1 + z2 < 1 ⇔ (β1 + β2)
2 + (

√
δ1|β1|+

√
δ2|β2)2 < κ.

21



Atamtürk and Gómez

• Case 2: z1 + z2 > 1 In this case, we find by setting the derivatives of the objective

in (26) with respect to z1 and z2 that z̄i =
󰁴

δi
κ |βi| for i = 1, 2. Thus, in this case, for an

optimal solution z∗ of (26), we have z∗i = min{z̄i, 1}, and problem (26) reduces to

y⊤y + min
β∈R2,

−2y⊤Xβ + (β1 + β2)
2
+

2󰁛

i=1

max
󰁱
δiβ

2
i ,
󰁳
κδi|βi|

󰁲
+ µ󰀂β󰀂1

+

2󰁛

i=1

min
󰁱󰁳

κδi|βi|,κ
󰁲

= min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1+
2󰁛

i=1

󰀓
max

󰁱
δiβ

2
i ,
󰁳
κδi|βi|

󰁲
+min

󰁱󰁳
κδi|βi|,κ

󰁲
−δiβ

2
i

󰀔

= min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1+

󰀻
󰁁󰀿

󰁁󰀽

󰁓2
i=1

󰀃
2
√
κδi|βi|− δiβ

2
i

󰀄
if δiβ

2
i ≤ κ, i = 1, 2√

κδi|βi|− δiβ
2
i + κ if δiβ

2
i ≤ κ & δjβ

2
j > κ

2κ if δiβ
2
i > κ, i = 1, 2.

Finally, this case happens when z1 + z2 > 1 ⇔
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄2
> κ. Observe that, in

this case, the penalty function is precisely the one given in Proposition 7.

• Case 3: z1 + z2 = 1 In this case, problem (26) reduces to

y⊤y + min
0≤z1≤1,β∈R2,

−2y⊤Xβ + (β1 + β2)
2 + δ1

β2
1

z1
+ δ2

β2
2

1− z1
+ µ󰀂β󰀂1 + κ. (28)

Setting derivative with respect to z1 in (28) to 0, we have

0 = δ1β
2
1(1− z1)

2 − δ2β
2
2z

2
1

= δ1β
2
1 − 2δ1β

2
1z1 + (δ1β

2
1 − δ2β

2
2)z

2
1 .

Thus, we find that

z1 =
2δ1β

2
1 ±

󰁳
4δ21β

4
1 − 4δ1β2

1(δ1β
2
1 − δ2β2

2)

2
󰀃
δ1β2

1 − δ2β2
2

󰀄

=
δ1β

2
1 ±

√
δ1δ2|β1β2|

δ1β2
1 − δ2β2

2

=

√
δ1|β1|(

√
δ1|β1| ±

√
δ2|β2|)

(
√
δ1|β1|+

√
δ2|β2|)(

󰁳
δ1|β1|−

√
δ2|β2|)

·

Moreover, since 0 ≤ z1 ≤ 1, we have z1 =
√
δ1|β1|√

δ1|β1|+
√
δ2|β2|

and 1 − z1 =
√
δ2|β2|√

δ1|β1|+
√
δ2|β2|

.

Substituting in (28), we find the equivalent form

y⊤y + min
β∈R2,

−2y⊤Xβ + (β1 + β2)
2 +

󰀓󰁳
δ1|β1|+

󰁳
δ2|β2|

󰀔2
+ µ󰀂β󰀂1 + κ

= min
β∈R2

󰀂y −Xβ󰀂22 + λ󰀂β󰀂22 + µ󰀂β󰀂1 + κ+ 2
󰁳

δ1δ2|β1β2|.

This final case occurs when neither case 1 or 2 does, i.e., when
󰀃√

δ1|β1|+
√
δ2|β2|

󰀄2 ≤ κ ≤
(β1 + β2)

2 + (
√
δ1|β1|+

√
δ2|β2)2.
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Observe that, unlike ρMC+ , the function ρR1 is not separable in β1 and β2 and does not
vanish when δ = 0: indeed, for δ = 0 we find that

ρR1(β;κ,0) =

󰀫
2
√
κ
󰁴
β′(X⊤X + λI)β − β′(X⊤X + λI)β if β′(X⊤X + λI)β < κ

κ if 0 ≤ κ ≤ β′(X⊤X + λI)β.

The plots of ρMC+ and ρR1 shown in Figures 1 and 2 correspond to setting the natural value
κ = 1.

4. Conic Quadratic Relaxations

As mentioned in §1, strong convex relaxations of problem (1), such as sdpr, can either be
directly used to obtain good estimators via conic optimization, which is the approach we
use in our computations or can be embedded in a branch-and-bound algorithm to solve (1)
to optimality. However, using SDP formulations such as (19) in branch-and-bound may
be daunting since, to date, efficient branch-and-bound algorithms with SDP relaxations
are not available. In contrast, conic quadratic optimization problems are considerably
easier to solve than semidefinite optimization problems, thus scaling to larger dimensions.
Moreover, there exist off-the-shelf mixed-integer conic quadratic optimization solvers that
are actively maintained and improved by numerous software vendors. In this section, we
show how the proposed conic relaxations, and specifically sdp2, can be implemented in a
conic quadratic framework. The resulting convex formulations can then be directly used as
a fast approximation to the SDP formulations presented in §2, and pave the way towards
an integration with branch-and-bound solvers4.

4.1 Two-Dimensional PSD Constraints

Constraint (22d), β2
i ≤ ziBii , is a rotated cone constraint as zi ≥ 0 and Bii ≥ 0 in any

feasible solution of (21), and thus conic quadratic representable.

4.2 Three-Dimensional PSD Constraints

As we now show, constraints (22f) can be accurately approximated using conic quadratic
constraints.

4. An effective implementation would require careful constraint management strategies and integration
with the different aspects of branch-and-bound solvers, e.g., branching strategies and heuristics. Such
an implementation is beyond the scope of the paper.
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Proposition 9 Problem sdp2 is equivalent to the optimization problem

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (29a)

s.t. e⊤z ≤ k (29b)

β ≤ u, −β ≤ u (29c)

ziBii ≥ β2
i ∀i ∈ P (29d)

0 ≤ wij ≤ 1, wij ≤ zi + zj ∀i ∕= j (29e)

0 ≥ max
α≥0

󰀫
αβ2

i + 2βiβj + β2
j /α

wij
−2Bij−αBii−Bjj/α

󰀬
∀i ∕= j (29f)

0 ≥ max
α≥0

󰀫
αβ2

i − 2βiβj + β2
j /α

wij
+2Bij−αBii−Bjj/α

󰀬
∀i ∕= j (29g)

B − ββ′ ∈ SP
+ (29h)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, B ∈ Rp×p. (29i)

Proof It suffices to compute the optimal value of α in (29f)–(29g). Observe that the rhs
of (29f) can be written as

v =
2βiβj
wij

− 2Bij −min
α≥0

󰀫
α

󰀕
Bii −

β2
i

wij

󰀖
+

1

α

󰀣
Bjj −

β2
j

wij

󰀤󰀬
· (30)

Moreover, in an optimal solution of (29), we have that wij = min{1, zi + zj}. Thus, due to
constraints (29d), we find that Bii − β2

i/wij ≥ 0 in optimal solutions of (29), and equality
only occurs if either zi = 1 or zj = 0. If either Bii = β2

i/min{1,zi+zj} or Bjj = β2
j/min{1,zi+zj},

then the optimal value of (30) is v = 2βiβj/min{1,zi+zj} − 2Bij , by setting α → ∞ or α = 0,
respectively. Otherwise, the optimal α equals

α =

󰁶
Bjjwij − β2

j

Biiwij − β2
i

, (31)

with the objective value

v =
2βiβj
wij

− 2Bij − 2

󰁹󰁸󰁸󰁷
󰀕
Bii −

β2
i

wij

󰀖󰀣
Bjj −

β2
j

wij

󰀤
.

Observe that this expression is also correct whenBii = β2
i/min{1,zi+zj} orBjj = β2

j/min{1,zi+zj}.
Thus, constraint (29f) reduces to

0 ≥ βiβj −Bijwij −
󰁵

󰀃
Biiwij − β2

i

󰀄 󰀓
Bjjwij − β2

j

󰀔
. (32)

Similarly, it can be shown that constraint (29g) reduces to

0 ≥ −βiβj +Bijwij −
󰁵

󰀃
Biiwij − β2

i

󰀄 󰀓
Bjjwij − β2

j

󰀔
. (33)

24



Rank-one convexification for sparse regression

More compactly, constraints (32)–(33) are equivalent to
󰀃
wijBii − β2

i

󰀄 󰀃
wijBjj − β2

j

󰀄
≥ (wijBij − βiβj)

2 . (34)

Moreover, note that constraints (21e) with T = {i, j} are equivalent to
󰀕

wijBii − β2
i wijBij − βiβj

wijBij − βiβj wijBjj − β2
j

󰀖
∈ S2

+

⇔ wijBii − β2
i ≥ 0, wijBjj − β2

j ≥ 0, and (34).

Since the first two constraints are implied by (29d) and wij = min{1, zi + zj} in optimal
solutions, the proof is complete.

Observe that, for any fixed value of α, constraints (29f)–(29g) are conic quadratic rep-
resentable. Thus, we can obtain relaxations of (29) of the form

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (35a)

s.t. (29b), (29c), (29d), (29e), (29h), (29i) (35b)

0 ≥
αβ2

i + 2βiβj + β2
j /α

min{1, zi + zj}
−2Bij−αBii −Bjj/α, ∀i ∕= j,α ∈ V +

ij (35c)

0 ≥
αβ2

i − 2βiβj + β2
j /α

min{1, zi + zj}
+2Bij−αBii−Bjj/α, ∀i ∕= j,α ∈ V −

ij , (35d)

where V +
ij and V −

ij are any finite subsets of R+. Relaxation (35) can be refined dynamically:
given an optimal solution of (35), new values of α generated according to (31) (resulting in
most violated constraints) can be added to sets V +

ij and V −
ij , resulting in tighter relaxations.

Note that the use of cuts (as described here) to improve the continuous relaxations of mixed-
integer optimization problems is one of the main reasons of the dramatic improvements of
MIO software (Bixby, 2012).

In relaxation (35), V +
ij and V −

ij can be initialized with any (possibly empty) subsets of

R+. However, setting V +
ij = V −

ij = {1} yields a relaxation with a simple interpretation,
discussed next.

4.3 Diagonally Dominant Matrix Relaxation

Let Λ ∈ SP
+ be a diagonally-dominant matrix. Observe that for any (z,β) ∈ {0, 1}p × Rp

such that β ◦ (e− z) = 0,

t ≥ β⊤Λβ ⇔ t ≥
p󰁛

i=1

󰀕
Λii −

󰁛

j ∕=i

|Λij |
󰀖
β2
i +

p󰁛

i=1

p󰁛

j=i+1

|Λij | (βi + sign(Λij)βj)
2

⇔ t ≥
p󰁛

i=1

󰀕
Λii −

󰁛

j ∕=i

|Λij |
󰀖
β2
i

zi
+

p󰁛

i=1

p󰁛

j=i+1

|Λij |
(βi + sign(Λij)βj)

2

min{1, zi + zj}
, (36)

where the last line follows from using perspective strengthening for the separable quadratic
terms and using (7) for the non-separable, rank-one terms. Atamtürk et al. (2021) use a
similar strengthening for signal estimation based on nonnegative pairwise quadratic terms.
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We now consider using decompositions of the form Λ + R = X⊤X + λI, where Λ is
a diagonally dominant matrix and R ∈ SP

+ . Given such a decomposition, inequalities (36)
can be used to strengthen the formulations. Specifically, we consider relaxations of (3) of
the form

y⊤y +min − 2y⊤Xβ + e⊤u+ φ̂(z,β) (37a)

(17b), (17c), (17d), (37b)

where

φ̂(z,β) := max
Λ,R

β⊤Rβ +

p󰁛

i=1

󰀕
Λii−

󰁛

j ∕=i

|Λij |
󰀖
β2
i

zi
+

p󰁛

i=1

p󰁛

j=i+1

|Λij |
(βi + sign(Λij)βj)

2

min{1, zi + zj}
(38a)

s.t. Λ+R = X⊤X + λI (38b)

Λii ≥
󰁛

j<i

|Λji|+
󰁛

j>i

|Λij | ∀i ∈ P (38c)

R ∈ SP
+ . (38d)

Proposition 10 Problem (37) is equivalent to

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (39a)

s.t. e⊤z ≤ k (39b)

β ≤ u, −β ≤ u (39c)

ziBii ≥ β2
i ∀i ∈ P (39d)

(sdpdd) 0 ≤ wij ≤ 1, wij ≤ zi + zj ∀i ∕= j (39e)

0 ≥
β2
i + 2βiβj + β2

j

wij
− 2Bij −Bii −Bjj ∀i ∕= j (39f)

0 ≥
β2
i − 2βiβj + β2

j

wij
+ 2Bij −Bii −Bjj ∀i ∕= j (39g)

B − ββ′ ∈ SP
+ (39h)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, B ∈ Rp×p. (39i)

Proof Let Γ,Γ+,Γ− be nonnegative p × p matrices such that: Γii = Λii and Γij = 0 for
i ∕= j; Γ+

ii = Γ−
ii = 0 and Γ+

ij − Γ−
ij = Λij for i ∕= j. Problem (38) can be written as

φ̂(z,β) := max
Γ,Γ+,Γ−R

β⊤Rβ +

p󰁛

i=1

󰀕
Γii −

󰁛

j ∕=i

(Γ+
ij + Γ−

ij)

󰀖
β2
i

zi
(40a)

+

p󰁛

i=1

p󰁛

j=i+1

󰀕
Γ+
ij

(βi + βj)
2

min{1, zi + zj}
+ Γ−

ij

(βi − βj)
2

min{1, zi + zj}

󰀖
(40b)

s.t. Γ+ Γ+ + Γ− +R = X⊤X + λI (40c)

Γii ≥
󰁛

j<i

(Γ+
ji + Γ−

ji) +
󰁛

j>i

(Γ+
ij + Γ−

ij) ∀i ∈ P (40d)

R ∈ SP
+ . (40e)
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Then, similarly to the proof of Theorem 6, it is easy to show that the dual of (40) is precisely
(39).

4.4 Relaxing the (p + 1)-Dimensional PSD Constraint

We now discuss a relaxation of the p-dimensional semidefinite constraint B − ββ⊤ ∈ SP
+ ,

present in all formulations. Let V be a matrix whose j-th column Vj is an eigenvector of
X⊤X. Consider the optimization problem

φP(z,β) := max
AT ,R,π

β⊤Rβ +
󰁛

T∈P

β⊤
T ATβT

min{1, z(T )} (41a)

s.t.
󰁛

T∈P
AT +R = X⊤X + λI (41b)

AT ∈ ST
+ ∀T ∈ P (41c)

R = V diag(π)V ⊤ (41d)

π ∈ Rn
+. (41e)

Observe that the objective and constraints (41a)–(41c) are identical to (15). However,

instead of (15e), we have R =
󰁓min{p,n}

j=1 πjVjV
⊤
j . Moreover, since π ≥ 0, R ∈ SP

+ in
any feasible solution of (41), thus (15) is a relaxation of (41), and, hence, φP is indeed a
lower bound on φP . Finally, (41) is feasible if λ = 0 or P contains all singletons, as it is
possible to set A{i} = λ, AT = 0 for |T | > 1, and set π equal to the eigenvalues of X⊤X.
Therefore, instead of (17), one may use the simpler convex relaxation

y⊤y +min − 2y⊤Xβ + e⊤u+ φP(z,β) (42a)

e⊤z ≤ k (42b)

β ≤ u, −β ≤ u (42c)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+ (42d)

for (1).
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Proposition 11 If P = {T ⊆ P : |T | ≤ 2}, then problem (42) is equivalent to

y⊤y +min − 2y⊤Xβ + e⊤u+ 〈X⊤X + λI,B〉 (43a)

s.t. e⊤z ≤ k (43b)

β ≤ u, −β ≤ u (43c)
󰀕
zi βi
βi Bii

󰀖
≽ 0 ∀i = 1, . . . , p (43d)

(sdpLB) 0 ≤ wij ≤ min{1, zi + zj} ∀i < j (43e)
󰀳

󰁃
wij βi βj
βi Bii Bij

βj Bij Bjj

󰀴

󰁄 ≽ 0 ∀i < j (43f)

V ⊤
j

󰀓
B − ββ⊤

󰀔
Vj ≥ 0 ∀j = 1, . . . ,min{n, p} (43g)

β ∈ Rp, z ∈ [0, 1]p, u ∈ Rp
+, B ∈ Rp×p. (43h)

Proof The proof is based on conic duality similar to the proof of Theorem 6.

Observe that in formulation (43), the (p + 1)-dimensional semidefinite constraint (19f) is
replaced with min{p, n} rank-one quadratic constraints (43g). We denote by sdpLB the
relaxation of sdp2 obtained by replacing (21f) with (43g). In general, sdpLB is still an SDP
due to constraints (43f); however, note that sdpLB can be implemented in a conic quadratic
framework by using cuts, as described in §4.2. Moreover, constraints (43g) could also be
dynamically refined to better approximate the SDP constraint, or formulation (43) could be
improved with ongoing research on approximating SDP via mixed-integer conic quadratic
optimization (Kocuk et al., 2016, 2018).

Remark 12 We observe that formulation (43) is solved substantially faster than sdp2 (with
Mosek) with constraints (43f) formulated as semi-definite constraints. Indeed, the O(p2)
low-dimensional constraints (22f) can actually be handled efficiently, but the major com-
putational bottleneck towards solving sdp2 is handling the single large-dimensional positive
semi-definite constraint (22g).

Remark 13 Since the first submission of this paper, additional relaxations and approxi-
mations of sdpr have been proposed in the literature, see Ben-Ameur (2024).

5. Computations

In this section, we report computational experiments with the proposed conic relaxations
on synthetic as well as benchmark datasets. Semidefinite optimization problems are solved
with MOSEK 8.1 solver, and conic quadratic optimization problems (continuous and mixed-
integer) are solved with CPLEX 12.8 solver. All computations are performed on a laptop
with a 1.80GHz Intel R©CoreTM i7-8550U CPU and 16 GB main memory. All solver parame-
ters were set to their default values. We divide our discussion in two parts: first, in §5.2, we
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focus on the relaxation quality of sdpr and its ability to approximate the exact ℓ0-problem
(1); then, in §5.3, we adopt the same experimental framework used by Bertsimas et al.
(2016); Hastie et al. (2017) to generate synthetic instances and evaluate the proposed conic
formulations from an inference perspective. In both cases, our results compare favorably
with existing approaches in the literature. Finally, in §5.4, we summarize our findings and
discuss possible extensions.

5.1 Datasets

We use the benchmark datasets in Table 1. The first five were first used by Miyashiro and
Takano (2015) in the context of MIO algorithms for best subset selection, and later used
by Gómez and Prokopyev (2021). The diabetes dataset with all second interactions was
introduced by Efron et al. (2004) in the context of lasso, and later used by Bertsimas et al.
(2016). A few datasets require some manipulation to eliminate missing values and handle
categorical variables. The processed datasets before standardization5 can be downloaded
from http://atamturk.ieor.berkeley.edu/data/sparse.regression.

In addition, we also use synthetic datasets generated similarly to those used by Bertsimas
et al. (2016); Hastie et al. (2017). Here we present a summary of the simulation setup and
refer the readers to Hastie et al. (2017) for an extended description. . For given dimensions
n, p, sparsity s, predictor autocorrelation ρ, and signal-to-noise ratio SNR, the instances
are generated as follows:

1. The (true) coefficients β0 have the first s components equal to one, and the rest equal
to zero.

2. The rows of the predictor matrix X ∈ Rn×p are drawn from i.i.d. distributions
Np(0,Σ), where Σ ∈ Rp×p has entry (i, j) equal to ρ|i−j|.

3. The response vector y ∈ Rn is drawn fromNp(Xβ0,σ
2I), where σ2 = β0

⊤Xβ0/SNR.

Similar data generation has been used in the literature (Bertsimas et al., 2016; Hastie et al.,
2017).

5.2 Relaxation Quality

In this section, we test the ability of sdp2, given in (22), and of sdpLB, given in (43), to
provide near-optimal solutions to problem (1), and compare its performance with MIO
approaches. In §5.2.1, we focus on the pure best subset selection problem with λ = 0, which
has received relatively little attention in the literature (Bertsimas et al., 2016); in §5.2.2
we consider problems with ℓ0-ℓ2 regularization, which has received more attention in the
literature (Bertsimas and Van Parys, 2020; Hazimeh and Mazumder, 2020; Hazimeh et al.,
2022; Xie and Deng, 2020); in §5.2.3 we study the impact of model complexity parameter r
on the relaxation quality, and in §5.2.4 we study the scalability of the proposed methods.

Computing optimality gaps for sdpr The optimal objective value ν∗ℓ of sdpr provides
a lower bound on the optimal objective value of (1). To obtain an upper bound, we use a
simple greedy heuristic to retrieve a feasible solution for (1): given an optimal solution vector

5. In our experiments, the datasets were standardized first.
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β̄
∗
for sdpr, let β̄

∗
(k) denote the k-th largest absolute value. For T =

󰁱
i ∈ P : |β̄∗

i | ≥ β̄∗
(k)

󰁲
,

let β̂T be the k-dimensional ols/ridge estimator using only predictors in T , i.e.,

β̂T = (X⊤
T XT + λIT )

−1X⊤
T y,

where XT denotes the n× k matrix obtained by removing the columns with indexes not in
T , and let β̃ be the P -dimensional vector obtained by filling the missing entries in β̂T with
zeros. Since 󰀂β̃󰀂0 ≤ k by construction, β̃ is feasible for (1), and its objective value νu is an
upper bound on the optimal objective value of (1). Moreover, the optimality gap provided
by any approach can be computed as

gap =
νu − ν∗ℓ

ν∗ℓ
× 100. (44)

While stronger relaxations result in improved lower bounds ν∗ℓ , the corresponding heuristic
upper bounds νu are not necessarily better; thus, the optimality gaps are not guaranteed
to improve with stronger relaxations. Nevertheless, as shown next, stronger relaxations, in
general, yield much smaller gaps in practice.

We point out that the main focus of the strong relaxations is to obtain improved lower
bounds ν∗ℓ . Randomized rounding methods (Pilanci et al., 2015; Xie and Deng, 2020), more
sophisticated rounding heuristics (Dong et al., 2015), or alternative heuristic methods (Haz-
imeh and Mazumder, 2020) can be used to obtain improved upper bounds. Nevertheless,
the quality of the upper bounds obtained from the greedy rounding method can be used
to estimate how well the solutions from the relaxations match the sparsity pattern of the
optimal solution.

5.2.1 λ = 0 case

For each dataset with λ = µ = 0, we solve the conic relaxations of (1) sdp1 and sdp2 as well
as sdpLB and the mixed-integer formulation big-M given by (3)–(4). In our experiments, we
set M = 3󰀂βols󰀂∞, where βols is the ordinary least square estimator6 and set a time limit
of 10 minutes. For data with p ≤ 40 we solve problems with cardinalities k ∈ {3, . . . , 10},
and for diabetes and crime we solve problems with k ∈ {3, . . . , 30}. Table 2 shows, for
each dataset and method, the average lower bound (LB) and upper bound (UB) found by
each method, the gap (44), and the time required to solve the problems (in seconds) – the
average is taken across all k values. In all cases, lower and upper bounds are scaled so that
the best upper bound for any given instance has value ν∗u = 100.

The big-M method is highly inconsistent and prone to numerical difficulties due to the
use of big-M constraints. First, for three datasets (servo, auto MPG and breast cancer)
the method fails due to numerical issues (“failure to solve MIP subproblem”). In addition,
for solar flare the solver reports very fast solution times but the solutions are, in fact,
infeasible for problem (1): by default in CPLEX, if zi ≤ 10−5 in a solution then zi is
deemed to satisfy the integrality constraint zi ∈ {0, 1}. Thus, if the big-M constant is large
enough, then constraint (4) may, in fact, allow nonzero values for βi even when “zi = 0”.
In particular, in solar flare we found that the solution βmio reported by the MIO solver

6. Bertsimas et al. (2016) set M = 2󰀂β̂󰀂∞ for some heuristic solution β̂
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dataset method LB UB gap(%) time

housing

sdp1 99.4±0.6 100.1±0.1 0.7±0.0 0.03±0.02
sdp2 99.6±0.6 100.1±0.1 0.5±0.6 0.07±0.03
sdpLB 98.8±0.6 100.4±0.1 1.6±0.8 0.06±0.03
big-M 100.0±0.0 100.0±0.0 0.0±0.0 0.01±0.01

servo

sdp1 86.8±5.5 109.5±10.3 27.3±20.6 0.02±0.01
sdp2 94.9±2.9 106.2±16.5 12.2±19.8 0.10±0.01
sdpLB 89.5±2.7 109.2±15.5 21.8±14.9 0.17±0.03
big-M† † † † †

auto MPG

sdp1 75.3±10.3 115.3±6.0 55.8±23.7 0.07±0.04
sdp2 96.7±3.3 100.5±0.8 4.0±4.2 0.24±0.02
sdpLB 78.8±7.7 101.6±2.7 30.0±14.0 0.40±0.09
big-M† † † † †

solar flare

sdp1 97.5±1.5 103.3±1.1 6.0±2.0 0.07±0.03
sdp2 99.2±0.8 100.0±0.0 1.0±0.6 0.28±0.06
sdpLB 97.8±1.6 102.3±1.9 4.6±2.7 0.13±0.02

big-M†† 98.1±1.7 98.1±1.7 - 0.01±0.01

breast cancer

sdp1 88.9±3.1 101.5±1.7 14.4±5.6 0.15±0.02
sdp2 98.0±0.6 100.4±0.8 2.4±1.1 0.77±0.07
sdpLB 94.8±0.5 100.5±0.7 6.0±0.5 0.40±0.03
big-M† † † † †

diabetes

sdp1 95.2±3.2 115.2±11.8 22.2±16.3 3.58±0.77
sdp2 97.4±1.3 105.4±4.2 8.2±5.2 9.28±1.12
sdpLB† † † † †
big-M 99.0±0.9 100.0±0.0 1.0±0.9 416.17±260.57

crime

sdp1 97.8±1.3 103.2±2.4 5.6±3.6 17.82±0.98
sdp2 99.0±0.8 101.6±2.0 2.7±2.7 45.29±4.06
sdpLB 94.6±2.0 109.7±2.8 16.0±4.9 5.87±0.43
big-M 96.4±1.7 100.0±0.0 3.7±1.8 527.03±185.64

† Error in solving problem.
†† Infeasible solution is reported as optimal.

Table 2: Results with λ = 0 on real instances. Lower and upper bounds are scaled so that
the best upper bound for a given instance is 100. Mean ± stdev are reported.

satisfies7 󰀂βmio󰀂0 = 20, regardless of the value of k used, violating the sparsity constraint.

7. We consider βi ∕= 0 whenever 󰀂βi󰀂 > 10−4.
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We also point out that sdpLB struggles with numerical difficulties in diabetes: the problems
are incorrectly found to be unbounded. In contrast, sdpr methods are solved without
numerical difficulties.

In terms of the relaxation quality, we find that sdp2 is the best as expected. It consis-
tently delivers better lower and upper bounds compared to the other conic relaxations and
even outperforms big-M in terms of lower bounds and gaps in the largest dataset (crime).
The strength of the relaxation comes at the expense 2–4-fold larger computation time than
sdp1, but on the other hand sdp2 is substantially faster than big-M on large datasets. We
see that neither sdp1 nor sdpLB dominates each other in terms of relaxation quality. While
sdp1 is faster on the smaller datasets, sdpLB is faster on crime, indicating that sdpLB may
scale better (we corroborate this statement in §5.2.4). Finally, big-M, in datasets where nu-
merical issues do not occur, is able to find high-quality solutions consistently but struggles
to find matching lower bound in larger instances despite significantly higher computation
time spent.

Figures 4 and 5 present detailed results on lower bounds and gaps as a function of the
sparsity parameter k for the diabetes and crime datasets. For small values of k, big-M is
arguably the best method, solving the problems to optimality. However, as k increases, the
quality of the lower bounds and gaps deteriorate: for diabetes, sdp2 finds better solutions
than big-M for k ≥ 18; for crime, sdp1 and sdp2 find better lower bounds for k ≥ 8 (and, in
the case of sdp2, better gaps as well), and sdpLB matches the lower bound found by big-M

for k ≥ 14, despite requiring only five seconds (instead of 10 minutes) to find such lower
bounds. Observe that the number of possible supports

󰀃
p
k

󰀄
= O(pk) for problem (1) scales

exponentially with k, thus enumerative methods such as branch-and-bound may struggle
as k grows.
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Figure 4: Detailed results on the diabetes dataset with λ = 0.
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Figure 5: Detailed results on the crime dataset with λ = 0.

5.2.2 λ > 0 case

For each dataset with8 λ = 0.05 and µ = 0, we solve the conic relaxations of (1) sdp1,
sdp2 and sdpLB and the “big-M free” mixed-integer formulation (5) with a time limit of
10 minutes (persp). This MIO formulation is possible since λ > 0, and has been shown
to be competitive (Xie and Deng, 2020; Hazimeh et al., 2022) with the tailored algorithm
proposed by Bertsimas and Van Parys (2020). For datasets with p ≤ 40 we solve the
problems with cardinalities k ∈ {3, . . . , 10}, and for diabetes and crime we solve the
problems with k ∈ {3, . . . , 30}. Table 3 shows, for each dataset and method, the average
lower bound (LB) and upper bound (UB) found by each method, the gap (44), and the time
required to solve the problems (in seconds) – the average is taken across all k values. In
all cases, lower and upper bounds are scaled so that the best upper bound for any given
instance has value ν∗u = 100.

We observe that instances with λ = 0.05 are much easier to solve than those with
λ = 0: no numerical issues occur for sdpLB or persp, and lower and upper bounds are much
better for all methods. The mixed integer formulation persp comfortably solves the small
instances with p ≤ 40 to optimality, but sdp2 yields better lower bounds and gaps for the
larger instances diabetes and crime in a fraction of the time used by persp.

Figures 6 and 7 present lower bounds and gaps as a function of the regularization
parameter λ, for diabetes and crime datasets (with k = 15). We observe that for a low
value of λ, persp struggles to find good lower bounds, e.g., it is outperformed by all conic
relaxations in crime for λ ≤ 0.02, and is worse than sdp2 for λ ≤ 0.1 in terms of lower
bounds and gaps in both datasets. As λ increases, all methods deliver better bounds, and
persp is eventually able to solve all problems to optimality.

As expected, the performance of persp improves as λ increases. The perspective relax-
ation discussed in §1.3 exploits the separable terms introduced by the ℓ2-regularization: as
λ increases, these separable terms have a larger weight in the objective, and the strength
of the relaxation improves as a consequence. Note that the conic relaxations also improve
with larger λ: they are based on decompositions of the matrix X⊤X + λI into one- and

8. Since data is standardized so that each column has a unit norm, a value of λ = 0.05 corresponds to an
increase of 5% in the diagonal elements of the matrix X⊤X + λI.
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dataset method LB UB gap(%) time

housing

sdp1 99.7±0.4 100.2±0.3 0.5±0.6 0.03±0.02
sdp2 99.8±0.3 100.1±0.2 0.3±0.5 0.06±0.02
sdpLB 99.5±0.4 100.3±0.3 0.8±0.6 0.06±0.02
persp 100.0±0.0 100.0±0.0 0.0±0.0 0.11±0.03

servo

sdp1 95.9±3.0 102.2±6.7 6.7±4.1 0.03±0.01
sdp2 99.5±0.5 100.6±1.1 1.1±1.6 0.11±0.01
sdpLB 97.6±1.4 102.0±2.1 4.6±3.3 0.16±0.02
persp 100.0±0.0 100.0±0.0 0.0±0.0 0.28±0.13

auto MPG

sdp1 89.1±6.1 101.4±1.2 14.4±8.5 0.05±0.01
sdp2 99.8±0.2 100.0±0.1 0.2±0.3 0.25±0.04
sdpLB 92.7±3.1 101.1±1.5 9.2±4.0 0.35±0.02
persp 100.0±0.0 100.0±0.0 0.0±0.0 1.29±0.60

solar flare

sdp1 99.3±0.5 100.1±0.1 0.8±0.5 0.07±0.01
sdp2 99.9±0.1 100.1±0.1 0.2±0.1 0.28±0.03
sdpLB 99.2±0.7 100.4±1.2 1.2±1.0 0.16±0.03
persp 100.0±0.0 100.0±0.0 0.0±0.0 1.75±1.07

breast cancer

sdp1 94.9±1.8 100.8±0.4 6.3±2.4 0.18±0.04
sdp2 99.6±0.2 100.1±0.2 0.5±0.3 0.72±0.06
sdpLB 97.5±0.6 100.5±0.4 2.9±0.9 0.36±0.05
persp 100.0±0.0 100.0±0.0 0.0±0.0 56.12±44.34

diabetes

sdp1 98.9±0.6 100.2±0.2 1.2±0.7 2.13±0.24
sdp2 99.6±0.2 100.1±0.1 0.5±0.3 5.83±0.79
sdpLB 98.2±1.3 100.3±0.3 2.2±1.4 1.48±0.18
persp 99.4±0.5 100.0±0.0 0.6±0.5 441.90±258.29

crime

sdp1 99.3±0.9 100.3±0.9 1.1±1.7 19.15±1.30
sdp2 99.7±0.4 100.2±0.8 0.5±1.0 43.86±2.38
sdpLB 98.7±1.0 100.7±1.3 2.0±2.3 5.30±0.35
persp 99.5±0.4 100.1±0.1 0.6±0.4 518.03±175.65

Table 3: Results with λ = 0.05 on real instances. Lower and upper bounds are scaled so
that the best upper bound for a given instance is 100. Mean ± stdev are reported.

two-variable terms, and the addition of the separable terms allows for a much richer set
of decompositions. For large values of λ, X⊤X + λI becomes highly diagonal dominant,
and the perspective relaxation alone provides a substantial strengthening. In this case,
the advanced conic relaxations have a marginal impact and MIO methods with perspective
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Figure 6: Detailed results on the diabetes dataset with k = 15.
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Figure 7: Detailed results on the crime dataset with k = 15.

strengthening performs better overall. In contrast, for low values of λ, the conic relaxations
result in substantial strengthening over the perspective relaxation, and sdpr outperforms
persp as a consequence.

5.2.3 The effect of model complexity r

In §5.2.1–5.2.2 we reported computations with sdpr with r ≤ 2. In experiments with
those datasets, sdp3 yields almost the same strengthening as sdp2, but with much larger
computational cost. Since sdp2 already achieves gaps close to 0 in those instances, there is
little room for improvement with higher values of r.

If the matrix X⊤X + λI has high diagonal dominance, which happens if n > p or if λ
is large, then there are many ways to decompose it into low-dimensional rank-one terms,
and sdpr with r small achieves good relaxations. In contrast, if the matrix X⊤X +λI has
low diagonal dominance, it may be difficult to extract low-dimensional rank-one terms. In
the extreme case of a rank-one case matrix, while sdpp results in the convex description,
sdpr with r < p achieves no improvement. In this section, we illustrate this phenomenon.
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First, we test on small synthetic instances with p = 15 and n = 10, setting the true
sparsity to s = 5, autocorrelation ρ = 0.35, signal-noise-ration SNR ∈ {1, 5}, sparsity
k ∈ {3, 4, 5, 6, 7, 8}, and for each combination of parameters we generate five instances. We
report in Figure 8 the gaps obtained by sdpr for different values of r and λ – averaging across
instances and different values of SNR and k. In addition, Figure 9 depicts the distribution of
computational times required to solve the problems. We observe that for λ = 0, sdpr with
r ≤ 4 results in no strengthening and gaps of 100%; sdp5 results in a small improvement
(note that 5 = p− n), while sdpr with r ≥ 6 results in larger improvements. These results
suggest that, with λ = 0, stronger formulations require rank-one strengthening with at
least p−n variables. We also observe that, as λ increases, the gaps reported by all methods
decrease substantially, and the incremental strengthening obtained from larger values of r
decreases: for λ ≥ 0.05 sdp4 performs almost identical to sdp8, and for λ = 0.15 sdp3 is
similar to sdp8 and sdp2 already results in low optimality gaps. The computational time
required to solve sdpr scales exponentially with r since the number of constraints increases
exponentially as well. We conclude that sdp2 is well suited for the n > p case or for
medium values of λ (for larger values sdp1 or even the simple perspective relaxation may
be preferable), while sdpr with r ≥ 3 achieves a good improvement in relaxation quality for
low values of λ, at the expense of larger computational times.

Next, we test sdpr on the housing dataset with λ = 0. Since this dataset has high
diagonal dominance (see Table 1), even sdp1 results in small optimality gaps (see the first
row of Table 2). Thus, instead of using all n = 506 datapoints, we randomly select only
n0 < n datapoints, resulting in small diagonal dominance – for n0 = 10, matrix X⊤X
is rank-deficient. Figure 10 shows the optimality gaps as a function of r and n0. The
relaxation quality improves with increasing n0 and increasing r. For n0 = 20, setting r ≥ 5
produces optimality gaps close to 0% while sdp1 results in a gap of 13%, sdp2 a gap of 8%,
and sdp3 yields a gap of 3%. For n0 = 50, sdp2 results in a gap of 2%, and sdp3 yields a gap
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Figure 8: Optimality gaps of sdpr with synthetic data, 1 ≤ r ≤ 8.
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Figure 9: Time required to solve sdpr, 1 ≤ r ≤ 8.
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Figure 10: Optimality gaps of sdpr with the altered housing dataset(using only n0 datapoints),

1 ≤ r ≤ 8.

almost equal to 0%. Overall, the results are consistent with the experiments on synthetic
data.

5.2.4 On scalability

As discussed in §5.2.3, formulation sdpr for large values of r can be expensive to solve.
Moreover, even sdp1 and sdp2 are semidefinite programs, which may not scale well for large
values of p. In this section, we present computations illustrating that while this is indeed
the case, formulation sdpLB –which replaces the semidefinite constraint B−ββ′ ∈ SP

+ with
the quadratic constraints (43g)– scales much better and in fact can significantly outperform
persp in terms of relaxation quality.

We generate synthetic instances with p ∈ {100, 150, . . . , 500}, n = 500, true sparsity
parameter s = 30, autocorrelation ρ = 0.35, signal-noise-ration SNR ∈ {1, 5}, sparsity
k = 30; for each combination of parameters we generate five instances, and solve them for
λ ∈ {0.01, 0.02, 0.05, 0.15} and µ = 0. Table 4 reports, for sdp1, sdp2, sdpLB and persp

–using formulation (5) with a time limit of 600 seconds–, the time required to solve the
problems and the optimality gap proven.

We observe that persp is unable to solve the problems within the ten-minute time
limit and results in larger gaps than all other approaches despite using substantially more
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p
sdp1 sdp2 sdpLB persp

time(s) gap(%) time(s) gap(%) time(s) gap(%) time(s) gap(%)

100 19±3 0.5±0.6 44±9 0.1±0.1 5±1 1.0±1.1 TL 3.3±4.2
150 153±19 1.1±1.5 356±61 0.2±0.4 20±2 1.9±2.2 TL 6.2±7.2
200 673±64 2.7±3.0 1,691±165 0.6±0.9 42±3 4.3±4.0 TL 12.5±10.5
250 † † † † 79±4 7.1±5.6 TL 17.2±13.2
300 † † † † 147±7 12.2±7.6 TL 21.7±14.6
350 † † † † 248±14 17.6±11.0 TL 25.9±17.0
400 † † † † 391±36 24.0±14.9 TL 29.1±18.9
450 † † † † 394±46 32.2±18.3 TL 34.3±21.0
500 † † † † 462±43 39.3±21.9 TL 38.8±22.8

Table 4: Computational times and gaps on synthetic instances as a function of p. TL=
Time Limit. †= Unable to solve (either due to very large computational times or
memory issues). Numbers after “±” are the sample standard deviation.

time in most cases. We also observe that sdpr formulations struggle in instances with
p ≥ 200. Interestingly, sdp2 requires consistently 2-4 times more than sdp1 regardless of the
dimension p. A similar factor was observed in Tables 2 and 3 with real data, suggesting that
computational times with sdp2 are within the same order-of-magnitude as sdp1. Finally,
sdpLB is substantially faster than both sdp1 and sdp2. While it results in larger gaps than
sdp2 as expected since the high-dimensional constraint (22g) is relaxed, it still yields better
optimality gaps than persp.

5.3 Inference study on synthetic instances

We now present inference results on synthetic data using the same simulation setup as by
Bertsimas et al. (2016); Hastie et al. (2017), see Hastie et al. (2017) for an extended descrip-
tion. Specifically, we generate synthetic data as described in §5.1, and use the evaluation
metrics used by Hastie et al. (2017), described next.

5.3.1 Evaluation metrics

Let x0 denote the test predictor drawn from Np(0,Σ) and let y0 denote its associated

response value drawn from N (x⊤
0 β0,σ

2). Given an estimator β̂ of β0, the following metrics
are reported:

Relative risk

RR(β̂) =
E
󰀓
x⊤
0 β̂ − x⊤

0 β0

󰀔2

E
󰀃
x⊤
0 β0

󰀄2

with a perfect score 0 and null score of 1.

Relative test error

RTE(β̂) =
E
󰀓
x⊤
0 β̂ − y0

󰀔2

σ2
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with a perfect score of 1 and null score of SNR+1.

Proportion of variance explained

1−
E
󰀓
x⊤
0 β̂ − y0

󰀔2

Var(y0)

with perfect score of SNR/(1+SNR) and null score of 0.

Sparsity We record the number of nonzeros9, 󰀂β̂󰀂0, as done by Hastie et al. (2017).
Additionally, we also report the number of variables correctly identified, given by󰁓p

i=1 {β̂i ∕= 0 and (β0)i ∕= 0} .

5.3.2 Procedures

In addition to the training set of size n, a validation set of size n is generated with the same
parameters, matching the precision of leave-one-out cross-validation. We use the following
procedures to obtain estimators β̂.

elastic net We solve the elastic net procedure using the parametrization

min
β∈Rp

󰀂y −Xβ󰀂22 + λ
󰀃
α󰀂β󰀂1 + (1− α)󰀂β󰀂22

󰀄

where α,λ ≥ 0 are the regularization parameters. We let α = 0.1ℓ for integer 0 ≤
ℓ ≤ 10, we generated 50 values of λ ranging from λmax = 󰀂X⊤y󰀂∞ to λmax/200 on
a log scale, and using the pair (λ, µ) that results in the best prediction error on the
validation set. A total of 500 (α,λ) pairs are tested.

sdp2 The estimator obtained from solving sdp2 (λ = µ = 0) for all values of k = 0, . . . , 7
and choosing the one that results in the best prediction error on the validation set.

The elastic net procedure approximately corresponds to the lasso procedure with 100
tuning parameters used by Hastie et al. (2017). Similarly, sdp2 with cross-validation ap-
proximately corresponds to the best subset procedure with 51 tuning parameters10 used
by Hastie et al. (2017); nonetheless, the estimators from Hastie et al. (2017) are obtained
by running an MIO solver for 3 minutes, while ours are obtained from solving to optimality
a strong convex relaxation.

5.3.3 Optimality gaps and computation times

Before describing the statistical results, we briefly comment on the relaxation quality and
computation time of sdp2. Table 5 shows, for instances with n = 500, p = 100, and s = 5,

9. An entry β̂i is deemed to be non-zero if |β̂i| > 10−5. This is the default integrality precision in commercial
MIO solvers.

10. Hastie et al. (2017) use values of k = 0, . . . , 50. Nonetheless, in our computations with the same tuning
parameters, we found that values of k ≥ 8 are never selected after cross-validation. Thus, our procedure
with 8 tuning parameters results in the same results as the one with 51 parameters from a statistical
viewpoint but requires only a fraction of the computational effort.
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SNR 0.05 0.09 0.14 0.25 0.42 0.71 1.22 2.07 3.52 6.00 avg

ρ = 0.00
gap 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
time 45.2 38.8 38.6 29.5 29.3 28.4 27.4 26.3 26.4 25.9 31.6

ρ = 0.35
gap 0.3 0.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.1
time 48.0 47.6 49.4 44.1 39.3 30.7 29.0 29.1 27.3 28.0 37.3

Table 5: Optimality gap and computation time (in seconds) of sdp2 with n = 500, p = 100,
s = k = 5, λ = µ = 0.

the optimality gap and relaxation quality of sdp2 — each column represents the average
over ten instances generated with the same parameters. In all cases, sdp2 produces optimal
or near-optimal estimators, with an optimality gap at most 0.3%. In fact, with sdp2, we
find that 97% of the estimators for ρ = 0.00 and 68% of the estimators with ρ = 0.35 are
provably optimal11 for (1). For a comparison, Hastie et al. (2017) report that, in their
experiments, the MIO solver (with a time limit of three minutes) is able to prove optimality
for only 35% of the instances generated with similar parameters. Although Hastie et al.
(2017) do not report optimality gaps for the instances where optimality is not proven, we
conjecture that such gaps are significantly larger than those reported in Table 5 due to weak
relaxations with big-M formulations. In summary, for this class of instances, sdp2 is able
to produce optimal or practically optimal estimators of (1) in about 30 seconds.

5.3.4 Results: accuracy metrics

Figure 11 plots the relative risk, relative test error, the proportion of variance explained,
and sparsity results as a function of the SNR for instances with n = 500, p = 100, s = 5
and ρ = 0. Figure 12 plots the same results for instances with ρ = 0.35. The setting with
ρ = 0.35 was also used by Hastie et al. (2017).

We see that elastic net outperforms sdp2 in low SNR settings, i.e., in SNR= 0.05 for
ρ = 0 and SNR≤ 0.14 for ρ = 0.35, but results in worse predictive performance for all other
SNRs. Moreover, sdp2 is able to recover the true sparsity pattern of β0 for sufficiently large
SNR, while elastic net is unable to do so. We also see that sdp2 performs comparatively
better than elastic net in instances with ρ = 0. Indeed, for large autocorrelations ρ,
features where (β0)i = 0 still have predictive value thus the dense estimator obtained
by elastic net retains a relatively good predictive performance (however, such dense
solutions are undesirable from an interpretability perspective). In contrast, when ρ = 0,
such features are simply noise, and elastic net results in overfitting, while methods that
deliver sparse solutions such as sdp2 perform much better in comparison. We also note that
sdp2 selects models corresponding to sparsities k < s in low SNRs, while it consistently
selects models with k ≈ s in high SNRs. We point out that, as suggested by Mazumder
et al. (2022), the results for low SNR could potentially be improved by fitting models with
µ > 0.

11. A solution is deemed optimal if gap< 10−4, which is the default parameter in MIO solvers.
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Figure 11: Relative risk, relative test error, proportion of variance explained and sparsity as a
function of SNR, with n = 500, p = 100, s = 5 and ρ = 0.00.
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Figure 12: Relative risk, relative test error, proportion of variance explained and sparsity as a
function of SNR, with n = 500, p = 100, s = 5 and ρ = 0.35.
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Remark 14 As an alternative to cross-validation, the sparsity of the statistical model can
also be selected using information criteria such as AIC (Akaike, 1974) and BIC (Schwarz
et al., 1978). As shown by Gómez and Prokopyev (2021), this can accomplished efficiently by
combining the relaxation sdpr with fractional optimization techniques. We refer the reader
to Gómez and Prokopyev (2021) for detailed computational and statistical results.

5.4 Summary and extensions

The conic formulations sdp2 and sdpLB are able to deliver near-optimal solutions to prob-
lem (1) with p in the hundreds, and results in substantially better performance than MIO
methods (computational times and numerical stability) in instances with low or no ℓ2 regu-
larization. Such performance makes the approaches directly applicable in several high-stakes
domains where interpretability is a major consideration (e.g., p ≈ 50 in the highly-publicized
COMPAS recidivism case Wexler (2017); p ≈ 20 in the setting considered by Cozad et al.
(2014), where the output of the regression is used to optimize a carbon capture adsorber).
Due to the computational challenges with solving conic optimization problems via second
order methods, the solution approach presented in this paper (using an off-the-shelf solver)
does not scale to larger instances. Nonetheless, as we now point out, the formulations
presented here may serve as a basis for methods that scale to larger values of p, or tackle
statistical problems other than sparse regression.

First, tailored implementations that do not rely on off-the-shelf solvers are possible. For
example, Liu et al. (2023) consider sparse inference problems with graphical models, which
can be interpreted as a special case of (1) where matrix X⊤X is sparse. They use sdp2 as
a base relaxation of their method and develop a tailored primal-dual method to solve it: the
resulting approach scales comfortably to problems with p in the thousands. Similarly, Wei
and Küçükyavuz (2023) use outer-approximations to implement the rank-one relaxations,
which (coupled with state-of-the-art branch-and-bound algorithms) can solve mixed-integer
quadratic optimization problems with up to 500 variables to optimality.

Second, sdpr can be used as a subroutine of a more sophisticated method. For example,
Hazimeh and Mazumder (2020) propose a method that approximately solves problem (1),
scales to problems with p ≈ 105 and produces “combinatorially local” solutions. A key idea
of their approach is to solve MIO problems involving only a small subset of the variables to
escape local minima. In a similar vein, it would be possible to use relaxations sdp2 with a
small subset of the variables to identify descent directions.

Finally, we point out that both the quadratic loss function and sparsity are used per-
vasively in machine learning; thus, the theory and methods developed in this paper may
be generally applicable. For example, Bertsimas et al. (2021) incorporate some of the ideas
discussed in §4 to develop algorithms that solve matrix completion problems to certifiable
optimality.

6. Conclusions

In this paper we derive strong convex relaxations for sparse regression. The relaxations
are based on the ideal formulations for rank-one quadratic terms with indicator variables.
The new relaxations are formulated as semidefinite optimization problems in an extended
space and are stronger and more general than the state-of-the-art formulations. In our

43



Atamtürk and Gómez

computational experiments, the proposed conic formulations outperform the existing ap-
proaches, both in terms of accurately approximating the best subset selection problems and
of achieving desirable estimation properties in statistical inference problems with sparsity.
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