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Abstract

Federated learning (FL) is a creative technique that enables multiple edge devices to train
a model without revealing raw data. However, several issues hinder the practical imple-
mentation of FL, especially in wireless environments. These issues comprise the limited
capacity of the upload transmission link between the edge devices and the aggregator, as
well as the wireless disturbances. To address these challenges, we develop a zero-order (ZO)
communication-efficient framework for FL. While in standard FL, each device must upload
a long vector containing the gradient or the model per communication round, our novel
ZO method incorporates a two-point gradient estimator, which requires uploading only two
scalars. What also sets our approach apart is that it directly incorporates wireless pertur-
bations into the learning, eliminating the need for additional computational resources to
remove their impact. In this work, we overcome the technical and analytical challenges
associated with FL problems and ZO methods, comprehensively study our algorithm, and
prove it converges almost surely under different conditions, convexity and non-convexity,
noise-free and noisy environments. We then find theoretical bounds on the convergence
rate when the objective is strongly convex, non-convex, and κ-gradient-dominated that
compete with first-order (FO) or centralized methods under the same settings. Finally, we
provide experimental results demonstrating the effectiveness of our algorithm, considering
relevant examples. We provide an example illustrating the amount of communication saved
due to its efficiency compared to its FO counterpart.

Keywords: Federated learning, zero-order, gradient estimate.

1 Introduction

Federated learning (FL) has emerged as an innovative solution for distributed machine
learning, as indicated by McMahan et al. (2017). This paradigm has been adopted by
major technology companies to implement at scale (Bonawitz et al., 2019) as it addresses
the challenge of training models without requiring users to transmit their private data to
a central server. Instead, data remains on the users’ devices, and model training occurs
through collaborative interactions between these devices and the server: The devices receive
the model from the server, utilize their data to update gradients, and then transmit these
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gradients/updated models back to the server. Subsequently, the server refines the model
using the accumulated and averaged gradients, and this iterative process repeats.

FL aims to leverage the rich network of devices such as mobile phones, wearable devices,
and tablets, creating more intelligent systems with applications spanning from predicting
health issues and promoting traffic safety through location-based analytics to customized
experiences in digital services. This inspires the growing research on FL (Kairouz et al.,
2021), encompassing both first-order (FO) (McMahan et al., 2017; Zhang et al., 2021; Wang
et al., 2021) and second-order (Elgabli et al., 2022; Li et al., 2019) methods. However, as
these techniques rely on exchanging gradients and Hessians of local objective functions, this
introduces various issues, including high communication and computation costs, systems
heterogeneity due to the varying capabilities of each device, as well as privacy threats
(Li et al., 2020). Successfully addressing these challenges is essential for realizing the full
potential of federated learning in real-world applications.

On the other hand, such first and second-order information may not be available in
scenarios where the closed form of the loss function is unavailable or when exact gradient
calculation may be expensive or difficult. Zero-order (ZO) methods were thus designed to
deal with these problems. ZO optimization belongs to the field of gradient-free optimiza-
tion and relies on estimating the gradient through differences between function evaluations
queried at specific points (Duchi et al., 2015; Agarwal et al., 2010). In this study, our
focus centers on two-point gradient estimations, particularly for functions represented as
θ 7→ f(θ, ξ), where the function is subject to a stochastic perturbation denoted as ξ. These
estimations take the form:

g = d
f(θ + γω, ξ)− f(θ − γω, ξ)

2γ
ω,

with θ ∈ Rd the optimization variable, γ > 0 a small value, and ω a random vector with a
symmetric distribution. ZO optimization has made its mark in the machine learning com-
munity, particularly in conjunction with optimizers that rely on gradient-based techniques.
This adoption is notable across diverse domains, including reinforcement learning (Vemula
et al., 2019; Malik et al., 2019), crafting contrastive explanations for black-box classifica-
tion models (Dhurandhar et al., 2019), and the introduction of adversarial perturbations to
manipulate these models (Ilyas et al., 2018; Chen et al., 2019).

Another noticeable surge in interest surrounds the optimization and learning processes
within wireless environments, particularly in light of the growing number of devices con-
nected to servers via cellular networks (Yang et al., 2020; Amiri and Gündüz, 2020; Sery
and Cohen, 2020; Guo et al., 2021; Sery et al., 2021; Sun et al., 2022). Our research is con-
centrated on a particular scenario, depicted in Figure 1, which pertains to the application
of FL in wireless environments. Much like the previous-referenced works, we are examining
the scenario of analog communications between the devices and the server.

1.1 Related Work

Despite the benefits of FL, several challenges impede its practical implementation, which
extensive research efforts aim to address.

Communication Bottleneck. Generally, in wireless systems, the link from the edge
devices to the aggregator, denoted as the uplink, has limited capacity due to the fact that
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Figure 1: An overview of the proposed federated learning scheme over wireless networks.

these devices have limited transmission power. Thus, assuming that these devices can up-
load concurrently the information demanded by FL may be unrealistic. The downlink,
on the other hand, is not affected by this problem, as the server can have much bigger
transmission power. To address this uplink bottleneck, various strategies have been pro-
posed. Some advocate for local multiple gradient descent steps to be carried out by the
devices before sending their gradients back to the server, thereby conserving communica-
tion resources (Khaled et al., 2020). Others suggest enabling partial device participation in
each iteration (Chen et al., 2018; Amiri et al., 2021), or a combination of both strategies
(McMahan et al., 2017). Additionally, alternative approaches involve the utilization of lossy
compression techniques on the gradients prior to uploading. For instance, in the works of
Konečný et al. (2016), Khirirat et al. (2018), and Elgabli et al. (2020), stochastic unbiased
quantization methods are recommended, where gradients are approximated using a finite
set of discrete values to enhance efficiency. Mishchenko et al. (2019) introduce gradient
quantization differences between the current and previous iterations, allowing the update
to incorporate new information. Conversely, Chen et al. (2022) propose gradient sparsifica-
tion of this difference, meaning that vector components below a certain threshold are not
transmitted.

On the other hand, our proposed method counters the bottleneck by having every user
upload only a scalar value as feedback instead of a long vector to the wireless medium, saving
a factor of O(d) of transmission size per communication round. The trick is to assemble the
gradient estimator vector at the server’s size instead of having each user estimate it. Users
are alternatively expected to query their model for the loss value and return this scalar loss.

Wireless Disturbance. When data is transmitted through a wireless medium, it
is vulnerable to distortions induced by the medium itself. These distortions go beyond
simple additive noise and are, in fact, a consequence of thermal fluctuations occurring at
the receiver. Essentially, the wireless channel operates as a filter for the transmitted signal
(Tse and Viswanath, 2005; Björnson and Sanguinetti, 2020),

x̂ = Ĥx+ n̂. (1)
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x represents the signals sent while x̂ represents the signals received, both belonging to Cd.
Additionally, we have stochastic and ever-changing entities: the channel matrix Ĥ ∈ Cd×d,
and the additive noise vector n̂ ∈ Cd. In the context of FL, the variable x can represent
either the model itself or its gradients transmitted through the channel. The challenge of
FL involves mitigating the channel’s impact, necessitating a detailed analysis and removal
of each channel element to recover the transmitted information and entails the exchange
of control or reference signals between the devices and the server at each iteration. This
analytical process is resource-intensive in terms of computation and time. In various works,
including that of Yang et al. (2020); Fang et al. (2022); Amiri and Gündüz (2020); Sery
and Cohen (2020); Guo et al. (2021); Sery et al. (2021), and references in this domain,
the assumption that instantaneous channel knowledge is available/obtainable prevails in an
attempt to eliminate the channel’s impact.

In contrast, our approach offers a much more straightforward solution. We forego the
resource-intensive channel analysis and instead integrate the channel directly into the learn-
ing process. It becomes an inherent part of our implementation, allowing us to construct
gradient estimates without the need to eliminate its influence. This approach not only saves
computational resources but also reduces the communication overhead.

System Heterogeneity. System heterogeneity in FL networks, where devices have
varied computational power, network bandwidth, battery life, and storage, poses significant
challenges. Traditional algorithms struggle with delays caused by slow clients or straggling
nodes, as every device participates in training regardless of capability. Consequently, the
server must wait for the slowest nodes to finish their updates, significantly hindering the
process. For instance, Gu et al. (2021) suggest using outdated model parameters for users
who are delayed and Reisizadeh et al. (2022) initiate the training process with the faster
nodes and progressively incorporate the slower ones into the model training once the current
nodes’ statistical accuracy is achieved.

Contrarily to conventional methods that place significant demands on the computational
capabilities of participating devices, our approach is notably less taxing in this regard. When
the devices receive the global model, their sole task is to query this model with their data
and subsequently transmit the resulting scalar loss. As a result, the computational load
associated with the ”backward pass” is eliminated, and only the ”forward pass” is carried
out.

Black-Box Optimization. A key rationale for the application of ZO methods lies
in addressing black-box problems within FL (Fang et al., 2022), where obtaining gradient
information is either infeasible or computationally challenging. One such scenario is evident
in hyperparameter tuning, where gradient calculations are unattainable due to the absence
of an analytical relationship between the loss function and the hyperparameters (Dai et al.,
2020).

1.2 Contribution

In this work, we offer an alternative framework with much less computational and com-
munication expenses. By incorporating the wireless disturbance in the learning itself, we
propose a novel ZO method optimizing resource utilization and overcoming the bottleneck
caused by the limited capacity of uplink transmissions. Our method is not simple exten-
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Table 1: Convergence rates for the various cases studied in this paper, classified according
to the nature of the objective function, the environment, and the step sizes.

OBJECTIVE
FUNCTION

SETTING
STEP
SIZES

CONVERGENCE
RATE

Strongly
Convex

& Smooth

Noise-Free vanishing O( 1
K )

Noisy vanishing O( 1√
K

)

Noise-free & Noisy constant O(λK)

Non-
Convex

& Smooth

Noise-Free vanishing O( 1√
K

)

Noisy vanishing O( 1
3√
K

)

κ-Gradient
Dominated
& Smooth

Noise-Free vanishing O( 1
K )

Noisy vanishing O( 1√
K

)

Noise-free & Noisy constant O(λK)

sion from FO to ZO, like in the work of Fang et al. (2022) where each device still has to
upload the whole ZO vector. Instead, each device sends two scalar values, one of which
represents the loss function at two perturbed points, resulting in a huge reduction in the
amount of information sent in the uplink. The aim thus is to perturb the objective function
to estimate the gradient, similarly to usual ZO estimation methods. This is done in our
method by using the perturbation introduced by the wireless environment in a judicious
way. We then provide a comprehensive analysis, proving the almost sure convergence of our
method with convex and non-convex objective function. An important distinction here is
that typical ZO methods focus on the expected convergence, but our approach goes further
by demonstrating the almost sure convergence. The key to this proof lies in the applica-
tion of Doob’s martingale inequality to bound the stochastic error arising from gradient
estimates. Afterwards, we provide theoretical bounds on the convergence rates for strongly
convex, non-convex, and κ-gradient dominated non-convex objective functions, highlighting
the effect of the noise of the environment on the performance of the algorithm. The presence
of noise causes the increase of the gradient estimate variance which leads to the slowing
down of convergence.

In our previous paper (2024), a single point gradient estimate is considered but under
the restrictive assumption that the objective function is bounded everywhere. It is worth
mentioning that single-point estimates are generally more limiting in terms of assumptions
and the best achievable convergence rate due to their bigger variance. In this paper, we re-
move the restrictive boundedness assumption of the objective function and consider rather
a standard Lipschitz continuity. We also adopt a two-point gradient estimate and modify
the proposed algorithm accordingly while maintaining the same uplink communication ef-
ficiency. We further extend the analysis as compared to our previous work to encompass
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both convex and non-convex settings. We considerably improve the convergence rate, where
even a linear rate is established, by examining cases with constant and vanishing step sizes
and underscoring the impact of noise. It is worth noticing that proving a linear rate for
ZO method is an interesting result in itself. We summarize the convergence rates of our
method in Table 1. The bounds we find compete with optimal rates found in the litera-
ture, sometimes even with full gradient information. These are interesting findings, as ZO
methods are known to have worse performance than their FO counterparts.

To elaborate, in the strongly convex and smooth case, the optimal convergence rate
with full gradient information has been established to be O( 1

K ) with vanishing step-sizes
and linear O(λK) with constant step sizes (Pu and Nedić, 2018; Nemirovski et al., 2009)
where K represents the number of iterations; These rates match that of our ZO method
under vanishing (noise-free) and constant step sizes, respectively (the first and third entries
in Table 1).

In the context of noisy function queries in a centralized setting with strongly convex
and smooth objectives, it has been demonstrated that gradient-free methods cannot do
better than Ω( 1√

K
) (Duchi et al., 2015; Jamieson et al., 2012; Shamir, 2013; Akhavan et al.,

2020). Our method, which is distributed, achieves the same convergence rate under the
same setting, i.e., with noise and vanishing step sizes (the second entry in the table). For
the bounded noise setting, interesting results exist in the literature (Gasnikov et al., 2023;
Akhavan et al., 2021) where our bound matches the rate O( 1√

K
) established for twice

differentiable functions with more function queries (2d-point estimate) in Akhavan et al.
(2021)’s work; however, in this work, we consider a Gaussian additive noise and an additional
non-additive disturbance exists due to the presence of transmission channel.

In the smooth non-convex case, a rate of O( 1√
K

) is shown in the noise-free ZO centralized

setting (Nesterov and Spokoiny, 2015), which matches our method’s rate in the fourth entry.

Whereas we are unaware of existing literature on centralized noisy non-convex ZO set-

tings, the following rates exist for centralized non-convex ZO methods: O(
√

WK
K ) with a

two-point gradient estimator and O( 3

√
WK
K ) with a one-point estimator (Roy et al., 2022)

with WK a bound on the amount of nonstationarity that is allowed to increase with K. The
other rate is O( 1

4√K
) for a two-point estimate (Balasubramanian and Ghadimi, 2018). All of

which seem slightly worse than our fifth entry. A single-point-based ZO distributed method
is explored in our previous work (2023; 2022), which was shown to converge with a rate of
O( 1

3√K
) under the goal of achieving consensus in a noisy, non-convex setting. To achieve

this goal, we adopted a gradient tracking technique. Gradient tracking is a distinct algo-
rithm that involves sharing between neighbors and updating two variables: the optimization
variable and an auxiliary one. The auxiliary variable has the role of tracking the average
gradient between the agents without explicitly sharing the gradients. While this algorithm
generally accelerates gradient-based techniques, it has a worse communication cost as each
user must send a long vector of 2d values, whereas here, only 2 scalar values are sent per
user. Furthermore, contrary to this work, the gradient tracking algorithm’s performance is
dependent on the network architecture, and channel is not included in the algorithm. This
considerably simplifies the analysis regarding the gradient estimate and its bias as they’re
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independent of the channel variables and the intertwined stochastic associations between
them.

In addition to the general non-convex settings, we provide a study on the convergence
rate under a non-convex κ-gradient dominated objective (Polyak, 1963; Lojasiewicz, 1963)
with and without noise. The κ-gradient domination property is generally viewed as a non-
convex analogy of strong convexity, and this explains the identical convergence rates to that
in the strongly convex case (sixth, seventh, and eighth entries).

Finally, we provide numerical evidence of the efficiency of our algorithm. In the training
example, we provide the margin by which our algorithm is more communicationaly efficient
as compared with its FO counterparts (FedAvg, for example). It might even be infeasible
for the standard method to achieve the same reduction in communication as our method.

2 Federated Learning Framework

We consider a federated setting where N agents (e.g., mobile devices) collaborate and
communicate with a server over a wireless channel. Each agent has access to its local data
and performs computations independently, optimizing its local objective function using its
data and its computational resources. The next step is for each agent to communicate its
local updates to the server. The server then aggregates the received information from all
agents weighted by the channel coefficients. The server then takes the necessary measure
to update the global model or parameters and communicates it back to all agents, and the
process repeats. To that end, let N = {1, ..., N} be the set of agents in the network and
θ ∈ Rd denote the optimization parameters. The objective is to minimize a loss function
F : Rd → R that is composed of the said agents’ loss functions Fi : Rd → R for i ∈ N , such
that

min
θ∈Rd

F (θ) :=
1

N

N∑
i=1

Fi(θ) (2)

where
Fi(θ) = Eξfi(θ, ξ) (3)

with ξ ∈ X denoting an i.i.d. ergodic stochastic process describing uncertainties in the
communication system or variations in the data distributions. We further consider the case
where the devices do not have access to their gradients for computational and communi-
cation restraints, and they must estimate this gradient by querying their model only once
per update. They obtain a scalar value from this query, that they must send back to the
server.

Throughout this paper, we consider twice continuously differentiable local objective
functions and we assume problem (2) has a solution θ∗ ∈ Rd where ∇Fi(θ∗) = 0, ∀i ∈ N .
We also consider functions that satisfy the following two conditions.

Assumption 1 We assume that the local Hessian is bounded above by a constant β1 ∈ R+,

‖∇2Fi(θ)‖2 ≤ β1, ∀i ∈ N . (4)

This assumption implies that all local objective functions are L-smooth. In addition, all
locally queried functions are Lipschitz continuous,
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Assumption 2 Let Lξ > 0 be a Lipschitz constant. Then,

|fi(θ1, ξ)− fi(θ2, ξ)| ≤ Lξ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Rd, ∀i ∈ N . (5)

Lemma 3 Let Assumption 2 hold. By applying Jensen’s inequality, we find that F (θ) is
also Lipschitz continuous with some constant L′ = E[Lξ] > 0.

3 The 2P-ZOFL algorithm

We consider a scenario where there exists an intermediary wireless environment between a
central server and multiple distributed agents denoted by N and indexed by i ∈ N . The
wireless channels introduce stochastic scaling on the signals transmitted from each agent to
the server, as described by equation (1). Our algorithm is based on obtaining a gradient
estimate of F (θ) by perturbing the function and via a smart exchange between the server
and the users. In other words, the upload wireless channels in the network will be part of
the function’s perturbation. Before describing the algorithm, we stress that the exchange
from the users to the server are real scalars and not vectors. The content of x will be
explained later on in this section. At the receiver, we do not remove the impact of the
channel in order to decode correctly. Instead, the receiver will directly use the real part of
the received signal, as follows

R[x̂] = R[Ĥ]x+ R[n̂], (6)

where R[·] denotes the real part. To better understand the wireless transmission modeling,
we refer the interested reader to Appendix A of our work (2024). In all that follows, we
use the notation H or h to specify the real part of the channel and take into account
the real part of the received signal only, meaning the phase channel is already included
in the perturbation. At time slot k, we denote by hi,k the real part of user i’s channel
coefficient. The channel coefficients are autocorrelated from one time slot to the next, with
E[hi,khi,k+1] = Khh for all i and k.

Our proposed optimization method denoted as 2P-ZOFL and described in Algorithm 1,
involves two communication steps. In the first step, each agent sends a predefined scalar
value a to the server. According to the channel characteristics, the real part of the signal
received by the server from all agents is

∑N
j=1 hj,ka+ nj,k. After obtaining these values in

step 2, the server utilizes them to adjust the optimization parameter vector twice adding
and subtracting the previously aggregated received values (and averaged by N) multiplied
by γk and ωk. These two vectors are then broadcasted to all agents. Contrary to the uplink,
the impact of the downlink channel is then removed. Upon receiving these new parameters,
each agent i queries its local loss function fi at both vectors to obtain the difference of the

losses fi

(
θk + γk

ωk
N

∑N
j=1(hj,ka + nj,k), ξi,k+1

)
− fi

(
θk − γk ωkN

∑N
j=1(hj,ka + nj,k), ξi,k+1

)
,

which is again a scalar. Here, ξ is a stochastic process that denotes the data distribution,
noise or errors at the receiver (agent). In the second communication step, the agents send
this scalar difference back to the server. Again, the server takes the real part of the received
signal which is indicated in step 5. Finally, the server assembles the gradient estimate gk
from the received information and updates the optimization parameter θ in step 7.

We define αk and γk as two step-sizes, along with ωk ∈ Rd, a perturbation vector
generated by the server with the same dimension as that of θk.
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It is important to note that in this learning method, the impact of the uplink wireless
channel is included in the gradient estimate gk and, therefore, influences the optimization
technique. The main advantage of this algorithm is its communication efficiency. Each agent
only needs to send two scalar values, which is a significant improvement over standard
distributed algorithms that require transmitting the entire optimization vector or local
gradient of dimension d from each entity. This communication efficiency is crucial, as it
avoids excessive resource consumption and is more realistic in practical scenarios.

Algorithm 1 The 2P-ZOFL algorithm

Input: Initial model θ0 ∈ Rd, the initial step-sizes α0 and γ0, and the scalar value
a

1: for k = 0 to K − 1 do
2: The real part of the signal received by the server is 1

N

∑N
j=1(hj,ka+ nj,k)

3: The server performs the two actions
θk + γk

ωk
N

∑N
j=1(hj,ka+ nj,k) and θk − γk ωkN

∑N
j=1(hj,ka+ nj,k)

4: The server broadcasts these actions to all devices under the same stochastic wireless
environment

5: The real part of the signal again received by the server is

1
N

∑N
i=1

(
hi,k+1

[
fi

(
θk+γk

ωk
N

∑N
j=1(hj,ka+nj,k), ξi,k+1

)
−fi

(
θk−γk ωkN

∑N
j=1(hj,ka+

nj,k), ξi,k+1

)]
+ ni,k+1

)
6: The server multiplies the received scalar sum by ωk to assemble gk given in (7)
7: The server updates θk+1 = θk − αkgk
8: end for

3.1 Two-Point Gradient Estimator

In this subsection, we present and analyze the following proposed gradient estimate influ-
enced by the wireless channel,

gk =
ωk
N

( N∑
i=1

hi,k+1

[
fi

(
θk + γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξi,k+1

)

− fi
(
θk − γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξi,k+1

)]
+ ni,k+1

)
.

(7)

In our proposed method, we acknowledge that the channel coefficients hi,k and hi,k+1 may
not be known explicitly. This approach offers significant advantages, as it reduces com-
putation complexity and greatly improves communication efficiency. Unlike conventional
methods that require continuous transmission of pilot signals to estimate the channel, our
approach circumvents this need.
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In some scenarios, the noise at the reception is negligible, the environment is said to be
noise-free. Our gradient estimate can then be simplified to

gk =
ωk
N

( N∑
i=1

hi,k+1

[
fi

(
θk + γk

ωk
N

N∑
j=1

hj,ka, ξi,k+1

)
− fi

(
θk − γk

ωk
N

N∑
j=1

hj,ka, ξi,k+1

)])
,

(8)

where the noise at both reception steps of the algorithm is neglected. This case is interesting
to study as it has remarkable effect on the convergence rate.

We assume hi,k to be a zero-mean random variable with standard deviation σh, ∀i ∈
N , ∀k ∈ N+ and we consider the following assumptions

Assumption 4 (on the additive noise) The noise term ni,k is assumed to have a zero mean
and be uncorrelated with bounded variance. This means that its expected value is zero, and
its expected squared value is finite and bounded by σ2n. This holds true for all devices i and
for any time slot k, and there is no correlation between the noise terms of different devices
at the same time slot, i.e., E(ni,knj,k) = 0 when i 6= j. Additionally, for any given device i,
the noise terms at different time slots are uncorrelated, i.e., E(ni,kni,k′) = 0 when k 6= k′.

Assumption 5 (on the random perturbation) Let ωk = (ω1
k, ω

2
k, . . . , ω

d
k)T . At each iteration

i, the server generates its ωk vector independently from other iterations. In addition, the
elements of ωk are assumed i.i.d with E(ωd1k ω

d2
k ) = 0 for d1 6= d2 and there exists β2 > 0

such that E(ω
dj
k )2 = β2 ∀dj, ∀i. We further assume there exists a constant β3 > 0 where

‖ωk‖ ≤ β3, ∀k.

Example 1 An example of a perturbation vector satisfying Assumption 5, is picking every
dimension of ωk from {− 1√

d
, 1√

d
} with equal probability. Then, β2 = 1

d and β3 = 1.

We let Hk = {θ0, ξ0, θ1, ξ1, ..., θk, ξk} designate the history sequence resulting from applying
the algorithm and we denote by E[.|Hk] the conditional expectation given Hk.

Lemma 6 Let Assumptions 4 (when there is noise) and 5 be satisfied and define the scalar
c1 = 2aβ2Khh

N , then the proposed gradient estimator is biased w.r.t. the objective function’s
exact gradient ∇F (θ). Concretely,

� When the environment is noise-free, we have E[gk|Hk] = c1γk(∇F (θk) + bk),

� When the environment is noisy, similarly, we have E[gk|Hk] = c1γk(∇F (θk) + b′k),

∀k ∈ N+, where bk and b′k are the bias terms differing slightly in form.
Proof: Refer to Appendices A.1.1 and A.1.2.

Lemma 7 Let Assumptions 2, 4 (when appropriate), and 5 hold. There exists two bounded
constants c2, c

′
2 > 0, such that

� For a noise-free environment, E[‖gk‖2|Hk] ≤ c2γ2k,

� For a noisy environment, E[‖gk‖2|Hk] ≤ c′2,
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where c2 evolves as O( 1
N ) and c′2 evolves as O(1) in terms of N and as O(σ2n).

Proof: Refer to Appendices A.3.1 and A.3.2.

The previous lemma highlights the stark difference between noise-free and noisy environ-
ments in the analysis context, as the consequence is a much smaller convergence rate when
the noise is present, as shown in the following parts.

Lemma 8 By Assumptions 5 and 1, we can find two scalar values c3, c
′
3 > 0 such that

‖bk‖ ≤ c3γk and ‖b′k‖ ≤ c′3γk, (9)

where c3 evolves as O(dN) and c′3 evolves as O(dN) and as O(σ2n), for β2 = 1
d and β3 = 1.

Proof: Refer to Appendices A.2.1 and A.2.2.

4 Convergence Analysis

In this section, we analyze our algorithm under different settings. We prove it converges
almost surely with a general non-convex objective function. We then derive its convergence
rate and extended it to the case of κ-gradient dominated objectives with vanishing and
constant step sizes. Afterwards, we prove the almost sure convergence with strictly convex
objective. We then study the convergence rate under strong convexity. When we fix the step
sizes, we prove that a linear rate towards a neighborhood of the optimum (local optimum
in the nonconvex case) is possible.

For all what follows with vanishing step sizes, the following assumption is vital for
convergence.

Assumption 9 Both αk → 0 and γk → 0 as k →∞ and we assume
∑∞

k=0 αkγk =∞.

� When the environment is noiseless, we further assume
∑∞

k=0 α
2
kγ

2
k <∞.

� We replace the previous assumption by
∑∞

k=0 α
2
k <∞ for noisy environments.

Example 2 We consider the following form of the step sizes, αk = α0(l + k)−υ1 and
γk = γ0(l + k)−υ2 with α0, γ0, l, υ1, υ2 > 0. To satisfy Assumption 9, it is sufficient to
find υ1 and υ2 such that 0 < υ1 + υ2 ≤ 1 and υ1 + υ2 > 0.5 for noise-free environments
(0 < υ1 + υ2 ≤ 1 and υ1 > 0.5 for noisy environments).

We then introduce the stochastic error denoted as ek. It represents the difference be-
tween an individual realization of gk and its expected value given the historical sequence,
expressed as

ek = gk − E[gk|Hk].

The examination of this noise and its evolution plays a crucial role in analyzing the algo-
rithm. It allows us to access the exact gradient when studying the algorithm’s convergence
behavior. Furthermore, it enables us to demonstrate that the exact gradient indeed con-
verges to zero, not just its expected value. This constitutes a more robust convergence prop-
erty that, to the best of our knowledge, has not been previously explored in ZO non-convex
optimization. The key insight lies in proving that ek behaves as a martingale difference
sequence and then applying Doob’s martingale inequality to establish the following lemma.

11
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Lemma 10 If all Assumptions 2, 4 (when applicable), 5, and 9 hold, then for any constant
ν > 0, we have

P( lim
K→∞

sup
K′≥K

‖
K′∑
k=K

αkek‖ ≥ ν) = 0, ∀ν > 0.

Proof: Refer to Appendix B.

A side note is that the previous lemma holds when the environment is noise-free and noisy.

4.1 Convergence Analysis with a Non-Convex Objective Function

The only constraints on the objective function are that of Lipschitz continuity and smooth-
ness given in Assumptions 1 and 2 in the introduction.

In this part, we add the following assumption on the step-sizes.

Assumption 11 αk and γk further satisfy
∑∞

k=0 αkγ
3
k <∞.

Theorem 12 When Assumptions 1, 2, 4 (when necessary),5, 9, and 11 hold, we have∑
k

αkγk‖∇F (θk)‖2 < +∞ implying lim
k→∞

‖∇F (θk)‖ = 0, almost surely. (10)

Proof: Refer to Appendix C.

Starting from the smoothness inequality, we substitute by the algorithm’s updates and
make use of the stochastic noise. We then perform a telescoping summation over the
iterations k > 0 and use Doob’s martingal inequality, the conditions on the step sizes, and
the upper bound estimate’s squared norm. This approach allows us to find an upper limit
on the expression

∑
k αkγk‖∇F (θk)‖2 when k grows to ∞. This result guarantees that

the infimum of ‖∇F (θk)‖ converges to 0 as k approaches ∞. The subsequent step thus
involves considering the hypothesis limk→∞ sup ‖∇F (θk)‖ ≥ ρ, for ρ > 0, and prove that
it contradicts with the initial result. This theorem holds true in both noiseless and noisy
settings, as demonstrated in the proof.

4.2 Convergence Rate with a General Non-Convex Objective Function

Let δk = F (θk)− F (θ∗) be the function optimality gap. The subsequent theorem identifies
the convergence rate of the algorithm under both settings, the noise-free and the noisy one.

Theorem 13 In addition to the assumptions of Theorem 12, let the step sizes have the
form of Example 2 with l = 1 and υ3 = υ1 + υ2 < 1. Then,

� When the channels are noise-free,∑
k αkγkE

[
‖∇F (θk)‖2

]∑
k αkγk

≤ (1− υ3)
(K + 2)1−υ3 − 1

(
A0 +

A1

υ1 + 3υ2 − 1
+

A2

2υ3 − 1

)
. (11)

� When the channels are noisy,

12
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∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ (1− υ3)

(K + 2)1−υ3 − 1

(
A0 +

A′1
υ1 + 3υ2 − 1

+
A′2

2υ1 − 1

)
. (12)

where A0 = 2δ0
c1α0γ0

, A1 = (υ1 + 3υ2)(c3γ0)
2, A2 = 2υ3c2α0γ0L

c1
, A′1 = (υ1 + 3υ2)(c

′
3γ0)

2, and

A′2 =
2υ1c′2α0L
c1γ0

.

Proof: Refer to Appendices C.1.1 and C.1.2.

In Theorem 13, the optimal choice of exponents in equation (11) is υ1 = υ2 = 1
4 ,

resulting in a rate of O
(

1√
K

)
. However, to prevent the constant part from becoming

excessively large, we identify a very small value ε > 0 such that υ1 = υ2 = 1
4 + ε

2 , leading

to a rate of O
(

1

K
1
2−ε

)
. By substituting the values of the scalars c1, c2 and c3, we note that

the bound of (11) evolves as O(d2N2) in terms of dimension of the problem and number of
agents and as O(L) in terms of the objective’s smoothness.

Similarly, in equation (12), the optimal choice is υ1 = 1
2 and υ2 = 1

6 , resulting in a rate

of O
(

1
3√K

)
. A practical alternative is to select υ1 = 1

2 + ε′

2 and υ2 = 1
6 + ε′

2 for a rate of

O
(

1

K
1
3−ε
′

)
, with ε′ > 0. In (12), the bound also evolves as O(d2N2), O(L), and O(σ4n) in

terms of noise variance.

We must remark that the higher dependence on N in all our bounds is due to the fact
that we have double aggregation of received information from users. This is done to deal
with the impact of the channel and it has definitely an impact on the bound and it can
be seen as a cost to pay to deal with the impact of the channel. One can see that if we
remove the interior summation (first transmission), the dependence on N would completely
disappear. In addition, due to the fact that there is no explicit form of dependence between
∇2Fi(θ́k) − ∇2Fi(θ̀k) and the other stochastic variables (i.e., hi,k+1, hj,k, and ωk), it is
difficult to compute the expectation in bk and settle for bounding its norm, where we
establish an upper bound that might be loose in terms of N . For quadratic objectives, for
example, both c3 and c′3 evolve as O( 1

N ), improving the bounds for all convergence rates.

4.3 Convergence Rate with a κ-Gradient Dominated Non-Convex Objective
Function

In this subsection, we consider functions satisfying the following property alongside As-
sumptions 1 and 2.

Assumption 14 We assume that the objective function is κ-gradient dominated non-
convex, i.e., it admits a constant κ > 0 such that (Polyak, 1963; Lojasiewicz, 1963)

2κ(F (θ)− F (θ∗)) ≤ ‖∇F (θ)‖2, ∀θ ∈ Rd. (13)

Theorem 15 In addition to the assumptions of Theorem 12, let the step sizes have the
form of Example 2 with l = 1 and υ1 + υ2 = 1. Let υ4 = c1α0γ0κ. Then, when the objective
function satisfies Assumption 14, we get

� When the environment is noise-free

13
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E[δK ] ≤ 1

(K + 2)υ4

(
B0 +B1

K−1∑
k=0

(k + 3)υ4

(k + 2)υ1+3υ2
+B2

K−1∑
k=0

(k + 3)υ4

(k + 2)2υ1+2υ2

)
(14)

� When the environment is noisy

E[δK ] ≤ 1

(K + 2)υ4

(
B0 +B′1

K−1∑
k=0

(k + 3)υ4

(k + 2)υ1+3υ2
+B′2

K−1∑
k=0

(k + 3)υ4

(k + 2)2υ1

)
(15)

where B0 = 2υ4δ0, B1 =
c1c23α0γ30

2 , B′1 =
c1c′23 α0γ30

2 , B2 =
c2α2

0γ
2
0L

2 , B′2 =
c′2α

2
0L
2 .

Proof: Refer to Appendices C.2.1 and C.2.2.

In (14), for the bound to converge, we need υ1 +3υ2−υ4 > 1 and 2υ1 +2υ2−υ4 > 1. Then,
the optimal choice is υ1 = υ2 = 1

2 and υ4 = 1− ε for a rate of O( 1
K1−ε ) and some ε > 0.

Similarly, in (15), the conditions of convergence are υ1 + 3υ2− υ4 > 1 and 2υ1− υ4 > 1.
The optimal choice of step sizes is υ1 = 3

4 and υ2 = 1
4 with υ4 = 1

2−ε
′ for a rate of O( 1

K
1
2−ε
′ )

and some ε′ > 0.

Assuming that α0 and γ0 evolve as O(
√

1
c1κ

) and thus as O(
√

dN
κ ), in both (14) and

(15), the bounds evolve as O(d
3N3

κ2
) and O(L), and the noise dependence in (15) is similar to

the previous general non-convex case where it is O(σ4n). This worse dependence on d and N
is due to the conditions on α0 and γ0, whereby the dependence on the number of iterations
K is improved but with the price of an additional O(dN). The κ-gradient domination
property, however, improves both the dependence on K and the constant terms.

4.4 Convergence Rate with a κ-Gradient Dominated Non-Convex Objective
Function and Fixed Step Sizes

In this subsection, we fix the step sizes and consider the same assumptions on the objective
function as in the previous one. We then study the convergence rate in the following
theorem.

Theorem 16 Let the assumptions of Theorem 12 hold and let the objective function satisfy
Assumption 14. Fix αk = α > 0 and γk = γ > 0 for all k ≥ 0. Then, for ς = 1 − c1αγκ
and αγ < 1

c1κ
,

� In a noise-free environment,

E[δK+1] ≤ ςK+1δ0 + αγ

(
c1c

2
3

2
γ2 +

c2L

2
αγ

)
1− ςK+1

1− ς
. (16)

� In a noisy environment,

E[δK+1] ≤ ςK+1δ0 + α

(
c1c
′2
3

2
γ3 +

c′2L

2
α

)
1− ςK+1

1− ς
. (17)

Proof: Refer to Appendices C.3.1 and C.3.2.

Knowing that ς < 1, then for an arbitrarily small value of the step sizes α and γ, we can
say that the algorithm converges to a neighborhood of the local optimum with a linear
rate O(ςK). Since αγ may be taken arbitrarily much smaller than O( 1

c1
), i.e. O(dN), an

improved dependence on the dimension and the number of agents can be established, where
the bounds now evolve as O(dN

κ2
) while the dependencies O(L) and O(σ4n) remain.

14
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4.5 Convergence with Convex Objective Function

In this subsection, we analyze the asymptotic behavior of Algorithm 1 with objective func-
tions satisfying Assumption 1 and the following assumptions.

Assumption 17 αk and γk further satisfy
∑∞

k=0 αkγ
2
k <∞.

Assumption 18 Let the objective function be strictly convex, i.e., satisfying

F (θ1) > F (θ2) + 〈∇F (θ2), θ1 − θ2〉, ∀θ1, θ2 ∈ Rd. (18)

As we analyze the convergence rate in the subsequent parts for strongly convex functions,
the Lipschitz continuity in Assumption 2 can no longer hold. We thus replace it by the local
Lipschitz continuity in the following assumption. To guarantee that the users are able to
compute and send feasible loss values in step 5 of Algorithm 1, the server must thus project
the updated parameter vector onto a compact convex set K, i.e., step 7 of Algorithm 1
becomes θk+1 = ΠK(θk − αkgk), where ΠK(·) denotes the Euclidean projection of a vector
on the set K.

Assumption 19 K is a compact convex set and θ∗ ∈ K. All local functions θ 7→ fi(θ, ξ)
are locally Lipschitz continuous on the β3γ0-neighborhood of K, i.e.,

|fi(θ1, ξ)− fi(θ2, ξ)| < Lξ‖θ1 − θ2‖, ∀θ1, θ2 ∈ Nβ3γ0(K), ∀ξ ∈ X ,∀i ∈ N ,

where Nβ3γ0(K) = {θ ∈ Rd| infa∈K ‖θ − a‖ < β3γ0} is the β3γ0-neighborhood of K.

We further remark that the projection on a closed convex setK is -xpansive (Kinderlehrer
and Stampacchia, 2000, Corollary 2.4), i.e.,

‖ΠK(θ)−ΠK(θ′)‖ ≤ ‖θ − θ′‖, ∀θ, θ′ ∈ Rd. (19)

For any integer k ≥ 0, we define the divergence, or the error between the model set by
the server θk and the optimal solution θ∗ as

dk = ‖θk − θ∗‖2. (20)

The following theorem describes the main convergence result.

Theorem 20 Whenever Assumptions 1, 2, 4 (when applicable), 5, 9, and 17—19 hold,
then as k →∞, dk → 0 and θk → θ∗ for all i ∈ N almost surely by applying the Algorithm.

Proof: Refer to Appendix D.

The main idea is to write dk as a function of the previous iterations using the algorithm’s
descent update and the -xpansive property of the projection. We then replace the gradient
estimate with its expectation and the stochastic noise. Making use of the derived properties
of the gradient estimate in the previous section, we take the telescoping sum of the diver-
gence. We thus employ Doob martingale’s inequality to prove that the term comprising the
stochastic error is bounded. Another term is bounded by the assumption we impose on the
step sizes. The final term incorporates a product of the optimality gap between the model
and the optimal solution by the exact gradient at that model. We use the strict convexity
property to prove that this term is negative. We incur that the only two options for dk are
either 0 or −∞, but since dk is positive by definition, it must converge to 0. This theorem
is valid for both noise-free and noisy environments, as shown in the proof.
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4.6 Convergence Rate with a Strongly Convex Objective Function

We now consider the following additional assumption.

Assumption 21 Let the objective function be µ-strongly convex, i.e.,

〈∇F (θ), θ − θ∗〉 ≥ µ‖θ − θ∗‖2, ∀θ ∈ Rd. (21)

We define the expected divergence

Dk = E[‖θk − θ∗‖2]. (22)

The following theorems identify the convergence rate of the algorithm for both the noise-free
and noisy settings, respectively.

Theorem 22 (In the noise-free setting) Let αk = γk =
√

ν/c1
l+k , ∀k ≥ 0 for some ν, l > 0.

Then, if in addition to the conditions in Theorem 20, F satisfies Assumption 21 and the
constant values satisfy νµ > 1 and l > ν

2 (µ+ L), then

Dk ≤
D

l + k
with D ≥ cν2

νµ− 1
. (23)

Proof: Refer to Appendix D.1.1.

The main idea is again to write Dk+1 in terms of Dk using the algorithm’s decent step and
the expansive property of the projection. Then, taking the expectation (by the definition
of Dk), we substitute by the conditional expectation of gk derived in Lemma 6 and the
upper bound of its norm in Lemma 7. After some necessary technical steps, we derive the
left-hand side of the following inequality (24) in the upper bound of Dk+1. The strong
convexity and L-smoothness properties allows us to write (Qu and Li, 2018, Lemma 10)

‖θk − c1αkγk∇F (θk)− θ∗‖2 ≤ λ2k‖θk − θ∗‖2. (24)

with λk = 1− c1αkγkµ. Again, after some technical manipulations, Dk+1 becomes bounded
from above by Dk multiplied by λk and other terms which are function of the step sizes
once we substitute by the upper bound of the bias in Lemma 8. Considering the form of
the step sizes in Theorem 22, we are able to prove (24) by hypothesis testing.

Theorem 22 implies that the algorithm evolves as O( 1k ) which is an important rate for
ZO optimization as it competes with FO rates. In addition, the bound in (23) evolves

as O(d
3N3

µ2
) and as O( 1

L). Similarly to the κ-gradient dominated non-convex case with

vanishing step sizes, the additional O(dN) dependence comes from the conditions on α0

and γ0.

Theorem 23 (In the noisy setting) Let αk = α0(1 + k)−
3
4 and γk = γ0(1 + k)−

1
4 , ∀k ≥ 0

for some α0, γ0 > 0. Define the iteration K0 such that

K0 = arg min
αkγk<min{ 2

c1(µ+L)
, 1
2c1µ
}
k
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Then, if in addition to the conditions in Theorem 20, F satisfies Assumption 21 and the
constant values satisfy α0γ0 ≥ 1

4c1µ
, then

Dk ≤
D′√
1 + k

, ∀k ≥ K0, (25)

with D′ some bounded constant.

Proof: Refer to Appendix D.1.2.

We start with similar steps to prove this theorem to those of the previous theorem. How-
ever, a term containing

√
Dk appears in the upper bound of Dk+1. This complicates the

subsequent steps. The following hypothesis comprises testing if the rate can be bounded
from above by a decreasing sequence Uk, i.e., Dk ≤ Uk. Based on the conditions obtained for
Uk, we derive candidates for this sequence form. The candidates have the forms Dk ≤ ζ21γ2k
and Dk ≤ ζ22

γk
αk

. After long technical measures, we prove that ζ1 and ζ2 are bounded with
conditioning on α0 and γ0 and the exponents υ1 and υ2 in Example 2. We then provide
a detailed analysis to optimize these exponents and find the optimal rate for υ1 = 3

4 and
υ2 = 1

4 .

The bound (25) also evolves as O(d
3N3

µ2
), O( 1

L), and O(σ4n).

4.7 Convergence Rate with a Strongly Convex Objective Function and Fixed
Step Sizes

For this subsection, we consider the same assumptions on the objective function as in the
previous one. The following theorem describes the convergence rate.

Theorem 24 Let the assumptions of Theorem 20 alongside Assumption 21 hold. Fix αk =
α > 0 and γk = γ > 0 for all k ≥ 0. Then, for λ = 1− c1αγµ and αγ < 2

c1(µ+L)
(resulting

in c1αγµ < 1 as µ ≤ L),

� In a noise-free environment,

DK+1 ≤ λK+1D0 + αγ

(
c1c

2
3γ

2

(
1

µ
+ c1αγ

)
+ c2αγ

)
1− λK+1

1− λ
. (26)

� In a noisy environment,

DK+1 ≤ λK+1D0 + α

(
c1c
′2
3 γ

3

(
1

µ
+ c1αγ

)
+ c′2α

)
1− λK+1

1− λ
. (27)

Proof: Refer to Appendices D.2.1 and D.2.2.

Knowing that λ < 1, then for an arbitrarily small value of the step sizes α and γ, we can say
that the algorithm converges to a neighborhood of the optimum with a linear rate O(λK).
The bound (26) evolves as O( dN

(µ+L)2
), while (27) evolves as O( dN

µ+L) and as O(σ4n).
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5 Simulation Results

We conduct our experiments using university servers equipped with 32 CPUs and 80GB
memory, managed by the Slurm workload manager. The simulations ran in a Conda virtual
environment, utilizing PyTorch (Version 2.0.0) as the primary library and Torchvision for
data set access. The resources were allocated from the cpu long partition. We compare
our algorithm to the original FL algorithm, FedAvg (McMahan et al., 2017), with exact
gradient and one local update per round. It is important to note that we did not consider
the impact of the channel or any noise/stochasticity in the FedAvg algorithm. In Figure
2, we also compare with FedZO (Fang et al., 2022) with H = 50 local iterations and
M = 10 participating users and b1 = b2 = 1 (two-point gradient estimate) for fairness,
where we assume that the uplink transmission is subject to the same channel/noise as
our algorithm and the signals are decoded (impact of the channel is removed) using the
transceiver designed by Fang et al. (2022). Each experiment involved data batches consisting
of 10 images per user per round and all graphs are averaged over 30 simulations with different
random model initializations testing the accuracy in every iteration against an independent
test set. Each communication round depicted in the graphs encompasses all steps from 2
to 7 of the algorithm.

5.1 Non-Convex Objective Function

In the first example, we conduct image classification on ”shirts” and ”sneakers” from the
FashionMNIST data set (Xiao et al., 2017) using a multilayer perceptron. The model
has an input layer with 784 units and two hidden layers, each with 200 units and ReLU
activations. The final layer employs a sigmoid activation, resulting in a total of 197, 602
parameters. In this experiment, we test our algorithm for indenpendent and identically
distributed (IID) data among users and non-IID data. For the non-IID data distribution,
we arrange the images based on their labels and then distribute them among 100 devices.
Similar to the approach by McMahan et al. (2017), each curve in the plot represents the best
test-set accuracy achieved over all previous rounds. The corresponding results are depicted
in Figure 2.

Although the impact of noise on both the theoretical and experimental convergence rates
is evident, our algorithm consistently performs well across various random variations in each
simulation. Introducing a non-IID data distribution appears to have a marginal impact,
slightly slowing down our algorithm without significantly affecting the final outcome.

The key observation in this experiment is that for convergence, FedAvg necessitates 300
communication rounds and FedZO necessitates 750, while 2P-ZOFL requires 2000. How-
ever, by the time 300 rounds are completed, each device in FedAvg will have uploaded a
total of 197602 × 300 = 59280600 scalar values/symbols to the server and each device in
FedZO will have uploaded 197602 × 750 = 148201500, compared to only 2000 × 2 = 4000
for 2P-ZOFL. 4000 symbols sent by one device during all 2P-ZOFL’s iterations are still less
than that sent by one device in the standard method per iteration. This means FedAvg
will have 14820 times more data points per user (FedZO will have 37050 more per user).
Thus, to have a similar efficiency to 2P-ZOFL, the FL method must compress its data with
a ratio of 14820 (99.99% resource saving) with the same guarantees of convergence during
300 iterations; otherwise, this ratio increases (with quantization/compression, usually the
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Figure 2: Accuracy evolution of Fashion-
MNIST images classification via
training using 2P-ZOFL with and
without noise as compared with
FedAvg and FedZO for IID and
non-IID data distributions.

Figure 3: Accuracy evolution of MNIST im-
ages classification via non-convex
logistic regression using 2P-ZOFL
for different noise variance σ2n =
{0.25, 1, 2.25, 3.1684, 10.0489}.

Figure 4: Accuracy evolution of MNIST im-
ages classification via non-convex
logistic regression with 95% con-
fidence intervals.

Figure 5: Accuracy evolution of MNIST im-
ages classification via gradient
dominated non-convex function.

convergence becomes slower). The same concept applies to other efficiency strategies, e.g.,
with partial device participation. We also note that these numbers do not include the con-
tinuous channel knowledge information acquisition that is necessary for standard methods
(e.g., FedZO) but not for 2P-ZOFL. We further remark that 2P-ZOFL’s local computation
takes even less time and consumes fewer resources (e.g., battery) as there’s no ”backward
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propagation” step, only querying of the model. In Appendix E.1, we provide a quantitative
visualization of savings for 2P-ZOFL vs FedAvg and FedZO.

For the second example in Figure 3, we classify the images of the handwritten digits ”0”
and ”1” taken from the MNIST data set (LeCun and Cortes, 2005) using the non-convex
sigmoid function. All images are evenly distributed among 100 devices and undergo prepro-
cessing, where they are compressed using a lossy autoencoder to reduce their dimensionality
to d = 10. We then study in depth the effect of the noise on the performance of 2P-ZOFL.
While the convergence remains intact, we notice a decrease in convergence speed with the
increase of noise variance σ2n. This is natural as bigger noise variance results in bigger
gradient estimation variance. However, 2P-ZOFL still performs well despite the degraded
wireless conditions. In Figure 4, we plot the same accuracy evolution with 95% confidence
interval, where at worst, there seems to be a loss in 2.5% accuracy.

5.2 κ-Gradient Dominated Non-Convex Objective Function

In Figure 5, we use the same classification example as in Figure 3, but employing the loss
function fi(θ;xi, yi) = (l(θTxi) − yi)2, where l is the logistic sigmoid function l(a) = (1 +
exp(−a))−1. It was shown that the corresponding objective function is gradient-dominated
(Foster et al., 2018). With constant step sizes, the linear rate is evident in the faster
convergence of accuracy.

Figure 6: Accuracy evolution of mush-
room classification using 2P-
ZOFL with and without noise,
with vanishing and constant step
sizes, as compared with FedAvg.

Figure 7: Accuracy evolution of MNIST im-
ages classification using 2P-ZOFL
with and without noise, with van-
ishing and constant step sizes, as
compared with FedAvg.

5.3 Strictly Convex Objective Function

For this subsection, we utilize the convex logistic regression model with regularization for
binary classification with different data sets. In what follows, we set the regularization
constant to 0.001 and we project the optimization variable into the set [−10, 10]d.
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Figure 8: Accuracy evolution of MNIST im-
ages classification using 2P-ZOFL
with and without noise, with van-
ishing and constant step sizes,
with 95% confidence intervals.

Figure 9: Accuracy evolution of MNIST im-
ages classification using 2P-ZOFL
for different noise variance σ2n =
{0.25, 1, 2.25, 3.1684, 10.0489}
and constant step sizes.

In the third scenario, we classify data from the Mushroom data set (mus, 1987) as edible
or not and we divide the data points equally among 20 users. For this example in Figure
6, we compare the effect of noise and the step sizes on 2P-ZOFL and we compare it with
FedAvg. While the algorithm performs relatively well in all cases, we notice a slight gap in
convergence speed due to the presence of noise. This is in line with our theoretical findings
as the noise increases the upper bound for the estimation variance.

We also notice the increase of speed due to fixed step sizes irrelevant of the presence of
noise.

In the final example of Figure 7, we use the same classication as in the second example
of subsection 5.1, by replacing the non-convex sigmoid function by the regularized convex
logistic loss. In Figure 8, we plot the 95% confidence intervals where the fluctuations seem
negligible across the different experimental instances, especially near the end at convergence.
We also notice the same effect of adding noise variance in Figure 9 to the slowing down of
convergence as in the non-convex case.

For additional experimental details and parameter choices, please refer to Appendix E.

6 Conclusion

This study addresses a learning challenge in the context of wireless channels and introduces
a novel two-point gradient estimator-based zero-order federated learning approach. Our
method restricts communication to scalar-valued feedback from devices and integrates the
wireless channel directly into the learning algorithm. We support our approach with both
theoretical analyses and experimental validation, establishing convergence and deriving an
upper bound on the convergence rate under various settings and conditions imposed on the
objective function.
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Appendix A. Zero-Order Gradient Estimate

A.1 Biased Estimator

A.1.1 Without Noise

E[gk|Hk] =E
[
ωk
N

N∑
i=1

hi,k+1

[
fi

(
θk + γk

ωk
N

N∑
j=1

hj,ka, ξk+1

)

− fi
(
θk − γk

ωk
N

N∑
j=1

hj,ka, ξk+1

)]∣∣∣Hk]
(a)
=E
[
ωk
N

N∑
i=1

hi,k+1

[
Fi

(
θk + γk

ωk
N

N∑
j=1

hj,ka
)
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θk − γk
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N
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j=1

hj,ka
)]∣∣∣Hk]

(b)
=E
[
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N

N∑
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[
Fi(θk) + γk

1

N

N∑
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T
k∇Fi(θk) + γ2k(

1

N

N∑
j=1

hj,ka)2ωTk∇2Fi(θ́k)ωk

−
(
Fi(θk)− γk

1

N

N∑
j=1

hj,kaω
T
k∇Fi(θk) + γ2k(

1

N

N∑
j=1

hj,ka)2ωTk∇2Fi(θ̀k)ωk

)]∣∣∣Hk]

=E
[
ωk
N

N∑
i=1

hi,k+1

(
2γk

1

N

N∑
j=1

hj,kaω
T
k∇Fi(θk)

+ γ2k(
1

N

N∑
j=1

hj,ka)2ωTk (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

)∣∣∣Hk]
(c)
=E
[
ωk
N2

(
2aγk

N∑
i=1

hi,k+1hi,kω
T
k∇Fi(θk)

∣∣∣Hk]

+ E
[
ωk

(
a2γ2k

1

N3

N∑
i=1

hi,k+1(
N∑
j=1

hj,k)
2ωTk (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

)∣∣∣Hk]

=2aγk
1

N2

N∑
i=1

E
[
hi,k+1hi,k

∣∣∣Hk]E[ωkωTk ∣∣∣Hk]∇Fi(θk)
+ a2γ2k

1

N3

N∑
i=1

E
[
hi,k+1(

N∑
j=1

hj,k)
2ωkω

T
k (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

∣∣∣Hk]
(d)
=2aβ2Khhγk

1

N2

N∑
i=1

∇Fi(θk)

+ a2γ2k
1

N3

N∑
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E
[
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hj,k)
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T
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=c1γk(∇F (θk) + bk)

(28)
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where (a) is by the definition in (3), (b) is by Taylor expansion and mean-valued theorem
and considering θ́k between θk and θk + γk

ωk
N

∑N
j=1 hj,ka, and θ̀k between θk and θk −

γk
ωk
N

∑N
j=1 hj,ka. (c) is since E[hi,k+1hj,k] = 0 when i 6= j in the first term. (d) is due to

Assumption 5. In (e), we let c1 = 2aβ2Khh
N .

A.1.2 With Noise

E[gk|Hk] =E
[
ωk
N

( N∑
i=1

hi,k+1

[
fi

(
θk + γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξk+1

)

− fi
(
θk − γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξk+1

)]
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)∣∣∣Hk]
(a)
=E
[
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N∑
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[
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N

N∑
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N∑
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)]∣∣∣Hk]

(b)
=E
[
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1

N
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1

N
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2ωTk∇2Fi(θ́k)ωk − Fi(θk) + γk

1

N

N∑
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(hj,ka+ nj,k)ω
T
k∇Fi(θk)

− γ2k(
1

N

N∑
j=1

hj,ka+ nj,k)
2ωTk∇2Fi(θ̀k)ωk

]∣∣∣Hk]

=E
[
ωk
N

N∑
i=1

hi,k+1

(
2γk

1

N

N∑
j=1

(hj,ka+ nj,k)ω
T
k∇Fi(θk)

+ γ2k(
1

N

N∑
j=1

hj,ka+ nj,k)
2ωTk (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

)∣∣∣Hk]
(c)
=E
[
2aγk

1

N2

N∑
i=1

hi,k+1hi,kωkω
T
k∇Fi(θk)

∣∣∣Hk]

+ E
[
ωk

(
γ2k

1

N3

N∑
i=1

hi,k+1(

N∑
j=1

hj,ka+ nj,k)
2ωTk (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

)∣∣∣Hk]

=2aγk
1

N2

N∑
i=1

E
[
hi,k+1hi,k

∣∣∣Hk]E[ωkωTk ∣∣∣Hk]∇Fi(θk)
+ γ2k

1

N3

N∑
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E
[
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N∑
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T
k (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk
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(d)
=2aβ2Khhγk

1

N2

N∑
i=1

∇Fi(θk)

+ γ2k
1

N3

N∑
i=1

E
[
hi,k+1(

N∑
j=1

hj,ka+ nj,k)
2ωkω

T
k (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

∣∣∣Hk]
=c1γk(∇F (θk) + b′k)

(29)

where (a) is by the definition in (3) and the zero-mean noise in Assumption 4, (b)
is by Taylor expansion and mean-valued theorem and considering θ́k between θk and
θk + γk

ωk
N

∑N
j=1(hj,ka + nj,k), and θ̀k between θk and θk − γk

ωk
N

∑N
j=1(hj,ka + nj,k). (c)

is since E[hi,k+1hj,k] = 0 when i 6= j in the first term. (d) is due to Assumption 5. In (e),

we let c1 = 2aβ2Khh
N .

A.2 Bounding the Bias

A.2.1 Without Noise

From (28), we can see that the estimate bias has the form

bk = γk
a

2β2KhhN2

N∑
i=1

E
[
hi,k+1(

N∑
j=1

hj,k)
2ωkω

T
k (∇2Fi(θ́k)−∇2Fi(θ̀k))ωk

∣∣∣Hk].
This bias can be bounded from above using (4) and Assumption 5 as

‖bk‖
(a)

≤γk
a

2β2KhhN2
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E
[∣∣∣hi,k+1N(

N∑
j=1

h2j,k)
∣∣∣‖ωk‖‖ωTk ‖‖∇2Fi(θ́k)−∇2Fi(θ̀k)‖‖ωk‖

∣∣∣Hk]

≤2γkβ1β
3
3

a

2β2KhhN

N∑
i=1

E
[∣∣hi,k+1(h

2
i,k +

∑
j 6=i

h2j,k)
∣∣∣∣∣Hk]

(b)

≤γkβ1β33
a

β2KhhN

N∑
i=1

(√
2

π
σh

(
2Khh +

√
σ4h −K2

hh

)
+ (N − 1)σ3h

√
2

π

)

=γk
aβ1β

3
3σh

β2Khh

√
2

π

(
2Khh +

√
σ4h −K2

hh + (N − 1)σ2h

)
:=c3γk

where (a) is due to Jensen’s inequality and Cauchy-Schwarz, (b) is by using the half-
normal distribution for normal random variables in absolute value explained in the following

paragraph, and in (c), c3 =
aβ1β3

3σh
β2Khh

√
2
π

(
2Khh +

√
σ4h −K2

hh + (N − 1)σ2h

)
.

Let X and Y be two random variables following the N (0, σ2) distribution with correla-
tion coefficient %. Then, we can write Y = %X+

√
1− %2Z, where Z is independent of X and

following the same distribution N (0, σ2). Then, E[|Y X2|] = E[|(%X +
√

1− %2Z)X2|] =

E[|%X3 +
√

1− %2ZX2|] ≤ E[%|X3| +
√

1− %2|ZX2|] = 2%
√

2
πσ

3 +
√

1− %2
√

2
πσ × σ

2 =

(2%+
√

1− %2)
√

2
πσ

3. If we substitute σ = σh and % = Khh
σ2
h

, we obtain the inequality above

in (b).
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A.2.2 With Noise

From (29), we can see that the estimate bias has the form

b′k =γk
1

2aβ2KhhN2
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E
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N∑
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T
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∣∣∣Hk].
(30)

by Assumptions 1, 4, and 5,
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≤γk
1
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E
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√
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√
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√
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√
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=c′3γk,

(31)

where (a) is due to Jensen’s inequality and Cauchy-Schwarz, (b) is by using the half-normal
distribution for normal random variables in absolute value explained at the end of subsection

A.2.1, and in (c), c′3 =
2aβ1β3

3σh
β2Khh

√
2
π

[
2Khh +

√
σ4h −K2

hh + (N − 1)σ2h +N σ2
n
a2

]
.

A.3 Expected Norm Squared of the Gradient Estimate

A.3.1 Without Noise

Bounding the norm squared of the gradient estimate

E[‖gk‖2|Hk] =E
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(a)
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(32)

where (a) is by Assumption 5, (b) is by Assumption 2, and (c) is by Cauchy-Schwartz,
(
∑N

i=1 xi)
2 = (

∑N
i=1 1 · xi)2 ≤ N

∑N
i=1 x

2
i . In (d), we let L2

ξ = E[L2
ξk+1
|Hk], in (e), the last

term has a zero mean since one element of the zero-mean channels will always be independent
of the others, and (f) is due to the normally-distributed channel random variables. In (g),

c2 =
4a2γ2kL

2
ξβ

4
3

N2 (2K2
hh +Nσ4h).

A.3.2 With Noise

E[‖gk‖2|Hk] = E
[∥∥∥ωk
N
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:= c′2,

(33)

where (a) is by Assumption 5 and Cauchy-Schwartz,i.e., (
∑N

i=1 xi)
2 = (

∑N
i=1 1 · xi)2 ≤

N
∑N

i=1 x
2
i . (b) is by (5) and the independence of the noise in Assumption 4. In (c), we let

L2
ξ = E[L2

ξk+1
|Hk], and (d) is due to the normally-distributed channel random variables. In

(e), c′2 =
4a2γ2kβ

4
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ξ
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2
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Appendix B. Stochastic Noise

To prove Lemma 10, we begin by demonstrating that the sequence {
∑K′

k=K αkek}K′≥K is a

martingale. To do so, we have to prove that for all K ′ ≥ K, XK′ =
∑K′

k=K αkek satisfies
the following two conditions:

(i) E[XK′+1|XK′ ] = XK′

(ii) E[‖XK′‖2] <∞
We know that E[ek] = E[gk − E[gk|Hk]] = EHk

[
E
[
gk − E[gk|Hk]

∣∣∣Hk]] = 0 by the law

of total expectation. Hence, E[XK′+1|XK′ ] = E
[
αK′+1eK′+1 +

∑K′

k=K αkek

∣∣∣∑K′

k=K αkek

]
=

0 +
∑K′

k=K αkek = XK′ .
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In addition, ek and ek′ are uncorrelated for any k 6= k′ since (assuming k > k′)
E
[
eTk ek′

]
= E

[
E[eTk ek′ |Hk]

]
= E

[
ek′E[eTk |Hk]

]
= 0. Thus,

E(‖
K′∑
k=K

αkek‖2) =E(
K′∑
k=K

K′∑
k′=K

αkαk′〈ek, ek′〉)

(a)
=E(

K′∑
k=K

‖αkek‖2)

≤
∞∑
k=K

E(α2
k‖gk − E[gk|Hk]‖2)

=
∞∑
k=K

α2
kE(‖gk‖2)− EHk(‖E[gk|Hk]‖2)

≤
∞∑
k=K

α2
kE(‖gk‖2)

(b)

≤c2
∞∑
k=K

α2
kγ

2
k

(
≤ c′2

∞∑
k=K

α2
k in case of noise

)
(c)
<∞,

(34)

where (a) is due to the uncorrelatedness E[〈ek, ek′〉] = 0, (b) is by Lemma 7, and (c) is by As-

sumption 9. Therefore, both (i) and (ii) are satisfied and we can say that {
∑K′

k=K αkek}K′≥K
is a martingale. This permits us to use Doob’s martingale inequality (Doob, 1953):

For any constant ν > 0,

P( sup
K′≥K

‖
K′∑
k=K

αkek‖ ≥ ν) ≤ 1

ν2
E(‖

K′∑
k=K

αkek‖2)

(a)

≤ c2
ν2

∞∑
k=K

α2
kγ

2
k

(
≤ c′2
ν2

∞∑
k=K

α2
k in case of noise

)
,

(35)

where (a) is following the exact same steps as (34).

Since c2 (c′2 in case of noise) is a bounded constant and limK→∞
∑∞

k=K α
2
kγ

2
k = 0(

limK→∞
∑∞

k=K α
2
k = 0 with noise

)
by Assumption 9, we get limK→∞

c2
ν2
∑∞

k=K α
2
kγ

2
k = 0(

limK→∞
c2
ν2
∑∞

k=K α
2
k = 0 with noise

)
for any bounded constant ν. Hence, the probability

that ‖
∑K′

k=K αkek‖ ≥ ν also vanishes as K →∞, which concludes the proof.

29



Mhanna and Assaad

Appendix C. Convergence with Non-Convex Objective Function

By the L-smoothness assumption, we have

F (θk+1) ≤F (θk)− αk〈∇F (θk), gk〉+
α2
kL

2
‖gk‖2

=F (θk)− αk〈∇F (θk), gk − E[gk|Hk] + E[gk|Hk]〉+
α2
kL

2
‖gk‖2

=F (θk)− αk〈∇F (θk), ek〉 − c1αkγk〈∇F (θk),∇F (θk) + bk〉+
α2
kL

2
‖gk‖2

=F (θk)− αk〈∇F (θk), ek〉 − c1αkγk‖∇F (θk)‖2 − c1αkγk〈∇F (θk), bk〉+
α2
kL

2
‖gk‖2

(a)

≤F (θk)− αk〈∇F (θk), ek〉 − c1αkγk‖∇F (θk)‖2 +
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2

+
α2
kL

2
‖gk‖2

=F (θk)− αk〈∇F (θk), ek〉 −
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

α2
kL

2
‖gk‖2

(36)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2. Note that bk is replaced by b′k for the case of noisy
channels.

By taking the telescoping sum, we get

F (θ∗) ≤ F (θK+1) ≤F (θ0)−
c1
2

K∑
k=0

αkγk‖∇F (θk)‖2 −
K∑
k=0

αk〈∇F (θk), ek〉+
c1
2

K∑
k=0

αkγk‖bk‖2

+
L

2

K∑
k=0

α2
k‖gk‖2

(37)

Hence,

K∑
k=0

αkγk‖∇F (θk)‖2 ≤
2

c1
(F (θ0)− F (θ∗))− 2

c1

K∑
k=0

αk〈∇F (θk), ek〉+
K∑
k=0

αkγk‖bk‖2

+
L

c1

K∑
k=0

α2
k‖gk‖2

(38)

By Lemma 3, ‖∇F (θk)‖ is bounded for any θk ∈ Rd by taking the summation in (35)
between 0 and ∞, we have

lim
K→∞

‖
K∑
k=0

αk〈∇F (θk), ek〉‖ <∞. (39)
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From Lemma 8, we know that ‖bk‖2 ∼ γ2k (similarly, ‖b′k‖2 ∼ γ2k). Hence, by Assumption
11,

lim
K→∞

K∑
k=0

αkγ
3
k <∞. (40)

To prove the finiteness of
∑K

k=0 α
2
k‖gk‖2, we let Xk be a centered Gaussian process. We

know that for any σ2-subgaussian random variables X1, . . . , XK , we have

P

[
sup

1≤k≤K
Xk ≥

√
2σ2(logK + t)

]
≤ e−t

since let u :=
√

2σ2(logK + t),

P

[
sup

1≤k≤K
Xk ≥ u

]
= P [∃k,Xk ≥ u] ≤

K∑
k=1

P [Xk ≥ u] ≤ Ke−
u2

2σ2 = e−t.

Then, for t = c logK with c > 1, P
[
sup1≤k≤K Xk ≥

√
2σ2(1 + c) logK

]
≤ 1

Kc and

∞∑
K=1

P

[
sup

1≤k≤K
Xk ≥

√
2σ2(1 + c) logK

]
≤
∞∑
K=1

1

Kc
<∞.

By Borel-Cantelli Lemma, we have

P

(
lim
K→∞

sup{ sup
1≤k≤K

Xk ≥
√

2σ2(1 + c) logK}

)
= 0.

Then, w.p.1 ∃K ′ <∞ s.t. ∀K ≥ K ′, sup1≤k≤K Xk ≤
√

2σ2(1 + c) logK with c > 1.

Thus, the supremum of the Gaussian elements of ‖gk‖, i.e., hi,k+1, hi,k, ni,k, and ni,k+1,
at worst grow as O(

√
log(k + 1)), and hence the upper bound on ‖gk‖ grows as c4γk log(k+

1) (and as c′4 log(k+1) with noise), where c4 = 4β23Lξk+1
(1+c)|a|σ2h and c′4 = 4γkβ

2
3Lξk+1

(1+

c)(σ2h|a|+ σnσh) + β3
√

2σ2n(1 + c):
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‖gk‖ =
∥∥∥ωk
N

( N∑
i=1

hi,k+1

[
fi
(
θk + γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξk+1

)
− fi

(
θk − γk

ωk
N

N∑
j=1

(hj,ka+ nj,k), ξk+1

)]
+ ni,k+1

)∥∥∥
≤ ‖ωk‖

1

N

N∑
i=1

∥∥∥hi,k+12Lξk+1

∥∥γkωk
N

N∑
j=1

(hj,ka+ nj,k)
∥∥∥∥∥+ ‖ni,k+1‖

≤ ‖ωk‖
[
‖ωk‖

2γkLξk+1

N2

N∑
i=1

N∑
j=1

|hi,k+1| · (|ahj,k|+ |nj,k|) +
1

N

N∑
i=1

|ni,k+1|
]

≤ β23
2γkLξk+1

N2
N2
√

2σ2h(1 + c) log(k + 1)(|a|
√

2σ2h(1 + c) log(k) +
√

2σ2n(1 + c) log(k))

+
β3
N
N
√

2σ2n(1 + c) log(k + 1)

≤ 4γkβ
2
3Lξk+1

(1 + c)
√
σ2h log(k + 1)(|a|

√
σ2h log(k + 1) +

√
σ2n log(k + 1))

+ β3
√

2σ2n(1 + c) log(k + 1)

= 4γkβ
2
3Lξk+1

(1 + c)(σ2h|a|+ σnσh) log(k + 1) + β3
√

2σ2n(1 + c) log(k + 1)

≤
(

4γkβ
2
3Lξk+1

(1 + c)(σ2h|a|+ σnσh) + β3
√

2σ2n(1 + c)
)

log(k + 1),

where the last inequality holds for k ≥ e − 1. Then, we write
∑K

k=0 α
2
k‖gk‖2 =∑K′

k=0 α
2
k‖gk‖2 +

∑K
k=K′ α

2
k‖gk‖2, where

∑K′

k=0 α
2
k‖gk‖2 <∞ for K ′ <∞.

We know that ∀ε > 0, log(k + 1) ≤ 1
ε (k + 1)ε. Thus, by Assumption 9, for ε′ > 0 and

2(υ1 + υ2) = 1 + ε′ (2υ1 = 1 + ε′ with noise),

lim
K→∞

K∑
k=K′

α2
k‖gk‖2 ≤ lim

K→∞
c24

K∑
k=K′

α2
kγ

2
k log2(k + 1)

≤ lim
K→∞

c24

K∑
k=K′

1

(k + 1)1+ε′
× 1

ε2
(k + 1)2ε <∞, ∀ε′ > 2ε > 0.

(
lim
K→∞

K∑
k=K′

α2
k‖gk‖2 ≤ lim

K→∞
c′24

K∑
k=K′

α2
k log2(k + 1)

≤ lim
K→∞

c′24

K∑
k=K′

1

(k + 1)1+ε′
× 1

ε2
(k + 1)2ε <∞, ∀ε′ > 2ε > 0 with noise

)
.

(41)

We conclude that

lim
K→∞

K∑
k=0

αkγk‖∇F (θk)‖2 <∞. (42)
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Moreover, since the series
∑

k αkγk diverges by Assumption 9, we have

lim
k→∞

inf ‖∇F (θk)‖ = 0. (43)

To prove that limk→∞ ‖∇F (θk)‖ = 0, we consider the hypothesis:
(H) limk→∞ sup ‖∇F (θk)‖ ≥ ρ for an arbitrary ρ > 0.
Assume (H) to be true. Then, we can always find an arbitrary subsequence(

‖∇F (θkl)‖
)
l∈N of ‖∇F (θk)‖, such that ‖∇F (θkl)‖ ≥ ρ− ε, ∀l, for ρ− ε > 0 and ε > 0.

Then, by the L-smoothness property and applying the descent step of the algorithm,

‖∇F (θkl+1)‖ ≥‖∇F (θkl)‖ − ‖∇F (θkl+1)−∇F (θkl)‖
≥ρ− ε− L‖θkl+1 − θkl‖
=ρ− ε− Lαkl‖gkl‖

≥ρ− ε− L
√
cαklγkl

(
≥ ρ− ε− L

√
c′αkl with noise

)
,

(44)

Since kl → ∞ as l → ∞, we can always find a subsequence of (klp)p∈N such that

klp+1 − klp > 1. As αklγkl is vanishing, we consider (kl)l∈N starting from αklγkl <
ρ−ε
L
√
c
.

Thus,
(without noise):

∞∑
k=0

αk+1γk+1‖∇F (θk+1)‖2

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c

∞∑
k=0

αk+1γk+1αkγk + L2c

∞∑
k=0

αk+1γk+1α
2
kγ

2
k

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c
∞∑
k=0

α2
kγ

2
k + L2c

∞∑
k=0

αk+1γk+1α
2
kγ

2
k

= +∞,

(45)

(with noise):

∞∑
k=0

αk+1γk+1‖∇F (θk+1)‖2

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c′
∞∑
k=0

αk+1γk+1αk + L2c′
∞∑
k=0

αk+1γk+1α
2
k

≥ (ρ− ε)2
∞∑
k=0

αk+1γk+1 − 2(ρ− ε)L
√
c′
∞∑
k=0

α2
k + L2c′

∞∑
k=0

αk+1γk+1α
2
k

= +∞,

(46)

as the first series diverges, and the second and the third converge by Assumption 9. This
implies that the series

∑
k αkγk‖∇F (θk)‖2 diverges. This is a contradiction as this series

converges almost surely by (42). Therefore, hypothesis (H) cannot be true and ‖∇F (θk)‖
converges to zero almost surely.
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C.1 Non-Convex Objective Function Convergence Rate

C.1.1 Without Noise

Considering again the L-smoothness inequality, we have

F (θk+1) ≤ F (θk)− αk〈∇F (θk), gk〉+
α2
kL

2
‖gk‖2. (47)

Taking the conditional expectation given Hk,

E[F (θk+1)|Hk] ≤F (θk)− c1αkγk〈∇F (θk),∇F (θk) + bk〉+
c2L

2
α2
kγ

2
k

=F (θk)− c1αkγk‖∇F (θk)‖2 − c1αkγk〈∇F (θk), bk〉+
c2L

2
α2
kγ

2
k

(a)

≤F (θk)− c1αkγk‖∇F (θk)‖2 +
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

c2L

2
α2
kγ

2
k

=F (θk)−
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖bk‖2 +

c2L

2
α2
kγ

2
k

(48)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2

Taking the telescoping sum of (48),

E[F (θK+1)] ≤ F (θ0)−
c1
2

∑
k

αkγkE[‖∇F (θk)‖2] +
c1
2

∑
k

αkγkE[‖bk‖2] +
c2L

2

∑
k

α2
kγ

2
k

0 ≤ E[δK+1] ≤ δ0 −
c1
2

∑
k

αkγkE[‖∇F (θk)‖2] +
c1
2

∑
k

αkγkE[‖bk‖2] +
c2L

2

∑
k

α2
kγ

2
k .

(49)

Hence,

∑
k

αkγkE[‖∇F (θk)‖2] ≤
2

c1
δ0 +

∑
k

αkγkE[‖bk‖2] +
c2L

c1

∑
k

α2
kγ

2
k

≤ 2

c1
δ0 + c23

∑
k

αkγ
3
k +

c2L

c1

∑
k

α2
kγ

2
k

(50)

Let αk = α0(1 + k)−υ1 and γk = γ0(1 + k)−υ2 . Then, to satisfy Assumptions 9 and 11,
it is sufficient to find υ1 and υ2 such that 0 < υ1 + υ2 ≤ 1, υ1 + 3υ2 > 1, and υ1 + υ2 > 0.5.
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We know that, ∀K > 0,

K∑
k=0

αkγ
3
k = α0γ

3
0 +

K∑
k=1

αkγ
3
k

≤ α0γ
3
0

(
1 +

∫ K

0
(x+ 1)−υ1−3υ2dx

)
= α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1
− (K + 1)−υ1−3υ2+1

υ1 + 3υ2 − 1

)
≤ α0γ

3
0

(
1 +

1

υ1 + 3υ2 − 1

)
= α0γ

3
0

(
υ1 + 3υ2

υ1 + 3υ2 − 1

)
.

(51)

Similarly,
K∑
k=0

α2
kγ

2
k ≤ α2

0γ
2
0

(
2υ1 + 2υ2

2υ1 + 2υ2 − 1

)
(52)

� Next, when 0 < υ1 + υ2 < 1,

K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0
(x+ 1)−υ1−υ2dx

=
α0γ0

(1− υ1 − υ2)

(
(K + 2)1−υ1−υ2 − 1

)
.

(53)

Thus, making use of inequality (50)∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1
×[

2δ0
c1α0γ0

+
(υ1 + 3υ2)(c3γ0)

2

υ1 + 3υ2 − 1
+

2(υ1 + υ2)c2α0γ0L

c1(2υ1 + 2υ2 − 1)

] (54)

In the pursuit of optimizing the time-varying component, which follows the scaling of
O
(

1
K1−υ1−υ2

)
, we find that the most suitable values for the exponents are υ1 = υ2 = 1

4 ,

resulting in a rate of O
(

1√
K

)
. However, it is worth noting that with this specific

selection, the constant portion becomes excessively large, underscoring the need for a
compromise.

� Otherwise, when υ1 + υ2 = 1,

K∑
k=0

αkγk ≥ α0γ0

∫ K+1

0

1

x+ 1
dx

= α0γ0 ln(K + 2).

(55)
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Thus, we get∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ 1

ln(K + 2)
×[

2δ0
c1α0γ0

+
(υ1 + 3υ2)(c3γ0)

2

υ1 + 3υ2 − 1
+

2(υ1 + υ2)c2α0γ0L

c1(2υ1 + 2υ2 − 1)

]
.

(56)

C.1.2 With Noise

By the L-smoothness inequality,

F (θk+1) ≤ F (θk)− αk〈∇F (θk), gk〉+
α2
kL

2
‖gk‖2. (57)

Taking the conditional expectation given Hk,

E[F (θk+1)|Hk] ≤F (θk)− c1αkγk〈∇F (θk),∇F (θk) + b′k〉+
c′2L

2
α2
k

=F (θk)− c1αkγk‖∇F (θk)‖2 − c1αkγk〈∇F (θk), b
′
k〉+

c′2L

2
α2
k

(a)

≤F (θk)− c1αkγk‖∇F (θk)‖2 +
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖b′k‖2 +

c′2L

2
α2
k

=F (θk)−
c1αkγk

2
‖∇F (θk)‖2 +

c1αkγk
2
‖b′k‖2 +

c′2L

2
α2
k

(58)

where (a) is by −〈a, b〉 ≤ 1
2‖a‖

2 + 1
2‖b‖

2

Taking the telescoping sum of (58),

E[F (θK+1)] ≤ F (θ0)−
c1
2

∑
k

αkγkE[‖∇F (θk)‖2] +
c1
2

∑
k

αkγkE[‖b′k‖2] +
c′2L

2

∑
k

α2
k

0 ≤ E[δK+1] ≤ δ0 −
c1
2

∑
k

αkγkE[‖∇F (θk)‖2] +
c1
2

∑
k

αkγkE[‖b′k‖2] +
c′2L

2

∑
k

α2
k.

(59)

Hence,

∑
k

αkγkE[‖∇F (θk)‖2] ≤
2

c1
δ0 +

∑
k

αkγkE[‖b′k‖2] +
c′2L

c1

∑
k

α2
k

≤ 2

c1
δ0 + (c′3)

2
∑
k

αkγ
3
k +

c′2L

c1

∑
k

α2
k.

(60)

Let αk = α0(1 + k)−υ1 and γk = γ0(1 + k)−υ2 . Then, to satisfy Assumptions 9 and 11,
it is sufficient to find υ1 and υ2 such that 0 < υ1 + υ2 ≤ 1, υ1 + 3υ2 > 1, and υ1 > 0.5.

Similarly to (51), ∀K > 0,
∑K

k=0 αkγ
3
k ≤ α0γ

3
0

(
υ1+3υ2
υ1+3υ2−1

)
and

∑K
k=0 α

2
k ≤ α2

0

(
2υ1

2υ1−1

)
.
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� When 0 < υ1 + υ2 < 1,
∑K

k=0 αkγk ≥
α0γ0

(1−υ1−υ2)

(
(K + 2)1−υ1−υ2 − 1

)
.

Thus, ∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ (1− υ1 − υ2)

(K + 2)1−υ1−υ2 − 1
×[

2δ0
c1α0γ0

+
(υ1 + 3υ2)(c

′
3γ0)

2

υ1 + 3υ2 − 1
+

2υ1c
′
2α0L

c1γ0(2υ1 − 1)

]
.

When optimizing for the time-varying component, which scales as O
(

1
K1−υ1−υ2

)
, we

discover that the most favorable values for the exponents are υ1 = 1
2 and υ2 = 1

6 ,

resulting in a rate of O
(

1
3√K

)
. However, it is important to note that with this

particular choice, the constant part becomes excessively large, indicating the necessity
for a trade-off or compromise.

� Otherwise, when υ1 + υ2 = 1,
∑K

k=0 αkγk ≥ α0γ0 ln(K + 2).

Thus, we get∑
k αkγkE[‖∇F (θk)‖2]∑

k αkγk
≤ 1

ln(K + 2)

[
2δ0

c1α0γ0
+

(υ1 + 3υ2)(c
′
3γ0)

2

υ1 + 3υ2 − 1
+

2υ1c
′
2α0L

c1γ0(2υ1 − 1)

]
.

(61)

C.2 κ-Gradient Dominated Non-Convex Objective Function Convergence Rate

C.2.1 Without Noise

Making use of inequalities (48) and (13),

E[δk+1|Hk] ≤ δk −
c1αkγk

2
2κδk +

c1αkγk
2
‖bk‖2 +

α2
kLc2γ

2
k

2

≤ (1− c1αkγkκ)δk +
c1c

2
3αkγ

3
k

2
+
c2L

2
α2
kγ

2
k .

(62)

By recursion,

E[δK ] ≤
K−1∏
k=0

(1− c1αkγkκ)δ0 +
c1c

2
3

2

K−1∑
k=0

αkγ
3
k

K−1∏
j=k+1

(1− c1αjγjκ)

+
c2L

2

K−1∑
k=0

α2
kγ

2
k

K−1∏
j=k+1

(1− c1αjγjκ).

(63)

Substituting by αk = α0(k + 2)−υ1 and γk = γ0(k + 2)−υ2 and letting c1α0γ0κ < 2,

E[δK ] ≤ δ0
K−1∏
k=0

(
1− c1α0γ0κ

(k + 2)υ1+υ2

)
+
c1c

2
3α0γ

3
0

2

K−1∑
k=0

1

(k + 2)υ1+3υ2

K−1∏
j=k+1

[
1− c1α0γ0κ

(j + 2)υ1+υ2

]

+
c2α

2
0γ

2
0L

2

K−1∑
k=0

1

(k + 2)2υ1+2υ2

K−1∏
j=k+1

[
1− c1α0γ0κ

(j + 2)υ1+υ2

]
.

(64)
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As shown by Pu et al. (2022, Lemma 11), we know that

K−1∏
k=0

(
1− c1α0γ0κ

k + 2

)
≤ 2c1α0γ0κ

(K + 2)c1α0γ0κ
(65)

and
K−1∏
j=k+1

(
1− c1α0γ0κ

j + 2

)
≤ (k + 3)c1α0γ0κ

(K + 2)c1α0γ0κ
. (66)

By allowing υ1 + υ2 = 1, we get

E[δK ] ≤ 1

(K + 2)c1α0γ0κ
×(

2c1α0γ0κδ0 +
c1c

2
3α0γ

3
0

2

K−1∑
k=0

(k + 3)c1α0γ0κ

(k + 2)υ1+3υ2
+
c2α

2
0γ

2
0L

2

K−1∑
k=0

(k + 3)c1α0γ0κ

(k + 2)2υ1+2υ2

)
.

(67)

For δK to converge, we need υ1 + 3υ2 − c1α0γ0κ > 1 and 2υ1 + 2υ2 − c1α0γ0κ > 1. Then,
optimizing for the rate, we obtain a rate a little short of O( 1

K ) by considering c1α0γ0κ as
near as possible to 1 and υ1 = υ2 = 1

2 .

C.2.2 With Noise

Following similar steps as in subsection C.2.1, we obtain for υ1 + υ2 = 1

E[δK ] ≤ 1

(K + 2)c1α0γ0κ
×(

2c1α0γ0κδ0 +
c1c
′2
3 α0γ

3
0

2

K−1∑
k=0

(k + 3)c1α0γ0κ

(k + 2)υ1+3υ2
+
c′2α

2
0L

2

K−1∑
k=0

(k + 3)c1α0γ0κ

(k + 2)2υ1

)
.

(68)

For δK to converge, we should have υ1 + 3υ2 − c1α0γ0κ > 1 and 2υ1 − c1α0γ0κ > 1. Then,
we optimize for the rate, we find a rate a little short of O( 1√

K
) by considering c1α0γ0κ as

near as possible to 1
2 , υ1 = 3

4 , and υ2 = 1
4 .

C.3 κ-Gradient Dominated Non-Convex Objective Function with Fixed Step
Sizes Convergence Rate

C.3.1 Without Noise

Following up from (62), and letting ς = 1− c1αγκ, αk = α, and γk = γ,

E[δk+1|Hk] ≤ (1− c1αγκ)δk +
c1c

2
3

2
αγ3 +

c2L

2
α2γ2

= ςδk +
c1c

2
3

2
αγ3 +

c2L

2
α2γ2.

(69)
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Then, for αγ < 1
c1κ

, we take the telescoping sum,

E[δk+1] ≤ ςk+1δ0 + αγ

(
c1c

2
3

2
γ2 +

c2L

2
αγ

) k∑
j=0

ςj

= ςk+1δ0 + αγ

(
c1c

2
3

2
γ2 +

c2L

2
αγ

)
1− ςk+1

1− ς
.

(70)

C.3.2 With Noise

Similarly, following up from (58) and (13), and setting again ς = 1 − c1αγκ, αk = α, and
γk = γ,

E[δk+1|Hk] ≤(1− c1αγκ)δk +
c1c
′2
3

2
αγ3 +

c′2L

2
α2

=ςδk +
c1c
′2
3

2
αγ3 +

c′2L

2
α2.

(71)

For αγ < 1
c1κ

,

E[δk+1] ≤ςk+1δ0 + α

(
c1c
′2
3

2
γ3 +

c′2L

2
α

)
1− ςk+1

1− ς
. (72)

Appendix D. Convergence with a Strictly Convex Objective Function

The goal is to write the divergence in terms of its previous term and to prove that it is
finally vanishing. We know that θk+1 = θk − αkgk. With this equation, the divergence at
time k + 1 can be written as

dk+1 =‖θk+1 − θ∗‖2

=‖ΠK(θk − αkgk)− θ∗‖2

(a)

≤‖θk − αkgk − θ∗‖2

=‖θk − θ∗‖2 − 2αk〈θk − θ∗, gk − E[gk|Hk] + E[gk|Hk]〉+ α2
k‖gk‖2

=‖θk − θ∗‖2 − 2αk〈θk − θ∗,E[gk|Hk]〉 − 2αk〈θk − θ∗, ek〉+ α2
k‖gk‖2

(b)
=dk − 2c1αkγk〈θk − θ∗,∇F (θk) + bk〉 − 2αk〈θk − θ∗, ek〉+ α2

k‖gk‖2

=dk − 2c1αkγk〈θk − θ∗,∇F (θk)〉 − 2c1αkγk〈θk − θ∗, bk〉 − 2αk〈θk − θ∗, ek〉+ α2
k‖gk‖2

(c)

≤dk − 2c1αkγk〈θk − θ∗,∇F (θk)〉+ 2c1c3αkγ
2
k‖θk − θ∗‖ − 2αk〈θk − θ∗, ek〉+ α2

k‖gk‖2

where (a) is by (19) and the fact that θ∗ ∈ K in Assumption 19, (b) is due to Lemma 6,
and (c) is by Lemma 8. Note that bk is replaced by b′k and c3 by c′3 for the case of noisy
channels.
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By recursion, we have

dK+1 ≤d0 − 2c1

K∑
k=0

αkγk〈θk − θ∗,∇F (θk)〉+ 2c1c3

K∑
k=0

αkγ
2
k‖θk − θ∗‖ − 2

K∑
k=0

αk〈θk − θ∗, ek〉

+

K∑
k=0

α2
k‖gk‖2.

(73)

By Lemma 10, we have limK→∞ ‖
∑K

k=0 αkek‖ <∞ almost surely. Since ‖θk − θ∗‖ <∞ by
the compactness of K,

lim
K→∞

‖
K∑
k=0

αk〈θk − θ∗, ek〉‖ <∞. (74)

Following the exact same steps in the analysis leading to (41),

lim
K→∞

K∑
k=0

α2
k‖gk‖2 <∞. (75)

By Assumption 17 and the compactness of K, we have

lim
K→∞

K∑
k=0

αkγ
2
k‖θk − θ∗‖ <∞. (76)

From the inequalities (73)-(76), we conclude that there exists D such that dK+1 ≤
D + zK , with

zK = −2c1

K∑
k=0

γkαk〈θk − θ∗,∇F (θk)〉. (77)

We know that zK < 0 due to the strict convexity of F in (18).

Consequently, for any big K, 0 ≤ dK+1 <∞ and the limit limK→∞ dK+1 = d̄ exists.

Thus, there are 2 cases: d̄ > 0 or d̄ = 0. Assume hypothesis H1 ) d̄ > 0 to be valid, i.e.,
θk does not converge to θ∗, then ∀εh > 0, ∃Kh such that

−〈θk − θ∗,∇F (θk)〉 < −εh, ∀k ≥ Kh,

implying

lim
K→∞

−
K∑

k=Kh

γkαk〈θk − θ∗,∇F (θk)〉 < −εh lim
K→∞

K∑
k=Km

γkαk < −∞

since
∑
γkαk diverges by Assumption 9. As a result, we get limK→∞ zK < −∞ and

limK→∞ dK+1 < −∞. However, by definition in (20), dK+1 > 0. Accordingly, the hypothe-
sis H1 cannot be true and the case d̄ = 0 is the valid one. We conclude that limk→∞ dk = 0,
limk→∞∇F(θk) = 0, and limk→∞ θk = θ∗ almost surely.
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D.1 Strongly Convex Objective Function Convergence Rate

D.1.1 Without Noise

In this subsection, we study the convergence rate. Let the objective function F be µ-strongly
convex and λk = 1− c1αkγkµ, then assuming c1αkγk ≤ 2

µ+L , for all k ≥ 0,

E
[
‖θk+1 − θ∗‖2

∣∣Hk]
=E
[
‖ΠK(θk − αkgk)− θ∗‖2

∣∣Hk]
(a)

≤E
[
‖θk − αkgk − θ∗‖2

∣∣Hk]
=‖θk − θ∗‖2 − 2αkE

[
〈θk − θ∗, gk〉

∣∣Hk]+ α2
kE
[
‖gk‖2

∣∣Hk]
(b)

≤‖θk − θ∗‖2 − 2c1αkγk〈θk − θ∗,∇F (θk) + bk〉+ c2α
2
kγ

2
k

=‖θk − θ∗‖2 − 2c1αkγk〈θk − θ∗,∇F (θk)〉+ (c1αkγk)
2‖∇F (θk)‖2 − (c1αkγk)

2‖∇F (θk)‖2

− 2c1αkγk〈θk − θ∗, bk〉+ c2α
2
kγ

2
k

=‖θk − c1αkγk∇F (θk)− θ∗‖2 − (c1αkγk)
2‖∇F (θk)‖2 − 2c1αkγk〈θk − θ∗, bk〉+ c2α

2
kγ

2
k

(c)

≤λ2k‖θk − θ∗‖2 − (c1αkγk)
2‖∇F (θk)‖2 − 2c1αkγk〈θk − c1αkγk∇F (θk)− θ∗, bk〉

− 2(c1αkγk)
2〈∇F (θk), bk〉+ c2α

2
kγ

2
k

(d)

≤λ2k‖θk − θ∗‖2 − (c1αkγk)
2‖∇F (θk)‖2 + c1αkγkµλ

2
k‖θk − θ∗‖2 +

c1αkγk
µ
‖bk‖2

+ (c1αkγk)
2‖∇F (θk)‖2 + (c1αkγk)

2‖bk‖2 + c2α
2
kγ

2
k

=λ2k(1 + c1αkγkµ)‖θk − θ∗‖2 + c1αkγk

(
1

µ
+ c1αkγk

)
‖bk‖2 + c2α

2
kγ

2
k

≤λk‖θk − θ∗‖2 + c1αkγk

(
1

µ
+ c1αkγk

)
‖bk‖2 + c2α

2
kγ

2
k ,

(78)

where (a) by (19) and the fact that θ∗ ∈ K in Assumption 19, (b) is due to the inequalities
(28) and (32), (c) is due to (24), and (d) is since −2ε× 1

ε 〈a, b〉 = −2〈εa, 1ε b〉 ≤ ε
2‖a‖2+ 1

ε2
‖b‖2.

Taking the full expectation on both sides of (78), and letting Dk = E
[
‖θk − θ∗‖2

]
, we

get

Dk+1 ≤λkDk + c1c
2
3

(
1

µ
+ c1αkγk

)
αkγ

3
k + c2α

2
kγ

2
k .

≤λkDk + c1c
2
3

(
1

µ
+ c1α0γ0

)
αkγ

3
k + c2α

2
kγ

2
k .

(79)

For the following part, we let c1αkγk = ν
l+k , with l > ν

2 (µ + L) and νµ > 1 two constant

values. A practical example is to take αk = γk =
√

ν/c1
l+k , ∀k ≥ 0.

Suppose that Dk ≤ D
l+k for some k ≥ 0, we want to prove that Dk+1 ≤ D

l+k+1 . Thus,
making use of (79) and substituting by the step-sizes’ chosen form, we have to solve for D
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the following inequality,

Dk+1 ≤
(1− ν

l+kµ)D

l + k
+

(
c23
c1

( 1

µ
+ c1α0γ0

)
+
c2
c21

)
ν2

(l + k)2

≤ D

l + k + 1
.

(80)

Let c =
c23
c1

(
1
µ + c1α0γ0

)
+ c2

c21
for simplification,

(l + k − νµ)D

(l + k)2
+ c

ν2

(l + k)2
≤ D

l + k + 1

D(l + k − νµ)(l + k + 1) + cν2(l + k + 1) ≤ D(l + k)2.

(81)

Then,

cν2(l + k + 1)

(νµ− 1)(l + k) + νµ
≤ D. (82)

Next, we define a function q(x) = cν2(l+x+1)
(νµ−1)(l+x)+νµ for x ≥ 0. We know that

q′(x) =
cν2(

(νµ− 1)(l + x) + νµ
)2 > 0, (83)

meaning q is strictly increasing for x ≥ 0, and limx→∞ q(x) = cν2

νµ−1 . Therefore, we must

have D ≥ cν2

νµ−1 . Since we can find such a constant D, we conclude that Dk is indeed

bounded from above by D
l+k for k ≥ 0.

D.1.2 With Noise

Let the objective function F be µ-strongly convex and let λk = 1− c1αkγkµ, then assuming
c1αkγk ≤ 2

µ+L , for all k ≥ K0,

E
[
‖θk+1 − θ∗‖2

∣∣Hk]
=E
[
‖ΠK(θk − αkgk)− θ∗‖2

∣∣Hk]
(a)

≤E
[
‖θk − αkgk − θ∗‖2

∣∣Hk]
=‖θk − θ∗‖2 − 2αkE

[
〈θk − θ∗, gk〉

∣∣Hk]+ α2
kE
[
‖gk‖2

∣∣Hk]
(b)

≤‖θk − θ∗‖2 − 2c1αkγk〈θk − θ∗,∇F (θk) + b′k〉+ c′2α
2
k

=‖θk − θ∗‖2 − 2c1αkγk〈θk − θ∗,∇F (θk)〉+ (c1αkγk)
2‖∇F (θk)‖2 − (c1αkγk)

2‖∇F (θk)‖2

− 2c1αkγk〈θk − θ∗, b′k〉+ c′2α
2
k

=‖θk − c1αkγk∇F (θk)− θ∗‖2 − (c1αkγk)
2‖∇F (θk)‖2 − 2c1αkγk〈θk − θ∗, b′k〉+ c′2α

2
k

(c)

≤λ2k‖θk − θ∗‖2 − (c1αkγkµ)2‖θk − θ∗‖2 + 2c1c
′
3αkγ

2
k‖θk − θ∗‖+ c′2α

2
k

=(1− 2c1αkγkµ)‖θk − θ∗‖2 + 2c1c
′
3αkγ

2
k‖θk − θ∗‖+ c′2α

2
k.

(84)
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where (a) by (19) and the fact that θ∗ ∈ K in Assumption 19 and (b) is due to (29) and
(33). (c) is due to (24), the strong convexity inequality, and (31) respectively.

Thus, further assuming 2c1αkγkµ < 1 for k ≥ K0, and taking the expectation over Hk
on both sides of the previous inequality,

Dk+1 ≤ (1− 2c1αkγkµ)Dk + 2c1c
′
3αkγ

2
k

√
Dk + c′2α

2
k. (85)

To study the evolution of Dk, we let Uk ≤ Uk+1 be a decreasing sequence, and we assume
that Dk ≤ Uk, ∀k ≥ 0. Then, to find Uk and verify its existence, we substitute in (85),

Dk+1 ≤ (1− 2c1αkγkµ)Uk + 2c1c
′
3αkγ

2
k

√
Uk + c′2α

2
k

≤ Uk+1 ≤ Uk.
(86)

Therefore, we must have

Uk ≥
(
c′3
2µ
γk +

1

2

√
c′23
µ2
γ2k +

2c′2
c1µ

αk
γk

)2

, (87)

meaning we cannot get a rate better than that of γ2k or αk
γk

. Thus, we study both possibilities:

1. We assume Dk ≤ ζ21γ2k with ζ1 some constant.

We want to make sure that Dk+1 ≤ Uk+1 can be obtained from Dk ≤ Uk, ∀k ≥ K0.
Take Uk = ζ21γ

2
k , let Dk ≤ Uk hold, and substitute in (85),

Dk+1 ≤ (1− 2c1αkγkµ)ζ21γ
2
k + 2c1c

′
3ζ1αkγ

3
k + c′2α

2
k. (88)

We solve Dk+1 ≤ Uk+1 for ζ1 ∈ R+,

(1− 2c1αkγkµ)ζ21γ
2
k + 2c1c

′
3ζ1αkγ

3
k + c′2α

2
k ≤ Uk+1

= ζ21γ
2
k+1.

(89)

Then, by considering $k =
1−(

γk+1
γk

)2

αkγk
> 0

($k − 2c1µ)ζ21 + 2c1c
′
3ζ1 + c′2αkγ

−3
k ≤ 0, (90)

and assuming $k − 2c1µ < 0, we find a constant ζ̄1 such that ζ1 ≥ ζ̄1 and

ζ̄1 =
c1c
′
3

2c1µ−$k
+

√√√√( c1c′3
2c1µ−$k

)2

+
c′2αkγ

−3
k

2c1µ−$k
, (91)

keeping in mind that 2c1c
′
3 and c′2αkγ

−3
k are positive by definition. Then, for σ1 =

maxk$k and σ2 = maxk αkγ
−3
k ,

ζ̄1 ≤
c1c
′
3

2c1µ− σ1
+

√√√√( c1c′3
2c1µ− σ1

)2

+
c′2σ2

2c1µ− σ1
. (92)

We conclude that Dk ≤ ζ21γ2k where ζ1 satisfies

ζ1 ≥ max

{√
DK0

γK0

, ζ̄1

}
. (93)

43



Mhanna and Assaad

2. We assume Dk ≤ ζ22
γk
αk

with ζ2 some constant.

Dk+1 ≤ (1− 2c1µαkγk)ζ
2
2

αk
γk

+ 2c1c
′
3αkγ

2
kζ2

√
αk
γk

+ α2
kc
′
2. (94)

Solving Dk+1 ≤ ζ22
αk+1

γk+1
for ζ2 ∈ R+,

(1− 2c1µαkγk)ζ
2
2

αk
γk

+ 2c1c
′
3αkγ

2
kζ2

√
αk
γk

+ α2
kc
′
2 ≤ ζ22

αk+1

γk+1
. (95)

Take τk =

αk
γk
−
αk+1
γk+1

α2
k

> 0, then

(τk − 2c1µ)ζ22 + 2c1c
′
3γ

3
2
k α
− 1

2
k ζ2 + c′2 ≤ 0. (96)

If αk
γk
− αk+1

γk+1
< 2c1µα

2
k, then ∃ ζ̄2 such that ζ2 ≥ ζ̄2 and

ζ̄2 =
c1c
′
3γ

3
2
k α
− 1

2
k

2c1µ− τk
+

√√√√(c1c′3γ 3
2
k α
− 1

2
k

2c1µ− τk

)2

+
c′2

2c1µ− τk
(97)

Let σ3 = maxk τk and σ4 = maxk γ
3
2
k α
− 1

2
k , we can say

ζ̄2 ≤
c1c
′
3σ4

2c1µ− σ3
+

√(
c1c′3σ4

2c1µ− σ3

)2

+
c′2

c1µ− σ3
. (98)

We conclude that Dk ≤ ζ22
αk
γk

with ζ2 satisfying

ζ2 ≥ max

{√
DK0

γK0

αK0

, ζ̄2

}
. (99)

The previous analysis indicates that the convergence rate is a function of υ1 and υ2, as
γ2k ∝ (k + 1)−2υ2 and αk

γk
∝ (k + 1)−(υ1−υ2). -theless, we must still verify the validity of the

assumptions we utilized for the analysis, meaning:

� Are σ1 < 2c1µ and σ3 < 2c1µ fulfilled?

� Are ζ1 and ζ2 bounded?

Let αk and γk have the forms given in Example 2 with l = 1, i.e., αk = α0(1 + k)−υ1

and γk = γ0(1 + k)−υ2 .

1. Verifying that σ1 < 2c1µ and σ3 < 2c1µ

In this part, we find conditions on α0 and γ0 that allow σ1 < 2c1µ and σ3 < 2c1µ to
be satisfied.

σ1 = max
k≥K0

1− (
γk+1

γk
)2

αkγk
= max

k≥K0

1− (1 + 1
k+1)−2υ2

α0γ0(k + 1)−υ1−υ2
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and

σ3 = max
k≥K0

1− αk+1γ
−1
k+1

αkγ
−1
k

αkγk
= max

k≥K0

1− (1 + 1
k+1)−(υ1−υ2)

α0γ0(k + 1)−υ1−υ2
.

To find an upper bound on σ3 and σ1, we define a function q(x) = x−a(1− (1 + x)−b)
with a, b, x ∈ (0, 1]. Since x−a ≤ x−1, we have q(x) ≤ x−1(1− (1 + x)−b) = r(x). We
then analyze the derivative of r(x) to study the variation of q(x),

r′(x) = x−2
(

((b+ 1)x+ 1)(1 + x)−b−1 − 1

)
= x−2s(x).

We can see that the sign of r′(x) is that of s(x). We again write the derivative of s(x)
to find its sign,

s′(x) = −b(b+ 1)x(1 + x)−b−2 ≤ 0

since b > 0 and x > 0. Then, s(x) is a decreasing function of x over (0, 1]. We remark
that limx→0 s(x) = 0, meaning s(x) < 0 and r′(x) < 0, ∀x ∈ (0, 1]. Finally,

r(x) < lim
x→0

r(x) =
1− (1 + x)−b

x
= b,

and q(x) ≤ r(x) < b, noting that limx→0 q(x) = b for a = 1. We conclude that
σ1 <

2υ2
α0γ0

and σ1 <
υ1−υ2
α0γ0

. For σ1 < 2c1µ and σ3 < 2c1µ to be valid, we must have

α0γ0 ≥ max{2υ2, υ1 − υ2}/2c1µ. (100)

2. Verifying that ζ1 and ζ2 are bounded

As Dk ≤ ζ21γ
2
k and Dk ≤ ζ22

αk
γk

, the goal here to verify that the constant part is
bounded. To do so, and referring to (92) and (98), we only need to analyze σ2 =

maxk αkγ
−3
k and σ4 = maxk γ

3
2
k α
− 1

2
k .

σ2 = α0γ
−3
0 max

k≥K0

(1 + k)−(υ1−3υ2) =

{
α0γ

−3
0 (1 +K0)

−(υ1−3υ2), if υ1 ≥ 3υ2,

∞, if υ1 < 3υ2,

and

σ4 = α
− 1

2
0 γ

3
2
0 max
k≥K0

(1 + k)−
1
2
(3υ2−υ1) =

{
α
− 1

2
0 γ

3
2
0 (1 +K0)

− 1
2
(3υ2−υ1), if υ1 ≤ 3υ2,

∞, if υ1 > 3υ2.

We deduce the following 3 cases:

� When υ1 > 3υ2:

σ2 is bounded. ζ1 (by definition in (92)) is also bounded provided that α0γ0 ≥ υ2
c1µ

in (100).

However, σ4 → ∞ causing ζ2 → ∞ (in (98)) and thus a loose upper bound in
Dk ≤ ζ22

αk
γk

.

To that end, we can write Dk ≤ D1(1 + k)−2υ2 with D1 a bounded constant.
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� When υ1 < 3υ2:

Similarly, σ4 is bounded while σ2 → ∞. Then, ∃ D2 < ∞, where Dk ≤ D2(1 +
k)−(υ1−υ2) provided that α0γ0 ≥ υ1−υ2

2c1µ
.

� When υ1 = 3υ2:

Both σ2 and σ4 are bounded allowing both previous inequalities corresponding
to Dk to be valid.

Optimizing over υ1 and υ2 under the constraints 0 < υ1 + υ2 ≤ 1, 1 < υ1 + 2υ2, and
υ1 > 0.5 given in Assumptions 9 and 17 for noisy environments, we obtain the optimal
rate of Dk ≤ D′(1 + k)−

1
2 for υ1 = 3

4 , υ2 = 1
4 , and D′ a bounded constant.

D.2 Strongly Convex Objective Function with Fixed Step Sizes Convergence
Rate

D.2.1 Without Noise

Following up from inequality (78) and setting αk = α and γk = γ,

Dk+1 ≤λDk + c1c
2
3αγ

3

(
1

µ
+ c1αγ

)
+ c2α

2γ2. (101)

By taking the telescoping sum,

DK+1 ≤λK+1D0 + αγ

(
c1c

2
3γ

2

(
1

µ
+ c1αγ

)
+ c2αγ

) K∑
j=0

λj

=λK+1D0 + αγ

(
c1c

2
3γ

2

(
1

µ
+ c1αγ

)
+ c2αγ

)
1− λK+1

1− λ
.

(102)

D.2.2 With Noise

Note that inequality (78) is valid for the case of noisy environments when bk is replaced by
b′k, c2γ

2
k by c′2, and c3 by c′3. Thus, setting αk = α and γk = γ,

Dk+1 ≤λDk + c1c
′2
3 αγ

3

(
1

µ
+ c1αγ

)
+ c′2α

2. (103)

Similarly, taking the telescoping sum,

DK+1 ≤λK+1D0 + α

(
c1c
′2
3 γ

3

(
1

µ
+ c1αγ

)
+ c′2α

) K∑
j=0

λj

=λK+1D0 + α

(
c1c
′2
3 γ

3

(
1

µ
+ c1αγ

)
+ c′2α

)
1− λK+1

1− λ
.

(104)

Appendix E. Experimental Details

� Figure 2: For the training model, for 2P-ZOFL without noise, we set αk = 0.4(1 +
k)−0.26 and γk = 0.7(1 + k)−0.26 and with noise, we set αk = 0.65(1 + k)−0.51 and
γk = 0.75(1 + k)−0.18. For FedAvg, η = 0.01. For FedZO, η = 0.0001 and µ = 0.001.
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� Figure 3: For 2P-ZOFL with the non-convex MNIST classification example and
different noise variances, αk = α0(1 + k)−0.51 and γk = γ0(1 + k)−0.18 and for
σ2n = {0.25, 1, 2.25, 3.1684, 10.0489}, we set α0 = {1.5, 1.1, 1.1, 0.5, 0.3} and γ0 =
{3.5, 3.1, 3.1, 1.5, 1.3}, respectively.

� Figure 5: For 2P-ZOFL without noise, we set αk = 0.7(1 + k)−
1
2 γk = 1.5(1 + k)−

1
2

and α = 0.5 and γ = 0.95 when the step sizes are constant. When there is noise,
αk = (1 + k)−

3
4 and γk = 2(1 + k)−

1
4 and and α = 0.5 and γ = 0.95 for constant step

sizes.

� Figure 6: For the mushroom classification example, we consider the following step sizes
for every algorithm. For 2P-ZOFL without noise, we set αk = γk = 0.3(1 + k)−

1
2 and

α = γ = 0.1 when the step sizes are constant. When there is noise, αk = 0.75(1+k)−
3
4

and γk = 0.75(1+k)−
1
4 and α = γ = 0.5 for constant step sizes. For FedAvg, η = 0.01.

� Figure 7: For the MNIST classification example, we consider the following step sizes
for every algorithm. For 2P-ZOFL without noise, we set αk = γk = 0.3(1 + k)−

1
2 and

α = γ = 0.3 when the step sizes are constant. When there is noise, αk = 0.3(1 + k)−
3
4

and γk = 0.3(1 +k)−
1
4 and α = γ = 0.3 for constant step sizes. For FedAvg, η = 0.01.

� Figure 9: For 2P-ZOFL with the MNIST classification example and different noise
variances, for σ2n = {1, 2.25, 3.1684, 10.0489}, we set α = γ = {0.2, 0.1, 0.07, 0.05},
respectively.

E.1 Convergence Time vs Rate

Table 2: Upload communication efficiency of ZOFL vs FedAvg (McMahan et al., 2017) vs
FedZO (Fang et al., 2022) till convergence and per iteration.

Algorithm

Total Symbols
Until

Convergence
for 1 Device

Total Symbols
Until

Convergence
for 100 Devices

Number of
Symbols

per Round
for 1 Device

Number of
Symbols

per Round
for 100 Devices

ZOFL 4, 000 400, 000 2 200
FedAvg 59, 280, 600 5, 928, 060, 000 197, 602 19, 760, 200

FedZO 148, 201, 500
148, 201, 500× 10
= 1, 482, 015, 000

197, 602
197, 602× 10
= 1, 976, 020

We include this quantitative study to compare with other communication-efficient strate-
gies, like local SGD (multiple local gradient descent steps before upload) and partial device
participation at every iteration. We compare with FedZO (Fang et al., 2022), which in-
corporates both strategies and communicates over wireless channels via analog modulation
and is also a ZO method. While both these strategies help to save resources as compared
with the standard FL method, they are still much less efficient than our method.
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Suresh, and Dave Bacon. Federated learning: Strategies for improving communication
efficiency, 2016. URL https://arxiv.org/abs/1610.05492.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and
Virginia Smithy. Feddane: A federated newton-type method. In 2019 53rd Asilo-
mar Conference on Signals, Systems, and Computers, pages 1227–1231, 2019. doi:
10.1109/IEEECONF44664.2019.9049023.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning:
Challenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):
50–60, 2020. doi: 10.1109/MSP.2020.2975749.

50

https://proceedings.neurips.cc/paper_files/paper/2021/file/64be20f6dd1dd46adf110cf871e3ed35-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/64be20f6dd1dd46adf110cf871e3ed35-Paper.pdf
https://proceedings.mlr.press/v80/ilyas18a.html
https://proceedings.mlr.press/v80/ilyas18a.html
https://proceedings.mlr.press/v108/bayoumi20a.html
https://arxiv.org/abs/1806.06573
https://arxiv.org/abs/1610.05492


Countering the Communication Bottleneck in FL: A Highly Efficient ZO OP Technique

Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les
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