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Abstract

This work focuses on addressing the challenges posed by covariate shift in nonparamet-
ric quantile regression using deep neural networks. We propose a two-stage pre-training
reweighted method that leverages importance weighting to mitigate the effects of distri-
bution shift. In the first stage, density ratios are estimated with a neural network by
minimizing least squares. In the second stage, a deep neural network estimator is obtained
using pre-training weights. Theoretical analysis is provided, offering non-asymptotic er-
ror bounds for the unweighted, reweighted, and pre-training reweighted estimators. We
consider scenarios with both bounded and unbounded density ratios. Notably, we employ
a novel proof technique to bound the generalization error, characterized by the size and
weights bound of ReLU neural networks. This enables us to establish fast rates of con-
vergence under the adaptive self-calibration condition, distinguishing our approach from
those relying on local Rademacher complexity techniques. Additionally, we derive the ap-
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proximation error with weight bounds for ReLU neural networks approximating the Hölder
class. Our theoretical findings provide valuable insights for the pre-training process and
highlight the efficacy of reweighted techniques. Numerical experiments are conducted to
further validate the theoretical findings and demonstrate the effectiveness of our proposed
method.

Keywords: Deep neural networks, distribution shift, non-asymptotic error bounds, ro-
bust estimation

1 Introduction

Quantile regression (Koenker and Bassett Jr, 1978) occupies a pivotal and indispensable
position within the domain of statistical modeling. It distinguishes itself substantially from
traditional mean regression by offering a comprehensive portrayal of the response and covari-
ates. The inherent capacity of quantile regression to estimate conditional quantiles of the
response underscores its unique contribution to statistical modeling. This refined approach
facilitates the exploration of how various quantiles of the response respond to variations in
the covariate space, thereby providing a more profound understanding of the underlying
data structure. Precisely, quantile regression not only complements but also elevates con-
ventional mean regression models, particularly when addressing scenarios characterized by
heteroscedasticity, outliers, or other manifestations of non-normal data features (Bondell
et al., 2010; Wang et al., 2012).

Nonparametric quantile regression, a specific subset of quantile regression, proves in-
valuable when dealing with complex relationships among covariates and response that defy
straightforward parametric characterization. Its primary objective revolves around the at-
tainment of nonparametric estimates for the underlying regression function within the con-
text of quantile regression. Notably, it distinguishes itself through its intrinsic flexibility, as
it is capable of accommodating diverse data distributions without relying on predetermined
functional forms. The research on nonparametric quantile regression has witnessed substan-
tial development in the past decades (White, 1992; Koenker et al., 1994; He and Shi, 1994;
He and Ng, 1999; Takeuchi et al., 2006; Sangnier et al., 2016). This extensive body of liter-
ature emphasizes the diverse methodological approaches grounded in reproducing kernels,
smoothing splines, and shallow neural networks. Recent attention in statistical modeling
has been drawn towards the application of deep neural networks, particularly within the
framework of nonparametric estimation. Deep nonparametric quantile regression, a special-
ized domain within this domain, has also garnered significant interest (Padilla et al., 2022a;
Madrid Padilla and Chatterjee, 2022; Shen et al., 2021).

Yet, the existing literature often lacks comprehensive exploration and effective solutions
for the intricate challenge posed by distribution shift within the realm of quantile regression.
Distribution shift refers to situations where there exists a substantial divergence between
the distributions characterizing the training and testing data sets. This phenomenon is
pervasive and manifests ubiquitously across practical modeling scenarios. Notably, instances
of distribution shift materialize across a spectrum of real-world domains, including, but
not limited to, image analysis (Taori et al., 2020; Guan and Liu, 2021), natural language
processing (Jiang and Zhai, 2007; Hassan et al., 2013), and recommender systems (Carroll
et al., 2022; Tan et al., 2016). As illustrated in Daume III and Marcu (2006); Torralba
and Efros (2011), a model that exhibits robust performance when trained on specific data
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may falter when exposed to new data characterized by distribution shift. This discrepancy
arises from the fundamental principle that models glean insights and knowledge from the
distribution of training data, and their effectiveness is contingent on the persistence of these
patterns in the testing data. Therefore, distribution shift stands as a formidable challenge
in statistics and machine learning.

Distribution shift encompasses various types, such as covariate shift, concept shift,
marginal shift, conditional shift, label shift, domain shift, and mode shift. Among them,
covariate shift (Quinonero-Candela et al., 2008; Sugiyama and Kawanabe, 2012) is a spe-
cific and significant manifestation within distribution shift, and it is prevalent in practical
scenarios. Covariate shift arises when the distribution of the input covariates within the
training data set deviates from that within the testing data set, while simultaneously main-
taining an unaltered conditional distribution of the response given the input covariates. In
essence, covariate shift entails alterations in the distribution of input covariates between
the training and testing data sets, while the underlying relationship between these covari-
ates and the response remains invariant. Addressing the intricacies posed by covariate shift
necessitates the deployment of density-ratio reweighting techniques, often referred to as
importance weighting. This approach has garnered significant attention and is well-studied
in Shimodaira (2000); Huang et al. (2006); Sugiyama et al. (2007b); Bickel et al. (2009);
Kanamori et al. (2009); Fang et al. (2020). Furthermore, some works provided related
theoretical analysis, see Cortes et al. (2008, 2010); Xu et al. (2022), while the suboptimal
convergence rate is given in Cortes et al. (2008, 2010). Recently, the covariate shift problem
is studied in Ma et al. (2023) and Feng et al. (2023) within nonparametric regression based
on a reproducing kernel Hilbert space framework, which also provided some theoretical in-
sights into addressing the challenges induced by covariate shift. Nevertheless, these works
rely on the unrealistic and overly stringent assumption that the density ratio is known,
which is impractical since only observed data from the source and target distributions are
available in real-world applications. Moreover, we want to emphasize that all the aforemen-
tioned methods only focus on the covariate shift problem in the context of mean regression.
Despite its practical importance, the covariate shift problem in nonparametric quantile re-
gression remains largely underexplored, particularly when the density ratio is unknown,
which is quite challenging from both methodological and theoretical points of view.

In literature, estimating the true density ratio is a key challenge in covariate shift adap-
tation. A straightforward approach is to estimate the source and target densities separately
using kernel density estimation (Sugiyama and Müller, 2005; Baktashmotlagh et al., 2014),
followed by calculating their ratio. Yet, it is worthy pointing out that such a procedure is
inefficient and time-consuming, especially under the high-dimensional case. An alternative
approach in literature is to directly estimate the density ratio instead of estimating the den-
sities individually. These works mainly focus on minimizing some discrepancy measures be-
tween distributions, including the kernel mean matching (Huang et al., 2006; Gretton et al.,
2009), Kullback-Leibler divergence (Sugiyama et al., 2007a,b, 2012) and non-negative Breg-
man divergence (Kato and Teshima, 2021). To further improve computational efficiency,
Kanamori et al. (2009); Sugiyama et al. (2012) formulate the direct importance estimation
problem as a least-squares function fitting problem, which can be efficiently solved using a
standard quadratic program. It performs comparably to the Kullback-Leibler importance
estimation method (Sugiyama et al., 2007b). We want to point out that although there
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exist some methods on nonparametric density estimation, the investigations on integrating
the estimated density ratio into the problem of covariate shift is still lacking in literature,
even for the mean regression. To the best of our knowledge, it is still unknown how to
explore the effect of estimation accuracy of density ratio on the convergence rate of the
final estimated quantile function when covariate shift occurs.

In this paper, we investigate the deep nonparametric quantile regression under covariate
shift. We design a novel two-stage pre-training procedure, incorporating a reweighting
mechanism. At the first stage, we obtain a deep estimator for the density ratio which is
constructed based on the least-squares method (Kanamori et al., 2009; Sugiyama et al.,
2012). Subsequently, in the second stage, we leverage the density ratio estimates acquired
in the first phase to derive a pre-training reweighted estimator for the underlying regression
function using deep neural networks. To more comprehensively underscore the merits of
our approach, we further introduce two supplementary estimators for comparative analysis,
which are referred to as the unweighted and reweighted estimators introduced in Section
3.2. The performance evaluation of the pre-training reweighted estimator with these two
alternative estimators elucidates the superiority of our method, thereby illustrating the
pivotal role assumed by pre-training and reweighting techniques in our framework.

In summary, the contributions of this work are outlined as follows.

(i) We introduce a novel two-stage pre-training reweighted method to address the issue
of covariate shift in deep nonparametric quantile regression. We thus propose a pre-
training reweighted estimator using deep neural networks for the underlying regression
function. To our best knowledge, this is the first work to consider the estimated ratios
for covariate shift problems.

(ii) We provide a non-asymptotic error analysis for unweighted, reweighted, and pre-
training reweighted quantile regression estimators. This analysis is primarily achieved
by decomposing the error into statistical and approximation errors, followed by estab-
lishing error bounds via trade-off considerations. Under the adaptive self-calibration

condition, the resulting error bounds of order O
(
n
− 2ζ

d+2ζ

)
, where n is the sample size,

d is the data dimension, and ζ is a smoothness parameter, attain minimax optimal
rates in nonparametric regression. Furthermore, our theoretical development simul-
taneously explores scenarios involving both bounded and unbounded density ratios
under some weaker conditions than those commonly considered in the existing litera-
ture. Our theoretical findings provide prior guidance for pre-training and underscore
the significance of reweighted techniques.

(iii) Our technical novelty lies in an alternative proof method for bounding the statistical
error, enabling us to obtain a sharp rate. This approach simplifies and differs from the
conventional local Rademacher complexity techniques (Bartlett et al., 2005). Addi-
tionally, we also derive the approximation error with weight bounds for ReLU neural
networks approximating the Hölder class.

1.1 Outlines

The rest of the paper is organized as follows. In Section 2, we introduce the standard
nonparametric quantile regression and the definition of covariate shift. In Section 3, we for-
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mally formulate the deep nonparametric quantile estimation problem under covariate shift
and propose a two-stage pre-training reweighted method involving the reweighted estimator
with the pre-training density ratio. We also consider the naive unweighted estimator and
the reweighted estimator with the true density ratio. In Section 4, we provide the details
of error analysis for both unweighted, reweighted, and pre-training reweighted estimators,
and establish the theoretical guarantees on these estimators under some conditions on the
density ratio. Numerical experiments on synthetic examples are provided in Section 5.
Concluding remarks are then given in Section 6. All the technical proofs of lemmas and
theorems and additional numerical experiments are deferred to the Appendix.

1.2 Notations

For any a, b ∈ R, we use ⌊a⌋ to denote the largest integer less than a, and write a ∨ b =
max{a, b}. We define a ≲ b and a = O(b) if there exists some positive constant C such that
a ≤ Cb, a ≳ b and a = Ω(b) if there exists some positive constant C such that a ≥ Cb.
We use N0, N and R to denote the set of non-negative, strictly positive integers and real
numbers, respectively. For a multi-index s = (s1, . . . , sd) ∈ Nd

0, the symbol ∂s denotes the
partial differential operator ∂s = ( ∂

∂x1
)s1 . . . ( ∂

∂xd
)sd and we use the convention that ∂s is

the identity operator when s = 0. Let ν be a probability distribution over Rd and f be a
measurable function from Rd to R. We use Lp(ν) = {f :

∫
|f(x)|pν(dx) < ∞} for p ≥ 1

to denote the space of Lp-integrable functions with respect to ν, equipped with the norm
∥f∥Lp(ν) = {

∫
|f(x)|pν(dx)}1/p.

2 Preliminaries

In this section, we introduce the standard nonparametric quantile regression model and the
definition of covariate shift.

2.1 The Standard Nonparametric Quantile Regression

Given a univariate response Y ∈ Y ⊆ R and a d-dimensional covariate vector X =
(X1, . . . , Xd)

⊤ ∈ X ⊆ Rd, d ∈ N, the τ -th quantile Qτ (Y |X) of Y given X is

Qτ (Y |X) = f0(X, τ). (1)

According to (1), we have P(Y − f0(X, τ) ≤ 0) = τ for any given τ ∈ (0, 1). If we define
the error term as ε = Y − f0(X, τ), then model (1) becomes

Y = f0(X, τ) + ε, (2)

where P(ε ≤ 0|X = x) = τ for any x ∈ X . For notation simplicity, we suppress τ and
denote f0(·) := f0(·, τ) since we only focus on one specific quantile level τ . Suppose that
a random training sample D := {(Xi, Yi)}ni=1 is composed of independent copies of the
random pair (X, Y ) drawn from some unknown joint distribution PX,Y . The standard
quantile regression (Koenker and Bassett Jr, 1978) estimates f0 by

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

ρτ (Yi − f(Xi)), (3)
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where ρτ (u) = u(τ − I{u < 0}) denotes the τ -th quantile loss and F denotes a specific
function class containing a set of measurable functions. It is known that the quantile loss
ρτ (·) is Lipschitz continuous with the Lipschitz constant λ := max{τ, 1 − τ}. This implies
that

∣∣ρτ (u1)− ρτ (u2)
∣∣ ≤ λ|u1 − u2| for any u1, u2 ∈ R.

Note that the optimization task (3) is the empirical version of the following learning
problem, which aims to find a f̃ : Rd → R overall measurable functions satisfying

f̃ = argmin
f

E(X,Y )∼PX,Y

[
ρτ (Y − f(X))− ρτ (Y − f0(X))

]
, (4)

where E(X,Y )∼PX,Y
denotes the expectation with repect to PX,Y . It is worthy pointing

out that the sample version of the term E(X,Y )∼PX,Y
[ρτ (Y − f0(X))] can be regarded as a

constant and thus is omitted in (3) and somewhere else in this paper. Moreover, under the
assumption that the τ -th conditional quantile of ε given X is zero, the global minimizer f̃
in (4) coincides with the underlying regression function f0 in (2).

2.2 Phenomenon of Covariate Shift

In literature, it is commonly assumed that the source (training) and target (testing) data
originate from the same distribution PX,Y defined over the joint space X × Y. Moreover,
the joint distribution can be decomposed as PX,Y = PY |XPX , where PY |X denotes the
conditional distribution determined by the model given in (2) and PX denotes the marginal
distribution of X. Yet, in many real applications, the source and target data may come
from some different joint distributions. Specifically, we assume that the target data are
drawn from some other joint distribution QX,Y , which is also defined over the joint space
X ×Y and can be decomposed as QX,Y = QY |XQX . To be more precise, in this paper, we
consider the special case that for the source and target data, the conditional distributions
are the same that PY |X = QY |X representing the invariance of the underlying regression
model (2), while the marginal distributions of the source data PX (source distribution) and
the target data QX (target distribution) are significantly different. Note that assuming
PY |X = QY |X implicitly requires that the conditional distribution of ε given X remains
invariant, regardless of whether X is generated from PX or QX . This scenario is often
referred to as covariate shift.

Under the standard quantile regression without covariate shift, the prediction perfor-
mance of the estimator f̂ in (3) can be evaluated under the L2(PX) norm (Padilla et al.,
2022b) that

∥f̂ − f0∥2L2(PX) = EX∼PX

[
(f̂(X)− f0(X))2

]
,

where EX∼PX
is the expectation over PX , and it is well-known that f̂ is indeed a consistent

estimator under the L2(PX) norm. However, once the phenomenon of covariate shift occurs,
this metric becomes problematic in the sense that we primarily aim to construct an estimator
whose prediction error for the target source is small under the L2(QX) norm that

∥f̂ − f0∥2L2(QX) = EX∼QX

[
(f̂(X)− f0(X))2

]
,

where EX∼QX
is the expectation over QX . It is thus clear that the evaluation of the

discrepancy between the source and target distributions plays a crucial role in tackling the
problem of covariate shift.
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3 Method

In this section, we provide a deep nonparametric estimation procedure using feedforward
neural networks (FNNs) with Rectified Linear Unit (ReLU) activation. We first give a
brief introduction of ReLU FNNs and Hölder class in Section 3.1, and then propose the
unweighted, reweighted, and the novel pre-training reweighted estimators in Sections 3.2
and 3.3, respectively.

3.1 ReLU FNNs and Hölder class

Recently, deep neural networks have attracted tremendous attention and received a variety
of successful achievements in many applications (Bauer and Kohler, 2019; Schmidt-Hieber,
2020; Lu et al., 2021; Jiao et al., 2023). Neural network functions have demonstrated
their effectiveness in approximating high-dimensional functions. In this paper, we aim to
estimate the regression function within the function class of ReLU FNNs. Precisely, we use
Fd1,d2(W,D,S,B) to denote the set of functions {ϕ}′s that can be parameterized by ReLU
FNNs with width W, depth D, size S, weights bound B, and d1, d2 denote the input and
output dimensions of the ReLU FNNs. Specifically, the ReLU FNN ϕ : Rd1 → Rd2 can be
expressed as

ϕ(x) = ADϕD(x) + bD,

where ϕ0(x) = x, ϕℓ+1(x) = σ (Aℓϕℓ(x) + bℓ) , ℓ = 0, . . . ,D − 1, and Aℓ ∈ RNℓ+1×Nℓ denote
the weight matrix, Nℓ ∈ N denotes the width of the ℓ-th hidden layer with N0 = d1 and
ND+1 = d2, bℓ ∈ RNℓ+1 denotes the bias vector, and σ(x) = max(0, x) is the ReLU activation
function defined for each element of x. Therefore, the parameters of the ReLU FNN ϕ(·)
can be denoted as

θ =
(
(A0, b0), . . . , (AD−1, bD−1), (AD, bD)

)
.

Furthermore, we denote the number of non-zero elements and the largest absolute value of
the parameters in θ as

∥θ∥0 =
D∑
ℓ=0

∥vec (Aℓ)∥0 + ∥bℓ∥0 ,

and

∥θ∥∞ = max
{

max
ℓ∈{0,...,D}

∥ vec(Aℓ)∥∞, max
ℓ∈{0,...,D}

∥bℓ∥∞
}
,

respectively. Note that vec(A) transforms the matrix A into the corresponding vector by
concatenating the column vectors. Then, the width W, the size S, and the bound B are
defined as W = max

{
N1, . . . , ND

}
, S = ∥θ∥0, and ∥θ∥∞ ≤ B, respectively. It is thus clear

that the ReLU FNN may not be fully connected, and thus S can be much smaller than
that of the fully connected case. In the rest of this paper, we focus on the ReLU FNNs
Fd1,d2(W,D,S,B) that d1 = d and d2 = 1.

Furthermore, we introduce the definition of Hölder class, which is a generalization of
Lipschitz continuity, and is commonly used to characterize the smoothness of functions
(Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Lu et al., 2021; Jiao et al., 2023).
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Definition 1 (Hölder class). We denote the Hölder class Hζ
(
[0, 1]d, B

)
as

Hζ([0, 1]d, B) :=
{
f : Rd → R, max

∥s∥1≤t
∥∂sf∥∞ ≤ B, max

∥s∥1=t
sup
x̸=y

|∂sf(x)− ∂sf(y)|
∥x− y∥s∞

≤ B
}
,

for some B, ζ > 0 with ζ = t+ s, t ∈ N0 and s ∈ (0, 1], and d ∈ N.

Here we assume that the underlying function f0, defined in (2), is Hölder continuous
with parameters B and ζ, and thus belongs to the Hölder class Hζ

(
[0, 1]d, B

)
in Definition

1.

3.2 Unweighted and Reweighted Estimators

Based on the training sample D := {(Xi, Yi)}ni=1, traditional nonparametric quantile re-
gression with a standard empirical risk minimization (ERM) framework leads to the naive
unweighted estimator given by

f̂D ∈ argmin
f∈G

1

n

n∑
i=1

ρτ (Yi − f(Xi)), (5)

where G denotes a function class of ReLU FNNs as defined in Section 3.1. Note that the
right side of (5) is an unbiased estimator of E(X,Y )∼PX,Y

[ρτ (Y −f0(X))] in the absence of co-
variate shift. However, when covariate shift happens, this term becomes biased, potentially
resulting in an inaccurate predictive estimator.

To tackle the issue of covariate shift, it is crucial to measure the discrepancy between
the source and target distributions, and thus we introduce the concept of density ratio.
Specifically, we denote pX and qX as the probability density functions of PX and QX ,
respectively. Then, the density ratio can be defined as

r(x) =
qX(x)

pX(x)
,

which quantifies the dissimilarity between PX and QX . Once the density ratio r(x)
is known, we can simply solve the covariate shift problem by considering the following
reweighted ERM task that

f̂r,D ∈ argmin
f∈J

1

n

n∑
i=1

r(Xi)ρτ (f(Xi)− Yi), (6)

where J denotes a function class of ReLU FNNs. Here, we use different notations of function
class for theoretical simplicity. The reweighted procedure ensures an unbiased estimator
of E(X,Y )∼QX,Y

[ρτ (Y − f0(X))] since it is easy to verify that E(X,Y )∼PX,Y
[r(X)ρτ (Y −

f0(X))] = E(X,Y )∼QX,Y
[ρτ (Y −f0(X))]. Similar treatments can be also referred to Ma et al.

(2023); Feng et al. (2023) under the reproducing kernel Hilbert space (RKHS) framework.
Yet, it is unrealistic to get the exact density ratio as the prior information in practice,

and most existing studies (Ma et al., 2023; Feng et al., 2023) only investigate the statistical
property of the reweighted estimator under the squared loss function and Lipschitz continu-
ous loss functions with some known density ratios. Thus, it is still an open and fundamental
problem to propose a reweighted estimator with the plug-in estimated ratio and investigate
its statistical properties.
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3.3 Pre-training Reweighted Estimator

In the scenario where access to the exact density ratio is not available, it is natural to
consider an alternative problem akin to (6) with a plug-in density ratio estimator. Inspired
by this, we propose a two-step pre-training reweighted estimator. In the first step, a density
ratio estimator is obtained through least-squares density ratio fitting using a deep neural
network (Kanamori et al., 2009; Sugiyama et al., 2012). Subsequently, we leverage this plug-
in density ratio estimator to compute the final pre-training reweighted estimator. To the
best of our knowledge, the established theoretical results in Section 4 are the first attempt
in the literature that a pre-training density estimator is considered in the analysis instead
of simply using the true density ratio.

In the first step, motivated by the fact that the exact density ratio r is the minimizer
of minu

1
2EX∼PX

[
(u(X)− r(X))2

]
overall measurable function u, we remove the negligible

terms that are independent of r(X), then the optimization becomes

r = argmin
u

L(u) = argmin
u

1

2
EX∼PX

[u(X)2]− EX∼QX
[u(X)]. (7)

Suppose that we obtain the extra unlabeled samples drawn from PX and QX , denoted by
SP := {XP

i }mi=1 and SQ := {XQ
i }mi=1, respectively. Consequently, the empirical version of

(7) can be formulated as

r̂S ∈ argmin
u∈U

L̂S(u) = argmin
u∈U

1

2m

m∑
i=1

u(XP
i )

2 − 1

m

m∑
i=1

u(XQ
i ), (8)

where L̂S(·) denotes the empirical pre-training risk and U also denotes a function class of
ReLU FNNs as defined in Section 3.1.

In the second step, by substituting the true density ratio r in (6) with its estimator
r̂S obtained from (8), we can obtain the final pre-training reweighted estimator over a
hypothesis function class M defined as follows

f̂r̂S,D ∈ arg min
f∈M

1

n

n∑
i=1

r̂S(Xi)ρτ (f(Xi)− Yi). (9)

Here we want to emphasize that the density ratio r̂S is estimated by using the unlabeled
samples SP and SQ, which are independent of the data D used in solving (9). This indepen-
dence assumption is a common presupposition in the context of covariate shift. It allows
us to obtain an accurate estimation for the density ratio r using a large volume of indepen-
dent unlabeled data. Additionally, this assumption plays a crucial role in our theoretical
analysis. We summarize our proposed two-step pre-training deep nonparametric quantile
regression algorithm in Algorithm 1.

Note that the first step of Algorithm 1 adopts unsupervised learning to estimate the
density ratio r based on the unlabeled data SP and SQ. The second step of Algorithm 1
integrates the estimated pre-trained density ratio r̂S to estimate the underlying regression
function f0 by using the labeled data D, and thus amalgamates information derived from the
estimated density ratio and the labeled data. It is highlighted that the proposed algorithm
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Algorithm 1 The two-step pre-training deep nonparametric quantile regression algorithm

1. Input: Unlabeled data SP = {XP
i }mi=1 from PX , SQ = {XQ

i }mi=1 from QX and labeled
data D = {(Xj , Yj)}nj=1 sampled from PX,Y .
2. Pre-train the density ratio: Obtain r̂S by solving (8) using SP and SQ.
3. Reweighted nonparametric quantile regression: Obtain f̂r̂S,D by solving (9)
using r̂S and D.
4. Return: the pre-training reweighted estimate f̂r̂S,D.

encapsulates the essence of the pre-training reweighted algorithm, which strategically com-
bines unsupervised and supervised learning paradigms to address the challenges of covariate
shift under the regression setting.

It is worthy pointing out that the difficulty of estimating the density ratio r depends on
the shapes of the distributions. Specifically, if pX and qX have different tail behaviors, for
example, one is heavy-tailed and another is light-tailed, then the problem of estimating r
may become challenging. This is largely due to the fact that in the tail regions, r may be
very large or even unbounded. Then, the straightforward use of the original estimate of the
density ratio may result in a significant increase in variance due to the potential presence of
large quantities of r̂S at some covariates. To address this issue, we consider the truncated
density ratio estimator r̂ξ,S, that is

r̂ξ,S ∈ arg min
u∈TξU

L̂S(u), (10)

where TξU = {Tξu; u ∈ U} denotes a truncated set of U with

Tξu =

{
u, if u ≤ ξ,

ξ, otherwise,

and ξ is some previously chosen threshold. Note that the truncated function class TξU can
be realized by adding an extra activation function σ′ξ(x) = min(x, ξ) to the original Relu
FNN function class U . Thus, the ratio estimator r̂S in Algorithm 1 is replaced with the
truncated counterpart r̂ξ,S to obtain the following estimator

f̂r̂ξ,S,D ∈ arg min
f∈M

1

n

n∑
i=1

r̂ξ,S(Xi)ρτ (f(Xi)− Yi). (11)

Note that the estimation accuracies of r̂S and r̂ξ,S affect the performance of f̂r̂S,D and

f̂r̂ξ,S,D, respectively. In practice, obtaining unlabeled data is typically much cheaper and
more readily available compared to labeled data, and thus an large amount of unlabeled
data can usually be collected to ensure the estimation accuracy. For example, collecting
response variables is laborious and costly in electronic health records (EHR) data sets,
while the covariates are quite easy to obtain from the databases (Gronsbell and Cai, 2018).
Numerically, we usem = 1000 unlabeled data points to guarantee accurate estimation of the
density ratio in our all simulated examples, which yields satisfactory numerical performance.

10
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4 Theoretical Analysis

In this section, we provide the theoretical analysis on the non-asymptotic error bounds
for the unweighted (Section 4.1), reweighted (Section 4.2), and pre-training reweighted
estimators (Section 4.3), respectively.

4.1 Theoretical Analysis for Unweighted Estimator

We establish the non-asymptotic error bounds for the unweighted estimator f̂D defined in
(5) (Theorems 8 and 9) under two broad scenarios of covariate shift where the density ratio
is either bounded or unbounded. To start with, we define the ball centered at f(x) with
radius c ≥ 0 that

B(f(x), c) =
{
y : |y − f(x)| ≤ c

}
,

and denote the conditional density function and the cumulative distribution function of
Y given X as pY |X and FY |X(·), respectively. The following technical assumptions are
introduced for our theoretical development.

Assumption 1. The density ratio r is well-defined, that is, the source density pX(x) > 0
is required whenever the target density function qX(x) > 0.

Assumption 2. Whether X is distributed as specified by PX or QX , the τ -th quantile of
ε given X is zero and ε given X shares the same conditional distribution.

Assumption 3. There exist some positive constants ξ1, ξ2 and κ such that for any |δ| ≤ ξ1
and y ∈ B(f0(x), ξ2), there holds∣∣FY |X=x(y + δ)− FY |X=x(y)

∣∣ ≥ κ|δ|, almost surely.

Moreover, for some absolute positive constant c̃, there holds supt∈R pY |X=x(t) ≤ c̃.

Assumption 1 requires the density ratio r(·) = qX(·)/pX(·) always exists, implying that
the two densities must have overlapping support or the support of the source covariates
must cover that of the target covariates. Similar assumption is commonly required in
the literature of importance weighting (Cortes et al., 2010) and covariate shift (Ma et al.,
2023; Feng et al., 2023). Assumption 2 ensures the exact equivalence of f̃ in (4) to the
underlying regression function f0 in (2) and the requirement that PY |X = QY |X . This
assumption is naturally satisfied if ε is independent of X. Assumption 3 can be regarded as
an adaptive self-calibration condition governing the conditional distribution of Y given X,
and significantly differs from the commonly assumed self-calibration condition in literature
(Shen et al., 2021; Madrid Padilla and Chatterjee, 2022), where the specific case that ξ2 = 0
is considered. Note that Assumption 3 requires the existence of a neighborhood around
y ∈ B(f0(x), ξ2) within which the perturbation of FY |X(·) exceeds the variation in y.
It is crucial to emphasize that Assumption 3 plays a vital role in deriving the refined
error decomposition in Lemma 4, and consequently leads to the minimax optimal result in
Theorem 8. By Assumption 3, the approximation error within our decomposition in Lemma
4 is quantified by the term inff∈G ∥f − f0∥2∞. This is in sharp contrast to the commonly
assumed self-calibration condition in literature, where the approximation error is quantified
by the term inff∈G ∥f −f0∥∞ within the error decomposition using the Lipschitz continuity
of the quantile loss, and thus leads to a suboptimal theoretical order of the error bound.
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Remark 2. Note that Assumption 1 does not hold if the two densities have no overlap
supports since there will be regions where pX(x) = 0 and qX(x) > 0, leading to a division
by 0 and the failure of the definition. Under these cases, performing direct density ratio
estimation becomes problematic, and some different treatments should be considered. If the
non-overlapping supports are known in advance, one possible treatment is to restrict the
estimation to the region where both densities have overlapping support. Therefore, we only
estimate the density ratio in the overlapping region and assign the ratio to be zero where the
region is outside of the support of pX . If the non-overlapping supports are unknown, the
applied reweighted framework in this paper is no longer applicable, and some new framework
needs to be developed (Mallinar et al., 2024), which may use some other divergence measures
such as the total variation distance (Rényi, 1961; Liese and Vajda, 2006) to evaluate the
difference between distributions. Yet, we want to point out that these methods and their
theoretical investigation are out of this paper’s scope, and we leave this interesting problem
as further work.

Remark 3. It is worthy pointing out under the special case that ξ2 = 0, Assumption 3 is
similar to the assumptions required in Shen et al. (2021); Madrid Padilla and Chatterjee
(2022), and is much weaker than assumptions required in He and Shi (1994); Belloni and
Chernozhukov (2011); Padilla et al. (2022a). Precisely, Condition 2 in He and Shi (1994)
assumes that the density function of Y is lower bounded by some positive constant; Condition
D.1 in Belloni and Chernozhukov (2011) requires that the conditional density of Y given
X = x must be both continuously differentiable and bounded away from zero uniformly
across all quantile levels and for any x ∈ X ; Assumption 2 in Padilla et al. (2022a) also
assumes that the conditional density of Y given X = x is upper-bounded by a positive
constant.

4.1.1 Error Decomposition and Estimates for Error Terms

In this section, we provide a novel error decomposition of the unweighted estimator in-
cluding the approximation error and statistical error terms, which is important for the
non-asymptotic error analysis. We define f∗ ∈ G as the best approximation of f0 within
some function space G that is uniformly bounded by B with B ≥ 1, where the approximation
quality is measured by the distance of the ∥ · ∥∞ norm, namely,

f∗ ∈ argmin
f∈G

∥f − f0∥∞,

Together with Assumptions 2 and 3 density, the error L2(PX) of the unweighted estimator
f̂D can be decomposed into two distinct components as stated in the following lemma.

Lemma 4. Suppose that Assumptions 2 and 3 are satisfied, and the function space G is
also uniformly bounded by B with B ≥ 1. Then, the unweighted estimator f̂D defined in (5)
satisfies

∥f̂D − f0∥2L2(PX) ≲ BE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
+B2 inf

f∈G
∥f − f0∥2∞.

Lemma 4 decomposes the upper bound of ∥f̂D−f0∥2L2(PX) into two terms, and it suffices

to separately bound the statistical error term E(X,Y )∼PX,Y
[ρτ (Y − f̂D(X))−ρτ (Y −f∗(X))]

12
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and the approximation error term inff∈G ∥f − f0∥∞. For the approximation error term, we
use the technical tools and results in Yarotsky (2017); Petersen and Voigtlaender (2018) to
show that for any Hölder continuous function, it can be approximated arbitrarily well by a
ReLU FNN with properly chosen depth, size, and weights bound in Theorem 5. Note that
for mathematical simplicity, we assume that the support of X is X = [0, 1]d, which can be
easily relaxed.

Theorem 5. Suppose that f ∈ Hζ([0, 1]d, B). For any ϵ ∈ (0, 1), there exists a ReLU FNN
function ψ with the depth D ≤ O (log(1/ϵ)), size S ≤ O

(
ϵ−d/ζ log(1/ϵ)

)
, weights bound

B ≤ O
(
Bϵ−d/ζ

)
such that

∥f − ψ∥∞ ≤ Bϵ.

Theorem 5 establishes the upper bound of the approximation error which is related
to the depth D, size S and weights bound B of the considered ReLU FNN. Specifically, it
demonstrates that the upper bound of the approximation error is of order O(S−ζ/d) with an
omitted logarithmic term, which is consistent with the results in Yarotsky (2017); Petersen
and Voigtlaender (2018). It is worthy pointing out that the proof of Theorem 5 partially
follows the technical treatment as that in Yarotsky (2017) and also adopts the technical tools
used in Petersen and Voigtlaender (2018). This deliberate choice facilitates the derivation
of the weights bound, aligning with the rate presented in Petersen and Voigtlaender (2018).
The completed proof of Theorem 5 is provided in Section A.1.1.

For the statistical error, we use the empirical process techniques (Vaart and Wellner,
2023; Van der Vaart, 2000; Van de Geer and van de Geer, 2000; Vershynin, 2018) to derive
the error bound in Theorem 7, which is characterized by the complexity of the considered
function class G, including measures such as the covering number (Anthony et al., 1999).

Definition 6. (Covering number) For δ > 0, the covering number N
(
δ,F, d̃

)
related to a

semi-metric d̃ on the set F is defined as

N (δ,F, d̃) = min
κ

{
there are g1, . . . , gκ such that min

1≤j≤κ
d̃ (f, gj) ≤ δ, for any f in F

}
.

With the help of empirical process techniques, the explicit upper bound of the statistical
error is provided in the following theorem.

Theorem 7. Suppose that Assumption 3 holds and the considered function class G is a
ReLU FNN as defined in Section 3.1 and ∥f∗∥∞ ≤ B, we have

EDE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
≤ O

(BSD log(nBWD)

n

)
,

where ED is the expectation taken over the training sample D.

Theorem 7 provides the upper bound of the statistical error, which is related to the
depth D, size S and weights bound B of the considered ReLU FNN. Note that if we keep
the other terms fixed and omit the logarithmic term, the rate of the upper bound becomes
O
(SD

n

)
, and the fastest rate O

(
1
n

)
can also be achieved if we further assume S and D are

fixed. We want to emphasize that an innovative proof technique is adopted for analyzing the
statistical error, where we first derive the tail probability of ρτ (Y − f̂D(X))−ρτ (Y −f∗(X))
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by using the Bernstein’s inequality, and then characterize the statistical error by utilizing the
covering number under the norm ∥ · ∥∞. This innovative technical treatment is motivated
by the properties of the quantile loss, which exhibits Lipschitz continuity, boundedness,
and local strong convexity over the target function. Consequently, we can establish a tight
bound for the covering number of the ReLU FNN under the norm ∥ · ∥∞ and leverage the
local convexity of ρτ (·), which yields the sharp bound of O

(SD
n

)
for the statistical error in

Theorem 7. Clearly, the technical tools adopted in our theoretical analysis significantly differ
from and simplify the commonly used local Rademacher complexity techniques (Bartlett
et al., 2005). More details are provided in Section A.1.2

Now we are ready to investigate the theoretical performance of the unweighted estimator
under covarite shift. Specifically, we establish the upper bound of ∥f̂D − f0∥L2(QX) under
two different scenarios where the density ratio is either uniformly bounded or unbounded
but has a finite second moment. We first introduce the uniformly bounded assumption for
the density ratio below.

Assumption 4 (Uniformly bounded). The density ratio r(x) = qX(x)/pX(x) is upper-
bounded, that is, Γ := supx∈X r(x) <∞.

Assumption 4 is a commonly used condition in the literature of covariate shift (Cortes
et al., 2010; Ma et al., 2023; Feng et al., 2023). Note that Γ is typically assumed to be larger
than 1 since the equality indicates that PX and QX are the same. Under Assumption 4, it is
easy to verify that ∥f̂D−f0∥2L2(QX) ≤ Γ∥f̂D−f0∥2L2(PX). Then, along with the approximation
and statistical errors established in Theorems 5 and 7, we can provide the non-asymptotic
error bound for f̂D with the proper choices of parameters, including the size S, depth D,
and weights boundedness B of the considered ReLU FNN class.

Theorem 8. Suppose that Assumptions 2-4 are satisfied. If the function class G is a ReLU

FNN function class bounded by B ≥ 1 with the size S = O
(
n

d
d+2ζ log n

)
and the depth

D = O (log n), and weights boundedness B = O
(
Bn

d
d+2ζ

)
, then we have

ED
[
∥f̂D − f0∥2L2(QX)

]
≤ O

(
ΓB2n

− 2ζ
d+2ζ (log n)3

)
.

Theorem 8 establishes the non-asymptotic error bound for the unweighted estimator f̂D
under the uniformly bounded ratio case, and the obtained bound concurs with the minimax
optimal rate in the literature of nonparametric regression (Stone, 1982; Gyorfi et al., 2002;
Tsybakov, 2009). This implies that even when the phenomenon of covariate shift occurs,
the unweighted estimator is still optimal when the density ratio is uniformly bounded. The
proof sketch of Theorem 8 is provided below, which may give some intuitions on why the
minimax optimal rate can still be achieved under the bounded case. Note that in the
proof of Theorem 8, we first show that the convergence rate of f̂D with respect to the
source distribution aligns with the minimax lower bound in the literature of nonparametric

regression (Stone, 1982; Tsybakov, 2009), i.e., ED∥f̂D− f0∥2L2(PX) ≤ O
(
B2n

− 2ζ
d+2ζ (log n)3

)
.

Then, when the covariate shift occurs and the density ratio is assumed to be bounded by
supx∈X r(x) ≤ Γ, we have

ED∥f̂D − f0∥2L2(QX) ≤ ΓED∥f̂D − f0∥2L2(PX) ≤ O
(
ΓB2n

− 2ζ
d+2ζ (log n)3

)
.
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This implies that the convergence rate of f̂D with respect to the target distribution is also
minimax optimal (ignoring the constants and the log terms). Moreover, since the density
ratio is assumed to be uniformly bounded, it implies that the shift between the source
and target distribution may not be too large, and thus may be well controlled. Therefore,
the unweighted estimator may still achieve good prediction performance. However, such
a uniform boundedness condition is somewhat restrictive in practice, and the following
assumption introduces a relaxation, assuming that the density ratio has a finite second
moment.

Assumption 5 (Finite second moment). The density ratio r has a finite second moment
with respect to PX , that is, V := EX∼PX

[r2(X)] <∞.

Note that Assumption 5 is much weaker than Assumption 4, since the finite second
moment is implied by the uniformly bounded condition with V 2 = Γ (Ma et al., 2023; Feng
et al., 2023). To see this, we have EX∼PX

[r2(X)] = EX∼QX
[r(X)] ≤ Γ. Interestingly, these

two conditions on the density ratio are related to Rényi divergence Dl(qX ||pX) (Rényi,
1961) between the source and target densities pX and qX . Specifically, the conditions
on Assumptions 4 and 5 are equivalent to requiring D∞(qX ||pX) and D2(qX ||pX) to be
bounded (Cortes et al., 2010), respectively. The following theorem establishes the non-
asymptotic error bound for the unweighted estimator f̂D under the second moment bounded
case.

Theorem 9. Suppose that Assumptions 2, 3, and 5 are satisfied. If the function class G is

a ReLU FNN function class bounded by B ≥ 1 with the size S = O
(
n

d
d+2ζ log n

)
and the

depth D = O(log n), and the weights bound B = O
(
Bn

d
d+2ζ

)
, then we have

ED
[
∥f̂D − f0∥2L2(QX)

]
≤ O

(
V B2n

− ζ
d+2ζ (log n)

3
2

)
.

Although the unweighted estimator f̂D is still consistent with the true quantile function

f0, it is clear that its convergence rate of order O(n
− ζ

d+2ζ ) is suboptimal compared to the
minimax rate in Stone (1982); Gyorfi et al. (2002); Tsybakov (2009). Consequently, some
additional reweighted adjustments are required to tackle this issue.

4.2 Theoretical Analysis for Reweighted Estimator

In this part, we give the non-asymptotic error bounds for the reweighted estimator using
the exact density ratio. The following theorem provides the non-asymptotic error bound
for the reweighted estimator f̂r,D defined in (6) under the case that the density ratio is
uniformly bounded.

Theorem 10. Suppose that all the assumptions in Lemma 4 as well as Assumptions 1
and 4 are satisfied. If the function class J is a ReLU FNN function class bounded by

B ≥ 1, with the size S = O
(
n

d
d+2ζ log n

)
, the depth D = O (log n), and the weights bound

B = O
(
Bn

d
d+2ζ

)
, then we have

ED
[
∥f̂r,D − f0∥2L2(QX)

]
≤ O

(
Γ2B2n

− 2ζ
d+2ζ (log n)3

)
.
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In Theorem 10, we obtain a convergence rate of order O(Γ2B2n−2ζ/(d+2ζ)(log n)3), which
includes an additional term Γ compared to the rate in Theorem 8. This is due to the
influence of the density ratio in the reweighted estimation procedure in (6) and in fact, the
derived rate in Theorem 10 is exactly the same as that in Theorem 8 if Γ is a constant.

When the density ratio is unbounded but has a finite second moment, as noted in Section
4.3, we also apply a truncated density ratio. Specifically, let ξ > 0 be the pre-specified
truncation level, then the truncated density ratio is defined as

Tξr(x) =

{
r(x), if r(x) ≤ ξ,

ξ, otherwise.

Thus, the reweighted estimator with a truncated density ratio can be obtained by solving
the following optimization task

f̂Tξr,D ∈ argmin
f∈K

1

n

n∑
i=1

Tξr(Xi)ρτ
(
f(Xi)− Yi

)
, (12)

where K refers to a certain hypothesis class of measurable functions. The non-asymptotic
error bound for the reweighted estimator f̂Tξr,D is established in the following theorem with
an appropriate choice of the truncated level ξ.

Theorem 11. Suppose that all the assumptions in Lemma 4 as well as Assumptions 1
and 5 are satisfied. If the function class K is a ReLU FNN function class bounded by

B ≥ 1, with the size S = O
(
n

d
d+6ζ log n

)
, the depth D = O(log n), and the weights bound

B = O
(
Bn

d
d+6ζ

)
, then we have

ED

[
∥f̂Tξr,D − f0∥2L2(QX)

]
≤ O

(
V

4
3B2n

− 2ζ
d+6ζ log n

)
.

Note that the obtained convergence rate of order O(n
− 2ζ

d+6ζ ) is suboptimal. In the proof
of Theorem 11, we divide the statistical error with the truncated ratio into two terms, the
error with the true density ratio and their difference. With the similar argument in the
proof of Theorem 7 and Markov inequality, we can show that the upper bounds of the two

terms are of orders O(BSDξ2 log(nBWD)
n ) and O(B

2V 2

ξ ), respectively. The trade-off between
the two upper bounds leads to such a suboptimal rate. However, it can be further improved
with extra conditions on the density ratio, which is shown in the next assumption.

Assumption 6. There exists some constant δ > 0 such that the density ratio r has a finite
(1 + δ)-th moment with respect to PX , that is, U := EX∼PX

[r1+δ(X)] <∞.

Note that Assumption 6 is more general than Assumption 5, where the latter assumption
is a special case of Assumption 6 when δ = 1. We can then obtain the convergence rate of
f̂Tξr,D in the following Corollary.

Corollary 12. Suppose that all the assumptions in Lemma 4 as well as Assumptions 1
and 6 are satisfied. If the function class K is a ReLU FNN function class bounded by
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B ≥ 1, with the size S = O
(
n

d
d+(2+4/δ)ζ log n

)
, the depth D = O (log n), and weights bound

B = O
(
Bn

d
d+(2+4/δ)ζ

)
, it follows that

ED

[
∥f̂Tξr,D − f0∥2L2(QX)

]
≤ O

(
U2δ/(2+δ)B2n

− 2ζ
d+(2+4/δ)ζ log n

)
.

When δ = 1, corresponding to the second moment bounded case, the convergence rate

obtained in Corollary 12 reduces to O(n
− 2ζ

d+6ζ ), which coincides with that of Theorem

11. When δ → ∞, the convergence achieves the minimax optimal rate of O(n
− 2ζ

d+2ζ ) in
nonparametric regression.

4.3 Theoretical Analysis for Pre-training Reweighted Estimator

In this part, we present the most pivotal result of this paper, focusing on the convergence
rate of the pre-training reweighted estimator. The established results are closely aligned
with, yet extend beyond, the findings of both the unweighted and reweighted estimators.
Furthermore, we concurrently consider the cases where the density ratio is either bounded
or unbounded but with certain bounded moments.

For the uniformly bounded case, as elucidated in Algorithm 1, obtaining the pre-training
reweighted estimator necessitates the preliminary acquisition of a density ratio estimator, a
process grounded in least-squares density ratio fitting. This density ratio estimator is subse-
quently incorporated into the empirical reweighted risk to derive the pre-training reweighted
estimator. To reach this ultimate result, we need to introduce some additional conditions
on the density ratio, as outlined in Assumptions 7 and 8. To proceed, we first establish
the non-asymptotic error bound of the density ratio estimator, as expounded in Theorem
13. Subsequently, we derive the non-asymptotic error bound of the pre-training reweighted
estimator, as detailed in Theorem 14.

Assumption 7. The density ratio r is Hölder continuous that r ∈ Hα([0, 1]d,Γ) for some
positive α.

Assumption 7 is a standard condition restricting the underlying function space of the
density ratio r, which is important to establish the estimation consistency of the pre-training
weight r̂S.

Theorem 13. Suppose that Assumptions 1, 4 and 7 are satisfied. If the function class U
is a ReLU FNN function space bounded by Γ, with the size S = O

(
m

d
d+2α logm

)
, the depth

D = O(logm), and the weights bound B = O
(
Γm

d
d+2α

)
, then we have

ES
[
∥r̂S − r∥2L2(PX)

]
≤ O

(
Γ3m− 2α

d+2α (logm)3
)
.

Theorem 13 establishes a non-asymptotic error bound for the density-ratio estimator
r̂S under the uniformly bounded case. Ignoring the fixed and log terms, the obtained

convergence rate becomes O
(
m− 2α

d+2α
)
, which concurs with the minimax optimal rate in the

literature of nonparametric estimation.
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With the obtained convergence rate of r̂S and the following lower bounded assumption,
we are now ready to give the non-asymptotic error bound of the final pre-training reweighted
estimator f̂r̂S,D defined in (9).

Assumption 8. The density ratio r is bounded away from zero, that is, Υ := infx∈X r(x) >
0.

Assumption 8 further requires that the density ratio is uniformly lower bounded, which
excludes some extreme cases.

Theorem 14. Suppose that Assumptions 1-4, 7 and 8 are satisfied. If the function class

M is a ReLU FNN function class bounded by B ≥ 1, with the size S = O
(
n

d
d+2ζ log n

)
, the

depth D = O (log n), and the weights bound B = O
(
Bn

d
d+2ζ

)
, we have

ES,D
[
∥f̂r̂S,D − f0∥2L2(QX)

]
≤ O

(
B2Γ2n

−2ζ
2ζ+d (log n)3

)
+O

(B2Γ3

Υ
m− 2α

d+2α (logm)3
)
.

Moreover, if m ≥ Ω
((

Γ
Υ

) d+2α
2α n

ζ(d+2α)
α(d+2ζ)

)
, we have

ES,D
[
∥f̂r̂S,D − f0∥2L2(QX)

]
≤ O

(
B2Γ2n

− 2ζ
d+2ζ (log n)3

)
.

Theorem 14 establishes the convergence rates of the pre-training reweighted estimator
f̂r̂S,D under the uniformly bounded case, which consists of two terms representing the estima-
tion accuracies of the underlying function and the density ratio, respectively. Clearly, The-
orem 14 provides valuable theoretical insights for determining an appropriate pre-training

sample size m, i.e., m ≥ O
( (

Γ
Υ

) d+2α
2α n

ζ(d+2α)
α(d+2ζ)

)
, where the obtained rate is of the same order

as that of the reweighted estimator in Theorem 5. This further illustrates the effectiveness
of the combination of pre-training and reweighted techniques in our proposed method.

As the density ratio is unbounded, the following assumption is needed to establish the
sharp rate for the truncated density ratio estimator.

Assumption 9. There exists some constant δ > 0 such that the density ratio r has a finite
(2 + δ)-th moment with respect to PX , that is, Ξ := EX∼PX

[r2+δ(X)] <∞.

Although Assumption 9 is slightly stronger than Assumption 5, it is necessary to provide
a sharp bound for the difference between the true density ratio r and its truncated version
Tξr in terms of L2(PX), denoted as ∥Tξr − r∥2L2(PX). More details regarding this issue
are deferred to Appendix A.4. Now we are ready to establish the convergence rate of the
truncated density ratio estimator under Assumption 9.

Theorem 15. Suppose that Assumptions 1 and 9 are satisfied, and Tξr ∈ Hα([0, 1]d, ξ) holds
for some α > 0. If the function space U is a ReLU FNN function class bounded by ξ, with

the size S = O
(
m

d
d+(2+6/δ)α

)
, the depth D = O (logm), weights bound B = O

(
m

δd+2α
δd+(6+2δ)α

)
for the ReLU DNNs, and the truncation level ξ = O

(
m

2α
δd+(6+2δ)α

)
, then we have

ES

[
∥r̂ξ,S − r∥2L2(PX)

]
≤ O

(
m

− 2α
d+(2+6/δ)α (logm)2

)
.
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Theorem 15 ensures that under some technical assumptions, the truncated density ratio
estimator can achieve a sharp rate of convergence, even in the case of unbounded densities.
Particularly, as δ → ∞, this convergence rate approaches the minimax optimal nonpara-

metric rate of O(m− 2α
d+2α ).

Remark 16. If we further strengthen Assumption 9 such that the square of the density
ratio is sub-exponential with respect to PX , i.e., EX∼PX

[
exp(σr2(X))

]
< ∞, where σ is

some positive constant, the convergence rate of r̂ξ,S in Theorem 15 can be improved to be
minimax optimal, which corresponds to the case where δ → ∞. It is worth noting that
under the nonparametric regression setting, the finite (2 + δ)-th moment condition and the
sub-exponential tail condition usually lead to different non-asymptotic error bounds (Han
and Wellner, 2019; Schmidt-Hieber, 2020; Farrell et al., 2021).

Finally, we obtain the convergence rate for this pre-training reweighted estimator f̂r̂ξ,S,D
in the following theorem.

Theorem 17. Suppose that Assumptions 1-3, 8 and 9 are satisfied. If the function space M
is ReLU FNN function class bounded by B ≥ 1, the size S = O(n

d
d+(2+4/δ)ζ ), the depth D =

O(log n), weights bound B = O(Bn
d

d+(2+4/δ)ζ ), and the truncation level ξ = O(n
2ζ

δd+(4+2δ)ζ ),
then we have

ES,D
[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≲ B2n

− 2ζ
d+(2+4/δ)ζ (log n)2 +

B2m
− 2α

d+(2+6/δ)α (logm)2

Υ
.

Moreover, if m ≥ Ω
(
n

[δd+(6+2δ)α]ζ
[δd+(4+2δ)ζ]α

)
, we obtain that

ES,D
[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≤ O

(
B2n

− 2ζ
d+(2+4/δ)ζ (log n)2

)
.

Theorem 17 provides a non-asymptotic error bound for f̂r̂ξ,S,D, which approaches the
minimax optimal rate in the field of nonparametric regression when δ → ∞. As shown
in Corollary 12, some sharp upper bounds can be similarly obtained if the density ratio r
is known previously under a weaker condition than Assumption 5 commonly used in the
literature. As discussed in Remark 16, if we further assume that r2 is sub-exponential, these
bounds can achieve the minimax optimal rate. Notably, this result is particularly appealing
as it is established by considering the pre-training density ratio estimator. To the best of
our knowledge, Theorem 17 is the first result for investigation on the problem of covariate
shift in the context of nonparametric quantile regression.

5 Numerical Experiments

In this section, we evaluate the numerical performance of the pre-training reweighted esti-
mators (PWDQR) in (9) and (11) for both bounded and unbounded ratios. We compare it
to some state-of-the-art methods, including the reweighted estimator (WDQR) as defined
in (6) and 12 for the bounded and unbounded ratios, respectively, and the unweighted esti-
mator (DQR) as defined in (5). The implementation details of all the considered methods
are provided below.
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� DQR: we implement it in Pytorch using the stochastic gradient descent (SGD) (Bot-
tou, 2012) with Nesterov momentum of 0.9 and initial learning rate of 0.1 with rate
decay 0.5. We consider the fixed width neural network consisting of ReLU activated
multilayer perceptrons with three hidden layers.

� WDQR: the implementation details of WDQR are almost identical to those of DQR,
except for using the weighted quantile loss function instead of the unweighted one,
where the true density ratio r is plugged in.

� PWDQR: the implementation details of PWDQR is exactly the same as that of
WDQR, except that we replace the true density ratio with the (truncated) pre-trained
density ratio. Specifically, it is similar to WDQR with a pre-trained density ratio r̂S
instead of the given truth. For the estimation of r̂S, we solve (8) by a neural net-
work using Pytorch, which consists of ReLU activated multilayer perceptrons with
two hidden layers. The optimization algorithm is Adam (Kingma and Ba, 2017) with
a learning rate 10−4. For the truncated pre-trained density ratio r̂ξ,S, we additionally
use an activate function σ′ξ(x) = min(x, ξ) for the last layer of the neural network.

We consider two generating scenarios including the univariate and multivariate cases,
and two covariate shift settings with bounded and unbounded density ratios, respectively.
In this simulation study, we only use the truncated ratio for the unbounded case in WDQR
and PWDQR, and the truncated levels ξ for WDQR and PWDQR are suggested to be
c1(n/ log n)

1/3 and c2 logm for some constants c1, c2 > 0 as indicated in the theorems,
respectively.

For each simulated scenario, we generate the training data {Xtr
i , Y

tr
i }ntr

i=1 with sample
size ntr from the source distribution to train those three nonparametric quantile regression
models at five quantile levels τ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. To evaluate each model, we
generate the target data {Xta

i , Y
ta
i }nta

i=1 with sample size nta from the target distribution.

For notation simplicity, we denote f̂ τntr
and f τ0 as the estimated and true quantile functions

at the specific quantile level τ ∈ (0, 1), respectively. We evaluate the performance of these
methods based on two norms between f̂ τntr

and f τ0 as given by

L1 : ∥f̂ τntr
− f τ0 ∥L1(ν) =

1

nta

nta∑
i=1

∣∣∣f̂ τntr
(Xta

i )− f τ0 (X
ta
i )
∣∣∣ ,

and

L2 : ∥f̂ τntr
− f τ0 ∥L2(ν) =

{
1

nta

nta∑
i=1

(
f̂ τntr

(Xta
i )− f τ0 (X

ta
i )
)2}1/2

.

To estimate the pre-training density ratio, we also independently generate extra training

data {X̃
tr

i , Ỹ
tr
i }mi=1 and target data {X̃

ta

i , Ỹ
ta
i }mi=1 with the same sample size m. In our

study, we fix nta = 10000 and m = 1000, and we report the averaged L1 and the square
of L2 distances together with their corresponding standard errors over 100 independent
repetitions under different scenarios.
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(a) Bounded case (b) Unbounded case

Figure 1: The quantile curves of model (13) for the bounded case (a) and unbounded case (b), where the
training and target data are represented as blue and orange dots, respectively, and the target
quantile functions at levels τ = 0.05 (blue line), τ = 0.25 (orange line), τ = 0.5 (green line),
τ = 0.75 (red line), τ = 0.95 (purple line) are plotted as curves.

5.1 Univariate Model

We generate the data from the following univariate model

Y = e−
1

X6 + σε, (13)

where ε ∼ N(0, 1) and σ = 0.05. Here, the true quantile function at quantile level τ

is f τ0 (X) = e−
1

X6 + σΦ−1(τ), where Φ(·) is the cumulative distribution function of the
standard normal random error ε.

The source and target covariates are drawn from the normal distributions with mean
µ1 and variance σ21, and mean µ2 and variance σ22, respectively. According to Cortes et al.
(2010) and Feng et al. (2023), we can show that the density ratio r(·) is uniformly bounded
if and only if σ21 ≥ σ22, and second moment bounded if and only if σ22 ≥ σ21 ≥ σ22/2.
Consequently, we choose µ1 = 0, σ21 = 0.4, µ2 = 0.5, σ22 = 0.3 for the uniform bounded case
and µ1 = 0, σ21 = 0.3, µ2 = 1, σ22 = 0.5 for the second moment bounded case, respectively.
Figure 1 shows the univariate data generation model in the bounded case and unbounded
case and their corresponding conditional quantile curves at τ = 0.05, 0.25, 0.5, 0.75, 0.95.
Performance of different estimators based on L1 and L

2
2 of prediction errors are summarized

in Tables 1-2 for those cases with bounded and unbounded ratios, respectively.
From the results in Table 1, we observe that the prediction errors of the estimator

DQR are very close to those of the estimator WDQR in all scenarios, aligning with our
theoretical findings that the weighted and unweighted estimators can both achieve the
minimax optimal rate for the uniformly bounded case. As the sample size n increases, the
performance of PWDQR tends to coincide with that of WDQR, which is expected since
the pre-trained weight function converges to its true counterpart when n is large. For the
case with unbounded ratios, as shown in Table 2, both WDQR and PWDQR significantly
outperform DQR in all scenarios. This phenomenon is consistent with our theoretical
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Table 1: Averaged L1 and L2
2 errors (×10−1) based on testing data with the corresponding

standard deviations in brackets for DQR, WDQR and PWDQR for Model (13)
with the bounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 0.545(0.219) 0.086(0.126) 0.264(0.065) 0.021(0.009)

WDQR 0.541(0.332) 0.084(0.118) 0.259(0.107) 0.020(0.019)
PWDQR 0.555(0.243) 0.087(0.110) 0.270(0.088) 0.025(0.044)

0.25
DQR 0.249(0.108) 0.023(0.027) 0.140(0.035) 0.006(0.003)

WDQR 0.249(0.088) 0.022(0.016) 0.138(0.049) 0.006(0.004)
PWDQR 0.255(0.173) 0.031(0.091) 0.146(0.012) 0.007(0.004)

0.5
DQR 0.213(0.081) 0.019(0.012) 0.129(0.028) 0.004(0.002)

WDQR 0.211(0.104) 0.017(0.014) 0.128(0.039) 0.004(0.003)
PWDQR 0.224(0.179) 0.025(0.037) 0.131(0.039) 0.005(0.003)

0.75
DQR 0.245(0.084) 0.023(0.012) 0.145(0.036) 0.004(0.002)

WDQR 0.241(0.179) 0.021(0.034) 0.145(0.049) 0.005(0.003)
PWDQR 0.269(0.288) 0.029(0.067) 0.147(0.052) 0.006(0.004)

0.95
DQR 0.634(0.354) 0.106(0.321) 0.275(0.054) 0.014(0.005)

WDQR 0.627(0.626) 0.103(0.423) 0.274(0.088) 0.015(0.007)
PWDQR 0.684(0.697) 0.126(0.589) 0.276(0.094) 0.016(0.009)

Table 2: Averaged L1 and L2
2 errors (×10−1) based on testing data with the corresponding

standard deviations in brackets for DQR, WDQR and PWDQR for Model (13)
with the unbounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 1.420(0.738) 0.610(0.689) 0.678(0.634) 0.185(0.062)

WDQR 1.192(0.561) 0.369(0.450) 0.618(0.237) 0.100(0.107)
PWDQR 1.276(0.624) 0.377(0.482) 0.620(0.198) 0.103(0.064)

0.25
DQR 1.018(0.446) 0.443(0.374) 0.475(0.185) 0.096(0.085)

WDQR 0.731(0.489) 0.237(0.428) 0.408(0.138) 0.066(0.061)
PWDQR 0.809(0.321) 0.299(0.455) 0.428(0.157) 0.068(0.061)

0.5
DQR 0.912(0.396) 0.427(0.361) 0.402(0.185) 0.095(0.112)

WDQR 0.779(0.505) 0.298(0.464) 0.374(0.143) 0.066(0.064)
PWDQR 0.783(0.336) 0.306(0.445) 0.396(0.162) 0.067(0.065)

0.75
DQR 0.928(0.398) 0.455(0.384) 0.520(0.207) 0.101(0.123)

WDQR 0.762(0.534) 0.330(0.499) 0.410(0.161) 0.072(0.049)
PWDQR 0.798(0.405) 0.345(0.460) 0.443(0.180) 0.073(0.070)

0.95
DQR 1.527(0.591) 0.672(0.542) 0.714(0.208) 0.154(0.077)

WDQR 1.389(0.814) 0.501(0.599) 0.594(0.283) 0.116(0.096)
PWDQR 1.427(0.545) 0.479(0.542) 0.634(0.243) 0.132(0.162)

findings. Specifically, the unweighted estimator is sub-optimal when the importance ratio is
second moment bounded. In contrast, both weighted and pre-trained weighted estimators
can achieve the optimal rates. These results further validate the necessity and effectiveness
of the reweighted procedure and our pre-training algorithm under covariate shift.
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Table 3: Averaged L1 and L2
2 errors based on testing data with the corresponding standard

deviations in brackets for DQR, WDQR and PWDQR for model (14) under the
case with bounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 0.348(0.064) 0.156(0.057) 0.215(0.031) 0.059(0.017)

WDQR 0.348(0.074) 0.154(0.062) 0.213(0.023) 0.058(0.011)
PWDQR 0.350(0.069) 0.158(0.063) 0.219(0.024) 0.063(0.012)

0.25
DQR 0.149(0.031) 0.038(0.017) 0.103(0.017) 0.020(0.005)

WDQR 0.150(0.054) 0.037(0.015) 0.102(0.012) 0.019(0.004)
PWDQR 0.151(0.030) 0.041(0.015) 0.104(0.013) 0.021(0.004)

0.5
DQR 0.114(0.013) 0.028(0.006) 0.078(0.007) 0.014(0.003)

WDQR 0.112(0.017) 0.027(0.007) 0.076(0.005) 0.013(0.002)
PWDQR 0.120(0.015) 0.027(0.006) 0.077(0.005) 0.014(0.003)

0.75
DQR 0.145(0.028) 0.038(0.012) 0.102(0.016) 0.019(0.005)

WDQR 0.144(0.032) 0.036(0.010) 0.101(0.013) 0.019(0.004)
PWDQR 0.149(0.025) 0.039(0.010) 0.103(0.012) 0.019(0.004)

0.95
DQR 0.320(0.052) 0.141(0.025) 0.215(0.027) 0.059(0.007)

WDQR 0.318(0.060) 0.139(0.050) 0.213(0.023) 0.059(0.010)
PWDQR 0.321(0.054) 0.145(0.054) 0.214(0.024) 0.060(0.010)

5.2 Multivariate Model

In this section, we consider the following additive multivariate model

Y = sin(2πX1) + 0.5eX2 + 1.5|(X3 − 0.4)(X3 − 0.6)|+ σX2ε, (14)

where ε ∼ t(3) and σ = 0.1. Here, the true quantile function at quantile level τ is
f τ0 (X) = sin(2πX1)+ 0.5eX2 +1.5|(X3− 0.4)(X3− 0.6)|+σX2F

−1
t (τ, 3), where F−1

t (·, 3) is
the cumulative distribution function of the Student’s t random error ε with degrees 3.

We assume that three covariates X1, X2 and X3 are independent, and X2, X3 are gen-
erated from the uniform distribution on [0, 1] for both source and target distributions.
The source and target data of X1 are drawn from Beta distributions with parameters
(α1, β1) and (α2, β2), respectively. It is easy to verify that the importance ratio r(X)
is uniformly bounded if and only if α2 ≥ α1 and β2 ≥ β1, and second moment bounded
if and only if α2 < α1, 2α2 ≥ α1, 2β2 ≥ β1 or β2 < β1, 2α2 ≥ α1, 2β2 ≥ β1. In our
study, we choose α1 = 2.5, β1 = 1.5, α2 = 3, β2 = 4 for the uniformly bounded case and
α1 = 4, β1 = 1, α2 = 3, β2 = 6 for the second moment bounded case, respectively. Results
on the performance of different estimators are summarized in Tables 3-4 for those cases
with the bounded and unbounded ratios, respectively.

As indicated in Tables 3-4, the conclusions for the multivariate model are very similar
to those of the univariate model. The errors of the three estimators are very close for the
uniformly bounded case, and both WDQR and PWDQR have a better performance than
DQR for the second moment bounded case.

6 Conclusion and Discussion

In this work, we leverage deep nonparametric quantile regression as the foundational frame-
work to systematically explore and illuminate the phenomenon of covariate shift within
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Table 4: Averaged L1 and L2
2 errors based on testing data with the corresponding standard

deviations in brackets for DQR, WDQR and PWDQR for model (14) under the
case with unbounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 0.390(0.093) 0.217(0.098) 0.290(0.037) 0.124(0.029)

WDQR 0.345(0.165) 0.187(0.242) 0.265(0.038) 0.094(0.024)
PWDQR 0.363(0.362) 0.195(0.262) 0.270(0.049) 0.099(0.045)

0.25
DQR 0.267(0.043) 0.143(0.055) 0.216(0.037) 0.108(0.044)

WDQR 0.246(0.064) 0.109(0.060) 0.161(0.020) 0.051(0.014)
PWDQR 0.254(0.134) 0.118(0.152) 0.165(0.027) 0.053(0.018)

0.5
DQR 0.245(0.050) 0.147(0.072) 0.209(0.047) 0.122(0.057)

WDQR 0.209(0.047) 0.095(0.040) 0.146(0.021) 0.054(0.019)
PWDQR 0.219(0.071) 0.100(0.064) 0.150(0.029) 0.055(0.023)

0.75
DQR 0.272(0.070) 0.174(0.089) 0.239(0.063) 0.150(0.070)

WDQR 0.254(0.053) 0.129(0.055) 0.173(0.034) 0.069(0.025)
PWDQR 0.263(0.072) 0.132(0.075) 0.182(0.039) 0.072(0.031)

0.95
DQR 0.426(0.107) 0.302(0.138) 0.369(0.083) 0.243(0.101)

WDQR 0.386(0.127) 0.274(0.167) 0.295(0.053) 0.135(0.043)
PWDQR 0.397(0.136) 0.285(0.178) 0.308(0.057) 0.142(0.054)

quantile regression. We propose a two-stage method, leading to the development of a pre-
training reweighted estimator for the target quantile function. In our theoretical analysis, we
present rigorous non-asymptotic error bounds for unweighted, reweighted, and pre-training
reweighted estimators. This analysis simultaneously considers scenarios in which the den-
sity ratio is either bounded or unbounded under some weaker moment conditions than those
commonly considered in the existing literature. Importantly, we introduce a novel approach
to constrain generalization error, simplify the tools of local Rademacher complexities, and
derive an approximation error with weights bound for ReLU neural networks approximating
the Hölder continuous function class. Furthermore, our theoretical insights provide valuable
prior guidance in the selection of an appropriate sample size for the pre-training strategy.
These results underscore the importance of the pre-training and reweighting techniques in
mitigating the challenges posed by the covariate shift phenomenon. Several directions for
future work are worth exploring. One possible future work is to further investigate the
impact of lower and upper bounds of the density ratio on convergence rates. Most recently,
generative adversarial networks and diffusion models have both been proven effective in
generating high-quality samples from complex distributions, which may provide promising
alternatives. Thus, another possible further work to integrate generative models within
the proposed framework is to adopt these methods to model the conditional distribution
directly, or use the generative model as a pre-processing step.
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Appendix A. Proof of the Main Results

In Section A.1, we first prove the error decomposition including approximation error and
statistical error and provide the tight estimates of each error bound in Sections A.1.1 and
A.1.2, respectively. Based on the error decomposition, in Section A.2, we provide the
proofs of the non-asymptotic error bounds for the unweighted estimator under the uniformly
bounded case and second moment bounded case in Sections A.2.1 and A.2.2, respectively.
In Section A.3, with a slightly modified error decomposition in Lemma 21 and estimates
for the statistical error term in Lemma 22, we succeed in deriving the non-asymptotic error
bounds for the reweighted estimator under the uniformly bounded case and second moment
bounded case in Sections A.3.1 and A.3.2, respectively. In Section A.4, we provide the
proofs of the non-asymptotic error bounds for the pre-training density ratio and the pre-
training reweighted estimator under the uniformly bounded case and exponential moment
bounded case in Sections A.4.1 and A.4.2, respectively.

A.1 Proof of the Error Terms

In this section, we give the proof of Lemma 4, which indicates the error decomposition of
the L2(PX) norm of the difference between the true quantile function f0 and its estimates
f̂D.

Proof. Recall the Knight’s identity (Belloni and Chernozhukov, 2011) that for any u, v ∈ R,
there holds

ρτ (u− v)− ρτ (u) = −v(τ − I{u ≤ 0}) +
∫ v

0
(I{u ≤ z} − I{u ≤ 0})dz.

Then, for any f ∈ G, by taking u = Y − f∗(X) and v = f(X)− f∗(X), we have

ρτ
(
Y − f(X)

)
− ρτ

(
Y − f∗(X)

)
= −

(
f(X)− f∗(X)

)(
τ − I{Y ≤ f∗(X)}

)
+

∫ f(X)−f∗(X)

0

[
I
{
Y ≤ f∗(X) + z

}
− I
{
Y ≤ f∗(X)

}]
dz

=−
(
f(X)− f∗(X)

)(
τ − I{Y ≤ f0(X)}

)
−
(
f(X)− f∗(X)

)(
I{Y ≤ f0(X)}

−I{Y ≤ f∗(X)}) +
∫ f(X)−f∗(X)

0

[
I{Y ≤ f∗(X) + z} − I{Y ≤ f∗(X)}

]
dz.
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By taking expectations, we note that EY |X∼PY |X [(τ − I{Y ≤ f0(X)}) | X] = 0 due to the

fact that P(Y ≤ f0(X) | X) = τ , and using Fubini’s theorem, there holds

E(X,Y )∼PX,Y

[
ρτ (Y − f(X))− ρτ (Y − f∗(X))

]
=EX∼PX

[
−
(
f(X)− f∗(X)

)
EY |X∼PY |X

[
(τ − I{Y ≤ f0(X)}) | X

]]
− EX∼PX

[(
f(X)− f∗(X)

)
EY |X∼PY |X

[
(I{Y ≤ f0(X)} − I{Y ≤ f∗(X)}) | X

]]
+ EX∼PX

[ ∫ f(X)−f∗(X)

0

(
EY |X∼PY |X [I{Y ≤ f∗(X) + z} | X]

− EY |X∼PY |X [I{Y ≤ f∗(X)} | X]
)
dz
]

≥− C1EX∼PX

[
|f(X)− f∗(X)||f0(X)− f∗(X)|

]
+ C2EX∼PX

[
D2(f(X)− f∗(X))

]
≥− C1

√
EX∼PX

[
|f(X)− f∗(X)|2

]√
EX∼PX

[
|f0(X)− f∗(X)|2

]
+ C2EX∼PX

[
D2(f(X)− f∗(X))

]
,

where C1, C2 are two absolute positive constants and D2(t) := min{|t|, |t|2}, t ∈ R, the
first inequality follows from Assumptions 2 and 3 and Lemma 13 in Madrid Padilla and
Chatterjee (2022), and the last inequality follows from the Cauchy-Schwarz inequality.

Consequently, for any β > 0, there holds

C2EX∼PX

[
D2(f(X)− f∗(X))

]
≤ E(X,Y )∼PX,Y

[
ρτ (Y − f(X))− ρτ (Y − f∗(X))

]
+ C1

√
EX∼PX

[
|f(X)− f∗(X)|2

]√
EX∼PX

[
|f0(X)− f∗(X)|2

]
≤C1

4β
EX∼PX

[
|f(X)− f∗(X)|2

]
+ C1βEX∼PX

[
|f0(X)− f∗(X)|2

]
+ E(X,Y )∼PX,Y

[
ρτ (Y − f(X))− ρτ (Y − f∗(X))

]
.

Note that f∗ ∈ G, we have ∥f∗∥∞ ≤ B with B ≥ 1, then for any ∥f∥∞ ≤ B, we have

D2((f(X)− f∗(X)) = min{|f(X)− f∗(X)|, |f(X)− f∗(X)|2}

≥ 2Bmin{|f(X)− f∗(X)|
2B

,
|f(X)− f∗(X)|2

4B2
}

=
|f(X)− f∗(X)|2

2B
,

where the last equality follows from |f(X)− f∗(X)| ≤ ∥f∥∞ + ∥f∗∥∞ ≤ 2B.

By setting β = C1B
C2

, there holds

∥f − f∗∥2L2(PX) ≤
4B

C2

(
E(X,Y )∼PX,Y

[
ρτ (Y − f(X))− ρτ (Y − f∗(X))

])
+

2C2
1B

2

C2
2

∥f0 − f∗∥2L2(PX).
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Note that f̂D ∈ G, then ∥f̂D∥∞ ≤ B, it follows directly by the triangle inequality that∥∥f̂D − f0
∥∥2
L2(PX)

≤ 2
∥∥f̂D − f∗

∥∥2
L2(PX)

+ 2
∥∥f∗ − f0

∥∥2
L2(PX)

≲BE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
+B2∥f∗ − f0∥2L2(PX)

≲BE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
+B2∥f∗ − f0∥2∞.

This completes the proof of Lemma 4.
■

A.1.1 Proof of Estimates for the Approximation Error

We give the proof of the upper bound for the approximation error as stated in Theorem
5. This proof aligns with the methodology employed in previous works (Yarotsky, 2017;
Petersen and Voigtlaender, 2018). Diverging from the approach in Yarotsky (2017), our
contribution lies in deriving bounds for the weights through the techniques introduced in
Petersen and Voigtlaender (2018). To start with, we first introduce two preliminary lemmas.

Lemma 18. Given M > 0 and δ ∈ (0, 1), there exists a ReLU neural network h satisfies:

(i). for all x, y ∈ [−M,M ], we have |xy − h(x, y)| ≤ δ;

(ii). if x = 0 or y = 0, then h(x, y) = 0;

(iii). the depth D and the size S in h are less than c1 ln(
1
δ ) + c2, and weights bound B

is not larger than c3
δ , where c1 is an absolute constant, and c2, c3 are two constants

depending on M .

The proof of Lemma 18 can be completed by combining Proposition 3 in Yarotsky (2017)
and Lemma A.3 in Petersen and Voigtlaender (2018), and thus is omitted here.

Lemma 19. Let f1 ∈ Fd1,k1(W1,D1,S1,B1) and f2 ∈ Fd2,k2(W2,D2,S2,B2), and then the
following statements hold.

(i). (Composition) If k1 = d2, then f2 ◦f1 ∈ Fd1,k2(max{W1,W2},D1+D2,S1+S2,B1 ·
B2max{W1,W2}). Moreover, if A ∈ Rd2×d1, b ∈ Rd2 and define the function f(x) =
f2(Ax+ b) for x ∈ Rd1, then there holds f ∈ Fd1,k2(W2,D2,S2, d2B2∥(A, b)∥∞).

(ii). (Parallelization) If d1 = d2, denote f(x) = (f1(x), f2(x)), then there holds f ∈
Fd1,k1+k2(W1 +W2,max{D1,D2},S1 + S2,max{B1,B2}).

(iii). (Linear Combination) Let c1, c2 ∈ R. If d1 = d2 and k1 = k2, then we have
c1f1 + c2f2 ∈ Fd1,k1(W1 +W2,max{D1,D2},S1 + S2,max {B1,B2, |c1|B1 + |c2|B2}).

Proof. To start with, we first denote fi as ReLU neural networks with parameters

θi =
(
(A

(i)
0 , b

(i)
0 ), . . . , (A

(i)
Di
, b

(i)
Di
)
)
, fori = 1, 2.

For (i), without loss of generality, we assume that W1 = W2 and then, f2 ◦ f1 can be
parameterized by(

(A
(1)
0 , b

(1)
0 ), . . . , (A

(1)
D1−1, b

(1)
D1−1), (A

(2)
0 A

(1)
D1
, A

(2)
0 b

(1)
D1

+ b
(2)
0 ), (A

(2)
1 , b

(2)
1 ), . . . , (A

(2)
D2
, b

(2)
D2

)
)
.
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Note that it holds true that∥∥(A(2)
0 A

(1)
D1
, A

(2)
0 b

(1)
D1

+ b
(2)
0 )
∥∥
∞ ≤ max

{∥∥(A(2)
0 A

(1)
D1

)
∥∥
∞,
∥∥(A(2)

0 b
(1)
D1

+ b
(2)
0 )
∥∥
∞
}

≤ B1B2W1.

Then, we have f2 ◦ f1 ∈ Fd1,k2

(
max{W1,W2},D1 + D2,S1 + S2,B1 · B2max{W1,W2}

)
.

Following a similar treatment, we can conclude that f ∈ Fd1,k2(W2,D2,S2, d2B2∥(A, b)∥∞)
for the function f(x) = f2(Ax + b) since it is a composition of f2 with f1(x) = Ax + b,
which can be regarded as a neural network with depth zero.

For (ii), without loss of generality, we assume that D1 = D2 and then, f can be param-
eterized by the parameters ((A0, b0), . . . , (AD1 , bD1)) with

Aℓ =

A(1)
ℓ 0

0 A
(2)
ℓ

 and bℓ =

b(1)ℓ

b
(2)
ℓ

 .

Then, the derived result directly follows from

∥(Aℓ, bℓ)∥∞ =

∥∥∥∥∥∥∥
A(1)

ℓ 0 b
(1)
ℓ

0 A
(2)
ℓ b

(2)
ℓ


∥∥∥∥∥∥∥
∞

= max
{
∥(A(1)

ℓ , b
(1)
ℓ )∥∞, ∥(A(2)

ℓ , b
(2)
ℓ )∥∞

}
.

For (iii), directly replacing the matrix (AD1 , bD1) in (ii) with (c1A
(1)
D1
, c2A

(2)
D2
, c1b

(1)
D1

+

c2b
(2)
D2

), the derived result directly follows from∥∥(c1A(1)
D1
, c2A

(2)
D1
, c1b

(1)
D1

+ c2b
(2)
D2

)
∥∥
∞ ≤ |c1|

∥∥(A(1)
D1
, b

(1)
D1

)
∥∥
∞ + |c2|

∥∥(A(2)
D1
, b

(2)
D1

)
∥∥
∞

≤ |c1|B1 + |c2|B2.

Thus, we have

c1f1 + c2f2 ∈ Fd1,k1(W1 +W2,max{D1,D2},S1 + S2,max {B1,B2, |c1|B1 + |c2|B2}).

This completes the proof of Lemma 19. ■
Combining Lemmas 18 and 19, we are now ready to complete the proof of Theorem 5.

Proof. We denote the function ψ(·) by

ψ(t) := σ(1− |t|) = σ(1− σ(t)− σ(−t)) ∈ [0, 1], t ∈ R.

Notice that ψ is a two-layer neural network contained in F(2, 2, 6, 1). Let N ∈ N, for any
n = (n1, . . . , nd)

⊤ ∈ {0, 1, . . . , N}d, we define

ψn(x) :=

d∏
i=1

ψ (Nxi − ni) , x = (x1, . . . , xd)
⊤ ∈ Rd.

Then, ψn is supported on
{
x ∈ Rd :

∥∥x− n
N

∥∥
∞ ≤ 1

N

}
, and (N + 1)d functions {ψn}n form

a partition of unity of the domain [0, 1]d, i.e.,

∑
n∈{0,1,...,N}d

ψn(x) =
d∏

i=1

N∑
ni=0

ψ (Nxi − ni) ≡ 1, x ∈ [0, 1]d.
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Let cn,s := ∂sf
(
n
N

)
/s! be the Taylor coefficients of f at n

N , where s := (s1, . . . , sd) ∈ Nd

with ∥s∥1 ≤ t = ⌊ζ⌋. We denote by pn,s(x) := ψn(x)
(
x− n

N

)s
. Then, it follows that pn,s

is supported on
{
x ∈ Rd :

∥∥x− n
N

∥∥
∞ ≤ 1

N

}
. Denote by

p(x) =
∑

n∈{0,1,...,N}d

∑
∥s∥1≤t

cn,spn,s(x).

Using Taylor expansion in Lemma A.8 in Petersen and Voigtlaender (2018), we have

|f(x)− p(x)| =

∣∣∣∣∣∣
∑
n

ψn(x)f(x)−
∑
n

ψn(x)
∑

∥s∥1≤t

cn,s

(
x− n

N

)s∣∣∣∣∣∣
≤
∑
n

ψn(x)

∣∣∣∣∣∣f(x)−
∑

∥s∥1≤t

cn,s

(
x− n

N

)s∣∣∣∣∣∣
=

∑
n:∥x− n

N ∥∞< 1
N

∣∣∣∣∣∣f(x)−
∑

∥s∥1≤t

cn,s

(
x− n

N

)s∣∣∣∣∣∣
≤

∑
n:∥x− n

N ∥∞< 1
N

Bdt
∥∥∥x− n

N

∥∥∥ζ
∞

≤ B2ddtN−ζ .

Setting

N =
( ϵ

2d+1dt

)−1/ζ
(15)

for some ϵ > 0, then |f(x) − p(x)| ≤ Bϵ
2 . Hence, it remains to construct a neural network

approximating p(x) with the approximation error Bϵ
2 . Equivalently, it aims to construct

neural networks approximating the product pn,s(x) = ψn(x)
(
x− n

N

)s
. Let δ > 0, then we

can recursively define

fn,s(x) = h (ψ(Nx1 − n1), h(ψ(Nx2 − n2), . . . , h(x1 − n1/N, . . .), . . .) ,

where h is defined in Lemma 18. Using similar arguments in the proof of Theorem 1 in
Yarotsky (2017), it holds that fn,s can be implemented by a ReLU network with the depth
and size not larger than c1(d+ t) ln(1/δ) for some constant c1 = c1(d, t), and

|fn,s(x)− pn,s(x)| ≤ (d+ t)δ. (16)

Consequently, we establish the desired neural network

f̃(x) =
∑

n∈{0,1,...,N}d

∑
∥s∥1≤t

cn,sfn,s(x).
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Therefore, for any x ∈ [0, 1]d, we have

|p(x)− f̃(x)| =

∣∣∣∣∣∣
∑
n

∑
∥s∥1≤t

cn,spn,s(x)−
∑
n

∑
∥s∥1≤t

cn,sfn,s(x)

∣∣∣∣∣∣
≤
∑
n

∑
∥s∥1≤t

|cn,s∥pn,s(x)− fn,s(x)|

≤ B
∑

n:∥x− n
N ∥∞< 1

N

∑
∥s∥1≤t

|pn,s(x)− ϕn,s(x)|

≤ B(t+ 1)dt
∑

n:∥x− n
N ∥∞< 1

N

|pn,s(x)− ϕn,s(x)|

≤ B(t+ 1)dt2d max
n:∥x− n

N ∥∞< 1
N

|pn,s(x)− ϕn,s(x)|

≤ B(t+ 1)dt+12d+1δ,

where the third inequality follows from
∑

∥s∥1≤t 1 =
∑t

j=0

∑
∥s∥1=j 1 ≤

∑t
j=0 d

j ≤ (t+1)dt,
and the last inequality holds by (16). Setting

δ =
ϵ

(t+ 1)dt+12d+2
, (17)

we have

|f(x)− f̃(x)| ≤ |f(x)− p(x)|+ |p(x)− f̃(x)| ≤ Bϵ.

Moreover, f̃ is a liner combination of dt(N +1)d neural networks fn,s, we can conclude that
the neural network f̃ has not more than c1 ln(1/δ)+ 1 layers and dt(N +1)d(c1 ln(1/δ)+ 1)
weights by Theorem 1 of Yarotsky (2017). With δ given by (17) andN given by (15), it holds
that f̃ has the depth at most c2(ln(1/ϵ)+1) and at most c2ϵ

−d/ζ(ln(1/ϵ)+1) weights, where
c2 = c2(d, ζ) is a constant depending d, ζ. Using Lemma 19 and the techniques in proof of
Theorem A.9 in Petersen and Voigtlaender (2018), the weights of f̃ can be upper-bounded
by B = c3Bϵ

−d/ζ , where c3 = c3(d, ζ) is a constant depending on d, ζ. This completes the
proof. ■

A.1.2 Proof of Estimates for the Statistical Error

In this section, we give the proof of Theorem 7. We first introduce the following lemma
bounding the covering number of ReLU FNNs in the uniform norm.

Lemma 20. Let F be the ReLU FNNs with width W, depth D, and size S. Assume that
the parameters of F are bounded by a constant B > 0, then for each δ > 0,

logN (F , δ, ∥ · ∥∞) ≤ O(SD log(BWD/δ)).

Proof. For each ϕθ ∈ F , we have

ϕθ(x) = (ADσ(·) + bD) ◦ . . . (A2σ(·) + b2) ◦ (A1x+ b1) ,
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where x ∈ [0, 1]d, and ∥θ∥∞ ≤ B. For different parameters θ and θ̃, we denote

ϕθ(x) = (ADσ(·) + bD) ◦ . . . (A2σ(·) + b2) ◦ (A1x+ b1) = ϕD ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x),

ϕθ̃(x) =
(
ÃDσ(·) + b̃D

)
◦ . . .

(
Ã2σ(·) + b̃2

)
◦
(
Ã1x+ b̃1

)
= ϕ̃D ◦ ϕ̃D−1 . . . ϕ̃1 ◦ ϕ̃0(x).

By adding and subtracting one item, it follows that

|ϕθ(x)− ϕθ̃(x)| = |ϕD ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕ̃D−1 . . . ϕ̃1 ◦ ϕ̃0(x)|
≤ |ϕD ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)|

+ |ϕ̃D ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕ̃D−1 . . . ϕ1 ◦ ϕ0(x)|
+ · · ·+ |ϕ̃D ◦ ϕ̃D−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕ̃D−1 . . . ϕ̃1 ◦ ϕ0(x)|
+ |ϕ̃D ◦ ϕ̃D−1 . . . ϕ̃1 ◦ ϕ0(x)− ϕ̃D ◦ ϕ̃D−1 . . . ϕ̃1 ◦ ϕ̃0(x)|.

Therefore, it suffices to bound D + 1 terms on the right hand of the above inequality. We
provide detailed proofs for obtaining the upper bound of the first term, and the remaining
D terms can be controlled in a similar manner. Through elementary algebraic calculations,
we have

|ϕD ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)|
=|(AD − ÃD)σ(gD−1(x)) + bD − b̃D|
≤(∥gD−1(x)∥1 + 1)∥θ − θ̃∥∞
≤(W∥gD−1(x)∥∞ + 1)∥θ − θ̃∥∞, (18)

where gD−1(x) := AD−1σ(gD−2(x)) + bD−1. By mathematical recursion, we can bound
∥gD−1(x)∥∞ as follows:

∥gD−1(x)∥∞ = ∥AD−1σ(gD−2(x)) + bD−1∥∞
≤ ∥AD−1σ(gD−2(x))∥∞ + ∥bD−1∥∞
≤ WB∥gD−2(x)∥∞ +WB
≤ (WB)D−1 + . . .+WB
≤ (D − 1)(WB)D−1. (19)

Combining (18) and (19) gives that

|ϕD ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)− ϕ̃D ◦ ϕD−1 . . . ϕ1 ◦ ϕ0(x)|
=|(AD − ÃD)σ(gD−1(x)) + bD − b̃D|
≤(∥gD−1(x)∥1 + 1)∥θ − θ̃∥∞
≤(W∥gD−1(x)∥∞ + 1)∥θ − θ̃∥∞
≤D(WB)D∥θ − θ̃∥∞.

Hence, we can conclude that

|ϕθ(x)− ϕθ̃(x)| ≤ L̄∥θ − θ̃∥∞,
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where L̄ = O
(
D2(BW)D

)
. Utilizing Lemma 5.13 and Problem 5.5 in van Handel (2016),

for each δ > 0, we have

logN (F , δ, ∥ · ∥∞) ≤ O(SD log(BWD/δ)).

■
With Lemma 20, we can prove Theorem 7 as follows.

Proof. For each f ∈ G, we denote

L(f) := E(X,Y )∼PX,Y
[ρτ (Y − f(X))− ρτ (Y − f∗(X))] ,

L̂D(f) :=
1

n

n∑
i=1

(ρτ (Yi − f(Xi))− ρτ (Yi − f∗(Xi))) .

Then, for each f ∈ G, we have

L(f̂D) = L(f̂D)− L(f∗) = L(f∗)− 2L̂D(f̂D) + L(f̂D) + 2L̂D(f̂D)− 2L(f∗)

≤ L(f∗)− 2L̂D(f̂D) + L(f̂D) + 2L̂D(f)− 2L(f∗).

Taking expectations followed by taking infimum about f over G in the above equation, we
have

ED

[
L(f̂D)

]
≤ ED

[
L(f∗)− 2L̂D(f̂D) + L(f̂D)

]
.

Therefore, it remains to derive the upper bound of the statistical error

Esta := ED

[
L(f∗)− 2L̂D(f̂D) + L(f̂D)

]
.

Denote by ℓ̃(f ;ω) := ρτ (y− f(x))− ρτ (y− f∗(x)) with ω := (x, y). It is easy to check that
ℓ̃(f ;ω) is Lipschitz continuous over f , i.e., for each ω, we have

|ℓ̃(f1;ω)− ℓ̃(f2;ω)| ≤ λ|f1(x)− f2(x)|, with λ = 1.

Let D′ := {U ′
1, . . . , U

′
n} be an i.i.d ghost sample independent of D = {U1, . . . , Un} with

Ui := (Xi, Yi), i = 1, . . . , n. Let G(f ;U) := ED′

[
ℓ̃ (f ;U ′)− 2ℓ̃(f ;U)

]
. Then, we have

Esta = ED

[
1

n

n∑
i=1

(
−2ℓ̃

(
f̂D;Ui

)
+ ED′

[
ℓ̃
(
f̂D;U

′
i

)])]
= ED

[
1

n

n∑
i=1

G
(
f̂D;Ui

)]
.

Let N (G, δ, ∥ · ∥∞) be the covering number of G with cover C = {f1, . . . , fN }. ∀f ∈ G, there
exists a f̃ ∈ C such that

|ℓ̃(f ;ω)− ℓ̃(f̃ ;ω)| ≤ λ∥f − f̃∥∞ ≤ λδ,

G(f ;ω) ≤ G(f̃ ;ω) + 3λδ.

By Assumption 3, it follows that L is strongly convex at f∗, i.e., for each f ,

L(f)− L(f∗) ≥ c ∥f − f∗∥2L2(PX) ,
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where c > 0 is an absolute constant. For each f̃ ∈ C, we have

P

[
1

n

n∑
i=1

G
(
f̃ ;Ui

)
> t

]
= P

[
1

n

n∑
i=1

ED′

[
ℓ̃(f̃ ;U ′

i)
]
− 2

n

n∑
i=1

ℓ̃(f̃ ;Ui) > t

]

=P

[
ED

[
1

n

n∑
i=1

ℓ̃(f̃ ;Ui)

]
− 1

n

n∑
i=1

ℓ̃(f̃ ;Ui) > t/2 + ED

[
1

2n

n∑
i=1

ℓ̃(f̃ ;Ui)

]]
.

(20)

It is easy to show that |ℓ̃(f̃ ;Ui)| ≤ 2λB, and |ℓ̃(f̃ ;Ui)− Eℓ̃(f̃ ;Ui)| ≤ 4λB := b. Denote
by σ2 := V ar(ℓ̃(f̃ , Ui)), then we have

σ2 ≤ E[ℓ̃(f̃ ;Ui)
2] ≤ λ2∥f̃ − f∗∥2L2(PX) ≤

λ2

c
E[ℓ̃(f̃ ;Ui)].

Thus, we have E[ℓ̃(f̃ ;Ui)] ≥ cσ2

λ2 . Let v := t
2 +

cσ2

2λ2 = t
2 +

2Bcσ2

bλ , then we have σ2 ≤ bλv
2Bc , and

v ≥ t/2. By Bernstein’s inequality and (20), we have

P

[
1

n

n∑
i=1

G
(
f̃ ;Ui

)
> t

]
≤ P

[
ED

[
1

n

n∑
i=1

ℓ̃(f̃ ;Ui)

]
− 1

n

n∑
i=1

ℓ̃(f̃ ;Ui) > t/2 +
cσ2

2λ2

]

= P

[
ED

[
1

n

n∑
i=1

ℓ̃(f̃ ;Ui)

]
− 1

n

n∑
i=1

ℓ̃(f̃ ;Ui) > v

]
≤ exp(−nv2/2(σ2 + bv))

≤ exp(−nv/b(2 + λ/Bc))

≤ exp(−nt/(8λB + 4λ2/c)).

Hence, ∀t > 3λδ, we have

P

[
1

n

n∑
i=1

G
(
f̂D;Ui

)
> t

]
≤ P

[
max
f∈G

1

n

n∑
i=1

G (f ;Ui) > t

]

≤ P

[
max
f̃∈C

1

n

n∑
i=1

G
(
f̃ ;Ui

)
> t− 3λδ

]

≤ N exp

(
− n(t− 3λδ)

8λB + 4λ2/c

)
.

By Lemma 20 and setting a = 3λδ+ c0 with δ = 1/n and c0 = (8λB+4λ2/c) logN/n yield
that

Esta ≤ a+

∫ ∞

a
N exp

(
− n(t− 3λδ)

8λB + 4λ2/c

)
dt

≤ a+N exp

(
− c0n

8λB + 4λ2/c

)
4λB + 4λ2/c

n

≤
(
8λB + 4λ2/c

)
(logN + 1) + 3λ

n

≤ O
(
BSD log(nBWD)

n

)
.
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This completes the proof.

■

A.2 Proof of the Main Results for the Unweighted Estimators

A.2.1 Proof of Error Bounds for the Unweighted Estimators Under the
Uniformly Bounded Case

In this section, we give the proof of Theorem 8, which provides the non-asymptotic error
bound for the unweighted estimators under the uniformly bounded case. The proof highly
relies on the nice property that ∥f̂D − f0∥L2(QX) ≤ Γ∥f̂D − f0∥L2(PX) given the assumption
that supx∈X r(x) ≤ Γ.

Proof. By Lemma 4 and taking the expectation on the training data D, we have

ED

[
∥f̂D − f0∥2L2(PX)

]
≲ BEDE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
+B2 inf

f∈G
∥f − f0∥2∞

For the statistical error term, from Theorem 7, we have

EDE(X,Y )∼PX,Y

[
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

]
≤O

(
BSD log(nBWD)

n

)
≤ O

(
Bn

− 2ζ
d+2ζ (log n)3

)
,

where the second inequality is from the fact that the function class G is a ReLU FNN F
bounded by B ≥ 1, with the size S = O(n

d
d+2ζ log n) and the depth D = O(log n), and

weights bound B = O(Bn
d

d+2ζ ).

For the approximation error term, this can be bounded by using Theorem 5.

By combining these two error terms, we have

ED∥f̂D − f0∥2L2(PX) ≤ O
(
B2n

− 2ζ
d+2ζ (log n)3

)
. (21)

Then by Assumption 4 that supx∈X r(x) ≤ Γ, there holds

ED∥f̂D − f0∥2L2(QX) ≤ ΓED∥f̂D − f0∥2L2(PX) ≤ O
(
ΓB2n

− 2ζ
d+2ζ (log n)3

)
.

This completes the proof of Theorem 8. ■

A.2.2 Proof of Error Bounds for the Unweighted Estimators Under the
Bounded Second Moment Case

In this section, we give the proof of Theorem 9 , which provides the non-asymptotic error
bound for the unweighted estimators under the bounded second moment case. In this case,
the property that ∥f̂D−f0∥L2(QX) ≤ V 2∥f̂D−f0∥L2(PX) does not hold for the bounded second
moment case. By using the Cauchy-Schwarz inequality, we can only obtain a suboptimal
rate.
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Proof. By the definition of the density ratio r, for each f ∈ F , we have

∥f − f0∥2L2(QX) = EX∼PX

[
r(X)(f(X)− f0(X))2

]
≤
{
EX∼PX

[
r2(X)

]} 1
2
{
EX∼PX

[
(f(X)− f0(X))4

]} 1
2

≤ V
1
2
{
EX∼PX

[
(f(X)− f0(X))4

]} 1
2

≤ (4B2V )
1
2

{
∥f − f0∥2L2(PX)

} 1
2
,

where the first inequality follows from the Cauchy-Schwarz inequality, the second inequality
is from Assumption 5 that EX∼PX

[r2(X)] ≤ V 2, and the last inequality is due to that fact
that ∥f∥∞ ≤ B and ∥f0∥∞ ≤ B. Combining this result with (21), we have

ED∥f̂D − f0∥2L2(QX) ≤ (4B2V )
1
2ED

{
∥f − f0∥2L2(PX)

} 1
2 ≤ O

(
B2V

1
2n

− ζ
d+2ζ (log n)

3
2

)
.

This completes the proof. ■

A.3 Proof of the Main results for the Reweighted estimators

A.3.1 Proof of Error Bounds for the Reweighted Estimators Under the
Uniformly Bounded Case

In this section, we give the proof of Theorem 10, which provides the non-asymptotic error
bound for the reweighted estimators under the uniformly bounded case. This proof follows
a similar approach to that in Theorem 8. Specifically, it incorporates a modified error
decomposition as detailed in Lemma 21 and includes estimates for the statistical error term
from Lemma 22.

Lemma 21. Suppose that Assumptions 2 and 3 are satisfied, and the function space J is
also uniformly bounded by B with B ≥ 1. Then, the reweighted estimator f̂r,D defined in
(6) satisfies

∥f̂r,D − f0∥2L2(QX) ≲ BE(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f̂r,D(X))− ρτ (Y − f∗(X))

)]
+B2∥f0 − f∗∥2∞.
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Proof. By the Knight identity and Fubini’s theorem, we can employ the same proof
procedure as detailed in Lemma 4 in Section 4.1.1, which shows that

E(X,Y )∼PX,Y
[r(X)(ρτ (Y − f(X))− ρτ (Y − f∗(X)))]

=EX∼PX

[
− r(X)

(
f(X)− f∗(X)

)
EY |X∼PY |X

[
(τ − I{Y ≤ f0(X)}) | X

]]
−EX∼PX

[
r(X)

(
f(X)− f∗(X)

)
EY |X∼PY |X

[
(I{Y ≤ f0(X)} − I{Y ≤ f∗(X)}) | X

]]
+ EX∼PX

[ ∫ f(X)−f∗(X)

0
r(X)

(
EY |X∼PY |X [I{Y ≤ f∗(X) + z} | X]

− EY |X∼PY |X [I{Y ≤ f∗(X)} | X]
)
dz
]

≥− C1EX∼PX

[
r(X)|f(X)− f∗(X)||f0(X)− f∗(X)|

]
+ C2EX∼PX

[
r(X)D2(f(X)− f∗(X))

]
≥− C1

√
EX∼PX

[
r(X)|f(X)− f∗(X)|2

]√
EX∼PX

[
r(X)|f0(X)− f∗(X)|2

]
+ C2EX∼PX

[
r(X)D2(f(X)− f∗(X))

]
,

where C1, C2 are two absolute positive constants. Then, for any β > 0,

C2EX∼PX

[
r(X)D2(f(X)− f∗(X))

]
≤C1

√
EX∼PX

[
r(X)|f(X)− f∗(X)|2

]√
EX∼PX

[
r(X)|f0(X)− f∗(X)|2

]
+ E(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f(X))− ρτ (Y − f∗(X))

)]
≤C1

4β
EX∼PX

[
r(X)|f(X)− f∗(X)|2

]
+ C1βEX∼PX

[
r(X)|f0(X)− f∗(X)|2

]
+ E(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f(X))− ρτ (Y − f∗(X))

)]
.

By setting β = C1B
C2

and applying the inequality D2(f(X)− f∗(X)) ≥ |f(X)−f∗(X)|2
2B , which

holds almost surely for B ≥ 1, there holds

∥f − f∗∥2L2(QX) ≤
4B

C2

(
E(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f(X))− ρτ (Y − f∗(X))

)])
+
2C2

1B
2

C2
2

∥f0 − f∗∥2L2(QX).

Using the triangle inequality yields that

∥f̂r,D − f0∥2L2(QX)

≤ 2∥f̂r,D − f∗∥2L2(QX) + 2∥f∗ − f0∥2L2(QX)

≲ BE(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f̂r,D(X))− ρτ (Y − f∗(X))

)]
+B2∥f0 − f∗∥2L2(QX)

≲ BE(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f̂r,D(X))− ρτ (Y − f∗(X))

)]
+B2∥f0 − f∗∥2∞.

This completes the proof. ■
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Lemma 22. Given the reweighted estimator f̂r,D in (6) and the considered function class
J is ReLU FNN F , we have

EDE(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f̂r,D(X))− ρτ (Y − f∗(X))

)]
≤O

(
BSDΓ2 log(nBWD)

n

)
.

Proof. This proof is similar to that of Theorem 7, requiring solely the redefinition of L,
L̂D, and ℓ̃. Specifically, we reformulate them as

L(f) := E(X,Y )∼PX,Y
[r(X)(ρτ (Y − f(X))− ρτ (Y − f∗(X)))] ,

L̂D(f) :=
1

n

n∑
i=1

r(Xi) (ρτ (Yi − f(Xi))− ρτ (Yi − f∗(Xi))) ,

where f ∈ J . Then, we define ℓ̃(f ;ω) := r(x) (ρτ (y − f(x))− ρτ (y − f∗(x))) with ω :=
(x, y). It is easy to check that ℓ̃(f ;ω) is Lipschitz continuous over f , i.e., for each ω, we
have

|ℓ̃(f1;ω)− ℓ̃(f2;ω)| ≤ r(x)|f1(x)− f2(x)| ≤ λ|f1(x)− f2(x)|, with λ = Γ.

Using Assumption 3, we can conclude that L is strongly convex at f∗, i.e., for each f ,

L(f)− L(f∗) ≥ c ∥f − f∗∥2L2(QX) ,

where c > 0 is an absolute constant. Therefore, employing analogous arguments to the
proof of Theorem 7 gives the desired upper bound. This completes the proof. ■

With Theorem 5, and Lemmas 21-22, we proceed the proof of Theorem 10 as given
below.
Proof. By Lemma 4 and taking the expectation on the training data D, we have

ED

[
∥f̂D − f0∥2L2(PX)

]
≲ BEDE(X,Y )∼PX,Y

[
r(X)

(
ρτ (Y − f̂D(X))− ρτ (Y − f∗(X))

)]
+B2 inf

f∈G
∥f − f0∥2∞.

We set the function class J to be a ReLU FNN bounded by B ≥ 1, with the size S =

O(n
d

d+2ζ log n) and the depth D = O(log n), and weights bound B = O(Bn
d

d+2ζ ). Using
Lemma 22 and Theorem 5, then we obtain the desired bound.

■

A.3.2 Proof of Error Bounds for the Reweighted Estimators Under the
Bounded Second Moment Case

In this section, we give the proof of Theorem 11, which provides the non-asymptotic error
bound for the truncated reweighted estimators in the case of a bounded second moment.
We consider a more general assumption that EX∼PX

[r1+δ(X)] = U < ∞, for some δ ≥ 0,
and second moment bounded is a special case when δ = 1. Proof. We denote by

R∗
r(f) := E(X,Y )∼PX,Y

[
r(X)(ρτ (f(X)− Y )− ρτ (f

∗(X)− Y ))
]
,

R∗
Tξr

(f) := E(X,Y )∼PX,Y

[
Tξr(X)(ρτ (f(X)− Y )− ρτ (f

∗(X)− Y ))
]
,
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where f ∈ K. Then, we have

R∗
r(f)−R∗

Tξr
(f)

= E(X,Y )∼PX,Y
[(r(X)− ξ)I(r(X) ≥ ξ)(ρτ (f(X)− Y )− ρτ (f

∗(X)− Y ))]

= E(X,Y )∼PX,Y
[r(X)I(r(X) ≥ ξ)(ρτ (f(X)− Y )− ρτ (f

∗(X)− Y ))]

− E(X,Y )∼PX,Y
[ξI(r(X) ≥ ξ)(ρτ (f(X)− Y )− ρτ (f

∗(X)− Y ))]

≤ 2BEX∼PX

[
r(X)

rδ(X)

ξδ

]
+ 2BξEX∼PX

[
r1+δ(X)

ξ1+δ

]
≤ 4BU

ξδ
,

where the inequality holds by the 1+δ moment bounded assumption and Markov inequality.
According to the proof of Lemma 21, for each f ∈ K,

∥f − f0∥2L2(QX) ≲ BE(X,Y )∼PX,Y
[r(X) (ρτ (Y − f(X))− ρτ (Y − f∗(X)))]

+B2∥f0 − f∗∥2L2(QX)

≲ BR∗
Tξr

(f) +
B2U

ξδ
+B2∥f0 − f∗∥2∞.

Similar to the proof of Lemma 22, it holds that ED[R∗
Tξr

(f̂Tξr,D)] ≤ O
(BSDξ2 log(nBWD)

n

)
.

Setting ξ =
(

nU
SD log(nBWD)

) 1
2+δ

yields that

ED∥f̂Tξr,D − f0∥2L2(QX) ≲ U2δ/(2+δ)B2(SD log(nBWD)/n)1/(1+δ) +B2∥f0 − f∗∥2∞.

Using Theorem 5 and setting the function class K as a ReLU FNN bounded by B ≥ 1,

with the size S = O
(
n

d
d+(2+4/δ)ζ log n

)
, the depth D = O (log n), and weights bound B =

O
(
Bn

d
d+(2+4/δ)ζ

)
, it follows that

ED

[
∥f̂Tξr,D − f0∥2L2(QX)

]
≤ O

(
U2δ/(2+δ)B2n

− 2ζ
d+(2+4/δ)ζ log n

)
.

Let δ = 1 and U = V 2, we complete the proof.

■

A.4 Proof of the Main results for the Pre-training Reweighted estimators

A.4.1 Proof of Error Bounds for the Pre-training Reweighted Estimators
Under the Uniformly Bounded Case

In this section, we give the proof of Theorem 13 and Theorem 14, which provide the non-
asymptotic error bound for the pre-training density ratio and the pre-training reweighted
estimators under the uniformly bounded case.
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Proof. For each u ∈ U , we have

L(r̂S)− L(r) = L(r)− 2L̂S(r̂S) + L(r̂S) + 2L̂S(r̂S)− 2L(r)

≤ L(r)− 2L̂S(r̂S) + L(r̂S) + 2L̂S(u)− 2L(r).

Next, we bound the statistical error Esta = ES

[
L(r)− 2L̂S(r̂S) + L(r̂S)

]
and approximation

error 2L̂S(u)−2L(r). This approximation error can be controlled by Theorem 5. Therefore,
it remains to derive the upper bound of the statistical error. This can be done by following
the proof of Theorem 7. We denote by ℓ(u;x) := 1

2u
2(xp)−u(xq), with x := (xp, xq). Then,

we define ℓ̃(u;x) := ℓ(u;x)− ℓ(r;x). It is easy to check that ℓ̃(u;x) is Lipschitz continuous
over u, i.e., for each x, we have

|ℓ̃(u1;x)− ℓ̃(u2;x)| ≤ λ (|u1(xp)− u2(xp)|+ |u1(xq)− u2(xq)|) , with λ = Γ.

Moreover, L is strongly convex at r, i.e., for each u,

L(u)− L(r) ≥ c ∥u− r∥2L2(PX) , c := 1.

Then, using the similar arguments in the proof of Theorem 7 yields that

Esta ≤
(
32λΓ + 8(2 + Γ)λ2/c

)
(logN + 1)

m
≲

Γ3SD log(mBWD)

m
.

Then, setting the size S = O
(
m

d
d+2α logm

)
, the depth D = O (logm), and weights bound

B = O
(
Γm

d
d+2α

)
gives the desired result.

■

By using Theorem 13, we are ready to prove Theorem 14.

Proof.

Using Lemma 21, we can similarly get

ES,D

[
∥f̂r̂S,D − f0∥2L2(QX)

]
≲ BES,DE(X,Y )∼PX,Y

[r(X)(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

+B2∥f∗ − f0∥2L2(QX)

≲ BES,DE(X,Y )∼PX,Y
[(r(X)− r̂S(X))(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

+BES,DE(X,Y )∼PX,Y
[r̂S(X)(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

+B2∥f∗ − f0∥2L2(QX). (22)
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For any β > 0, we have

ES,DE(X,Y )∼PX,Y
[(r(X)− r̂S(X))(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

≤ ES

[
EX∼PX

|(r(X)− r̂S(X))|2 /2β
]

+ ES,D

[
E(X,Y )∼PX,Y

∣∣∣ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X))
∣∣∣2 β/2]

≤ ES

[
∥r − r̂S∥2L2(PX)

]
/2β + ES,D

[
β

2Υ

∥∥∥f̂r̂S,D − f∗
∥∥∥2
L2(QX)

]
≤ ES

[
∥r − r̂S∥2L2(PX)

]
/2β +

β

Υ
ES,D

[∥∥∥f̂r̂S,D − f0

∥∥∥2
L2(QX)

]
+
β

Υ
∥f0 − f∗∥2L2(QX) . (23)

Combining (22)-(23) and setting β = Υ
2B yield that

ES,D

[
∥f̂r̂S,D − f0∥2L2(QX)

]
≲ BES,DE(X,Y )∼PX,Y

[r̂S(X)(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

+B2∥f∗ − f0∥2∞ +
B2

Υ
ES

[
∥r − r̂S∥2L2(PX)

]
. (24)

In (24), we can deduce that ES,DE(X,Y )∼PX,Y
[r̂S(X)(ρτ (Y − f̂r̂S,D(X))− ρτ (Y − f∗(X)))]

≤ O
(
BSDΓ2 log(nBWD)

n

)
by employing similar arguments in Lemma 22, ∥f∗ − f0∥2∞ can

be bounded by Theorem 5, and ES

[
∥r − r̂S∥2L2(PX)

]
can be bounded using Theorem 13.

Therefore, setting the size S = O
(
n

d
d+2ζ log n

)
, the depth D = O (log n), and weights

bound B = O
(
Bn

d
d+2ζ

)
, we have

ES,D

[
∥f̂r̂S,D − f0∥2L2(QX)

]
≤ O

(
B2Γ2n

−2ζ
2ζ+d (log n)3

)
+O

(
B2Γ3m− 2α

d+2α (logm)3

Υ

)
.

Moreover, if m ≥ Ω
((

Γ
Υ

) d+2α
2α n

ζ(d+2α)
α(d+2ζ)

)
, we have

ES,D
[
∥f̂r̂S,D − f0∥2L2(QX)

]
≤ O

(
B2Γ2n

− 2ζ
d+2ζ (log n)3

)
.

This completes the proof.
■

A.4.2 Proof of Error Bounds for the Pre-training Reweighted Estimators
under the 2 + δ Moment Bounded Case

In this section, we give the proof of Theorem 15 and Theorem 17 density, which provide
the non-asymptotic error bound for the pre-training density ratio and the pre-training
reweighted estimators under the 2 + δ moment bounded case. The proof of Theorem 15
is similar to that of Theorem 13, except for an extra error term for the truncation ∥Tξr −
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r∥2L2(PX) which can be well bounded with Assumption 9. And with Theorem 15, the proof
of Theorem 17 is exactly the same as that of Theorem 14.

Proof. For each u ∈ TξU , we have

L(r̂ξ,S)− L(r) = L(r)− 2L̂S(r̂ξ,S) + L(r̂ξ,S) + 2L̂S(r̂ξ,S)− 2L(r)

≤ L(r)− 2L̂S(r̂ξ,S) + L(r̂ξ,S) + 2L̂S(u)− 2L(r).

Next, we bound the statistical error Esta = ES

[
L(r)− 2L̂S(r̂ξ,S) + L(r̂ξ,S)

]
and approxima-

tion error 2L̂S(u)− 2L(r). Using the triangle inequality, the approximation error satisfies

inf
u∈TξU

ES[L̂S(u)− L(r)] ≤ 2 inf
u∈TξU

∥u− Tξr∥2L2(PX) + 2∥Tξr − r∥2L2(PX). (25)

On the right hand of (25), the first term can be bounded by Theorem 5. In terms of the
second term, it can be bounded by using Assumption 9. Specifically, there holds that

∥Tξr − r∥2L2(PX) ≤ ∥rI(r > ξ)∥2L2(PX)

≤ EX∼PX

[
r2(X)

rδ(X)

ξδ

]
=

EX∼PX
[r2+δ(X)]

ξδ

≤ Ξ

ξδ
,

where the last inequality follows from Assumption 9. Moreover, similar to the argument of

the proof of Theorem 13, the statistical error Esta can be bounded by O
(
ξ3SD log(mBWD)

m

)
.

Then, by setting the size S = O
(
m

δd
δd+(6+2δ)α

)
, the depth D = O (logm), weights bound

B = O
(
ξm

δd
δd+(6+2δ)α

)
for the ReLU DNNs, and the truncation level ξ = O

(
m

2α
δd+(6+2δ)α

)
,

we obtain the desired result.

If we further assume that the square of the density ratio r2 is sub-exponential with
respect to PX , i.e., EX∼PX

[
exp(σr2(X))

]
<∞, for some positive constant σ, then

∥Tξr − r∥2L2(PX) ≤ ∥rI(r > ξ)∥2L2(PX)

≤ 2

σ
EX∼PX

[
σr2(X)

2
exp

(σ
2
(r2(X)− ξ2)

)]
≤ 2

σ
exp

(
−σ
2
ξ2
)
EX∼PX

[
exp

(
σr2(X)

)]
≲ exp

(
−σ
2
ξ2
)
,

Then, setting the size S = O
(
m

d
d+2α logm

)
, the depth D = O (logm), weights bound

B = O
(
ξm

d
d+2α

)
for the ReLU DNNs, and the truncation level ξ = O

(√
logm

)
gives the

convergence rate of O(m− 2α
d+2α (logm)

9
2 ). ■
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Proof. Following a similar procedure in the proof of Theorem 14, we have

ES,D

[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≲BES,DE(X,Y )∼PX,Y

[r(X)(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

+B2∥f∗ − f0∥2L2(QX)

≲BES,DE(X,Y )∼PX,Y
[(r(X)− r̂ξ,S(X))(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

+BES,DE(X,Y )∼PX,Y
[r̂ξ,S(X)(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

+B2∥f∗ − f0∥2L2(QX).

For the first part of the above equation, for any β > 0, we have

ES,DE(X,Y )∼PX,Y
[(r(X)− r̂ξ,S(X))(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

≤ES

[
EX∼PX

|(r(X)− r̂ξ,S(X))|2 /2β
]

+ ES,D

[
E(X,Y )∼PX,Y

∣∣∣ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X))
∣∣∣2 β/2]

≤ES

[
∥r − r̂ξ,S∥2L2(PX)

]
/2β + ES,D

[
β

2Υ

∥∥∥f̂r̂ξ,S,D − f∗
∥∥∥2
L2(QX)

]
≤ES

[
∥r − r̂ξ,S∥2L2(PX)

]
/2β +

β

Υ
ES,D

[∥∥∥f̂r̂ξ,S,D − f0

∥∥∥2
L2(QX)

]
+
β

Υ
∥f0 − f∗∥2L2(QX) ,

where the second inequality follows from the fact that ρτ (·) is Lipschitz continuous and
Assumption 4.9 that Υ = infx∈X r(x) > 0.

Plugging in this result and setting β = Υ
2B yield that

ES,D

[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≲ B2∥f∗ − f0∥2∞ +

B2

Υ
ES

[
∥r − r̂ξ,S∥2L2(PX)

]
+BES,DE(X,Y )∼PX,Y

[r̂ξ,S(X)(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))].

Note that ∥r̂ξ,S∥∞ ≤ ξ, then we employ the similar arguments in Lemma 22 and obtain that

ES,DE(X,Y )∼PX,Y
[r̂ξ,S(X)(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

≤O
(
BSDξ2 log(nBWD)

n

)
.

Set the size S = O(n
δd

δd+(4+2δ)ζ ), the depthD = O(log n), weights bound B = O(Bn
δd

δd+(4+2δ)ζ) ),

and the truncation level ξ = O(n
2ζ

δd+(4+2δ)ζ ). By Theorem 5, we can get

inf
f∈M

∥f − f0∥2∞ ≤ O(Bn
− 2δζ

δd+(4+2δ)ζ ).

At last, the term ES

[
∥r − r̂ξ,S∥2L2(PX)

]
can be bounded using Theorem 15. Therefore, by

combining the three error terms, we have

ES,D

[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≤ O

(
B2n

− 2δζ
δd+(4+2δ)ζ (log n)2

)
+O

(
B2m

− 2δα
δd+(6+2δ)α (logm)2

Υ

)
.
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Moreover, if m ≥ Ω
(
n

[δd+(6+2δ)α]ζ
[δd+(4+2δ)ζ]α

)
, we have

ES,D
[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≤ O

(
B2n

− 2δζ
δd+(4+2δ)ζ (log n)2

)
.

If we further assume that the square of the density ratio r2 is sub-exponential with
respect to PX , i.e., EX∼PX

[
exp(σr2(X))

]
<∞, for some positive constant σ, then

ES,DE(X,Y )∼PX,Y
[r̂ξ,S(X)(ρτ (Y − f̂r̂ξ,S,D(X))− ρτ (Y − f∗(X)))]

≤O
(
BSDξ2 log(nBWD)

n

)
≤ O

(
Bn

− 2ζ
d+2ζ (log n)3 logm

)
,

with the size S = O(n
d

d+2ζ log n), the depth D = O(log n), weights bound B = O(Bn
d

d+2ζ ),
and the truncation level ξ = O(

√
logm). By Theorem 5, we can get

inf
f∈M

∥f − f0∥2∞ ≤ O(Bn
− 2ζ

d+2ζ ).

At last, the term ES

[
∥r − r̂ξ,S∥2L2(PX)

]
can be bounded using Theorem 17. Therefore, by

combining the three error terms, we have

ES,D

[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≤ O

(
B2n

−2ζ
d+2ζ (log n)3 logm

)
+O

(
B2m− 2α

d+2α (logm)9/2

Υ

)
.

Moreover, if m ≥ Ω
(
n

(d+2α)ζ
(d+2ζ)α

)
, we have

ES,D
[
∥f̂r̂ξ,S,D − f0∥2L2(QX)

]
≤ O

(
B2n

− 2ζ
d+2ζ (log n)4

)
.

This completes the proof. ■

Appendix B. Additional Numerical Experiments

In this part, we provide some additional numerical results. Specifically, the generating
scheme is the same as that the generating scheme is the same as that in Section 5.1,
except that we consider two different scenarios where the covariates are drawn from different
distribution families. The first case is that the target covariate is drawn from N(0, 1), the
source covariate is drawn from the standard Cauchy distribution, and clearly, the density
ratio is uniformly bounded under this case. The second case is that the target covariate
is drawn from a Pareto distribution with scale parameter 0.2 and shape parameter 2, the
source covariate is drawn from Student’s t-distribution with 3 degrees of freedom, and
clearly, the density ratio is unbounded density ratios with the bounded second moment.
The averaged performances of all the estimators are summarized in terms of L1 and L2

2

prediction errors under different scenarios in Tables 5 and 6.
It is thus clear from Tables 5 and 6 that the obtained numerical results are consistent

with those presented in Section 5. Under the uniformly bounded case, the averaged errors
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Table 5: Averaged L1 and L2
2 errors (×10−1) based on testing data with the corresponding

standard deviations in brackets for DQR, WDQR and PWDQR for Model (13)
with the bounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 1.374(0.169) 0.246(0.062) 1.102(0.104) 0.153(0.027)

WDQR 1.373(0.192) 0.246(0.068) 1.092(0.093) 0.151(0.022)
PWDQR 1.428(0.232) 0.254(0.091) 1.195(0.194) 0.162(0.045)

0.25
DQR 0.584(0.080) 0.049(0.013) 0.540(0.049) 0.044(0.007)

WDQR 0.562(0.071) 0.050(0.012) 0.539(0.047) 0.044(0.007)
PWDQR 0.598(0.094) 0.053(0.032) 0.570(0.072) 0.049(0.012)

0.5
DQR 0.449(0.023) 0.031(0.004) 0.421(0.010) 0.028(0.002)

WDQR 0.446(0.025) 0.032(0.004) 0.419(0.013) 0.027(0.002)
PWDQR 0.468(0.043) 0.034(0.009) 0.429(0.031) 0.029(0.005)

0.75
DQR 0.607(0.079) 0.055(0.013) 0.555(0.044) 0.043(0.007)

WDQR 0.605(0.079) 0.055(0.012) 0.553(0.050) 0.044(0.008)
PWDQR 0.613(0.083) 0.057(0.031) 0.571(0.063) 0.047(0.015)

0.95
DQR 1.333(0.154) 0.215(0.043) 1.044(0.094) 0.137(0.021)

WDQR 1.334(0.180) 0.217(0.054) 1.047(0.091) 0.141(0.022)
PWDQR 1.459(0.213) 0.233(0.078) 1.121(0.176) 0.151(0.045)

Table 6: Averaged L1 and L2
2 errors (×10−1) based on testing data with the corresponding

standard deviations in brackets for DQR, WDQR and PWDQR for Model (13)
with the unbounded density ratio.

Sample size n = 512 n = 2048
τ Method L1 L2

2 L1 L2
2

0.05
DQR 1.332(0.184) 0.305(0.262) 1.089(0.112) 0.157(0.034)

WDQR 1.205(0.344) 0.184(0.112) 0.987(0.109) 0.124(0.023)
PWDQR 1.223(0.210) 0.189(0.052) 1.009(0.143) 0.128(0.029)

0.25
DQR 0.586(0.090) 0.130(0.260) 0.551(0.049) 0.061(0.055)

WDQR 0.515(0.055) 0.046(0.007) 0.508(0.043) 0.043(0.009)
PWDQR 0.549(0.102) 0.048(0.015) 0.525(0.060) 0.043(0.008)

0.5
DQR 0.460(0.039) 0.112(0.260) 0.423(0.159) 0.044(0.057)

WDQR 0.424(0.021) 0.031(0.007) 0.409(0.011) 0.028(0.006)
PWDQR 0.433(0.029) 0.033(0.006) 0.418(0.034) 0.031(0.009)

0.75
DQR 0.585(0.075) 0.131(0.259) 0.542(0.055) 0.061(0.061)

WDQR 0.523(0.087) 0.046(0.015) 0.514(0.055) 0.042(0.011)
PWDQR 0.539(0.103) 0.048(0.016) 0.521(0.059) 0.043(0.012)

0.95
DQR 1.257(0.152) 0.269(0.259) 1.046(0.097) 0.153(0.067)

WDQR 1.234(0.394) 0.211(0.138) 1.037(0.115) 0.135(0.027)
PWDQR 1.238(0.219) 0.215(0.056) 1.110(0.353) 0.156(0.053)
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of all the three estimators are very similar, even when the source and target distributions
belong to different families. Under the unbounded case, where the target distribution has
heavier tails than the source distribution, both WDQR and PWDQR significantly outper-
form DQR. These numerical results further validate our theoretical findings as discussed in
Section 4.
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