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Abstract

We present the Keras domain packages KerasCV and KerasNLP, extensions of the Keras
API for Computer Vision and Natural Language Processing workflows, capable of running
on either JAX, TensorFlow, or PyTorch. These domain packages are designed to enable
fast experimentation, with a focus on ease-of-use and performance. We adopt a modular,
layered design: at the library’s lowest level of abstraction, we provide building blocks
for creating models and data preprocessing pipelines, and at the library’s highest level of
abstraction, we provide pretrained ”task” models for popular architectures such as Stable
Diffusion, YOLOv8, GPT2, BERT, Mistral, CLIP, Gemma, T5, etc. Task models have
built-in preprocessing, pretrained weights, and can be fine-tuned on raw inputs. To enable
efficient training, we support XLA compilation for all models, and run all preprocessing
via a compiled graph of TensorFlow operations using the tf.data API. The libraries are
fully open-source (Apache 2.0 license) and available on GitHub.
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1. Introduction

Keras (Chollet et al., 2015) is among the most widely used tools for machine learning today1.
The Keras library acts as a high-level abstraction for machine learning models and layers,
and seeks to be accessible to a broad group of machine learning researchers and practitioners
by focusing on rapid experimentation and progressive disclosure of complexity.

Notably, recent developments in Computer Vision (CV) and Natural Language Process-
ing (NLP) have created new challenges for practitioners. The most obvious is the shift
towards larger and larger models trained on self-supervised tasks. Pretraining a state of

1. https://survey.stackoverflow.co/2022/
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the art model is now cost-prohibitive for many researchers and practitioners, in particular
in NLP. Access to open-source model architectures with pretrained weights is imperative in
a large amount of CV and NLP.

Additionally, pairing efficient preprocessing and metrics computation for modern mod-
els has become more difficult, with a proliferation of disparate techniques, backends, and
licenses. An ML researcher or practitioner today must select among a range of auto differ-
entiation frameworks such as JAX, TensorFlow, and PyTorch, and even within each frame-
work, they are often forced to stay within a specific modeling library for cross-compatibility
of components. Further, improving the train-time performance of models on NLP problems
presents additional hurdles. The XLA compiler (Sabne, 2020) offers dramatic speedups for
many model architectures, but adds complex restrictions on the shape and flow of tensor
operations. The TensorFlow-based tf.data (Murray et al., 2021) and tf.text APIs pro-
vide a scalable, dynamic, and multi-process approach for preprocessing, but many common
text operations do not easily compile to a TensorFlow graph.

Aiming to reduce these framework barriers for both practitioners and researchers, we
present KerasCV and KerasNLP, extensions of the Keras API for CV and NLP workflows.
These packages expand upon the modular approach of Keras, adding pretrained back-
bone models, easy-to-use domain-specific losses and metrics, and out-of-the-box support for
XLA (Sabne, 2020) compilation and data and model parallelism. Because these domain
packages are written on top of Keras 3, all of their modeling components natively support
JAX (Bradbury et al., 2018), TensorFlow (Abadi et al., 2015), and PyTorch (Paszke
et al., 2019), and can be freely used in framework-native workflows that do not otherwise
involve any Keras components.

2. The Keras Domain Packages API

We adopt a layered approach to API design. Our library has three levels of abstraction:

• Foundational Components: A collection of composable modules for building and
training preprocessing pipelines, models, and evaluation logic. These are pure Keras
3 components which can be used outside of the Keras Domain Packages ecosystem.

• Pretrained Backbones: We extend the common CV concept of a backbone, and use
it as a general term for a pretrained model without a task specific head. We provide a
collection of pretrained model backbones for fine-tuning. For NLP models, matching
tokenizers can be created alongside backbones.

• Task Models: A collection of end-to-end models specialized for a specific task, e.g.
text generation in NLP or object detection in CV. These task models combine the
preprocessing and modeling modules from the lower API levels to create a unified
training and inference interface that can operate directly on plain text or image input.
Task models aim to allow fine-tuning with zero configuration for common use cases.

Each additional API layer is built on top of the previous one. Modules from each level
can be mixed and matched in usage, for example, extending a pretrained backbone with
foundational preprocessing modules to pack input sequences or perform data augmentation.
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Any KerasCV and KerasNLP model can be instantiated as a PyTorch torch.nn.Module,
a TensorFlow tf.Module, or as a stateless JAX function. This means that the models can
be used with PyTorch ecosystem packages, with the full range of TensorFlow deployment
and production tools (such as TF-Serving, TF.js and TFLite), and with JAX large-scale
TPU training infrastructure.

3. Training, Serving, and Deployment

KerasCV and KerasNLP offer large vision and language models. State of the art models are
expected to continually increase in size in the future. To address these problems, KerasCV
and KerasNLP are compatible with the Keras Unified Distribution API (Qianli and others.,
2023). This API enables both model parallelism and data parallelism across all Keras
backends. The API maintains a clear separation between the model definition, training
logic, and sharding configuration. As a result, models within KerasCV and KerasNLP can
be written as if they were intended to run on a single device. Later, specific sharding
configurations can be added to these models when it’s time to train them.

4. Pretrained models on Kaggle Models

All pretrained models of KerasCV and KerasNLP are published on Kaggle Models https:
//www.kaggle.com/organizations/keras/models. Importantly, these models are also
available on Kaggle competition notebooks in internet-off mode.

SegmentAnything Gemma BERT Mistral
train predict train predict train predict train predict

Batch Size 1 7 8 32 54 531 8 32
Keras 2 (TF) 386.93 3,187.09 NA NA 841.84 965.21 NA NA
Keras 3 (TF) 355.25 762.67 232.52 1,134.91 404.17 962.11 185.92 966.06
Keras 3 (JAX) 361.69 660.16 273.67 1,128.21 414.26 865.29 213.22 957.25
Keras 3 (PT) 1,388.87 2,973.64 525.15 7, 952.67∗ 1320.441 3869.72 452.12 10932.59∗

Keras 3 (best) 355.25 660.16 232.52 1,128.21 404.17 865.29 185.92 957.25

Table 1: Average time taken (in ms/step) per training or inference step across different
models, namely Segment Anything (Kirillov et al., 2023), Gemma (Team et al.,
2024), BERT (Devlin et al., 2019) and Mistral (Jiang et al., 2023). * LLM inference
with the PyTorch backend is abnormally slow at this time because KerasNLP uses static sequence padding.
This will be addressed soon.

5. Performance

Framework performance depends on the specific model. Keras 3 offers flexibility by letting
users select the fastest framework for their task. Picking the fastest backend for a given
model consistently outperforms Keras 2 as seen in Table 1. All benchmarks are done with a
single NVIDIA A100 GPU with 40GB of GPU memory on a Google Cloud Compute Engine
of machine type a2-highgpu-1g with 12 vCPUs and 85GB host memory.

For fair comparison, we use the same batch size across frameworks if it is the same
model and task (fit or predict). However, for different models and tasks, due to their
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different sizes and architectures, we use different batch sizes to avoid either running out of
memory (too large) or under GPU utilization (too small). We also used the same batch
size for Gemma and Mistral since they are the same model type with similar number of
parameters. (see Table 1). XLA-compiled Keras models in JAX and TensorFlow exhibit no
overhead compared to equivalent code written without Keras. The resulting XLA graphs are
virtually identical, ensuring identical performance. However, Keras 3 with Pytorch shows
lower performance because writing performant Pytorch requires heavy manual optimization
on the part of the end user. Do note that Keras models running on top of the JAX or
TensorFlow backends are nearly always significantly faster than the same models written
in native PyTorch. The benchmarks will continue to be updated here https://keras.io/

getting_started/benchmarks/.

6. Related Work

A library with clear parallels to KerasNLP and KerasCV is the HuggingFace Transformers
library (Wolf et al., 2020). Both libraries offer access to pretrained model checkpoints for
a number of widely-used transformer architectures.

The Transformers library is built with a “repeat yourself” approach. KerasNLP, in con-
trast, is built with a layered approach, with an explicit goal of allowing the re-implementation
of any large language model in a relatively small amount of code. We believe there are
strengths and weaknesses to both of these approaches.

7. Future Work

Future efforts are directed towards consolidating KerasNLP and KerasCV into a unified
repository, KerasHub (Watson et al., 2024), to simplify the development and maintenance
of multimodal models. This initiative is already underway, and KerasHub has now been
officially released. Moving forward, we will expand the repository by integrating additional
multimodal models and enhancing fine-tuning capabilities.

8. Conclusions

KerasCV and KerasNLP are new toolboxes offering both modular components for rapid
prototyping of new models, as well as standard pretrained backbones and task models for
many computer vision and natural language processing workflows. They can be leveraged by
users of either JAX (Bradbury et al., 2018), TensorFlow (Abadi et al., 2015), or PyTorch
(Paszke et al., 2019). Thanks to backend optionality and XLA (Sabne, 2020) compila-
tion, KerasCV and KerasNLP deliver state-of-the-art training and inference performance.
KerasCV and KerasNLP offer extensive user guides, available at keras.io.
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Appendix A. Preprocessing Layers

KerasNLP offers a comprehensive suite of preprocessing layers that enable users to build
state-of-the-art, industry-grade data augmentation pipelines for tasks such as text classi-
fication, text generation, language translation, and text feature extraction. These include
tokenizers, samplers, and other data preprocessing layers. Below is an example demonstrat-
ing how to use KerasNLP’s preprocessing layers.

# Apply RandomSwap preproce s s ing l a y e r on input data
augmenter = k e r a s n l p . l a y e r s . RandomSwap( ra t e =0.4 , seed =42)
augmented data = augmenter ( input data )

# Example to demonstrate how to use a t o k en i z e r
vocab = [ ” [UNK] ” , ” the ” , ”qu” , ”##ick ” , ”br” , ”##own” , ” fox ” , ” . ” ]
inputs = [ ”The quick brown fox . ” ]
t o k e n i z e r = k e r a s n l p . t o k e n i z e r s . WordPieceTokenizer (

vocabulary=vocab ,
s equence l eng th =10,
l owercase=True ,

)
token i z ed output s = t o k e n i z e r ( inputs )

KerasCV provides a comprehensive suite of preprocessing layers that empower users to con-
struct state-of-the-art, industry-grade data augmentation pipelines for image classification,
object detection, image segmentation and image generation tasks. These layers implement
a wide range of commonly used data augmentation techniques, enabling users to effortlessly
enhance the robustness and generalizability of their models. By using preprocessing layers,
users can ensure that their models are trained on data that is representative of the data that
they will encounter at inference time. KerasCV offers 38 data augmentation layers. These
layers implement a wide range of commonly used data augmentation techniques, enabling
users to effortlessly manipulate image data in a variety of ways and handle all types of labels
out-of-the-box (e.g. class labels, box labels, mask labels).

TF Data is a TensorFlow API for building input pipelines. Input pipelines are responsi-
ble for loading data from disk, preprocessing it, and batching it. TF Data provides a number
of features that make it a powerful tool for preprocessing data for machine learning, such
as:

• Dataset APIs: for loading data from a variety of sources, such as CSV files, TFRecords,
and images.

• Preprocessing functions: for performing common preprocessing tasks, such as de-
coding images, resizing images, and normalizing images.

• Batching functions: for grouping data into batches.

• Prefetching and caching: for improving the performance of input pipelines.
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# App l i e s g r ay s ca l e p rep roce s s ing to input images .
( images , l a b e l s ) , = keras . da ta s e t s . c i f a r 1 0 . l oad data ( )
t o g r a y s c a l e = ke ra s cv . l a y e r s . p r e p r o c e s s i n g . Graysca le ( )
augmented images = t o g r a y s c a l e ( images )

Appendix B. Preset API

The presets API provides a convenient way to create state-of-the-art CV and NLP models.
Presets are pre-configured models that have been trained on a specific dataset and can be
used for a specific task.

To use the presets API, one simply needs to import the keras_cv.models or keras_nlp.models
module and then call the from_preset() method on the desired model class. The presets
API provides a number of advantages over creating models from scratch. First, presets are
pretrained on a large dataset, which means that they can achieve high accuracy on a variety
of tasks. Second, presets are pre-configured, which means that users do not need to worry
about setting hyperparameters. Third, presets are easy to use, which means that users can
get started with them quickly.

# Load a r c h i t e c t u r e and we i gh t s from pr e s e t
model = k e r a s n l p . models . RetinaNet . f r om pre s e t (

” re snet50 imagenet ” ,
)

# Load randomly i n i t i a l i z e d model from the p r e s e t a r c h i t e c t u r e
model = ke ra s cv . models . RetinaNet . f r om pre s e t (

” re snet50 imagenet ” ,
l oad we ight s=False ,

)

Appendix C. Backbone API

Both KerasCV and KerasNLP offer a Backbone API. Backbones can be thought of as the
central architecture of a model, without the final output layer. This allows users to leverage
powerful pretrained backbones (often trained on vast datasets) as the starting point for
their own customized models. The pretrained backbones within KerasCV and KerasNLP
offer more than just a starting point, they are also finetunable. Several examples of how to
do this can be seen on the Keras.io webpage (Chollet et al., 2015).

# Load backbone and we i gh t s from pr e s e t
model = ke ra s cv . models . ResNetBackbone . f r om pre s e t (

” re snet50 imagenet ” ,
)

# Randomly i n i t i a l i z e d backbone wi th a custom con f i g
model = ke ra s cv . models . ResNetBackbone (
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s t a c k w i s e f i l t e r s =[64 , 128 , 256 , 512 ] ,
s t a c k w i s e b l o c k s =[2 , 2 , 2 , 2 ] ,
s t a c k w i s e s t r i d e s =[1 , 2 , 2 , 2 ] ,
i n c l u d e r e s c a l i n g=False ,

)

Appendix D. Task Models

KerasCV and KerasNLP provide a number of task models that are designed for specific
tasks. These task models are built on top of the KerasCV and KerasNLP modeling layers
and provide a high level of performance. These models are ready for use in applications, but
can be further fine-tuned if desired. Some examples of available task models include image
classification, object detection, semantic segmentation, image generation, text generation,
text classification, and question answering.

Pretrained Task Models. Pretrained task models can be used by using presets trained
on different datasets. This allows users to quickly and easily get started with deep learning
without having to train a model from scratch. For example, KerasCV provides a number
of presets for image classification models that have been trained on different datasets, such
as ImageNet, COCO, and Pascal VOC. These presets can be used to create models that
can achieve state-of-the-art results on a variety of image classification tasks. To use a
pretrained task model with a preset, one simply needs to import the keras_cv.models or
keras_nlp.models module and then call the from_preset() method on the desired model
class.

Specifying a Backbone in a Task Model. It is possible to specify a backbone for
task models. This is done by passing the backbone argument to the task class constructor.
By specifying a different backbone, users can change the features that are extracted. This
can be useful if one wants to improve the performance of the model on a specific task.
Users can also specify their own custom backbones. To do this, one simply need to create
a subclass of the models.Backbone class.

Fine-Tuning a Task Model. Fine-tuning a task model is the process of adapting a
pretrained model to a specific task. This is done by training the model on a dataset of
labeled data for the specific task.

# Example o f a BERT c l a s s i f i e r t a s k model
f e a t u r e s = [ ”The quick brown fox jumped . ” , ” I f o r g o t my homework . ” ]
l a b e l s = [ 0 , 3 ]

# Pretra ined c l a s s i f i e r t a s k model .
c l a s s i f i e r = k e r a s n l p . models . B e r t C l a s s i f i e r . f r om pre s e t (

” b e r t b a s e e n ” ,
num classes =4,

)
c l a s s i f i e r . f i t ( x=f ea tu r e s , y=l a b e l s , b a t c h s i z e =2)
c l a s s i f i e r . p r e d i c t ( x=f ea tu r e s , b a t c h s i z e =2)
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# Complete ly customize the t a s k model
f e a t u r e s = [ ”The quick brown fox jumped . ” , ” I f o r g o t my homework . ” ]
l a b e l s = [ 0 , 3 ]

vocab = [ ” [UNK] ” , ” [CLS ] ” , ” [SEP] ” , ” [PAD] ” , ” [MASK] ” ]
vocab += [ ”The” , ” quick ” , ”brown” , ” fox ” , ”jumped” , ” . ” ]
# Custom to k en i z e r
t o k e n i z e r = k e r a s n l p . models . BertTokenizer (

vocabulary=vocab ,
)
# Custom preproces sor
pr ep ro c e s s o r = k e r a s n l p . models . B e r t C l a s s i f i e r P r e p r o c e s s o r (

t o k e n i z e r=token i ze r ,
s equence l eng th =128 ,

)
# Custom backbone
backbone = k e r a s n l p . models . BertBackbone (

v o c a b u l a r y s i z e =30552 ,
num layers =4,
num heads=4,
hidden dim =256 ,
intermediate d im =512 ,
max sequence length =128 ,

)
# Custom ta sk model
c l a s s i f i e r = k e r a s n l p . models . B e r t C l a s s i f i e r (

backbone=backbone ,
p r ep ro c e s s o r=preproce s so r ,
num classes =4,

)
c l a s s i f i e r . f i t ( x=f ea tu r e s , y=l a b e l s , b a t c h s i z e =2)

An extensive list of models offered by KerasCV and KerasNLP can be found at https://

keras.io/api/keras_cv/models/ and https://keras.io/api/keras_nlp/models/. Pre-
trained weights are available on Kaggle at https://www.kaggle.com/organizations/

keras/models.

Appendix E. Resources

To facilitate users in exploring the full potential of our libraries and tools through hands-on
experimentation, we provide a comprehensive collection of guides and illustrative examples.
KerasCV guides are accessible at https://keras.io/guides/keras_cv/, while KerasNLP
guides can be found at https://keras.io/guides/keras_nlp/. For practical demonstra-
tions, KerasCV example guides are located at https://keras.io/examples/vision/, and
KerasNLP example guides can be found at https://keras.io/examples/nlp/.
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Furthermore, our pretrained models are hosted on Kaggle at https://www.kaggle.

com/organizations/keras/models. Each model is accompanied by a detailed model card
that provides a comprehensive description and illustrative examples of how to effectively
utilize them.
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