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Abstract

While physics-informed neural networks (PINNs) have become a popular deep learning
framework for tackling forward and inverse problems governed by partial differential equa-
tions (PDEs), their performance is known to degrade when larger and deeper neural network
architectures are employed. Our study identifies that the root of this counter-intuitive
behavior lies in the use of multi-layer perceptron (MLP) architectures with non-suitable
initialization schemes, which result in poor trainablity for the network derivatives, and
ultimately lead to an unstable minimization of the PDE residual loss. To address this, we
introduce Physics-Informed Residual Adaptive Networks (PirateNets), a novel architecture
that is designed to facilitate stable and efficient training of deep PINN models. PirateNets
leverage a novel adaptive residual connection, which allows the networks to be initialized as
shallow networks that progressively deepen during training. We also show that the proposed
initialization scheme allows us to encode appropriate inductive biases corresponding to
a given PDE system into the network architecture. We provide comprehensive empiri-
cal evidence showing that PirateNets are easier to optimize and can gain accuracy from
considerably increased depth, ultimately achieving state-of-the-art results across various
benchmarks. All code and data accompanying this manuscript will be made publicly
available at https://github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate.
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1 Introduction

Machine learning (ML) is making a continual impact on the fields of science and engineering,
providing advanced tools for analyzing complex data, uncovering nonlinear relationships,
and developing predictive models. Notable examples include AlphaFold (Jumper et al., 2021)
in protein structure prediction, Deep Potentials (Zhang et al., 2018) for large-scale molecular
dynamics, and GraphCast (Lam et al., 2022) for medium-range weather forecasting. The
integration of physical laws and constraints within machine learning models has given rise
to physics-informed machine learning (PIML). This emerging field opens new frontiers for
traditional scientific research and contributes to addressing persistent challenges in machine
learning, such as robustness, interpretability, and generalization.

The fundamental question that PIML aims to address is how to incorporate physical prior
knowledge into machine learning models. This can be achieved by modifying key components
of the machine learning pipeline, which includes data processing, model architecture, loss
functions, optimization algorithms, and fine-tuning and inference. For example, neural
operators (Lu et al., 2021; Li et al., 2020) are designed to encode physics from training
data that reflects underlying physical laws. Another powerful approach is to tweak network
architectures to strictly enforce physical constraints, thereby enhancing the generalizability of
the model. One method involves embedding general physical principles such as symmetries,
invariances and equivariances into ML models. As highlighted by Cohen et al. (Cohen et al.,
2019) and Maron et al. (Maron et al., 2019, 2018), this strategy leads to simpler models that
require less data while achieving higher prediction accuracy. Alternatively, embedding specific
physical laws can be equally effective. This is demonstrated by Mohan et al.(Mohan et al.,
2020), who ensured continuity and mass conservation in neural networks for coarse-graining
three-dimensional turbulence by integrating the curl operator. Similarly, Meng et al.(Darbon
et al., 2020) illustrates that certain neural network architectures are inherently aligned with
the physics of specific Hamilton-Jacobi (HJ) partial differential equations (PDEs).

One of the most popular and flexible methods for embedding physical principles in
machine learning is through the formulation of tailored loss functions. These loss functions
serve as soft constraints that bias ML models towards respecting the underlying physics during
training, giving rise to the emergence of physics-informed neural networks (PINNs). Thanks
to their flexibility and ease of implementation, PINNs have been extensively used to solve
forward and inverse problems involving PDEs by seamlessly integrating noisy experimental
data and physical laws into the learning process. In recent years, PINNs have yielded a series
of promising results across various domains in computational science, including applications
in fluid mechanics (Raissi et al., 2020; Sun et al., 2020; Mathews et al., 2021), bio-engineering
(Sahli Costabal et al., 2020; Kissas et al., 2020), and material science (Fang and Zhan, 2019;
Chen et al., 2020; Zhang et al., 2022). Furthermore, PINNs have been effectively applied in
molecular dynamics (Islam et al., 2021), electromagnetics (Kovacs et al., 2022; Fang, 2021),
geosciences (Haghighat and Juanes, 2021; Smith et al., 2022), and in designing thermal
systems (Hennigh et al., 2020; Cai et al., 2021).

Although recent studies have showcased some empirical success with PINNs, they also
highlight several training pathologies. These include spectral bias (Rahaman et al., 2019;
Wang et al., 2021b), unbalanced back-propagated gradients (Wang et al., 2021a, 2022c),
and causality violation (Wang et al., 2022a), all of which represent open areas for research
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and methodological development. To address these issues, numerous studies have focused
on enhancing PINNs’ performance by refining neural network architectures and training
algorithms. Notable efforts are loss re-weighting schemes (Wang et al., 2021a, 2022c; McClenny
and Braga-Neto, 2020; Maddu et al., 2022) and adaptive resampling of collocation points, such
as importance sampling (Nabian et al., 2021), evolutionary sampling (Daw et al., 2022), and
residual-based adaptive sampling (Wu et al., 2023). Simultaneously, significant strides have
been made in developing new neural network architectures to improve PINNs’ representational
capacity, including adaptive activation functions (Jagtap et al., 2020), positional embeddings
(Liu et al., 2020; Wang et al., 2021b), and innovative architectures (Wang et al., 2021a;
Sitzmann et al., 2020; Gao et al., 2021; Fathony et al., 2021; Moseley et al., 2021; Kang
et al., 2022). Further explorations include alternative objective functions, such as those
employing numerical differentiation techniques (Chiu et al., 2022; Huang and Alkhalifah,
2024) and variational formulations inspired by Finite Element Methods (FEM) (Kharazmi
et al., 2021; Patel et al., 2022), along with additional regularization terms to accelerate PINNs
convergence (Yu et al., 2022; Son et al., 2021). The evolution of training strategies also forms
an active area of research, with sequential training (Wight and Zhao, 2020; Krishnapriyan
et al., 2021) and transfer learning (Desai et al., 2021; Goswami et al., 2020; Chakraborty,
2021) showing promise in accelerating learning and improving accuracy.

Despite significant progress in recent years, most existing works on PINNs tend to employ
small, and shallow network architectures, leaving the vast potential of deep networks largely
untapped. To bridge this gap, we put forth a novel class of architectures coined Physics-
Informed residual adaptive networks (PirateNets). Our main contributions are summarized
as follows:

• We argue that the capacity of PINNs to minimize PDE residuals is determined by the
capacity of network derivatives.

• We support this argument by proving that, for second-order linear elliptic and parabolic
PDEs, the convergence in training error leads to the convergence in the solution and its
derivatives.

• We empirically and theoretically reveal that conventional initialization schemes (e.g., Glorot
or He initialization) result in problematic initialization of MLP derivatives and thus worse
trainability.

• We introduce PirateNets to address the issue of pathological initialization, enabling stable
and efficient scaling of PINNs to utilize deep networks. The proposed physics-informed
initialization in PirateNets also serves as a novel method for integrating physical priors at
the model initialization stage.

• We conduct comprehensive numerical experiments demonstrating that PirateNets achieve
consistent improvements in accuracy, robustness, and scalability across various benchmarks.

The rest of this paper is organized as follows. We first give a concise overview of physics-
informed neural networks in Section 2, following the original formulation of Raissi et al.
(Raissi et al., 2019). In Section 3, we take the Allen-Cahn equation as a motivating example
to illustrate the growing instability in training PINNs with deep neural networks and then
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propose a potential rationale (mechanism): if a PINN model is trained sufficiently, then both
its predictions and derivatives should well approximate the solution of the underlying PDE
and its derivatives, respectively. We theoretically justify this claim for linear elliptic and
parabolic PDEs and, by investigating the capabilities of MLP derivatives, find that deep
MLP derivatives often suffer from ill-posed initializations, which could result in an unstable
training process. To address the aforementioned issues, in Section 4 we propose a novel
framework of PirateNets. In Section 5, comprehensive numerical experiments are performed
to validate the proposed architecture. In Section 6, we conclude this work with a discussion
of potential future research directions.

2 Physics-informed neural network

In this section, we will briefly overview the standard formulation of PINNs, following the
one in (Raissi et al., 2019). Without loss of generality, we consider an abstract PDE of the
parabolic form:

ut +D[u] = f , (1)

defined on a spatial-temporal domain [0, T ]× Ω ⊂ R1+d, where Ω is a bounded domain in
Rd with regular enough boundary ∂Ω, D[·] is a linear or nonlinear differential operator, and
u(t,x) denotes a unknown solution.

The general initial and boundary conditions can be then formulated as:

u(0,x) = g(x), x ∈ Ω , (2)
B[u] = 0, t ∈ [0, T ], x ∈ ∂Ω . (3)

Here, f(t,x) on [0, T ]× Ω and g(x) on Ω are given functions with certain regularity such
that PDE (1) is well-posed; B[·] denotes an abstract boundary operator, representing various
boundary conditions such as Dirichlet, Neumann, Robin, and periodic conditions.

We aim at approximating the unknown solution u(t,x) by a deep neural network uθ(t,x),
where θ denotes the set of all trainable parameters of the network (e.g., weights and biases).
If a smooth activation function is employed, uθ provides a smooth representation that can
be queried for any (t,x). Moreover, all required gradients with respect to input variables or
network parameters θ can be computed via automatic differentiation (Griewank and Walther,
2008). This allows us to define the interior PDE residuals as

Rint[uθ](t,x) =
∂uθ

∂t
(t,x) +D[uθ](t,x)− f(x) , (t,x) ∈ [0, T ]× Ω , (4)

and spatial and temporal boundary residuals, respectively, by

Rbc[uθ](t,x) = B[uθ](t,x) , (t,x) ∈ [0, T ]× ∂Ω , (5)

and

Ric[uθ](x) = uθ(0,x)− g(x) , x ∈ Ω . (6)
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Then, we train a physics-informed model by minimizing the following composite empirical
loss:

L(θ) := 1

Nic

Nic∑
i=1

∣∣Ric[uθ](x
i
ic)

∣∣2
︸ ︷︷ ︸

Lic(θ)

+
1

Nbc

Nbc∑
i=1

∣∣Rbc[uθ](t
i
bc,x

i
bc)

∣∣2
︸ ︷︷ ︸

Lbc(θ)

+
1

Nr

Nr∑
i=1

∣∣Rint[uθ](t
i
r,x

i
r)
∣∣2

︸ ︷︷ ︸
Lr(θ)

,

(7)

which aims to enforce the neural network function uθ to satisfy the PDEs (1) with initial
and spatial boundary conditions (2)–(3). The training data points {xi

ic}
Nic
i=1, {tibc,xi

bc}
Nbc
i=1 and

{tir,xi
r}

Nr
i=1 can be the vertices of a fixed mesh or points randomly sampled at each iteration

of a gradient descent algorithm. We finally remark that although we only review the case of
parabolic-type equations here, similar discussions can also be applied to general elliptic and
hyperbolic (linear or nonlinear) equations.

3 Initialization pathologies in PINNs

3.1 Challenges in Training PINNs

Training Physics-informed neural networks (PINNs) has proven more challenging than
conventional neural networks, with several key issues identified in recent research. Wang
et al. (Wang et al., 2021b) demonstrated that PINNs suffer from spectral bias, struggling
to learn complex, high-frequency functions. One simple and effective way to resolve this is
to use random Fourier feature embeddings (Tancik et al., 2020). In addition, PINNs face
unbalanced losses, resulting in bias towards minimizing certain loss terms while ignoring
others. To address this, various self-adaptive weighting schemes (Wang et al., 2021a, 2022c)
have been proposed to balance the convergence rate of individual loss terms during training.
Furthermore, Wang et al. (Wang et al., 2022a) revealed an implicit bias suggesting that
continuous-time PINNs models can violate causality, and hence are susceptible to converge
towards erroneous solutions. To mitigate this issue, several causal and curriculum training
algorithms (Wang et al., 2022a; Wight and Zhao, 2020; Krishnapriyan et al., 2021) have been
developed to encourage the PINNs model to learn PDE solutions in accordance with how
the information propagates in time, as the dynamics evolve throughout the spatio-temporal
domain.

However, despite these advances, the practical deployment of PINNs has been largely
limited to employing small and shallow networks, typically with 5 layers or less. This is in
sharp contrast to the exceptional capabilities showcased by deeper networks in the broader
field of deep learning (Devlin et al., 2018; Radford et al., 2021; Rombach et al., 2022).

In the following, we will both empirically and theoretically demonstrate that the train-
ability of PINNs degrades as the network depth increases, particularly when employing
multi-layer perceptrons (MLPs) as the backbone architecture. To this end, let us first focus
on the Allen-Cahn equation, a challenging benchmark for conventional PINN models that
has been extensively studied in recent literature (Wight and Zhao, 2020; Wang et al., 2022a;
Es’ kin et al., 2023; Daw et al., 2022; Anagnostopoulos et al., 2023). For simplicity, we
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Figure 1: Allen-Cahn equation: Relative L2 error of training PINNs using MLP, ResNet, and
PirateNet backbones of varying depths, averaged over 5 random seeds for each architecture.

consider the one-dimensional case with a periodic boundary condition:

ut − 0.0001uxx + 5u3 − 5u = 0 , t ∈ [0, 1] , x ∈ [−1, 1] ,

u(0, x) = x2 cos(πx) ,

u(t,−1) = u(t, 1) , ux(t,−1) = ux(t, 1) .

In our experimental setup, we adhere closely to the training pipeline described in Wang
et al. (Wang et al., 2023a). Specifically, we employ random Fourier feature networks with
256 neurons in each hidden layer and hyperbolic tangent (Tanh) activation functions. The
models are trained with a batch size of 1, 024 over 105 steps of gradient descent using the
Adam optimizer (Kingma and Ba, 2014). We set the initial learning rate to 10−3, and
use an exponential decay rate of 0.9 every 2, 000 steps. In particular, the training of our
models incorporates learning rate annealing (Wang et al., 2021a, 2022a) and causal training
algorithms (Wang et al., 2022a, 2023a) to enhance the model performance and robustness.

Figure 1 shows the resulting relative L2 errors when training PINNs with MLPs of varying
depths. The result is averaged over 5 different random seeds. It can be observed that the
prediction error becomes larger as the network depth increases. Eventually, this error almost
reaches 100% for PINN models with 18 hidden layers, indicating a complete failure of the
model to yield a reasonable solution.

One may argue that the challenges in training deep neural networks can be effectively
resolved by incorporating skip connections (He et al., 2016a). To test this hypothesis, our
study compares the performance of MLP networks with residual connections (ResNets) under
identical hyper-parameter settings. As depicted in the same figure, the overall trend remains
consistent: the error proportionally increases with network depth, albeit at a slightly slower
rate. This implies that, contrary to expectations, the conventional skip connection fails to
address the fundamental issues in training PINNs using deeper networks. These findings
highlight a critical limitation in PINN performance when the network depth exceeds a certain
threshold. To address this challenge, we propose a novel network architecture in Section
4, referred to as Physics-Informed Residual AdapTivE Networks (PirateNets), designed for
efficient and stable training of deep PINN models. As can be seen in Figure 1, PirateNets
consistently reduces the predictive error as the network depth increases.

6



PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks

3.2 Interior Error Estimates of PINNs for Linear PDEs

To gain deeper insights into the reasons behind the poor performance of MLPs and
ResNets, we next examine the initialization process of PINNs. Due to the variety and
nonlinearity in PDE expressions, a direct analysis of the initialization of the PDE residual
network (i.e., Rint[uθ] in (4)) presents significant challenges. Here, in view of the role of
the PDE residual loss in (7) (i.e., enforce the network to satisfy the underlying PDEs), it is
reasonable to expect that if the training loss is small, then the derivatives of the network
should also closely approximate those of the actual solution. This motivates us to analyze
the derivatives of the network to understand the initialization process, instead of examining
the full residual network graph Rint[uθ]. To be specific, we put forth the following informal
claim, which can be rigorously justified in certain scenarios.
Claim 1 (informal) Let u(t,x) be the solution to a given PDE of n-th order in space
and m-th order in time, and uθ(t,x) denote a approximate solution by a PINN model with
parameters θ, where x = (x1, x2, . . . , xd). We refer to a k-th order spatial or temporal
derivative of uθ as the MLP derivative network. Then, if the training loss L(θ) converges to
0, then the MLP derivative networks will converge to corresponding solution derivatives:

∂kuθ

∂xki
(t,x) −→ ∂ku

∂xki
(t,x) ,

∂luθ

∂tl
(t,x) −→ ∂lu

∂tl
(t,x) , (8)

in a certain norm, for k = 1, 2, . . . , n, l = 1, 2, . . . ,m, and i = 1, 2, . . . , d.

In fact, we show in Propositions 1 and 2 below that the above convergence (8) indeed
holds locally for linear elliptic and parabolic PDEs in some Sobolev spaces. We remark that
the global error estimates for PINNs in Sobolev norms have been explored very recently for
various PDEs (Zeinhofer et al., 2023). Nevertheless, our results mainly focus on the interior
estimates for PINNs, which are not covered by (Zeinhofer et al., 2023) and better support our
claim and further analysis. This is because interior estimates typically yield higher regularity
(Hörmander, 1958), facilitating the examination of exact network derivatives, while global
estimates would give lower regularity due to the L2 boundary loss.

For ease of expositions, we first introduce some notations. Let Ω ⊂ Rd be a bounded
open set, and define the partial differential operator:

D[u] := −
n∑

i,j=1

(aij(x)uxi)xj +
n∑

i=1

bi(x)uxi + c(x)u , (9)

with smooth coefficients aij(x), bi(x), and c(x). We assume that D is uniformly elliptic, i.e.,
for some constant c > 0,

∑n
i,j=1 a

ij(x)ξiξj ≥ c|ξ|2 for a.e. x ∈ Ω and all ξ ∈ Rn.
We also define Br(x) by the open ball in Rd of radius r centered at x and Qr(t,x) :=

(t, t + r2) × Br(x). For a time–space domain U ⊂ Rd+1, we denote the set Cr,k+2r(Ū) of
bounded continuous functions u(t, x) such that their derivatives ∂ρ

t ∂
α
xu for |α|+ 2ρ ≤ k + 2r

and ρ ≤ r are bounded and continuous in U , and can be extended to Ū . For u ∈ Cr,k+2r(Ū),
we define

∥u∥
W r,k+2r

2 (U)
:=

∑
|α|+2ρ≤k+2r

ρ≤r

∥∂ρ
t ∂

α
xu∥L2(U) .
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Then, the Sobolev space W r,k+2r
2 (U) is given by the completion of Cr,k+2r(Ū) with respect

to ∥·∥
W r,k+2r

2 (U)
.

Proposition 1 Consider the second-order elliptic Dirichlet problem:

D[u] = f ,

with Dirichlet boundary condition and f ∈ L2(Ω). Let u : Ω → R be its solution and uθ be a
smooth approximation by PINNs. Define the expected loss function:

L̂(θ) =
∫
∂Ω

|uθ|2 dx+

∫
Ω
|D[uθ]− f |2 dx . (10)

Then, for any compact V ⊂⊂ Ω, there exist a constant C such that

∥u− uθ∥2H2(V ) ≤ CL̂(θ) . (11)

We emphasize that the above proposition is based on the expected loss (10), while the
practical training process employs the empirical loss as in (7):

L(θ) = 1

Nbc

Nbc∑
i=1

∣∣uθ(xi
bc)

∣∣2 + 1

Nr

Nr∑
i=1

∣∣D[uθ](t
i
r,x

i
r)− f(tir,x

i
r)
∣∣2 .

In general, we have that when the numbers of randomly sampled training points Nbc and Nr

tend to infinity, L(θ) converges to the corresponding L̂(θ). We refer the interested readers to
(Mishra and Molinaro, 2022, Section 2.4.1) for the detailed analysis. This means that if the
network is sufficiently trained, i.e., the loss L(θ) is small, the PINN solution uθ can locally
approximate u in the H2 norm, which, by Sobolev embedding theorem, further implies that
in the case of d = 1, the derivative d

dxuθ(x) approximates d
dxu(x) pointwisely. A similar result

can be found in (Zeinhofer et al., 2023, Lemma 4.1). We next state the analogous result for
parabolic PDEs, which complements the discussions in (Zeinhofer et al., 2023, Section 4.5).

Proposition 2 Consider a second-order parabolic equation with Dirichlet boundary condition:

ut +D[u] = f , [0, T ]× Ω ,

u = 0 , [0, T ]× ∂Ω ,

u = g , {t = 0} × Ω ,

with f ∈ L2([0, T ];L2(Ω)) and g ∈ L2(Ω). Let u : [0, T ]× Ω → R be its solution and uθ be a
smooth approximation by PINNs. Define the expected loss:

L̂(θ) =
∫
Ω
|Ric[uθ](x)|2 dx+

∫ T

0

∫
∂Ω

|uθ(t,x)|2 dtdx+

∫ T

0

∫
Ω
|Rint[uθ](t,x)|2 dtdx ,

with Rint[uθ] and Rbc[uθ] given in (4) and (6), respectively. Then, for any set Qr(t,x) ⊂⊂
[0, T ]× Ω, there exist a constant C such that

∥u− uθ∥2W 1,2
2 (Qr)

≤ CL̂(θ) .
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The proofs of Propositions 1 and 2 can be found in Appendix A, which are essentially
the applications of interior estimates of PDEs. Recalling from (Hörmander, 1958) that the
solutions of a formally hypoelliptic equation P (x,D)[u] = f are infinitely differentiable if the
coefficients in the differential operator P (x,D) and f are infinitely differentiable, one may
expect similar results hold for a fairly large class of equations. However, for some evolution
equations, e.g., wave equation and Burgers equation, the singularity of the initial data can
propagate into the interior of the domain so that the L2 residual loss would be insufficient
to control the higher-order derivatives of the solution, and hence some Sobolev loss may
need to be used (Yu et al., 2022; Son et al., 2021). The following proposition discusses the
case of the second-order hyperbolic equation, from which we see that in order to obtain the
convergence of the first-order derivative of the solution, the H1 temporal boundary residual
is employed. Its proof follows from standard regularity result of hyperbolic equations (Evans,
2022, Section 7.2, Theorem 5); see also (Lasiecka et al., 1986, Theorem 4.1).

Corollary 3 Consider the hyperbolic initial/boundary-value problem:

utt +D[u] = f , [0, T ]× Ω ,

u = 0 , [0, T ]× ∂Ω ,

u = g , ut = h , {t = 0} × Ω ,

with f ∈ L2([0, T ];L2(Ω)), g ∈ H1
0 (Ω), and h ∈ L2(Ω). Let u be its solution and uθ be a

smooth approximation by PINNs. Define the expected loss:

L̂(θ) =∥(uθ)tt +D[uθ]− f∥2L2([0,T ];L2(Ω)) + ∥(uθ)t − h∥2L2(Ω)

+ ∥uθ(0, ·)− g∥2H1(Ω) + ∥uθ∥2L2([0,T ];H1(∂Ω)) + ∥uθ∥2H1([0,T ];L2(∂Ω)) .

Then, we have for some constant C > 0,

sup
0≤t≤T

(∥uθ − u∥2H1(Ω) + ∥ut∥2L2(Ω)) ≤ CL̂(θ) .

3.3 Analysis of MLP Derivatives

With the results in Section 3.2, we narrow our focus on the analysis of the network
derivatives. Without loss of generality, we consider an MLP with scalar inputs and outputs.
Specifically, let x ∈ R be the input coordinate, g(0)(x) = x and d0 = dL+1 = 1. An MLP
uθ(x) is recursively defined as follows

u
(l)
θ (x) = W(l) · g(l−1)(x) + b(l) , g(l)(x) = σ(u

(l)
θ (x)) , l = 1, 2, . . . , L , (12)

with a final linear layer defined by

uθ(x) = W(L+1) · g(L)(x) + b(L+1) , (13)

where W(l) ∈ Rdl×dl−1 is the weight matrix in l-th layer and σ is an element-wise activation
function. Here, θ =

(
W(1),b(1), . . . ,W(L+1),b(L+1)

)
represents all trainable parameters of

the network. In particular, we suppose that the network is equipped with Tanh activation
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functions and all weight matrices are initialized by the Glorot initialization scheme (Glorot
and Bengio, 2010), i.e., W(l) ∼ N (0, 2

dl+dl−1
) for l = 1, 2, . . . , L + 1. Moreover, all bias

parameters are initialized to zeros. These are standard practices in the vast majority of
existing PINN implementations. In this setting, we have the following proposition with the
proof given in Appendix A.
Proposition 4 Given the above setup, the following holds at initialization of an MLP uθ(x).

(a) The first-order derivative of uθ is given by

∂uθ

∂x
(x) =

2∏
i=L+1

(
W(i) · diag

(
σ̇
(
u
(i−1)
θ (x)

)))
·W(1) . (14)

(b) If all hidden layers of the MLP have the same number of neurons, i.e., d1 = d2 = · · · = dL = d,
then

Var

(
∂uθ

∂x
(x)

)
≲

1

d
. (15)

Consequently, for any ϵ > 0,

P
(∣∣∣∣∂uθ

∂x
(x)

∣∣∣∣ > ϵ

)
≲

1

dϵ2
. (16)

From this proposition, it becomes evident that, in contrast to the conventional forward
pass of MLPs where the weight matrices are hidden inside the activation functions, all weight
matrices directly contribute to the final output of ∂uθ

∂x .
To gain further insights, we may assume that MLP lies in a linear regime i.e., σ(x) ≈ x

and σ̇(·) ≈ 1. This is a good start point for analyzing network behaviors at initialization
(see (Glorot and Bengio, 2010)), since the inputs to each activation function are relatively
small and most activations (e.g., Sin, Tanh, ReLU, Sigmoid) have a slope of 1 at 0. Under
this assumption, it follows that:

∂uθ
∂x

(x) ≈ W(L+1) ·W(L) · · · ·W(1) . (17)

Consequently, ∂uθ
∂x behaves as a deep linear network at initialization. Such networks have

limited expressivity and are more vulnerable to vanishing and exploding gradients. More
critically, this expression is independent of the input coordinates at initialization, therefore
preventing ∂uθ

∂x from effectively approximating the solution derivatives in the early stage of
training.

Also note that the variance of ∂uθ
∂x is bounded by the network’s width, which is independent

of the network depth. As a consequence, ∂uθ
∂x tends to be closer to a constant in wider MLPs.

This implies that the network is closer to a trivial zero solution at the initialization, which is
particularly unfavorable for solving homogeneous PDEs. Although our theoretical analysis
mainly focuses on first-order derivatives and the Tanh activation function, subsequent
numerical evidence suggests that these insights extend to higher-order derivatives and other
common activation functions.

To illustrate these findings through a concrete numerical test, we consider a simple
regression problem for approximating a sinusoidal function y(x) = sin(2πx) for x ∈ [0, 1]. We
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Figure 2: Regression: Left: Variance of the network derivative equipped with different
activations across various network widths at initialization. Middle: Variance of MLP
derivatives of different orders across various network width at initialization. Right: Relative
L2 error in approximating y(x) = sin(2πx) with MLP derivatives of different orders. All
statistics are averaged over 5 random seeds.

generate a training dataset {(xi, yi)}Ni=1 by evaluating the target function y over a uniform
grid of size N = 256. Our goal is to investigate the behavior of MLPs and their associated
derivative networks at initialization and during training. First, we fix the depth of the MLP at
3 hidden layers and examine Var ( uθ

∂x) for various widths and activations at initialization. As
shown on the left panel of Figure 2, the variance decays exponentially with increasing width,
not only for Tanh but also for GeLU and sine activations. Moreover, in the middle panel of
Figure 2, we show the variance of different order derivatives of the MLP at initialization. It
can be seen that the second and fourth-order derivatives of the MLP exhibit a similar trend
as those of the first-order derivatives. These observations are consistent with Proposition 4.

Next, we study the capability of MLP derivative networks of different order to approximate
the target function. The computational graph of the k-th derivative network ∂k

xuθ

∂xk can be
readily obtained via automatic differentiation, allowing to easily train such networks by
minimizing is a standard mean squared error loss given by

L(θ) = 1

N

N∑
i=1

∣∣∣∣∂k
xuθ
∂xk

(xi)− yi

∣∣∣∣2 , k = 1, 2, 4 . (18)

For our experiments, we fix the base MLP width at 128, employ Tanh activation functions,
and study the effect of various network depths on predictive accuracy. All models are trained
for 104 steps of full-batch gradient descent using the Adam optimizer. The initial learning
rate is 10−3, following an exponential decay with a decay rate of 0.9 every 1, 000 steps. The
resulting relative L2 errors are summarized on the right panel of Figure 2. We can see that,
in comparison to the MLP output u itself, higher-order derivatives of deeper MLPs tend to
yield larger errors. Consequently, we may conclude that the trainablity of MLP derivative
networks is worse than the base MLP representing uθ itself. This result serves as a proxy
to indicate that evaluating and minimizing the outputs of a PDE residual network Rint[uθ]
is considerably more difficult and unstable than minimizing a conventional supervised loss
for fitting uθ to data. This also emphasizes a critical challenge in designing and optimizing
deep and wide PINNs, particularly in terms of their effectiveness in approximating solution
derivatives.
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4 Physics-informed residual adaptive networks (PirateNets)

In this section, we introduce Physics-Informed Residual AdapTivE Networks (PirateNets), a
novel architecture designed to address the initialization issue elaborated in Section 3. Figure
3 below illustrates the main modules of the forward pass of a PirateNet. In detail, the
input coordinates x are first mapped into a high dimensional feature space by an embedding
function Φ(x). In this work, we employ random Fourier features (Tancik et al., 2020):

Φ(x) =

[
cos(Bx)
sin(Bx)

]
,

where each entry in B ∈ Rm×d is i.i.d. sampled from a Gaussian N (0, s2) with the standard
deviation s > 0 being a user-specified hyper-parameter. Such an embedding has been
extensively validated for reducing spectral bias, a common pathology in PINNs where the
network struggles to learn high-frequency components of the solution. This bias often leads
to poor convergence of PINNs, particularly when the underlying solution exhibits multiscale
features or sharp transients. By transforming the input space into higher-frequency signals,
Fourier embeddings effectively improve the eigenfunction frequency of the resulting Neural
Tangent Kernel (NTK), thus enabling a more efficient learning of complex solutions (Wang
et al., 2021b).

Then, the embedded coordinates Φ(x) are sent into two dense layers:

U = σ(W1Φ(x) + b1) , V = σ(W2Φ(x) + b2) ,

where σ denotes a point-wise activation function. These two encoding maps act as gates in
each residual block of the architecture. This step is motivated by (Wang et al., 2021a) and
has been widely used to enhance the trainability of MLPs and improve the convergence of
PINNs (Wang et al., 2023a; Anagnostopoulos et al., 2023).

Let x(1) = Φ(x) and x(l) denote the input of the l-th block for 1 ≤ l ≤ L. The forward
pass in each PirateNet block is defined by the following iterations:

f (l) = σ
(
W

(l)
1 x(l) + b

(l)
1

)
, (19)

z
(l)
1 = f (l) ⊙U+ (1− f (l))⊙V , (20)

g(l) = σ
(
W

(l)
2 z

(l)
1 + b

(l)
2

)
, (21)

z
(l)
2 = g(l) ⊙U+ (1− g(l))⊙V , (22)

h(l) = σ
(
W

(l)
3 z

(l)
2 + b

(l)
3

)
, (23)

x(l+1) = α(l)h(l) + (1− α(l))x(l) , (24)

where ⊙ denotes a point-wise multiplication and α(l) ∈ R is a trainable parameter. All the
weights are initialized by the Glorot scheme (Glorot and Bengio, 2010), while biases are
initialized to zero.

The final output of a PirateNet of L residual blocks is given by

uθ = W(L+1)x(L) . (25)
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It is worth noting from (19)–(24) that each residual block consists of three dense layers
with two gating operations, followed by an adaptive residual connection across the stacked
layers. Thus, a PirateNet of L residual blocks will have a depth of 3L and its total number
of trainable parameters is comparable to that of an MLP of the same depth.

A key aspect of PirateNets is the trainable parameters α(l) in the skip connections, which
determine the nonlinearity of the l-th block. Specifically, when α(l) = 0, x(l+1) = x(l) by
(24), meaning that in this case, the l-th block is an identity map. In contrast, when α(l) = 1,
the mapping becomes fully nonlinear without any shortcuts. Throughout all experiments in
this work, we initialize α(l) to zero for all blocks, leading to the final output of a PirateNet
uθ being a linear combination of the first layer embeddings at initialization, i.e.,

uθ(x) = W(L+1)Φ(x) . (26)

By initializing α to zero, we effectively begin with a one-layer network, mitigating the
challenges associated with training deep residual networks at initialization. This approach
circumvents the poor initialization of deep PINNs discussed in Section 3. As training
progresses, the network gradually increases in depth through the learned α parameter,
allowing for a smooth transition from shallow to deep architectures. This strategy enhances
training stability and convergence, while retaining the capacity to capture complex PDE
solutions.

In fact, the PDE solution can be simply approximated by a small shallow network or
even a linear combination of some basis, similar to spectral and finite element methods. The
rationale behind employing deep neural networks lies in leveraging additional nonlinearities
to minimize the PDE residuals, thereby enabling the network to learn the solution and its
derivatives accordingly.

From equation (26), another key observation is that PirateNets can be viewed as a linear
combination of basis functions at initialization. This not only allows one to control the
inductive bias of the network by appropriate choice of basis, but also enables the integration
of various types of existing data into the initialization phase of the network. Specifically,
given a set of solution measurements, denoted as Y = {yi}ni=1, then one can readily initialize
the last linear layer of the model by the following least square problem:

min
W

∥WΦ−Y∥22 . (27)

As a result, PirateNets offers an optimal initial guess, based on the available data, in the
L2 sense. It is important to note that the data for this initialization could come from a
variety of sources, including experimental measurements, initial and boundary conditions,
solutions derived from surrogate models, or by approximating the solution of the linearized
PDE. Indeed, we can apply the same initialization procedure to any network architecture
with a linear final layer (see Equation (13)), while a major consideration is the potentially
limited expressivity of randomly initialized basis to accurately fit the data. Taken together,
our proposed approach paves a new way to incorporate physical priors into machine learning
pipelines through appropriate network initialization.

Connections to Prior Work. It is important to acknowledge that the adaptive residual
connection proposed in our work is not entirely novel. Similar concepts have been previously
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introduced by Bresson et al.(Savarese and Figueiredo, 2017), who proposed the so-called
Residual Gates as follows:

y = ReLU(α) · (F(x) + x) + (1− ReLU(α)) · x ,

= ReLU(α) · F(x) + x , (28)

where F represents a residual function and x and y denote the input and output of a layer,
respectively. While our approach is similar, a subtle yet fundamental difference lies in our
initialization α = 0 in Equation (24), as opposed to their initialization α = 1 in Equation
(28). Consequently, Bresson et al.’s model is initialized as an original ResNet, while ours is
initialized as an identity mapping. Our strategy serves to initialize the model as a shallow
neural network for early-phase training, thus avoiding the direct training of deep PINN
models which suffer from initialization pathologies, as discussed in Section 3. The significant
impact of this initialization choice is clearly illustrated in the ablation studies presented in
Figures 10 and 13, which confirm the necessity of initializing α as zero for achieving optimal
performance in PINNs. Additionally, He et al. (He et al., 2016a,b) has extensively explored
various residual connection variants. These typically place the activation after the addition.
In contrast, PirateNets requires placing the activation before the addition to ensure an exact
identity mapping throughout the entire forward pass by setting α = 0 at initialization.

Our proposed initialization technique also shares similarities with the Physics-informed
Extreme Learning Machine (PIELM) (Dwivedi and Srinivasan, 2020; Dong and Li, 2021).
Both methods focus on initializing the output layer weights using the least squares method.
However, PIELM is designed to solve the PDE in a single step without a training process,
leading to three important limitations. First, PIELM typically employs shallow randomly
initialized networks, potentially limiting their capacity to represent complex solutions effec-
tively. Second, tackling nonlinear problems becomes more challenging due to the nonlinearity
of the associated least squares problem, which is notably sensitive to the initial guess and
susceptible to local minima. Third, the application of PIELM is limited as it cannot be used
for inverse problems. In contrast, PirateNets do not attempt to solve the PDE in one shot.
Instead, our goal is to use a linear least squares approach to initialize the model as the best
possible approximation based on our available knowledge and/or data. We expect PirateNets
to correct and learn the solution during the training phase. An advantage of our method is
its simplicity and efficiency in solving the linear least squares problem, which guarantees a
global minimum and requires minimal computational resources. Moreover, the flexibility in
choosing an appropriate embedding mapping ensures accurate data reconstruction, which
greatly benefits from the dedicated design of the adaptive skip connections in PirateNets.

Remark. In PirateNets, random Fourier features are our primary choice for constructing
coordinate embeddings. However, it is worth mentioning that there are other feasible options,
such as Chebyshev polynomials, radial basis functions, etc. Another alternative is the spectral
representation, where frequencies are uniformly sampled on a grid. Despite not being detailed
in this paper, we have explored this type of embedding as well. Interestingly, our experiments
reveal that compared to random Fourier features, this spectral representation can reconstruct
the data with greater accuracy. Yet, it also showed a greater tendency towards overfitting,
characterized by a decrease in loss but an increase in the test error. Therefore, we choose to
use random Fourier features for the coordinate embedding in PirateNets.
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Figure 3: Physics-informed residual adaptive networks (PirateNets): In our model, input
coordinates are first projected into a high-dimensional feature space using random Fourier
features, then followed by passing through N adaptive residual blocks. Each block consists
of three dense layers, augmented with two gating operations that incorporate shallow latent
features. The key module of the architecture is the adaptive skip connection with a trainable
parameter α initialized at 0, so that at the initialization phase, each block reduces to an
identity mapping, and the model can be viewed as a linear combination of the coordinate
embeddings. This approach enables the training of a shallow network initially, thereby
circumventing the issue of pathological initialization in deep PDE residual networks. We
propose a physics-informed initialization for the final layer by solving a least squares problem
to fit the available data, while all other weights are initialized following the Glorot scheme,
and biases are set to zero. As training progresses, the depth of the model gradually increases
as the nonlinearities become activated, enabling the model to progressively recover its
approximation capacity.

5 Results

In this section, we demonstrate the effectiveness of the proposed PirateNet architecture
across a diverse collection of benchmarks. To establish a strong baseline, we adopt the
training pipeline and recommended hyper-parameters from Wang et al. (Wang et al., 2023a).
Specifically, we employ random Fourier features (Tancik et al., 2020) as coordinate embedding
and Modified MLP (Wang et al., 2021a, 2023a) of width 256 as the baseline architecture
backbone. Additionally, all weight matrices are enhanced using random weight factorization
(RWF) (Wang et al., 2022b). The Tanh activation function is employed by default, unless
specified otherwise. Exact periodic boundary conditions are applied as required (Dong and
Ni, 2021).

For model training, we use mini-batch gradient descent with the Adam optimizer (Kingma
and Ba, 2014), where collocation points are randomly selected in each iteration. Our learning
rate schedule includes an initial linear warm-up phase of 5, 000 steps, starting from zero and
gradually increasing to 10−3, followed by an exponential decay at a rate of 0.9.

Following the recommended training procedure (Wang et al., 2023a), we employ several
techniques to address common pathologies in PINNs:

1. Learning rate annealing algorithm (Wang et al., 2021a, 2022c, 2023a): This technique
helps mitigate the problem of imbalanced gradients, a pathology where different terms
in the loss function converge at vastly different rates. By dynamically adjusting weights
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Benchmark PirateNet JAX-PI (Wang et al., 2023a)

Allen-Cahn 2.24× 10−5 5.37× 10−5

Korteweg–De Vries 4.27× 10−4 1.96× 10−3

Grey-Scott 3.61× 10−3 6.13
Ginzburg-Landau 1.49× 10−2 3.20× 10−2

Lid-driven cavity flow (Re=3200) 4.21× 10−2 1.58× 10−1

Table 1: State-of-the-art relative L2 test error for various PDE benchmarks using the
PirateNet architecture.

for different components of the loss function, we ensure a more balanced optimization
process, leading to improved convergence and stability.

2. Causal Training (Wang et al., 2022a, 2023a): This approach addresses the causality
violation pathology often encountered in using PINNs to solve time-dependent PDEs.
In standard training, PINNs may inevitably use future information to predict past
states, violating physical causality and thereby steering towards erroneous solutions.
Causal training enforces PINNs to learn the solution progressively along the time
dimension by introducing additional temporal weights. This explicitly respects the
causal structure inherent in the solutions of general nonlinear PDEs, ensuring physically
consistent results.

For all examples, we compare the proposed PirateNet against our baseline under exactly
the same hyper-parameter settings. Our main results are summarized in Table 1. For ease of
replication, we detail all hyper-parameters used in our experiments in Tables 4, 5, 6, 7, and
8. For the physics-informed initialization, we employ the jax.numpy.linalg.lstsq routine
to solve the associated least square problem, which returns the solution with the smallest
2-norm. In cases where the data comes from an initial condition u0(x), we initialize the
weights of the last layer to fit uθ(t, x) to u0(x) for all t. We find that this approach leads to
a more stable training process and better results than only fitting the initial conditions at
t = 0.

Moreover, we conduct comprehensive ablation studies to validate the proposed network
architecture and its components. Specifically, these studies focus on: (a) the scalability of
PirateNet, (b) the functionality of adaptive residual connection, (c) the efficiency of gating
operators, and (d) the effectiveness of physics-informed initialization. For each ablation study,
it is worth emphasizing that all compared models are trained under exactly the same hyper-
parameter settings and the results are averaged over five random seeds. It is also noteworthy
that the computational cost of training PirateNet is comparable to that of training a Modified
MLP of equivalent depth. For a more detailed quantitative analysis, readers are referred to
Wang et al. (Wang et al., 2023a). The code and data for this study will be made publicly
available at https://github.com/PredictiveIntelligenceLab/jaxpi/tree/pirate.
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5.1 Allen-Cahn equation

To demonstrate the effectiveness of PirateNets, let us revisit the Allen-Cahn benchmark
we introduced in Section 3. Here we employ a PirateNet with 3 residual blocks (9 hidden
layers) and follow the optimal hyper-parameter settings used in JAX-PI (Wang et al., 2023a)
for training. The results are shown in Figure 4. As shown at the top panel, the model
prediction is in excellent agreement with the reference solution, achieving a relative L2 error
of 2.24× 10−5. Moreover, Table 2 summarizes the performance of various PINNs variants on
this benchmark, indicating that our method achieves the best result ever reported in the
PINNs literature for this example. Additionally, the bottom panel visualizes the training loss,
test error, and the nonlinearity α of each residual block during training. We observe that the
PirateNet yields faster convergence compared to a modified MLP backbone. Interestingly,
after a rapid change in the early training phase, the learned nonlinearities α stabilize around
O(10−2) and exhibit minimal variation thereafter. This may imply that for this example,
our model efficiently approximates the PDE solution and minimizes the PDE residual with a
relatively modest degree of nonlinearity.

Furthermore, we perform a series of ablation studies to further investigate the performance
of PirateNets. First, we explore the impact of various data sources used for the physics-
informed initialization of the PirateNet. We examine two different approaches: (a) fitting
the initial conditions, and (b) fitting the solution of the linearized PDE:

ut − 0.0001uxx = 0 , t ∈ (0, 1), x ∈ (−1, 1) ,

u(0, x) = x2 cos(πx) ,

under periodic boundary conditions. We evaluate the test error resulting from using these
two approaches for the initialization of the last linear layer of the PirateNet. The findings,
presented on the left panel of Figure 5, indicate comparable performance of both cases. This
result aligns with our expectations, given the negligible discrepancy in the solution of the
aforementioned linearized PDE compared to the initial condition across the time domain,
due to the small diffusivity of 0.0001.

Second, we study the influence of the physics-informed initialization across different
network architectures. As mentioned in Section 4, any network with a linear final layer
can be viewed as a linear combination of basis functions, and is therefore amenable to
our proposed physics-informed initialization technique. In this context, we compared the
Modified MLP and PirateNet and present the results in the middle panel of Figure 5. It can
be observed that the proposed physics-informed initialization can improve the performance
of both architectures and notably, the PirateNet outperforms the Modified MLP baseline,
irrespective of the initialization method.

Third, we evaluate the effect of network depth on predictive accuracy for different
architectures. The results are presented on the right panel of Figure 5, revealing a clear
difference between Modified MLP and PirateNet. Contrary to the increasing error observed
in deeper Modified MLP networks, PirateNets demonstrate a consistent improvement in
accuracy as the network depth increases. This trend not only underscores PirateNet’s superior
performance but also highlights its enhanced scalability and robustness.
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Method Relative L2 error

Original formulation of Raissi et al. (Raissi et al., 2019) 4.98× 10−1

Adaptive time sampling (Wight and Zhao, 2020) 2.33× 10−2

Self-attention (McClenny and Braga-Neto, 2020) 2.10× 10−2

Time marching (Mattey and Ghosh, 2022) 1.68× 10−2

Causal training (Wang et al., 2022a) 1.39× 10−4

Dirac delta function causal training (Es’ kin et al., 2023) 6.29× 10−5

JAX-PI (Wang et al., 2023a) 5.37× 10−5

RBA-PINNs (Anagnostopoulos et al., 2023) 4.55× 10−5

PirateNet (Ours) 2.24× 10−5

Table 2: Allen-Cahn equation: Relative L2 test errors obtained by different PINNs variants.
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Figure 4: Allen-Cahn equation: Top: Comparison between the solution predicted by a trained
PirateNet and the reference solution. The detailed hyper-parameter settings are presented
in Table 4. Bottom: Convergence of the initial condition loss, the PDE residual loss, and
the relative L2 test error during the training of a PirateNet and a Modified MLP backbone,
alongside the evolution of nonlinearities in each of the PirateNet residual blocks.
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Figure 5: Allen-Cahn equation: Left: Relative L2 test errors obtained by a PirateNet with
the last layer initialized by the least square solution for fitting the initial condition and the
linearized PDE solution, respectively. Middle: Relative L2 test errors of training a Modified
MLP and a PirateNet backbone with or without the physics-informed initalization. Without
physics-informed initialization, the final layer defaults to a standard dense layer with weights
initialized using the Glorot scheme and biases set to zero. Right: Relative L2 errors of
training a Modified MLP and a PirateNet backbone of different depth. Each ablation study
is performed under the same hyper-parameter settings, with results averaged over 5 random
seeds.

5.2 Korteweg–De Vries equation

Next, we explore the one-dimensional Korteweg–De Vries (KdV) equation, a fundamental
model used to describe the dynamics of solitary waves, or solitons. The KdV equation is
expressed as follows:

ut + ηuux + µ2uxxx = 0 , t ∈ (0, 1), x ∈ (−1, 1) ,

u(x, 0) = cos(πx) ,

u(t,−1) = u(t, 1) ,

where η governs the strength of the nonlinearity, while µ controls the dispersion level. Under
the KdV dynamics, this initial wave evolves into a series of solitary-type waves. For our
study, we adopt the classical parameters of the KdV equation, setting η = 1 and µ = 0.022
(Zabusky and Kruskal, 1965).

We employ a PirateNet with 3 residual blocks (9 hidden layers) and train the model
following the training pipeline and recommended hyper-parameter settings used in JAX-PI
(Wang et al., 2023a). The top panel of Figure 6 showcases the predicted solution from the
trained model which exhibits an excellent agreement with the numerical solution, resulting in a
relative L2 test error of 4.27×10−4. For further context, in Table 3 we provide a comparison of
test errors obtained from competing PINNs approaches on the same benchmark. Impressively,
our method outperforms the current state-of-the-art (Es’ kin et al., 2023) by approximately
an order of magnitude.

Moreover, in the bottom panel of Figure 6 we record the loss and test error obtained
by a PirateNet and a Modified MLP backbone, as well as the nonlinearity parameter (α)
attained in each PirateNet residual block during training. Consistent with the trends seen in
our first example, the PirateNet yields a faster convergence in terms of both loss and test
errors compared to modified MLPs. Intriguingly, in this case, the learned nonlinearities (α)
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Method Relative L2 error

Dirac delta function causal training (Es’ kin et al., 2023) 2.45× 10−3

JAX-PI (Wang et al., 2023a) 1.96× 10−3

PirateNet (Ours) 4.27× 10−4

Table 3: Korteweg–De Vries equation: Relative L2 errors obtained by different approaches.
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Figure 6: Korteweg–De Vries equation: Top: Comparison between the solution predicted by
a trained PirateNet and the reference solution. The detailed hyper-parameter settings are
presented in Table 5. Bottom: Convergence of the initial condition loss, the PDE residual loss,
and the relative L2 error during the training of a PirateNet and a Modified MLP backbone,
alongside the evolution of nonlinearities in each PirateNet residual block.

reach an order of magnitude around 0.1, in contrast to only 0.01 in the first example. This
indicates that the problem is inherently more nonlinear and requires a correspondingly more
complex nonlinear mapping for accurate approximation.

To further validate our conclusions, we conduct the same ablation studies as in our
first example. The results are summarized in Figure 7. The left and the middle panel
of the figure reinforce our earlier conclusion that using data from initial conditions or
linearized PDEs leads to similar predictive accuracy and the physics-informed initialization
can benefit both PirateNet and Modified MLP. However, it is important to note that
PirateNet significantly outperforms Modified MLP for this example, even in the absence
of physics-informed initialization. Finally, the right panel of the figure further affirms the
scalability of the PirateNet architecture, as observed in the first example. This evidence
highlights the adaptability and efficiency of the PirateNet architecture in tackling complex,
nonlinear problems.
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Figure 7: Korteweg–De Vries equation: Left: Relative L2 errors of training PirateNet with the
last layer initialized by the least square solution to fit the initial condition and the linearized
PDE, respectively. Middle: Relative L2 errors of training a Modified MLP and a PirateNet
backbone with or without the physics-informed initialization. Without physics-informed
initialization, the final layer defaults to a standard dense layer with weights initialized
using the Xavier method and biases set to zero. Right: Relative L2 test errors obtained
by a Modified MLP and a PirateNet backbone of different depths. Each ablation study is
performed under the same hyper-parameter settings, with results averaged over 5 random
seeds.

5.3 Grey-Scott equation

In this example, we solve the 2D Grey-Scott equation, a reaction-diffusion system that
describes the interaction of two chemical species. The form of this PDE is given as follows

ut = ϵ1∆u+ b1(1− u)− c1uv
2, t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

vt = ϵ2∆v − b2v + c2uv
2 , t ∈ (0, 2) , (x, y) ∈ (−1, 1)2 ,

subject to the periodic boundary conditions and the initial conditions

u0(x, y) = 1− exp(−10((x+ 0.05)2 + (y + 0.02)2)) ,

v0(x, y) = 1− exp(−10((x− 0.05)2 + (y − 0.02)2)) .

Here u and v represent the concentrations of the two species. The system can generate a
wide range of patterns, including spots, stripes, and more complex forms, depending on the
parameters chosen. For this example, we set ϵ1 = 0.2, ϵ2 = 0.1, b1 = 40, b2 = 100, c1 = c2 =
1, 000, resulting in a beautiful random-seeming “rolls”.

We employ a standard time-marching strategy to train our PINN models, as outlined
in various studies (Wight and Zhao, 2020; Krishnapriyan et al., 2021; Wang et al., 2023a).
Specifically, we divide the temporal domain [0, 1] into 10 equal intervals, employ the PirateNet
architecture as a backbone and train a separate PINN model for each time window. The
initial condition of each segment is given by the predicted solution at the end of its preceding
interval. We initialize the last layer of each PirateNet by the least squares fitting of the
associated initial conditions.

Figure 8 displays the predicted solutions of the PirateNet model at the final time T = 1.
We can see a good alignment between our predictions and the corresponding numerical
estimations. The resulting relative L2 errors of u and v are 3.61 × 10−3 and 9.39 × 10−3,
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respectively. Moreover, we compare the performance of PirateNet and Modified MLP
backbones using different activation functions under the same hyper-parameter settings.

To further evaluate PirateNet’s performance, we conducted a comparative analysis with
Modified MLP backbones, using different activation functions under identical hyper-parameter
settings. Figure 9 visualizes the loss and error convergence during training for both PirateNets
and Modified MLPs with various activation functions. The periodic peaks observed every
105 iterations implies transitions between time chunks in our time-marching approach, where
a new PINN model is trained to learn the solution for each specific time interval. It can
be observed that PirateNets consistently achieve stable loss convergence with both Tanh
and swish activations, while the swish activation yields better accuracy for this example. In
contrast, the Modified MLP exhibits significant instability in training loss, characterized by
frequent spikes and ultimately failing to approximate the PDE solution. This underscores
PirateNet’s robustness in terms of activation function choice. The remarkable training
stability of PirateNets can be attributed to its initialization as a shallow network, which is
inherently easier to train and more resilient to larger learning rates in the early stages of
training.

To more thoroughly validate the efficacy of individual components in the PirateNet
architecture, we carried out two ablation studies. The goal of the first study is to assess
the impact of initializing the nonlinearity parameter α = 0 of each residual block. For this
purpose, we train PirateNet models of varying depths with initialized α at 0 or 1, respectively,
to solve the PDE system within a time window [0, 0.1]. The results are summarized on
the left panel of Figure 10, which clearly demonstrate that initializing α = 0 significantly
enhances accuracy by one or two orders of magnitude. Conversely, initializing α = 1 results
in an increased error, particularly when training deeper networks.

The second ablation study aims to examine the role of gating operations, as described in
Equations (20) and (22). To this end, we fix a network depth of 9 and train the PirateNet
with and without gating operations over 5 random seeds. As presented on the right panel of
Figure 10, we can see that the incorporation of gating operations further reduces predictive
errors. These findings strongly support the chosen initialization of α = 0 and the design of
the gating operation as key factors in the successful training of deep PirateNet models.

5.4 Ginzburg-Landau equation

In this example, we aim to solve a scalar PDE involving a complex variable. To this end, we
consider the complex Ginzburg-Landau equation in 2D of the form

∂A

∂t
= ϵ∆A+ µA− γA|A|2 , t ∈ (0, 1) , (x, y) ∈ (−1, 1)2 ,

with an initial condition

A0(x, y) = (10y + 10ix) exp
(
−0.01(2500x2 + 2500y2)

)
,

where A denotes a complex solution and we set ϵ = 0.004, µ = 10 and γ = 10 + 15i. It
describes a vast variety of phenomena from nonlinear waves to second-order phase transitions,
from superconductivity, superfluidity, and Bose-Einstein condensation, to liquid crystals and
strings in field theory.
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Figure 8: Grey-Scott equation: Comparisons between the solutions predicted by a trained
PirateNet and the reference solutions. The detailed hyper-parameter settings are presented
in Table 6.
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Figure 9: Grey-Scott equation: Convergence of the initial condition losses, the PDE residual
losses and the relative L2 errors during the training of PirateNet and Modified MLP backbones
with different activation functions.
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Figure 10: Grey-Scott equation: Left: Relative L2 errors of training PirateNet of different
depth, with the nonlinearity parameter α of each residual block initialized to 0 or 1. Right:
Relative L2 errors of training PirateNet with and without gating operations, respectively.
Each ablation study is performed under the same hyper-parameter settings. All models are
trained for a single time window, with the results averaged over five random seeds.

By denoting A = u + iv, we can decompose the equation into real and imaginary
components, resulting in the following system of PDEs,

∂u

∂t
= ϵ∆u+ µ(u− (u− 1.5v)(u2 + v2)) ,

∂v

∂t
= ϵ∆v + µ(v − (v + 1.5u)(u2 + v2)) .

In our experiments, we solve the decoupled equations using PINNs with a time-marching
strategy, analogous to the approach detailed in Section 5.3. Specifically, we partition the
time domain into five equal intervals, each of length 0.2, and train a PINN for each interval
in sequence. The initial condition of each interval is given by the predicted solution at the
end of the previous interval. For PirateNets, we initialize its final layer to align with these
initial conditions via least squares.

Figure 11 displays the predicted real and imaginary parts of the solution obtained by using
the PirateNet backbone. The predictions show a good agreement with the corresponding
ground truth. The computed L2 errors for the real part u and the imaginary part v are
1.49× 10−2 and 1.90× 10−2, respectively. These results outperform the accuracy achieved by
the Modified MLP backbone, which recorded errors of 3.20× 10−2 for u and 1.94× 10−2 for
v. Figure 12 presents the corresponding training loss and test error trajectories, providing
insights into the model’s convergence behavior.

Furthermore, we perform the same ablation studies as in Section 5.3 to further affirm the
performance contributions of each element in the PirateNet architecture. As illustrated in
the left panel of Figure 13, setting α = 1 at initialization results in complete model collapse
for deeper networks, while setting α = 0 ensures stable training and consistently improved
accuracy as network depth increases. In addition, the right panel of the figure supports our
earlier finding that the use of gating operations enhances the model’s accuracy.

5.5 Lid-driven Cavity flow

In this example, we focus on a classical benchmark problem in computational fluid dynamics
that involves simulating the movement of an incompressible fluid within a two-dimensional
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Figure 11: Ginzburg-Landau equation: Comparisons between the solutions predicted by a
trained PirateNet and the reference solutions. The detailed hyper-parameter settings are
presented in Table 7.
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Figure 12: Ginzburg-Landau equation: Convergence of the initial condition losses, the PDE
residual losses, and the relative L2 errors during the training of a PirateNet and a Modified
MLP backbone.
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Figure 13: Ginzburg-Landau equation: Left: Relative L2 errors of training PirateNet of
different depth, with the nonlinearity parameter α of each residual block initialized to 0
or 1. Right: Relative L2 errors of training PirateNet with and without gating operations,
respectively. Each ablation study is performed under the same hyper-parameter setting. All
models are trained within the first time window, with the results averaged over five random
seeds.

square cavity. The system is governed by the incompressible Navier–Stokes equations written
in a non-dimensional form

u · ∇u+∇p− 1

Re
∆u = 0 , (x, y) ∈ (0, 1)2 ,

∇ · u = 0 , (x, y) ∈ (0, 1)2 ,

where u = (u, v) denotes the velocity in x and y directions, respectively, and p is the scalar
pressure field. To avoid discontinuities of the top lid boundary conditions at two corners, we
reformulate the boundary condition as follows

u(x, y) = 1− cosh (C0(x− 0.5))

cosh (0.5C0)
, v(x, y) = 0 , (29)

where x ∈ [0, 1], y = 1, C0 = 50. For the other three walls, we enforce a no-slip boundary
condition. Our goal is to obtain the velocity and pressure field corresponding to a Reynolds
number of 3200.

As illustrated by recent literature (Wang et al., 2023a,b; Cao and Zhang, 2023), training
PINNs directly at high Reynolds numbers often leads to instability and a tendency to
converge to erroneous solutions. To address this, we employ a curriculum training strategy
(Krishnapriyan et al., 2021; Wang et al., 2023a), initially training PINNs at a lower Reynolds
number, and gradually increasing the Reynolds numbers during training. This approach
allows the model parameters optimized at lower Reynolds numbers to serve as a favorable
initialization for training at higher Reynolds numbers. Specifically, we train PINNs across a
progressively increasing sequence of Reynolds numbers: [100, 400, 1000, 1600, 3200]. For each
Re, we conduct training the model for 104, 2× 104, 5× 104, 5× 104, and 5× 105 iterations,
respectively.

Figure 14 plots the predicted velocity field for a Reynolds number of Re = 3200. The
predictions align closely with the reference results from Ghia et al. (Ghia et al., 1982). This
is evidenced by a relatively low L2 error of 4.21× 10−2, a significant improvement over the

26



PirateNets: Physics-informed Deep Learning with Residual Adaptive Networks

Figure 14: Lid-driven cavity (Re=3200): Left: Predicted velocity of the trained PirateNet.
Right: Comparison of the predicted velocity profiles on the vertical and horizontal center-lines
against Ghia et al. (Ghia et al., 1982). The resulting relative L2 error against the reference
solution is 4.21× 10−2. The detailed hyper-parameter settings are presented in Table 8.
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Figure 15: Lid-driven cavity (Re=3200): Left: Convergence of the relative L2 errors during
the training of PirateNets of different depths for the final training stage at Re = 3200. All
experiments are performed under the same hyper-parameter setting. Right: Evolution of
nonlinearities in each PirateNet residual block of training a PirateNet with 6 residual blocks
(18 hidden layers).

1.58×10−1 error reported by JAXPI (Wang et al., 2023a). Our ablation study on the model’s
depth is visualized on the right panel of Figure 15, which reveals consistent performance
enhancements as the depth increases within a moderately large range. However, the model
seems to be saturated at depths greater than 20, yet the training remains stable and produces
results similar to the one at a depth of 18. This observation highlights PirateNet’s impressive
scalability and stability in handling complex, highly nonlinear problems and motivates future
advancements in the model architecture. Interestingly, we also examine the evolution of the
nonlinearities α in each residual block of the network. A noticeable increase in α is observed
when the model transitions to training at higher Reynolds numbers. This trend suggests
that the model requires a higher degree of nonlinearity in order to minimize the associated
PDE residuals at higher Reynolds numbers.

6 Discussion

We introduce PirateNets, a new backbone for efficient training of deep PINN models. We
provide theoretical arguments and illustrative numerical experiments that demonstrate the

27



Wang, Li, Chen and Perdikaris

instability of training PINNs when using deep MLPs. To explore the underlying reasons
behind it, we propose a fundamental hypothesis that a good convergence in the PINNs
training loss implies a good convergence of the PDE solution in Ck, depending on the order
of the PDE system. Furthermore, under mild conditions, we rigorously prove that this
hypothesis holds for linear elliptic and parabolic PDEs. This understanding allows us to shift
our focus from analyzing the network’s PDE residuals to examining the MLP derivatives,
both at initialization and during training. Our theoretical and empirical analysis reveals
that standard initialization schemes result in pathological initialization of MLP derivatives,
adversely affecting the trainability and robustness of PINNs.

Motivated by these insights, we introduce PirateNets; a novel architecture with adaptive
residual connections. This design choice ensures that the network is initially a linear
combination of a chosen basis, effectively addressing the deep MLP derivatives’ initialization
issues. It is noteworthy to observe that PirateNet’s approximation capacity is gradually
recovered during training, thanks to the trainable parameter α in each residual block.
Additionally, the initial linearity of the model offers a unique advantage: it can be tailored
to any kind of existing dataset by initializing the final network layer using solutions derived
from corresponding least squares problems. Taking all together, our developments provide
new insights into training PINNs and yield the state-of-art accuracy across a wide range of
benchmarks in computational physics.

While this study marks a substantial advancement in understanding the training of
deep physics-informed neural networks, we have to admit that training PINNs still requires
significant computational resources and tends to be time-consuming. Future efforts should
concentrate on accelerating this process. One promising direction could involve optimizing
PirateNet’s coordinate embeddings and tailoring them to specific PDEs. Besides, the
physics-informed initialization introduced here opens up new avenues for integrating physical
principles into machine learning models. It would be interesting to extend this idea further to
the field of operator learning. This may motivate the more efficient design of neural operators
in solving parametric PDEs. We believe that pursuing these lines of exploration is crucial, as
they are likely to form a key component in evolving physics-informed machine learning into
a powerful and reliable tool for computational science and engineering.
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Appendix A. Proofs

A.1 Proof of Proposition 1

Consider the second-order elliptic Dirichlet problem:

D[u] = f ,

with Dirichlet boundary condition and f ∈ L2(Ω). Let u : Ω → R be its solution and uθ be a
smooth approximation by PINNs. Define the expected loss function:

L̂(θ) =
∫
∂Ω

|uθ|2 dx+

∫
Ω
|D[uθ]− f |2 dx .

Then, for any compact V ⊂⊂ Ω, there exist a constant C such that

∥u− uθ∥2H2(V ) ≤ CL̂(θ) .

Proof
Note that the PINN solution uθ ∈ C∞(Ω) if the activation function is smooth. We define

the interior residual Rint,θ = D[uθ]− f and the spatial boundary residual Rbc,θ = uθ. With
this notation, we see

L̂(θ) = ∥Rbc,θ∥2L2(∂Ω) + ∥Rint,θ∥2L2(Ω) .

Let u∗ = uθ∗ be a PINN solution generated by the algorithm. It is easy to see that the error
û = u− u∗ satisfies D[û] = −Rint,θ∗ with û = Rbc,θ∗ on ∂Ω. By interior regularity (Evans,
2022, Section 6, Theorem 2), we have for any m ≥ 0, there holds û ∈ Hm+2

loc (Ω) with for
V ⊂⊂ Ω,

∥û∥Hm+2(V ) ≤ C(∥Rint,θ∗∥Hm(Ω) + ∥û∥L2(Ω)) .

Let M be the Dirichlet map defined by u := M[g] if and only if D[u] = 0 with u = g on
∂Ω. It is known that M is a bounded linear map from Hs(∂Ω) to Hs+1/2(Ω) for any real s
(Bramble and Schatz, 1970). Then, since Rbc,θ∗ is smooth, we can find a smooth solution
such that D[v] = 0 with v = Rbc,θ∗ on ∂Ω and there holds

∥v∥L2(Ω) ≤ C∥Rbc,θ∗∥L2(∂Ω) ,

which gives D[û− v] = Rint,θ∗ with Dirichlet boundary. By the well-posedness, it follows that

∥û− v∥L2(Ω) ≤ C∥Rint,θ∗∥L2(Ω) .

Hence, we have

∥û∥H2(V ) ≤ C(∥Rbc,θ∗∥L2(∂Ω) + ∥Rint,θ∗∥L2(Ω)) ≤ CL(θ)1/2 .
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A.2 Proof of Proposition 2

Consider a second-order parabolic equation with Dirichlet boundary condition:

ut +D[u] = f , [0, T ]× Ω ,

u = 0 , [0, T ]× ∂Ω ,

u = g , {t = 0} × Ω ,

with f ∈ L2([0, T ];L2(Ω)) and g ∈ L2(Ω). Let u : [0, T ]×Ω → R be its solution and uθ be a
smooth approximation by PINNs. Define the expected loss:

L̂(θ) =
∫
Ω
|Rint[uθ](x)|2 dx+

∫ T

0

∫
∂Ω

|uθ(t,x)|2 dtdx+

∫ T

0

∫
Ω
|Rint[uθ](t,x)|2 dtdx ,

with Rint[uθ] and Rbc[uθ] given in (4) and (6), respectively. Then, for any set Qr(t,x) ⊂⊂
[0, T ]× Ω, there exist a constant C such that

∥u− uθ∥2W 1,2
2 (Qr)

≤ CL̂(θ) .

Proof Similarly, we denote the PINN solution by u∗ = uθ∗ . Then, û = u− u∗ satisfies

ût +D[û] =: Rint,θ∗ ,

with û =: Rbc,θ∗ on [0, T ]×∂Ω and û =: Ric,θ∗ on {t = 0}×Ω. For a set Qr(t,x) ⊂ [0, T ]×Ω,
the interior estimate of parabolic equation gives (Krylov, 1996, Theorem 2.4.7)

∥û∥
W 1,k+2

2 (Qr)
≤ C(∥Rint,θ∗∥L2([0,T ];L2(Ω)) + ∥û∥L2([0,T ];L2(Ω))) .

Let v be the solution to vt + D[v] = 0 with v = Rbc,θ∗ on [0, T ] × ∂Ω and v = Ric,θ∗ on
{t = 0} × Ω. The regularity estimate for v can be given by the standard semigroup method,
which we recall below for the reader’s convenience. We denote by S(t) the strongly continuous
analytic semigroup generated by −D and recall the Dirichlet map M introduced above.
Then, we have the following representation for the solution v (Lasiecka, 1986, Section 2)

v = S(t)[Ric,θ∗ ] +A[Rbc,θ∗ ] ,

where

A[u] = D
∫ t

0
S(t− z)M[u](z) dz : L2([0, T ];L2(∂Ω)) −→ L2([0, T ];L2(Ω)) .

It follows that v ∈ L2([0, T ];L2(Ω)) and

∥v∥L2([0,T ];L2(Ω)) ≤ C(∥Ric,θ∗∥L2(Ω) + ∥Rbc,θ∗(t)∥L2([0,T ];L2(∂Ω))) .

Moreover, we have (Evans, 2022, Section 7, Theorem 5)

∥û− v∥L2([0,T ];H2(Ω)) ≤ C∥Rint,θ∗∥L2([0,T ];L2(Ω)) .

Therefore, we have

∥û∥
W 1,k+2

2 (Qr)
≤ C

(
∥Rint,θ∗∥L2([0,T ];L2(Ω)) + ∥Ric,θ∗∥L2(Ω) + ∥Rbc,θ∗∥L2([0,T ];L2(∂Ω))

)
≤ CL(θ)1/2 .
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A.3 Proof of Proposition 4

The following holds at initialization of an MLP uθ(x).

(a) The first-order derivative of uθ is given by

∂uθ

∂x
(x) =

2∏
i=L+1

(
W(i) · diag

(
σ̇
(
u
(i−1)
θ (x)

)))
·W(1) .

Furthermore, assuming that the MLP lies in a linear regime, i.e., σ(x) ≈ x and σ̇(·) ≈ 1, it
follows that

∂uθ

∂x
(x) ≈ W(L+1) ·W(L) · · · ·W(1) .

(b) If all hidden layers of the MLP have the same number of neurons, i.e., d1 = d2 = · · · = dL = d,
then

Var

(
∂uθ

∂x
(x)

)
≲

1

d
.

Consequently, for any ϵ > 0,

P
(∣∣∣∣∂uθ

∂x
(x)

∣∣∣∣ > ϵ

)
≲

1

dϵ2
.

Proof (a) The first statement is a simple consequence of the chain rule. If we further assume
the linear regime that σ(·) ≈ 1, then diag(σ̇(u

(k)
θ (x))) ≈ I for all k. Then we obtain

∂uθ
∂x

(x) ≈ W(L+1) ·W(L) · · ·W(1) . (30)

(b) We prove this result by induction on the number of network layers L. For L = 1, the
network derivative is given by

∂uθ
∂x

(x) =
d∑

k=1

W
(2)
k σ̇

(
W

(1)
k x+ b(1)

)
W

(1)
k . (31)

Since W
(l)
k is independent from each other for all l = 1, 2 and k = 1, 2, . . . , d, we have

Var

(
∂uθ
∂x

(x)

)
=

d∑
k=1

Var
(
W

(2)
k σ̇

(
W

(1)
k x+ b(1)

)
W

(1)
k

)
=

d∑
k=1

[
E
(
W

(2)
k σ̇

(
W

(1)
k x+ b(1)

)
W

(1)
k

)2
−
(
E
(
W

(2)
k σ̇

(
W

(1)
k x+ b(1)

)
W

(1)
k

))2
]

≤
d∑

k=1

[
E
(
W

(2)
k W

(1)
k

)2
−
(
E
(
W

(2)
k

)
· E

(
σ̇
(
W

(1)
k x+ b(1)

)
W

(1)
k

))2
]

=
d∑

k=1

Var
(
W

(2)
k

)
Var

(
W

(1)
k

)
≲ d · 1

d
· 1
d
=

1

d
. (32)
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Now, assume that this holds for a scalar network of L layers. Then, by (a), for L+ 1, we
have

∂uθ
∂x

(x) =

2∏
i=L+1

(
W(i) · diag

(
σ̇
(
u
(i−1)
θ (x)

)))
·W(1) . (33)

Let X =
∏2

i=L

(
W(i) · diag

(
σ̇
(
u
(i−1)
θ (x)

)))
·W(1). The key observation is that each element

Xk is a scalar network of L layers. By induction, we have Var(Xk) ≲
1
d for k = 1, 2, . . . , d.

Therefore,

∂uθ
∂x

(x) =
d∑

k=1

W
(L+1)
k σ̇

(
u
(L)
θ (x)

))
Xk . (34)

Similar to (32), we can prove that

∂uθ
∂x

(x) ≲
1

d
. (35)

Finally, applying Chebyshev’s inequality, for any ϵ > 0, we obtain

Var

(
∂uθ
∂x

(x)

)
≲

1

dϵ2
. (36)
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Appendix B. Allen-Cahn equation

Data generation. We solve the Allen-Cahn equation using conventional spectral methods.
Specifically, assuming periodic boundary conditions, we start from the initial condition
u0(x) = x2 cos(πx) and integrate the system up to the final time T = 1. Synthetic validation
data is generated using the Chebfun package (Driscoll et al., 2014) with a spectral Fourier
discretization with 512 modes and a fourth-order stiff time-stepping scheme (ETDRK4) (Cox
and Matthews, 2002) with the time-step size of 10−5. We record the solution at intervals of
∆t = 0.005, yielding a validation dataset with a resolution of 200× 512.

Table 4: Allen-Cahn equation: Hyper-parameter configuration for reproducing results in
Figure 4.

Parameter Value

Architecture
Number of layers 9
Number of channels 256
Activation Tanh
Fourier feature scale 2.0
Random weight factorization µ = 1.0, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 5× 103

Warmup steps 5× 103

Training
Training steps 3× 105

Batch size 8,192

Weighting
Weighting scheme NTK (Wang et al., 2022c, 2023a)
Causal tolerance 1.0
Number of chunks 32
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Appendix C. Korteweg–De Vries equation

Data generation. We solve the Korteweg–De Vries equation using conventional spectral
methods. Specifically, assuming periodic boundary conditions, we start from the initial
condition u0(x) = cos(πx) and integrate the system up to the final time T = 1. Synthetic
validation data is generated using the Chebfun package (Driscoll et al., 2014) with a spectral
Fourier discretization with 512 modes and a fourth-order stiff time-stepping scheme (ETDRK4)
(Cox and Matthews, 2002) with the time-step size of 10−5. We record the solution at intervals
of ∆t = 0.005, yielding a validation dataset with a resolution of 200× 512 in temporal spatial
domain..

Table 5: Korteweg–De Vries equation: Hyper-parameter configuration for reproducing results
in Figure 6.

Parameter Value

Architecture
Number of layers 9
Number of channels 256
Activation Tanh
Fourier feature scale 1.0
Random weight factorization µ = 1.0, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 2× 103

Warmup steps 5× 103

Training
Training steps 2× 105

Batch size 4,096

Weighting
Weighting scheme Grad norm (Wang et al., 2021a)
Causal tolerance 1.0
Number of chunks 16
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Appendix D. Grey-Scott equation

Data generation. We solve the Grey-Scott equation using conventional spectral methods.
Specifically, assuming periodic boundary conditions, we start from the initial condition and
integrate the system up to the final time T = 2. Synthetic validation data is generated
using the Chebfun package (Driscoll et al., 2014) with a spectral Fourier discretization with
200× 200 modes in 2D and a fourth-order stiff time-stepping scheme (ETDRK4) (Cox and
Matthews, 2002) with the time-step size of 10−3. We record the solution at intervals of
∆t = 0.02, yielding a validation dataset with a resolution of 100 × 200 × 200 in temporal
spatial domain.

Table 6: Grey-Scott equation: Hyper-parameter configuration for reproducing results in
Figure 8.

Parameter Value

Architecture
Number of layers 9
Number of channels 256
Activation Swish
Fourier feature scale 1.0
Random weight factorization µ = 0.5, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 2× 103

Warmup steps 5× 103

Training
Number of time windows 10

Training steps per time window 105

Batch size 4,096

Weighting
Scheme Grad norm (Wang et al., 2021a)
Causal tolerance 1.0
Number of chunks 32
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Appendix E. Ginzburg-Laudau equation

Data generation. We solve the Ginzburg-Laudau equation using conventional spectral
methods. Specifically, assuming periodic boundary conditions, we start from the initial
condition and integrate the system up to the final time T = 1. Synthetic validation data
is generated using the Chebfun package (Driscoll et al., 2014) with a spectral Fourier
discretization with 200 × 200 modes in 2D and a fourth-order stiff time-stepping scheme
(ETDRK4) (Cox and Matthews, 2002) with time-step size of 10−3. We record the solution
at intervals of ∆t = 0.01, yielding a validation dataset with a resolution of 100× 200× 200
in temporal spatial domain..

Table 7: Ginzburg-Laudau equation: Hyper-parameter configuration for reproducing results
in Figure 11.

Parameter Value

Architecture
Number of layers 9
Number of channels 256
Activation Swish
Fourier feature scale 1.0
Random weight factorization µ = 0.5, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 2× 103

Warmup steps 5× 103

Training
Number of time windows 5

Training steps per time window 105

Batch size 8,192

Weighting
Scheme Grad norm (Wang et al., 2021a)
Causal tolerance 5.0
Number of chunks 16
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Appendix F. Lid-driven Cavity flow

Data generation. We compare our results against (Ghia et al., 1982).

Table 8: Lid-driven Cavity flow: Hyper-parameter configuration for reproducing results in
Figure 14.

Parameter Value

Architecture
Number of layers 18
Number of channels 256
Activation Tanh
Fourier feature scale 15.0
Random weight factorization µ = 1.0, σ = 0.1

Learning rate schedule
Initial learning rate 10−3

Decay rate 0.9
Decay steps 104

Warmup steps 5× 103

Training
Re [100, 400, 1,000, 1,600, 3,200]
Training steps [104, 2× 104, 5× 104, 5× 104, 5× 105]
Batch size 4,096

Weighting
Scheme Grad norm (Wang et al., 2021a)
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Appendix G. Additional results on PINNacle (Hao et al., 2023)

This section presents additional results of PirateNet on benchmark problems from PINNacle
(Hao et al., 2023). We focus on three representative benchmarks: Burgers’ 1D-C, Wave
1D-C, and the inverse problem of Poisson equations. Our experiments strictly adhere to
the problem settings outlined in the PINNacle paper, which are detailed below for each
benchmark.

1D Burgers Equation (Burgers 1D-C). The 1D Burgers equation is defined as:

ut + uux = νuxx, (37)

where (x, t) ∈ Ω = [−1, 1]× [0, 1], with initial and boundary conditions:

u(x, 0) = − sin(πx), (38)
u(−1, t) = u(1, t) = 0, (39)

and viscosity parameter ν = 0.01/π.

1D Wave Equation (Wave1d-C). The governing PDE for the 1D wave equation is:

utt − 4uxx = 0, (40)

on the domain Ω× T = [0, 1]× [0, 1], with boundary conditions:

u(0, t) = u(1, t) = 0, (41)

and initial conditions:

u(x, 0) = sin(πx) +
1

2
sin(4πx), (42)

ut(x, 0) = 0. (43)

The analytical solution is given by:

u(x, t) = sin(πx) cos(2πt) +
1

2
sin(4πx) cos(8πt). (44)

2D Navier-Stokes equation (NS 2D-C). Consider the incompressible Navier-Stokes
equations in two dimensions:

u · ∇u+∇p −
1

Re
∆u = 0, x ∈ Ω, (45)

∇ · u = 0, x ∈ Ω, (46)

where u represents the velocity field, p denotes pressure, and Re = 100 is the Reynolds
number. The equations are solved on the unit square domain Ω = [0, 1]2. Let Γ1 denote
the top boundary and Γ2 represent the remaining boundaries (left, right, and bottom). The
boundary conditions are:

u(x) = (4x(1− x), 0), x ∈ Γ1, (47)
u(x) = (0, 0), x ∈ Γ2, (48)

p = 0, x = (0, 0). (49)
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2D Navier-Stokes equation (NS 2D-CG). The governing equations remain the same
as above:

u · ∇u+∇p− 1

Re
∆u = 0, (50)

∇ · u = 0. (51)

However, the domain Ω is now defined as Ω = [0, 4]× [0, 2] \ ([0, 2]× [1, 2] ∪Ri), representing
a rectangular region with its top-left quarter removed. The inlet velocity is given by
uin = 4y(1− y), the outlet pressure is p = 0, and the boundary condition is no-slip: u = 0.
The Reynolds number is set to Re = 100.

Poisson inverse problem. The governing PDE is

−∇(a∇u) = f. (52)

The geometric domain is Ω = [0, 1]2, and

u = sin(πx) sin(πy), (53)

in the domain Ω = [0, 1]2, where u = sin(πx) sin(πy) and the source term f is:

f =
2π2 sin(πx) sin(πy)

1 + x2 + y2 + (x− 1)2 + (y − 1)2
+

2π [(2x− 1) cos(πx) sin(πy) + (2y − 1) sin(πx) cos(πy)]

[1 + x2 + y2 + (x− 1)2 + (y − 1)2]2
.

(54)

To ensure uniqueness of the solution, we impose a boundary condition of a(x, y), i.e.,

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
, x ∈ ∂Ω. (55)

We sample data of u(x, y) with 2, 500 uniformly distributed 50× 50 points and add Gaussian
noise N (0, 0.1) to it. The objective is to reconstruct the diffusion coefficient a(x, y), whose
ground truth is:

a(x, y) =
1

1 + x2 + y2 + (x− 1)2 + (y − 1)2
, x ∈ Ω. (56)

The performance of PirateNet and several baseline methods on these benchmarks is
summarized in Table 9. A notable observation is that our baseline implementation (JAX-
PI) demonstrates remarkably strong performance, achieving accuracy improvements of
about two orders of magnitude for forward problems compared to the results reported in
PINNacle. More significantly, PirateNet consistently outperforms all baselines across the
three problems, showcasing its superior effectiveness and versatility in handling various
types of PDEs. To provide a more comprehensive view of PirateNet’s performance, we have
included visualizations of the predicted solutions, along with loss and test error convergence
plots during training. These can be found in Figure 16 - 20. These visualizations offer
insights into the predicted solution quality and convergence behavior of PirateNet across
different problem types, further illustrating its robust performance.

39



Wang, Li, Chen and Perdikaris

Benchmark PINNacle PIELM JAX-PI PirateNet

Burger 1D-C 1.33× 10−2 1.63× 10−1 3.58× 10−4 8.20× 10−5

Wave 1D-C 9.79× 10−2 8.58× 10−5 9.80× 10−5 5.15× 10−5

NS 2D-C 3.60× 10−2 N/A 2.39× 10−3 9.52× 10−4

NS 2D-CG 8.24× 10−2 N/A 4.10× 10−2 2.10× 10−2

Poisson Inverse 1.96× 10−2 N/A 1.99× 10−2 5.34× 10−3

Table 9: Performance of PirateNet on PINNacle benchmarks. For PINNacle results, We
directly report the results from its original paper. The metric is relative L2 error between
the predicted and reference solutions.

In particular, we also compare PirateNet against PIELM (Physics-Informed Extreme
Learning Machine). Our results indicate that PIELM performs exceptionally well for
linear PDEs, because of its approach of solving an underlying linear optimization problem
with provable convergence. However, for non-linear problems, PIELM exhibits significant
sensitivity to optimizer choice, network width, and selection of collocation points. In these
cases, it tends to converge easily to poor local minima. Moreover, PIELM is not applicable
to inverse problems, further limiting its versatility compared to PirateNet.
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Figure 16: Burgers equation: Top: Comparison between the solution predicted by a trained
PirateNet and the reference solution. Bottom: Convergence of the initial condition loss,
the PDE residual loss, and the relative L2 error during the training of a PirateNet and a
Modified MLP backbone.
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Figure 17: Wave equation: Top: Comparison between the solution predicted by a trained
PirateNet and the reference solution. Bottom: Convergence of the initial condition loss,
the PDE residual loss, and the relative L2 error during the training of a PirateNet and a
Modified MLP backbone.
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Figure 18: NS 2D-C: (a): Comparison between the solution predicted by a trained PirateNet
and the reference solution. (b): Convergence of the boundary condition losses, the PDE
residual losses, and the relative L2 error during the training of a PirateNet and a Modified
MLP backbone.
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Figure 19: NS 2D-CG: (a): Comparison between the solution predicted by a trained PirateNet
and the reference solution. (b): Convergence of the boundary condition losses, the PDE
residual losses, and the relative L2 error during the training of a PirateNet and a Modified
MLP backbone.
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Figure 20: Poisson inverse: Top: Comparison between the coefficients predicted by a trained
PirateNet and the reference solution. Bottom: Convergence of the initial condition loss,
the PDE residual loss, and the relative L2 error during the training of a PirateNet and a
Modified MLP backbone.
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