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Abstract

Motivated by inferring causal relationships among neurons using ensemble spike train data,
this paper introduces a new technique for learning the structure of a directed acyclic graph
(DAG) within a large network of events, applicable to diverse multi-dimensional tempo-
ral point process (MuTPP) data. At the core of MuTPP lie the conditional intensity
functions, for which we construct a generative model parameterized by the graph param-
eters of a DAG and develop an equality-constrained estimator, departing from exhaustive
search-based methods. We present a novel, flexible augmented Lagrangian (Flex-AL) op-
timization scheme that ensures provable global convergence and computational efficiency
gains over the classical AL algorithm. Additionally, we explore causal structure learning
by integrating acyclicity-constraints and sparsity-regularization. We demonstrate: (i) in
cases without regularization, the incorporation of the acyclicity constraint is essential for
ensuring DAG recovery consistency; (ii) with suitable regularization, the DAG-constrained
estimator achieves both parameter estimation and DAG reconstruction consistencies sim-
ilar to the unconstrained counterpart, but significantly enhances empirical performance.
Furthermore, simulation studies indicate that our proposed DAG-constrained estimator,
when appropriately penalized, yields more accurate graphs compared to unconstrained or
unregularized estimators. Finally, we apply the proposed method to two real MuTPP
datasets.

Keywords: asymptotic consistency; causal structure; constrained optimization; multi-
variate counting process; Structural Hamming Distance.

1. Introduction

The multi-dimensional temporal point process (MuTPP) model provides a probabilistic
graphical framework for event occurrences observed in continuous time. Its applications
span various domains, including recordings of multiple neuronal spike trains, users’ on-
line ratings in social networks, and patients’ treatment time records in hospitals, among
others. An essential objective involves uncovering the network’s structured causal relation-
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ships inherent in such MuTPP. Following terminology from causal inference and graphical
models, this entails identifying a directed acyclic graph (DAG) G. In this context, the jth
node of G corresponds to the jth dimensional point process data observed within a specific
time length, and every directed edge connecting two nodes in G signifies a particular type of
causal effect from the parent node to the child node. The acyclicity assumption of G ensures
that all nodes in the graph can be arranged in a causal order, providing a clear reflection
of the causal dependencies among them. See examples in Loh and Bühlmann (2014); Pearl
(2009); Shimizu et al. (2006). Practically, learning such a DAG structure from MuTPP
yields interpretable insights. In our previous examples, the restored causal structure from
neuronal spike train data aids in studying potential neuronal mechanisms in the brain and
developing treatment strategies (Dobryakova et al., 2015; Fujisawa et al., 2008). Similarly,
the acyclic recommendation propagation tree inferred from online rating data sets repre-
sents causal relationships between users, facilitating the design of recommendation systems
in social networks (Yang et al., 2012).

In the context of continuous-time MuTPP, the issue of learning DAGs has been rela-
tively unexplored or less understood in existing literature. Although a large body of work
exists on causal structure within Gaussian graphical models, structural equation models
(Shi and Li, 2022; Zheng et al., 2018), hidden Markov models (Nefian et al., 2002), and
linear non-Gaussian acyclic model (Shimizu et al., 2006), these are based on discrete-time
indexed observations of multivariate variables, making them unsuitable for modeling time-

ordered event occurrence points {Tj,`}
Nj
`=1 at nodes j = 1, . . . , d, whose stochastic mechanism

is driven by the ‘conditional intensity function’ (CIF) in the continuous-time domain, as
detailed in Section 2.1. To effectively analyze MuTPP data, which typically lack strict-sense
stationary, various continuous-time modeling approaches have emerged, such as the inhomo-
geneous Poisson process (Rajaram et al., 2005), the Cox model (Perry and Wolfe, 2013), and
the Hawkes process (Hawkes, 1971; Reynaud-Bouret and Schbath, 2010; Xu et al., 2016).
These methods offer estimated network graphs that reveal potential interactions and causal
effects. However, these approaches do not account for the acyclicity assumption, leading to
cycles (or self-loops) in the resulting network graphs and creating uncertainties regarding
causal connections among nodes in these cycles. Therefore, it is imperative to explore new
DAG-informed structure learning techniques aimed at better addressing the challenge of
learning causal structure from MuTPP data.

This paper aims to bridge the gap in the literature by striving to achieve this goal.
Focusing on the continuous-time CIFs governing the stochastic mechanisms of MuTPP,
we build a stochastic generative model (4) in Section 2. This model represents non-linear
mappings of historical events. The causal relationships among nodes are portrayed through
interaction parameters within the generative model. The sign and magnitude of these pa-
rameters indicate the direction and strength of the corresponding effects. The aggregation
of interaction parameters with non-zero values configures a causal DAG. For graph pa-
rameter estimation, we devise a likelihood-based estimation procedure, which incorporates
two distinct types of structural constraints: (i) the DAG constraint, aimed at eliminating
cycles in the obtained graph, and (ii) sparsity regularization, promoting the sparsity char-
acteristics of the resulting network. Simultaneously enforcing these restrictions ensures that
the recovered network genuinely represents a sparse acyclic graph, which clearly delineates
potential causal structures and offers practical guidance for real-world structure learning.
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Theoretically, we establish two types of consistencies (pertaining to parameter estimation
and DAG recovery) for the proposed DAG-constrained regularized estimation method (see
Theorem 6). These consistencies hold in a large-dimensional setting where the dimension of
the MuTPP is allowed to grow with time length. Furthermore, we demonstrate that both
types of consistencies can be achieved even when solely imposing the DAG constraint in es-
timation, without regularization. This holds true when the true network is sufficiently dense
(see Theorem 4). For finite sample scenarios, simulation studies indicate that the proposed
DAG-constrained regularized method outperforms the conventional unconstrained method
(abbreviated to nonDAG) in terms of reconstruction accuracy (refer to Section 6). These
findings provide both theoretical and empirical support for the validity of our proposed
method, specifically affirming the reliability of utilizing the DAG constraint.

Enforcing the DAG structural constraint is crucial for accurately recovering the acyclic
causal structure. However, simultaneously developing a nonlinear optimization strategy in-
volving the DAG geometry constraint for parameter estimation remains a central challenge.
Learning DAGs from data poses an NP-hard problem (Robinson, 1977), primarily due to
the challenging enforcement of the combinatorial acyclicity constraint. Consequently, con-
ventional search-based optimization algorithms (Chickering, 2002; Heckerman et al., 1995;
Scanagatta et al., 2015) are impractical for large graphs. This work contributes to devis-
ing a new non-search-based ‘flexible augmented Lagrangian’ (Flex-AL) algorithm aimed at
numerically solving the DAG-constrained optimization problem. Our Flex-AL algorithm
efficiently addresses the equality-constrained program, converted from the original combi-
natorial DAG-constrained optimization problem. This derivation utilizes a new characteri-
zation result (Zheng et al., 2018) of the acyclicity constraint. Compared to the classical AL
algorithm, our Flex-AL algorithm not only permits more flexible choices for the explicit
forms of Lagrange multiplier and augmentation parameter updates but also exhibits com-
putational efficiency with fewer iterations and reduced computational time. Refer to the
discussions in Section 4.2 for further details.

The main contributions of this paper are outlined as follows:

• This paper represents the first systematic development in the literature of DAG-
informed modeling, methodology, and theory for the structure learning task of MuTPP.
Our proposed DAG-constrained regularized estimation method eliminates cycles in
the reconstructed network and outperforms the existing approaches when applied to
simulated point process data.

• Addressing computational challenges in the DAG-constrained optimization, we intro-
duce a new efficient non-search-based algorithm termed ‘Flex-AL’. This algorithm is
designed with a guaranteed global convergence to the true graph parameters and offers
the improved flexibility and computational efficiency over conventional AL algorithms.

• We examine the statistical properties of DAG-constrained and unconstrained estima-
tion methods, both in the presence and absence of regularization. We demonstrate
that, in stark contrast to the nonDAG method, the proposed DAG-constrained method
reduces the error bound of ‘Structural Hamming Distance’ by at least d(d − 1)/2 in
the absence of regularization. Additionally, we establish that the proposed DAG-
constrained method achieves consistencies in both parameter estimation and DAG
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recovery under scenarios (a) without regularization for a sufficiently dense underlying
network and (b) with appropriate regularization.

• For the non-stationary MuTPP data driven by the continuous-time CIF model (4),
our asymptotic analysis is derived as the continuous time length T → ∞. This
scenario significantly differs from the conventional linear models for stationary or i.i.d.
observations where the discrete sample size n → ∞. Our proof techniques combine
three distinct elements: (a) analysis of the probabilistic properties of MuTPP, (b)
proofs of convergence for penalized M -estimators, and (c) theoretical explorations
for the DAG-constraint. Integrating these separate aspects is a novel approach that
contributes to the proofs of our main results.

• Our modeling approach and theoretical techniques partly leverage recent findings from
Gao et al. (2024), but introduce significant improvements and distinctions. Com-
putationally, addressing the DAG-constrained optimization problem is much more
challenging than the unconstrained problem in Gao et al. (2024). However, our Flex-
AL algorithm effectively handles this challenge, demonstrating superior performance.
Theoretically, while Gao et al. (2024) focuses on the asymptotic properties of an un-
constrained estimator in a fixed-dimension scenario, our paper provides a more com-
prehensive analysis. We examine the consistency of estimators with or without DAG
constraints across networks with varying levels of sparsity and extend the asymptotic
setting from T→∞ to the diverging-dimension regime, allowing dimension d to grow
with T.

The rest of the paper is organized as follows. Section 2 proposes a new generative
model designed to capture causal structures within MuTPP. Section 3 details the proposed
DAG-informed structure learning method, which is numerically solved using a new opti-
mization algorithm presented in Section 4. Section 5 explores the theoretical properties
of the proposed method. Section 6 provides simulation evaluations aimed at assessing the
performance of our method. Section 7 showcases real datasets pertaining to neuronal spike
trains and IPTV viewing records. Section 8 briefly concludes. Detailed numerical illustra-
tions and technical derivations are collected in Appendices A, B, and C of a supplemental
file.

2. Modeling causal structure in MuTPP

In this section, we aim to introduce the basic setting and notations relevant to multi-
dimensional point processes (MuTPP). We proceed by building our generative model de-
signed for learning the DAG-informed structure.

2.1 Multi-dimensional point processes

MuTPP denotes random processes detailing occurrences of specific events (e.g., instances
of contagious diseases, neuron spike firing) observed in sequences T 1, . . . ,T d recorded at d
nodes. Here, each

T j = (Tj,1, . . . , Tj,Nj ) with 0 < Tj,1 < · · · < Tj,Nj ≤ T, for j = 1, . . . , d, (1)
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represents a sequence of time points Tj,` corresponding to the `-th event occurring at node j
within an experiment of time length T. The associated counting process Nj(t) =

∑
`≥1 I(0 ≤

Tj,` ≤ t) tallies the number of events occurring up to and including time t for node j, where
I(·) denotes the indicator operator. An important goal is to uncover the causal structure
among nodes from d sequences of time series. To characterize the stochastic nature of event

arrival times {Tj,`}
Nj
`=1 in (1), we employ the concept of ‘conditional intensity function’ (CIF)

λj(t | Ft) (also referenced in Rubin (1972)). This CIF quantifies the instantaneous event
occurrence rate at node j. Formally, it is defined as:

λj(t | Ft) = lim
∆↓0

1

∆
P
(
Nj(t+ ∆) = Nj(t) + 1 | Ft

)
(2)

= lim
∆↓0

1

∆
P
(
Nj(t+ ∆) 6= Nj(t) | Ft

)
, a.s., for t ∈ [0,T]. (3)

Here, Ft = σ({Nj(s) : s ∈ [0, t], j = 1, . . . , d}) represents the sigma-field generated by the
event history of all d nodes up to and including time t.

For comparison, the commonly used one-dimensional Poisson process is a specific case
within the counting process when d = 1 and entails a deterministic CIF. For a more
comprehensive overview of point processes and probabilistic properties, refer to Daley and
Vere-Jones (2003).

2.2 Modeling causal structure via DAGs

We introduce a general framework to model the dynamics of continuous-time CIFs {λj(t |
Ft)}j=1,...,d in (2) and (3) as functions reliant on historical events:

λj(t | Ft) = exp
{
w0,j +

d∑
i=1

wi,j xi(t)
}
, j = 1, . . . , d, t ∈ [0,T]. (4)

Here are the explicit interpretations of w0,j , wi,j , and xi(t):

• w0,j represents the baseline parameter denoting the background intensity of node j
and serves as the intercept within the generative model.

• wi,j denotes the interaction parameter signifying the direction and strength of influ-
ence from node i on node j. Specifically, wi,j > 0, wi,j < 0, and wi,j = 0 respectively
express excitatory, inhibitory, and no effects. The magnitude of wi,j indicates the
strength of this influence.

• The regression covariate xi(t) acts as the event activity of node i within a short period
preceding t. Particularly, we set xi(t) as:

xi(t) = g
(
Ni((t− φ, t])/φ

)
, (5)

where (t− φ, t] denotes the ‘lag window’ with a width φ ∈ (0,∞). The function g(·) :
[0,∞) 7→ [0,∞) is termed the ‘shape function’, which is non-negative, continuous,
monotonically increasing, and satisfies g(0) = 0. In (5), the ratio Ni((t − φ, t])/φ
represents an empirical estimate of the CIF λi(u | Fu) during a short interval u ∈
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(t − φ, t]. The shape function g(·) captures the potentially non-linear relationship
between the empirical rate and the regression covariate. Practical examples of shape
functions include g(x) = x and g(x) = log(1 + x). In our parameter estimation
procedure outlined in Section 3, we presume knowledge of both the function g(·)
and the constant φ. In real applications, g(·) and φ could be chosen either through
data-driven methods or by referring to specific domain knowledge.

To clarify, our CIF λj(t | Ft) in model (4) with covariates xi(t) in (5) is right-continuous
in t ∈ [0,∞). This aligns with our definition of Ft-measurable CIF λj(t | Ft) in (2) and
(3), where Ft represents the event history up to and including the current time t. Similar
approaches involving right-continuous CIFs can be found in Carstensen et al. (2010); Kass
et al. (2014). For modeling MuTPP, there is another line of discretized approaches (Truc-
colo et al., 2005; Zhang et al., 2016; Zhao et al., 2012) that transform the observed sequence
of time points into event counts in discrete time bins and then fit the data via GLM-
parameterized Bernoulli or Poisson distributions. In contrast, our approach directly models
the continuous-time CIFs associated with the MuTPP, without the need for data transfor-
mation or preprocessing. This continuous-time approach has the advantage of preserving
the complete information from the original MuTPP data, thus avoiding the information
loss caused by approximation error from data transformation; refer to Gao et al. (2024) for
more discussions and numerical comparisons.

The weighted adjacency matrix W = (wi,j) ∈ Rd×d, derived from model (4), encap-
sulates the directional causal relationships among nodes. This matrix further induces a
causal directed graph G = G(W) = (V, E), consisting of the node set V = {1, . . . , d} and
the edge set E = E(W) = {(i, j) ∈ V × V : i 6= j; wi,j 6= 0} representing directed edges.
Each edge (i, j) carries a non-zero causal effect from node i to node j with a specific orien-
tation. Formally, we call G(W) a directed acyclic graph (DAG) if, for any k ≥ 2, there exist
no k-cycle-inducing edges (i1, i2), . . . , (ik−1, ik), (ik, i1) that all belong to E(W). Figure 9
(right panel) illustrates an example of a DAG with 8 nodes. Throughout this paper, we
assume that G(W) forms a DAG devoid of directed cycles. In addition, we assume that
there is no self-effect, i.e., wi,i = 0 for i = 1, . . . , d, because self-effects are typically repre-
sented as ‘self-loops’ in graphical models. The above assumptions are compactly written as
G(W) ∈ D, where D denotes the space of non-self-loop DAGs, in accordance with condition
A5 outlined in Section 5. The imposition of acyclicity on graphs is a common practice in
literature concerning causal graphical models (e.g., Loh and Bühlmann, 2014; Pearl, 2009;
Shimizu et al., 2006). Lemmas C.4 and C.5 in Appendix C.1 verify the identifiability of
model (4) with respect to all parameters {wi,j : i = 0, 1, . . . , d; j = 1, . . . , d}.

DAGs are fundamental concepts in causal inference. The original definition of causal
structures, initially introduced in Pearl (2009) (page 44, Definition 2.2.1), is essentially
grounded on DAGs. DAG-based models have been widely used to represent causal or
temporal relationships among data variables (Loh and Bühlmann, 2014; Shimizu et al., 2006;
Van de Geer and Bühlmann, 2013). DAGs also have specific meaningful interpretations
for specific application fields. For example, in the neurology study of brain functional
connectivity, DAG models provide a precise depiction of the directed information flow across
brain regions (Biswas and Shlizerman, 2022; Zhang et al., 2022b), further helping to better
understand the brain functional integration. In social epidemiology, DAGs are popular

6



DAG-informed structure Learning from point processes

models for representing the potential sources and paths of disease transmission in human
populations (Ackley et al., 2021; Chen et al., 2021).

3. DAG-informed structure learning

Our objective is to estimate the weighted adjacency matrix W representing edge parameters
from the observed point process data {T j}j=1,...,d across d nodes. This estimation will enable
the discovery of the causal DAG structure underlying the d-dimensional point processes. For
notational clarity, the edge parameter matrix W is denoted as W = (w�,1, . . . ,w�,d) ∈ Rd×d,
where each column vector is w�,j = (w1,j , . . . , wd,j)

>. Consequently, the generative model
(4) for the CIF is reformulated as:

λj(t | Ft) = exp
{
w̃>�,jx̃(t)

}
, j = 1, . . . , d, t ∈ [0,T]. (6)

Here, w̃�,j = (w0,j , w1,j , . . . , wd,j)
> = (w0,j ,w

>
�,j)
> ∈ Rd+1 represents the vector of all pa-

rameters linked to λj(t | Ft). Additionally, x̃(t) = (x0(t), x1(t), . . . , xd(t))
> ∈ Rd+1 stands

for the vector of regression covariates, where x0(t) ≡ 1. All pertinent parameters are

collected in a parameter matrix W̃ = (w̃�,1, . . . , w̃�,d) ∈ R(d+1)×d, which can also be repre-

sented as W̃ = (w0,�,W
>)>, where w0,� = (w0,1, . . . , w0,d)

> denotes the vector of baseline
parameters.

We propose a DAG-constrained regularized maximum-likelihood approach for structure
learning. Building upon Rubin (1972) and (6), the negative log-likelihood concerning event

occurrence times {Tj,`}
Nj
`=1 in (1) can be expressed as:

Lj,T(w̃�,j) = − 1

T

∫ T

0

[
log{λj(t− | Ft−)}dNj(t)− λj(t | Ft) dt

]
= − 1

T

∫ T

0

[
w̃>�,jx̃(t−) dNj(t)− exp{w̃>�,jx̃(t)} dt

]
, (7)

where λj(t− | Ft−) = limu↑t λj(t | Ft) and x(t−) = limu↑t x(u) represent the left lim-
its. The proposed DAG-constrained regularized-MLE (Maximum Likelihood Estimator) is
formulated as: ̂̃

W = arg min
W̃∈R(d+1)×d

L(W̃) + P(W;η),

subject to G(W) ∈ D,
(8)

where

L(W̃) =

d∑
j=1

Lj,T(w̃�,j) (9)

represents the joint negative log-likelihood function. The term P(W;η) is some regulariza-
tion term aiming at encouraging sparsity in the estimated network graph. In this context,
we utilize the weighted L1-penalty:

P(W;η) =
∑∑
1≤i 6=j≤d

ηi,j |wi,j |, with ηi,j ≥ 0, (10)
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where the vector η = ((η1,2, . . . , η1,d), (η2,1, . . . , η2,d), . . . , (ηd,1, . . . , ηd,d−1))> ∈ [0,∞)d
2−d

contains non-negative regularization parameters. Note that the L1-penalty P(W;η) =
η
∑∑

1≤i 6=j≤d |wi,j |, utilized in prior works (Pamfil et al., 2020; Shi and Li, 2022; Zheng
et al., 2018), represents a special case of (10) where ηi,j ≡ η for all i, j. Solving (8) presents
significant challenges due to the non-separability of its components regarding individual
w̃�,j , as the DAG constraint pertains to the entire G(W).

4. Optimization algorithm for DAG-constrained estimator

This section develops our algorithm for solving the constrained optimization problem (8).
Many existing methods address the DAG constraint by searching over the D-space, such as
order search (Fu and Zhou, 2013; Scanagatta et al., 2015) and greedy search (Chickering,
2002; Heckerman et al., 1995). However, these search-based techniques often encounter
computational inefficiencies, particularly with large DAGs, since the search space D is com-
binatorial and scales super-exponentially with the number d of nodes (Robinson, 1977). To
improve efficiency, we leverage a necessary and sufficient condition (Zheng et al., 2018) that
characterizes the acyclicity of G(W) through a closed-form equality constraint, h(W) = 0,
where

h(W) := trace{exp(W ◦W)} − d, (11)

with the Hadamard product operator ‘◦’ and the matrix exponential ‘exp(A)’ on a matrix A.
The DAG-ness function h(W) is non-negative, continuous, and differentiable, quantifying
the degree of ‘DAG-ness’ in the graph G(W). As h(W) approaches zero, G(W) more
closely resembles a DAG. This insight enables us to transform the original combinatorial
optimization problem (8) into an equality-constrained program:

min
W̃∈R(d+1)×d

L(W̃) + P(W;η),

subject to h(W) = 0.
(12)

In the context of the current point process application, both the loss function L(W̃) in (9)
and the penalty term P(W;η) in (10) are convex, while the DAG-ness function h(W) is
non-convex (refer to Lemma C.9 in Appendix C). Consequently, (12) minimizes a convex

function L(W̃) + P(W;η) over a non-convex set {W̃ ∈ R(d+1)×d : h(W) = 0}.
For solving general types of equality-constrained optimization problems, the augmented

Lagrangian (AL) method (Bertsekas, 2014) has proven successful and has widespread usage
in the literature (e.g., Pamfil et al., 2020; Zhang et al., 2022a; Zheng et al., 2018). Specif-
ically, for the DAG equality-constraint in (12), coupled with a non-negative non-convex
DAG-ness function h(W), we will devise an enhanced ‘Flex-AL’ updating scheme in Sec-
tion 4.2. This scheme is motivated by the classical AL method (‘Clas-AL’) reviewed in
Section 4.1; an unconstrained subproblem is discussed in Section 4.3.

4.1 Classical AL algorithm for solving (12)

The classical AL method operates as a dual ascent algorithm for solving an unconstrained
optimization problem. Corresponding to (12), the unconstrained objective function is ex-
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pressed as:

L(W̃, α; ρ) = L(W̃) + P(W;η) + αh(W) + 2−1ρ h2(W), (13)

where α ∈ R is the ‘Lagrange multiplier’, and ρ > 0 denotes the ‘augmentation parameter’.
With a predetermined ρ, let

W̃α = arg min
W̃∈R(d+1)×d

L(W̃, α; ρ). (14)

This minimizes (13) over W̃, resulting in the dual function of α as:

D(α) = L(W̃α, α; ρ). (15)

The conventional AL method tackles (12) by initially seeking the maximizer α̂ of the dual
function:

α̂ = arg max
α∈R

D(α). (16)

Subsequently, it pursues the minimizer in (14) with α replaced by this α̂, yielding the
estimator: ̂̃

W = W̃α̂. (17)

It’s noteworthy that L(W̃, α; ρ) is linear in α with a straightforward derivative ∂L(W̃,α;ρ)
∂α =

h(W). Due to this linearity, the dual problem (16) can be solved via the gradient ascent
update:

α← α+ β h(Wα), with a step size β > 0. (18)

This AL method, amalgamating the method of Lagrange multipliers (LM) (Bertsekas,
2014) and the penalty method (PM) (Bertsekas, 1975), consolidates their advantages. In
contrast to the LM method, the AL method incorporates an augmentation term ρ/2h2(W)

in (13), which not only ensures the existence of the minimizer W̃α for (14) but also ac-
celerates the numerical convergence speed for solving (14). When compared with the PM
method, the AL method obviates the necessity of increasing ρ to infinity; this avoidance
prevents ill-conditioned solutions W̃α in (14) due to an excessively large ρ.

Regarding the augmentation parameter ρ in the AL algorithm, the convergence of the AL
algorithm can be guaranteed if ρ > ρ0, where ρ0 ∈ (0,∞) is a problem-specific threshold
value ρ0 ∈ (0,∞) (Theorem 17.5 in Nocedal and Wright (1999)). In practice, this ρ0

is unknown. Therefore, it might be more desirable to gradually increase ρ until ρ > ρ0

is achieved. Utilizing this dynamic ρ, the following procedure summarizes the iterative
updates for W̃, α, and ρ in the AL algorithm, performed at steps k = 0, 1, . . .:

Update W̃ by solving the unconstrained subproblem:

W̃(k+1) = arg min
W̃∈R(d+1)×d

L(W̃, α(k); ρ(k)), (19)

where the kth step solution W̃(k) is used as the initial value.
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Update α and ρ according to the rules:

α(k+1) = α(k) + βα h(W(k+1)), (20)

ρ(k+1) = βρ ρ
(k), (21)

where βα > 0 and βρ ≥ 1 are appropriately chosen step sizes.

4.2 Proposed Flex-AL algorithm for solving (12)

The convergence property of the AL algorithm with updates (19), (20), and (21) is estab-
lished in Nocedal and Wright (1999) under general cases of constraint functions. In the
context of our optimization problem (12), the DAG-ness function h(W) is non-negative,
resulting in both α and ρ being non-decreasing with iteration steps in the updates (20) and
(21). This distinct feature inspires us to investigate the extent to which rules (20) and (21)
could be relaxed in updating α and ρ. As we will show in Theorem 1, the convergence of
the AL algorithm could be guaranteed with any updates of α and ρ fulfilling the condition:

max{α(k), ρ(k)} → ∞ as k →∞,
and infk≥0 α

(k) > −∞, infk≥0 ρ
(k) > 0.

(22)

In this regard, we devise the ‘flexible augmented Lagrangian’ (Flex-AL) algorithm, referring
to the enhanced version of the AL algorithm which offers more flexibility in the updating
scheme of α and ρ satisfying condition (22), in contrast to the classical AL (‘Clas-AL’)
updating rules (20) and (21).

Theorem 1 (Global convergence of the Flex-AL algorithm for solving (12)) Assume
that the sequence of Lagrange multipliers {α(k)}k≥0 and the sequence of augmentation pa-
rameters {ρ(k)}k≥0 satisfy condition (22). Then we have the following results:

(i) Any limit point of the sequence of global minimizers {W̃(k)}k≥1 in (19) is a global
minimizer of (12).

(ii) Moreover, assume condition A6′ in Section 5. Then {W̃(k)}k≥1 has at least one limit

point. Also, if (12) has a unique global minimizer
̂̃
W, then we have

W̃(k) → ̂̃
W as k →∞.

It’s worth noticing that our condition (22) is relatively mild and easy to fulfill, granting
the Flex-AL algorithm more flexibility in choosing updates for α and ρ compared to the
Clas-AL algorithm. A concrete example of the Flex-AL updates is given by:

α(k+1) = γα α
(k), (23)

ρ(k+1) = γρ ρ
(k), (24)

where γα > 1 and γρ > 1 are step sizes, and α(0) > 0 and ρ(0) > 0 are initial values. Par-
ticularly, the updated formula (23) for α in the proposed Flex-AL algorithm offers several

10
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advantages over the (20) update in the Clas-AL algorithm. Firstly, (23) runs faster, espe-
cially in larger networks involving many nodes (d), as it eliminates the costly evaluation of
the d × d matrix W in the DAG-ness function h(W) present in (20). Simulation experi-
ments in Section 6.5 illustrate that the Flex-AL algorithm achieves convergence with fewer
iterations and reduced computational time compared to the Clas-AL algorithm. Secondly,
the simplicity of (23) simplifies the selection of an appropriate step size γα for α, allowing
practitioners to balance computational speed and algorithmic stability on a case-by-case
basis.

Besides (23)–(24), the Flex-AL algorithm accommodates various other update forms
that adhere to condition (22). Due to their computational expediency, we will utilize (23)–
(24) for numerical experiments in Section 6 and real data analysis in Section 7. It’s im-
portant to note that Theorem 1 implies that using either (23) or (24) exclusively while
keeping the other fixed could also ensure convergence; however, our simulation experiments
suggest that using both (23) and (24) concurrently offer faster and more stable performance
in practice. Based on our simulations, excessively small values of γ (i.e., γα or γρ) in (23)
and (24) can reduce the algorithm’s convergence speed, while overly large values γ might
accelerate α and ρ excessively, potentially leading to ill-conditioned solutions in (19). For
practical applications, choosing γ within the range of [3, 20] has proven effective.

Another practical consideration for our Flex-AL algorithm involves the stopping cri-
terion. As α and ρ may not reach infinity during practical computations, the iterative
sequence {W̃(k)}k≥1 might not precisely converge to the solution of (12), thereby not ex-
actly satisfying the acyclicity constraint h(W) = 0. To address this, we opt to terminate
the algorithm when h(W(k)) < εh is attained at a certain step k = k̂, using a small tolerance
εh > 0, close to machine precision (e.g., εh = 10−5) or specified by the user. Consequently,

the resulting weighted adjacency matrix W(k̂) approximately, albeit not perfectly, repre-

sents a DAG. For the final output, a thresholding procedure W(k̂)◦I(|W(k̂)| > ω) is applied,
with a small constant ω > 0, to eliminate edges inducing cycles. Simulation results indicate
that a very small ω, such as ω = 0.01, effectively achieves this objective. The complete
procedure of the Flex-AL algorithm is summarized in Algorithm 1.

4.3 Proximal quasi-Newton algorithm for solving the unconstrained
subproblem (19)

To facilitate the derivation, we convert matrices W and W̃ to the vectorized versions,
represented as: w = (w>�,1, . . . ,w

>
�,d)
> = vec(W) ∈ Rd2 and w̃ = (w̃>�,1, . . . , w̃

>
�,d)
> =

vec(W̃) ∈ Rd2+d, respectively. Functions L(W̃), h(W), and P(W;η) are denoted by
L(w̃), h(w), and P(w;η), respectively. The unconstrained subproblem (19) is equivalently
rewritten as a composite minimization problem:

min
w̃∈Rd2+d

f(w̃) + P(w;η), (25)

where

f(w̃) = L(w̃) + αh(w) + 2−1ρ h2(w) (26)

represents the smooth part of the objective function, and P(w;η) =
∑∑

1≤i 6=j≤d ηi,j |wi,j |
is the non-smooth part. Utilizing ∇h(W) = 2 {exp(W ◦W)}> ◦W (Zheng et al., 2018) as

11
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the gradient of h(W) with respect to W, the smooth part f(w̃) in (26) has the following
closed-form gradient vector:

∇f(w̃) = (∇L1,T(w̃�,1)>, . . . ,∇Ld,T(w̃�,d)
>)>

+2{α+ ρ h(w)} vec
(
{exp(W ◦W)}> ◦W

)
,

(27)

where

∇Lj,T(w̃�,j) =
1

T

∫ T

0

[
x̃(t) exp{w̃>�,jx̃(t)} dt− x̃(t−) dNj(t)

]
, j = 1, . . . , d, (28)

represents the gradient vector of Lj,T(w̃�,j). However, a closed-form expression for comput-
ing the Hessian matrix ∇2h(w) of the DAG-ness function h(w) in (26) is not available.

Despite significant advancements in devising efficient algorithms for solving a composite
minimization problems, they are ineffective for our optimization task (25) due to two pri-
mary reasons. (i) The substantial number of parameters (of the order O(d2)) in (25) leads
to slow convergence of coordinate descent (CD) based methods (including the stochastic
coordinate descent (Shalev-Shwartz and Tewari, 2009) and the blockwise coordinate descent
(Simon et al., 2013; Wright, 2012). These methods necessitate repetitive evaluations of the
partial derivative at each single coordinate. (ii) Newton-type methods (Hsieh et al., 2011;
Yuan et al., 2012), which evaluate the gradient only once in each outer iteration, require the
computation of the exact Hessian matrix of f(w̃). However, this is analytically intractable
in our case.

In this paper, we adopt the ‘proximal quasi-Newton’ (PXQN) method (Zhong et al.,

2014) to solve (25). Starting with the iterative solution w̃(k) at the kth step, the PXQN

algorithm computes the subsequent step update w̃(k+1) via the backtracking line search
procedure:

w̃(k+1) = w̃(k) + β(k) d̃
(k)
,

where the descent direction d̃
(k)

and the step size β(k) are determined as follows. The

descent direction d̃
(k)

minimizes the regularized quadratic function:

d̃
(k)

= arg min
d̃∈Rd2+d

{
∇f(w̃(k))>d̃+ 2−1d̃

>
B(k)d̃+ P(w(k) + d;η)

}
. (29)

Here, the matrix B(k) represents the L-BFGS approximation (Nocedal and Wright, 1999) to

the Hessian matrix ∇2f(w̃(k)), and ∇f(w̃(k))>d̃+2−1d̃
>
B(k)d̃ is a quadratic approximation

of the smooth part f(w̃(k) + d̃). Problem (29) can be efficiently solved by applying an inner
coordinate descent algorithm, where the update for each coordinate has a simple closed-

form expression. Upon determining the direction vector d̃
(k)

, the step size β(k) is obtained
by searching over grids {1, r, r2, . . .} for some r ∈ (0, 1) until the Armijo rule is met:

f(w̃(k) + β(k) d̃
(k)

) ≤ f(w̃(k)) + β(k) σ∆(k), (30)

where σ ∈ (0, 1) represents a slope constant, and ∆(k) = ∇f(w̃(k))>d̃
(k)

+ P(w(k) +
β(k) d(k);η)−P(w(k);η). Algorithm 2 outlines the steps of our PXQN algorithm for solving
(25).

12
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Due to the non-convexity of h(·), the objective function in (25) is also non-convex. Con-
sequently, our PXQN algorithm may not always converge to the global minimizer of (25)
and could end up at a local minimizer. Nevertheless, our simulation experiments in Section
6 show that the PXQN algorithm remains effective, efficiently and accurately solving the
large-scale optimization problem (25) despite these non-convexity challenges. In essence,
our PXQN algorithm doesn’t require recurrent calculations of coordinate-wise gradients,
enabling much faster convergence compared to CD-based methods. Unlike Newton-type
method reliant on exact Hessian matrix evaluations, our PXQN algorithm utilizes an ap-
proximate proxy, denoted as B(k).

4.4 Exact computation of loss function and its gradient

In our PXQN algorithm, the loss function L(w̃) and its gradient ∇L(w̃) are iteratively
evaluated at w̃ = w̃k during each step k. Therefore, the algorithm’s efficacy depends
crucially on the efficient computation of L(w̃) and ∇L(w̃). Unlike the simple quadratic
loss functions used in Pamfil et al. (2020); Zheng et al. (2018) for learning discrete-time
time-series data, our loss function in (7) and (9) for MuTPP involves a complex continuous
integral over time t and event counts Nj(t). Accurately and efficiently computing these
integrals for MuTPP is more challenging than in the referenced works. Nevertheless, we
resolve this challenge by developing an efficient exact computing method for our integral-
based loss functions. Referring to a recent work (Gao et al., 2024) (Lemma 3, eq. (22),
our CIF {λj(t | Ft)}j=1,...,d modeled in (4) are piecewise-constant functions in t, with all
discontinuity points listed in the sequence

{T̆1, T̆2, . . . , T̆N} :=
⋃
j∈V

{
{Tj,`}1≤`≤Nj ∪ {Tj,k + φ}1≤k≤Nj

}
,

where 0 < T̆1 < T̆2 < · · · < T̆N < T are arranged in increasing order. Denote T̆0 = 0 and
T̆N+1 = T. By partitioning the time axis into sub-intervals {(T̆`, T̆`+1]}0≤`≤N according to
these discontinuity points, we can recast the integral of loss function (7) or its gradient (28)
as the summation of integrals in each sub-interval, namely,

Lj,T(w̃�,j) =− T−1∑N
`=0

{
w̃>�,jx̃(T̆`) · I(T̆`+1 ∈ {Tj,k}1≤k≤Nj )

− exp
{
w̃>�,jx̃(T̆`)

}
· (T̆`+1 − T̆`)

}
,

∇Lj,T(w̃�,j) =− T−1∑N
`=0 x̃(T̆`) ·

{
I(T̆`+1 ∈ {Tj,k}1≤k≤Nj )

− exp
{
w̃>�,jx̃(T̆`)

}
· (T̆`+1 − T̆`)

}
.

Using the above expressions, Lj,T(w̃�,j) and ∇Lj,T(w̃�,j) can be directly and exactly com-
puted without the need for Monte Carlo approximations for numerical integrals. This
further enhances the efficiency and accuracy of implementing the PXQN Algorithm 2 as
well as the Flex-AL Algorithm 1.

5. Statistical properties of structure learning methods

In this section, we explore the statistical properties of our proposed DAG-constrained esti-
mator (8) for inferring causal structure from MuTPP data, allowing the dimension d to grow

with the total time length T. Let W∗ = (w∗i,j) ∈ Rd×d and W̃∗ = (w∗0,�,W
∗>)> ∈ R(d+1)×d
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denote the true weighted adjacency matrix and the true parameter matrix, respectively. We
utilize the commonly used metric, ‘Structural Hamming Distance (SHD)’, to evaluate the
performance of network structure recovery (Pamfil et al., 2020; Zhang et al., 2022a; Zheng
et al., 2018). In our context, SHD quantifies edge insertions, deletions, or flips needed to

transform the estimated network G(Ŵ) into the true network G(W∗). It is formally defined
as:

SHD(Ŵ,W∗) =
∑∑
1≤i 6=j≤d

I
(
sign(ŵi,j) 6= sign(w∗i,j)

)
= Ex(Ŵ,W∗) + Mi(Ŵ,W∗) + Rv(Ŵ,W∗), (31)

where the sign function sign(x) equals +1 if x > 0, 0 if x = 0, and −1 if x < 0;

Ex(Ŵ,W∗) =
∑∑

1≤i 6=j≤d I(ŵi,j 6= 0, w∗i,j = 0) counts extra edges (or ‘false positives’),
i.e., detected edges not existing in the true graph;

Mi(Ŵ,W∗) =
∑∑

1≤i 6=j≤d I(ŵi,j = 0, w∗i,j 6= 0) counts missing edges (or ‘false nega-
tives’), i.e., true edges not detected;

Rv(Ŵ,W∗) =
∑∑

1≤i 6=j≤d{I(ŵi,j > 0, w∗i,j < 0) + I(ŵi,j < 0, w∗i,j > 0)} counts reversed
edges between detected and true edges.

Two types of consistencies are examined:

For parameter estimation: ‖̂̃W − W̃∗‖F
P→ 0 as T→∞, (32)

For DAG recovery: P(SHD(Ŵ,W∗) = 0)→ 1 as T→∞, (33)

where ‘‖ · ‖F’ represents the Frobenius norm of a matrix. In this section, we employ the
Frobenius error as the evaluation metric for parameter estimation consistency, due to the
correspondence ‖W̃‖F = ‖w̃‖2, where the Euclidean norm ‖ · ‖2 is a widely-used metric for
vector magnitude in statistical literatures.

For brevity and a unified treatment of estimation methods dealing with structural con-
straints and sparsity features, we introduce an expanded estimator:

̂̃
Wκ,η = arg min

W̃∈R(d+1)×d:h(W)≤κ
L(W̃) + P(W;η). (34)

This estimator includes two subscripts, κ and η:

the scalar κ, equal to 0 or ∞, acts as a bound parameter for the DAG-ness function h(·),

the regularization parameter vector η relates to the weighted L1-penalty P(W;η) in (10).

In line with (34),

κ = 0 enforces the DAG constraint in the estimation, whereas κ = ∞ releases the DAG
constraint;

η = 0 excludes the use of regularization, while η 6= 0 incorporates regularized estimation.

14



DAG-informed structure Learning from point processes

Specifically:
̂̃
W0,η coincides with our proposed DAG-constrained regularized MLE estima-

tor
̂̃
W in (8), and

̂̃
W∞,η reduces to the routine nonDAG regularized MLE estimator.

By enforcing the DAG constraint h(W) = 0, it is expected that falsely-detected cycle-
inducing edges can be eliminated, potentially bringing the estimated graph closer to the
true DAG. This prompts a natural question: How does the DAG-constrained estimator̂̃
W0,η enhance reconstruction accuracy compared to the nonDAG estimator

̂̃
W∞,η? We

explore this inquiry under two scenarios for η:

(i) η = 0 in (34), indicating unregularized estimation of the true DAG network G(W∗),
especially in scenarios involving a large number of edges.

(ii) η 6= 0 in (34), implying regularized estimation of the true DAG network G(W∗),
particularly in scenarios involving a small number of edges.

Remark 2 A recent work (Chen et al., 2017) derived similar consistency results for the
L1-regularized non-constrained least-square estimator of network parameters for the non-
linear Hawkes process. However, the proof techniques therein are not applicable to our case.
Apart from our model and loss function being different from those in (Chen et al., 2017),
a major distinctive challenge in our theoretical analysis comes from the use of the DAG
constraint. Clearly, the DAG space D is a complex, non-convex subspace of Rd×d with
intricate topological properties. In addition, Ŵ0,η is not simply a projection of Ŵ∞,η onto

D, making the relationship between the estimation errors ‖Ŵ0,η−W∗‖F and ‖Ŵ∞,η−W∗‖F
quite complex. Thus, enforcing the DAG constraint essentially influences the theoretical
properties of the resulting network estimator and consequently presents significant challenges
in the theoretical analysis of statistical consistency. To the authors’ knowledge, there is no
existing work that applies similar types of structural constraints to multivariate point process
models. Our theories in this section are innovative in this research field.

For clarity, the technical conditions are listed and discussed below.

A1. In multi-dimensional point processes of dimension d ≥ 2, event occurrence time points
{Tj,`}j=1,...,d; `=1,...,Nj satisfy 0 < Tj,1 < · · · < Tj,Nj ≤ T for each j = 1, . . . , d.

A2. For the asymptotic setting in Section 5, the dimension d = dT is allowed to grow with
the time length T. For notational simplicity, we always abbreviate dT as d. Moreover,
we assume that d4/T→ 0 as T→∞.

A3. In (5), the ‘shape function’ g(·) : [0,∞) → [0,∞) is non-negative, continuous, mono-
tonically increasing, with g(0) = 0, and bounded from above, i.e., supx∈[0,∞) g(x) ≤ c0

for some constant c0 ∈ (0,∞).

A4. The parameter space Θ of W̃∗ is compact in R(d+1)×d. For each j = 1, . . . , d, ‖w̃∗�,j‖1 ≤
c1 for some constant c1 ∈ (0,∞).

A5. The true weighted adjacency matrix W∗ of the underlying directed graph is a DAG
containing no self-loops, i.e., w∗i,i = 0 for i = 1, . . . , d. This condition is equivalent to
h(W∗) = 0. Also, E(W∗) 6= ∅.
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A6. For each j = 1, . . . , d, λmin(∇2Lj,T(w̃∗�,j)) ≥ C for some positive constant C ∈ (0,∞),
with probability tending to 1.

A6′. For each j = 1, . . . , d, infw̃�,j∈Rd+1 λmin(∇2Lj,T(w̃�,j)) ≥ C for some positive constant
C ∈ (0,∞).

A7. The true weighted adjacency matrix W∗ satisfies that
√

T/d2 ·min(i,j)∈E(W∗) |w∗i,j | →
∞, as T→∞.

A8. For every j = 1, . . . , d, the (d + 1)-by-1 random vector ̂̃w�,j = (ŵ0,j , ŵ1,j , . . . , ŵd,j) =
arg minw̃�,j∈Rd+1 Lj,T(w̃�,j) satisfies that ŵi,j 6= 0 with probability one for each i =
0, 1, . . . , d.

Condition A1 relates to the fundamental definition of a multivariate point process. Con-
dition A2 specifies the diverging-dimension setting for our asymptotic results. Conditions
A3 and A4 ensure that the true CIF λ∗j (t | Ft) under model (4) is uniformly bounded from
above, i.e., supj=1,...,d; t∈[0,T] λ

∗
j (t | Ft) ≤ c for some constant c ∈ (0,∞) not depending on

T or d. Condition A5 relates to the formal definition of a DAG. Conditions A6 resembles
the conventional bounded eigenvalue condition (e.g., condition (F) in Fan and Peng (2004),
or condition A5 in Zhang et al. (2010)). Conditions A6′ is a sample-level version of con-
dition A6 used for establishing the global convergence of Flex-AL algorithm (Theorem 1
(ii)). Condition A7 states that the minimum signal strength min(i,j)∈E(W∗) |w∗i,j | is of higher

order than the estimation error rate OP(
√
d2/T). This ensures that the signs of non-zero

terms in W∗ could be correctly recovered with probability approaching to 1. Condition A8
implies that the non-regularized non-constrained MLE estimator ̂̃w�,j is non-sparse. These
conditions are not the weakest possible but facilitate the technical derivations.

We showcase an example of T, d, and W̃∗ that satisfy conditions A2, A4, A5, and A7.
Let d = dT1/5e,

w∗0,j = T−1/5, w∗i,j = T−1/5 · I(i > j), for i, j = 1, . . . , d.

Then, d4/T = O(T−1/5)→ 0 verifies condition A2; ‖w̃∗�,j‖1 ≤ (d+ 1) ·T−1/5 = O(1) verifies
condition A4; W∗ is a non-empty lower triangular matrix satisfying condition A5; and√

T/d2 ·min(i,j)∈E(W∗) |w∗i,j | = O(T1/10)→∞ verifies condition A7.

5.1 Scenario (i): without regularization (η = 0 in (34))

In this subsection, we consider the scenario where regularization is absent, i.e., η = 0 and
P(W;η) = 0 in (34). Let s∗ = |E(W∗)| =

∑∑
1≤i 6=j≤d I(w∗i,j 6= 0) denote the number of

edges in the true edge set E(W∗). According to Bang-Jensen and Gutin (2008) (Proposition
2.1.3), any weighted adjacency matrix W∗ of a DAG is a strictly upper triangular matrix, up
to a permutation of rows and columns. Therefore, at least half of the off-diagonal elements
in W∗ are zeros, implying that s∗ ≤ d(d− 1)/2; similar arguments used in (C.20).

Lemma 3 demonstrates that in the absence of regularization, the nonDAG unregularized

estimator
̂̃
W∞,0 corresponding to κ =∞ and η = 0 in (34) achieves parameter estimation

consistency, but induces inconsistency in DAG recovery.
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Lemma 3 (Inconsistency of (33) from nonDAG unregularized
̂̃
W∞,0) Assume con-

ditions A1–A6 and A7–A8 in Section 5. For κ = ∞ and η = 0 in (34), if d4/T → 0 as

T→∞, then there exists a global minimizer
̂̃
W∞,0 of the nonDAG unregularized optimiza-

tion problem (34), such that ‖̂̃W∞,0 − W̃∗‖F = OP(
√
d2/T), and the following relations

hold with probability tending to 1:

Ex(Ŵ∞,0,W
∗) = d(d− 1)− s∗, Mi(Ŵ∞,0,W

∗) = 0, Rv(Ŵ∞,0,W
∗) = 0,

and SHD(Ŵ∞,0,W
∗) = d(d− 1)− s∗ ≥ 1.

(35)

The square-root convergence rate OP(
√
d2/T) is a standard result for the MLE estima-

tors in discrete time-indexed models (e.g., for i.i.d. observations in Fan and Peng (2004);
Zhang et al. (2010)). However, such results have not been well studied in the context of
continuous-time MuTPP data in (1), which typically do not exhibit strict-sense station-
ary. Examining (35) reveals that the SHD primarily originates from falsely detected edges,

where P(SHD(Ŵ∞,0,W
∗) = Ex(Ŵ∞,0,W

∗))→ 1 as T→∞. Since s∗ should never exceed
d(d− 1)/2 for DAGs, result (35) further implies that

SHD(Ŵ∞,0,W
∗) = d(d− 1)− s∗ ≥ d(d− 1)/2,

indicating that at least d(d−1)/2 falsely-detected edges in the estimated edge set E(Ŵ∞,0).

This explains why the nonDAG unregularized estimator
̂̃
W∞,0 fails to achieve DAG recovery

consistency.

In stark contrast to
̂̃
W∞,0, the DAG-constrained counterpart

̂̃
W0,0 not only reduces the

error bound of SHD by at least d(d − 1)/2 but also maintains both parameter estimation
and DAG recovery consistency, especially when the true network is sufficiently dense, as
established in Theorem 4.

Theorem 4 (Consistency of (32)–(33) from DAG-constrained unregularized
̂̃
W0,0)

Assume conditions A1–A6 and A7 in Section 5. For κ = 0 and η = 0 in (34), if d4/T→ 0

as T → ∞, then there exists a global minimizer
̂̃
W0,0 of the DAG-constrained unregular-

ized optimization problem (34), such that ‖̂̃W0,0− W̃∗‖F = OP(
√
d2/T), and the following

relations hold with probability tending to 1:

Ex(Ŵ0,0,W
∗) ≤ d(d− 1)/2− s∗, Mi(Ŵ0,0,W

∗) = 0, Rv(Ŵ0,0,W
∗) = 0,

and SHD(Ŵ0,0,W
∗) ≤ d(d− 1)/2− s∗.

(36)

Moreover, if the true graph is a dense DAG satisfying d(d− 1)/2− s∗ = o(1), then we have

P(SHD(Ŵ0,0,W
∗) = 0)→ 1.

After imposing the DAG constraint h(W) = 0 (i.e., setting κ = 0 in (34)), the DAG-

constrained unregularized estimator
̂̃
W0,0 retains the same convergence rate OP(

√
d2/T)

as that of the nonDAG counterpart
̂̃
W∞,0 in Lemma 3. Comparing (36) with (35), the

reduction of SHD by at least d(d− 1)/2 (i.e., half of the total number of edges) reflects the

significant improvement resulting from enforcing the DAG constraint. Furthermore,
̂̃
W0,0

is capable of achieving DAG recovery consistency under sufficiently dense networks, even
without utilizing regularization techniques.

17



Zhang, Gao, and Jia

5.2 Scenario (ii): with regularization (η 6= 0 in (34))

Lemma 3 and Theorem 4 in Section 5.1 demonstrate that in the absence of regularization,
DAG recovery consistency is only achieved when the true DAG is sufficiently dense. For
sparse DAGs, regularization is a common technique to promote sparsity in the structure and
ensure model selection consistency. Several recent works (Loh and Bühlmann, 2014; Nandy
et al., 2018; Van de Geer and Bühlmann, 2013) have studied the DAG recovery consistency
of DAG-constrained regularized estimators for learning linear structural equation models.
However, these studies were limited to the context of multivariate Gaussian distribution for
observed variables and, therefore, are not directly applicable to MuTPP models for counting
process data as described in (7). Another recent work (Pamfil et al., 2020) developed a DAG
learning method for SVAR models on time-series data, yet with no theoretical guarantees
provided.

In this subsection, we investigate the consistency of our proposed DAG-constrained reg-

ularized estimator
̂̃
W in (8), or equivalently,

̂̃
W0,η in (34), which incorporates the weighted

L1-penalty P(W;η) =
∑∑

1≤i 6=j≤d ηi,j |wi,j | specified in (10). Let Ec(W) = {(i, j) ∈
V × V : i 6= j; wi,j = 0} be the complement of the edge set E(W). We outline some
necessary regularity conditions for regularization parameters ηi,j in η:

max
(i,j)∈E(W∗)

ηi,j = OP(
√
d2/(s∗T)), (37)

min
(i,j)∈Ec(W∗)

√
T/d3 ηi,j

P→∞ as T→∞, (38)

which share similarities with assumptions used in Fan and Peng (2004); Zhang et al. (2010).

Lemma 5 presents the consistency results for the nonDAG regularized estimator
̂̃
W∞,η with

κ =∞ in (34).

Lemma 5 (Consistency of (32)–(33) from nonDAG regularized
̂̃
W∞,η) Assume con-

ditions A1–A6 and A7 in Section 5. For κ =∞ in (34) and η in (34) satisfying conditions

(37) and (38), if d4/T → 0 as T → ∞, then there exists a global minimizer
̂̃
W∞,η of the

nonDAG regularized optimization problem (34), such that ‖̂̃W∞,η − W̃∗‖F = OP(
√
d2/T),

and P(SHD(Ŵ∞,η,W
∗) = 0)→ 1.

Lemma 5 demonstrates that the nonDAG regularized estimator
̂̃
W∞,η achieves both

parameter estimation consistency (32) and DAG recovery consistency (33), if the weighted
L1-penalty is equipped with appropriate regularization parameters in η. Regarding the

DAG-constrained regularized estimator
̂̃
W0,η, Theorem 6 justifies its capability to achieve

both consistencies (32)–(33), when using the same weighted L1-penalty.

Theorem 6 (Consistency of (32)–(33) from DAG-constrained regularized
̂̃
W0,η )

Assume conditions A1–A6 and A7 in Section 5. For κ = 0 in (34) and η in (34) sat-
isfying conditions (37) and (38), if d4/T → 0 as T → ∞, then there exists a global

minimizer
̂̃
W0,η of the DAG-constrained regularized optimization problem (34), such that

‖̂̃W0,η − W̃∗‖F = OP(
√
d2/T), and P(SHD(Ŵ0,η,W

∗) = 0)→ 1.
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From an asymptotic perspective, Lemma 5 and Theorem 6 affirm that both estimatorŝ̃
W∞,η and

̂̃
W0,η, with appropriate regularization parameters in η, can achieve both con-

sistencies in (32) and (33). For finite data samples, simulation experiments in Section 6

demonstrate that the DAG-constrained regularized estimator
̂̃
W0,η benefits from conceiv-

ably better recovery accuracy than the nonDAG counterpart
̂̃
W∞,η. This lends empirical

support to the advantage of utilizing the DAG constraint in exploring the structure.
Our asymptotic theories in Section 5 are based on the diverging-dimension setting, where

d grows with T as T→∞. Beyond d, other model parameters, such as the true parameter
matrix W̃∗ and the number s∗ of non-zero parameters, also depend on d and thus vary with
both d and T. In contrast to the fixed-dimension case in Gao et al. (2024), simultaneously

managing multiple varying variables—d, W̃∗, and s∗—is far more complex and challenging.
To address this, we impose conditions on these variables (see conditions A2, A4, A5, and
A7 in Section 5) and employ two main techniques: (i) applying probabilistic results that
are non-asymptotic in T and d, unaffected by the diverging-dimension setting (see proofs of
our Lemmas C.1–C.4), and (ii) adapting proof techniques from the fixed-dimension setting
to our case, such as those used in our Lemmas C.6 and C.7, which modify Lemma B.18 and
Theorem 7 of Gao et al. (2024).

6. Simulation studies

To demonstrate the practical utility of our proposed DAG learning method, we conduct
simulation experiments varying in scale, sparsity levels of DAGs and time lengths T of the
temporal point process data.

6.1 Setup

We consider several types of true underlying DAGs:

Network 1: A small-scale sparse DAG with 10 nodes and 15 edges.

Network 2: A small-scale dense DAG with 10 nodes and 40 edges.

Network 3: A large-scale sparse DAG with 50 nodes and 190 edges.

Network 4: An extra-large sparse DAG with 100 nodes and 392 edges.

Here, ‘small/large’-scale refers to the number of nodes in the true graph, and ‘sparse/dense’
relates to the number of true edges. These DAGs are visualized in Figure 1.

The point process data is generated using model (4) with true covariates:

x∗i (t) = g
(
Ni((t− φ, t])/φ

)
, t ∈ [0,T], i = 1, . . . , d,

where φ = 1, and g(x) = log{1 + min(x, 10)}. (39)

For each node j = 1, . . . , d, the true baseline parameters are set as w∗0,j = −0.8. For
i, j = 1, . . . , d, the true interaction parameters from node i to node j are w∗i,j = 0.5 for an
excitatory effect, w∗i,j = −0.5 for an inhibitory effect, w∗i,j = 0 for no effect. The total time
length T is selected from grid points ranging between 300 and 1600.
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We compare the proposed DAG-constrained method and the unconstrained method
nonDAG using three choices of the penalty term: (i) No penalty: P(W;η) = 0 (i.e.,
ηi,j ≡ 0 in (10)). (ii) The L1-penalty: P(W;η) = η1

∑∑
1≤i 6=j≤d |wi,j | (i.e., ηi,j ≡ η1 in

(10)). (iii) The weighted L1-penalty in (10):

P(W;η) =
∑∑
1≤i 6=j≤d

ηi,j |wi,j |, with ηi,j = η2 |w̆i,j |−2, (40)

where w̆i,j is the MLE estimator of w∗i,j , and ηi,j in (40) adopts the weight η = λ/|w̆i,j |γ
used by the adaptive lasso penalty (Zou, 2006), with γ = 2. Both tuning parameters η1

and η2 are chosen by minimizing the Bayesian Information Criterion (BIC) function (Nishii,
1984), widely used in model selection under large-dimensional settings (e.g., Tang and Li,
2021; Zhao et al., 2012). The methods’ abbreviations are summarized in Table 1. The
performance evaluation of each method includes error measures: ‘false positive (Ex)’, ‘false
negative (Mi)’, ‘structural hamming distance (SHD)’, and ‘false discovery rate (FDR)’. The

first three error measures are defined in (31), while the FDR of an estimator Ŵ is defined
as:

FDR(Ŵ,W∗) = {Ex(Ŵ,W∗) + Rv(Ŵ,W∗)}/max{|E(Ŵ)|, 1}.

Here, |E(Ŵ)| =
∑∑

1≤i 6=j≤d I(ŵi,j 6= 0), counting the number of identified edges.

Table 1: Description of estimation methods in numerical studies

abbreviation description of estimation methods

‘DAG-unreg’ DAG-constrained and unregularized MLE,
̂̃
W0,0 in (34) without penalty.

‘nonDAG-unreg’ non-DAG and unregularized MLE,
̂̃
W∞,0 in (34) without penalty.

‘DAG-L1’ DAG-constrained and L1-regularized MLE,
̂̃
W0,η in (34).

‘nonDAG-L1’ non-DAG and L1-regularized MLE,
̂̃
W∞,η in (34).

‘DAG-wL1’ DAG-constrained and weighted-L1-regularized MLE,
̂̃
W0,η in (34).

‘nonDAG-wL1’ non-DAG and weighted-L1-regularized MLE,
̂̃
W∞,η in (34).

6.2 Network 1 and Network 2

In this subsection, we present simulation results for the small-scale DAGs Networks 1 and
2 (illustrated in Figure 1).

Figure 2 displays the simulation results for Network 1. In learning this sparse network,
the unregularized methods, namely ‘nonDAG-unreg’ and ‘DAG-unreg’, exhibit significantly
inferior performance compared to the regularized methods, primarily due to a larger number
of false positives (Ex). Therefore, Figure 2 uses log(Ex+1), log(Mi+1), and log(SHD+1) on
the y-axes for various methods. Across all penalty choices, the DAG-constrained method
outperforms its nonDAG counterpart concerning Ex, SHD, and FDR. However, for Mi,
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the impact of adding the DAG constraint seems negligible. This indicates that the cyclic-
ity constraint effectively reduces SHD and FDR, primarily by reducing the number of Ex.
Comparing the two penalties, the weighted L1-penalty generally exhibits better performance
than the L1-penalty in terms of SHD, while for Ex and FDR, the same conclusion holds
under large time lengths T ∈ {900, 1200, 1500}. Notably, for ‘nonDAG-wL1’ and ‘DAG-
wL1’ methods, SHDs approach zero with increasing total time length T, in line with our
theoretical results (Lemma 5 and Theorem 6) on DAG recovery consistency in Section 5.2.
While both the regularization technique and the DAG constraint can improve estimation
accuracy, they do so through different structural impacts on the estimated network: regu-
larization enhances the sparsity of the network, whereas the DAG constraint enforces the
acyclicity property in the resulting causal graph. In practice, the weighted L1-penalty and
the DAG constraint are both indispensable and need to be used together to achieve the
best result. As seen from Figure 2, ‘DAG-wL1’ demonstrates the best overall performance,
evidenced by the lowest SHD across all methods and various time lengths T.

For the dense Network 2, as depicted in Figure 3, the conclusions parallel those of
Network 1. Irrespective of the sparsity level in the true graph, the DAG-constrained
method consistently outperforms its nonDAG counterpart. Notably, the performance of the
DAG-constrained unregularized method, ‘DAG-unreg’, significantly diminishes (in terms of
Ex, SHD, and FDR) compared to the nonDAG counterpart, ‘nonDAG-unreg’. Its perfor-
mance becomes comparable to that of the regularized methods (‘nonDAG-L1’, ‘DAG-L1’,
‘nonDAG-wL1’, and ‘DAG-wL1’). These results align with the theoretical findings (Lemma
3 and Theorem 4) from Section 5.1, indicating that the ‘DAG-unreg’ method achieves
DAG recovery consistency for sufficiently dense networks. In contrast, the ‘nonDAG-unreg’
method consistently falls short of reaching this goal. Thus, imposing the DAG constraint
significantly enhances DAG learning accuracy, particularly for dense DAGs.

6.3 Network 3

In Network 3, represented by a large sparse DAG with 50 nodes (as depicted in Figure 1),
the simulation results are summarized in Figure 4. Similar to Network 1, the unregularized
methods, namely ‘nonDAG-unreg’ and ‘DAG-unreg’, demonstrate significantly less effective
performance compared to the regularized methods and are therefore omitted.

The overall conclusion, as depicted in Figure 4, largely concurs with the findings from
Figures 2 and 3. The DAG-constrained methods, ‘DAG-L1’ and ‘DAG-wL1’, consistently
outperform the unconstrained methods, ‘nonDAG-L1’ and ‘nonDAG-wL1’, in terms of SHD
and FDR, particularly with a large time length T. This shows that incorporating the
DAG constraint consistently enhances the accuracy of structure learning across networks of
varying scales. An interesting finding from Figure 4 is the sharp decrease in SHD observed
in the L1-regularized methods, ‘nonDAG-L1’ and ‘DAG-L1’, from T = 800 to T = 1200.
In contrast, the SHDs for ‘nonDAG-wL1’ and ‘DAG-wL1’ decrease steadily with increasing
time length T. This observation suggests that the weighted L1-penalty performs better and
exhibits more stable behavior compared to the L1-penalty, especially for large networks.

Figure 5 offers a comprehensive comparison of the estimated networks generated from
all four methods for a randomly selected dataset with a time length T = 1200. Clearly, the
DAG-constrained methods, ‘DAG-L1’ and ‘DAG-wL1’, produce sparser estimated graphs
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with significantly smaller SHDs compared to those obtained from the nonDAG methods,
‘nonDAG-L1’ and ‘nonDAG-wL1’. Similar comparative plots for Network 1 and Network
2 are provided in Figures 11 and 12 of supplementary Appendix A. These results confirm
that applying the DAG constraint effectively reduces falsely-detected cycle-inducing edges,
resulting in a more accurate reconstruction of the true DAG.

6.4 Network 4

To evaluate the scalability of our proposed method with larger network sizes, we conducted
simulation experiments on Network 4, an extra-large sparse DAG comprising 100 nodes as
depicted in Figure 1. The simulation results are summarized in Figure 6. Note that the
number of model parameters is 100×101 = 10, 100, while the sample size (the total number
of time stamps

∑d
j=1 Nj) for T ∈ [600, 2400] is typically between 30, 000 and 1, 000, 000,

exceeding the number of parameters. The conclusions drawn from Figure 6 align consistently
with those derived from Networks 1, 2, and 3. The DAG-constrained methods, namely
‘DAG-L1’ and ‘DAG-wL1’, consistently outperform the unconstrained methods ‘nonDAG-
L1’ and ‘nonDAG-wL1’ in terms of SHD and FDR, especially evident in scenarios with
a larger time length T. This outcome validates the effectiveness of our proposed DAG-
constrained method, showcasing its capability in achieving both estimation accuracy and
computational efficiency, even when dealing with very large DAGs comprising approximately
10, 000 network parameters.

6.5 Computational time of Flex-AL algorithm

To evaluate the computational efficiency of our proposed Flex-AL algorithm in Section 4.2,
we conducted additional simulation experiments comparing its runtime against the classical
Clas-AL algorithm in Section 4.1. For each simulation replication, both algorithms are
employed using the ‘DAG-wL1’ and ‘DAG-unreg’ methods to estimate Network 3. The
total time length of the synthetic point process data was fixed at T = 1200. To ensure a
fair comparison, identical step sizes {βα, βρ, γα, γρ} were utilized in both algorithms (refer
to (20), (21), (23), and (24)), specifically set to βα = βρ = γα = γρ = 5. Both algorithms
adopted the same stopping rule described in Section 4.2, terminating once h(W(k)) < εh at
a ceratin iteration step k = k̂, with εh = 10−5. Figure 7 presents the results derived from
100 replications.

The left panels display the Frobenius norm of the difference between the iterative up-

date W̃(k) and the final output solutions
̂̃
W = W̃(k̂) averaged across 100 replicate samples,

against the iteration step k. It’s evident that the Flex-AL algorithm achieves convergence
in fewer iterations (averaging within 5 steps) compared to the Clas-AL algorithm (averag-
ing more than 10 steps). The right panels depict boxplots showcasing the runtime for the

final solutions
̂̃
W = W̃(k̂) across 100 replications. Clearly, the Flex-AL algorithm achieves

convergence faster than the Clas-AL algorithm. Comparable plots for Network 1 and Net-
work 2 are given in Figures 13 and 14 in the supplementary appendix. These results offer
convincing evidence of the computational efficiency of our Flex-AL algorithm, reinforcing
the conclusions outlined in Section 4.2. To provide further numerical evidence, we consider
an additional simulation scenario where the step size is fixed at γα = 5 in Flex-AL, while
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varying the step sizes βα ∈ {1, 5, 50, 500} for the Clas-AL algorithm. Figure 15 displays the
results for Network 2. It can be seen that Flex-AL achieves faster convergence with fewer
iterations and less computational time compared to Clas-AL across all selected step sizes
βα. This result underscores the advantage of Flex-AL over Clas-AL, regardless of the step
size values.

7. Real data analyses

In this section, we demonstrate the applications of our proposed method to two distinct real-
world MuTPP datasets: one involving neuronal spike train data, and the other concerning
an Internet Protocol television viewing record dataset.

7.1 Neuronal spike train data

We analyze the neuronal spike train dataset in Fujisawa et al. (2008), comprising multi-
neuron recordings obtained from rats performing a working memory task. This dataset,
available at http://crcns.org/data-sets/pfc/pfc-2/about-pfc-2, includes 89 record-
ing sessions, each corresponding to an experimental period spanning approximately 23.37
hours. For consistency with previous findings, we select the session ‘EE.188’ used in Fuji-
sawa et al. (2008). This session contains spike train data recorded from 117 isolated neurons
in the rat medial prefrontal cortex and intermediate CA1 area of the hippocampus during
a 46.87-minute working memory task. Before applying our method, we conduct a data
cleaning procedure. Among the 117 neurons, 15 neurons (ID numbers: 4, 11, 15, 19, 25, 27,
46, 93, 126, 129, 151, 178, 209, 285, 290) either initiate spiking too late (after t = 100 sec)
or cease spiking too early (before t = 2600 sec) and are thus excluded from our analysis.
Subsequently, the cleaned dataset comprises a total of 629, 800 spike time stamps from the
remaining 102 neurons within the time interval [100, 2600] seconds, totally 2500 seconds in
duration. Following the cleaning process, we partition the data into two sets: the training
set encompassing spikes within the time range of [100, 1600] seconds, and the testing set
containing spikes between [1600, 2600] seconds.

We employ both the ‘nonDAG-wL1’ and ‘DAG-wL1’ methods (as described in Table 1)
to the training dataset. For both methods, we use a lag-width φ = 1, considering that a
neuron’s spiking activity may influence other neurons within a short period of time-lag of up
to one second, as discussed in Truccolo et al. (2005). Both methods utilize the shape function
g(x) = log{1 + min(x, 10)} and the weighted L1-penalty as described in (39) and (40).
Figure 8 presents the estimated network graphs alongside the corresponding heat maps.
As anticipated, both methods tend to identify more excitatory effects than inhibitory ones.
This aligns with the typical physiological configuration where the proportion of excitatory
(pyramidal) neurons often exceeds that of inhibitory interneurons (refer to Fujisawa et al.
(2008); Zhao et al. (2012)). Notably, specific neurons (ID number: 30, 52, 120, 135, 156,
201, 245, 295) exhibit significantly more excitatory effects from other neurons, hinting
at their probable characterization as interneurons. This observation primarily echoes the
outcomes presented in Figures 2 and 3 of Fujisawa et al. (2008). Comparing the heat map
presented in Figure 3b of Fujisawa et al. (2008), where most identified effects are close to the
diagonal, our heat maps in Figure 8 display a more evenly distribution of detected effects.
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This disparity suggests that our methods might capture a broader spectrum of interactions
within the neuron ensemble.

In Figure 8, the comparison between the ‘nonDAG-wL1’ and ‘DAG-wL1’ methods reveals
that ‘DAG-wL1’ yields a sparser graph compared to ‘nonDAG-wL1’. Due to the acyclicity
constraint, the ‘DAG-wL1’ method eliminates cycle-inducing edges, resulting in a network
with fewer edges than the one obtained from the ‘nonDAG-wL1’ method. To illustrate this
contrast further, Figure 9 showcases the estimated sub-networks involving 8 selected neurons
(ID numbers 52, 54, 72, 73, 135, 186, 245, 276). Clearly, the ‘nonDAG-wL1’ method detects
a number of cycles formed by mutually excitatory or inhibitory neurons (e.g., 52 � 72, 72 �
135, 52 � 245, 54 � 276), indicating potential ‘co-firing’ neurons; in contrast, the ‘DAG-
wL1’ method eliminates these cycles and obtains a DAG. Note that the co-firing pattern
typically represents a high level of cross-correlation (Roux et al., 2022) between neurons,
but does not imply any causal relationship. Thus, removing one or two edges from the
mutual connections between these co-firing neurons may better identify the acyclic causal
effect as well as the direction of information flow. A closer inspection reveals that the ‘DAG-
wL1’ method, in most times, removes the weaker effect and retains the stronger ones (e.g.,
245→ 186, 135→ 72, 73→ 245). In some instances, the ‘DAG-wL1’ method removes both
effects between neurons (e.g., 52 and 72). By eliminating these cycles, ‘DAG-wL1’ identifies
causal chains among these neurons. For instance, 135 → 72 → 245 → 186 represents one
such chain, demonstrating that causal effects propagate along this sequence. Note that in
such causal chains, the detected causal effect flows from the neuron on the left (chain head)
to the one on the right (chain tail), but not in the reverse direction. This demonstrates the
directionality of causal relationships and the potential information flow within this neuron
ensemble. It is important to note that our detected causal network basically represents
the statistical causal relationships, which are different concepts from the actual neuronal
connections in the brain. In this regard, our estimation results cannot be directly validated
by biological facts. Nevertheless, our inferred causal network is valuable for assisting further
research on neuronal behaviors and information transmission mechanisms in the brain.

To assess the goodness-of-fit, we use the predictive log-likelihood (PLL) metric, cal-
culated as the log-likelihood of the estimated model fitted to the testing dataset. Table
2 displays the results for both methods, showing that the ‘DAG-wL1’ method achieves a
higher PLL compared to the ‘nonDAG-wL1’ method. This indicates that employing the
DAG constraint enhances model fitting and prediction performance. In summary, these
findings underscore the advantage and utility of our proposed ‘DAG-wL1’ method.

7.2 IPTV viewing record data

We test our proposed method on the IPTV (Internet Protocol television) viewing record
dataset, which is publicly available and accessible at https://ieee-dataport.org. This
dataset consists of logs of TV channel watching events from 13, 246 IPTV viewers in
Guangzhou, P.R. China, during a one-month period in August 2014. Each data point
corresponds to one watching session of one user, containing the information of the user ID
(in the range of [1, 13246]), the channel ID (157 channel ID numbers in total, in the range of
[1, 817]), the starting time point, and duration of this watching session. In the user viewing
behavior study (e.g., Luo et al., 2015; Xu et al., 2016), it is commonly assumed that a user’s
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watching one type of channel would either prompt or inhibit the viewing of another channel
a short period afterward. For example, viewing a sports channel may trigger users to watch
a fitness channel afterwards, but might reduce the users’ interests in watching a children’s
channel (since sport programs are typically watched by adults). Motivated by this aspect,
we aim to explore the causal effects of viewing behaviors among different channels. To
extract the MuTPP from the IPTV data, we first exclude those data points of watching
sessions with durations less than 10 minutes, since a too-short duration is typically caused
by some random switches of channels and may not reflect meaningful information about
the user behavior. We then extract from the remaining data the ordered time sequence
T j = (Tj,1, Tj,2, . . . , Tj,Nj ) for each channel j, with each Tj,` ∈ [0, 768] (hours) being the
starting time point of one watching session. Among the 157 channels, 76 of them are con-
sidered as ‘rarely watched’, with less than 1000 data points in the extracted sequence T j
(i.e., with Nj less than 1000), and thus are excluded from our analysis. After this data
cleaning and preprocessing procedure, we obtain our MuTPP data {T j}j=1,...,d with a total
number of 888, 820 timestamps, extracted from the remaining d = 81 channels in a period of
length 768 hours. This cleaned data is split into the training set (containing timestamps in
the first 400 hours) and the testing set (containing timestamps in the following 368 hours).

As a comparison, both the ‘nonDAG-wL1’ and ‘DAG-wL1’ methods are applied to the
training data using the same covariates and weighted L1-penalty as defined in (39) and
(40), with φ = 1 and g(x) = log{1 + min(x, 10)}. Figure 10 exhibits the estimated network
graphs and the corresponding heat maps. It is observed from the top panels of Figure 10
that most of the detected effects in the two estimated networks are excitatory effects, while
the number of detected inhibitory effects is much fewer. This is reasonable according to our
conventional knowledge, as watching a certain type of TV program would more often trigger
watching other related TV programs, but less often cause any inhibition. Among the 81
selected channels, 3 channels (with ID numbers 20, 78, 136) produce notably larger numbers
of excitatory effects, that is, each of them triggers more than 10 other channels, as observed
from both of the two detected networks. Therefore, it is anticipated that these 3 channels
may broadcast some high-quality programs, e.g., popular live TV shows or newly released
TV series, which trigger users to view the related replays, recaps, or news later on. For the
comparison between the two estimation methods, ‘DAG-wL1’ detects a sparser and clearer
acyclic network, while ‘nonDAG-wL1’ gives a relatively denser and more tangled network,
in which a number of cycles or mutually connected pairs of nodes could be observed. These
cycles may cause ambiguities as for which channels in the cycle are the authentic hosts
of those high-quality programs that trigger users to watch other programs or enhance the
TV rating points. In contrast, our proposed ‘DAG-wL1’ method is able to eliminate these
cycles in the detected network, and provides a more convincing inference result on the
causal structure among the selected channels. Our detected DAG causal network provides
various practical guidelines e.g., for TV directors to improve program qualities, and for ad
agencies to find the best option of TV channels to advertise. Table 2 presents the PLL
results of the two methods on the testing data to evaluate their model fitting performance.
The results show that ‘DAG-wL1’ outperforms ‘nonDAG-wL1’ in terms of PLL, indicating
its superior ability for model fitting and prediction. In summary, our proposed ‘DAG-wL1’
method has demonstrated stronger interpretability, accuracy, and practicality in this case
study on real-world IPTV data.
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8. Discussion

This paper presents a novel investigation into the causal structure of continuous-time
MuTPP, with large scales in dimensions and duration. Our approach operates under the
belief that amidst all possible interactions between nodes, only a small fraction represent
genuinely significant causal effects, forming a sparse DAG that encapsulates the complete
causal structure. Our proposed method integrates the DAG structural constraint with
sparsity-inducing regularization in the estimation procedure. This dual imposition ensures
the estimated network is both acyclic and guarantees the insignificance of certain interac-
tions by setting their parameters to precisely zero. We develop the computationally efficient
Flex-AL algorithm designed to solve the resultant DAG equality-constrained optimization
problem. Additionally, our work offers new theoretical insights into the proposed estimator’s
capabilities for graph parameter estimation and DAG reconstruction. Beyond illustrating
its efficacy with examples from neuronal spike train data and the IPTV viewing record
data, our method could be applicable to various real-world MuTPP datasets where a causal
structure underlies node interactions.

Several challenging issues need further exploration: (a) The non-convex nature of the
DAG-ness function h(w) leads to a non-convex f(w̃) in the subproblem (25). The global
convergence property of the PXQN algorithm under such conditions remains largely un-
clear in the existing literature. It is also pertinent to investigate whether and under what
conditions Algorithm 2, aimed at solving the subproblem (25), maintains a super-linear
convergence rate with an increasing number of iterations. (b) The combination of imposing
the DAG constraint with the weighted L1-penalty could enhance structure learning accu-
racy, as evidenced both empirically in the simulation studies of Section 6 and theoretically
in the asymptotic results of Section 5, across multiple useful scenarios. Moreover, it is worth
evaluating the impact of the DAG constraint in scenarios where the regularity conditions
(37) and (38) for weights are relaxed or violated. Additionally, exploring other types of
penalties beyond the weighted L1-penalty in regularization could be insightful. (c) Our
DAG causal graph is based on the classic setup of acyclic causal structure established in
Pearl (2009), but such types of DAG assumptions may not necessarily hold for all actual
situations. In certain real applications, special types of cyclic casual effects may also ap-
pear, e.g., the feedback cycles in economic processes (Spirtes, 2013). In such cases, it is
of interest to relax the DAG constraint appropriately so that these special types of cyclic
causal effects can also be accommodated. (d) This work establishes a new framework that
links causal graphical models to multivariate point process data. As far as we know, no
existing work has considered the influence of confounders on the point process data. To deal
with potential confounders which interact with the point process data, a possible strategy
is to include confounder variables in the model, combined with reasonable assumptions of
parametric or non-parametric distributions for these variables. These pursuits are left as
our future research.
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Appendix A. Supplementary results for numerical experiments

A.1 Algorithms 1 and 2

Algorithm 1 Flexible Augmented Lagrangian (Flex-AL) algorithm for solving (12)

Input: Point process data {T j}j=1,...,d, initial guess W̃(0) = 0(d+1)×d, α
(0) = 1, ρ(0) = 1,

step sizes γα > 1 and γρ > 1, tolerance εh > 0, threshold ω > 0.
1: for k = 0, 1, 2, . . . do
2: Solve program (19): W̃(k+1) ← arg min

W̃∈R(d+1)×d L(W̃, α(k); ρ(k)).

3: Update α and ρ via (23)–(24): α(k+1) ← γα α
(k), ρ(k+1) ← γρ ρ

(k).

4: Check stopping criteria: if h(W(k+1)) < εh, set k̂ = k + 1 and terminate.
5: end for

Output: Thresholded estimator W(k̂) ◦ I(|W(k̂)| > ω) of the weighted adjacency matrix.

Algorithm 2 Proximal Quasi-Newton (PXQN) algorithm for solving (25)

Input: Point process data {T j}j=1,...,d, initial guess w̃(0) = 0, tolerance εg > 0.
1: for k = 0, 1, 2, . . . do
2: Compute the current gradient ∇f(w̃(k)) via (27).

3: Check stopping criteria: if ‖∇f(w̃(k))‖2 < εg, set w̃ = w̃(k) and terminate.

4: Update the L-BFGS approximation B(k) of Hessian matrix ∇2f(w̃(k)).

5: Compute the descent direction d̃
(k)

by solving (29) via the coordinate descent algo-
rithm.

6: Line search for the step size β(k) until the Armijo rule (30) is satisfied.

7: Generate the new iterate w̃(k+1) ← w̃(k) + β(k) d̃
(k)

.
8: end for

Output: The solution vector w̃ of (25).
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A.2 Figures of simulation studies in Section 6

Figure 1: (Network 1, Network 2, Network 3, and Network 4) Network 1: a small
sparse DAG of 10 nodes, with 8 excitatory and 7 inhibitory effects. Network 2: a small dense
DAG of 10 nodes, with 20 excitatory and 20 inhibitory effects. Network 3: a large sparse
DAG of 50 nodes, with 96 excitatory and 94 inhibitory effects. Network 4: an extra-large
sparse DAG of 100 nodes, with 197 excitatory and 195 inhibitory effects. Red solid lines
with arrows represent excitatory effects; blue dashed lines with arrows denote inhibitory
effects.
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Figure 2: (Network 1 – small sparse DAG: simulation results) Compare methods
in Table 1. Top left: ‘log(Ex + 1)’; top right: ‘log(Mi + 1)’; bottom left: ‘log(SHD + 1)’;
bottom right: ‘FDR’. Results are averaged over 100 replicate samples for each time length
T ∈ {600, 900, 1200, 1500}.
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Figure 3: (Network 2 – small dense DAG: simulation results) The caption is similar
to that of Figure 2, except for Network 2.
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Figure 4: (Network 3: simulation results) The caption is similar to that of Figure 2,
except for Network 3, with time length T ∈ {400, 800, 1200, 1600}.
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Figure 5: (Network 3: estimated networks) Left column: true Network 3; middle and
right columns: estimated networks for one simulated dataset using methods ‘nonDAG-L1’,
‘DAG-L1’, ‘nonDAG-wL1’, and ‘DAG-wL1’ from Table 1, with T = 1200.
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Figure 6: (Network 4 – extra-large sparse DAG: simulation results) The
caption is similar to that of Figure 4, except for Network 4, with time length T ∈
{600, 1200, 1800, 2400}.
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Figure 7: (Network 3: comparing computational times of algorithms) Left panel:

average approximation error ‖W̃(k) − ̂̃W‖F over 100 replicate samples versus the iteration

step k; right panel: boxplots of runtime for estimators
̂̃
W across replications. Top row:

‘DAG-wL1’ method; bottom row: ‘DAG-unreg’ method. T = 1200.
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A.3 Figures and tables of real data analysis in Section 7

Table 2: (Real datasets) Predictive log-likelihood (PLL) for each method.

Data nonDAG-wL1 DAG-wL1

Neuron spike train data in Section 7.1 188.59 189.02

IPTV viewing record data in Section 7.2 2637.0 2671.2

Figure 8: (Real spike train data: estimated networks) Estimated network graphs
and heat maps using the ‘nonDAG-wL1’ method (left panel) and ‘DAG-wL1’ method (right
panel). In the network graphs, the numbers represent neuron ID numbers. Red solid lines
with arrows: excitatory effects; blue dashed lines with arrows: inhibitory effects. In the
heat maps, red, blue, and background green colors correspond to excitatory, inhibitory, and
no effect on the target neuron from the trigger neuron, respectively. The exact color is
determined by the interaction strength.
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Figure 9: (Real spike train data: estimated sub-networks) Left panel: estimated
sub-network graph using the ‘nonDAG-wL1’ method; right panel: estimated sub-network
graph using the ‘DAG-wL1’ method. The numbers represent neuron ID numbers. Red solid
lines with arrows: excitatory effects; blue dashed lines with arrows: inhibitory effects.

Figure 10: (IPTV viewing record data: estimated networks) The caption is similar
to that of Figure 8, expect for the IPTV viewing record data.
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A.4 Additional illustrations for simulation studies in Section 6

Figure 11: (Network 1: estimated networks) The caption is similar to that of Figure
5, except for Network 1 with T = 1200.

Figure 12: (Network 2: estimated networks) The caption is similar to that of Figure
5, except for Network 2 with T = 1200.
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Figure 13: (Network 1: comparing computational times of algorithms) The caption
is similar to that of Figure 7, except for Network 1 with T = 1200.
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Figure 14: (Network 2: comparing computational times of algorithms) The caption
is similar to that of Figure 7, except for Network 2 with T = 1200.
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Figure 15: (Network 2: comparing computational times of the Clas-AL algorithm
using different step sizes βα ∈ {1, 5, 50, 500} with the Flex-AL algorithm using

step size γα = 5) Left panel: average approximation error ‖W̃(k)− ̂̃W‖F over 100 replicate

samples versus the iteration step k; right panel: boxplots of runtime for estimators
̂̃
W across

replications. Top row: ‘DAG-wL1’ method; bottom row: ‘DAG-unreg’ method. T = 1200.
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Appendix B. Notations

Notations in the proof: Let 0 represent a vector of zeros, 0p denote a square p-by-p zero
matrix, and 0n×p denote the n-by-p zero matrix. For a vector u = (u1, . . . , um)> ∈ Rm,

‖u‖1 =
∑m

i=1 |ui| denotes the L1 norm of u, ‖u‖2 =
√∑m

i=1 u
2
i denotes the L2 norm

of u, and ‖u‖∞ = max1≤i≤m |ui| denotes the L∞ norm of u. For a function F (·) of
u, ∇F (·) = (∂F (·)/∂u1, . . . , ∂F (·)/∂um)> denotes the gradient vector, and ∇2F (·) =
(∂2F (·)/(∂ui ∂uj)) ∈ Rm×m represents the Hessian matrix of F (·). For a matrix A = (ai,j) ∈
Rm×n, define |A| = (|ai,j |) ∈ Rm×n, and let vec(A) = (a1,1, . . . , am,1, . . . , a1,n, . . . , am,n)> ∈
Rm·n denote the vectorization of A. Let ‖A‖F = ‖vec(A)‖2 =

√∑m
i=1

∑n
j=1 a

2
i,j denote the

Frobenius norm of A, and ‖A‖1 = ‖vec(A)‖1 =
∑m

i=1

∑n
j=1 |ai,j | denote the L1 norm of

vec(A). For matrices A = (ai,j) and B = (bi,j) of the same dimensions, A ◦B = (ai,jbi,j) is
the Hadamard product. The minimum eigenvalue of a matrix A is denoted by λmin(A).

For a weighted adjacency matrix W = (w�,1, . . . ,w�,d) ∈ Rd×d and a parameter matrix

W̃ = (w̃�,1, . . . , w̃�,d) = (w0,�,W
>)> ∈ R(d+1)×d, their vectorized versions are denoted by

w = (w>�,1, . . . ,w
>
�,d)
> = vec(W) ∈ Rd2 , and w̃ = (w̃>�,1, . . . , w̃

>
�,d)
> = vec(W̃) ∈ Rd2+d

respectively. Likewise, functions P(W;η), L(W̃), and h(W) are represented by P(w;η),

L(w̃), and h(w), respectively. Notations W∗ and W̃∗ are defined in the first paragraph of
Section 5.1. For j = 1, . . . , d, and t ∈ [0,T], let λ∗j (t | Ft) = exp

{
w∗0,j +

∑d
i=1w

∗
i,j xi(t)

}
denote the true CIF modeled by (4) with the true parameters {w∗i,j}i=0,1,...,d, to distinct
from λj(t | Ft) in (4) with generic parameters {wi,j}i=0,1,...,d.

Appendix C. Proofs of main results

The proofs are divided into three parts. Appendix C.1 presents preliminary Lemmas C.1–
C.5, which demonstrate the fundamental properties of our MuTPP model (4) as well as
the loss function (9). Appendix C.2 presents supporting Lemmas C.6–C.14 related to the
statistical and algorithmic properties of our proposed DAG learning method. Appendix C.3
proves lemmas and theorems in the main text.

C.1 Preliminary lemmas on MuTPP model (4)

Lemma C.1 (Stability of MuTPP) Assume conditions A1, A3, and A4 in Section 5.
For each j = 1, . . . , d, we have

P(λ∗j (t | Ft) <∞) = 1, and P(Nj(t) <∞) = 1, for any t ∈ [0,T].

Proof : Conditions A3 and A4 guarantee that supj=1,...,d; t∈[0,T] λ
∗
j (t | Ft) ≤ c, for some

constant c ∈ (0,∞). Using this and Gao et al. (2024) (Theorem 2, eq. (40) and eq. (41)),
we have E{Nj(t)} ≤ c t and P(Nj(t) <∞) = 1 for any t ∈ [0,T]. This completes the proof.

Lemma C.2 (Non-stationarity of MuTPP) Assume conditions A1, A3, A4, and A5 in
Section 5. There exists some node j0 ∈ {1, . . . , d} such that the counting process Nj0(t) is
non-stationary, i.e., the distribution of λ∗j0(t | Ft) varies with respect to t ∈ [0,T].
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Proof : Condition A5 ensures that the true network E(W∗) 6= ∅. Then Lemma C.2 is
proved by applying Gao et al. (2024) (Lemma B.9 ).

Lemma C.3 (Bounded second moment of ∂L(w̃)/∂wi,j |w̃=w̃∗) Assume conditions A1–
A4 in Section 5. There exists some constant c ∈ (0,∞) such that

E[{∂L(w̃)/∂wi,j |w̃=w̃∗}2] ≤ c/T, (C.1)

for all i = 0, 1, . . . , d and j = 1, . . . , d. Moreover, we have

‖∇L(w̃∗)‖2 = OP(
√
d2/T), as T→∞. (C.2)

Proof : According to (7) and (28), for i = 0, 1, . . . , d and j = 1, . . . , d, we have ∂L(w̃)/∂wi,j =

T−1
∫ T

0 {xi(t)λj(t | Ft) dt − xi(t−) dNj(t)}. Conditions A3 and A4 guarantee two inequal-
ities supi=0,1,...,d; t∈[0,T] xi(t) ≤ c1 and supj=1,...,d; t∈[0,T] λ

∗
j (t | Ft) ≤ c2 for some constant

c1, c2 ∈ (0,∞), which and Gao et al. (2024) (Theorem 2, eq. (42)) give

E{∂L(w̃)/∂wi,j |w̃=w̃∗} = 0, (C.3)

var{∂L(w̃)/∂wi,j |w̃=w̃∗} =
1

T2
· E
{∫ T

0
x2
i (t)λ

∗
j (t | Ft) dt

}
≤ c2

1 c2/T.

This proves (C.1). It follows that

E
{
‖∇L(w̃∗)‖22

}
=

d∑
i=0

d∑
j=1

E
[{∂L(w̃)

∂wi,j

∣∣∣
w̃=w̃∗

}2]
≤ (d+ 1) d · c2

1c2/T = O(d2/T).

This, together with Markov’s inequality, proves (C.2).

Lemma C.4 (Strict convexity of E{L(w̃)}) Assume conditions A1, A3, and A4 in Sec-
tion 5. Then E{L(w̃)} is strictly convex in w̃ ∈ Rd2+d. Moreover, it has a unique global
minimizer w̃ = w̃∗.

Proof : Note that E{L(w̃)} =
∑d

j=1 E{Lj,T(w̃�,j)}. By (28) and (C.3), for each j =

1, . . . , d, we have ∇E{Lj,T(w̃∗�,j)} = 0, and ∇2E{Lj,T(w̃�,j)} = T−1 · E[
∫ T

0 x̃(t) x̃(t)>·
exp{w̃>�,jx̃(t)} dt] for w̃�,j ∈ Rd+1. It suffices to show that the matrix f(ṽ) := E[

∫ T
0 x̃(t) x̃(t)>·

exp{ṽ>x̃(t)} dt] is strictly positive-definite for any ṽ ∈ Rd+1.

Using Gao et al. (2024) (Lemma B.10, eq. (116); and Lemma B.17, eq. (149)), for each
j = 1, . . . , d, there exist some time points 0 < t1 < t0 < T, such that

P(Nj(t0) = 0, for all j = 1, . . . , d) > 0, (C.4)

P(Nj(t1) = Nj(t0) = 1, and Nk(t0) = 0 for all k ∈ {1, . . . , d} \ {i}) > 0. (C.5)

For j = 1, . . . , d, denote by Aj the event in the probability in (C.5). When Aj occurs, for any
t ∈ [t1, t0], (5) implies that xj(t) = g(1/φ) and xk(t) = 0 for all k ∈ {1, . . . , d} \ {i}. Also,
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denote by A0 the event in (C.4). When A0 occurs, we have xj(t) = 0 for all j = 1, . . . , d,
and t ∈ [t1, t0]. Thus, for any ũ ∈ Rd+1 with ‖ũ‖2 > 0, we have

ũ>f(ṽ)ũ

≥E
[ ∫ t0

t1

(ũ>x̃(t))2 exp{ṽ>x̃(t)} dt
]

≥P(A0) · u2
0 · exp(v0) +

d∑
j=1

P(Aj) · {u0 + uj · g(1/φ)}2 · exp{v0 + vj · g(1/φ)} > 0.

This proves that f(ṽ) is strictly positive-definite.

Lemma C.5 (Identifiability of model (4)) Assume conditions A1, A3, and A4 in Sec-
tion 5. Then model (4) is identifiable with respect to the parameters {wi,j ∈ R : i =
0, 1, . . . , d; j = 1, . . . , d}.

Proof : For a parameter matrix W̃ ∈ R(d+1)×d which collects all parameters {wi,j ∈ R :

i = 0, 1, . . . , d; j = 1, . . . , d}, denote by P(W̃) the probability distribution of the MuTPP
specified in model (4). To prove the identifiability of model (4), it suffices to show that the

mapping from W̃ to P(W̃) is one-to-one.

Suppose that there exist distinct W̃1,W̃2 ∈ R(d+1)×d, such that P(W̃1) = P(W̃2).

Then the negative log-likelihood function L(·) in (9) satisfies L(W̃1) = L(W̃2), and hence

the equality E
W̃1
{L(W̃1)} = E

W̃1
{L(W̃2)}, where E

W̃1
(·) denotes the expectation operator

with respect to the probability distribution P(W̃1). By Lemma C.4, W̃1 is the unique
global minimizer of function E

W̃1
{L(·)}. This, combined with the above equality, implies

that W̃2 is another distinct global minimizer of E
W̃1
{L(·)}, which obviously contradicts.

The proof is completed.

C.2 Supporting lemmas on estimation and algorithms

Lemmas C.6–C.12 aid in proving lemmas and theorems ( consistency) in Section 5, where
the asymptotic setting is established by letting the time length T→∞. Lemmas C.13–C.14
assist in proving Theorem 1 (algorithmic convergence) in Section 4, where the convergence
is based on letting the number of iteration steps k →∞.

Lemma C.6 Assume conditions A1–A6 in Section 5. Assume that η in (34) satisfies
condition (37). Assume κ = ∞ in (34). If d4/T → 0 as T → ∞, then there exists a local

minimizer
̂̃
W∞,η of the nonDAG optimization problem (34), such that ‖̂̃W∞,η − W̃∗‖F =

OP(
√
d2/T).

Proof : Denote Q(w̃) = L(w̃) + P(w;η) as the objective function in (34). Let rT =√
d2/T. Following the proofs in Fan and Peng (2004); Zhang et al. (2010), it suffices to

show that for any given ε > 0, there exists a large constant Cε, such that

P
(

inf
ũ∈Rd2+d:‖ũ‖2=Cε

Q(w̃∗ + rT ũ) > Q(w̃∗)
)
≥ 1− ε (C.6)
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for all sufficiently large T.
In accordance with the notation w̃, we write the vector ũ = (ũ>�,1, . . . , ũ

>
�,d)
> with

ũ�,j = (u0,j , u1,j , . . . , ud,j) ∈ Rd+1, j = 1, . . . , d. As w∗i,j = 0 for (i, j) ∈ Ec(W∗), we
obtain:

Q(w̃∗ + rT ũ)−Q(w̃∗)

=L(w̃∗ + rTũ)− L(w̃∗) +
∑∑
1≤i 6=j≤d

ηi,j
{
|w∗i,j + rTui,j | − |w∗i,j |

}
≥L(w̃∗ + rTũ)− L(w̃∗) +

∑∑
(i,j)∈E(W∗)

ηi,j
{
|w∗i,j + rTui,j | − |w∗i,j |

}
≡QI +QII.

We first focus on the term QI. Observe that:

QI = L(w̃∗ + rTũ)− L(w̃∗) =

d∑
j=1

{
Lj,T(w̃∗�,j + rTũ�,j)− Lj,T(w̃∗�,j)

}
. (C.7)

For each j = 1, . . . , d, using Taylor’s expansion of Lj,T(·) in (7) around w̃∗�,j , we get:

Lj,T(w̃∗�,j + rTũ�,j)− Lj,T(w̃∗�,j) ≡ Ij,1 + Ij,2 + Ij,3,

with

Ij,1 = ∇Lj,T(w̃∗�,j)
>rT ũ�,j

=
1

T

∫ T

0

[
x̃(t)>rT ũ�,j exp

{
w̃∗>�,j x̃(t)

}
dt− x̃(t−)>rT ũ�,j dNj(t)

]
,

Ij,2 =
r2

T

2
ũ>�,j∇2Lj,T(w̃∗�,j)ũ�,j

=
1

2T

∫ T

0
{x̃(t)>rT ũ�,j}2 exp

{
w̃∗>�,j x̃(t)

}
dt,

Ij,3 =
1

6T

∫ T

0
{x̃(t)>rT ũ�,j}3 exp

{
w̃??>

�,j x̃(t)
}

dt, (C.8)

where w̃??
�,j lies between w̃∗�,j and w̃�,j . Using (C.7)–(C.8), we obtain:

QI =

d∑
j=1

{
Lj,T(w̃�,j)− Lj,T(w̃∗�,j)

}
≡ I1 + I2 + I3,

where I1 =
∑d

j=1 Ij,1, I2 =
∑d

j=1 Ij,2, and I3 =
∑d

j=1 Ij,3.
For the term I1, an application of Lemma C.3 gives that:

|I1| =
∣∣∣ d∑
j=1

Ij,1

∣∣∣ =
∣∣∣ d∑
j=1

∇Lj,T(w̃∗�,j)
>rT ũ�,j

∣∣∣ = |∇L(w̃∗)>rT ũ|

≤ rT‖∇L(w̃∗)‖2‖ũ‖2 = rTOP

(√
d2/T

)
‖ũ‖2 = r2

TOP(1) ‖ũ‖2. (C.9)
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For the term I2, by condition A6, we have:

I2 =
d∑
j=1

Ij,2 =
r2

T

2

d∑
j=1

ũ>�,j∇2Lj,T(w̃∗�,j)ũ�,j

≥ (C/2)r2
T

d∑
j=1

‖ũ�,j‖22 · (1 + oP(1)) = (C/2)r2
T‖ũ‖22 · (1 + oP(1)),

for some constant C ∈ (0,∞). For the term I3, condition A3 implies that each component
of x̃(t) is bounded from above. This, together with condition A4, yields that the term
exp{w̃??>

�,j x̃(t)} in (C.8) is also bounded from above. Hence, there exists a constant c ∈
(0,∞), such that: |Ij,3| ≤ c r3

T

∑d
k=0 |uk,j |3 for all j = 1, . . . , d. It follows that:

|I3| =
∣∣∣ d∑
j=1

Ij,3

∣∣∣ ≤ c r3
T

d∑
j=1

d∑
k=0

|uk,j |3 ≤ c r3
T‖ũ‖32.

We next consider the term QII. Using the triangle inequality and condition (37), we
have:

|QII| =
∣∣∣ ∑∑

(i,j)∈E(W∗)

ηi,j
(
|w∗i,j + rTui,j | − |w∗i,j |

)∣∣∣
≤

∑∑
(i,j)∈E(W∗)

ηi,j rT |ui,j |

≤ rT max
(i,j)∈E(W∗)

ηi,j
∑∑

(i,j)∈E(W∗)

|ui,j |

≤ rT max
(i,j)∈E(W∗)

ηi,j
√
s ‖ũ‖2

= rTOP(
√
d2/(sT))

√
s ‖ũ‖2

= r2
TOP(1) ‖ũ‖2. (C.10)

Note that the condition d4/T → 0 implies that rT → 0 as T → ∞. Using this and (C.9)–
(C.10), the terms I1, I3, and QII are dominated by the positive term I2 for sufficiently large
‖ũ‖2. This proves (C.6).

Lemma C.7 Assume conditions A1–A6 in Section 5. Assume that η in (34) satisfies
condition (38). Assume κ = ∞ in (34). If d4/T → 0 as T → ∞, then for any local

minimizer
̂̃
W∞,η of (34) satisfying ‖̂̃W∞,η − W̃∗‖F = OP(

√
d2/T), we have

P
(
Ex(Ŵ∞,η,W

∗) = 0
)
→ 1 as T→∞.

Proof : Letting ̂̃w = vec(
̂̃
W∞,η) ∈ Rd2+d denote the vectorization of the matrix

̂̃
W∞,η

and letting rT =
√
d2/T, the condition ‖̂̃W∞,η − W̃∗‖F = OP(

√
d2/T) could be rewritten
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as ‖ ̂̃w − w̃∗‖2 = OP(rT). This implies that for any ε > 0, there exists a constant Cε, such
that

P
(
‖ ̂̃w − w̃∗‖2 ≤ rTCε

)
> 1− ε (C.11)

for all sufficiently large T. Note that for any i, k = 0, 1, . . . , d, and j = 1, . . . , d,

∂2Lj,T(w̃�,j)

∂wi,j∂wk,j
=

1

T

∫ T

0
xi(t)xk(t) exp{w̃>�,jx̃(t)} dt.

By conditions A3 and A4, we observe that both xi(t) and supw̃:‖w̃−w̃∗‖2≤rTCε exp{w̃>�,jx̃(t)}
are bounded from above. Therefore, there exists a constant c ∈ (0,∞), such that

sup
w̃:‖w̃−w̃∗‖2≤rTCε

∣∣∣∂2Lj,T(w̃�,j)

∂wi,j∂wk,j

∣∣∣ ≤ c (C.12)

for any i, k = 0, 1, . . . , d and any j = 1, . . . , d. By Taylor’s expansion, (C.12), and Lemma
C.3, we obtain

sup
i,j=1,...,d

{
sup

w̃:‖w̃−w̃∗‖2≤rTCε

∣∣∣∂Lj,T(w̃�,j)

∂wi,j

∣∣∣}
≤ sup
i,j=1,...,d

{∣∣∣∣∂Lj,T(w̃�,j)

∂wi,j

∣∣∣
w̃�,j=w̃

∗
�,j

∣∣∣∣+ sup
w̃:‖w̃−w̃∗‖2≤rTCε

d∑
k=0

∣∣∣∂2Lj,T(w̃�,j)

∂wi,j∂wk,j

∣∣∣ |wk,j − w∗k,j |}
≤ sup
i,j=1,...,d

{∣∣∣∣∂Lj,T(w̃�,j)

∂wi,j

∣∣∣
w̃�,j=w̃

∗
�,j

∣∣∣∣+ sup
w̃:‖w̃−w̃∗‖2≤rTCε

c
√
d+ 1 ‖w̃�,j − w̃∗�,j‖2

}
≤‖∇L(w̃∗)‖2 + c

√
d+ 1 rTCε

=OP(
√
d2/T) +O(

√
d3/T)

=OP(
√
d3/T).

Using this and condition (38), the following inequalities hold with probability tending to 1
as T→∞:

inf
w̃:‖w̃−w̃∗‖2≤rTCε

{
inf

wi,j>0:(i,j)∈Ec(W∗)

∂Q(w̃)

∂wi,j

}
= inf
w̃:‖w̃−w̃∗‖2≤rTCε

(
inf

wi,j>0:(i,j)∈Ec(W∗)

{∂Lj,T(w̃�,j)

∂wi,j
+ ηi,j sign(wi,j)

})
≥− sup

i,j=1,...,d

{
sup

w̃:‖w̃−w̃∗‖2≤rTCε

∣∣∣∂Lj,T(w̃�,j)

∂wi,j

∣∣∣}+ min
(i,j)∈Ec(W∗)

ηi,j

>0, (C.13)
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and

sup
w̃:‖w̃−w̃∗‖2≤rTCε

{
sup

wi,j<0:(i,j)∈Ec(W∗)

∂Q(w̃)

∂wi,j

}
= sup
w̃:‖w̃−w̃∗‖2≤rTCε

(
sup

wi,j<0:(i,j)∈Ec(W∗)

{∂Lj,T(w̃�,j)

∂wi,j
+ ηi,j sign(wi,j)

})
≤ sup
i,j=1,...,d

{
sup

w̃:‖w̃−w̃∗‖2≤rTCε

∣∣∣∂Lj,T(w̃�,j)

∂wi,j

∣∣∣}− min
(i,j)∈Ec(W∗)

ηi,j

<0, (C.14)

where Q(w̃) = L(w̃) + P(w;η) denotes the objective function in (34). Thus, (C.13) and
(C.14) together state that the following result holds with probability tending to 1 as T→∞:

for all w̃ in the ball {w̃ : ‖w̃ − w̃∗‖2 ≤ rTCε},
∂Q(w̃)
∂wi,j

and wi,j have the same sign, for all (i, j) ∈ Ec(W∗).
(C.15)

Using (C.15), (C.11) and ̂̃w being the local minimizer of Q(w̃), for all sufficiently large T,
we have

P
(
ŵi,j = 0, for all (i, j) ∈ Ec(W∗)

)
≥ 1− 2ε.

Since ε is arbitrary, letting ε→ 0 gives that

P
(
ŵi,j = 0, for all (i, j) ∈ Ec(W∗)

)
→ 1 as T→∞.

The proof follows from the definition of ‘Ex’ in (31).

Lemma C.8 Assume condition A7 in Section 5. If d4/T → 0 as T → ∞, then for any

estimator
̂̃
W satisfying ‖̂̃W − W̃∗‖F = OP(

√
d2/T), we have

P(Mi(Ŵ,W∗) = 0)→ 1, and P(Rv(Ŵ,W∗) = 0)→ 1.

Proof : Note that

max
(i,j)∈E(W∗)

|ŵi,j − w∗i,j | ≤ ‖ ̂̃w − w̃∗‖∞ ≤ ‖ ̂̃w − w̃∗‖2 = ‖̂̃W − W̃∗‖F = OP(
√
d2/T).

Condition A7 states that
√

T/d2 ·min(i,j)∈E(W∗) |w∗i,j | → ∞. Combining these two results,
we have that as T→∞,

P
(

max
(i,j)∈E(W∗)

|ŵi,j − w∗i,j | < min
(i,j)∈E(W∗)

|w∗i,j |
)
→ 1,

which further implies that

P
(
sign(ŵi,j) = sign(w∗i,j), for all (i, j) ∈ E(W∗)

)
→ 1.

By definitions of ‘Mi’ and ‘Rv’ in (31), Lemma C.8 directly follows.
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Lemma C.9 Both the loss function L(W̃) in (9) and the weighted L1-penalty function
P(W;η) in (10) are convex, but the DAG-ness function h(W) in (11) is non-convex.

Proof : Note that L(W̃) =
∑d

j=1 Lj,T(w̃�,j), where each component Lj,T(w̃�,j) has a
positive semi-definite Hessian matrix

∇2Lj,T(w̃�,j) =
1

T

∫ T

0
x̃(t) x̃(t)> exp{w̃>�,jx̃(t)} dt,

indicating the convexity of L(W̃). Also, it is clearly seen that the penalty function P(W;η) =∑∑
1≤i 6=j≤d ηi,j |wi,j | in (10) is convex.

Next, we prove that the DAG-ness function h(W) is non-convex. For

D = {W ∈ Rd×d : h(W) = 0}, (C.16)

which collects W corresponding to weighted adjacency matrices W̃ of DAGs, it suffices
to show that D is a non-convex set in Rd×d. Let A = (ai,j) ∈ Rd×d be the weighted
adjacency matrix with a1,2 = 1, and all other entries equal to zero, B = (bi,j) ∈ Rd×d
be the weighted adjacency matrix with b2,1 = 1, and all other entries equal to zero, and
E = (ei,j) ∈ Rd×d = (A + B)/2. Clearly, both A and B represent DAGs, and therefore
A ∈ D and B ∈ D. However, since e1,2 = e2,1 = 1/2 are non-zero, E induces a graph that
contains a cycle formed by edges (1, 2) and (2, 1), and thus E /∈ D. This completes the
proof.

Lemma C.10 Assume condition A5 in Section 5. Let Q(W̃) = L(W̃) + P(W;η) be the
objective function in (12). If

inf
W̃∈R(d+1)×d:‖W̃−W̃∗‖F=r

Q(W̃) > Q(W̃∗) (C.17)

for some r ∈ (0,∞), then there exists a global minimizer
̂̃
W0,η of the DAG-constrained

optimization problem (34) (with κ = 0), such that ‖̂̃W0,η − W̃∗‖F < r.

Proof : Note that when κ = 0, the constrained optimization problem (34) is identical

to (12). It suffices to show that there exists a global minimizer
̂̃
W of (12), such that

‖̂̃W − W̃∗‖F < r. Since h(·) is continuous, we have that {W̃ ∈ R(d+1)×d : h(W) = 0}
is a closed set, further implying that {W̃ ∈ R(d+1)×d : ‖W̃ − W̃∗‖F ≤ r, h(W) = 0} is a
compact set in R(d+1)×d. Then by the extreme value theorem and the fact that the function

Q(W̃) is continuous, there exists a global minimizer
̂̃
W of Q(W̃) over {W̃ ∈ R(d+1)×d :

‖W̃ − W̃∗‖F ≤ r, h(W) = 0}, i.e.,̂̃
W = arg min

W̃:‖W̃−W̃∗‖F≤r, h(W)=0
Q(W̃).

Condition A5 gives that W̃∗ ∈ {W̃ : ‖W̃−W̃∗‖F ≤ r, h(W) = 0}, implying that Q(W̃∗) ≥
Q(
̂̃
W). Therefore, we obtain

inf
W̃:‖W̃−W̃∗‖F=r

Q(W̃) > Q(W̃∗) ≥ Q(
̂̃
W), (C.18)
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which proves that
̂̃
W minimizes Q(W̃) over {W̃ : ‖W̃ − W̃∗‖F < r, h(W̃) = 0}.

The remaining proof is to show that
̂̃
W is a global minimizer of (12). If this is violated,

then there exists a matrix W̃† ∈ R(d+1)×d, satisfying ‖W̃† − W̃∗‖F > r and h(W†) = 0,

but Q(W̃†) < Q(
̂̃
W). Since ‖W̃† − W̃∗‖F > r > ‖̂̃W − W̃∗‖F, there exists a matrix W̃‡

on the line segment between W̃† and
̂̃
W, with ‖W̃‡ − W̃∗‖F = r. By (C.18), we have

Q(W̃‡) ≥ inf
W̃:‖W̃−W̃∗‖F=r

Q(W̃) > Q(
̂̃
W) > Q(W̃†),

implying that Q(W̃‡) exceeds both Q(
̂̃
W) and Q(W̃†). This contradicts the convexity of

Q(W̃), a fact verified by Lemma C.9.

Lemma C.11 If an estimator Ŵ of W∗ satisfies that G(Ŵ) ∈ D, Mi(Ŵ,W∗) = 0, and

Rv(Ŵ,W∗) = 0, then we have

Ex(Ŵ,W∗) ≤ d(d− 1)/2− s∗.

Proof : Applying Proposition 2.1.3 of Bang-Jensen and Gutin (2008) and the fact that

G(Ŵ) ∈ D, there exists a permutation π = (π(1), . . . , π(d)) of {1, . . . , d}, such that the

permuted weighted adjacency matrix Ŵ(π) = (ŵ
(π)
i,j ) ∈ Rd×d with entries ŵ

(π)
i,j = ŵπ(i),π(j)

is a strictly upper triangular matrix, satisfying

ŵ
(π)
i,j = 0, for any i ≥ j, i, j = 1, . . . , d. (C.19)

This tells that

|E(Ŵ)| = |E(Ŵ(π))| ≤ d(d− 1)/2. (C.20)

Let C =
∑∑

1≤i 6=j≤d I(w∗i,j > 0, ŵi,j > 0) +
∑∑

1≤i 6=j≤d I(w∗i,j < 0, ŵi,j < 0). Then∑∑
1≤i 6=j≤d

I(ŵi,j 6= 0) = Ex(Ŵ,W∗) + Rv(Ŵ,W∗) + C

= Ex(Ŵ,W∗) + C,∑∑
1≤i 6=j≤d

I(w∗i,j 6= 0) = Mi(Ŵ,W∗) + Rv(Ŵ,W∗) + C

= C,

under the assumptions Mi(Ŵ,W∗) = 0 and Rv(Ŵ,W∗) = 0. It follows that

Ex(Ŵ,W∗) =
∑∑
1≤i 6=j≤d

I(ŵi,j 6= 0)−
∑∑
1≤i 6=j≤d

I(w∗i,j 6= 0)

≤ d(d− 1)/2− s∗,

where
∑∑

1≤i 6=j≤d I(ŵi,j 6= 0) = |E(Ŵ)| ≤ d(d−1)/2 utilizes (C.20) and
∑∑

1≤i 6=j≤d I(w∗i,j 6=
0) = s∗. This completes the proof.
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Lemma C.12 Assume condition A5 in Section 5. If there exists a global minimizer
̂̃
W∞,η

of (34) (with κ = ∞) that achieves P(SHD(Ŵ∞,η,W
∗) = 0) → 1 as T → ∞, then there

exists a global minimizer
̂̃
W0,η of (34) (with κ = 0) that satisfies P(

̂̃
W0,η =

̂̃
W∞,η) → 1

as T→∞ and, therefore, achieves P(SHD(Ŵ0,η,W
∗) = 0)→ 1 as T→∞.

Proof : Let Q(W̃) = L(W̃)+P(W;η) be the objective function in (34). For an estimator̂̃
W∞,η with P(SHD(Ŵ,W∗) = 0)→ 1, we construct an estimator

̂̃
WD as follows:

̂̃
WD =


̂̃
W∞,η, if SHD(Ŵ∞,η,W

∗) = 0,̂̃
W, if SHD(Ŵ∞,η,W

∗) > 0,
(C.21)

where
̂̃
W is an arbitrary global minimizer of (8), satisfying h(Ŵ) = 0. By condition A5,

the true weighted adjacency matrix W∗ represents a DAG. If SHD(Ŵ∞,η,W
∗) = 0 holds,

then Ŵ∞,η also represents a DAG, satisfying h(Ŵ∞,η) = 0. Therefore,
̂̃
WD in either case

of (C.21) satisfies the DAG constraint h(ŴD) = 0, and minimizes the objective function

Q(W̃). This implies that
̂̃
WD defined by (C.21) is also a global minimizer of (34) with

κ = 0.

It follows from (C.21) and P(SHD(Ŵ∞,η,W
∗) = 0) → 1 that P(

̂̃
WD =

̂̃
W∞,η) → 1

and P(SHD(ŴD,W
∗) = 0)→ 1 as T→∞. Setting

̂̃
W0,η =

̂̃
WD completes the proof.

Lemma C.13 Assume that the sequences {α(k)}k≥0 and {ρ(k)}k≥0 satisfy condition (22).
Let {W(k)}k≥0 be a sequence of weighted adjacency matrices. Then we have:

(a)

lim sup
k→∞

{α(k) h(W(k)) + 2−1ρ(k) h2(W(k))} ≥ 0. (C.22)

(b) Moreover, if lim supk→∞{α(k) h(W(k)) + 2−1ρ(k) h2(W(k))} <∞, then

h(W(k))→ 0 as k →∞. (C.23)

Proof : Note that the condition infk≥0 α
(k) > −∞ in (22) implies the existence of a

constant c ∈ R such that α(k) ≥ −|c| for all k ≥ 0.

We first prove part (a). If {α(k)}k≥0 has a non-negative subsequence, then (C.22) obvi-
ously holds. Now, consider the case where −|c| ≤ α(k) < 0 for all sufficiently large k. The
condition max{α(k), ρ(k)} → ∞ in (22) implies that ρ(k) →∞.

(i) In the case where h(W(k)) → 0 holds, the fact that −|c| ≤ α(k) < 0 for all large k
gives:

lim sup
k→∞

{α(k) h(W(k)) + 2−1ρ(k) h2(W(k))} = lim sup
k→∞

{2−1ρ(k) h2(W(k))} ≥ 0.
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(ii) In the case where h(W(k))→ 0 fails, ρ(k) →∞ implies that lim supk→∞{2−1ρ(k) h(W(k))} =
∞. Therefore, there exists a subsequence {k`}`≥1 of {1, 2, . . .}, such that α(k`) +
2−1ρ(k`) h(W(k`)) > 0 for all {k`}`≥1. It follows that for all ` ≥ 1:

α(k`) h(W(k`)) + 2−1ρ(k`) h2(W(k`)) = {α(k`) + 2−1ρ(k`) h(W(k`))}h(W(k`)) ≥ 0,

which completes the proof of (C.22).

Next, we prove part (b). If h(W(k)) > 1, then h2(W(k)) > h(W(k)), implying:

α(k) h(W(k)) + 2−1ρ(k) h2(W(k)) ≥ {α(k) + 2−1ρ(k)}h(W(k)).

If 0 ≤ h(W(k)) ≤ 1, then 0 ≤ h2(W(k)) ≤ h(W(k)) ≤ 1. Together with the fact that
α(k) + |c| ≥ 0, we get:

α(k) h(W(k)) + 2−1ρ(k) h2(W(k))

={α(k) + |c|}h(W(k)) + 2−1ρ(k) h2(W(k))− |c|h(W(k))

≥{α(k) + |c|+ 2−1ρ(k)}h2(W(k))− |c|h(W(k))

≥{α(k) + 2−1ρ(k)}h2(W(k))− |c|.

Combining the above two inequalities, we obtain:

α(k) h(W(k)) + 2−1ρ(k) h2(W(k)) ≥ {α(k) + 2−1ρ(k)} min{h2(W(k)), h(W(k))} − |c|.

This, along with the condition lim supk→∞{α(k) h(W(k))+2−1ρ(k) h2(W(k))} <∞, implies:

∞ > lim sup
k→∞

{α(k) h(W(k)) + 2−1ρ(k) h2(W(k))}+ |c|

≥ lim sup
k→∞

{α(k) + 2−1ρ(k)} min{h2(W(k)), h(W(k))}. (C.24)

Note that conditions ρ(k) ≥ 0, α(k) ≥ −|c|, and max{α(k), ρ(k)} → ∞ yield α(k) + 2−1ρ(k) →
∞. Using this and (C.24), we conclude that min{h2(W(k)), h(W(k))} → 0 as k →∞, from
which (C.23) follows directly.

Lemma C.14 Assume condition A6′ in Section 5. Suppose that infk≥0 α
(k) > −∞ and

infk≥0 ρ
(k) > 0. Then, the optimization problem (19) has at least one global minimizer for

each integer k ≥ 0. Moreover, there exists a constant r ∈ (0,∞), such that any global

minimizer W̃(k+1) of (19) satisfies ‖W̃(k+1)‖F ≤ r.

Proof : To prove Lemma C.14, it suffices to show the existence of a constant r ∈ (0,∞)
such that, for all integers k ≥ 0, the inequality

inf
w̃:‖w̃‖2>r

L(w̃, α(k); ρ(k)) > L(0, α(k); ρ(k)) (C.25)

holds.
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Consider two vectors w̃ = (w̃>�,1, . . . , w̃
>
�,d)
> ∈ Rd2+d and w̃† = (w̃†>�,1 , . . . , w̃

†>
�,d )> ∈

Rd2+d. Employing Taylor’s expansion, we express the difference in the loss function as

L(w̃)− L(w̃†)

=

d∑
j=1

{Lj,T(w̃�,j)− Lj,T(w̃†�,j)}

=

d∑
j=1

{∇Lj,T(w̃†�,j)
>(w̃�,j − w̃†�,j) + 2−1(w̃�,j − w̃†�,j)

>∇2Lj,T(w̃‡�,j)(w̃�,j − w̃†�,j)},(C.26)

where w̃‡�,j lies between w̃�,j and w̃†�,j . Utilizing (C.26) and condition A6′, we obtain

L(w̃)− L(w̃†) ≥
d∑
j=1

{∇Lj,T(w̃†�,j)
>(w̃�,j − w̃†�,j) + 2−1C‖w̃�,j − w̃†�,j‖

2
2}

= ∇L(w̃†)>(w̃ − w̃†) + 2−1C‖w̃ − w̃†‖22, (C.27)

where C ∈ (0,∞) is a constant. Letting w̃† = 0 in (C.27) and using Cauchy-Schwarz
inequality, we obtain

L(w̃) ≥ L(0) +∇L(0)>w̃ + 2−1C‖w̃‖22
≥ L(0)− ‖∇L(0)‖2 ‖w̃‖2 + 2−1C‖w̃‖22. (C.28)

On the other hand, the conditions infk≥0 α
(k) > −∞ and infk≥0 ρ

(k) > 0 imply the existence
of constants C1 ∈ R and C2 ∈ (0,∞) such that α(k) ≥ C1 and ρ(k) ≥ C2. Combining these
facts with h(w) ≥ 0, it is easy to verify that for all integers k ≥ 0, we have

α(k) h(w) + 2−1ρ(k) h2(w) ≥ C3, (C.29)

for a negative constant C3 = −C2
1/(2C2) < 0. By (C.28), (C.29), and the fact that

P(w;η) ≥ 0, we obtain

L(w̃, α(k); ρ(k)) = L(w̃) + P(w;η) + α(k) h(w) + 2−1ρ(k) h2(w)

≥ L(0)− ‖∇L(0)‖2 ‖w̃‖2 + 2−1C‖w̃‖22 + C3.

Applying the quadratic formula yields

inf
w̃:‖w̃‖2>r

{−‖∇L(0)‖2 ‖w̃‖2 + 2−1C‖w̃‖22 + C3} > 0,

where r = {‖∇L(0)‖2 +
√
‖∇L(0)‖22 − 2C C3}/C + 1 ∈ (0,∞). Combining these inequali-

ties, we get

inf
w̃:‖w̃‖2>r

L(w̃, α(k); ρ(k)) ≥ L(0) + inf
w̃:‖w̃‖2>r

{−‖∇L(0)‖2 ‖w̃‖2 + 2−1C‖w̃‖22 + C3}

> L(0)

= L(0, α(k); ρ(k)),

which proves (C.25).
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C.3 Proofs of main Theorems and Lemmas

Proof of Theorem 1. Let Q(W̃) = L(W̃) + P(W;η) denote the objective function in
(12), and define

Qinf = inf
W̃∈R(d+1)×d:h(W)=0

Q(W̃)

as the infimum value of (12).

We first establish result (i). For any W̃ ∈ R(d+1)×d satisfying h(W) = 0, we have

L(W̃, α; ρ) = Q(W̃) + αh(W) + 2−1ρ h2(W) = Q(W̃).

For any given α ∈ R and ρ > 0, we have

inf
W̃∈R(d+1)×d:h(W)=0

L(W̃, α; ρ) = inf
W̃∈R(d+1)×d:h(W)=0

Q(W̃) = Qinf . (C.30)

Since W̃(k+1) in (19) minimizes the function L(W̃, α(k); ρ(k)) over W̃ ∈ R(d+1)×d, we get

L(W̃(k+1), α(k); ρ(k)) ≤ L(W̃, α(k); ρ(k)), for all W̃ ∈ R(d+1)×d. (C.31)

Combining (C.31) and (C.30), we obtain the relation for any integer k > 0:

Q(W̃(k+1)) + α(k) h(W(k+1)) + 2−1ρ(k) h2(W(k+1))

=L(W̃(k+1), α(k); ρ(k))

≤ inf
W̃∈R(d+1)×d:h(W)=0

L(W̃, α(k); ρ(k)) = Qinf . (C.32)

For any limit point W̃† of the sequence {W̃(k)}k≥1, there exists a subsequence {W̃(k`+1)}`≥1

of {W̃(k)}k≥1 satisfying W̃† = lim`→∞ W̃(k`+1). By (C.32), we have

Qinf ≥ lim sup
`→∞

{
Q(W̃(k`+1)) + α(k`) h(W(k`+1)) + 2−1ρ(k`) h2(W(k`+1))

}
= Q(W̃†) + lim sup

`→∞

{
α(k`) h(W(k`+1)) + 2−1ρ(k`) h2(W(k`+1))

}
. (C.33)

This implies

lim sup
`→∞

{
α(k`) h(W(k`+1)) + 2−1ρ(k`) h2(W(k`+1))

}
<∞.

By (C.23) in Lemma C.13, it follows that h(W(k`+1)) → 0 as ` → ∞. Using the facts
that h(W(k`+1)) → 0, W(k`+1) → W†, and the continuity of the function h(·), we have

h(W†) = 0. Therefore, W̃† satisfies the equality constraint h(W†) = 0, implying that

Q(W̃†) ≥ inf
W̃∈R(d+1)×d:h(W)=0

Q(W̃) = Qinf .
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On the other hand, by (C.22) and (C.33), we have

Q(W̃†) ≤ Q(W̃†) + lim sup
`→∞

{α(k`) h(W(k`+1)) + 2−1ρ(k`) h2(W(k`+1))} ≤ Qinf .

Combining the above two results gives that Q(W̃†) = Qinf , which implies that W̃† is a
global minimizer of (12). This proves result (i).

Next, we prove result (ii). If condition A6′ is satisfied, then Lemma C.14 gives that

{‖W̃(k)‖F}k≥1 is bounded. Using this and the accumulative point principle, we conclude

that {W̃(k)}k≥1 has at least one limit point. Moreover, if (12) has a unique global minimizer̂̃
W, then result (i) implies that {W̃(k)}k≥1 precisely has one unique limit point W̃† =

̂̃
W.

Combining this with the fact that {‖W̃(k)‖F}k≥1 is bounded, we have W̃(k) → ̂̃
W as

k →∞. The proof is completed.

Proof of Lemma 3. Note that P(W;η) = 0 is a special case of the weighted L1-penalty,
with regularization parameters in η = 0 satisfying condition (37). By Lemma C.6, there

exists a local minimizer
̂̃
W∞,0 of (34) satisfying ‖̂̃W∞,0 − W̃∗‖F = OP(

√
d2/T), where

the objective function in (34) reduces to L(W̃), a convex function verified by Lemma

C.9. Hence, any local minimizer
̂̃
W∞,0 must also be a global minimizer of (34). Writễ

W∞,0 = ( ̂̃w�,1, . . . , ̂̃w�,d), with ̂̃w�,j = (ŵ0,j , ŵ1,j , . . . , ŵd,j)
> ∈ Rd+1. Moreover, it follows

from Lemma C.8 that P(Mi(Ŵ∞,0,W
∗) = 0 and Rv(Ŵ∞,0,W

∗) = 0)→ 1.

We next show that P(Ex(Ŵ∞,0,W
∗) = d(d− 1)− s∗) = 1. By the definition of ‘Ex’ in

(31), we have

Ex(Ŵ∞,0,W
∗) =

∑∑
1≤i 6=j≤d

I
(
ŵi,j 6= 0, w∗i,j = 0

)
=

∑∑
(i,j)∈Ec(W∗)

I(ŵi,j 6= 0)

≤ |Ec(W∗)| = d(d− 1)− s∗,

where the inequality becomes an equality if and only if ŵi,j 6= 0 for all (i, j) ∈ Ec(W∗),
namely,

Ex(Ŵ∞,0,W
∗) = d(d− 1)− s∗

is equivalent to ŵi,j 6= 0 for all (i, j) ∈ Ec(W∗).
(C.34)

Since
̂̃
W∞,0 minimizes L(W̃) =

∑d
j=1 Lj,T(w̃�,j), it follows that each ̂̃w�,j minimizes Lj,T(w̃�,j),

i.e., ̂̃w�,j = arg minw̃�,j∈Rd+1 Lj,T(w̃�,j). By condition A8, we have P(ŵi,j = 0) = 0, for all
i = 0, 1, . . . , d and j = 1, . . . , d. Using this and (C.34) gives that

P
(
Ex(Ŵ∞,0,W

∗) = d(d− 1)− s∗
)

=P
(
ŵi,j 6= 0 for all (i, j) ∈ Ec(W∗)

)
≥1−

∑∑
(i,j)∈Ec(W∗)

P(ŵi,j = 0) = 1,
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where d(d− 1)− s∗ ≥ 1 comes from the fact that s∗ is bounded by d(d− 1)/2 for DAGs, as
shown in (C.20). The proof is completed.

Proof of Theorem 4. Let rT =
√
d2/T. In the proof of Lemma C.6, we showed that for

any given ε > 0, there is a large constant Cε, such that

P
(

inf
ũ:‖ũ‖2=Cε

Q(w̃∗ + rT ũ) > Q(w̃∗)
)
≥ 1− ε

for all sufficiently large T. Using this, (C.17), and Lemma C.10, there exists a global

minimizer
̂̃
W0,0 of (34) (with κ = 0 and η = 0), such that

P
(
‖̂̃W0,0 − W̃∗‖F < rTCε

)
≥ 1− ε.

Hence, we have ‖̂̃W0,0 − W̃∗‖F = OP(rT) = OP(
√
d2/T).

By Lemma C.8, we get P(Mi(Ŵ0,0,W
∗) = 0 and Rv(Ŵ0,0,W

∗) = 0) → 1. Further-

more, using Lemma C.11 and the fact that G(Ŵ0,0) ∈ D, we obtain P(Ex(Ŵ0,0,W
∗) ≤

d(d− 1)/2− s∗)→ 1 as T→∞. This completes the proof.

Proof of Lemma 5. By Lemma C.6 and the fact that L(W̃) + P(W;η) is convex (as

verified by Lemma C.9), there exists a global minimizer
̂̃
W∞,η of (34), such that ‖̂̃W∞,η −

W̃∗‖F = OP(
√
d2/T). Moreover, Lemma C.8 proves P(Mi(Ŵ∞,η,W

∗) = 0 and Rv(Ŵ∞,η,W
∗) =

0) → 1, and Lemma C.7 proves P(Ex(Ŵ∞,η,W
∗) = 0) → 1. Combining these results, we

have P(SHD(Ŵ∞,η,W
∗) = 0)→ 1 as T→∞.

Proof of Theorem 6. Theorem 6 directly follows from Lemma 5 and Lemma C.12.
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