
Journal of Machine Learning Research 25 (2024) 1-35 Submitted 1/24; Revised 7/24; Published 12/24

A New, Physics-Informed Continuous-Time Reinforcement
Learning Algorithm with Performance Guarantees

Brent A. Wallace bawalla2@asu.edu
Department of Electrical Engineering
Arizona State University
Tempe, AZ 85287, USA

Jennie Si si@asu.edu

Department of Electrical Engineering

Arizona State University

Tempe, AZ 85287, USA

Editor: George Konidaris

Abstract

We introduce a new, physics-informed continuous-time reinforcement learning (CT-RL)
algorithm for control of affine nonlinear systems, an area that enables a plethora of well-
motivated applications. Based on fundamental control principles, our approach uses refer-
ence command input (RCI) as probing noise to enable exploration in learning. With known
physical dynamics of the environment, by leveraging on the Kleinman algorithm structure,
and using state-action trajectory data, RCI provides a data-efficient optimal control so-
lution under an infinite-horizon undiscounted cost. We show that our RCI-based CT-RL
algorithm not only provides theoretical guarantees such as learning convergence, solution
optimality, and closed-loop stability, but also well-behaved dynamic system responses. It
is noted that our evaluations not only include extensive baseline and ablation studies using
typical performance measures in RL, but also essential control-centric performance mea-
sures that are critical for real-life control applications. As a result, we demonstrate that
our RCI-based CT-RL leads to new, SOTA control design and performance.

Keywords: Continuous-time reinforcement learning (CT-RL), adaptive/approximate
dynamic programming (ADP), reference command input, persistence of excitation (PE),
optimal control

1. Introduction

Continuous-time optimal control problems can be found in many important engineering and
socioeconomic application domains such as aerospace (Stengel, 2022), waste water treatment
(Yang et al., 2022), robotics (Craig, 2005), and economics (Caputo, 2005). Reinforcement
learning (RL) emerged as a systematic method in the early 1980s (Barto et al., 1983;
Sutton and Barto, 2018) to combat the curse of dimensionality by providing approximate
dynamic programming solutions. Discrete-time (DT) RL algorithms (Si et al., 2004; Lewis
et al., 2012b; Kiumarsi et al., 2018; Bertsekas, 2017; Liu et al., 2021) have shown extensive
theoretical guarantees and demonstrations in applications. In particular, model-based DT-
RL trajectory optimization algorithms (Landry et al., 2021; Atkeson and Morimoto, 2002)
solve for the optimal value over the constraints of the nonlinear dynamics, simultaneously

c©2024 Brent A. Wallace and Jennie Si.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/24-0017.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/24-0017.html

Wallace and Si

accommodating 1) multiple cost structures, and 2) addition of application-specific control
problem constraints. When the discrete-time dynamics are restricted to be polynomial,
sum-of-squares approaches provide provable performance bounds on such systems (Summers
et al., 2013). By contrast, CT-RL algorithms have seen fewer theoretical results and little
applications successes. The CT-RL optimal control problem is considered more difficult than
its DT-RL counterpart, as solving the Hamilton-Jacobi-Bellman (HJB) partial differential
equation associated with CT problems is fundamentally more challenging than solving the
Bellman difference equation for DT problems. To address the unique challenges of CT-RL
problems, as a result, four main solution approaches have developed.

The first and intuitive approach is to discretize the continuous-time dynamics in or-
der to approximate a CT problem by a DT problem. A Hamilton-Jacobi method by Kim
et al. (2021) is developed for CT systems, and the proposed Q-learning framework requires
discretizing the dynamics. Similarly, Haoran et al. (2020) propose stochastic control in a
linear quadratic setting. The approach requires applying limiting arguments to a discretiza-
tion. The neural ODE model-based RL framework (Yildiz et al., 2021) requires an Euler
discretization of the value integral and using Monte Carlo sampling in training the critic.

The second approach resorts to LQR to eliminate the nonlinearity challenge. One of
the seminal methods is developed by Bradtke et al. (1994). More recently, Possieri and
Sassano (2022) develop a data-driven Q-learning approach to Kleinman’s algorithm (Klein-
man, 1968), but the method is limited to linear systems. Similarly, one of the early ADP
works (Jiang and Jiang, 2012) is also limited to continuous-time LQR problems.

The third approach addresses CT-RL problems under general nonlinear (non-affine)
dynamics, but only a handful of results are currently available. The ADP method in (Bian
and Jiang, 2022) is one important work under this category. However, significant theoretical
assumptions are imposed in order to prove algorithm convergence; practically, this translates
to significant realization issues when the method is used to design CT-RL controllers, even
on simple examples (Wallace and Si, 2024b). The method proposed in (Yildiz et al., 2021)
treats general nonlinear dynamics described by an ODE. It addresses issues due to irregular
and noisy data by using Bayesian neural ODE models to infer robust state differential
information. Their CT-RL algorithm then relies on this model for inferred dynamics. Such
an open-loop approach to control may seriously limit the applicability of the method. The
authors of (Sandoval et al., 2023) address general nonlinear optimal control problems by
using neural ODEs as feedback policies. Their approach, however, is limited to fixed initial
condition and fixed final time. Together with the requirement of a known nonlinear dynamic
model for numerical integration (at discrete time steps) for generating a forward state path,
this method again has limited its applicability.

The methods dealing with general non-affine nonlinear dynamics, as discussed in the
above, are important first steps to investigate the challenging CT-RL problems in a gen-
eral setting, and some of them may have great potential to become meaningful methods.
However, this approach requires significant further developments. This leads to a perhaps
most studied fourth approach to nonlinear optimal control that deals with affine nonlinear
systems. These methods allow closed-form solutions for the optimal policy in terms of the
HJB solution (Lewis et al., 2012a). This approach has attracted by far the greatest atten-
tion including the foundational adaptive dynamic programming (ADP) works (Vrabie and
Lewis, 2009; Vamvoudakis and Lewis, 2010; Jiang and Jiang, 2014) as well as the recent suc-

2

Physics-Informed CT-RL with Performance Guarantees

cesses in deep RL fitted value iteration (FVI) (Lutter et al., 2021, 2023b). When the affine
nonlinear dynamics are assumed to be polynomial, which is rather restrictive, efficient sum-
of-squares approaches have been developed which provide over- and under-approximations
of the optimal value, as well as estimates of the region of attraction and policy optimality
error (Yang et al., 2023). The significant advances in this area are not only due to the struc-
tural convenience of affine nonlinearity, but also are motivated by a broad applicability of
such nonlinear systems, as a variety of compelling real-world applications admit such affine
nonlinearity. For example, the Euler-Lagrange mechanisms can be found in many famil-
iar systems, including robotic manipulators, wearable mechanical robots, marine navigation
equipment, automatic machine tools, satellite-tracking antennas, UAVs, autofocus cameras,
and many more. As such, recent CT-RL methods tailored to specific affine-nonlinear ap-
plication domains have begun to achieve substantial performance, in for example aerospace
systems (Wallace and Si, 2024a). For the same reason, our RCI-based CT-RL method also
addresses optimal control of affine nonlinear dynamics with an aim to derive reliable design
procedures that can be demonstrated on meaningful application problems.

2. Related Work

The current results on affine nonlinear systems generally fall into two classes of algorithms:
adaptive dynamic programming (ADP), and actor-critic deep RL (DRL). The first school of
adaptive dynamic programming (ADP) learns through optimal and adaptive control frame-
works, oftentimes treating network weights as part of the adaptation parameters. These
ADP approaches were developed largely within the scope of seminal works such as inte-
gral reinforcement learning (IRL) (Vrabie and Lewis, 2009), synchronous policy iteration
(SPI) (Vamvoudakis and Lewis, 2010), robust ADP (RADP) (Jiang and Jiang, 2014), and
continuous-time value iteration (CT-VI) (Bian and Jiang, 2022). There is actually a signif-
icant body of literature on ADP approaches to CT-RL control of nonlinear affine systems.
But as shown in a recent comprehensive and systematic review of up-to-date ADP meth-
ods (Wallace and Si, 2024b), they are extensions revolving around the four central works.
As a result of ADP’s theoretical frameworks in adaptive and optimal control, Lyapunov
arguments are available to prove qualitative properties including weight convergence and
closed-loop stability results. Yet, quantitative results are few, as the proposed algorithms
struggle to synthesis learning controllers in meaningful ways, and have only been evaluated
on simple second order systems with known optimal solutions (Wallace and Si, 2024b).

The second deep RL (DRL) approach is the most recent and perhaps most promising
to date, in particular the fitted value iteration (FVI) deep RL methods, which solve the
Hamilton-Jacobi-Bellman/Isaacs (HJB/HJI) equations directly through approximation by
deep networks, large datasets, and extensive training. The concept of applying black-box
function approximation to solve the HJB traces back to the seminal work of Doya (2000).
Subsequently, Tassa and Erez (2007) proposed a foundational value-function approxima-
tion framework using least-squares regression techniques for its neural network training.
Recently, the novel continuous FVI (cFVI) (Lutter et al., 2021) and robust FVI (rFVI)
(Lutter et al., 2023b) algorithms empirically exhibit low variance and control performance
far surpassing that of prevailing ADP methods, and stand for the state-of-the-art currently.
However, theoretical guarantees as those offered by ADP are yet to be developed.

3

Wallace and Si

Contributions. We propose a new model-based CT-RL learning approach with the fol-
lowing three contributions: 1) Our novel reference command input (RCI) enabled learning
leverages fundamental feedback control principles to provide effective and efficient explo-
ration for learning. 2) By taking advantage of Kleinman’s structure and using state-action
data-driven learning, we address nonlinear learning control problems with data efficiency.
In addition, when the system physics afford a decentralized structure, RCI can make the
algorithm even more efficient. 3) We provide theoretical guarantees of RCI CT-RL learning
convergence, solution optimality, and system stability alongside comprehensive evaluations
and comparisons to demonstrate RCI-enabled SOTA CT-RL results in optimal control of
affine nonlinear systems.

3. Method

RCI requires knowledge of an affine nonlinear dynamics of the environment. Together with
state-action trajectory data, it produces a sequence of policies {µi}∞i=1 which iteratively
solve for the optimal control problem below.

3.1 Problem Formulation and Background

We consider the same affine nonlinear system as that considered in the above SOTA ADP
and DRL methods:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn is the state, u ∈ Rm is the control, f : Rn → Rn, and g : Rn → Rn×m. As
standard, we assume f and g are Lipschitz on a compact set Ω ⊂ Rn containing the origin
x = 0 in its interior, and that f(0) = 0. We consider the infinite-horizon undiscounted cost

J(x0) =

∫ ∞
0

(xTQx+ uTRu) dτ, (2)

where Q ∈ Rn×n, Q = QT ≥ 0 and R ∈ Rm×m, R = RT > 0 are the state and control
penalties. This Q-R formulation is the standard in nonlinear optimal control formulations
(Lewis and Liu, 2012).
Kleinman’s Algorithm for Linear Systems with Known Dynamic Model (Klein-
man, 1968). We take advantage of some successive approximation concepts from Klein-
man’s algorithm to the proposed nonlinear RCI algorithm for data efficiency. Classical
Kleinman’s algorithm considers the linear time-invariant system ẋ = Ax+Bu. We assume
that (A,B) is stabilizable and (Q1/2, A) is detectable, for well-posedness (Rodriguez, 2004).
Kleinman’s algorithm iteratively solves for the optimal LQR control K∗ = R−1BTP ∗, where
P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 is the solution of the Riccati equation (Rodriguez, 2004), as
follows. For iteration i = 0, 1, . . . , on the current policy Ki, let Pi ∈ Rn×n, Pi = P Ti > 0 be
the solution of the algebraic Lyapunov equation (ALE)

(A−BKi)
TPi + Pi(A−BKi) +KT

i RKi +Q = 0. (3)

Then, Pi solved from (3) leads to the new policy Ki+1 ∈ Rm×n as

Ki+1 = R−1BTPi. (4)

4

Physics-Informed CT-RL with Performance Guarantees

The following theorem is needed to prove the theoretical results of Section 4.

Theorem 1 (Convergence, Optimality, and Closed-Loop Stability of Kleinman’s
Algorithm (Kleinman, 1968)) Suppose the initial policy K0 is such that A − BK0 is
Hurwitz. Then we have the following:

(i) A−BKi is Hurwitz for all i ≥ 0.

(ii) P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0, and lim
i→∞

Pi = P ∗, lim
i→∞

Ki = K∗.

The following preparation is needed before introducing learning of the critic, which uses
the bases Φ and weights c as formulated in Definition 2 and Proposition 3.

Definition 2 (Operators for Learning) For a square symmetric matrix P = P T ∈
Rn×n, define its “vectorization” v(P) as

v(P) =
[
p11, 2p12, . . . , 2p1n, p22, 2p23, . . . , 2pn−1,n, pnn

]T
. (5)

We denote the dimension of the vector v(P) as n , n(n+1)
2 . Given vectors x, y ∈ Rn, define

Φ(x, y) =
1

2

[
2x1y1, x1y2 + x2y1, . . . , x1yn + xny1, 2x2y2, . . . , 2xnyn

]T ∈ Rn. (6)

Proposition 3 The operators v (5) and Φ (6) satisfy the following:

(i) v is a linear isomorphism of the symmetric matrices onto Rn; thus, for each c ∈ Rn,
there exists a unique P ∈ Rn×n, P = P T such that

c = v(P). (7)

(ii) Φ is a symmetric bilinear form. Furthermore, whenever P ∈ Rn×n, P = P T , the
following identity holds

ΦT (x, y)v(P) = xTPy, ∀ x, y ∈ Rn. (8)

3.2 RCI Algorithm

Reference Command Input (RCI). Almost all ADP CT-RL algorithms require the
persistence of excitation (PE) condition in proofs of algorithm properties (cf. Remark 5).
PE is an analytical condition, but it is not constructive, nor is there an executable test
procedure for PE for nonlinear systems (Shimkin and Feuer, 1987). In essence, PE means
that in response to sufficiently exciting inputs the system states can be used in system
identification and thus result in learning parameter convergence. This is in alignment with
the notion of exploration in reinforcement learning. In almost all existing ADP works,
to achieve PE it is standard practice to apply a probing noise d to the system (1) in a
feedback control of the form u = µ(x) + d, where µ : Rn → Rm is a stabilizing policy.
According to classical feedback control principles, a good feedback control attenuates plant
input disturbances; thus, plant-input probing noise excitation is an inherently problematic

5

Wallace and Si

practice (Rodriguez, 2004) because good controllers attenuate plant input excitation. This
leads to poor system excitation and data quality, the consequences of which are thoroughly
analyzed in (Wallace and Si, 2024b). In particular, the resulting poor excitation leads
to degraded algorithm numerics, thus poor quality in estimated value and policy. This
often causes instability in the network weight updates, which often diverge and cause the
closed-loop system to go unstable (Wallace and Si, 2024b).

We instead propose a reference command input (RCI) solution, also based on classical
control principles, to excite the closed-loop system at the reference command input r (cf.
Figure 1), which is favorable to the input disturbance d because the associated closed-loop
map has larger magnitude response at low frequencies. This allows properly-designed input
signals to pass through with little attenuation, thereby offering improved PE and excitation
efficiency (Ogata, 1997; Rodriguez, 2004).

RCI is a new CT-RL method taking a holistic approach to most effectively and efficiently
utilize known system dynamics information, fundamental feedback control principles, and
learning based on observations from the system. As such, it enables SOTA CT-RL control
design for affine nonlinear dynamical systems and leads to SOTA learning and control per-
formance. Refer to Figure 1, which depicts the three key components of the new RCI method
(bottom to top): 1) The feedback control loop that includes both the state feedback as the
control policy, and also a feedback path for the reference command input. 2) The second
component uses reference command input to enable effective and efficient exploration for
learning. 3) The critic learning component is created so that it utilizes state trajectory data
(x, u) to form the algorithm’s learning update (see algorithm procedures below). Critically,
RCI is compatible with current RL formulations. Since full state information is required
in the optimal control problem, we may designate a subset of the state x as measurement

variables y ∈ Rp for reference injection. Writing x =
[
yT xTr

]T
, where xr ∈ Rn−p denotes

the rest of the state, and denoting e = r − y as the error signal, the control

u = µ(e, xr) = µ(y, xr) + d̃, d̃ , µ(e, xr)− µ(y, xr), (9)

is of the form u = µ(x) + d̃. Thus, RCI can improve learning of existing CT-RL methods.
Critic Network Structure and Basis Selection. The critic is represented by

V (x) = ΦT (x, x)ci, (10)

where ci ∈ Rn in the form of Equation (7) are the weights of the critic, and Φ (6) contains
the bases for critic approximation. Given ci ∈ Rn and from Proposition 3, we have that
there exists a unique Pi = P Ti ∈ Rn×n such that ci = v(Pi). Thus, from (8), we have

V (x) = ΦT (x, x)ci = ΦT (x, x)v(Pi) = xTPix. (11)

It is noted that we choose this quadratic approximation network in order to leverage the
structure of the Q-R cost (2). It is also noted that this Q-R cost structure has been used in
optimal control as a default. In-depth analysis and evaluations of this cost structure have
proved it a highly effective means as a control objective in continuous state and control
application problems (Lewis et al., 2012a; Bertsekas, 2005; Stengel, 2022; Rodriguez, 2004).
Furthermore, even though we use Q-R cost structure, our approach is not an LQR method
because we deal with affine nonlinear dynamics defined in Equation (1).

6

Physics-Informed CT-RL with Performance Guarantees

r

−
e

Policy

µi(x)

u Affine Nonlinear Environment

ẋ = f(x) + g(x)u

y

xr

x

Integral Reinforcement∫ tk
tk−1

xTQx+ µTi Rµidτ

Critic Weight Learning

Θici = Ξi

ciCritic Network

V (x)

Learning Loop

Feedback Loops

RCI

Figure 1: RCI enabled CT-RL learning control structure.

Control Policy. Having defined the critic structure, we form the control policy as follows

µi+1(x) = −1

2
R−1gT (0)

∂V

∂x
(x). (12)

As in a general optimal control formulation (Lewis et al., 2012a), this policy solution is
obtained from and for the affine nonlinear dynamics and utilizes gradient information of
the value function approximator. It comes as a direct result of manipulating the HJB
equation for control-affine systems. In addition, the policy structure (12) alongside the
choice of quadratic critic bases (11) allows us to take advantage of Kleinman’s control
structure (Kleinman, 1968) in the subsequent algorithm formulation.

The New RCI CT-RL Design. We are now in a position to derive step-by-step our
RCI-based CT-RL algorithm.

Step 1. Given iteration i ≥ 0, let µi be the control policy at the i-th iteration, and let
t0 < t1 be given. The critic network (output V) is designed to approximate the cost J in
Equation (2). Defining the integral reinforcement signal (

∫ t1
t0
xTQx+µTi (x)Rµi(x) dτ) as in

(Vrabie and Lewis, 2009), then along environment trajectories, we have

V (x(t0))− V (x(t1)) =

∫ t1

t0

xTQx+ µTi (x)Rµi(x) dτ. (13)

The right-hand-side of (13) requires only state-action data (x, u). The learning goal is to
minimize the approximation error J − V in (13).

Step 2. For learning the critic weights ci in Equation (10), we need latent parameters
represented as Pi = P Ti in Proposition 3. Toward that, recasting (13) by differentiating the
value function V along the trajectories of the nonlinear system (1), we have

V (x(t1))− V (x(t0)) =

∫ t1

t0

d

dτ
{V (x)} dτ =

∫ t1

t0

(f(x) + g(x)u)T
∂V

∂x
(x) dτ. (14)

7

Wallace and Si

Using the identification ci = v(Pi) from Proposition 3, (14) can be written equivalently as

xT (t1)Pix(t1)− xT (t0)Pix(t0) = 2

∫ t1

t0

(f(x) + g(x)u)T Pix dτ. (15)

The differentiated value function equation (15) now incorporates the value function ap-
proximator structure V and its weights ci = v(Pi) alongside the nonlinear dynamics (f, g)
(1) and the nonlinear trajectory data {x(t)}t∈[t0,t1] on the integral reinforcement interval
t ∈ [t0, t1].
Step 3. This step aims at incorporating the approximate cost V (10) of the policy µi to
set up the stage for step 4 toward a value update, and thus the policy update µi+1 (12).
Construct a dynamic term ξ to be used in a reinforcement integral constant:

ξ(x) , Ax+Bµi(x), A ,
∂{f(x) + g(x)u}

∂x

∣∣∣∣
x,u=0

, B ,
∂{f(x) + g(x)u}

∂u

∣∣∣∣
x,u=0

(16)

It is obtained by applying the current policy µi derived from the nonlinear dynamics (1) to
its linearized system (A,B) (16) at state x ∈ Rn. We now derive an equivalent expression
for (15) which includes the current policy µi by adding an integral reinforcement constant
based on ξ to both sides of (15):

xT (t1)Pix(t1)− xT (t0)Pix(t0)− 2

∫ t1

t0

ξT (x)Pix dτ = 2

∫ t1

t0

(f(x) + g(x)u− ξ(x))T Pix dτ.

(17)

Notice that this algebraic manipulation from Equation (15) to (17) does not change the
nature of the RCI procedure in directly addressing the nonlinear dynamics (1); indeed, (17)
is algebraically equivalent to (15). Importantly, (17) still contains the derivative informa-
tion of value V along nonlinear system trajectories {x(t)}t∈[t0,t1] from (1), and the integral

reinforcement constant
∫ t1
t0
ξT (x)Pix dτ in (17) is integrated over the nonlinear system tra-

jectories {x(t)}t∈[t0,t1] to form part of the learning matrix Θi (23), which is then used to
update the policy µi+1 (12). Thus, the RCI policy µi is associated with the nonlinear
dynamics (1), and not derived from a linearized (A,B) dynamics.
Step 4. We have prepared the value function equation (15) to include the current policy µi,
we now inspect the value V from a perspective of the generalized Hamilton-Jacobi-Bellman
(GHJB) equation (Beard and McLain, 1998) where V approximates the cost of current
policy µi if and only if V satisfies the GHJB:(

f(x) + g(x)µi(x)

)T ∂V
∂x

(x) + xTQx+ µTi (x)Rµi(x) = 0. (18)

This will allow us to integrate the key integral reinforcement equation (13) for a value and
policy update.

Now, note that as x → 0, we have (f(x) + g(x)µi(x)) → ξ(x) = Ax+ Bµi(x) at a rate
o(‖x‖). Thus, combining the value function approximator structure V (x) = xTPix with the
GHJB equation (18) implies to the first order that

2ξT (x)Pix+ xTQx+ µTi (x)Rµi(x) ≈ 0. (19)

8

Physics-Informed CT-RL with Performance Guarantees

Here, ≈ denotes first-order approximation. Returning to (17), the approximate GHJB
equation (19) now shows that

xT (t1)Pix(t1)− xT (t0)Pix(t0) +

∫ t1

t0

xTQx+ µTi Rµi dτ ≈ 2

∫ t1

t0

(f(x) + g(x)u− ξ)T Pix dτ,

or, rearranging

− 2

∫ t1

t0

(f(x) + g(x)u− ξ(x))T Pix dτ +
[
xT (t1)Pix(t1)− xT (t0)Pix(t0)

]
≈ −

∫ t1

t0

xTQx+ µTi (x)Rµi(x) dτ. (20)

The integral reinforcement equation (20) is now of the required form for learning: The
right-hand-side of (20) incorporates the key integral reinforcement equation (13); crucially,
it requires only knowledge of the current policy µi, trajectory data {x(t)}t∈[t0,t1] from the
true nonlinear process, and the nominal model (f, g) (1) as opposed to exact knowledge of
the actual nonlinear process, which cannot be known a priori. The left-hand-side contains
the environment trajectory integral and difference data to form the critic weight update
matrix in Step 5 below.

Step 5. Using the identification ci = v(Pi) from Proposition 3, and applying the algebraic
identity (8) to the left-hand-side of (20) yields

[
−2

∫ t1

t0

Φ
(
f(x) + g(x)u− ξ(x), x

)
dτ + Φ

(
x(t1) + x(t0), x(t1)− x(t0)

)]T
ci

≈ −
∫ t1

t0

xTQx+ µTi (x)Rµi(x) dτ. (21)

The equation (21) is of the final form required for a learning update, as all terms pertaining
to the value function V via the weights ci now appear as a linear regression to be solved
in order to update the value function network weights. In particular, the terms in brackets
on the left-hand-side will form a single row of the learning matrix Θi (23), multiplied on
the right by the network weight vector ci. Meanwhile, the integral reinforcement signal on
the right-hand-side will form a single element of the learning vector Ξi (24), establishing an
integral reinforcement learning update.

Step 6. We now use the integral reinforcement (21) (which comprises a single trajectory
sample) to construct a value function weight update from l ∈ N such samples. Given a
designer-selected state-action sample count l ∈ N, sequence of sample instants {tk}lk=0,
and reference command input r(t) (see discussions around Equation (9)), we apply r(t) to
system (1) under an initial stabilizing policy µ0. In turn, we collect the resulting state-
action trajectory data

{(
x(t), u(t)

)}
t∈[t0,tl]

. Applying (21) at the sample instants {tk}lk=0

we arrive at a new updated weight from solving the following equation:

Θi ci = Ξi, (22)

9

Wallace and Si

where the learning matrices Θi ∈ Rl×n, Ξi ∈ Rl are given from (21) by

Θi =


−2
∫ t1
t0

ΦT
(
f(x) + g(x)u− ξ(x), x

)
dτ + ΦT

(
x(t1) + x(t0), x(t1)− x(t0)

)
...

−2
∫ tl
tl−1

ΦT
(
f(x) + g(x)u− ξ(x), x

)
dτ + ΦT

(
x(tl) + x(tl−1), x(tl)− x(tl−1)

)
 ,
(23)

Ξi = −


∫ t1
t0
xTQx+ µTi (x)Rµi(x) dτ

...∫ tl
tl−1

xTQx+ µTi (x)Rµi(x) dτ

 . (24)

Step 7. Having solved for the critic weights ci (22), we update the policy µi+1 from the
updated value network V (x) = ΦT (x, x)ci via (12). The recursive process leads to the
optimal solution of the affine nonlinear optimal control problem in Section 3.1.

The RCI-based CT-RL algorithm is summarized in Algorithm 1.

Algorithm 1 RCI-Based CT-RL.

1: Hyperparameters: Cost Q, R (2), number of data samples l, sample instants {tk}lk=0,
number of iterations i∗, reference command input r, initial stabilizing policy µ0.

2: Data Collection: Apply reference command input r(t) to system (1), starting from
initial condition x0 ∈ Rn simulating under policy µ0, collecting state-action data{(
x(t), u(t)

)}
t∈[t0,tl]

.

3: Learning:
4: for i = 0, . . . , i∗ − 1 do
5: Construct learning matrices Θi (23) and Ξi (24) from collected state action-data{(

x(t), u(t)
)}

t∈[t0,tl]
and current policy µi.

6: Perform critic network weight update ci (22) from learning matrices Θi (23), Ξi (24).
7: Update critic network V (x)← ΦT (x, x)ci (10).
8: Update policy µi+1 via (12).
9: end for

10: Termination: Final policy µi∗ .

4. Theoretical Results

Our choice of critic network structure V (10) and control policy structure µi (12) allows us
to take advantage of classical control results in Kleinman’s well-tested algorithm (Kleinman,
1968). These classical principles, combined with our use of state-action data (x, u) from the
nonlinear environment in learning, enable us to develop our key convergence, optimality,
and closed-loop stability guarantees.

Theorem 4 (Convergence, Optimality, and Closed-Loop Stability of RCI)
Suppose that the initial policy µ0 of the form (12) is such that ∂

∂x{f(x) + g(x)µ0(x)} is
Hurwitz at the origin (i.e., µ0 is asymptotically stabilizing). Suppose also that the sample

10

Physics-Informed CT-RL with Performance Guarantees

instants {tk}lk=0 are such that the integral reinforcement matrix Θ ∈ Rl×n defined by

Θ =
[∫ t1

t0
Φ(x, x) dτ · · ·

∫ tl
tl−1

Φ(x, x) dτ
]T

(25)

has full rank n. Then, identifying ci = v(Pi) (Proposition 3), RCI produces identical se-
quences of matrices {Pi}∞i=0 as Kleinman’s algorithm (Kleinman, 1968) to the first-order
approximation if the Kleinman control sequence is produced based on a known linearized
nonlinear process that is unknown to RCI. Thus, for RCI in the choice of critic bases
Φ(x, x) ∈ Rn on the nonlinear system (1), we have:

(i) P ∗ ≤ Pi+1 ≤ Pi for all i ≥ 0, and lim
i→∞

Pi = P ∗, where P ∗ ∈ Rn×n, P ∗ = P ∗T > 0 is

the solution of the Riccati equation associated with (A,B) (16).

(ii) lim
i→∞

µi = −K∗ in operator norm, where K∗ ∈ Rn×m is the optimal LQ control.

Proof: An induction argument presented in Appendix B. �
Insights: Theorem 4 is a theoretical guarantee of great practical utility to designers. It
assures convergence and closed-loop stability of the RCI policy iterates {µi}∞i=0, as well
as optimality of the limit policy to first-order approximation. We note that Kleinman’s
algorithm (Kleinman, 1968) only addresses fully-known linear dynamics (A,B) without
model uncertainty, while RCI’s learning and execution is on the actual nonlinear process
with nonlinear uncertainties beyond the nominal system model (f, g) (1). As will be shown,
RCI’s use of nonlinear trajectory data {x(t)}t≥0 generated by the actual physical process
allows our learning-based design to converge to a policy which is much closer to optimal
than the classical LQ controller (cf. Section 6). This is because the classical LQ design
method does not capture 1) the system nonlinearity, and 2) possible model uncertainty,
while both are fully accommodated by RCI. Another key advantage offered by RCI is that
it replaces the formal PE requirement, for which there does not exist a closed-form test for
nonlinear systems (Shimkin and Feuer, 1987), with a constructive test as shown in (25).

Remark 5 (Theoretical Results and Assumptions of SOTA CT-RL Works) RCI,
like the leading ADP-based works (Vrabie and Lewis, 2009; Vamvoudakis and Lewis, 2010;
Jiang and Jiang, 2014; Bian and Jiang, 2022) provides theoretical results of convergence,
optimality, and closed-loop stability. The SOTA FVIs (Lutter et al., 2021, 2023b) do not
provide these guarantees. RCI’s assumptions are among the least stringent in CT-RL, which
we outline in detail in Appendix A.1. RCI requires standard stabilizability, detectability, and
full-rank assumptions for well-posedness. Meanwhile, DRL FVIs (Lutter et al., 2021, 2023b)
require partial derivative information of f and g. RCI’s theoretical results are not global
in nature, which is by design. Global asymptotic stability results for nonlinear systems
generally require extremely stringent theoretical assumptions on both the structure of the
environment dynamics and the knowledge of the dynamics. For instance, the global results
of CT-VI (Bian and Jiang, 2022) require PE, existence and uniqueness of solutions to an
uncountable family of finite-horizon HJB equations, and an initial globally asymptotically
stabilizing policy. The ADP methods generally have the most stringent assumptions.

11

Wallace and Si

Remark 6 (Decentralizable Environment for Further Data Efficiency) Consider a
decentralized environment (f, g) (1) with N separable control loops. To illustrate, we present
N = 2 loops: [

ẋ1

ẋ2

]
=

[
f1(x)
f2(x)

]
+

[
g11(x) g12(x)
g21(x) g22(x)

] [
u1

u2

]
. (26)

No assumptions are made on dynamic coupling between the loops; i.e., the loops may be fully
coupled. Here, xj ∈ Rnj , uj ∈ Rmj (j = 1, . . . , N) with

∑N
j=1 nj = n and

∑N
j=1mj = m.

Such partitions appear in a variety of real-world applications such as robotic systems (Craig,
2005; Dhaouadi and Abu Hatab, 2013), helicopters (Enns and Si, 2002, 2003b,a), UAVs
(Wang et al., 2016), and aircraft (Stengel, 2022; Dickeson et al., 2009a,b) In this case, the
RCI learning rule (22) occurs in a decentralized fashion in each of the loops, thereby reducing
problem dimensionality. This results in sequences of critic network weights {ci,j}∞i=0 and
policies {µi,j}∞i=1 in each loop yielded by learning analogous to (22), now constructed with xj
instead of x, uj instead of u, etc. Crucially, learning convergence, optimality, and closed-
loop stability results analogous to Theorem 4 hold for the policies {µi,j}∞i=1 in each loop. For
a complete formulation and proof of this result, see Section 6 of Supplemental Material.

5. Experiment Setup for Evaluations

Even though we have shown RCI-based CT-RL to have theoretical guarantees of learning
convergence, solution optimality, and system stability in Section 4, these results are only
qualitative. It is important to quantitatively and systematically evaluate how well-behaved
the RCI control is in terms of both learning and control system performances. Our eval-
uations below include (typical) comprehensive evaluations of learning performance such as
average return, learning success rate, and data efficiency. Additionally, we provide two new
evaluations: controller optimality and control system performance, the latter of which is
essential for continuous state and control applications problems, which require such evalu-
ations as basic requirements of control system design.

5.1 Baselines

The evaluations involve four baseline methods, among which the Nominal LQ and the
Optimal LQ are also used as benchmarks for assessing RCI policy optimality:
• “Continuous FVI (cFVI)”: SOTA deep CT-RL method (Lutter et al., 2021).
• “Robust FVI (rFVI)”: Robust variant of SOTA FVI (Lutter et al., 2023b).
• “Nominal LQ”: The classical LQR design performed on the linearized model (A,B)

of the nominal nonlinear system (f, g) (1). Its design does not take into account system
nonlinearity and model uncertainty.
• “Optimal LQ”: The classical LQR design performed on the linearization of the ac-

tual nonlinear process, where modeling errors are included as if the designer knows the
uncertainty a priori. Its design does not take into account system nonlinearity.

Among the baseslines, the FVIs are used for comparisons for both learning performance
and control system performance. Results involving the Nominal LQ and the Optimal LQ
can be viewed as ablation studies, and the Optimal LQ also serves as a benchmark in order
to measure control optimality.

12

Physics-Informed CT-RL with Performance Guarantees

5.2 Performance Measures

In these studies, we provide comprehensive evaluations of standard performance measures in:
average return, learning success rate, generalization with respect to system initial conditions
(ICs) and modeling error, and time and data efficiency as well as free parameter complexity.
In addition, we analyze performance with respect to the following learning control measures:

• Cost Performance: The infinite-horizon cost J(x0) obtained via the integral (2) deliv-
ered by the policy in the nonlinear optimal control task. As a note, in controls conventions
the cost J(x0) > 0 is a positive number to be minimized (lower is better).

• Relative Cost Performance: The difference J?FV I(x) − JRCI(x) between the cost per-
formance of the respective FVI algorithm (i.e., ? = c or r) and RCI. Note that wherever this
difference is positive, RCI delivers better performance than the respective FVI algorithm
because this corresponds to RCI having a lower cost.

• Estimation Error: The difference J(x)−V (x) between the cost J(x) (2) at state x ∈ Rn
and the value function approximation V (x) (10) at x ∈ Rn. Smaller difference is better
(means that the critic is more accurate).

• Policy Optimality Error: The difference ‖µ−K∗‖ in operator norm between a given
policy µ and the Optimal LQ policy K∗ (i.e., K∗ is optimal with respect to the actual
physical process containing the model uncertainty). This is used to provide a quantitative
measure of how much the RCI design based on nonlinear dynamics (1) improves over that
on the linearized dynamics (A,B).

In addition, we measure the following closed-loop time-domain performance measures
which are central to the continuous-time nonlinear dynamical control task studied:

• “90% Rise Time tr,y,90%: The time taken for the closed-loop response y(t) to rise to
90% of its commanded value.

• “1% Settling Time ts,y,1%: The time taken for the closed-loop response y(t) to settle
within ±1% of its commanded value.

• “Overshoot Mp,y: The maximum by which the closed-loop response y(t) exceeds the
step reference command r(t) ≡ r. Expressed as: Mp,y = max

t≥0
(y(t)− r)/r × 100%.

Success of a Learning Trial. A learning trial is a “success” if the policy generated
stabilizes the closed-loop system; specifically, if the state ‖x‖ ≤ 0.01 at time t = 25 s.

5.3 Questions Addressed

Our evaluations aim to quantitatively address the following:
Q1: Does RCI CT-RL lead to learning convergence, control policy optimality, and closed-
loop stability as theoretically guaranteed (cf. Theorem 4)? How close to optimal are the
policies under modeling error, and how much does RCI learning improve solution optimality
over a nominal classical LQ design?
Q2: How does RCI CT-RL learning performance (average return, learning variance, and
success rate) compare to baseline FVIs?
Q3: How is RCI cost performance affected by system modeling errors in comparison to
baseline FVIs?
Q4: How is RCI critic network estimation error affected by system modeling errors in
comparison to baseline FVIs?
Q5: How well do RCI closed-loop time responses generalize with respect to system modeling

13

Wallace and Si

error when compared to baseline FVIs?
Q6: How data efficient is RCI compared to FVIs?

5.4 Environments, Code, and Data

As CT-RL benchmarks are not as established as their DT-RL counterparts, our selection of
the three environments used in this study are based on the following considerations: 1) The
pendulum environment may be considered the most popular benchmark for CT-RL so far, as
most studies have used it. It is also used in SOTA DRL evaluations of FVIs, we therefore
used the identical setup as in (Lutter et al., 2021, 2023b). 2) The jet and the DDMR
environments are from real physical systems. We use them to evaluate how SOTA CT-RL
methods perform toward real-life meaningful applications. 3) As such, these environment
selections are SOTA. A detailed comparison with leading ADP and DRL approaches to
CT-RL is provided in Appendix A and Table 6. Physical motivations and insights of the
models can be found in Sections 3–5 of Supplemental. The dynamics of each are given by

θ̇ = ω

ω̇ = mgL
2I sin θ + τ

I

V̇ = mcd
m̂ ω2 − 2β

m̂r2
V + kt

m̂kgr
iar + kt

m̂kgr
ial

ω̇ = −mcd
Î

ωV − βd2w
2Îr2

ω + dwkt
2Îkgr

iar − dwkt
2Îkgr

ial

i̇ar =
−kgkb
lar

V − kgkbdw
2lar

ω − ra
la
iar + 1

2la
ea + 1

2la
∆ea

i̇al =
−kgkb
lar

V +
kgkbdw

2lar
ω − ra

la
ial + 1

2la
ea − 1

2la
∆ea

(27)


V̇
γ̇
q̇
α̇

 =


−DV −g cosαe 0 0
LV
Ve

0 0 Lα
Ve

0 0 Mq Mα
−LV
Ve

0 1 −Lα
Ve



V
γ
q
α

+


TδT 0
0 0
0 MδE

0 0

[δTδE
]
. (28)

• The pendulum (27, left) is chosen identical to the model in the original FVI works
(Lutter et al., 2021, 2023b). It has states x = (θ, ω), where θ is the pendulum angle
(measured zero pointing upward, positive counterclockwise), ω is the pendulum angular
velocity, and the single-input control u = τ is the torque applied to the pendulum base.
• The jet aircraft (28) is derived from full-scale NASA wind tunnel data (Soderman

and Aiken, 1971) and is a standard flight control benchmark (Stengel, 2022). It has states
x = (V, γ, q, α), where V is the airspeed, γ is the flightpath angle (FPA), q is the pitch rate,
and α is the angle of attack. It has controls u = (δT , δE), where δT is the throttle setting
(associated with the airspeed V in the translational loop j = 1), and δE is the elevator
deflection (associated with the FPA γ and attitude q, α in the rotational loop j = 2).
• The differential drive mobile robot (DDMR) (27, right) is obtained from system ID

on actual hardware (Mondal et al., 2020, 2019). The DDMR has states x = (V, ω, iar , ial),
where V is the velocity, ω is the angular velocity, and iar , ial are the right and left DC
motor armature currents, respectively. The controls are u = (ea,∆ea), where ea is the
average of the armature voltages applied to the right and left DC motors (associated with
the speed V in the translational loop j = 1), and ∆ea is the difference of the right/left
voltages (associated with the rotational velocity ω in the rotational loop j = 2).
All Code/Data Available. All RCI code and datasets for this study are available in
Supplemental and at (Wallace and Si, 2024c). All FVI results (Lutter et al., 2021, 2023b)
are generated by the open-source code developed by the authors at (Lutter et al., 2023a).

14

Physics-Informed CT-RL with Performance Guarantees

5.5 Implementations

Training Procedure. An episode is initialized by resetting the environment and termi-
nated at time T of the training horizon for collecting the state-action trajectory data (x, u).
A trial is a complete training process that contains a series of consecutive episodes. RCI
learning requires state-action trajectory data from a single episode which usually has on the
order of l = 100 total samples for the three evaluated environments. This low data com-
plexity allows RCI to learn online from the actual physical process. Deep RL FVIs require
training data from over 5 million episodes (cf. Table 5), for details see (Lutter et al., 2021,
2023b). As a result, the only practical means of training FVI is in simulation.

Reference Command Input Selection. Numerical selections of the reference command
inputs r(t) can be found in Table 7 of Appendix C. We choose the reference command r(t)
based on classical input-output principles by placing the dominant frequency content near
the peak of the closed-loop map from r to the output y (cf. Figure 1). This choice of
frequency maximizes excitation efficiency (Ogata, 1997; Rodriguez, 2004).

Random Seeds. Training and evaluation for each of the methods are based on 20 seeds
for random number generation (RNG): 0–19 for training, and 100–119 for evaluation. In the
case of the FVIs, the seeds are used in the environment, Numpy, and PyTorch for number
generation. For RCI, we have set MATLAB’s master RNG seed for number generation.

Network Weight Initialization. For FVIs’ deep networks, we use the identical network
initialization procedure as in the original works (Lutter et al., 2021, 2023b); namely, Xavier
normal distribution. The initialization gains of the layers can be found in Table 8 of Ap-
pendix C.2, the same as in previous studies (Lutter et al., 2021, 2023b). For RCI’s quadratic
network structure, we need only initialize the critic weights c0 in (10). The setup of the
uniform distributions used for all three environments is summarized in Appendix C.

Initializing the Environments. System initial conditions (ICs) for training and eval-
uation are generated using uniform distributions U , where the ranges for the pendulum,
jet aircraft, and DDMR cover the dynamics broadly, well beyond their linear regimes for
evaluation as well. These distributions for each environment are provided in Appendix C.
Note that, for the pendulum system, we have chosen the identical uniform distribution U
for state initialization as in the original FVI studies (Lutter et al., 2021, 2023b). The only
exception to the above uniform IC generation procedure is the systematic grid sweeps con-
ducted in the RCI initial condition and modeling error generalization studies of Section 6.
Here, for comprehensive evaluations, the ICs x0 are swept over a grid of values x0 ∈ Gx0 ,
which are likewise given in Appendix C.

Generalization under Modeling Error. Control performance under modeling errors is
an essential measure of the quality of a controller. In real-life applications, the modeling
error is usually unknown. Thus, learning provides both RCI and FVIs an opportunity to
adapt to unmodeled dynamics in the environment. Here we consider several different scenar-
ios to demonstrate system behaviors under different control designs given certain levels of
modeling errors ν. This is a test of robustness or the ability to generalize of a controller. We
thus report systematic results given ν = 0–25% modeling errors. Implementation details are
provided in Appendix C. Furthermore, Sections 3–5 of the Supplemental Material provide
in-depth discussions of the dynamics of each of the environments studied, as well as the ex-
act points structurally where the individual modeling error parameters enter the respective

15

Wallace and Si

dynamical equations. This work studies effects due to multiplicative model uncertainties,
which is a standard formulation in CT-RL works (Lutter et al., 2023b, 2021), as well as
classical control (Rodriguez, 2004) and aerospace applications (Stengel, 2022). However,
by no means is RCI limited to multiplicative model uncertainties; indeed, nowhere is the
model uncertainty structure required explicitly in Section 3. RCI is afforded this flexibility
by collecting state-action data (x, u) directly from the nonlinear process with its embedded
uncertainties, multiplicative or otherwise.

Evaluation Procedure. At each algorithm iteration, the respective policy of RCI, cFVI,
and rFVI is evaluated over 100 episodes of the environment. The environment ICs are
generated according to uniform distributions given in Appendix C. For display purposes of
generating the surface plots in Figures 3 and 4, we then select a single seed for evaluation
and present data for 0%, 10%, and 25% modeling errors. The resulting final policies are
then evaluated with respect to their relative costs J?FV I(x) − JRCI(x) (cf. Section 5.2 for
performance metric definitions) and value function approximation errors J(x) − V (x) for
all states x in evaluation grids Gx given in Appendix C.

Finally, for evaluating closed-loop time responses, we issue the following step reference
commands: For the pendulum, we initialize it at full displacement (free hanging) θ0 = π,
θ̇0 = 0 and stabilize at the upright position r(t) = 0 rad. For the jet aircraft and DDMR,
we initialize ICs to equilibrium x0 = xe. For the jet, we issue a command in velocity y1 = V
of r1(t) = 110 ft/s (i.e., 10 ft/s faster than equilibrium Ve = 100 ft/s), and we issue a
command in flightpath angle y2 = γ of r2(t) = 1 deg. For the DDMR, we issue a reference
command in velocity y1 = V of r1(t) = 3 m/s (i.e., 1 m/s faster than equilibrium Ve = 2
m/s), and we issue a reference command in angular velocity y2 = ω of r2(t) = 30 deg/s.

6. RCI Learning with Nominal LQ and Optimal LQ as Benchmarks

In this evaluation, we examine how RCI’s convergence, optimality, and closed-loop stability
guarantees (Section 4) generalize with respect to systematic sweeps of varying system initial
conditions (ICs) and modeling errors (Section 5). This also serves as an ablation, as the
Nominal LQ and Optimal LQ (see Section 5.1 for definitions) do not account for environment
nonlinearities as RCI does.

Q1: RCI CT-RL leads to learning convergence, solution optimality, and closed-
loop stability as theoretically guaranteed. RCI reaches controller optimality
with a factor of ten improvement over that of the Nominal LQ design. We
initialize the environments with the uniform distributions described in Section 5.5. A com-
plete evaluation of RCI based on the nominal model (ν = 0%) and under modeling errors
(ν = 10% and ν = 25%) for all three environments can be found in Tables S1–S3 of Sup-
plemental. For illustration, a representative subset of this data is reproduced in Table 1.
As can be seen, RCI converges to the respective optimal policy with and without modeling
error with little residual on the pendulum, jet, and DDMR environments.

Tables S1–S3 of Supplemental, with a subset reproduced in Table 1, summarize the
optimality errors ‖µi∗ −K∗‖ between the RCI final policies µi∗ and the Optimal LQ policy
K∗, even under severe modeling errors. Specifically, RCI provides a significantly improved
policy over the Nominal LQR design (based on linearized dynamics) with over 90% reduction
in optimality error. This result is in agreement with the theoretical guarantees (Theorem 4).

16

Physics-Informed CT-RL with Performance Guarantees

Note however, the Optimal LQ policy K∗ provides a means to directly measure optimality
of a RCI policy. This does not mean that RCI is an LQ design. As will be shown, the
time responses of the Nominal LQ, Optimal LQ, and RCI are different, as they should be
by design. Notice also that it is the RCI learning via a combination of nonlinear dynamic
knowledge of the environment and the state-action trajectory data (x, u) that enables RCI’s
optimality edge over the nominal classical (Nominal LQ) design.

Table 1: RCI learning convergence and optimality properties with and without modeling
error (ν = 0%, 10%, 25%)

System ν
Nom LQ optimality RCI policy optimality % error reduction
error ‖K0 −K∗‖ error ‖µi∗ −K∗‖ RCI → Nom LQ

Pendulum
0% 0 1.75e-05±1.19e-05 N/A
10% 1.04 0.03±5.47e-03 96.75±0.53
25% 2.61 0.13±0.01 95.21±0.54

Jet
0% 0 1.93e-08±2.54e-09 N/A
10% 0.05 1.71e-08±2.29e-09 99.99±7.06e-06
25% 0.13 1.38e-08±1.94e-09 99.99±1.55e-06

DDMR
0% 0 1.19e-05±9.06-e06 N/A
10% 0.68 0.06±0.03 91.06±4.07
25% 1.74 0.10±0.06 94.25±3.23

7. Comparisons between RCI and Deep RL (FVIs)

This evaluation focuses on comparing RCI to current SOTA deep RL methods cFVI and
rFVI (Lutter et al., 2021, 2023b). Training and evaluation procedures for all algorithms are
described in detail in Section 5 and Appendix C.

Q2: RCI exhibits the fastest learning convergence of the three methods on all
environments. Except for cFVI on the pendulum benchmark, RCI also delivers
best return and lowest variance. The learning curves for RCI and FVIs are plotted in
Figure 2 where RCI is trained out to FVIs iteration count for comparison purposes. The
average return, variance, and success rate over 20 training seeds are tabulated in Table 2.
As can be seen from Table 2, all methods successfully stabilize the closed-loop system for the
three environments. The FVI algorithms exhibit overall consistent learning behavior which
corroborates the original results (Lutter et al., 2021, 2023b). Additionally, cFVI edges out
RCI on the pendulum task, delivering a higher average return and lower variance. However,
for all environments RCI converges faster (within 10 iterations, cf. Figure 2) than the FVIs
(usually 50–100 iterations). On the two higher-dimensional, multi-input jet aircraft and
DDMR models studied, RCI exhibits the best average return and the lowest variance.

17

Wallace and Si

0 50 100 150
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 10 20 30 40 50 60 70 80 90 100
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

0 10 20 30 40 50 60 70 80 90 100
-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Figure 2: Learning curves of RCI and FVIs for the nominal (ν = 0%) pendulum (left), jet
aircraft (middle), and DDMR (right). Note: Closer to 0 is better. The shaded
areas cover the entire range of the evaluations over 20 seeds (100–119), represented
the same way as in the original works (Lutter et al., 2021, 2023b).

Table 2: Average return and success rate on nominal model (ν = 0%) for three environments

Algorithm
Pendulum Jet aircraft DDMR

Success Return Success Return Success Return
[%] [µ± 2σ] [%] [µ± 2σ] [%] [µ± 2σ]

RCI 100 -12.17 ± 2.30 100 -8.26 ± 1.21 100 -3.69 ± 0.51
cFVI 100 -8.85 ± 1.12 100 -20.50 ± 7.26 100 -4.12 ± 0.44
rFVI 100 -16.58 ± 5.36 100 -23.37 ± 16.04 100 -4.32 ± 0.46

Table 3: Training cost difference data J?FV I − JRCI (> 0: RCI better)

Alg Data
Pendulum Jet aircraft DDMR

ν = 0% ν = 25% ν = 0% ν = 25% ν = 0% ν = 25%

cFVI
min -0.23 -0.02 0.00 0.00 1.11e-05 1.08e-05
max 4.62e-04 0.51 8.04 8.57 0.27 0.41
avg -0.02±0.04 0.12±0.12 3.08±1.80 3.74±1.98 0.09±0.08 0.13±0.11

rFVI
min -1.33e-06 -3.81e-04 0.00 0.00 1.77e-03 1.77e-03
max 7.72 10.27 10.15 10.34 2.27 1.60
avg 2.16±1.92 2.99±2.61 3.72±2.23 4.22±2.29 0.63±0.54 0.46±0.38

Q3: RCI cost performance is generally better than FVIs, and generalizes well
to modeling error. Figure 3 illustrates the cost differences between respective FVIs and
RCI, as summarized in Table 3. Some patterns emerge from Table 3: 1) The FVIs perform
well. Indeed, the top left plot in Figure 3 shows that cFVI edges out RCI for the nominal
pendulum far from the origin x = 0. However, when modeling error is introduced (top

18

Physics-Informed CT-RL with Performance Guarantees

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

1

2

3

4

5

6

7

8

9

10

Figure 3: Top row: cFVI cost difference for the nominal pendulum model (left) and at 25%
modeling error (right). Bottom row: cFVI (bottom left) and rFVI (bottom right)
cost difference for the nominal jet aircraft model. Note that cFVI outperforms
RCI on the nominal pendulum near the edges of the state domain (top left),
but the advantage observed in these same regions erodes when modeling error is
introduced (top right). Note from the bottom row that RCI delivers the lowest
cost pointwise for the jet. Full plots can be found in Supplemental Figures S3–S5.

right), cFVI performance degrades, a trend we observe for all three environments (cf. Table
3 and Supplemental Figures S3–S5). By contrast, rFVI degradation is less pronounced, but
at the cost of inferior overall performance. 2) RCI achieves the lowest cost for all three
environments as modeling error ν increases, and generalizes the best over modeling errors
(cf. Table 3). 3) For both multi-loop systems (i.e., the jet and DDMR), RCI achieves lowest
cost pointwise and exhibits the best generalization to modeling error (cf. Table 3).

Q4: RCI critic estimation error exhibits best generalization to modeling error.
Tables S5–S7 of Supplemental summarize the critic network approximation error perfor-
mance J − V of RCI and FVIs for all three environments, and this data is plotted in

19

Wallace and Si

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-6

-5

-4

-3

-2

-1

0

1

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-0.5

0

0.5

1

1.5

-0.5 0 0.5
-30

-20

-10

0

10

20

30

-6

-5

-4

-3

-2

-1

0

1

Figure 4: Critic NN approximation error J(x)−V (x) for DDMR environment on the nomi-
nal model (top row) and at 25% modeling error (bottom row) for RCI (left), cFVI
(middle), and rFVI (right). RCI exhibits the most consistent approximation be-
havior, varying little with modeling error. cFVI’s critic is highly accurate on the
nominal model, but degrades significantly with modeling error. rFVI struggles
the most, consistently underestimating policy performance to a large degree. Full
plots can be found in Supplemental Figures S6–S8.

Figures S6–S8 of Supplemental. We have reproduced some if this data here in Figure 4,
which shows the critic network approximation error J−V on the DDMR. As is the case with
cost performance, cFVI does an excellent job of approximating its policy cost for the nom-
inal model but experiences significant degradation. RCI exhbits the smallest critic network
error when modeling error is introduced and the best generalization overall. On the DDMR,
for instance, Table S7 of Supplemental shows that cFVI’s worst-case critic estimation error
increases by 445% from ν = 0% to ν = 25%, as compared to RCI’s 39%. Meanwhile, rFVI
struggles to a larger degree than RCI or cFVI; however, rFVI’s worst-case approximation
improves from 6.08 at nominal to 5.36 at 25% modeling error, demonstrating favorable ro-
bustness/learning generalization. For comparison, RCI estimation error degrades, but only
from 0.82 at nominal to 1.15 at 25% modeling error. The estimation error advantage for
RCI on the jet is even more pronounced (Figure 5), exhibiting the best approximation and
generalization. We attribute RCI’s favorable performance on the jet to the well-established

20

Physics-Informed CT-RL with Performance Guarantees

successes of decentralized LQ control methods on aerospace applications; see, e.g, (Stengel,
2022; Dickeson et al., 2009a,b).

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

-10 -5 0 5 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0

5

10

15

20

25

30

35

Figure 5: Critic NN approximation error J(x) − V (x) for jet aircraft environment on the
nominal model (top row) and at 25% modeling error (bottom row) for RCI (left),
cFVI (middle), and rFVI (right). RCI exhibits the lowest approximation error
and best generalization. cFVI and rFVI perform comparably to each other. Full
plots can be found in Supplemental Figures S6–S8.

Q5: RCI closed-loop time responses are the fastest with least overshoot, best
modeling error generalization. We issue step reference commands to the three environ-
ments in each of their output channels y and record the associated 1% settling time ts,y,1%,
90% rise time tr,y,90%, and percent overshoot Mp,y in Table 4. Figure 6 displays closed-loop
responses for all three environments at 25% modeling error. Overall, the FVI responses
are sluggish compared to RCI. For instance on the jet aircraft in the FPA loop y2 = γ (cf.
Table 4), cFVI and rFVI have 1% settling times ts,γ,1% of 14.42 s and 17.88 s on the nominal
model, two times slower than RCI at 7.17 s. Furthermore, the settling times for cFVI and
rFVI degrade to 15.20 s and 18.58 s at 25% modeling error; by contrast, RCI’s settling
time actually improves to 6.44 s at 25% modeling error. On the two higher-dimensional,
multi-loop jet aircraft and DDMR models, the FVIs also tend to exhibit large overshoot
when compared to RCI (cf. right two plots of Figure 6 and Table 4).

Finally, we note that as corroborated by Section 6, RCI recovers the closed-loop per-
formance of the optimal policy for all systems and outperforms the nominal classical LQ

21

Wallace and Si

Table 4: Closed-loop performance generalization to modeling error ν = 0%, 10%, 25%

System Alg
ts,y,1% (s) tr,y,90% (s) Mp,y (%)

ν 0% 10% 25% 0% 10% 25% 0% 10% 25%

Pendulum
y = θ

RCI 1.16 1.16 1.18 0.67 0.71 0.74 0.00 0.01 0.07
cFVI 1.80 1.80 1.95 1.10 1.19 1.36 0.00 0.02 0.19
rFVI 1.52 1.54 1.53 0.85 0.88 0.90 0.00 0.03 0.03
Opt LQ 1.16 1.22 1.28 0.67 0.70 0.74 0.00 0.02 0.01
Nom LQ 1.16 0.99 2.12 0.67 0.65 0.71 0.00 0.65 3.09

Jet
Aircraft
y1 = V

RCI 14.42 14.62 14.41 9.61 9.41 9.31 0.09 0.10 0.11
cFVI 18.58 18.33 17.97 9.92 9.98 10.07 0.00 0.00 0.00
rFVI 19.20 18.96 18.83 10.28 10.35 10.59 0.00 0.00 0.00
Opt LQ 14.42 14.62 14.41 9.61 9.41 9.31 0.09 0.10 0.11
Nom LQ 14.42 14.36 14.27 9.61 9.47 9.51 0.09 0.10 0.12

y2 = γ

RCI 7.17 6.99 6.44 4.43 4.49 4.44 0.25 0.36 0.69
cFVI 14.42 14.67 15.20 3.91 3.99 4.16 14.68 16.53 19.96
rFVI 17.88 18.18 18.58 4.00 4.10 4.23 15.63 17.41 20.60
Opt LQ 7.17 6.99 6.44 4.43 4.49 4.44 0.25 0.36 0.69
Nom LQ 7.17 6.67 8.81 4.43 4.39 4.42 0.25 0.37 1.11

DDMR
y1 = V

RCI 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43
cFVI 5.45 5.46 5.52 3.94 3.96 3.77 0.55 0.55 0.55
rFVI 5.77 5.78 5.88 3.75 3.67 3.77 0.10 0.10 0.10
Opt LQ 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43
Nom LQ 5.33 5.33 5.33 3.83 3.83 3.83 0.43 0.43 0.43

y2 = ω

RCI 6.68 6.87 7.44 1.24 1.19 1.19 16.93 18.76 21.06
cFVI 12.81 12.12 11.69 1.28 1.22 1.16 26.02 30.74 38.93
rFVI 17.51 17.51 17.67 1.53 1.51 1.38 12.06 13.81 16.72
Opt LQ 6.68 7.26 7.43 1.24 1.19 1.18 16.93 18.65 21.11
Nom LQ 6.68 6.66 6.15 1.24 1.18 1.13 16.93 20.45 26.64

design. As in Section 6, we can clearly see from Figure 6 that the designer will face degraded
closed-loop performance if they opt for the nominal classical design, which is corroborated
numerically in Table 4. RCI successfully learns the nonlinearity and model uncertainty
present in the nonlinear environment (f, g) (1), allowing it to recover optimal performance.

22

Physics-Informed CT-RL with Performance Guarantees

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

Figure 6: Closed-loop responses at 25% modeling error. Left: pendulum swing-up from
natural hanging position (i.e., θ = 180◦). Middle: jet aircraft 1 deg step FPA
command. Right: DDMR 30 deg/s step angular velocity command. Overall, the
RCI responses tend to be faster than the FVIs with less overshoot. Full plots can
be found in Supplemental Figures S9–S11.

Q6: RCI reduces algorithm time/data complexity by multiple orders of magni-
tude. Table 5 lists key algorithm complexity parameters for RCI and FVI. To illustrate, we
examine the ratio of RCI/FVI for these parameters on the DDMR model. For number of tra-
jectory episodes required: RCI/FVI = 1/5,000,000, data sample complexity: 1/6,000,000,
training epochs: 1/400, and training time: 1/3,000.

Table 5: Algorithm time/data complexity

Parameter
Pendulum Jet Aircraft DDMR

RCI cFVI/rFVI RCI cFVI/rFVI RCI cFVI/rFVI

Episodes
1 1.05e+07 1 5.12e+06 1 5.12e+06

/3.84e+06

Trajectory Data Samples
15 3.45e+08 45 2.30e+08 35 2.30e+08

/1.73e+08

Epochs as in FVIs 5 2,000 5 2,000 5 2,000
(Lutter et al., 2021, 2023b) /3,000

Avg Training Time (s)
0.17 6.88e+03 4.25 8.18e+03 2.58 6.30e+03

/8.98e+03 /7.98e+03 /6.04e+03

8. Conclusion and Discussion

We introduce a new, model-based RCI CT-RL design in the same context as the current
ADP and SOTA deep RL CT-RL methods, which address affine nonlinear dynamic control
problems. Our RCI approach leverages the known affine nonlinear dynamics, an innovative
design of input excitation to enable learning exploration, and Kleinman control structures.
We use a different approach to exploration during learning, as it is realized that explo-

23

Wallace and Si

ration is essential yet can be problematic at times. This is because effective exploration
requires injecting the right level of exploration noise at the right time and within the phys-
ical constraints of the application at hand. On the Utility of RCI, our new reference
command input design approach has given us the opportunity to leverage the available,
possibly inaccurate, dynamics knowledge while exploring in the uncharted territory. The
corresponding design takes shape of Kleinman’s structure while using state-action trajectory
data to learn. The former, Kleinman’s solution framework, inherently provides us with well-
behaved system performance such as quick settling time, small overshoot, high-frequency
noise rejection, etc. The latter, state-action trajectory based learning, enables us to capture
unmodeled dynamics or model uncertainty while retaining all these nice properties. As such,
our innovative RCI-based CT-RL makes the best use of available affine nonlinear model dy-
namics and learning from data. This is why RCI achieves consistent learning, well-behaved
system time responses, and practically-observed and theoretically-guaranteed convergence,
optimality, and stability. In the meantime, our RCI-based approach also achieves a nice
trade-off between exploration and exploitation, which again is facilitated by effective explo-
ration with reference command input and by using physically-informed knowledge of the
environment. The exploitation or optimization is also efficiently achieved by our proper
use of a quadratic control performance structure, which is a standard practice in classical
optimal control involving continuous states and actions.

Among the three CT-RL approaches in the same class of affine nonlinearity, RCI
presents theoretical guarantees, and its learning performance at least matches, and often
outperforms, the current SOTA deep RL FVIs in terms of average return, critic network
approximation accuracy, closed-loop time-domain performance, algorithm data/time effi-
ciency, and generalization to modeling error. Yet, RCI’s efficiency requires knowledge of the
environment, and RCI only considers Q-R cost structures (2). Meanwhile, ADP presents
strong analytical results, and some ADP methods do not require knowledge of the environ-
ment (f, g). But ADP methods have not been proven for meaningful applications, as only
evaluations of toy systems with known optimal solutions are available. Furthermore, ADPs
generally restrict to Q-R cost as well. Finally, deep RL FVIs are learning-driven methods
with significant empirical promise and generalizability, as independently verified by the new
SOTA evaluations we conduct on these algorithms in Section 7. These methods also con-
sider flexible cost structures including dense/sparse costs. However, FVIs require the most
dynamic knowledge of the three classes, and theoretical results are yet to be developed.
Finally, we would like to mention that while a majority of CT-RL results are developed
for addressing affine nonlinear dynamics, great efforts are needed to develop designs for
fully nonlinear dynamic environments, even extensive evaluations of and further develop-
ments based on currently available methods can be helpful to gain fundamental insights on
addressing CT-RL optimal control of general nonlinear dynamics.

Acknowledgments

This work was supported in part by the NSF under Grants 1563921, 1808752, and 2211740.
Brent A. Wallace was also supported by the NSF under Graduate Research Fellowship
Grant 026257-001.

24

Physics-Informed CT-RL with Performance Guarantees

Appendix A. Background

A.1 Theoretical Assumptions Required by SOTA CT-RL Addressing Affine
Nonlinear Dynamics

As shown below, RCI is among the least restrictive in CT-RL in its theoretical assumptions.
As a note, all methods require that (f, g) (1) be Lipschitz near origin to assure well-posedness
of solutions to the system differential equations.

RCI (present work):

• Stabilizability of the linearization (A,B) of the nonlinear system (f, g) (1), and (Q1/2, A)
detectable (for well-posedness of regulation problem, cf. Appendix A.1)

• Full column rank of integral reinforcement matrix Θ (25)

• Initial stabilizing policy

FVIs (Lutter et al., 2021, 2023b):

• f and g are smooth in their partial derivatives in the state x and model uncertainty
parameters θ, and these partials are all known a priori

• Undiscounted problem γ = 1 can be approximated by discounted problem 0 < γ < 1

• Discrete-time running cost r(x, u) can be approximated by continuous-time counterpart:
r(x, u) = ∆t rc(x, u) with sample time ∆t

• Strict convexity of action penalty gc
• Availability of convex conjugate function to action penalty gc
• Higher-order terms in Taylor series expansion of optimal value V ∗ are negligible

• Existence of an a priori state grid x ∈ D to contain trajectories to for fitting procedure

• Trajectories leaving the grid x ∈ D can be instantaneously re-initialized to the previous
position inside the grid

Integral Reinforcement Learning (IRL) (Vrabie and Lewis, 2009):

• There exists a sequence of sampling instants t0 < t1 < · · · < tl such that the IRL
regression matrix has full rank

• Chosen bases approximate optimal value and its gradient uniformly on compact sets

• Basis functions for critic network are linearly-independent

• Initial stabilizing policy

Synchronous Policy Iteration (SPI) (Vamvoudakis and Lewis, 2010):

• Existence and uniqueness of least-squares solution to approximate HJB equation

• PE assumption on various learning signals

• Chosen bases approximate optimal value and its gradient uniformly on compact sets

• Chosen bases approximate optimal policy uniformly on compact sets

• Basis functions for critic network are linearly-independent

• Basis functions for actor network are linearly-independent

• Initial stabilizing policy

Robust ADP (RADP) (Jiang and Jiang, 2014):

• Optimal value can be bounded from above and below by a priori known class K∞
functions

• Existence of a priori known compact set Ω0 for which the closed-loop system under the
initial policy is invariant with respect to the probing noise d

• PE assumption on various learning signals

25

Wallace and Si

• Chosen bases approximate optimal value and its gradient uniformly on compact sets

• Chosen bases approximate optimal policy uniformly on compact sets

• Basis functions for critic network are linearly-independent

• Basis functions for actor network are linearly-independent

• Initial stabilizing policy

Continuous-Time Value Iteration (CT-VI) (Bian and Jiang, 2022):

• Existence and uniqueness of solutions to an uncountable family of finite-horizon HJB
equations

• Properness of each solution to the finite-horizon HJB equation

• Convergence of family of solutions of finite-horizon HJB equation to the infinite-horizon
HJB solution

• Invariance of closed-loop state trajectory to a priori compact set

• Initial globally asymptotically stabilizing policy

• PE assumption on various learning signals

• Chosen bases approximate optimal value and its gradient uniformly on compact sets

• Chosen bases approximate optimal policy uniformly on compact sets

• Chosen bases approximate optimal Hamiltonian uniformly on compact sets

• Basis functions for critic network are linearly-independent

• Basis functions for actor network are linearly-independent

• Basis functions for Hamiltonian network are linearly-independent

A.2 Environments Studied by SOTA CT-RL Works

We provide an overview of the environments studied in the evaluations of the leading CT-RL
works in Table 6 below. As can be seen, the proposed environments are SOTA.

Table 6: Environments in SOTA CT-RL evaluations
Alg System Order # inputs Source of model parameters

RCI

Pendulum −→ −→ Identical to FVIs as benchmark
Jet Aircraft 4 2 Full-scale NASA wind tunnel data
(new in CT-RL) (Soderman and Aiken, 1971)

DDMR 4 2 System ID on actual hardware
(new in CT-RL) (Mondal et al., 2020, 2019)

FVIs
Pendulum 2 1 Quanser STEM curriculum
Cart Pendulum 4 1 resources (Quanser, 2018)
Furatura Pendulum 4 1

IRL
Simple Academic 2 1 Non-physical, optimal solutions
Simple Academic 2 1 known a priori (Remark 1)

SPI
Simple Linear 3 1 Non-physical LQR example
Simple Academic 2 1 See IRL above

RADP
Simple Engine 2 1 Non-physical for illustration
Simple Power Bus 2 1 Non-physical for illustration

CT-VI
Simple Academic 2 1 See IRL above
Simple Robot Arm 4 2 Non-physical for illustration

26

Physics-Informed CT-RL with Performance Guarantees

Remark 1: Many of the leading ADP works (Vrabie and Lewis, 2009; Vamvoudakis and
Lewis, 2010; Jiang and Jiang, 2014; Bian and Jiang, 2022) study simple academic second-
order examples which are constructed such that the optimal value and policy are polynomial
functions known a priori in closed form, and for which the bases chosen can achieve exact
approximation. The CT-VI work (Bian and Jiang, 2022) does study a robotic arm example,
but the model is simplified and the parameter values are chosen academic for illustration.
Similar trends hold for the examples studied in RADP (Jiang and Jiang, 2014).

Appendix B. Proofs of Theoretical Results

B.1 Proof of Theorem 4

Suppose that the sample count l ∈ N and sample times {tk}lk=0 are such that Θ (25) has
full rank n. Note that given the choice of quadratic critic bases (10) and policy structure
(12), the initial stabilizing policy µ0 may be expressed in the form µ0(x) = −K0x for some
K0 ∈ Rm×n. Thus, the hypotheses imply that A − BK0 is Hurwitz. We now proceed by
induction on i.

Suppose it has been proved for iteration i ≥ 0 that A − BKi is Hurwitz and that
µi(x) = −Kix as generated from Kleinman’s algorithm. We first claim the hypotheses
imply that the least-squares matrix Θi ∈ Rl×n (22) also has full column rank n. For
suppose v(P) ∈ Rn is such that Θiv(P) = 0. Examining (17), and proceeding through the
derivation in Section 3.1, after applying the identity (8) we note for any symmetric matrix
that Θiv(P) = Θv(N), where N ∈ Rn×n, N = NT is given by

N = (A−BKi)
TP + P (A−BKi). (29)

However, (29) is itself an ALE. Furthermore, since N = NT and since A−BKi is Hurwitz by

hypothesis, (29) has the unique solution P =
∫∞

0 e(A−BKi)T t(−N)e(A−BKi)t dt (Rodriguez,
2004). Meanwhile, the full rank of Θ and that Θv(N) = 0 imply v(N) = 0, or N = 0. Since
N = 0, we have by the above that v(P) = 0. We have shown that Θi has trivial right null
space, hence full column rank n.

Having established that Θi has full rank, we now claim that Pi ∈ Rn×n, Pi = P Ti > 0
(uniquely) solves the ALE (3) if and only if ci = v(Pi) satisfies the least-squares regression
(22) at equality. The forward direction was already proved in the derivation (14)–(21)
of Section 3.1. The key here is that since µi(x) = −Kix has been established, the first-
order approximation of the GHJB equation (19) holds at equality; indeed, (19) collapses to
Kleinman’s ALE (3) in this case.

Conversely, suppose v(P) ∈ Rn is such that the least-squares regression (22) is mini-
mized. Since Θi has full column rank, v(P) ∈ Rn is unique. Now, letting Pi = P Ti > 0
be the (unique) solution of the ALE (3), the forward direction establishes that v(Pi) ∈ Rn
satisfies (22) at equality. Thus, v(P) = v(Pi), whence P = Pi (Proposition 3) and the result
is proved.

Having established the preceding, the proof now follows by induction on the algorithm
iteration i. �

27

Wallace and Si

Appendix C. Additional Implementation Details

Hardware. These studies were performed in MATLAB R2022b, on an NVIDIA RTX
2060, Intel i7 (9th Gen) processor. All numerical integrations in this work are performed
in MATLAB’s adaptive ode45 solver to ensure solution accuracy.

Software. All RCI code and datasets developed for this work is available in Supplemental
and at (Wallace and Si, 2024c). All FVI results (Lutter et al., 2021, 2023b) were generated
from the open-source repository developed by the authors (Lutter et al., 2023a).

C.1 Additional Training/Evaluation Procedure Details

This section provides additional implementation details for the training/evaluation proce-
dures discussed in Section 5.5. We encourage that the reader first see Section 5.5 to get a
general orientation of the procedures.

Network Weight Initialization. For the FVI algorithms’ deep networks, we use the
identical network initialization procedure as the original development works (Lutter et al.,
2021, 2023b); namely, Xavier normal distribution (initialization gains can be found in Table
8 of Appendix C.2). For RCI’s simpler quadratic network structure, we need only initialize
the critic weights c0 in (10). We initialize each element of the critic weight vector c0 ∈ Rl in
the following uniform distributions for the pendulum, jet aircraft, and DDMR, respectively:

c0 ∼ U(−10, 10), (30)

c0 ∼

{
U(−25, 25), for weights in translational loop j = 1

U(−1, 1), for weights in rotational loop j = 2
, (31)

c0 ∼

{
U(−25, 25), for weights in translational loop j = 1

U(−10, 10), for weights in rotational loop j = 2
. (32)

IC Generation – Training. System ICs for training are generated via the following
uniform distributions U for the pendulum, jet aircraft, and DDMR, respectively:

x0 ∼ U(±π rad,±8 rad/s), (33)

x0 ∼ U(±15 ft/s,±3 deg,±30 deg/s,±10 deg), (34)

x0 ∼ U(±3 m/s,±90 deg/s,±0 A,±0 A). (35)

As a note: For the pendulum system, we have chosen the identical uniform distribution U
(33) for state initialization as is chosen in the original FVI benchmark studies (Lutter et al.,
2021, 2023b). The only exception to the above IC generation procedure is the systematic
grid sweeps conducted in the RCI initial condition and modeling error generalization studies
of Section 6. Here, the initial conditions x0 are swept over a grid of values x0 ∈ Gx0 . The
IC grids Gx0 for the pendulum, jet aircraft, and DDMR are given respectively as:

Gx0 = [−π
3 : π6 : π3] rad × [−π

3 : π6 : π3] rad/s, (36)

Gx0 = [90 : 2 : 110] ft/s × [−2 : 0.5 : 2] deg, (37)

Gx0 = [1.5 : 0.125 : 2.5] m/s × [−30 : 5 : 30] rad/s, (38)

28

Physics-Informed CT-RL with Performance Guarantees

where all other ICs for the higher-order jet aircraft and DDMR environments are set to
zero. Note that for all systems in this work, the IC grid Gx0 is centered about the respective
equilibrium point xe (cf. Sections 3–5 of Supplemental for discussion of equilibria of each
system).
IC Generation – Evaluation. For the learning curves plotted in Figure 2, at each
algorithm iteration the return of the trained policies is evaluated over 100 episodes of the
environment. For evaluation, system ICs for training are generated via the following uniform
distributions U for the pendulum, jet aircraft, and DDMR, respectively:

x0 ∼ U(±π rad,±0.01 rad/s), (39)

x0 ∼ U(±10 ft/s,±2 deg,±0.01 deg/s,±0.01 deg), (40)

x0 ∼ U(±0.5 m/s,±30 deg/s,±0 A,±0 A). (41)

As a note: For the pendulum system, we have chosen the identical uniform distribution U
(39) for state initialization as is chosen in the original FVI benchmark studies (Lutter et al.,
2021, 2023b).

For display purposes of generating the surface plots in Figures 3 and 4, we evaluate the
final polices of a single trial for each method over the following evaluation grids x ∈ Gx for
the pendulum, jet aircraft, and DDMR, respectively:

Gx = [−60 : 0.5 : 60] deg × [−60 : 0.5 : 60] deg/s, (42)

Gx = [90 : 2 : 110] ft/s × [−2 : 0.1 : 2] deg, (43)

Gx = [1.5 : 0.125 : 2.5] m/s × [−30 : 5 : 30] rad/s, (44)

where all other ICs for the higher-order jet aircraft and DDMR environments are set to
zero. Note that for all systems in this work, as is the case with the IC grids Gx0 (36)–(36)
the evaluation grids Gx (42)–(42) are centered about the respective equilibrium point xe
(cf. Sections 3–5 of Supplemental for discussion of equilibria of each system). It is these
grids which are used to generate the surface plots of Figures 3 and 4, and the corresponding
tabular data in Table 3.
Modeling Error Generation. In the modeling error generalization studies of Sections 6
and 7, modeling error ν is swept over a grid of values ν ∈ Gν . The modeling error grids Gν
for the pendulum, jet aircraft, and DDMR are given respectively as:

Gν = [1 : 0.01 : 1.25], (45)

Gν = [1 : −0.025 : 0.75], (46)

Gν = [1 : 0.025 : 1.25]. (47)

The direction of the perturbation (i.e., ν > 1 or ν < 1) is chosen to maximize the difficulty of
the respective learning problem (cf. Sections 3–5 of Supplemental for in-depth discussion).

In the RCI combined IC/modeling error generalization study of Section 6, RCI is run
over the combined trial space (x0, ν) ∈ Gx0 × Gν , where the respective IC grids Gx0 for
each environment are given by (36)–(38) and the respective modeling error grids Gν for
each environment are given by (45)–(47). This corresponds to 1,620 learning trials for the
pendulum (81 ICs x0 × 20 modeling errors ν), 1,089 trials for the jet (99 x0 × 11 ν), and
1,287 trials for the DDMR (117 x0 × 11 ν).

29

Wallace and Si

C.2 Hyperparameter Selections

C.2.1 Shared Hyperparameters

State, Control Penalty Gains. For the pendulum, we use identical penalty selections to
those in the original FVI studies (Lutter et al., 2021, 2023b); namely,

Q1 = diag(1, 0.1), R1 = 0.5. (48)

For the jet aircraft, consider the decentralized design framework described in Section
4 of Supplemental. We choose the following cost structure

Q1 = diag(0.005, 0.05), R1 = 5,

Q2 = diag(0.5, 1, 0, 0), R2 = 1. (49)

These state/control penalties were chosen to yield optimal LQ controllers achieving nominal
closed-loop step response specifications comparable to existing benchmarks (Stengel, 2022):
A 90% rise time in speed tr,V,90% = 9.297 s and FPA tr,γ,90% = 4.52 s, a 1% settling time in
speed ts,V,1% = 14.47 s and FPA ts,γ,1% = 7.20 s, percent overshoot in speed Mp,V = 0.09%
and FPA Mp,γ = 0.25%.

For the DDMR, consider the decentralized design framework described in Section 5 of
Supplemental. We choose the following cost structure

Q1 = 10I2, R1 = 0.75,

Q2 = diag(25, 7.5), R2 = 1. (50)

These state/control penalties were chosen to yield optimal LQ controllers achieving nominal
closed-loop step response specifications comparable to existing benchmarks (Mondal et al.,
2020, 2019): A 90% rise time in speed tr,V,90% = 3.778 s and angular velocity tr,ω,90% = 1.27
s, a 1% settling time in speed ts,V,1% = 5.556 s and angular velocity ts,ω,1% = 6.73 s, percent
overshoot in speed Mp,V = 0% and angular velocity Mp,ω = 16.9%.

C.2.2 RCI

Initial Stabilizing Policy. For the pendulum, we use the initial stabilizing policy

K0,1 =
[

13.5108 5.8316
]
, (51)

which we obtained from cost structure selections Q1 = diag(0.5, 0.25), and R1 = 0.01. For
the jet aircraft in loop j (j = 1, 2), we use the initial stabilizing policies

K0,1 =
[

0.0316 0.1168
]
, (52)

K0,2 =
[
−1.7321 −3.4191 −0.3427 −0.9709

]
, (53)

which we obtained from a decentralized design with cost structure selections Q1 = 0.01I2,
R1 = 10, Q2 = diag(1.5, 2.5, 0, 0), and R2 = 0.5. For the DDMR in loop j (j = 1, 2), we
use the initial stabilizing policies

K0,1 =
[

2.2361 3.4966
]
, (54)

K0,2 =
[

8.6603 12.4403
]
, (55)

which we obtained from a decentralized design with cost structure selections Q1 = 5I2,
R1 = 1, Q2 = diag(7.5, 2.5), and R2 = 0.1. See Table 7 for remaining RCI hyperparameters.

30

Physics-Informed CT-RL with Performance Guarantees

Table 7: RCI hyperparameter selections

Hyperparameter
Pendulum Jet Aircraft DDMR
Loop j = 1 Loop j = 1 Loop j = 2 Loop j = 1 Loop j = 2

Sample Period Ts,j (s) 1 2 0.5 4 1
Number of Samples lj 15 15 30 20 15

Final Iteration i∗j 5 5 5 5 5

Ref Cmd rj 10 sin(2π
10 t) 5 sin(2π

50 t) 0.1 sin(2π
2.5 t) 2 sin(2π

10 t) 5 sin(2π
50 t)

(deg | m/s, deg | m/s, deg/s) +5 sin(2π
5 t) +10 sin(2π

25 t) +0.1 sin(2π
1.5 t) + sin(2π

5 t) +5 sin(2π
5 t)

+5 sin(2π
2.5 t)

Initial Policy K0,j (51) (52) (53) (54) (55)

Table 8: cFVI, rFVI hyperparameter selections

Hyperparameter
Pendulum Jet Aircraft DDMR

cFVI rFVI cFVI rFVI cFVI rFVI

Time Step (s) 0.008 0.008 0.008 0.008 0.008 0.008
Time Horizon (s) 5 5 20 20 5 5

Discounting γ 0.99 0.99 0.99 0.99 0.99 0.99
Network Dimension [3× 96] [3× 96] [3× 96] [3× 96] [3× 96] [3× 96]

Ensemble 4 4 4 4 4 4
Activation Tanh Tanh Tanh Tanh Tanh Tanh

Learning Rate 1e-5 1e-5 3e-5 3e-5 3e-5 3e-5
Weight Decay 1e-6 1e-6 1e-6 1e-6 1e-6 1e-6

Hidden Layer Gain 1.41 1.41 1.41 1.41 1.41 1.41
Output Layer Gain 1.00 1.00 1.00 1.00 1.00 1.00
Output Layer Bias -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

Diagonal Softplus Gain βL 1.0 1.0 7.5 7.5 1.0 1.0
Batch Size 256 128 256 256 256 256
Batches 200 200 200 200 200 200

Eligibility Trace 0.85 0.85 0.85 0.85 0.85 0.85
n-step Trace Weight 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

Iterations 100 150 100 100 100 100
Epochs/Iteration 20 20 20 20 20 20

State Adversary ‖ξx‖max 0.0 0.025 0.0 0.025 0.0 0.025
Action Adversary ‖ξu‖max 0.0 0.1 0.0 0.1 0.0 0.1
Model Adversary ‖ξθ‖max 0.0 0.15 0.0 0.1 0.0 0.009
Obs Adversary ‖ξo‖max 0.0 0.025 0.0 0.025 0.0 0.025

C.2.3 cFVI, rFVI

Hyperparameter selections for cFVI and rFVI can be found in Table 8. These parameter
selections are overall quite standard and have indeed demonstrated great learning perfor-
mance successes on second-order, unstable systems in previous studies (Lutter et al., 2021,
2023b). As with our selections of the pendulum model structure and parameters (cf. Section
3 of Supplemental), for our pendulum studies we have selected hyperparameters identical

31

Wallace and Si

to those of the original cFVI/rFVI evaluations (Lutter et al., 2021, 2023b), with two ex-
ceptions. In (Lutter et al., 2021, 2023b), the authors use a logcos control penalty function
scaled so that its curvature at the origin u = 0 is 2R; i.e., so that its curvature agrees
with that of a quadratic penalty uTRu. In order to make comparisons consistent across
the methods studied, we have applied the standard quadratic control penalty uTRu for all
methods. Likewise, the authors in (Lutter et al., 2021, 2023b) wrap the penalty function
of the pendulum angle state to be periodic in [0, 2π), a practice which we have dropped for
consistency of comparison. Finally, due to these changes we observed that more iterations
were necessary for rFVI to converge in training the pendulum system (cf. Figure 2), so we
increased its iteration count from 100 previously (Lutter et al., 2021, 2023b) to 150 here.

References

C. Atkeson and J. Morimoto. Nonparametric representation of policies and value functions:
A trajectory-based approach. In Adv. Neur. Info. Proc. Syst. (NeurIPS), volume 15,
pages 1–8, November 2002.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Trans. Syst., Man, Cybern., 13(5):835–
846, October 1983. doi: 10.1109/TSMC.1983.6313077.

R. W. Beard and T. T. McLain. Successive galerkin approximation algortihms for nonlinear
optimal and robust control. Int. J. Contr., 71:717–743, 1998.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
MA, USA, 3 edition, 2005.

D. P. Bertsekas. Value and policy iterations in optimal control and adaptive dynamic
programming. IEEE TNNLS, 28(3):500–509, March 2017.

T. Bian and Z.-P. Jiang. Reinforcement learning and adaptive optimal control for
continuous-time nonlinear systems: A value iteration approach. IEEE TNNLS, 33(7):
2781–2790, July 2022. doi: 10.1109/TNNLS.2020.3045087.

S. J. Bradtke, B. E. Ydstie, and A. G. Barto. Adaptive linear quadratic control using policy
iteration. In 1994 IEEE ACC, pages 3475–3479, June 1994.

M. R. Caputo. Foundations of dynamic economic analysis: optimal control theory and
applications. Cambridge University Press, Cambridge, UK, 2005.

J. J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Education, Upper
Saddle River, NJ, USA, 3 edition, 2005.

R. Dhaouadi and A. Abu Hatab. Dynamic modelling of differential-drive mobile robots
using lagrange and newton-euler methodologies: A unified framework. Adv. Robo. Auto.,
2(2):1–7, January 2013.

J. Dickeson, A. A. Rodriguez, S. Sridharan, J. Benevides, and D. Soloway. Decentralized
control of an airbreathing scramjet-powered hypersonic vehicle. In AIAA Guid., Nav.,

32

Physics-Informed CT-RL with Performance Guarantees

Contr. Conf. Exhib., pages 1–25, August 2009a. doi: 10.2514/6.2009-6281. AIAA 2009-
6281.

J. Dickeson, A. A. Rodriguez, S. Sridharan, D. Soloway, A. Korad, J. Khatri, J. Benavides,
A. Kelkar, and J. Vogel. Control-relevant modeling, analysis, and design for scramjet-
powered hypersonic vehicles. In AIAA/DLR/DGLR Int. Space Planes Hyper. Syst. Tech.
Conf., pages 1–45, October 2009b. doi: 10.2514/6.2009-7287. AIAA 2009-7287.

K. Doya. Reinforcement learning in continuous time and space. Neural Comp., 12(1):
219–245, January 2000.

R. Enns and J. Si. Apache helicopter stabilization using neural dynamic programming.
AIAA J. Guid., Contr., & Dyn., 25(1):19–25, January 2002.

R. Enns and J. Si. Helicopter flight-control reconfiguration for main rotor actuator failures.
AIAA J. Guid., Contr., & Dyn., 26(4):572–584, July 2003a.

R. Enns and J. Si. Helicopter trimming and tracking control using direct neural dynamic
programming. IEEE TNN, 14(4):929–939, July 2003b.

W. Haoran, T. Zariphopoulou, and X. Y. Zhou. Reinforcement learning in continuous
time and space: A stochastic control approach. J. Mach. Learn. Res. (JMLR), 21(1):
9363–9396, January 2020.

Y. Jiang and Z.-P. Jiang. Computational adaptive optimal control for continuous-time linear
systems with completely unknown dynamics. Automatica, 48(10):2699–2704, October
2012.

Y. Jiang and Z.-P. Jiang. Robust adaptive dynamic programming and feedback stabilization
of nonlinear systems. IEEE TNNLS, 25(5):882–893, January 2014. doi: 10.1109/TNNLS.
2013.2294968.

J. Kim, J. Shin, and I. Yang. Hamilton-Jacobi deep Q-learning for deterministic continuous-
time systems with Lipschitz continuous controls. J. Mach. Learn. Res. (JMLR), 22(1):
9363–9396, September 2021.

B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis. Optimal and autonomous
control using reinforcement learning: A survey. IEEE TNNLS, 29(6):2042–2062, June
2018.

D. Kleinman. On an iterative technique for Riccati equation computations. IEEE TAC, 13
(1):114–115, February 1968. doi: 10.1109/TAC.1968.1098829.

B. Landry, H. Dai, and M. Pavone. SEAGuL: sample efficient adversarially guided learning
of value functions. Learning for Dyn. and Contr., 144:1105–1117, June 2021.

F. L. Lewis and D. Liu. Reinforcement Learning and Approximate Dynamic Programming
for Feedback Control. John Wiley & Sons, New York, NY, USA, 2012.

F. L. Lewis, D. Vrabie, and V. L. Syrmos. Optimal Control. John Wiley & Sons, 3 edition,
2012a.

33

Wallace and Si

F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis. Reinforcement learning and feedback
control: Using natural decision methods to design optimal adaptive controllers. IEEE
Contr. Syst. Mag., 32:76–105, 2012b.

D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei. Adaptive dynamic programming for control:
A survey and recent advances. IEEE Trans. Syst., Man, Cybern., 51(1):142–160, January
2021.

M. Lutter, S. Mannor, J. Peters, D. Fox, and A. Garg. Value iteration in continuous actions,
states and time. In Proc. 38th Int. Conf. Mach. Learn. (ICML), volume 139, pages 7224–
7234, July 2021. URL https://proceedings.mlr.press/v139/lutter21a.html.

M. Lutter et al. Continuous & robust fitted value iteration. https://github.com/

milutter/value_iteration, 2023a. Accessed: 2023-01-12.

M. Lutter et al. Continuous-time fitted value iteration for robust policies. IEEE Trans. Patt.
Anal. Mach. Intel., 45(5):5534–5548, May 2023b. doi: 10.1109/TPAMI.2022.3215769.

K. Mondal, A. A. Rodriguez, S. S. Manne, N. Das, and B. A. Wallace. Comparison of kine-
matic and dynamic model based linear model predictive control of non-holonomic robot
for trajectory tracking: Critical trade-offs addressed. In Proc. IASTED Int. Conf. Mech.
Contr., pages 9–17, December 2019. https://doi.org/10.2316/P.2019.860-017.

K. Mondal, B. A. Wallace, and A. A. Rodriguez. Stability versus maneuverability of non-
holonomic differential drive wheeled robot: Focus on aggressive position control strate-
gies. In 2020 IEEE CCTA, pages 388–395, August 2020. https://doi.org/10.1109/

CCTA41146.2020.9206155.

K. Ogata. Modern Control Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 3
edition, 1997.

C. Possieri and M. Sassano. Q-learning for continuous-time linear systems: A data-driven
implementation of the Kleinman algorithm. IEEE Trans. Syst., Man, Cybern. – A: Syst.,
52(10):6487–6497, October 2022.

Quanser. Quanser courseware and resources. https://www.quanser.com/solution/

control-systems/, 2018.

A. A. Rodriguez. Analysis and Design of Multivariable Feedback Control Systems. CON-
TROL3D, Tempe, AZ, USA, 2004.

I. L. Sandoval, P. Petsagkourakis, and E Antonio del Rio-Chanona. Neural odes as feedback
policies for nonlinear optimal control. IFAC-PapersOnLine, 56(2):4816–4821, January
2023.

N. Shimkin and A. Feuer. Persistency of excitation in continuous-time systems. Syst. Contr.
Lett., 9(3):225–233, September 1987.

J. Si, A. G. Barto, W. B. Powell, and D. C. Wunsch. Handbook of Learning and Approximate
Dynamic Programming. Wiley, Piscataway, NJ, USA, 2004.

34

https://proceedings.mlr.press/v139/lutter21a.html
https://github.com/milutter/value_iteration
https://github.com/milutter/value_iteration
https://doi.org/10.2316/P.2019.860-017
https://doi.org/10.1109/CCTA41146.2020.9206155
https://doi.org/10.1109/CCTA41146.2020.9206155
https://www.quanser.com/solution/control-systems/
https://www.quanser.com/solution/control-systems/

Physics-Informed CT-RL with Performance Guarantees

P. T. Soderman and T. N. Aiken. Full-scale wind-tunnel tests of a small unpowered jet
aircraft with a T-tail. NASA-TN-D-6573, November 1971.

R. F. Stengel. Flight Dynamics. Princeton University Press, Princeton, NJ, USA, 2 edition,
2022.

T. H. Summers, K. Kunz, N. Kariotoglou, M. Kamdarpour, S. Summers, and J. Lygeros.
Approximate dynamic programming via sum of squares programming. In Proc. 2013
IEEE ECC, pages 191–197, July 2013.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 2 edition, 2018.

Y. Tassa and T. Erez. Least squares solutions of the HJB equation with neural network
value-function approximators. IEEE TNN, 18(4):1031–1041, July 2007.

K. G. Vamvoudakis and F. L. Lewis. Online actor–critic algorithm to solve the continuous-
time infinite horizon optimal control problem. Automatica, 46(5):878–888, 2010. doi:
10.1016/j.automatica.2010.02.018.

D. Vrabie and F. L. Lewis. Neural network approach to continuous-time direct adaptive
optimal control for partially unknown nonlinear systems. Neur. Net., 22(3):237–246, 2009.
doi: 10.1016/j.neunet.2009.03.008.

B. A. Wallace and J. Si. Reinforcement learning control of hypersonic vehicles and perfor-
mance evaluations. AIAA J. Guid., Contr., & Dyn., 47(12):2587–2600, December 2024a.
https://doi.org/10.2514/1.G008225.

B. A. Wallace and J. Si. Continuous-time reinforcement learning control: A review of
theoretical results, insights on performance, and needs for new designs. IEEE TNNLS,
35(8):10199–10219, August 2024b. https://doi.org/10.1109/TNNLS.2023.3245980.

B. A. Wallace and J. Si. RCI (JMLR 2024). https://github.com/bawalla2/JMLR-2024,
2024c.

P. Wang, Z. Man, Z. Cao, J. Zheng, and Y. Zhao. Dynamics modelling and linear control of
quadcopter. In IEEE Int. Conf. Adv. Mech. Syst. (ICAMechS), pages 498–503, November
2016.

L. Yang, H. Dai, A. Amice, and R. Tedrake. Approximate optimal controller synthesis
for cart-poles and quadrotors via sums-of-squares. IEEE Robo. & Auto. Lett., 8(11):
7376–7383, November 2023.

Q. Yang, W. Cao, W. Meng, and J. Si. Reinforcement-learning-based tracking control of
waste water treatment process under realistic system conditions and control performance
requirements. IEEE Trans. Syst., Man, Cybern. – A: Syst., 52(8):5284–5294, August
2022.

C. Yildiz, M. Heinonen, and H. Lähdesmäki. Continuous-time model-based reinforcement
learning. In Proc. 38th Int. Conf. Mach. Learn. (ICML), pages 12009–12018, July 2021.

35

https://doi.org/10.2514/1.G008225
https://doi.org/10.1109/TNNLS.2023.3245980
https://github.com/bawalla2/JMLR-2024

	Introduction
	Related Work
	Method
	Problem Formulation and Background
	RCI Algorithm

	Theoretical Results
	Experiment Setup for Evaluations
	Baselines
	Performance Measures
	Questions Addressed
	Environments, Code, and Data
	Implementations

	RCI Learning with Nominal LQ and Optimal LQ as Benchmarks
	Comparisons between RCI and Deep RL (FVIs)
	Conclusion and Discussion
	Background
	Theoretical Assumptions Required by SOTA CT-RL Addressing Affine Nonlinear Dynamics
	Environments Studied by SOTA CT-RL Works

	Proofs of Theoretical Results
	Proof of Theorem 4

	Additional Implementation Details
	Additional Training/Evaluation Procedure Details
	Hyperparameter Selections
	Shared Hyperparameters
	RCI
	cFVI, rFVI

