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Abstract

In this paper, we study approximation algorithms for several classes of DR-submodular opti-
mization problems, where DR is short for diminishing return. Following a newly introduced
algorithm framework for zeroth-order stochastic approximation methods, we first propose
algorithms CG-ZOSA and RG-ZOSA for smooth DR-submodular optimization based on
the coordinate-wise gradient estimator and the randomized gradient estimator, respectively.
Our theoretical analysis proves that CG-ZOSA can reach a solution whose expected ob-
jective value exceeds (1− e−1− ε2)OPT−ε after O(ε−2) iterations and O(N2/3dε−2) oracle
calls, where d represents the problem dimension. On the other hand, RG-ZOSA improves
the approximation ratio to (1− e−1− ε2/d) while maintaining the same overall oracle com-
plexity. For non-smooth up-concave maximization problems, we propose a novel auxiliary
function based on a smoothed objective function and introduce the NZOSA algorithm.
This algorithm achieves an approximation ratio of (1 − e−1 − ε ln ε−1 − ε2 ln ε−1) with
O(dε−2) iterations and O(N2/3d3/2ε−3) oracle calls. We also extend NZOSA to handle a
class of robust DR-submodular maximization problems. To validate the effectiveness of our
proposed algorithms, we conduct experiments on both synthetic and real-world problems.
The results demonstrate the superior performance and efficiency of our methods in solving
DR-submodular optimization problems.
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1. Introduction

Submodular optimization has become increasingly popular in machine-learning due to its
inherent property of diminishing returns. This powerful characteristic of submodular set-
functions has led to applications in various domains, including sensor placement (Guestrin
et al., 2005), dictionary learning (Das and Kempe, 2011), influence maximization (Kempe
et al., 2003), data summarization (Lin and Bilmes, 2010, 2011), data subset selection (Mirza-
soleiman et al., 2016; Wei et al., 2015), image summarization (Mirzasoleiman et al., 2018;
Feldman et al., 2018; Tschiatschek et al., 2014) and optimal budget allocation (Soma et al.,
2014). The continuous extension (e.g. multi-linear extension) of submodular set-functions
has gained considerable attention due to its ability to enhance the effectiveness of continu-
ous optimization methods in solving set submodular optimization problems (Lovász, 1983;
Chekuri et al., 2014; Calinescu et al., 2011; Feldman et al., 2011). Moreover, many scenarios
require maximizing continuous submodular functions, an extension of the concept of sub-
modularity to continuous domains. These examples range from non-convex/non-concave
quadratic programming (Bian et al., 2017a) to robust budget allocation (Staib and Jegelka,
2017), network security games (Wilder, 2018), and so on. More applications on continuous
submodular optimizaiton are referred to (Bian et al., 2017b; Bach, 2019).

The recent surge in attention given to numerical algorithms for DR-submodular opti-
mization is notable, especially for large-scale optimization problems. Several efficient algo-
rithms have been proposed for stochastic DR-submodular maximization, for which stochas-
tic oracles can be available through sampling from a distribution (Hassani et al., 2017;
Mokhtari et al., 2020; Hassani et al., 2020; Zhang et al., 2020, 2022; Lian et al., 2024; Chen
et al., 2020b; Pedramfar et al., 2023). In practical scenarios, however, it may be difficult to
obtain information about the distribution function the random variable follows, with only
historical data being accessible. Taking this limitation into account, we aim to address the
finite-sum DR-submodular maximization problem:

max
x∈X

f(x) :=
1

N

N∑
t=1

f(x, ξt). (1)

Here, f(·, ξt) : Rd → R, t ∈ {1, . . . , N} =: [N ], are continuous, f : Rd → R is monotoni-
cally non-decreasing, non-negative and DR-submodular function (refer to Definition 1), and
X ⊆ Rd+ represents a compact and convex set. In order to characterize the worst-case per-
formance of the objective function, our focus extends to a class of robust DR-submodular
maximization problems:

max
x∈X

1

N

N∑
t=1

{
f(x, ξt) := min

i∈[M ]
fi(x, ξi,t)

}
, (2)

where ξt := {ξi,t, i ∈ [M ]}, t ∈ [N ], fi(·, ξi,t) : Rd → R, i ∈ [M ], t ∈ [N ] are monotoni-
cally non-decreasing, non-negative and DR-submodular functions, and X ⊆ Rd+ represents
a compact and convex set. The max-min problem is particularly advantageous for concave
functions, as their concavity is preserved under point-wise minimization operations. How-
ever, it should be noted that the minimum of a set of DR-submodular functions is up-concave
(refer to Definition 2), i.e., concave along any non-negative/non-positive direction, but not
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necessarily DR-submodular. Additionally, when dealing with a group of smooth functions
fi(x, ξi,t), the minimum function f(x, ξt) may become non-differentiable, thus losing smooth-
ness. Therefore, up-concave maximization problem without smoothness has attracted our
interest. In this work, our goal is to develop specialized approximation algorithms that uti-
lize only stochastic function values provided by stochastic zeroth-order oracles to maximize
smooth DR-submodular functions and non-smooth up-concave functions. When applying
an approximation algorithm to solve the problem maxx∈X f(x), the performance of the al-
gorithm is evaluated based on the approximation ratio γ and complexity. We quantify the
algorithm’s performance by the following inequality:

E [f(xoutput)] ≥ γf(x∗)− ε,

where γ ∈ (0, 1] is the approximation ratio, x∗ represents the optimal point, xoutput is the
output returned by the algorithm, and ε denotes the accuracy of the algorithm. The accu-
racy ε is used to derive the iteration complexity and the oracle complexity of the algorithm.
For simplicity, the oracle complexity of our approximation algorithm is in terms of total
number of calls to stochastic zeroth-order oracles. Our objective is to design approximation
algorithms that achieve a higher approximation ratio while maintaining lower complexity.

Derivative-free optimization algorithms have gained widespread attention due to their
independence from the derivative information of the objective function (Larson et al., 2019;
Conn et al., 2009), including trust-region methods (Menhorn et al., 2017; Chen et al., 2018b;
Shashaani et al., 2018; Larson and Billups, 2016) and direct-search methods (Dzahini, 2022;
Dzahini et al., 2023). These methods are particularly useful in scenarios where only func-
tion values are available due to their sound theoretical properties, but they can only find
approximate stationary points. A specific category of algorithms, known as zeroth-order op-
timization algorithms, which typically rely on estimating gradients using available stochas-
tic function values and sampling techniques, are tailored to optimize functions using only
observed stochastic function values. Zeroth-order optimization algorithms, which are par-
ticularly valuable when gradient computations are prohibitively costly, have consequently
garnered significant attention in the field of machine learning (Nesterov and Spokoiny, 2017;
Ghadimi and Lan, 2013; Xu et al., 2023). Recently, zeroth-order approximation algorithms
have found applications in various domains for DR-submodular optimization. For instance,
they have been used to black-box adversarial attack models, where only black-box informa-
tion is accessible when attacking submodular recommendation systems (Chen et al., 2020b).
In addition, for the problem of D-optimal experience design, the gradient of the objective
function requires inverting a potentially large matrix (Chen et al., 2018a), and the objective
function of robust DR-submodular maximization (Wilder, 2018) is non-differentiable. How-
ever, designing stochastic zeroth-order approximation algorithms for the aforementioned
DR-submodular optimization problems presents several challenges and issues that need to
be addressed.

The zeroth-order version of continuous greedy algorithm and Frank-Wolfe algorithm
have been designed for black-box DR-submodular maximization problem (Chen et al.,
2020b; Pedramfar et al., 2023). However, the oracle complexity of the algorithm in (Chen
et al., 2020b) is relatively high and strongly depends on the problem dimension d, and the
performance of stochastic zeroth-order algorithms in (Pedramfar et al., 2023) seems not
quite satisfying when applying to (1), as shown in Table 1. The large variance arising from
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the errors of the approximate gradient may lead to divergence in the approximation analysis.
Therefore, designing an efficient zeroth-order approximation algorithm for DR-submodular
maximization with higher approximation ratio and lower oracle complexity is a challeng-
ing task. Moreover, the existing literature primarily focuses on smooth DR-submodular
maximization problems, while the research on non-smooth up-concave maximization is still
limited. Specifically, Lee et al. (2022) has introduced a sub-gradient method to deal with
the non-differentiable up-concave function, but the approximation ratio still needs to be
improved and there is no theoretical guarantee of zeroth-order algorithm for non-smooth
DR-submodular maximization problem. Furthermore, note that the minimum of a set
of smooth DR-submodular functions may be non-smooth, thus the challenge of solving a
non-smooth up-concave maximization problem highlights the non-trivial nature of robust
DR-submodular maximization. In fact, the specific structure of robust DR-submodular
maximization poses additional challenges and opportunities for developments of zeroth-
order approximation algorithms.

To address the aforementioned challenges, we have identified two main techniques to
ensure desirable approximation ratio and oracle complexity in our analysis. The first one,
inspired by the stochastic variance reduction technique in (Johnson and Zhang, 2013),
is the double-loop zeroth-order stochastic approximation algorithm framework. Initially
introduced for stochastic convex optimization (Johnson and Zhang, 2013), this technique
has been extensively studied for general non-convex minimization problems and successfully
improved the convergence rate in works such as (Reddi et al., 2016a,b; Allen-Zhu and Hazan,
2016). We will demonstrate that it can also reduce the variance in approximation analysis,
allowing the zeroth-order algorithm to achieve the desired approximation guarantee more
efficiently. The second technique we employ is leveraging an auxiliary function to enhance
performance. Ranther than designing an approximate gradient for the original objective
function, applying the stochastic gradient algorithm to a related auxiliary function has
been shown to effectively improve the approximation ratio, as demonstrated in (Zhang
et al., 2022). This technique was first introduced in (Alimonti, 1994; Khanna et al., 1998)
as an alternative to classical local search methods like the greedy algorithm, and it has been
employed to improve approximation algorithms for set function maximization problems
by carefully selecting the auxiliary function (Filmus and Ward, 2014). More recently, the
similar techniques in various forms have been used for continuous submodular maximization
to boost the approximation ratio (Mitra et al., 2021; Zhang et al., 2022). However, the
integral auxiliary function utilized in (Zhang et al., 2022) may cause divergence in the non-
smooth case due to the introduced error. To tackle this issue, we introduce a finite-sum
auxiliary function based on a smoothed function, which effectively mitigates the variance
caused by the biased integral auxiliary function.

1.1 Contributions

Our main contributions are summarized as follows.

• For the smooth DR-submodular maximization problem, by incorporating the integral
auxiliary function we propose two zeroth-order stochastic approximation algorithms,
which fall into a generic framework for zeroth-order stochastic approximation methods
(Algorithm 1). The first is the CG-ZOSA algorithm, which employs coordinate-wise
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gradient estimation of an integral auxiliary function to design approximate gradients
in Algorithm 1. It can find an approximate solution whose expected objective value
exceeds (1 − e−1 − ε2)OPT−ε after O(ε−2) iterations and O(N2/3dε−2) oracle calls.
The second is the RG-ZOSA algorithm, which uses randomized gradient estimation
of an integral auxiliary function to design approximate gradients in Algorithm 1,
improving the approximation ratio to (1− e−1 − ε2/d). Detailed comparison between
our algorithms and existing works is presented in Table 1.

• For the non-smooth up-concave maximization problem, we propose a zeroth-order
stochastic approximation algorithm by designing a finite-sum auxiliary function. This
auxiliary function with finite-sum form allows for a trade-off between the approxima-
tion ratio and oracle complexity. Additionally, we propose the NZOSA algorithm,
an enhanced version of RG-ZOSA, which achieves a (1− e−1 − ε ln ε−1 − ε2 ln ε−1)-
approximation guarantee with O(dε−2) iterations and O(N2/3d3/2ε−3) oracle calls
under mild conditions. To the best of our knowledge, the study on zeroth-order algo-
rithms for non-smooth up-concave maximization problems is novel in the literature.
Detailed comparison between our algorithm and existing works is presented in Table
2.

• We extend NZOSA to handle a class of robust DR-submodular maximization prob-
lems and evaluate our proposed algorithms on synthetic and real-world tasks, including
quadratic programming, multi-resolution data summarization and robust budget al-
location problems. The numerical results demonstrate the effectiveness and efficiency
of our algorithms.

1.2 Related Work

We next list research works that are closely related to our paper.
Stochastic submodular maximization. Submodular set-function maximization orig-

inates from combinatorial optimization (Nemhauser et al., 1978; Fisher et al., 1978). The
application of continuous optimization techniques (Lovász, 1983; Chekuri et al., 2014) to
solve submodular set-function optimization problems has attracted much attention. The
appeal of such techniques lies in their ability to address a wider range of constraints as-
sociated with submodular set-function maximization. Consequently, the development of
continuous greedy algorithms emerges as a solution for problems with multi-linear exten-
sions, representing a special case of DR-submodular functions (Vondrák, 2008; Calinescu
et al., 2011; Feldman et al., 2011). Subsequently, these algorithms are further analyzed
in the context of general smooth and continuous DR-submodular functions (Bian et al.,
2017a,b; Du, 2022).

To address scenarios where only the stochastic gradient information is available, re-
searchers have developed stochastic first-order approximation algorithms (Mokhtari et al.,
2020; Hassani et al., 2020; Zhang et al., 2020; Hassani et al., 2017; Zhang et al., 2022;
Lian et al., 2024) for both monotone and non-monotone cases. One notable method is the
stochastic continuous greedy algorithm (SCG), first proposed for monotone DR-submodular
maximization by Mokhtari et al. (2020), with at least (1−1/e)OPT−ε approximation guar-
antee after O(ε−3) stochastic gradient oracle calls. By incorporating variance reduction
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Algorithm Setting Oracle Utility Iter. Comp. Ora. Comp.

GA
(Hassani et al., 2017)

stochastic sto. grad. (1/2)OPT−ε O(ε−2) O(ε−2)

SCG
(Mokhtari et al., 2020)

stochastic sto. grad. (1− 1/e)OPT−ε O(ε−3) O(ε−3)

BGA
(Zhang et al., 2022)

stochastic sto. grad. (1− 1/e)OPT−ε O(ε−2) O(ε−2)

BCG
(Chen et al., 2020b)

stochastic sto. func. (1− 1/e)OPT−ε O(dε−3) O(d3ε−5)

FW
(Pedramfar et al., 2023)

stochastic sto. func. (1/2)OPT−ε Õ(dε−3) Õ(dε−5)

CG-ZOSA
(Theorem 12)

finite-sum sto. func. (1− 1/e− ε2)OPT−ε O(ε−2) O(N2/3dε−2)

RG-ZOSA
(Theorem 17)

finite-sum sto. func. (1− 1/e− ε2/d)OPT−ε O(dε−2) O(N2/3dε−2)

Table 1: Comparison of stochastic approximation algorithms for smooth monotone DR-
submodular optimization. The terms “Iter. Comp.” and “Ora. Comp.” abbrevi-
ate iteration complexity and oracle complexity, respectively, indicating the total
number of iterations and calls to zeroth-order oracles. “Sto. grad.” and “Sto.
func.” are short for stochastic gradient and stochastic function value. The nota-
tion Õ is used to hide the logarithmic factor in the approximation error bound,
and OPT represents the optimal objective value. It is worth noting that the works
of stochastic algorithms presented here operate under the standard L-smoothness
assumption and general convex set constraints, and the algorithm RG-ZOSA
requires extra L0-Lipschitz continuous assumption. Compared to existing zeroth-
order approximation algorithms, our proposed algorithms significantly improve
the complexities while achieving utility that approaches (1 − 1/e)OPT, when ε
is sufficiently small. Additional relevant work that depends on supplementary
assumptions (e.g. high-order smoothness) will be explored in Subsection 1.2.

Algorithm Setting Ora. Utility Iter. Comp. Ora. Comp.

MP
(Lee et al., 2022)

stochastic
DR

sto. grad. (1/2)OPT−ε O(ε−2) O(ε−2)

NZOSA
(Theorem 24)

finite-sum
up-concave

sto. func. (1− e−1 − ε ln ε−1 − ε2 ln ε−1)OPT−ε O(dε−2) O(N2/3d3/2ε−3)

Table 2: Comparison of stochastic approximation algorithms for non-smooth DR-
submodular (up-concave) optimization. Note that the algorithm NZOSA can be
applied to general non-smooth up-concave optimization, and can achieve a utility
close to (1− 1/e) when ε becomes sufficiently small, though this comes at the cost
of increased complexity.

techniques, the improved version SCG++ in (Hassani et al., 2020) achieves (1 − 1/e) ap-
proximation ratio with O(ε−2) stochastic gradient evaluations under high-order smoothness
assumption. Recently Lian et al. (2024) further weakens the assumption conditions and
obtain the same approximation guarantee by adopting stochastic variance reduction tech-
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nique on SCG. Another efficient method for monotone DR-submodular maximization is
the stochastic gradient method (Hassani et al., 2017; Zhang et al., 2022). In particular,
the stochastic projected gradient ascent (GA) algorithm in (Hassani et al., 2017) reaches
a 1/2-approximation to the global maximum after O(ε−2) iterations by identifying a sta-
ble point, and the boosting gradient ascent (BGA) algorithm proposed in (Zhang et al.,
2022) yields a solution whose objective function achieves at least (1 − 1/e)OPT−ε after
O(ε−2) iterations, which effectively improves the approximation ratio from 1/2 by design-
ing an auxiliary function. For non-monotone DR-submodular maximization problems un-
der down-closed convex set constraints, the SMCG++ algorithm introduced in (Hassani
et al., 2020) achieves a 1/e-approximation ratio after O(ε−2) stochastic gradient evalua-
tions. Furthermore, the SPIDER-CG algorithm presented in (Lian et al., 2024) provides a
1
4(1−minx∈C ‖x‖∞)OPT−ε guarantee with O(ε−2) stochastic gradient oracles under general
convex constraint sets.

Zeroth-order stochastic optimization. Zeroth-order optimization algorithms have
become increasingly popular in scenarios where only function value information is available.
A variety of algorithms have been proposed, such as those introduced by Ghadimi and
Lan (2013); Duchi et al. (2015); Nesterov and Spokoiny (2017), which employ Gaussian
smoothing techniques applicable to both convex and non-convex optimization problems.
Accelerated zeroth-order algorithms based on variance reduction techniques have also been
studied (Liu et al., 2018a; Ji et al., 2019). Additionally, research has also focused on zeroth-
order algorithms for constrained optimization (Balasubramanian and Ghadimi, 2018; Huang
et al., 2019; Chen et al., 2020a; Liu et al., 2018b) and non-smooth optimization (Huang et al.,
2020; Ghadimi et al., 2016; Lin et al., 2022).

The study of zeroth-order stochastic approximation algorithms for DR-submodular max-
imization is yet limited. The black-box continuous greedy (BCG) algorithm (Chen et al.,
2020b) achieves the tight (1 − e−1)OPT−ε approximation guarantee after O(d3ε−5) func-
tion evaluations in a stochastic setting. In (Pedramfar et al., 2023), a unified algorithm
framework is presented for maximizing continuous DR-submodular functions, encompass-
ing various settings and oracle access types. Among them, the stochastic Frank-Wolfe al-
gorithm achieves a (1/2)OPT−ε approximation guarantee under general convex constraint
set C after O(dε−5) calls to stochastic zeroth-order oracles, and the stochastic continuous
greedy algorithm achieves (1 − 1/e)-approximation for the case that the vector 0 belongs
to the set C. However, for more general non-smooth up-concave maximization, the study of
zeroth-order approximation algorithms is still scarce.

Robust submodular maximization. Krause et al. (2008) studies the robust set
submodular maximization problem maxS∈2V mini∈[n] fi(S), where fi(S) : 2V → R for i ∈
[n]. Various extensions of robustness have been explored in works such as Chen et al. (2016);
Staib et al. (2019); Adibi et al. (2022). For continuous robust submodular maximization,
Wilder (2018) introduces a randomized smoothing technique to handle zero-sum games
with submodular structure in network security games. Staib et al. (2019) proves that
the objective becomes smooth under a high sample variance condition for distributionally
robust submodular maximization defined by X 2-divergence. Lee et al. (2022) systematically
studies Hölder-smooth and non-smooth submodular problems, proposing a variant of the
mirror-prox algorithm that achieves a (1/2)OPT−ε guarantee for the non-smooth case.
Additionally, the mirror-prox method is applied to robust submodular maximization to
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obtain a solution whose function value is at least (1/2)OPT−ε. In our paper, we present
the first zeroth-order approximation algorithm for robust DR-submodular maximization
problem.

1.3 Application Examples

We next give several examples for DR-submodular optimization in real-world applications.

Quadratic programming. Non-convex quadratic programming has many applica-
tions in machine learning. Generally, it cannot be solved for a global optimal solution in
polynomial time. However, the DR-submodular function introduces a non-convex structure
that can be solved approximately. We consider to maximize a DR-submodular function f
defined as

f(x) =
1

2
xTHx + hTx + c,

subject to linear constraints. This type of problems arise in scheduling (Skutella, 2001;
Bian et al., 2017b). The DR-submodular quadratic programming problem requires that all
off-diagonal entries of H are non-positive, i.e., Hi,j ≤ 0, ∀i, j, and it is obviously smooth.

Multi-resolution data summarization. The multi-resolution summary problem
(Bian et al., 2017b; Lee et al., 2022) with a non-differentiable utility function is regarded as
a non-smooth up-concave maximization problem. Specifically, given a set E = {e1, . . . , ek},
we assign each data ei a non-negative weight xi to measure its importance by which to
determine whether the data is recommended. In general, the user will set a threshold τ
to decide the set Sτ = {ei : xi ≥ τ} which represents the level of details or resolution of
summary. The weight of each point ei is determined by a DR-submodular maximization
problem where the utility function is given by

k∑
i=1

k∑
j=1

φ(xj)sij −
k∑
i=1

k∑
j=1

xixjsij .

Here, sij ≥ 0 is the similarity index between two items ei and ej , and φ(·) is monotone and
concave. It is obviously that utility function above is up-concave.

Optimal budget allocation. Optimal budget allocation is a classical submodular
maximization problem (Bian et al., 2017b). We describe it as a bipartite graph (S, T ;W ),
where S and T are sets of advertising channels (e.g., TV and websites) and customers
respectively, and W ⊆ S × T is an edge set. Each edge has a weight {pst}(s,t)∈W which
denotes the influence probability of channel s to customer t. The goal is to maximize the
expected influence on customers by distributing the budgets, which concludes the time or
space of advertisements (Soma et al., 2014; Hatano et al., 2015). More precisely, the total
influence of customer t from all channels can be modeled as

It(x) = 1−
∏

(s,t)∈W

(1− pst)xs ,

where x ∈ RS+ denotes the budget assignment from S channels. The objective is to maximize∑
t∈T It(x), where x is constrained within some set X . It is easy to prove that It(x)

is monotone and DR-submodular according to the second-order equivalent condition of
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DR-submodularity (Bian et al., 2017b), i.e., ∂2It(x)
∂xixj

≤ 0, ∀i, j. If there are N advertisers

providing N schemes, let x = [x1, . . . ,xN ], where xi ∈ RS+. We aim to maximize the impact
on the least affected customers with the influence of N advertisers, modeled as

max
x

N∑
i=1

αi min
t∈T

It(x
i), (3)

where αi > 0 denotes the weights. Obviously, (3) is a robust DR-submodular maximization
problem.

1.4 Organization

The rest of our paper is organized as follows. Preliminaries, including relevant notations,
definitions, zeroth-order gradient estimations and a generic zeroth-order stochastic approx-
imation algorithm framework, are given in Section 2. In Section 3, we propose two specific
zeroth-order stochastic approximation methods, CG-ZOSA and RG-ZOSA, and present
their approximation analysis for smooth DR-submodular maximization problem. Section
4 introduces a novel finite-sum auxiliary function for smoothed functions, and then de-
signs the NZOSA algorithm for non-smooth up-concave maximization. We further extend
NZOSA to apply for a class of robust submodular optimization problems in Section 5.
The efficiency of the proposed algorithms is validated by extensive experiments in Section
6. Finally, we present our conclusions in Section 7.

2. Preliminaries

2.1 Notations and Definitions

We denote basis vectors by ei := (0, . . . , 1, 0, . . . , 0)T ∈ Rd, where the i-th component is
1, and the radius and diameter of the constraint set X by R := maxx∈X ‖x‖ and D :=
maxx,y∈X ‖x − y‖ respectively, where ‖·‖ is `2-norm by default. For x,y ∈ Rd, we denote
(x∨y)i = max{xi,yi} and (x∧y)i = min{xi,yi}, and x ≤ y means xi ≤ yi, ∀i ∈ [d]. Given
x ∈ Rd and u > 0, denote by Bd(x, u) = {y ∈ Rd|‖x−y‖ ≤ u} the `2-norm ball of radius u
centered at x, and denote S = {x ∈ Rd : ‖x‖ = 1} as the unit sphere. Given D ⊆ Rd, we say
that f : D → R is L0-Lipschitz continuous w.r.t. the norm ‖·‖ if |f(x)− f(y)| ≤ L0‖x−y‖
for any x,y ∈ D, and that f is L-smooth if its gradient is L-Lipschitz continuous. A
continuous function f : D → R is said to be submodular, if

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y)

holds for all x,y ∈ D. If furthermore f is twice differentiable, the submodularity is equiva-

lent to that all off-diagonal entries of its Hessian are non-positive, i.e., ∂2f(x)
∂xixj

≤ 0,∀x ∈ D
and i 6= j.

Definition 1. (DR-submodular function) Given a convex set D ⊆ Rd, a continuous
function f : Rd → R is said to be DR-submodular over D, if for any x ≤ y ∈ D and a ∈ R+

such that (aei + x) ∈ D, (aei + y) ∈ D, ∀i ∈ {1, 2, . . . , d}, the following diminishing return
(DR) property holds:

f (aei + x)− f(x) ≥ f (aei + y)− f(y).
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Figure 1: The relationship between concavity, up-concavity, DR-submodularity, and sub-
modularity.

Note that Definition 1 is equivalent to ∇f(x) ≤ ∇f(y), ∀ x ≥ y when f is differentiable,

and ∂2f(x)
∂xixj

≤ 0,∀x ∈ D and ∀i, j, when f(x) is twice differentiable. If f is continuously

differentiable, it holds that

〈∇f(x),y − x〉 ≥ f(x ∨ y) + f(x ∧ y)− 2f(x), ∀x,y ∈ D. (4)

For more properties of DR-submodular functions, we refer interested readers to (Hassani
et al., 2017; Bian et al., 2017a,b).

Definition 2. (Up-concave function) A function f : Rd → R is said to be up-concave,
if for any x ∈ Rd and any non-negative direction v ≥ 0, f(x + βv) is concave w.r.t. β ∈ R.

By Definition 2, if f : Rd → R is an up-concave function at any given point x ∈ Rd,
there exists gx such that

f(y) ≤ f(x) + gTx (y − x), ∀y ≤ x or y ≥ x. (5)

Denote ∂↑f(x) as the set of gx that satisfies above inequality. If f is differentiable, ∂↑f(x) =
{∇f(x)}, which also shows that f is concave along any non-negative/non-positive direction.
Furthermore, if f is twice differentiable, it holds that

(y − x)T∇2f(x)(y − x) ≤ 0, ∀y ≤ x or y ≥ x.

Moreover, it is obvious that a continuous concave function is up-concave. A DR-submodular
function f must be up-concave according to the definition or the equivalent conditions of
DR-submodular, but the converse is not true.

We present a description of the relationship among submodularity, DR-submodularity,
concavity and up-concavity in Figure 1.

2.2 Zeroth-order Gradient Estimation

The focus of this paper is to design stochastic approximation algorithms based on zeroth-
order gradient estimations and investigate their properties accordingly. There are two types

10
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of zeroth-order gradient estimation that are widely used in the literature: the coordinate-
wise gradient estimation and the randomized gradient estimation. Specifically, for f(x, ξt),
define

(CoordGradEst) gcoord(x, ξt) =
d∑
l=1

1

2u
(f(x + uel, ξt)− f(x− uel, ξt)) el,

(RandGradEst) grand(x, ν, ξt) =
d

2u
(f(x + uν, ξt)− f(x− uν, ξt)) ν,

where u ∈ R+ and ν ∈ Rd is sampled following the uniform distribution on the unit sphere
S. Note that the randomized gradient estimator grand(x, ν, ξt) relies on the random variable
ν, thus providing a stochastic approximation to ∇f(x, ξt). The coordinate-wise gradient
estimator generates a deterministic approximation with the upper bound of the estimation
error addressed in the lemma below. Proofs of lemmas in this subsection are presented in
Appendix A.

Lemma 3. Assume that f(x, ξt) is L-smooth, then ‖gcoord(x, ξt)−∇f(x, ξt)‖2 ≤ L2du2.

To investigate the properties of the randomized gradient estimator grand(x, ν, ξt), we
introduce a smoothing function for f(x, ξt). Let µ be the uniform density w.r.t. Lebesgue
measure on the Bd(0, u), the smoothed function fµ : Rd × Ξ→ R is defined as

fµ(x, ξt) :=

∫
Rd

f(x + y, ξt)µ(y)dy = Ev [f(x + uv, ξt)] , (6)

where v is a random variable chosen uniformly from the d-dimensional unit ball Bd(0, 1).
Meanwhile, we define fµ : Rd → R as

fµ(x) :=
1

N

N∑
t=1

fµ(x, ξt) = Ev[f(x + uv)]. (7)

The following lemma summarizes the key properties of fµ(x).

Lemma 4. Let f : Rn → R be monotonically non-decreasing, non-negative and DR-
submodular (resp. up-concave). Then the following statements hold true.

(i) fµ(x) is monotonically non-decreasing, non-negative and DR-submodular (resp. up-
concave).

(ii) If f(x) is L-smooth, fµ(x) is also L-smooth.

(iii) If f(x, ξt) is L0-Lipschitz continuous for any t ∈ [N ], fµ(x) is differentiable and L0

√
d

u -
smooth, and moreover, |fµ(x)− f(x)| ≤ L0u.

It is noteworthy that the smoothing parameter of fµ depends on u when f is merely L0-
Lipschitz continuous. This dependency is crucial for the algorithm design and theoretical
analysis in the non-smooth case.

We now present the properties of the randomized gradient estimator as follows.

11
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Lemma 5. Suppose that f(x, ξt) is L0-Lipschitz continuous for any t ∈ [N ], then we have

E[grand(x, ν, ξt)|x] = ∇fµ(x, ξt), ‖grand(x, ν, ξt)− grand(y, ν, ξt)‖2 ≤M2
u‖x− y‖2, (8)

where Mu = dL0
u . Furthermore, it holds that

E[‖∇fµ(x, ξt)− grand(x, ν, ξt)‖2|x] ≤ 16
√

2πdL2
0, ∀t ∈ [N ]. (9)

Remark 6. For the case that f(x, ξt) is defined on D =
∏d
i=1[0, ai], the function may

not be defined at the point x + uν or x + uel if they fall outside of D. To address this
issue, we can either shrink the domain D to

∏d
i=1[u, ai − u] with small u > 0 (Chen et al.,

2020b), or construct a set Du as described in (Pedramfar et al., 2023), ensuring that the
above gradient estimators are well-defined. The purpose of these strategies is to ensure the
meaningful gradient estimation computations within the feasible region. In our setting, for
simplicity we define f(x, ξt) in Rd for t ∈ [N ], meaning that the oracle can be queried for
any point in Rd.

2.3 Zeroth-Order Stochastic Approximation Algorithm Framework

There are several stochastic gradient approximation methods in the literature for the DR-
submodular maximization problem. The stochastic gradient ascent (GA) algorithm (Has-
sani et al., 2017) for the DR-submodular maximization problem in the expected form has
been shown to achieve 1/2 approximation ratio by randomly selecting an approximate gra-
dient. To further improve the approximation ratio, Zhang et al. (2022) designed an approx-
imate gradient of an auxiliary function F . Consequently, the approximation performance
of the gradient ascent (GA) algorithm was improved from 1/2 to 1 − 1/e with access to
stochastic gradient information. It is important to note that both aforementioned meth-
ods follow a single-loop algorithm framework based on stochastic first-order information.
These zeroth-order variants, which rely on a similar algorithm structure, may not enhance
the approximation performance. For example, the zeroth-order gradient ascent algorithm
(ZO-GA, presented in Algorithm 3), which directly replaces the stochastic gradient with
a zeroth-order stochastic gradient estimation, can be shown to maintain an approximation
ratio of 1/2 after O(Nd

ε2
) oracle calls (see the approximation analysis in Appendix B). To

achieve better approximation performance, the design of more efficient algorithm structures
and a deeper analysis of these algorithms are desired.

The stochastic variance reduced gradient (SVRG) algorithm (Johnson and Zhang, 2013)
is designed for minimizing a finite-sum of smooth functions, i.e., f(x) = 1

N

∑N
i=1 fi(x).

Within a double-loop framework, SVRG computes an approximate gradient at each inner
iteration inside an epoch as

dk = ∇fi(xk)−∇fi(x̄) +∇f(x̄),

where i is chosen uniformly and randomly from [N ], and the full gradient ∇f is computed
at a snapshot point x̄ at the beginning of each inner loop. It is worthy to note that SVRG
relies on gradient computations of component functions, whereas our problem setting only
assumes access to zeroth-order oracles.

Here, we present a generic framework of zeroth-order stochastic approximation methods
for DR-submodular optimization in Algorithm 1.
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Algorithm 1 Zeroth-order Stochastic Approximation (ZOSA) Algorithm Framework

Input: Initial point x0
m = x0 ∈ X , positive integers m and S, step-sizes {ηs+1

j }.
Output: xr
1: for s = 0, . . . S − 1 do
2: Set xs+1

0 = xsm
3: Compute zeroth-order approximate gradient ds+1

0 at xs+1
0

4: for j = 0, . . . ,m− 1 do
5: Compute zeroth-order approximate gradient ds+1

j at xs+1
j

6: Compute ys+1
j+1 = xs+1

j + ηs+1
j ds+1

j

7: Compute xs+1
j+1 = arg minx∈X ‖x− ys+1

j+1‖2
8: end for
9: end for

10: Return xr according to a certain type of probability distribution from xSm and xs+1
j ,

j = 0, . . . ,m− 1; s = 0, . . . , S − 1.

We briefly describe the algorithm framework as follows. The input initializes the starting
point, the number of iterations for the inner and outer loops and the step size at each
iteration. Lines 2 and 3 set the starting point of each loop and compute the approximate
gradient. Line 5 computes the zeroth-order approximate gradient at each inner iteration.
Through Lines 6 and 7 we compute the next iterate, assuming availability of Euclidean
projection onto the convex set X . Line 10 returns a random vector according to a certain
distribution.

To achieve desirable approximation guarantees, we attempt to leverage an auxiliary
function and compute approximate gradients based on the proposed zeroth-order stochas-
tic approximation (ZOSA) algorithm framework. In subsequent sections, we will propose
zeroth-order stochastic approximation methods utilizing different gradient estimators and
auxiliary function forms for both smooth and non-smooth cases, and provide the respective
approximation analysis.

3. Zeroth-order Stochastic Approximation Methods for Smooth
DR-Submodular Maximization

In this section we focus on smooth DR-submodular maximization in finite-sum form as
described in (1), i.e.,

max
x∈X

f(x) :=
1

N

N∑
t=1

f(x, ξt), (10)

where f(·, ξt), t ∈ [N ] are further required L-smooth.

Our purpose in this section is to design efficient zeroth-order gradient approximations
that can be incorporated into Algorithm 1 for solving (10), and to present the corresponding
approximation analysis. Specifically, we will adopt coordinate-wise gradient estimation
and compute approximate gradients based on an integral auxiliary function in Subsection
3.1. Furthermore, to further improve the approximation performance, we will propose a
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novel approach to approximate gradients based on randomized gradient estimation and the
integral auxiliary function of a smoothed function in Subsection 3.2.

3.1 CG-ZOSA based on Coordinate-wise Gradient Estimation

Motivated by (Zhang et al., 2022), we assume that ∇f(θx, ξt) is Lebesgue integrable with
respect to θ ∈ (0, 1]. Define the auxiliary function F : Rd → R by

F (x) :=
1

N

N∑
t=1

F(x, ξt), where F(x, ξt) :=

∫ 1

0

eθ−1

θ
f(θx, ξt)dθ, ∀t ∈ [N ]. (11)

It is straightforward to obtain

F (x) =

∫ 1

0

eθ−1

θ
f(θx)dθ,

which was first proposed in (Zhang et al., 2022) for weakly DR-submodular maximization as
a representation of non-oblivious function. It is obvious that F is non-negative according to
the non-negativeness of f , and the lemma below summarizes more properties of F . Before
presenting the properties of F , we define the stationary point for a constrained maximization
problem.

Definition 7. (Stationary point) A vector x ∈ X is called a stationary point of function
f : Rd → R over the compact set X ⊆ Rd, if

max
x∈X

〈∇f(x),y − x〉 ≤ 0.

It is worthy to note that properties indicated by Lemma 8 (ii) and (iii) relies on the
DR-submodularity of f . The proof is given in Appendix C.

Lemma 8. Let x∗ be the optimal solution of (10) and F (x) be defined by (11). The
following statements hold true.

(i) The gradient of F (x) is given by ∇F (x) =
∫ 1

0 e
θ−1∇f(θx)dθ, and F (x) is L

e -smooth.

(ii) For any x,y ∈ X , it holds that 〈y−x,∇F (x)〉 ≥
(
1− e−1

)
f(y)−f(x). Furthermore,

f(x) ≥
(
1− e−1

)
f(x∗), where x is a stationary point of maxx∈X F (x).

(iii) (Zhang et al., 2022, Theorem 2) For any x ∈ X , it holds that F (x) ≤ (1+ln τ) (f(x) + δ),

where τ = LR2

δ and δ ∈ (0, LR2].

Based on the integral auxiliary function defined above and the zeroth-order stochastic
approximation algorithm framework described in Algorithm 1, we adopt coordinate-wise
gradient estimation to compute an approximate gradient ds+1

j for solving (10) as follows.
Let random variable Θ follow the probability function

P(Θ ≤ θ) =

∫ θ
0 e

u−1I[0,1](u)du∫ 1
0 e

u−1du
, (12)
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where I[0,1](u) is the indicator function on [0, 1]. Let θ ∈ (0, 1] be an i.i.d. sample from

random variable Θ and B be a batch randomly selected from N := {ξt}Nt=1 with |B| = b.
Set

Gcoord(x, θ,B) := (1− e−1) · 1

b

∑
ξt∈B

gcoord(θx, ξt), (13)

where gcoord(θx, ξt) is defined as (RandGradEst). Obviously, we have

EB[Gcoord(x, θ,B)] = Gcoord(x, θ,N ) =
(
1− e−1

)
gcoord(θx), (14)

where

gcoord(θx) :=
1

N

∑
ξt∈N

gcoord(θx, ξt).

It is worthy to note that gcoord(x) is an estimate of ∇f(x). Moreover, by Lemma 3 and
(14), we respectively have

‖gcoord(x)−∇f(x)‖2 ≤ L2du2, (15)

and

E[Gcoord(x, θ,B)|x] = Eθ∼Θ[Gcoord(x, θ,N )|x] =
(
1− e−1

)
Eθ∼Θ[gcoord(θx)|x]

=
(
1− e−1

) ∫ 1

θ=0
gcoord(θx)dP(Θ ≤ θ)

=
(
1− e−1

) ∫ 1

0

eθ−1∫ 1
0 e

u−1du
gcoord(θx)dθ

=

∫ 1

0
eθ−1gcoord(θx)dθ =: ∇̃F (x). (16)

Although, according to Lemma 8(i), Gcoord(x, θ,B) is not an unbiased estimate of the exact
gradient ∇F (x), it still provides a reliable approximation. We thus define the zeroth-order
approximate gradient ds+1

j at point xs+1
j , j = 0, . . . ,m− 1; s = 0, . . . , S − 1, as

ds+1
j =

{
Gcoord(xs+1

0 , θs+1,N ), j = 0

Gcoord(xs+1
j , θs+1,Bs+1

j )−Gcoord(xs+1
0 , θs+1,Bs+1

j ) + Gcoord(xs+1
0 , θs+1,N ), j > 0

,

(17)
where Bs+1

j ⊆ N contains i.i.d. samples with |Bs+1
j | = b, and θs+1 ∈ (0, 1] is an i.i.d. sample

from the random variable Θ. For simplicity, we use CG-ZOSA to name the resulting
algorithm that incorporates (17) to compute ds+1

j in Algorithm 1.

The lemma below provides properties of the approximate gradient ds+1
j .

Lemma 9. Let ds+1
j , j = 0, . . . ,m − 1, s = 0, . . . S − 1 be computed through (17). Then it

holds that

E
[
ds+1
j |xs+1

j

]
= ∇̃F (xs+1

j ),

E
[
‖∇F (xs+1

j )− ds+1
j ‖2|xs+1

j

]
≤

3
(
1− e−1

) (
1− 2e−1

)
L2

b
‖xs+1

j − xs+1
0 ‖2 +Q,
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where Q = 6
(
1− e−1

)2
L2du2/b+ 2

(
1− e−1

)2
L2du2 + 2L2R2 and ∇̃F (x) is defined as in

(16).

Proof Firstly, from EB [Gcoord(x, θ,B)] = Gcoord(x, θ,N ) and (16), it is easy to obtain

E
[
ds+1
j |xs+1

j

]
= E

[
Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j ) + Gcoord(xs+1

0 , θs+1,N )|xs+1
j

]
= E

[
Gcoord(xs+1

j , θs+1,Bs+1
j )|xs+1

j

]
= ∇̃F (xs+1

j ).

Secondly, from the L-smoothness of the function f(x, ξt) and Lemma 3, we obtain that for
any t ∈ [N ],

E
[
‖gcoord(θx, ξt)− gcoord(θy, ξt)‖2

]
≤ 3

(
E
[
‖gcoord(θx, ξt)−∇f(θx, ξt)‖2 + ‖∇f(θx, ξt)−∇f(θy, ξt)‖2]

+‖gcoord(θy, ξt)−∇f(θy, ξt)‖2
])

≤ 3
(
L2Eθ∼Θ

[
θ2‖x− y‖2

]
+ 2L2du2

)
= 3

(
L2‖x− y‖2

∫ 1

0

eθ−1∫ 1
0 e

u−1du
θ2dθ + 2L2du2

)

= 3

(
1− 2e−1

)
L2

(1− e−1)
‖x− y‖2 + 6L2du2. (18)

Furthermore, it follows from the definition of Gcoord(x, θ,N ) in (13) and the inequality
‖gcoord(x)−∇f(x)‖2 ≤ L2du2 in (15) that

E
[
‖Gcoord(x, θ,N )−∇F (x)‖2|x

]
≤ 2E

[
‖Gcoord(x, θ,N )−

(
1− e−1

)
∇f(θx)‖2 + ‖

(
1− e−1

)
∇f(θx)−∇F (x)‖2|x

]
= 2E

[(
1− e−1

)2 ‖gcoord(θx)−∇f(θx)‖2 + ‖
∫ 1

0
et−1(∇f(θx)−∇f(tx))dt‖2|x

]
≤ 2

(
1− e−1

)2
L2du2 + 2Eθ∼Θ

[∥∥∥∥∫ 1

0
et−1|θ − t|L‖x‖dt

∥∥∥∥2

|x

]

≤ 2
(
1− e−1

)2
L2du2 + 2Eθ∼Θ

[∫ 1

0
et−1dt

∫ 1

0
et−1(θ − t)2L2R2dt|x

]
= 2

(
1− e−1

)2
L2du2 + 2

(∫ 1

0

∫ 1

0
e(θ+t−2)(θ − t)2dtdθ

)
L2R2

≤ 2
(
1− e−1

)2
L2du2 + 2L2R2, (19)

where the second inequality is due to the L-smoothness of f , the third one follows from the
Cauchy–Schwarz inequality and the boundedness of x as well as(∫

a · bdt
)2

≤
∫
adt ·

∫
ab2dt, ∀a, b ≥ 0,
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the second equality is implied by
∫ 1

0 e
t−1dt = 1− 1

e and (12), i.e.,

Eθ∼Θ

[∫ 1

0
et−1dt

∫ 1

0
et−1(θ − t)2L2R2dt|x

]
=

∫ 1

θ=0

eθ−1

1− 1
e

(∫ 1

t=0
et−1dt

∫ 1

t=0
et−1(θ − t)2dt

)
dθ · L2R2

=

∫ 1

θ=0
eθ−1

(∫ 1

t=0
et−1(θ − t)2dt

)
dθ · L2R2

=

∫ 1

θ=0

∫ 1

t=0
eθ+t−2(θ − t)2dtdθ · L2R2,

and the last inequality is derived from the fact that
∫ 1
θ=0

∫ 1
t=0 e

(θ+t−2)(θ − t)2dtdθ ≤ 1.
Therefore, combining (18) and (19) we obtain

E
[
‖∇F (xs+1

j )− ds+1
j ‖2|xs+1

j

]
= E

[
‖∇F (xs+1

j )−
(
Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j )

+Gcoord(xs+1
0 , θs+1,N )

)
‖2|xs+1

j

]
= Eθs+1

[
EBs+1

j

[
‖∇F (xs+1

j )−Gcoord(xs+1
j , θs+1,N ) + Gcoord(xs+1

j , θs+1,N )

−Gcoord(xs+1
j , θs+1,Bs+1

j ) + Gcoord(xs+1
0 , θs+1,Bs+1

j )−Gcoord(xs+1
0 , θs+1,N )‖2|xs+1

j

]
|xs+1
j

]
= Eθs+1

[
EBs+1

j

[
‖Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j ) + Gcoord(xs+1

0 , θs+1,N )

−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j

]
|xs+1
j

]
+ E[‖∇F (xs+1

j )−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j ]

= E
[
‖Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j ) + Gcoord(xs+1

0 , θs+1,N )

−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j

]
+ E[‖∇F (xs+1

j )−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j ]

≤ E
[
‖Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j )‖2|xs+1

j

]
+ E[‖∇F (xs+1

j )−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j ]

≤
(
1− e−1

)2
b

E
[
‖gcoord(θs+1xs+1

j , ξt)− gcoord(θs+1xs+1
0 , ξt)‖2|xs+1

j

]
+ E

[
‖∇F (xs+1

j )−Gcoord(xs+1
j , θs+1,N )‖2|xs+1

j

]
≤

3L2
(
1− e−1

) (
1− 2e−1

)
b

‖xs+1
j − xs+1

0 ‖2 +
6
(
1− e−1

)2
L2du2

b

+ 2
(
1− e−1

)2
L2du2 + 2L2R2.

where the third equality is due to

EBs+1
j

[
Gcoord(xs+1

j , θs+1,Bs+1
j )−Gcoord(xs+1

0 , θs+1,Bs+1
j ) + Gcoord(xs+1

0 , θs+1,N )
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−Gcoord(xs+1
j , θs+1,N )

]
= 0,

the first inequality arises from the facts that EB [Gcoord(x, θ,B)] = Gcoord(x, θ,N ) and
E[‖ξ − E[ξ]‖2] ≤ E[‖ξ‖2] for the random variable ξ, and the second inequality follows from
the definition of Gcoord(x, θ,B) as given in (13). The proof is completed.

The next lemma characterizes the relation between the auxiliary function values at two
consecutive iteration points.

Lemma 10. Let xs+1
j , j = 0, . . . ,m− 1, s = 0, . . . S − 1 be generated by CG-ZOSA. Then

it holds that for any y ∈ X ,

F (xs+1
j+1) ≥ F (xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉

− ηs+1
j ‖∇F (xs+1

j )− ds+1
j ‖2 −

(
L

2e
− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2. (20)

Proof It follows from the L
e -smoothness of F (x) that for any y ∈ X ,

F (xs+1
j+1) ≥ F (xs+1

j ) + 〈∇F (xs+1
j ),xs+1

j+1 − xs+1
j 〉 − L

2e
‖xs+1

j+1 − xs+1
j ‖2

= F (xs+1
j ) + 〈ds+1

j ,xs+1
j+1 − xs+1

j 〉+ 〈∇F (xs+1
j )− ds+1

j ,xs+1
j+1 − xs+1

j 〉

− L

2e
‖xs+1

j+1 − xs+1
j ‖2

= F (xs+1
j ) + 〈ds+1

j ,xs+1
j+1 − y〉+ 〈ds+1

j ,y − xs+1
j 〉

+ 〈∇F (xs+1
j )− ds+1

j ,xs+1
j+1 − xs+1

j 〉 − L

2e
‖xs+1

j+1 − xs+1
j ‖2

= F (xs+1
j ) +

1

ηs+1
j

〈ys+1
j+1 − xs+1

j ,xs+1
j+1 − y〉+ 〈ds+1

j ,y − xs+1
j 〉

+ 〈∇F (xs+1
j )− ds+1

j ,xs+1
j+1 − xs+1

j 〉 − L

2e
‖xs+1

j+1 − xs+1
j ‖2

≥ F (xs+1
j ) +

1

2ηs+1
j

(
‖xs+1

j+1 − xs+1
j ‖2 − ‖xs+1

j − y‖2 + ‖xs+1
j+1 − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉+ 〈∇F (xs+1

j )− ds+1
j ,xs+1

j+1 − xs+1
j 〉 − L

2e
‖xs+1

j+1 − xs+1
j ‖2

(21)

The second inequality of (21) uses the property of the projection operator: 〈ys+1
j+1−xs+1

j+1,x
s+1
j+1−

y〉 ≥ 0 and 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a− b‖2, through which we obtain

〈ys+1
j+1 − xs+1

j ,xs+1
j+1 − y〉 = 〈ys+1

j+1 − xs+1
j+1,x

s+1
j+1 − y〉+ 〈xs+1

j+1 − xs+1
j ,xs+1

j+1 − y〉
≥ 〈xs+1

j+1 − xs+1
j ,xs+1

j+1 − y〉

=
1

2

(
‖xs+1

j+1 − xs+1
j ‖2 − ‖y − xs+1

j ‖2 + ‖xs+1
j+1 − y‖2

)
.
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Hence, by plugging the inequality

〈∇F (xs+1
j )− ds+1

j ,xs+1
j+1 − xs+1

j 〉 ≥ −ηs+1
j ‖∇F (xs+1

j )− ds+1
j ‖2 − 1

4ηs+1
j

‖xs+1
j+1 − xs+1

j ‖2

into (21) we derive the conclusion.

For simplicity, we denote LF = 2
(
1− e−1

)
L. Thus, it is obvious that

LF ≥ max

{
L

e
,
√

3 (1− e−1) (1− 2e−1)L

}
.

For a better presentation of the main theorem in this subsection, we introduce an important
inequality presented in the following lemma.

Lemma 11. Given the parameters am = 0, aj = aj+1

(
1 + 1

m

)
+

ηs+1
j L2

F

b and

b = m2 < N, ηs+1
j =

1

cs+1
j LF

,

where cs+1
j is non-decreasing and cs+1

j ≥ 4
√

2, j = 0, . . . ,m− 1, s = 0, . . . , S − 1, we have

LF
2

+ aj+1(1 +m) ≤ 1

4ηs+1
j

. (22)

Proof By aj = aj+1(1 + 1
m) + ηs+1

j L2
F /b, we obtain

aj =

(
aj+2(1 +

1

m
) +

ηs+1
j+1L

2
F

b

)
(1 +

1

m
) +

ηs+1
j L2

F

b

= aj+2(1 +
1

m
)2 +

L2
F

b

(
ηs+1
j+1(1 +

1

m
) + ηs+1

j

)
= am(1 +

1

m
)m−j +

L2
F

b

(
ηs+1
m−1(1 +

1

m
)m−j−1 + . . .+ ηs+1

j+1(1 +
1

m
) + ηs+1

j

)
≤
ηs+1
j L2

Fm

b

(
(1 +

1

m
)m−j − 1

)
=
mLF

bcs+1
j

((
1 +

1

m

)m−j
− 1

)

≤ mLF

bcs+1
j

(e− 1)

≤ 2mLF

bcs+1
j

,

where the first inequality comes from am = 0 and ηs+1
m−1 ≤ . . . ≤ ηs+1

j+1 ≤ ηs+1
j , the fourth

equality is because of ηs+1
j = 1

cs+1
j LF

, the second inequality is due to (1 + 1/m)m−j ≤ e and
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the last one is from e− 1 ≤ 2. Combining cs+1
j+1 ≥ c

s+1
j ≥ 4

√
2 and b = m2, we have

LF
2

+ aj+1(1 +m) ≤ LF
2

+
2mLF

bcs+1
j+1

(1 +m)

≤ LF
2

+
2mLF

bcs+1
j

(1 +m)

≤ LF
2

+
4m2LF

bcs+1
j

≤ 1

4ηs+1
j

,

where the last inequality is because of LF
2 ≤

1
8
√

2ηs+1
j

and then 4m2LF

bcs+1
j

= 4L2
F η

s+1
j ≤ 1

8ηs+1
j

.

Hence, the inequality (22) holds true.

The auxiliary function and the DR-submodularity provides non-convex optimization
with an approximation guarantee, ensuring that the objective value at any stationary point
of the auxiliary function F exceeds at least (1 − 1/e)OPT, as shown in Lemma 8. We
will demonstrate the approximation performance, including the approximation ratio and
complexity of the CG-ZOSA algorithm by introducing a class of Lyapunov functions.

Theorem 12. Let the parameters for the computation of ds+1
j and the step-size ηs+1

j in
CG-ZOSA satisfy

b = m2 < N, u =
1√
Smd

, ηs+1
j =

1

cs+1
j LF

,

where cs+1
j = 4

√
2
√
s(m− 1) + j + 1, for j = 0, . . . ,m − 1, s = 0, . . . , S − 1 and η0

m−1 =

η1
m−1. And return xr according to that P(xr = xs+1

j ) = 1
Sm+1+ln τ for j = 0, . . . ,m− 1; s =

0, . . . , S − 1, and P(xr = xSm) = 1+ln τ
Sm+1+ln τ . Then we obtain

E [f(xr)] ≥
(

1− e−1 −O
(

1

Sm

))
f(x∗)−O

(
1√
Sm

)
, (23)

where x∗ is the optimal solution of (10).

Proof To prove the theorem, we introduce the following Lyapunov function

Ls+1
j := E

[
F (xs+1

j )− aj‖xs+1
j − xs+1

0 ‖2
]
, j = 0, . . . ,m− 1, s = 0, . . . , S − 1,

where am = 0 and aj = aj+1

(
1 + 1

m

)
+

ηs+1
j L2

F

b . We bound Ls+1
j+1 as follows

Ls+1
j+1

= E
[
F (xs+1

j+1)− aj+1‖xs+1
j+1 − xs+1

j + xs+1
j − xs+1

0 ‖2
]
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= E
[
F (xs+1

j+1)− aj+1

(
‖xs+1

j+1 − xs+1
j ‖2 + ‖xs+1

j − xs+1
0 ‖2 + 2〈xs+1

j+1 − xs+1
j ,xs+1

j − xs+1
0 〉

)]
≥ E

[
F (xs+1

j+1)− aj+1(1 +m)‖xs+1
j+1 − xs+1

j ‖2 − aj+1

(
1 +

1

m

)
‖xs+1

j − xs+1
0 ‖2

]
≥ E

[
F (xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉

−ηs+1
j ‖∇F (xs+1

j )− ds+1
j ‖2 −

(
LF
2
− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2

−aj+1(1 +m)‖xs+1
j+1 − xs+1

j ‖2 − aj+1

(
1 +

1

m

)
‖xs+1

j − xs+1
0 ‖2

]
≥ E

[
F (xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉

−
ηs+1
j L2

F

b
‖xs+1

j − xs+1
0 ‖2 − ηs+1

j Q −

(
LF
2
− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2

−aj+1(1 +m)‖xs+1
j+1 − xs+1

j ‖2 − aj+1

(
1 +

1

m

)
‖xs+1

j − xs+1
0 ‖2

]
= E

[
F (xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉 − ηs+1

j Q

−

(
LF
2

+ aj+1(1 +m)− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2

−

(
aj+1

(
1 +

1

m

)
+
ηs+1
j L2

F

b

)
‖xs+1

j − xs+1
0 ‖2

]
= Ls+1

j +
1

2ηs+1
j

E
[
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

]
+ E

[
〈ds+1

j ,y − xs+1
j 〉

]
− ηs+1

j Q

−

(
LF
2

+ aj+1(1 +m)− 1

4ηs+1
j

)
E
[
‖xs+1

j+1 − xs+1
j ‖2

]
≥ Ls+1

j +
1

2ηs+1
j

E
[
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

]
+ E

[
〈ds+1

j ,y − xs+1
j 〉

]
− ηs+1

j Q, (24)

where Q = 6
(
1− e−1

)2
L2du2/b + 2

(
1− e−1

)2
L2du2 + 2L2R2. The first inequality comes

from the Cauchy-Schwarz and Young’s inequality, i.e.,

2〈xs+1
j+1 − xs+1

j ,xs+1
j − xs+1

0 〉 ≤ 2‖xs+1
j+1 − xs+1

j ‖‖xs+1
j − xs+1

0 ‖

≤ m‖xs+1
j+1 − xs+1

j ‖2 +
1

m
‖xs+1

j − xs+1
0 ‖2,

the second inequality follows from (20) in Lemma 10 and LF ≥ L
e , the third inequality is

due to Lemma 9 and LF ≥
√

3 (1− e−1) (1− 2e−1)L, the last equality is derived from the
definition of Lyapunov function Ls+1

j and aj , and the final inequality is indicated by (22)
in Lemma 11.
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Now, we set y = x∗ and telescope (24) over all the iterations in epoch s+ 1, obtaining

Ls+1
m ≥ Ls+1

0 +
m−1∑
j=0

E

[
1

2ηs+1
j

(
‖xs+1

j+1 − x∗‖2 − ‖xs+1
j − x∗‖2

)
+E

[
〈ds+1

j ,x∗ − xs+1
j 〉|xs+1

j

]
− ηs+1

j Q
]

= Ls+1
0 + E

m−1∑
j=1

(
1

2ηs+1
j−1

− 1

2ηs+1
j

)
‖xs+1

j − x∗‖2 +
1

2ηs+1
m−1

‖xs+1
m − x∗‖2

− 1

2ηs+1
0

‖xs+1
0 − x∗‖2 +

m−1∑
j=0

(
E
[
〈ds+1

j ,x∗ − xs+1
j 〉|xs+1

j

]
− ηs+1

j Q
)

≥ Ls+1
0 + E

[(
1

2ηs+1
0

− 1

2ηs+1
m−1

)
D2 +

1

2ηs+1
m−1

‖xs+1
m − x∗‖2 − 1

2ηs+1
0

‖xs+1
0 − x∗‖2

+
m−1∑
j=0

(
E
[
〈ds+1

j ,x∗ − xs+1
j 〉|xs+1

j

]
− ηs+1

j Q
) , (25)

where the last inequality holds because ηs+1
j−1 ≥ ηs+1

j and ‖xs+1
j − x∗‖ ≤ D. We now focus

on the last term on the right-hand side of (25). By Lemma 9 and according to Lemma 8(ii)
with x = xs+1

j and y = x∗, we obtain

E[〈ds+1
j ,x∗ − xs+1

j 〉|xs+1
j ]

= 〈∇̃F (xs+1
j ),x∗ − xs+1

j 〉

= 〈∇F (xs+1
j ),x∗ − xs+1

j 〉+ 〈∇̃F (xs+1
j )−∇F (xs+1

j ),x∗ − xs+1
j 〉

≥
(
1− e−1

)
f(x∗)− f(xs+1

j )− ‖∇̃F (xs+1
j )−∇F (xs+1

j )‖‖x∗ − xs+1
j ‖

≥
(
1− e−1

)
f(x∗)− f(xs+1

j )−
(
1− e−1

)
L
√
duD, (26)

where the last inequality holds because the diameter of constraint set X isD and ‖gcoord(x)−
∇f(x)‖2 ≤ L2du2, as shown in (15), i.e.,

‖∇̃F (x)−∇F (x)‖ ≤
∫ 1

0
eθ−1 (gcoord(θx)−∇f(θx)) ‖dθ ≤

∫ 1

0

(
eθ−1L

√
du
)
dθ

=
(
1− e−1

)
L
√
du,

and ‖x∗ − xs+1
j ‖ ≤ D. Furthermore, we have Ls+1

m = E[F (xs+1
m )] because of am = 0

and Ls+1
0 = E[F (xs+1

0 )] = E[F (xsm)], which is due to the setting xs+1
0 = xsm. Combining

ηs+1
0 = ηsm−1, we obtain the following inequality from (25) and (26):

E
[
F (xs+1

m )
]
≥ E [F (xsm)] +

(
1

2ηsm−1

− 1

2ηs+1
m−1

)
D2

+
1

2ηs+1
m−1

E
[
‖xs+1

m − x∗‖2
]
− 1

2ηsm−1

E
[
‖xsm − x∗‖2

]
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+
m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )−
(
1− e−1

)
L
√
duD − ηs+1

j Q
]
. (27)

Adding the inequality (27) across all the epochs (for s ∈ {0, . . . , S − 1}), we have

E
[
F (xSm)

]
≥ E

[
F (x0

m)
]

+

(
1

2η0
m−1

− 1

2ηSm−1

)
D2 +

1

2ηSm−1

E
[
‖xSm − x∗‖2

]
− 1

2η0
m−1

E
[
‖x0

m − x∗‖2
]

+

S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )
]

−
S−1∑
s=0

m−1∑
j=0

((
1− e−1

)
L
√
duD + ηs+1

j Q
)

≥ −
cSm−1LF

2
D2 +

S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )
]

−
S−1∑
s=0

m−1∑
j=0

((
1− e−1

)
L
√
duD + ηs+1

j Q
)
,

where η0
m−1 = η1

m−1, and the second inequality follows from the non-negativeness of F (x),
‖xSm − x∗‖2, ‖x0

m − x∗‖2 ≤ D2 and ηSm−1 = 1
cSm−1LF

. Rearranging the above inequality, we

derive

E

F (xSm) +
S−1∑
s=0

m−1∑
j=0

f(xs+1
j )


≥ Sm

(
1− e−1

)
f(x∗)−

cSm−1LF

2
D2 −

S−1∑
s=0

m−1∑
j=0

((
1− e−1

)
L
√
duD + ηs+1

j Q
)
. (28)

According to Lemma 8(iii), we have

E

S−1∑
s=0

m−1∑
j=0

f(xs+1
j ) + (1 + ln τ)

(
f(xSm) + δ

)
≥ Sm

(
1− e−1

)
f(x∗)−

cSm−1LF

2
D2 −

S−1∑
s=0

m−1∑
j=0

((
1− e−1

)
L
√
duD + ηs+1

j Q
)
,

where τ = LR2

δ , δ ∈ (0, LR2]. Dividing both sides by (Sm+1+ln τ) and noting u = 1/
√
dSm

as well as the generation of xr, we obtain

E [f(xr)] = E

S−1∑
s=0

m−1∑
j=0

1

Sm+ 1 + ln τ
f(xs+1

j ) +
1 + ln τ

Sm+ 1 + ln τ
f(xSm)
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≥ Sm

Sm+ 1 + ln τ

(
1− e−1

)
f(x∗)

−
cSm−1LF

2 D2 + (1 + ln τ)δ +
∑S−1

s=0

∑m−1
j=0

((
1− e−1

)
L
√
duD + ηs+1

j Q
)

Sm+ 1 + ln τ

=

(
1− e−1 −

(
1− e−1

)
ln τ

Sm+ 1 + ln τ

)
f(x∗)

−O

cSm−1

Sm
+

1

Sm
+

∑S−1
s=0

∑m−1
j=0

(√
du+ 1

cs+1
j

(du2 + 1)

)
Sm

 ,

=

(
1− e−1 −

(
1− e−1

)
ln τ

Sm+ 1 + ln τ

)
f(x∗)−O

cSm−1

Sm
+

∑S−1
s=0

∑m−1
j=0

1
cs+1
j

Sm

 ,

where Q = 6
(
1− e−1

)2
L2du2/b + 2

(
1− e−1

)2
L2du2 + 2L2R2 from Lemma 9 and ηs+1

j =
1

cs+1
j LF

. Since cs+1
j = 4

√
2
√
s(m− 1) + j + 1, where j = 0, . . . ,m − 1, it follows that

cSm−1 = 4
√

2
√
Sm− (S − 1) ≤ 4

√
2
√
Sm, and

S−1∑
s=0

m−1∑
j=0

1

cs+1
j

=

S−1∑
s=0

m−1∑
j=0

1

4
√

2
√

(s− 1)m+ j + 1

≤
S−1∑
s=0

m−1∑
j=0

1

2
√

2
√
sm+ j + 1

≤
√
Sm√
2
.

Therefore, (23) is proved.

Corollary 13. Under the same setting as Theorem 12 with additional condition b = N2/3

and given ε > 0, the output xr of CG-ZOSA satisfies

E [f(xr)] ≥
(
1− e−1 − ε2

)
f(x∗)− ε,

after O(ε−2) total iterations and O(dN2/3ε−2) zeroth-order oracle evaluations.

Proof Note that the number of function value evaluations in the inner iterations and outer
iterations are Sm × 4b × d and S × 2N × d, respectively. Thus, by setting Sm = O(ε−2),
b = Nβ with β > 0, and b = m2, the total number of function value evaluations is in order
of

O(
dNβ

ε2
+
dN1−(β/2)

ε2
).

It is straightforward to verify that when β = 2/3, the total complexity is optimal, i.e.,
O(dN2/3ε−2).
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3.2 RG-ZOSA based on Randomized Gradient Estimation

In this section, besides the L-smoothness required in (10) we also assume L0-Lipschitz conti-
nuity of function f(x, ξt), where t ∈ [N ]. Under this additional condition, we aim to further
improve the approximation ratio of the algorithm. It is obvious that the f is also L-smooth
and L0-Lipschitz continuous. We employ randomized gradient estimation to approximate
the exact gradient of the objective function. It is worth noting that both the sampling pro-
cess and the design of the step-size need to be adjusted to accommodate the randomization
in gradient estimation. As a result, the theoretical analysis and approximation performance
of the algorithm are expected to differ.

To utilize the randomized gradient estimation, we first propose a mini-batch zeroth-
order gradient estimator which plays an important role in the subsequent algorithm design.
We randomly select an index set B ⊆ [N ] and generate i.i.d. samples {νl}l∈B from a
uniform distribution on the unit sphere S. Let B̃ = {(νl, ξl)}l∈B and define the mini-batch
zeroth-order randomized gradient estimator at x as follows:

ḡrand(x, B̃) :=
1

|B|
∑
l∈B

grand(x, νl, ξl). (29)

Combining Lemma 5 with the L0-Lipschitz continuity of f(x), we can easily derive the
relevant properties of ḡrand(x, B̃), i.e.,

E[ḡrand(x, B̃)|x] = ∇fµ(x), E
[
‖∇fµ(x)− ḡrand(x, B̃)‖2|x

]
≤ 16

√
2πdL2

0

|B|
. (30)

Similarly with the design of coordinate-wise gradient estimation based on integral auxiliary
function, we define the integral auxiliary function of the smoothed function fµ(x) as

Fµ(x) :=

∫ 1

0

eθ−1

θ
fµ(θx)dθ, (31)

which is non-negative due to the non-negativeness of fµ as shown in Lemma 4(i). Easily, we

have ∇Fµ(x) =
∫ 1

0 e
θ−1∇fµ(θx)dθ. We then pick an i.i.d. sample θ from random variable

Θ in (12) and B̃ = {νl, ξl}l∈B with B ⊆ [N ], and set

Grand(x, θ, B̃) :=
(
1− e−1

)
ḡrand(θx, B̃), (32)

where ḡrand(θx, B̃) is defined as (29). It follows from the expression of ∇Fµ(x) as indicated
by (31) that

E
[
Grand(x, θ, B̃)|x

]
= Eθ∼Θ

[(
1− e−1

)
E[ḡrand(θx, B̃)|x, θ]

]
=
(
1− e−1

)
Eθ∼Θ [∇fµ(θx)]

=
(
1− e−1

) ∫ 1

0

eθ−1∫ 1
0 e

u−1du
∇fµ(θx)dθ

=

∫ 1

0
eθ−1∇fµ(θx)dθ = ∇Fµ(x), (33)
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where the third equality is due to the distribution as given in P(Θ ≤ θ) in (12). Thus,
Grand(x, θ, B̃) is an unbiased estimate to ∇Fµ(x).

We now come to determine ds+1
j . We first randomly select an index set Bs+1

j ⊆ [N ]

with the size |Bs+1
j | = b and generate i.i.d. samples νl ∈ Rd for l ∈ Bs+1

j from a uniform

distribution on the unit sphere S. Denote B̃s+1
j := {(νl, ξl)}l∈Bs+1

j
and Ñ := {(νl, ξl)}l∈[N ]

when Bs+1
j = [N ]. Then compute the zeroth-order approximate gradient ds+1

j through

ds+1
j =

{
Grand(xs+1

0 , θs+1, Ñ ), j = 0

Grand(xs+1
j , θs+1, B̃s+1

j )−Grand(xs+1
0 , θs+1, B̃s+1

j ) + Grand(xs+1
0 , θs+1, Ñ ), j > 0

,

(34)
where θs+1 ∈ (0, 1] is an i.i.d. sample from the random variable Θ. For convenience, we
name Algorithm 1 with the design of (34) as RG-ZOSA.

The next lemma demonstrates that the approximate gradient ds+1
j in (34) is an unbiased

estimate of ∇Fµ(x), and it provides an upper bound on the variance of ds+1
j .

Lemma 14. For any j = 0, . . . ,m − 1 and s = 0, . . . S − 1 in RG-ZOSA, it holds that
E[ds+1

j |xs+1
j ] = ∇Fµ(xs+1

j ) and

E
[
‖∇Fµ(xs+1

j )− ds+1
j ‖2|xs+1

j

]
≤

2
(
1− e−1

) (
1− 2e−1

)
M2
u

b
‖xs+1

j − xs+1
0 ‖2

+
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2, (35)

where Mu = dL0
u .

Proof According to the unbiasedness of E[Grand(x, θ, B̃)|x] as (33), it is obvious to obtain
that for any j = 0, . . . ,m− 1 and s = 0, . . . S − 1,

E
[
ds+1
j |xs+1

j

]
= E

[
Grand(xs+1

j , θs+1, B̃s+1
j )−Grand(xs+1

0 , θs+1, B̃s+1
j ) + Grand(xs+1

0 , θs+1, Ñ )|xs+1
j

]
= E

[
Grand(xs+1

j , θs+1, B̃s+1
j )|xs+1

j

]
= ∇Fµ(xs+1

j ).

To bound the variance E[‖∇Fµ(xs+1
j ) − ds+1

j ‖2|xs+1
j ], we first notice from expression of

∇Fµ(x) that

E
[
‖∇Fµ(x)−Grand(x, θ, Ñ )‖2|x

]
= E

[
‖Grand(x, θ, Ñ )−

(
1− e−1

)
∇fµ(θx)‖2 + ‖

(
1− e−1

)
∇fµ(θx)−∇Fµ(x)‖2|x

]
= E

[(
1− e−1

)2 ‖ḡrand(θx, Ñ )−∇fµ(θx)‖2 + ‖
∫ 1

0
et−1 (∇fµ(θx)−∇fµ(tx)) dt‖2|x

]
≤

16
√

2π
(
1− e−1

)2
dL2

0

N
+

(∫ 1

0
e2(t−1)(t− θ)2dt

)
L2R2
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≤
16
√

2π
(
1− e−1

)2
dL2

0

N
+ L2R2, (36)

in which the first equality is derived by Eθ∼Θ

[(
1− e−1

)
∇fµ(θx)

]
= ∇Fµ(x) as shown in

(33), the second equality is from the definitions of Grand(x, θ, Ñ ) in (32) and ∇Fµ(x) =∫ 1
0 e

t−1∇fµ(tx)dt, the first inequality is due to (30) with |B| = N as well as the L-
smoothness of fµ from Lemma 4(ii). Then we obtain

E
[
‖∇Fµ(xs+1

j )− ds+1
j ‖2|xs+1

j

]
= E

[
‖∇Fµ(xs+1

j )−
(
Grand(xs+1

j , θs+1, B̃s+1
j )−Grand(xs+1

0 , θs+1, B̃s+1
j )

+Grand(xs+1
0 , θs+1, Ñ )

)
‖2|xs+1

j

]
= E

[
‖ −Grand(xs+1

j , θs+1, B̃s+1
j ) + Grand(xs+1

0 , θs+1, B̃s+1
j ) +∇Fµ(xs+1

j )−∇Fµ(xs+1
0 )‖2|xs+1

j

]
+E

[
‖Grand(xs+1

j , θs+1, Ñ )−Grand(xs+1
0 , θs+1, Ñ ) +∇Fµ(xs+1

0 )−∇Fµ(xs+1
j )‖2|xs+1

j

]
+E

[
‖∇Fµ(xs+1

j )−Grand(xs+1
j , θs+1, Ñ )‖2|xs+1

j

]
≤ 2E

[
‖Grand(xs+1

j , θs+1, B̃s+1
j )−Grand(xs+1

0 , θs+1, B̃s+1
j )‖2|xs+1

j

]
+E

[
‖∇Fµ(xs+1

j )−Grand(xs+1
j , θs+1, Ñ )‖2|xs+1

j

]
≤

2
(
1− e−1

)2
b

E
[
‖grand(θs+1xs+1

j , νl, ξl)− grand(θs+1xs+1
0 , νl, ξl)‖2|xs+1

j

]
+E

[
‖∇Fµ(xs+1

j )−Grand(xs+1
j , θs+1, Ñ )‖2|xs+1

j

]
≤

2
(
1− e−1

)2
M2
u

b
‖xs+1

j − xs+1
0 ‖2

∫ 1

0

eθ
s+1−1∫ 1

0 e
u−1du

(θs+1)2dθs+1

+E
[
‖∇Fµ(xs+1

j )−Grand(xs+1
j , θs+1, Ñ )‖2|xs+1

j

]
.

In above relations, the second equality comes from E[Grand(x, θ, B̃)|x] = ∇Fµ(x) in (33),
the first inequality is due to the fact that E[‖ξ − E[ξ]‖2] ≤ E[‖ξ‖2] for a random variable
ξ and |B̃s+1

j | ≤ |Ñ |, the second inequality comes from the definitions of Grand(x, θ, B̃) in

(32) and ḡrand(x, B̃) in (29), the third one is from Lemma 5 with the assumption that
f(x, ξt), t ∈ [N ] are L0-Lipschitz continuous, and the fact that θs+1 is sampled from Θ
following the probability function in (12).

Therefore, due to
∫ 1

0 e
u−1du = 1 − e−1 and

∫ 1
0 e

θ−1θ2dθ = 1 − 2e−1 in the inequality
(36), we obtain inequality (35).

According to Lemma 4(ii) and Lemma 8(i), the auxiliary function Fµ(x), as defined in
(31), is L

e -smooth due to the L-smoothness of f(x, ξt). Before proceeding, we present the
following lemma, similar to Lemma 10, with the proof omitted.
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Lemma 15. For any j = 0, . . . ,m− 1 and s = 0, . . . S − 1 in RG-ZOSA, it holds that for
any y ∈ X ,

Fµ(xs+1
j+1) ≥ Fµ(xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉

− ηs+1
j ‖∇Fµ(xs+1

j )− ds+1
j ‖2 −

(
L

2e
− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2. (37)

Similarly with Lemma 11, we show a critical lemma as follows. For simplicity, we next
denote

L̂ = max

{
L

e
,
√

2 (1− e−1) (1− 2e−1)Mu

}
, where Mu =

dL0

u
.

Lemma 16. Given the parameters am = 0, aj = aj+1

(
1 + 1

m

)
+ ηL̂2

b and

b = m2 < N, η =
1

cL̂
,

where c = 4
√

2, we have
L̂

2
+ aj+1(1 +m) ≤ 1

4η
.

Combined with Lemma 14, Lemma 15 and Lemma 16, we show the approximation
performance for the RG-ZOSA algorithm as follows.

Theorem 17. Let parameters for the computation of ds+1
j and step-sizes ηs+1

j in RG-
ZOSA satisfy

b = m2 ≤ N, u =

√
d

Sm
, ηs+1

j = η, (38)

where η = 1/cL̂ with c = 4
√

2 for j = 0, . . . ,m − 1 and s = 0, . . . S − 1. Return xr such
that P(xr = xs+1

j ) = 1
Sm+1+ln τ for j = 0, . . . ,m − 1; s = 0, . . . , S − 1, and P(xr = xSm) =

1+ln τ
Sm+1+ln τ . Then it holds that

E[f(xr)] ≥
(

1− e−1 −O
(

1

Sm

))
f(x∗)−O

( √
d√
Sm

)
, (39)

where x∗ is the optimal solution of (10).

Proof We define the following Lyapunov function

Ls+1
j+1 := E

[
Fµ(xs+1

j )− aj‖xs+1
j − xs+1

0 ‖2
]
,

where the parameters am = 0 and aj = aj+1

(
1 + 1

m

)
+ ηL̂2

b . Under the condition c = 4
√

2
and b = m2, similar to (24), we bound Ls+1

j+1 as follows

Ls+1
j+1 ≥ L

s+1
j +

1

2η
E
[
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

]
+ E

[
〈ds+1

j ,y − xs+1
j 〉

]
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−

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)
η, (40)

where we used Lemmas 14-16. Now, we set y = x∗, and telescope (40) over all the iteration
in epoch s. Then from the unbiasedness of ds+1

j , it follows that

Ls+1
m ≥ Ls+1

0 +
1

2η
E
[
‖xs+1

m − x∗‖2 − ‖xs+1
0 − x∗‖2

]
+
m−1∑
j=0

E
[
〈∇Fµ(xs+1

j ),x∗ − xs+1
j 〉

]

−
m−1∑
j=0

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)
η. (41)

Furthermore, we have Ls+1
m = E[Fµ(xs+1

m )] from am = 0 and the definition of xs+1
0 , and

Ls+1
0 = E[Fµ(xs+1

0 )] = E[Fµ(xsm)], which is due to the setting xs+1
0 = xsm. Thus, following

inequality holds from (41) and η = 1/cL̂:

E
[
Fµ(xs+1

m )
]
≥ E [Fµ(xsm)] +

cL̂

2
E
[
‖xs+1

m − x∗‖2 − ‖xs+1
0 − x∗‖2

]
+

m−1∑
j=0

E
[
〈∇Fµ(xs+1

j ),x∗ − xs+1
j 〉

]

−
m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)

≥ E [Fµ(xsm)] +
cL̂

2
E
[
‖xs+1

m − x∗‖2 − ‖xs+1
0 − x∗‖2

]
+
m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )− (2− e−1)L0u
]

−
m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)
, (42)

where the last inequality is due to Lemma 8(ii) with F replaced by Fµ, y = x∗ and x = xs+1
j

and Lemma 4(iii). Summing up above inequality over all the epochs (for s ∈ {0, . . . , S−1}),
we have

E
[
Fµ(xSm)

]
≥ E

[
Fµ(x0

m)
]

+
cL̂

2
E
[
‖xSm − x∗‖2 − ‖x1

0 − x∗‖2
]

+
S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )− 2L0u
]

−
S−1∑
s=0

m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)

≥ −cL̂
2
D2 +

S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− f(xs+1

j )− 2L0u
]
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−
S−1∑
s=0

m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2

)
,

where the second inequality is from the non-negativeness of Fµ(x) and E[‖xSm−x∗‖2], and by
considering the diameter of the constraint set X . Furthermore, we rearrange the inequality,
obtaining

E

Fµ(xSm) +
S−1∑
s=0

m−1∑
j=0

f(xs+1
j )


≥ Sm

(
1− e−1

)
f(x∗)− cL̂D2

2
−
S−1∑
s=0

m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2 + 2L0u

)
.

(43)

According to Lemma 8(iii) and Lemma 4(iii), we have

Fµ(x) ≤ (1 + ln τ)(fµ(x) + δ) ≤ (1 + ln τ)(f(x) + L0u+ δ).

Thus, it indicates from (43) that

E

S−1∑
s=0

m−1∑
j=0

f(xs+1
j ) + (1 + ln τ)

(
f(xSm) + L0u+ δ

)
≥ Sm

(
1− e−1

)
f(x∗)− cL̂D2

2
−
S−1∑
s=0

m−1∑
j=0

1

cL̂

(
16
√

2π
(
1− e−1

)2
L2

0d

N
+ L2R2 + 2L0u

)
.

Dividing both sides by (Sm+ 1 + ln τ) and using the setting u =
√

d
Sm yields

E [f(xr)] = E

S−1∑
s=0

m−1∑
j=0

1

Sm+ 1 + ln τ
f(xs+1

j ) +
1 + ln τ

Sm+ 1 + lnZ
f(xSm)


≥ Sm

Sm+ 1 + ln τ

(
1− e−1

)
f(x∗)

−

cL̂D2

2 + (2Sm+ 1 + ln τ)L0u+ Sm
cL̂

(
16
√

2π(1−e−1)
2

N L2
0d+ L2R2

)
Sm+ 1 + ln τ

(44)

≥
(

1− e−1 −O
(

1

Sm

))
f(x∗)−

cD2

2 (dL0
u + L) + (1 + ln τ)L0u

Sm+ 1 + ln τ

−
Sm

[(
2 + 16

√
2π(1−e−1)2

c
√

2(1−e−1)(1−2e−1)N

)
L0u+ L2R2

c
√

2(1−e−1)(1−2e−1)

u
dL0

]
Sm+ 1 + ln τ

=

(
1− e−1 −O

(
1

Sm

))
f(x∗)−O

( √
d√
Sm

)
,

30



Zeroth-order stochastic approximation algorithms

where c = 4
√

2 and the last inequality is from

dL0

u
+ L ≥ L̂ ≥

√
2 (1− e−1) (1− 2e−1)

dL0

u
.

Therefore, (39) can be derived.

Corollary 18. Under the same conditions as Theorem 17 with additional setting b = N2/3

and ε > 0, RG-ZOSA outputs xr satisfying that

E[f(xr)] ≥
(

1− e−1 − ε2

d

)
f(x∗)− ε,

after O(dε−2) iterations and O(N2/3dε−2) function evaluations.

Proof The proof is similar to Corollary 13, so we omit it here.

Remark 19. We note that the L-smoothness of function f plays a crucial role in the
approximation analysis of RG-ZOSA. In the analysis of (36), the L-smoothness of fµ
helps provide the upper bound of variance for ds+1

j as shown in Lemma 14, which further
establishes the complexity of RG-ZOSA as given in Lemma 17. We would like to emphasize
that without the L-smoothness property of f , if only assuming the L0-Lipschitz continuity,
we will not be able to obtain desirable approximation properties of RG-ZOSA. This can
be explained by intuitive illustrations. Specifically, under mere L0-Lipschitz continuity

assumption of f and according to Lemma 4 (iii), fµ is L0

√
d

u -smooth, then in the conclusion

and proof of Lemma 14 and Lemma 15, L should be replaced by L0

√
d

u . Besides, L̂, defined

after Lemma 15, can be set as L0d
u due to

L̂ =
L0d

u
≥ max

{
L

e
,
√

2(1− e−1)(1− 2e−1)Mu

}
, where L =

L0

√
d

u
and Mu =

L0d

u
.

Consequently, in the proof of Theorem 17, the right hand side of (44) will contain the term

Sm

Sm+ 1 + ln τ
·

(
16
√

2π
(
1− e−1

)2
L2

0d

N · cL̂
+
L2R2

cL̂

)

=
Sm

Sm+ 1 + ln τ
·

(
16
√

2π
(
1− e−1

)2
L0

N · c
· u+

R2L0

c · u

)
,

which cannot be controlled in a desired level no matter how to adjust the settings of S
and m. Therefore, the smoothness of f is a key to analyse the properties of RG-ZOSA,
which naturally poses an issue about how to tackle DR-submodular optimization problems
without smoothness. We will address this issue in next section.
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4. NZOSA: Zeroth-order Stochastic Approximation Method for
Nonsmooth Up-Concave Maximization

In this section, we consider a class of nonsmooth up-concave maximization problems:

max
x∈X

f(x) :=
1

N

N∑
t=1

f(x, ξt), (45)

where f(·, ξt) : Rd → R, t ∈ [N ] are L0-Lipschitz continuous, f is non-negative, mono-
tonically non-decreasing and up-concave, and X ⊆ Rd+ represents a compact and convex
set.

We observe that the integral-form auxiliary functions introduced in the previous section
require the parameter sampling in each outer loop, which produces additional errors of
ds+1
j . As discussed in Remark 19, the absence of smoothness makes the previous analysis

unsuitable. To design an efficient algorithm with desired properties for non-smooth up-
concave submodular maximization problems, we give a finite-sum auxiliary function for the
smoothed function that can be computed with certainty. A similar form of auxiliary function
was proposed by (Mitra et al., 2021) for maximizing a combination of a continuous DR-
submodular function and a concave function, but our finite-sum auxiliary function differs
in that it does not depend on the accuracy parameter ε. Specifically, for (45), we introduce
the auxiliary function F̂µ : Rd → R+ as

F̂µ(x) =
1

N

N∑
t=1

F̂µ(x, ξt), where F̂µ(x, ξt) :=
1

Z

Z∑
z=1

e
z
Z
−1

z
Z

fµ

( z
Z

x, ξt

)
, t ∈ [N ] (46)

with Z ≥ 3 being an integer and fµ following the definition in (6). Obviously, by (7) we
have

F̂µ(x) =
1

Z

Z∑
z=1

e
z
Z
−1

z
Z

fµ

( z
Z

x
)
, (47)

which is non-negative due to the non-negativeness of fµ as shown in Lemma 4(i). The lemma
below characterizes more properties of F̂µ that are essential for subsequent approximation
analysis. Note that Lemma 20(iii) and (iv) relies on the up-concavity of f , and the proof is
presented in Appendix D.

Lemma 20. Let F̂µ be defined by (46). Then the following statements hold true.

(i) The gradient of F̂µ(x) is given by

∇F̂µ(x) =
1

Z

Z∑
z=1

e
z
Z
−1∇fµ

( z
Z

x
)
,

and then F̂µ(x) is Lµ-smooth, where Lµ =
√
dL0
u .

(ii) For any x ∈ X , it holds that F̂µ(x) ≤ (1 + lnZ)fµ(x).

32



Zeroth-order stochastic approximation algorithms

(iii) For any x,y ∈ X , it holds that

〈y − x,∇F̂µ(x)〉 ≥
(
1− e−1

)
f(y)−

(
1 +

3 lnZ

Z

)
f(x)− 3L0u. (48)

(iv) Let x∗ be an optimal solution of (45) and x be a stationary point of maxx∈X F̂µ(x),
then

f(x) ≥ (1− e−1 − 3 lnZ

Z
)f(x∗)− 3L0u.

Similar to the sampling scheme of the mini-batch ḡrand(x, B̃) in (29), we randomly pick
B̃ = {νl, ξl}l∈B where B ⊆ [N ] and z uniformly from {1, . . . , Z}. Then set

Ĝ(x, z, B̃) := e
z
Z
−1ḡrand(

z

Z
x, B̃) = e

z
Z
−1 1

|B|
∑
l∈B

grand(x, νl, ξl). (49)

We can prove that Ĝ(x, z, B̃) is an unbiased estimate of ∇F̂µ(x). In fact, it follows from
Lemma 20(i) that

E
[
Ĝ(x, z, B̃)|x

]
= E

[
e

z
Z
−1ḡrand(

z

Z
x, B̃)|x

]
(50)

=
1

Z

Z∑
z=1

e
z
Z
−1∇fµ(

z

Z
x)

= ∇F̂µ(x),

where the second equality comes from E[ḡrand( zZx, B̃)|x] = ∇fµ( zZx) as described in (30).

We randomly select an i.i.d. sample zs+1 from {1, 2, . . . , Z} at the s-th epoch, and select
B̃s+1
j = {(νl, ξl)}l∈Bs+1

j
at the j-th inner iteration where Bs+1

j ⊆ [N ] with the size |Bs+1
j | = b.

Then we generate i.i.d. samples νl ∈ Rd, l ∈ Bs+1
j following a uniform distribution on the

unit sphere S and denote Ñ = {(νl, ξl)}l∈[N ] when Bs+1
j = [N ]. We now compute the zeroth-

order approximate gradient ds+1
j based on the finite-sum auxiliary function F̂µ through

ds+1
j =

{
Ĝ(xs+1

0 , Ñ ), j = 0,

Ĝ(xs+1
j , zs+1, B̃s+1

j )− Ĝ(xs+1
0 , zs+1, B̃s+1

j ) + Ĝ(xs+1
0 , Ñ ), j > 0.

(51)

Here,

Ĝ(xs+1
0 , Ñ ) =

1

Z

Z∑
z=1

e
z
Z
−1ḡrand(

z

Z
xs+1

0 , Ñ ) =
1

Z

Z∑
z=1

e
z
Z
−1

 1

N

∑
l∈[N ]

grand(x, νl, ξl)

 .

For simplicity, we call Algorithm 1 incorporating (51) as NZOSA.

In the lemma below, we demonstrate the unbiasedness and upper-bounded variance of
the approximate gradient ds+1

j defined in (51).
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Lemma 21. For any j = 0, . . . ,m − 1 and s = 0, . . . S − 1 in NZOSA, it holds that

E
[
ds+1
j |xs+1

j

]
= ∇F̂µ(xs+1

j ) and

E
[
‖∇F̂µ(xs+1

j )− ds+1
j ‖2|xs+1

j

]
≤ 2M2

u

b
‖xs+1

j − xs+1
0 ‖2 +

16
√

2πL2
0d

ZN
, (52)

where Mu is introduced in Lemma 5.

Proof Firstly, for any j = 0, . . . ,m− 1 and s = 0, . . . , S − 1, we have that

E
[
ds+1
j |xs+1

j

]
= E

[
Ĝ(xs+1

j , zs+1, B̃s+1
j )− Ĝ(xs+1

0 , zs+1, B̃s+1
j ) + Ĝ(xs+1

0 , Ñ )|xs+1
j

]
= E

[
Ĝ(xs+1

j , zs+1, B̃s+1
j )|xs+1

j

]
= ∇F̂µ(xs+1

j ),

where it uses the fact that Ezs+1,B̃s+1
j

[Ĝ(xs+1
0 , zs+1, B̃s+1

j )] = E[Ĝ(xs+1
0 , Ñ )] and the final

equality stems from the unbiasedness of Ĝ(xs+1
j , zs+1, B̃s+1

j ) as described in (50). Secondly,

we provide an upper bound of the variance E[‖∇F̂µ(xs+1
j )− ds+1

j ‖2|xs+1
j ] as follows:

E
[
‖∇F̂µ(xs+1

j )− ds+1
j ‖2|xs+1

j

]
= E

[
‖∇F̂µ(xs+1

j )−
(
Ĝ(xs+1

j , zs+1, B̃s+1
j )− Ĝ(xs+1

0 , zs+1, B̃s+1
j ) + Ĝ(xs+1

0 , Ñ )
)
‖2|xs+1

j

]
= E

[
‖ − Ĝ(xs+1

j , zs+1, B̃s+1
j ) + Ĝ(xs+1

0 , zs+1, B̃s+1
j ) +∇F̂µ(xs+1

j )−∇F̂µ(xs+1
0 )‖2|xs+1

j

]
+E

[
‖Ĝ(xs+1

j , Ñ )− Ĝ(xs+1
0 , Ñ )−∇F̂µ(xs+1

j ) +∇F̂µ(xs+1
0 )‖2|xs+1

j

]
+E

[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
≤ E

[
‖Ĝ(xs+1

j , zs+1, B̃s+1
j )− Ĝ(xs+1

0 , zs+1, B̃s+1
j )‖2|xs+1

j

]
+ E

[
‖Ĝ(xs+1

j , Ñ )− Ĝ(xs+1
0 , Ñ )‖2|xs+1

j

]
+ E

[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
≤ 2

b
E
[
‖grand(

zs+1

Z
xs+1
j , νl, ξl)− grand(

zs+1

Z
xs+1

0 , νl, ξl)‖2|xs+1
j

]
+ E

[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
≤ 2

b
M2
u‖
zs+1

Z
(xs+1
j − xs+1

0 )‖2 + E
[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
≤ 2M2

u

b
‖xs+1

j − xs+1
0 ‖2 + E

[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
, (53)

where the second equality arises from (50), the first inequality is due to E[‖ξ − E[ξ]‖2] ≤
E[‖ξ‖2] for a random variable ξ, the second one is due to the definitions of Ĝ(x, z, B̃) in (49)
and Ĝ(x, Ñ ) in (51), e

z
Z
−1 ≤ 1 and |B̃s+1

j | ≤ |Ñ |, the third inequality can be derived by

Lemma 5, and the last one is due to zs+1 ≤ Z. For the second term on the right-hand side
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of (53), note that by the unbiasedness and upper boundedness of variance for ḡrand(x, B̃) in
(30),

E
[
‖∇F̂µ(xs+1

j )− Ĝ(xs+1
j , Ñ )‖2|xs+1

j

]
= E

[
‖ 1

Z

Z∑
z=1

e
z
Z
−1∇fµ(

z

Z
xs+1
j )− 1

Z

Z∑
z=1

e
z
Z
−1ḡrand(

z

Z
xs+1
j , Ñ )‖2|xs+1

j

]

=
1

Z2

Z∑
z=1

(e
z
Z
−1)2E

[
‖∇fµ(

z

Z
xs+1
j )− ḡrand(

z

Z
xs+1
j , Ñ )‖2|xs+1

j

]
≤ 16

√
2πL2

0d

ZN
. (54)

Therefore, the proof is completed by plugging (54) into (53).

Lemma 22. For any j = 0, . . . ,m− 1 and s = 0, . . . S − 1 in NZOSA, it holds that

F̂µ(xs+1
j+1) ≥ F̂µ(xs+1

j ) +
1

2ηs+1
j

(
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

)
+ 〈ds+1

j ,y − xs+1
j 〉

− ηs+1
j ‖∇F̂µ(xs+1

j )− ds+1
j ‖2 −

(
Lµ
2
− 1

4ηs+1
j

)
‖xs+1

j+1 − xs+1
j ‖2 (55)

for any y ∈ X , where Lµ =
√
dL0
u .

Proof According to the Lµ-smoothness of F̂µ as shown in Lemma 20 (i), we can follow a
similar analysis of Lemma 10 to obtain the conclusion. The details are omitted here.

Similarly with Lemma 11 and Lemma 16, we show an auxiliary lemma as follows. We

denote M̄u =
√

2dL0
u ≥

√
dL0
u = Lµ.

Lemma 23. Given the parameters am = 0, aj = aj+1

(
1 + 1

m

)
+ ηM̄2

u
b and

b = m2 < N, η =
1

cM̄u
,

where c = 4
√

2, we have
M̄u

2
+ aj+1(1 +m) ≤ 1

4η
.

Combined with Lemmas 21-23, we show the approximation performance for the algo-
rithm NZOSA as follows.

Theorem 24. Let the parameters for the computation of ds+1
j and the step-size ηs+1

j in
NZOSA satisfy

b = m2 < N, u =

√
d

Sm
, ηs+1

j = η, j = 0, . . . ,m− 1; s = 0, . . . S − 1,
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where η = 1/cM̄u with c = 4
√

2 and M̄u =
√

2dL0
u . Return xr according to that P(xr =

xs+1
j ) = 1

Sm+1+lnZ for j = 0, . . . ,m − 1; s = 0, . . . , S − 1, and P(xr = xSm) = 1+lnZ
Sm+1+lnZ .

Then it holds that

E [f(xr)] ≥
(

1− e−1 − 3 lnZ

Z
− lnZ

Sm+ lnZ

)
f(x∗)−O

( √
d√
Sm

)
,

where x∗ is the optimal solution of (45).

Proof To prove the conclusion we introduce the following Lyapunov function

Ls+1
j+1 := E

[
F̂µ(xs+1

j )− aj‖xs+1
j − xs+1

0 ‖2
]
,

where the parameter am = 0 and aj = aj+1

(
1 + 1

m

)
+ ηM̄2

u
b . In analogy to (24), with the

settings c = 4
√

2 and b = m2, we derive that

Ls+1
j+1 ≥ L

s+1
j +

1

2η
E
[
‖xs+1

j+1 − y‖2 − ‖xs+1
j − y‖2

]
+ E

[
〈ds+1

j ,y − xs+1
j 〉

]
− 16

√
2πL2

0d

ZN
η,

(56)
where we use Lemmas 21-23. Furthermore, by summing (56) with y = x∗ and η = 1/cM̄u

over all the iterations in s-th epoch, we obtain from E[ds+1
j |xs+1

j ] = ∇F̂µ(xs+1
j ) that

Ls+1
m ≥ Ls+1

0 +
cM̄u

2
E
[
‖xs+1

m − x∗‖2 − ‖xs+1
0 − x∗‖2

]
+

m−1∑
j=0

E
[
〈∇F̂µ(xs+1

j ),x∗ − xs+1
j 〉

]
−
m−1∑
j=0

16
√

2π

cZNM̄u
L2

0d. (57)

Furthermore, we have Ls+1
m = E[F̂µ(xs+1

m )] from am = 0 and the definition of xs+1
0 , and

Ls+1
0 = E[F̂µ(xs+1

0 )] = E[F̂µ(xsm)], which follows from the setting xs+1
0 = xsm. Thus, (57)

indicates from Lemma 20(iii) with y = x∗ and x = xs+1
j that

E
[
F̂µ(xs+1

m )
]
≥ E

[
F̂µ(xsm)

]
+
cM̄u

2
E
[
‖xs+1

m − x∗‖2 − ‖xs+1
0 − x∗‖2

]
+
m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− (1 +

3 lnZ

Z
)f(xs+1

j )− 3L0u

]
−
m−1∑
j=0

16
√

2π

cZNM̄u
L2

0d.

(58)

Adding the inequality (58) across all the epochs (for s ∈ {0, . . . , S − 1}), we obtain

E
[
F̂µ(xSm)

]
≥ E

[
F̂µ(x0

m)
]

+
cM̄u

2
E
[
‖xSm − x∗‖2 − ‖x1

0 − x∗‖2
]

+

S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− (1 +

3 lnZ

Z
)f(xs+1

j )− 3L0u

]
−
S−1∑
s=0

m−1∑
j=0

16
√

2π

cZNM̄u
L2

0d
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≥ −cM̄u

2
E
[
‖x1

0 − x∗‖2
]

+
S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1
)
f(x∗)− (1 +

3 lnZ

Z
)f(xs+1

j )− 3L0u

]

−
S−1∑
s=0

m−1∑
j=0

16
√

2π

cZNM̄u
L2

0d

≥ −cM̄u

2
D2 +

S−1∑
s=0

m−1∑
j=0

E
[(

1− e−1 − 3 lnZ

Z

)
f(x∗)− f(xs+1

j )− 3L0u

]

−
S−1∑
s=0

m−1∑
j=0

16
√

2π

cZNM̄u
L2

0d, (59)

where the second inequality arises from the non-negativity of F̂µ(x) and ‖xSm − x∗‖2. Fur-
thermore, we rearrange the inequality, utilizing with f(x∗) ≥ f(xs+1

j ), yielding

E

F̂µ(xSm) +
S−1∑
s=0

m−1∑
j=0

f(xs+1
j )


≥ Sm

(
1− e−1 − 3 lnZ

Z

)
f(x∗)− cM̄uD

2

2
−
S−1∑
s=0

m−1∑
j=0

(
3L0u+

16
√

2π

cZNM̄u
L2

0d

)
. (60)

Recalling Lemma 20(ii) and Lemma 4(iii), we have

F̂µ(x) ≤ (1 + lnZ)fµ(x) ≤ (1 + lnZ)(f(x) + L0u).

Combining this inequality with (60) leads to

E

S−1∑
s=0

m−1∑
j=0

f(xs+1
j ) + (1 + lnZ)(f(xSm) + L0u)


≥ Sm

(
1− e−1 − 3 lnZ

Z

)
f(x∗)− cM̄uD

2

2
−
S−1∑
s=0

m−1∑
j=0

(
3L0u+

16
√

2π

cZNM̄u
L2

0d

)
.

Then through dividing both sides of the above inequality by (Sm+ 1 + lnZ), we obtain

E [f(xr)] = E

S−1∑
s=0

m−1∑
j=0

1

Sm+ 1 + lnZ
f(xs+1

j ) +
1 + lnZ

Sm+ 1 + lnZ
f(xSm)


≥ Sm

Sm+ 1 + lnZ

(
1− e−1 − 3 lnZ

Z

)
f(x∗)

−
cM̄uD2

2 + (3Sm+ 1 + lnZ)L0u+ 16
√

2π
cZNM̄u

L2
0d

Sm+ 1 + lnZ

≥
(

(1− e−1 − 3 lnZ

Z
)

(
1− 1 + lnZ

Sm+ 1 + lnZ

))
f(x∗)
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−
cD2L0d√

2u
+ (1 + lnZ)L0u+ Sm

(
3 + 16

√
π

cZN

)
L0u

Sm+ 1 + lnZ

≥

(
1− e−1 − 3 lnZ

Z
−
(
1− e−1

)
(1 + lnZ)

Sm+ 1 + lnZ

)
f(x∗)−O

(
(Sm)−1/2d1/2

)
,

where M̄u =
√

2dL0
u , u =

√
d
Sm and c = 4

√
2. Therefore, we derive the conclusion.

It is worth noting that the approximation ratio (1− e−1 − 3 lnZ
Z − lnZ

Sm+lnZ ) in Theorem
24 depends on the parameter Z. Clearly, the value of Z offers a trade-off between the
approximation ratio and complexity order.

Corollary 25. Under the same conditions as Theorem 24 with additional setting that b =
N2/3, Z = d

√
Sme and ε > 0, the NZOSA algorithm achieves

E [f(xr)] ≥
(
1− e−1 − ε ln ε−1 − ε2 ln ε−1

)
f(x∗)− ε, (61)

after O(dε−2) iterations and O(N2/3d3/2ε−3) function evaluations.

Proof To achieve ε-accuracy as shown in (61), we let
√
d/
√
Sm = O(ε) in Theorem 24. It

is clear that Sm = O(d/ε2), and thus Z = O(
√
d/ε). With b = N2/3, we have

m =
√
b = N1/3, S =

d/ε2

m
= O

(
d

N1/3ε2

)
.

Thus, the total number of zeroth-order oracle calls in inner iterations and outer iterations
is

4b× Sm = O

(
dN2/3

ε2

)
, Z × 2SN = O

(
d3/2N2/3

ε3

)
,

respectively. Therefore, we obtain the final oracle complexity. The proof is completed.

5. Application to Robust DR-Submodular Maximization

In this section, we focus on the robust DR-submodular maximization problem (2). We
further assume that fi(·, ξi,t) : Rd → R, i ∈ [M ] are L0-Lipschitz continuous and L-smooth
DR-submodular functions. By Lemma 28 in Appendix E, we demonstrate that the ob-
jective function of (2), i.e., f(·, ξt) := mini∈[M ] fi(·, ξi,t), is non-negative, monotonically
non-decreasing, up-concave and L0-Lipschitz continuous. Then the problem (2) belongs to
the class of non-smooth up-concave maximization problems, allowing for the application of
NZOSA to solve it. However, to better adapt to the structure of (2), we propose a specific
approach for computing the mini-batch zeroth-order gradient estimator in Algorithm 2. In
Algorithm 2, to compute the randomized gradient estimator grand(x, νt, ξt), two optimal
indices for the stochastic function at vectors (x + uν) and (x− uν) are chosen respectively.
With zeroth-order oracles queried, the approximate gradient is defined as

grand(x, νl, ξl) =
d

2u

(
min
i∈[M ]

f(x + uνl, ξi,l)− min
i∈[M ]

f(x− uνl, ξi,l)
)
νl
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Algorithm 2 Mini-batch Zeroth-order Gradient Estimator for Problem (2)

Input: Point x ∈ Rn, sample radius u ∈ R+, mini-batch B̃ = {νl, ξl}l∈B, where B ⊆ [N ],
and fi(x, ξi,t), i ∈ [M ], t ∈ [N ].

1: for l ∈ B do
2: Compute

grand(x, νl, ξl) =
d

2u
(fi+(x + uνl, ξi+,l)− fi−(x− uνl, ξi−,l))νl,

where i+ ∈ arg mini∈[M ] fi(x + uνl, ξi,l) and i− ∈ arg mini∈[M ] fi(x− uνl, ξi,l).
3: end for
4: Return ḡrand(x, B̃) = 1

|B|
∑

l∈B grand(x, νl, ξl)

=
d

2u
(f(x + uνl, ξl)− f(x− uνl, ξl)) νl.

Algorithm 2 returns an averaged stochastic approximation ḡrand(x, B̃). It indicates from
the L0-Lipschitz continuity of f(x, ξt) and Lemma 5 that

EB̃[ḡrand(x, B̃)] =
1

N

N∑
t=1

∇fµ(x, ξt),

where fµ(x, ξt) is the smoothed function of f(x, ξt).
For solving (2), we apply the NZOSA algorithm, which incorporates Algorithm 2 to

compute zeroth-order gradient estimates. The main theoretical results are presented in the
following theorem.

Theorem 26. Given the computation of ds+1
j in (51), let the parameters in Algorithm 2

and the step-size ηs+1
j in NZOSA satisfy

u =

√
d

Sm
, b = N2/3, m = N1/3, Z = d

√
Sme, ηs+1

j =
1

4
√

2M̄u

,

where M̄u = L0d/u. Return xr according to that P(xr = xs+1
j ) = 1

Sm+1+lnZ for j =

0, . . . ,m − 1; s = 0, . . . , S − 1, and P(xr = xSm) = 1+lnZ
Sm+1+lnZ . Then for a given ε > 0, it

achieves that

1

N

N∑
t=1

E [f(xr, ξt)] ≥
(
1− e−1 − ε ln ε−1 − ε2 ln ε−1

)
OPT− ε (62)

after O(MN2/3d3/2ε−3) function value evaluations and O(dε−2) iterations, where OPT de-
notes the optimal value of problem (2).

Proof Note that each gradient computation requires 2M zeroth-order oracles, as shown
in Algorithm 2. Similar to Corollary 25, to achieve (62) the total number of calls to the
zeroth-order oracle in inner iterations and in outer iterations is

Sm× 4Mb = O

(
N2/3Md

ε2

)
and Z × 2SNM = O

(√
d

ε
× N2/3dM

ε2

)
,
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respectively. Therefore, the total oracle complexity is in order O(MN2/3d3/2ε−3).

Remark 27. Compared to the mirror-prox (MP) algorithm proposed in (Lee et al., 2022)
which is a first-order method that uses approximations to sub-gradients, our proposed
zeroth-order approximation algorithm improves the approximation ratio from (1/2 − ε) to
(1 − e−1 − ε ln ε−1 − ε2 ln ε−1) for robust DR-submodular maximization with only zeroth-
order information available. But on the other hand, as shown in Table 2, the iteration
and oracle complexity of NZOSA is higher than MP. We note that the reason for the
high complexity is not due to zeroth-order estimation errors because replacing the zeroth-
order gradient estimation with a stochastic gradient does not affect the final complexity.
Specifically, assume E[‖∇fµ(x)− grand‖2|x] ≤ C, where grand is the gradient estimation and
C is a constant. Similar to (54), the error bound in Lemma 21 can still be described as

E
[
‖∇F̂µ(xs+1

j )− ds+1
j ‖2|xs+1

j

]
≤ 2M2

u

b
‖xs+1

j − xs+1
0 ‖2 +

C

Z
.

Thus, the total complexity will keep the same in this case. We further emphasize that the
nature of the relatively higher complexity for NZOSA is caused by the smoothing tech-
nique and the algorithmic framework. The smoothing parameter of the smoothed function
makes an impact on the iteration complexity through the first term above, while the finite-
sum structure of the auxiliary function and the requirement to compute a full gradient
with Z components in each outer iteration contributes to the oracle complexity. Notably,
although the complexity is relatively higher, NZOSA owns a better approximation ratio.
To compare approximation performances of the related zeroth-order algorithms, we replace
the sub-gradient in MP with randomized gradient estimation leading to ZO-MP. There
is an inherent trade-off in a fair comparison of these algorithms, and we will demonstrate
their performances in next section through multi-resolution data summarization and robust
budget allocation problem.

6. Numerical Experiments

In this section, we report numerical results evaluating the performance of our algorithms
under various settings. We implement all the codes of competitor algorithms and our
proposed algorithms in this. All experiments were implemented in PyCharm 2024.1 x64
using Python 3.10.9. We compare our proposed algorithms (CG-ZOSA and RG-ZOSA)
with the baseline algorithms for the smooth case as follows:

• BCG: Black-box continuous greedy algorithm, a zeroth-order algorithm proposed in
(Chen et al., 2020b) for solving monotone DR-submodualr maximization where only
the function value is available.

• ZO-GA: Zeroth-order gradient ascent algorithm (Algorithm 3 in Appendix B), ob-
tained by replacing the stochastic gradient in algorithm GA (Hassani et al., 2017)
with the randomized gradient estimator as described in (29). We choose the iterate
step-size ηk = 1√

k+1
in the experiments.
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• FW: Generalized DR-submodular Frank-Wolfe algorithm, which uses the black box
gradient estimate (BBGE) proposed in (Pedramfar et al., 2023). We choose the pa-
rameter ρn = 2/(n + 3)2/3 and the step-size ε = log(N)/N , where n is the iteration
index and N is the total number of iterations.

• ZO-SPGD: Zeroth-order stochastic projected gradient descent, proposed in (Liu
et al., 2018b) for constrained non-convex optimization where only objective function
values are available. We choose the parameter η = 0.1.

• Free-FW: Stochastic gradient free Frank-Wolfe algorithm, proposed in (Sahu et al.,
2019) for general non-convex optimization. We choose the parameter ρt = 4

(1+d)1/3(t+8)2/3

and the step-size γt = 1/T 3/4, where t is the iteration index, T is the total number of
iterations and d denotes the problem dimension.

Although the theoretical guarantee requires a constant step-size of RG-ZOSA in our
analysis, in order to achieve better algorithm performance we choose varying step-sizes in the
implementation of Algorithm RG-ZOSA. It is noteworthy that the first three algorithms
are tailored for non-convex optimization with DR-submodular structure and have quantified
approximation guarantees of the optimal value. In contrast, the last two general stochastic
algorithms are proposed to pursue the stationary point for general non-convex optimization.
It is expected that the specific approximation methods for DR-submodular functions will
perform better compared to the general non-convex algorithms. Furthermore, we compare
NZOSA with the following algorithm for solving a non-smooth up-concave optimization
problem and a robust submodular maximization problem.

• ZO-MP: Zeroth-order mirror-prox algorithm, obtained by replacing the stochastic
sub-gradient oracle with stochastic zeroth-order oracle in the algorithm proposed in
(Lee et al., 2022), with step-size η = 1

2
√
K

.

To report the numerical performances of algorithms, we present two types of figures:
(objective) function value vs. iterations and (objective) function value vs. (oracle) queries.
Each experiment is repeated 10 times, and the average value of the data is calculated for
comparison.

Quadratic programming. In this setting, we apply the baselines and our algorithms
to maximize the quadratic objective

f(x) =
1

N

N∑
t=1

{
f(x, ξt) :=

1

2
xTHtx + hTt x

}
,

where the symmetric matrix Ht ∈ Rd×d is randomly generated with entries (Ht)ij uniformly
distributed in [−1, 0], and the constraint set X = {x ∈ Rd|Ax ≤ b,0 ≤ x ≤ b,A ∈
Rm×d+ , b ∈ Rm+}, with entries Aij uniformly distributed in [0, 1]. In our experiments, we set
N = 500, d = 3,m = 2, b = u = 1 and ht = −HT

t u, which guarantees the monotonicity and
non-negativity of f(x, ξt).

Figure 2 presents a comparison of the numerical performances of the algorithms of inter-
est. It is evident that our proposed algorithms, CG-ZOSA and RG-ZOSA, outperform
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(a) Function value vs. iterations (b) Function value vs. queries

Figure 2: Comparison of different zeroth-order algorithms for quadratic programming

all other algorithms in terms of reachable function value, projection-free algorithms (FW,
Free-FW and BCG). Firstly, the maximum achievable function values of ZO-GA and
ZO-SPGD are lower than those of our proposed algorithms, even though they require only
a few additional oracle queries. In addition, the maximum function value achieved by ZO-
GA is consistent with the theoretic guarantee described in Subsection 2.3. Secondly, our
algorithms achieve higher function values within the same number of iterations and oracle
queries compared to BCG. Notably, while BCG gradually approaches a similar function
value as ours with increasing iteration numbers, it is significantly slower than our algorithms,
as shown on Figure 2 (b). This observation validates, to a considerable extent, the theo-
retical analysis presented in Table 1, where BCG possess same (or similar) approximation
ratios as ours but much higher complexities for small ε. Lastly, the algorithms for general
non-convex optimization show poorer performance than the approximation algorithms with
the same type for DR-submodular optimization, such as Free-FW vs. FW.

Multi-resolution data summarization. We consider the multi-resolution data sum-
marization model which maximizes the utility function

f(x) =
1

N

N∑
t=1

f(x, ξt) :=
d∑
i=1

d∑
j=1

φ(xj)s
t
ij −

d∑
i=1

d∑
j=1

xixjs
t
ij


over the set X = {x ∈ Rd : 0 ≤ xi ≤ 1/2, i ∈ [1, dd/5e]; 0 ≤ xi ≤ 1, i ∈ [dd/5e +
1, d];

∑d
i=1 xi ≤ d

3}, where φ(xi) is given as the following piece-wise linear function defined
as

φ(xi) =


−3(1

2)xi + 4 if xi ∈ [0, 1
2 ],

−2(1
2)xi + 4− (1

2)
1
2 if xi ∈ [1

2 ,
3
4 ],

−(1
2)xi + 4− (1

2)
1
2 − (1

2)
3
4 if xi ∈ [3

4 , 1].

It is obvious that the function φ(xi) is concave. Therefore, the function f(x) is up-concave.
In our experiment, we sample N groups of similarity indices, stij , t ∈ [N ], from a uniform
distribution on the interval [0, 1], and we set N = 1000 and d = 20 in our experiments.

As shown in Figure 3, in the early stages of the algorithm, when the number of oracle
queries is relatively small, ZO-MP achieves a higher function value. However, as the

42



Zeroth-order stochastic approximation algorithms

(a) Function value vs. iterations (b) Function value vs. queries

Figure 3: Performance of our proposed algorithm for multi-resolution data summarization

(a) Function values vs. iterations (b) Function values vs. queries

Figure 4: Performance of our proposed algorithm for the robust budget allocation problem

algorithm progresses and the number of oracle queries becomes large, NZOSA reaches
higher function values.

Robust budget allocation. In this experiment, we consider the robust optimal budget
allocation problem (3) with αi = 1/N , and we set the constraint set as X = {x ∈ Rd|0 ≤
xi ≤ ci,

∑d
i=1 xi ≤ (

∑d
i=1 ci)/3}. In our experiment, we set ci is randomly chosen from

[2, 10], N = 200, |S| = 20, |T | = 24 (kon, 2017) and randomly sample {pst}(s,t)∈W following a
uniform distribution on [0, 1]. Moreover, we present algorithms’ performances with different
settings of the parameter Z ∈ {5, 100} in Figure 4.

Observing Figure 4, we note that our proposed algorithm outperforms ZO-MP. Fur-
thermore, as Z increases, the algorithm’s approximation performance also improves, with
a greater number of function values to be accessed.
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7. Conclusion

In this paper, we studied stochastic approximation methods for DR-submodular optimiza-
tion based on zeroth-order gradient estimations. Falling into a generic algorithm framework,
specific algorithms tailored for three types of DR-submodular optimization problems were
proposed. For the smooth DR-submodular maximization problem, we proposed two algo-
rithms, which compute stochastic approximate gradients of an integral auxiliary function
based on coordinate-wise gradient estimator and randomized gradient estimator, respec-
tively. We established the approximation guarantees of both algorithms with iteration and
oracle complexities being analyzed. We then presented a zeroth-order stochastic approxi-
mation method for non-smooth up-concave maximization based on a finite-sum auxiliary
function. We then extended the algorithm to solve a class of robust DR-submodular max-
imization problems. Finally, numerical experiments were conducted to validate the effec-
tiveness and efficiency of proposed algorithms.

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Nos.
12131003 and 12271278) and the Major Key Project of PCL (No. PCL2022A05) and the
Talent Program of Guangdong Province (No. 2021QN02X160). Part of the work was done
by the first author during her academic visit in Pengcheng Laboratory. We would like
to thank the action editor and the anonymous referees for their helpful comments and
suggestions on an earlier version of this paper.

Appendix A. Proofs of lemmas in Section 2

In this section, we present the technical proofs for the main lemmas stated in Section 2.

A.1 Proof of Lemma 3

Proof According to the definition of gcoord(x, ξt) and mean value theorem, for any given
u > 0, and there exists αl ∈ (0, 1), l ∈ {1, . . . , d}, we have

‖gcoord(x, ξt)−∇f(x, ξt)‖2 =

∥∥∥∥∥ 1

2u

d∑
l=1

2uele
T
l ∇f ((x− uel) + 2αluel, ξt)−∇f(x, ξt)

∥∥∥∥∥
2

=

∥∥∥∥∥
d∑
l=1

(
ele

T
l (∇f(x + (2αl − 1)uel, ξt)−∇f(x, ξt))

)∥∥∥∥∥
2

≤
d∑
l=1

‖∇f(x + (2αl − 1)uel, ξt)−∇f(x, ξt)‖2

≤ L2
d∑
l=1

‖(2αl − 1)uel‖2 ≤ L2du2,

where the first inequality follows from the definition of basis vector el, and the second in-
equality is due to L-smoothness of function ∇f(x, ξ).
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A.2 Proof of Lemma 4

Proof (i) It is straightforward to obtain from the monotonicity and the nonnegativity of
f(x) that fµ(x) is monotone and non-negative. We now prove that fµ(x) is up-concave.
Since f(x) is up-concave, for any x ∈ Rd and a non-negative direction v ≥ 0, f(x + tv) is
concave with respect with to t, i.e.,

f(x + (λt1 + (1− λ)t2)v) ≥ λf(x + t1v) + (1− λ)f(x + t2v).

Then it holds that

fµ(x + (λt1 + (1− λ)t2)v) = Ev [f (x + uv + (λt1 + (1− λ)t2) v)]

≥ Ev[λf(x + uv + t1v) + (1− λ)f(x + uv + t2v)]

= λfµ(x + t1v) + (1− λ)fµ(x + t2v),

which shows that fµ(x + tv) is concave with respect to t, and thus fµ(x) is up-concave
by Definition 2. Similarly, the function fµ(x) is DR-submodular if the function f(x) is
DR-submodular.

(ii) If the function is L-smooth then we obtain that fµ(x) is Lµ-smooth with Lµ ≤ L.
Thus, the function fµ(x) is L-smooth.

(iii) The function f(x) is almost everywhere differentiable because its L0-Lipschitz con-
tinuity, and then the differentiability of fµ(x) can be derived following (Bertsekas, 1973).
Furthermore, we have ∇fµ(x) = ∇Ev[f(x + uv)] = Ev[g(x + uv)], where g(x + uv) ∈
∂↑f(x + uv), v ∈ Bd(0, 1) and u ∈ R+. We can notice that

‖∇fµ(x)−∇fµ(y)‖2 ≤ ‖Ev[g(x + uv)]− Ev[g(y + uv)]‖∞

≤ 2

(2u)d
L0(2u)d−1‖x− y‖1

≤ L0

√
d

u
‖x− y‖2,

where the second inequality is from (Duchi et al., 2012, Lemmas 11 and 12). Moreover, by
the definition of fµ(x) and L0-Lipschitz continuous property of f(x), we have

|fµ(x)− f(x)| = |Ev[f(x + uv)]− f(x)| ≤ L0uEv[‖v‖2] ≤ L0u,

where v ∈ Bd(0, 1) and ‖v‖2 ≤ 1. The proof is completed.

A.3 Proof of Lemma 5

Proof According to the definition of grand(x, ν, ξt) with fixed ξt, we observe that

E [grand(x, ν, ξt)|x] = E
[
d

2u
(f(x + uν, ξt)− f(x− uν, ξt)) ν|x

]
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=
1

2
E
[
d

u
f(x + uν, ξt)ν +

d

u
f(x + u(−ν), ξt)(−ν)|x

]
= ∇fµ(x, ξt).

We use the Young’s inequality and the L0-Lipschitz continuity of f(x, ξt), obtaining

‖g
rand

(x, ν, ξt)− grand(y, ν, ξt)‖2

≤ d2

2u2

(
‖f(x + uν, ξt)− f(y + uν, ξt)‖2 + ‖f(x− uν, ξt)− f(y − uν, ξt)‖2

)
≤ d2L2

0

u2
‖x− y‖2.

It remains to show that E‖∇fµ(x, ξt)−grand(x, ν, ξt)‖2|x] ≤ 16
√

2πdL2
0. Using the inequality

E
[
‖grand(x, ν, ξt)‖2|x

]
≤ 16

√
2πdL2

0,

which has been proved in (Lin et al., 2022, Lemma D.1), we have

E
[
‖∇fµ(x, ξt)− grand(x, ν, ξt)‖2|x

]
≤ E

[
‖grand(x, ν, ξt)‖2|x

]
≤ 16

√
2πdL2

0,

where the first inequality resulted from that E[‖E[ξ] − ξ‖2] ≤ E[‖ξ‖2]. The proof is com-
pleted.

Appendix B. Approximation analysis of ZO-GA algorithm

The first-order stochastic gradient ascent (GA) algorithm is studied for stochastic DR-
maximization problem under convex constraint sets in (Hassani et al., 2017). This algo-
rithm has been proved to reach 1/2 approximate ratio with O(1/ε2) stochastic gradient
evaluations. In this section, we provide a zeroth-order variant of GA, named as ZO-GA, for
smooth DR-submodular optimization (1). We adopt the randomized gradient estimation
as described in Section 2.2 and present the algorithm framework as follows.

Algorithm 3 Zeroth-order Gradient Ascent (ZO-GA) Algorithm

Input: Initial point x1 ∈ X , K ∈ N+ and step-sizes {ηk}, k ∈ [K], radius u and batch size
B.

Output: xr
1: for k = 1, . . .K do
2: yk+1 = xk + ηkgk, where gk is computed by the mini-batch randomized gradient

estimation ḡrand(xk, B̃) in (29)
3: xk+1 = arg minx∈X ‖x− yk+1‖2
4: end for

We now discuss the approximation behavior of ZO-GA for solving (10), where f(x, ξt), t ∈
[N ] are L-smooth and L0-Lipschitz continuous, and f is monotone and DR-submodular. We
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set parameters in ZO-GA satisfying

ηk =
1

L+ 8
√
dL0
R

√
k
, u =

1√
K
, B = 1.

We analyze the approximation performance through two key points combining with existing
results in (Hassani et al., 2017). Firstly, in ZO-GA the zeroth-order approximate gradient
gk is an unbiased estimation of the smoothed function fµ with variance bounded by σ2 :=
16
√

2πdL2
0 by Lemma 5. Then, following Theorem 4.3 in Hassani et al. (2017), we have

that

E[fµ(xr)] ≥
OPT

2
−
(
R2L+ OPT

2K
+
Rσ√
K

)
,

where OPT denotes the optimal value of problem (1). Furthermore, by lemma 4 (iii) the
error between the smoothed function fµ and the function f is bounded by L0u, which is in
order O(1/

√
K). As a result, we obtain

E[f(xr)] ≥
OPT

2
−O

( √
d√
K

)
.

Hence, ZO-GA achieves a 1/2 approximate ratio after O(d/ε2) zeroth-order oracle calls.

Appendix C. Proof of lemma 8

Proof Firstly, it follows from the definition of function F (x) as given in (11) that

∇F (x) =

∫ 1

0
eθ−1∇f(θx)dθ,

which indicates

‖∇F (x)−∇F (y)‖ ≤
∫ 1

0
eθ−1‖∇f(θx)−∇f(θy)‖dθ

≤ L‖x− y‖
∫ 1

0
eθ−1θdθ =

L

e
‖x− y‖.

Therefore, F (x) is L
e -smooth. Secondly, for any x,y ∈ X ⊆ Rd+, we have

〈y − x,∇F (x)〉 =

〈
y − x,

∫ 1

0
eθ−1∇f(θx)dθ

〉
=

∫ 1

0
eθ−1 〈y,∇f(θx)〉 dθ −

∫ 1

0
eθ−1 〈x,∇f(θx)〉 dθ

≥
∫ 1

0
eθ−1〈y ∨ (θx)− θx,∇f(θx)〉dθ −

∫ 1

0
eθ−1df(θx)

≥
∫ 1

0
eθ−1 (f(y)− f(θx)) dθ − eθ−1f(θx)|θ=1

θ=0 +

∫ 1

0
eθ−1f(θx)dθ
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=

(∫ 1

0
eθ−1dθ

)
f(y)− eθ−1f(θx)

∣∣∣1
0

≥
(
1− e−1

)
f(y)− f(x),

where the first inequality is because of θx+y ≥ y∨ (θx) for θ ∈ (0, 1] and x,y ≥ 0, and the
monotonically non-decreasing property of f , the second inequality is due to (4) indicated by
the DR-submodularity of f and the monotonically non-decreasing property of f , as follows,

〈y ∨ (θx)− θx,∇f(θx)〉 ≥ f(y ∨ (θx))− f(θx) ≥ f(y)− f(θx),

and the last inequality is due to f(0) ≥ 0. Furthermore, if x is a stationary point for
maximizing F (x) over the set X , we have

0 ≥ max
x∈X
〈y − x,∇F (x)〉 ≥

(
1− e−1

)
f(y)− f(x),∀y ∈ X .

Therefore, f(x) ≥
(
1− e−1

)
f(x∗), which completes the proof.

Appendix D. Proof of lemma 20

Proof (i) It is straightforward to obtain the gradient form of F̂µ from (47). Then it follows

from the
√
dL0
u -smoothness of fµ (see Lemma 4(iii)) that

‖∇F̂µ(x)−∇F̂µ(y)‖ = ‖ 1

Z

Z∑
z=1

e
z
Z
−1
(
∇fµ(

z

Z
x)−∇fµ(

z

Z
y)
)
‖

≤ 1

Z

Z∑
z=1

e
z
Z
−1

√
dL0

u

z

Z
‖x− y‖ ≤

√
dL0

u
‖x− y‖,

where it utilizes Jensen’s inequality and the fact that z ≤ Z.

(ii) By the definition of F̂µ along with the non-negativeness and monotonicity properties
of fµ as stated in Lemma 4 (i), we obtain

F̂µ(x) =
1

Z

Z∑
z=1

e
z
Z
−1

z
Z

fµ(
z

Z
x) ≤ 1

Z

Z∑
z=1

1
z
Z

fµ(x) = fµ(x)
Z∑
z=1

1

z
≤ fµ(x)(1 + lnZ),

where the last inequality comes from
∑Z

z=1
1
z ≤ 1 +

∫ Z
z=1

1
z = 1 + lnZ.

(iii) From the expression of ∇F̂µ(x), we obtain

〈y − x,∇F̂µ(x)〉 =

〈
y − x,

1

Z

Z∑
z=1

e
z
Z
−1∇fµ(

z

Z
x)

〉

≥ 1

Z

Z∑
z=1

e
z
Z
−1
〈
y ∨ (

z

Z
x)− z

Z
x,∇fµ(

z

Z
x)
〉
− 1

Z

Z∑
z=1

e
z
Z
−1
〈
x,∇fµ(

z

Z
x)
〉
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≥ 1

Z

Z∑
z=1

e
z
Z
−1
(
fµ(y)− fµ(

z

Z
x)
)
− 1

Z

Z∑
z=1

e
z
Z
−1
〈
x,∇fµ(

z

Z
x)
〉

≥
(
1− e−1

)
fµ(y)− 1

Z

Z∑
z=1

e
z
Z
−1fµ(

z

Z
x)− 1

Z

Z∑
z=1

e
z
Z
−1
〈
x,∇fµ(

z

Z
x)
〉

≥
(
1− e−1

)
fµ(y)− (1 + 3

lnZ

Z
)fµ(x),

where the first inequality stems from y + z
Zx ≥ y ∨ z

Zx for z ≤ Z and x,y ≥ 0, and
∇fµ(x) ≥ 0, the second one comes from (5) and the monotonicity of fµ(x) (see Lemma
4(i)), namely,〈

y ∨ (
z

Z
x)− z

Z
x,∇fµ(

z

Z
x)
〉
≥ fµ(y ∨ z

Z
x)− fµ(

z

Z
x) ≥ fµ(y)− fµ(

z

Z
x),

the third inequality is due to 1
Z

∑Z
z=1 e

z
Z
−1 ≥ 1 − e−1, and the fourth one is from (Mitra

et al., 2021, Lemma 3.16) with ∇Ḡ(x) = ∇F (x)/e,G(x) = fµ(x)/e, and ε−1 = Z(Z ≥ 3)
that

1

Z

Z∑
z=1

e
z
Z
−1
〈
x,∇fµ(

z

Z
x)
〉
≤
(

1 + 3
lnZ

Z

)
fµ(x)− 1

Z

Z∑
z=1

e
z
Z
−1fµ(

z

Z
x).

Furthermore, it follows from |fµ(x)− f(x)| ≤ L0u (see Lemma 4 (iii)) that

〈y − x,∇F̂µ(x)〉 ≥
(
1− e−1

)
fµ(y)− (1 + 3

lnZ

Z
)fµ(x)

≥
(
1− e−1

)
f(y)− (1 + 3

lnZ

Z
)f(x)− (2− e−1 +

3 lnZ

Z
)L0u

≥
(
1− e−1

)
f(y)− (1 + 3

lnZ

Z
)f(x)− 3L0u,

where we use that 3 lnZ
Z − e−1 ≤ 1 for the last inequality.

(iv) With x being a stationary point for maxx∈X F̂µ(x) and y = x∗ in (48), we have

0 ≥ max〈x∗ − x,∇F̂µ(x)〉 ≥
(
1− e−1

)
f(x∗)− (1 + 3

lnZ

Z
)f(x)− 3L0u.

This, combined with f(x∗) ≥ f(x), leads to the conclusion.

Appendix E. The Lemma in Section 5

Lemma 28. Assume that fi(·, ξi) : Rn → R, i ∈ [M ], are non-negative, monotonically non-
decreasing, DR-submodular and L0-Lipschitz continuous. Then f(·, ξ) := mini∈[M ] fi(·, ξi) is
non-negative, monotonically non-decreasing, up-concave and L0-Lipschitz continuous.

Proof It is straightforward to show that f(x, ξ) is non-negative and monotonic, given the
non-negativity and monotonicity of fi(x, ξi), i ∈ [M ] and the definition of f(x, ξ). Moreover,
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each function fi(x, ξi) satisfying DR-submodularity is up-concave by the definition of up-
concave function, which demonstrates that fi(x + βv, ξi) is concave w.r.t β ∈ R for v ≥ 0,
i.e.,

fi (x + (αβ1 + (1− α)β2) v, ξi) ≥ αfi(x+β1v, ξi)+(1−α)fi(x+β2v, ξi), ∀α ∈ [0, 1];∀β1, β2 ∈ R.

Then it indicates

f (x + (αβ1 + (1− α)β2) v, ξ) = min
i∈[M ]

fi(x + (αβ1 + (1− α)β2) v, ξi)

≥ min
i∈[M ]

(αfi(x + β1v, ξi) + (1− α)fi(x + β2v, ξi))

≥ αf(x + β1v, ξ) + (1− α)f(x + β2v, ξ),

where the first inequality is from the concavity of fi(x+βv, ξi) w.r.t. β ≥ 0, and the second
one comes from mini(ai(x) + bi(y)) ≥ mini ai(x) + mini bi(y). We next prove that f(x, ξ) is
L0-Lipschitz continuous. Since for all i,

min
i

fi(x, ξi) ≤ fi(x, ξi) = fi(x, ξi)− fi(y, ξi) + fi(y, ξ) ≤ L0‖x− y‖+ fi(y, ξi),

it provides that f(x, ξ) ≤ L0‖x− y‖+ f(y, ξ). Similarly, we obtain for all i,

min
i

fi(y, ξi) ≤ L0‖x− y‖+ fi(x, ξi).

Hence, |f(x, ξ)− f(y, ξ)| ≤ L0‖x− y‖, which completes the proof.
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