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Abstract

Hamiltonian Monte Carlo (HMC) is a Markov chain algorithm for sampling from a high-
dimensional distribution with density e−f(x), given access to the gradient of f . A par-
ticular case of interest is that of a d-dimensional Gaussian distribution with covariance
matrix Σ, in which case f(x) = x>Σ−1x. We show that Metropolis-adjusted HMC can
sample from a distribution that is ε-close to a Gaussian in total variation distance using
Õ(
√
κd1/4 log(1/ε)) gradient queries, where ε > 0 and κ is the condition number of Σ.

Our algorithm uses long and random integration times for the Hamiltonian dynamics,
and it creates a warm start by first running HMC without a Metropolis adjustment. This
contrasts with (and was motivated by) recent results that give an Ω̃(κd1/2) query lower
bound for HMC with a fixed integration times or from a cold start, even for the Gaussian
case.

Keywords: Markov chains, logconcave sampling, Metropolis-Hastings algorithm, numer-
ical integration, Hamiltonian Monte Carlo

1. Introduction and main result

One of the most important tasks in statistics and machine learning is to sample from high-
dimensional and potentially complicated distributions. Markov chains are an efficient means
for sampling from such distributions, and there is a wide variety of Markov chain algorithms
designed specifically for this purpose. Typically, the main difficulty in analyzing these
algorithms is to bound the precise running time or mixing time of the Markov chain. While
many algorithms have been in very broad (heuristic) usage for several decades, rigorous
bounds on their performance are often missing. A key example is the Hamiltonian Monte
Carlo (HMC) algorithm by Duane et al. (1987). This is an elegant Markov chain algorithm
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that utilizes Hamiltonian dynamics to efficiently explore the state space, without straying
too far away from the high probability region. One of its key features is that it overcomes
the slow, diffusive behavior that is inherent to “small step” approaches such as the ball
walk Vempala (2005) and Langevin algorithm Parisi (1981). While this is indeed observed in
heuristic uses and simulation studies of the HMC algorithm (see e.g. Neal (2011); Bou-Rabee
and Sanz-Serna (2017)), recent efforts in proving theoretical bounds are mostly restricted
to step sizes much shorter than the heuristic choices (Chen et al. (2020); Chen and Vempala
(2022)). In this work, we prove seemingly optimal1 bounds on the Metropolis-adjusted HMC
algorithm (with leapfrog integrator) for the special case of Gaussian distributions. This is
the typical gateway to more complicated distributions such as logconcave or multimodal
distributions. Our implementation of HMC exploits (i) long and randomized integration
times, and (ii) an “algorithmic” warm start obtained by first running the unadjusted HMC
chain. This surpasses recent roadblocks on sampling Gaussian distributions using HMC
with either short (Chen and Vempala (2022)) integrations times, deterministic integration
times, or Metropolis-adjustments applied to a cold start (Lee et al. (2021)).

Our bounds are stated most easily in the “black box model”, where the goal is to
sample from a density of the form e−f(x) for x ∈ Rd, and we are given query access to
both f and its gradient ∇f . The Gaussian case further restricts f to be a quadratic form
f(x) = 1

2(x−µ)>Σ−1(x−µ), where µ and Σ are the (unknown) mean and covariance matrix
of the Gaussian, respectively. The condition number of the Gaussian distribution is simply
the condition number of Σ−1. Throughout we assume that we are given bounds 0 < α ≤ β
such that αI � Σ−1 � βI and we use κ = β/α as an upper bound on the condition number.
We prove the following theorem.

Theorem 1 (informal version of Theorem 20) The Metropolis-adjusted HMC algorithm
with leapfrog integrator2 can sample from a distribution ε-close in total variation distance
to a d-dimensional Gaussian distribution with condition number κ using a total number of
gradient evaluations3

Õ(
√
κd1/4 log(1/ε)).

This theorem builds on an analysis of the unadjusted HMC algorithm, for which we
get a bound of Õ(

√
κd1/4/

√
ε) on the total number of gradient evaluations. Both bounds

seem in line with expectation (see Duane et al. (1987); Neal (2011); Beskos et al. (2013)),
and we expect they are tight when using the usual leapfrog integrator for simulating the
Hamiltonian dynamics. Our algorithm surpasses the Ω̃(κ

√
d) lower bound on the complexity

of HMC for Gaussian sampling from (Lee et al., 2021, Proposition 4 and Corollary 5)
by using randomized integration times (which avoids aperiodicity issues associated to a
deterministic integration time) and an algorithmic warm start (which avoids exponentially
small acceptance probabilities).

Our work fits within the recent effort of proving non-asymptotic (and often tight) bounds
on Markov chain algorithms for constrained distributions such as Gaussian distributions

1. See Section 5 for a discussion on why this bound seems optimal.
2. To be precise, we first run a number of HMC steps without Metropolis correction, providing a warm

start for the Metropolis-adjusted HMC algorithm.

3. We use the Õ(·)- and Ω̃(·)-notation to denote the usual big-O and big-Omega notation, O(·) and Ω(·)
respectively, where the tilde indicates that we hide polylogarithmic factors in the problem parameters d,
α, β and log(1/ε).
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and, more generally, logconcave distributions (where f is assumed to be convex). Most
of these efforts have focused on short step dynamics such as the ball walk, the Langevin
algorithm, and HMC with short integration times. The use of such “local steps” makes it
easier to control the stability and acceptance probability of the algorithm. However, the
restriction to short step dynamics is also what slows down these algorithms, and this is
what we avoid in our HMC algorithm.

Another motivation for studying Gaussian sampling is that the restriction to sampling
Gaussian and logconcave distributions precisely parallels the restriction to quadratic and
convex functions in optimization. Nonetheless, a gap between the (first-order oracle) com-
plexity for logconcave sampling and the O(min{

√
κ, d}) complexity for convex optimiza-

tion is apparently deemed plausible. More specifically, the authors in (Lee et al. (2020))
suggest an Ω(κ) lower bound for logconcave sampling. Our work shows that a sublinear
κ-dependency is possible at least for the special case of Gaussian distributions, and we see
it as evidence that a general O(

√
κ) bound for logconcave sampling is achievable.

On the same note of generalizing our results to logconcave distributions, we emphasize
that our result strongly relies on the restriction to Gaussian sampling, for which explicit
expressions can be derived on the Hamiltonian dynamics. While this makes progress towards
the more general case of logconcave distributions, the lack of such explicit expressions in
the general case is a clear obstacle when trying to generalize our techniques.

Finally, as a direct application of our work, we mention the use of Gaussian sampling in
the contextual multi-armed bandit problem (see Agrawal and Goyal (2012)). A competitive
exploration-exploitation strategy for this problem is called Thompson sampling, which is
an efficient manner of maintaining a posterior on the set of arms. In the case of a linear
payoff, as is considered by Agrawal and Goyal (2013), the prior and posterior distributions
are Gaussian distributions. While recent works suggested the use of Langevin dynamics
for Thompson sampling (Mazumdar et al. (2020); Xu et al. (2022)), our work shows that
the use of Hamiltonian Monte Carlo should lead to faster algorithms, improving the mixing
time from Õ(κd1/3) for the Metropolis-adjusted Langevin algorithm (MALA) to Õ(

√
κd1/4)

for HMC.

1.1 Background and prior work

There is a vast body of work on the use of Markov chain algorithms for sampling from
Gaussian and logconcave distributions. These works mostly consider the (Metropolized)
random walk or ball walk (MRW), MALA,4 and HMC. We discuss those works most directly
related to ours.

The earliest works focus on asymptotic bounds or scaling limits on the performance
as d → ∞. A d1/4-scaling was already suggested in Duane et al. (1987); Kennedy and
Pendleton (1991); Beskos et al. (2013) for the complexity of HMC with leapfrog integrator
for Gaussians and logconcave product distributions. This improves over the expected d- and
d1/3-scalings of MRW and MALA, respectively. Indeed, in the recent work by Chewi et al.
(2021) it was proven that the complexity of MALA for standard Gaussian distributions
(with κ = 1) from a warm start scales as Õ(d1/3). For leapfrog HMC, the first non-

4. MALA can be interpreted as HMC with a very short integration time (e.g., one leapfrog step), see for
instance (Lee et al., 2020, Appendix A).
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asymptotic bounds scaling with d1/4 seem to have been proven recently in (Mangoubi and
Vishnoi (2018); Mou et al. (2021)) for the unadjusted HMC chain, restricted to logconcave
distributions that satisfy additional regularity assumptions. The final complexities in these
works scale at least with κ2 and 1/

√
ε, and so scale worse in terms of both κ and ε compared

to our bound.5 An improved (linear) κ-dependency is obtained in recent works on MALA
by Dwivedi et al. (2018); Lee et al. (2020); Altschuler and Chewi (2023); Wu et al. (2021)
and HMC by Chen et al. (2020); Chen and Gatmiry (2023) (from a warm start).

Lower bounds. Many of the aforementioned works satisfy the Ω̃(κ
√
d) lower bounds on

MALA and HMC from Wu et al. (2021); Lee et al. (2021), which even apply to the Gaussian
case. Such lower bound typically follows from restricting to either of the following:

1. short integration times, which leads to diffusive behavior, c.f. Chen and Vempala
(2022)

2. fixed integration times, which can lead to periodic behavior in the HMC algorithm,
cf. (Lee et al., 2021, Proposition 4), or

3. when considering a Metropolis-adjusted chain starting from a cold start (leading to
exponentially small acceptance probabilities), cf. (Lee et al., 2021, Corollary 5).

Any of these restrictions leads to the aforementioned lower bound, and indeed we are not
aware of any former non-asymptotic bounds on the mixing time achieving a sublinear κ-
dependency (while using a numerical integrator). We sidestep these bounds by using (1.)
long and (2.) random integration times, and (3.) using an “algorithmic” warm start (as
e.g. in Altschuler and Chewi (2023)) obtained by first running the unadjusted HMC chain.
Although limited to Gaussians, our result is an important first step towards proving

√
κ-

scalings for general logconcave distributions.

Variable integration times. The use of nonconstant integration times was also studied
recently in the randomized HMC algorithm by Bou-Rabee and Sanz-Serna (2017). Sim-
ilarly to our work, they motivate their algorithm by looking at the Gaussian case, and
obtain similar scalings to our work for properties such as the autocorrelation time and
mean displacement. In follow-up works by Deligiannidis et al. (2021); Lu and Wang (2022)
bounds similar to ours are proven on the relaxation time. The related work Wang and
Wibisono (2022) picks integration times by deterministically cycling through a set of inte-
gration times based on the roots of Chebyshev polynomials, and achieves a convergence time
in Wasserstein-2 distance for Gaussians scaling with

√
κ. Similarly, Jiang (2023) achieves a√

κ-scaling in Wasserstein-2 distance by randomly choosing integration times, similarly to
our work. The main difference with these works is that they are proven only for the idealized
case, and do not take into account the errors that arise from numerical integration, which
is the technical bulk of this work.6

5. We note that such 1/ poly(ε)-dependency is unavoidable for the unadjusted chain.
6. An exception is Jiang (2023), where a revised version contains a remark about using the leapfrog inte-

grator. It states that the unadjusted HMC algorithm with randomized integration times achieve a scaling
Õ(
√
κd1/4/

√
ε) where ε is the error in Wasserstein-2 distance – this complements our Õ(

√
κd1/4/

√
ε)

bound on the unadjusted HMC chain in total variation distance (Proposition 7).
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Gaussian sampling without Markov chains. For completeness we also mention that
there are algorithms for Gaussian sampling that are not based on Markov chains. While
these are generally incomparable (e.g., they require access to the precision or covariance
matrix rather than gradient), we refer the interested reader to Vono et al. (2022). A very
recent work that does combine matrix methods with the gradient query model is Chewi et al.
(2023). They prove an Ω(min{

√
κ, d}) query lower bound for (centered) Gaussians, and an

O(min{
√
κ log(d), d}) query upper bound based on a matrix Kyrylov method. The lower

bound applies to our setting as well, and shows that the κ-dependency of our algorithm
is optimal. The upper bound improves over our Õ(

√
κd1/4) upper bound, but the matrix

Krylov ideas from Chewi et al. (2023) are inherently restricted to Gaussians, contrasting
with our HMC approach that in principle generalizes to arbitrary distribution.

1.2 Organization and proof overview

In Section 2 we formally introduce the problem and describe preliminaries related to Markov
chains and Hamiltonian dynamics. In particular, for the Gaussian case, we discuss how the
numerical leapfrog integrator exactly integrates the Hamiltonian of a closely related Gaus-
sian. In Section 3 we bound the mixing time of the HMC algorithm with an idealized
integrator. Using the observation about the leapfrog integrator, this mixing time extends
to the “unadjusted” HMC algorithm, which is an exact HMC algorithm for a slightly per-
turbed Hamiltonian (and hence has a slightly perturbed stationary distribution). Finally,
in Section 4, we consider the Metropolis-adjusted HMC algorithm with leapfrog integrator.
This algorithm has the correct stationary distribution, but the mixing time might increase
due to an additional accept-reject step. We use high-dimensional concentration bounds (in
particular, the Hanson-Wright inequality) to show that the acceptance rate is usually large.
This suffices to bound the mixing time through the use of s-conductance, which proves our
main result.

2. Problem definition and preliminaries

2.1 Gaussian sampling

We consider a d-dimensional Gaussian distribution with unknown precision matrix B (equal
to the inverse of the covariance matrix, B = Σ−1) and mean µ = 0.7 In such case, the
Gaussian distribution is π(x) ∝ exp(−f(x)) with f(x) = 1

2x
>Bx for x ∈ Rd and B a

positive definite matrix. The algorithms we use (Hamiltonian Monte Carlo with a leapfrog
integrator) are basis invariant, and so for ease of notation we will assume throughout that
B is diagonal with Bii = ω2

i for each i ∈ [d]. As input, we are given bounds 0 < α ≤ β
such that αI � B � βI, or, equivalently, α ≤ ω2

i ≤ β. The condition number of B is upper
bounded by κ = β/α and we will also call this the condition number of π. We assume
first-order query access to f , which means that a single query at a point x ∈ Rd provides
both f(x) and ∇f(x) = Bx. The goal is to return a sample from a distribution that is
ε-close to π in total variation distance, while making a minimal number of gradient queries
to f .

7. This is without loss of generality. Using Õ(
√
κ) gradient queries we can always determine the mean up

to high precision and then translate the Gaussian to the origin.
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2.2 Markov chains on Rd

Throughout we work with Markov chains whose behaviour can be described as follows:
when at x ∈ Rd move to y ∈ Rd with probability density T (x, y) ≥ 0. We identify the
Markov chain with the transition kernel (density) T : Rd × Rd → R+. For a fixed x ∈ Rd

we use Tx to denote the probability distribution on Rd with density T (x, ·). Similarly (with
some abuse of notation), we denote by Tµ the probability distribution on Rd with density∫
µ(x)T (x, ·) dx. The K-step transition kernel TK is defined recursively via TK(x, y) =∫
Rd
TK−1(x, z)T (z, y) dz for K > 1. We say that T satisfies the detailed balance condition

with respect to the probability density π : Rd → R+ if

π(x)T (x, y) = π(y)T (y, x) for all x, y ∈ Rd.

The associated Markov chain is called reversible.

2.3 Hamiltonian dynamics, harmonic oscillator and leapfrog integrator

At its core, Hamiltonian Monte Carlo makes moves by integrating Hamiltonian dynamics.
In general, these describe the evolution of a physical system parameterized by (generalized)
positions and (generalized) momenta. For the purposes of this paper, we denote the former
with x ∈ Rd and the latter with v ∈ Rd. We sometimes refer to v as the velocity, which
in classical physics is equal to the momentum of a unit mass. The Hamiltonian evolution
of a d-dimensional system is governed by its Hamiltonian H : Rd × Rd → R, which can be
understood as the total energy of the system at position x ∈ Rd and with velocity v ∈ Rd.
The evolution of the system is described by the following equations:

dx

dt
=
∂H(x, v)

∂v
,

dv

dt
= −∂H(x, v)

∂x
.

The simplest example is the (one-dimensional) harmonic oscillator with HamiltonianH(x, v) =
1
2ω

2x2 + 1
2v

2 for some given ω > 0. Its evolution is described by dx
dt = v and dv

dt = −ω2x,
which can be solved analytically to yield[

x(t)
v(t)

]
=

[
cos(ωt) 1

ω sin(ωt)
−ω sin(ωt) cos(ωt)

][
x(0)
v(0)

]
(1)

A more interesting example is the d-dimensional harmonic oscillator. For a given positive
(semi-)definite matrix B ∈ Rd×d, its Hamiltonian is H(x, v) = 1

2x
>Bx + 1

2v
>v, and its

evolution is described by
dx

dt
= v,

dv

dt
= −Bx. (2)

If B has eigenvalues ω2
i then in the eigenbasis of B the system effectively decomposes into

d independent harmonic oscillators with frequencies ωi.

2.3.1 Leapfrog integrator

The leapfrog integrator, also known as the Störmer-Verlet method, is a well-known numeri-
cal integrator for Hamiltonian dynamics that uses two queries to ∂H(x,v)

∂x in each integration
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step. In the Gaussian case we have H(x, v) = 1
2x
>Bx + 1

2v
>v and a single step of the

leapfrog integrator takes the following closed form:8[
x(n+1)

v(n+1)

]
=

[
I − δ2

2 B δI

−δB(I − δ2

4 B) I − δ2

2 B

][
x(n)

v(n)

]
, (3)

where δ > 0 is a parameter used to describe the integration time. See for example (Leimkuh-
ler and Reich, 2005, Sec. 2.6) for details. Following that reference we will exploit that,
similarly as for the idealized Hamiltonian dynamics, the leapfrog dynamics decouple in the
diagonal basis of B. Hence, for the analysis we can assume (without loss of generality) that
B is diagonal with entries 0 < α ≤ ω2

i ≤ β, and the leapfrog integrator can be interpreted
as integrating d independent harmonic oscillators. Effectively, this corresponds to analyzing
the leapfrog dynamics in the diagonalizing basis.9 We can then understand the leapfrog
integrator by restricting to a single harmonic oscillator with parameter ω.

The propagator from Eq. (3) has eigenvalues

λ± = 1− δ2ω2

2
± i δω

√
1− δ2ω2

4
.

If δ2ω2 ≤ 4, we can set λ± = e±iϕ, where ϕ ∈ [0, π] is uniquely defined by cos(ϕ) = 1− δ2ω2

2

and sin(ϕ) = δω
√

1− δ2ω2

4 . We can use ϕ to rewrite the propagator as a rotation with

angle ϕ [
cos(ϕ) 1

ω̂ sin(ϕ)
−ω̂ sin(ϕ) cos(ϕ)

]
, where ω̂ = ω

√
1− δ2ω2

4
.

Comparing this with (1), we see that the leapfrog trajectory exactly follows the Hamiltonian
dynamics for the modified Hamiltonian Ĥ given by

Ĥ(x, v) =
1

2
ω̂2x2 +

1

2
v2.

Indeed, if (x̂(t), v̂(t)) is the solution of Hamilton’s equations with Hamiltonian Ĥ(x, v) and
initial conditions (x̂(0) = x0, v̂(0) = v0), then the nth point on the leapfrog trajectory
equals[

x̂(n)

v̂(n)

]
=

[
cos(nϕ) 1

ω̂ sin(nϕ)
−ω̂ sin(nϕ) cos(nϕ)

][
x̂0

v̂0

]
=

[
cos(ω̂tn) 1

ω̂ sin(ω̂tn)
−ω̂ sin(ω̂tn) cos(ω̂tn)

][
x̂0

v̂0

]
=

[
x̂(tn)
v̂(tn)

]
,

where tn = nϕ/ω̂. We can now easily check that the difference between H and Ĥ is

H(x, v)− Ĥ(x, v) =
δ2ω4x2

8
.

8. While the previous section gives an explicit form for the exact Hamiltonian dynamics as a function of the
matrix B, in our algorithmic application we will not have direct access to B but only to gradient queries
of the form Bx. This allows us to implement the leapfrog integrator without explicitly learning B.

9. We stress that this is only a (standard) trick for the analysis – it also appears in e.g. the reference work
(Leimkuhler and Reich, 2005, Sec. 2.6)). The algorithms themselves work for general non-diagonal B,
and they will only require the aforementioned bounds α and β on the eigenvalues ω2

i .
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By our former remark, this observation extends to general d-dimensional harmonic os-
cillators and the corresponding leapfrog integrator (3): we define B̂ by replacing ωi by ω̂i
for each eigenvalue of B, where

ω̂i := ωi

√
1−

δ2ω2
i

4
, (4)

and we set Ĥ(x, v) = 1
2x
>B̂x + 1

2v
>v. The leapfrog integrator is then an exact integrator

for Ĥ and we have that

H(x, v)− Ĥ(x, v) =
δ2

8

∑
i∈[d]

ω4
i x

2
i . (5)

Finally we introduce the following notation: the tuple (x′, v′) = leapfrog(x, v, t, δ) is
defined as the (position, momentum)-vector after taking t/δ leapfrog integration steps for
Hamiltonian H with stepsize 0 ≤ δ ≤ 1/

√
β.10

3. Idealized and unadjusted HMC

We first analyze an idealized version of HMC, Algorithm 1, where we assume that we
can exactly integrate the Hamiltonian dynamics. We use long and random integration
times. In order to later apply the results from this section in the setting of a numerical
integrator, we will use uniformly random integration times t ∼ U(T ) from a finite set T .
We will require only that, for all 0 < α ≤ ω2 ≤ β, if t is chosen uniformly at random
from U(T ) then with probability at least 1/2 it holds that | cos(ωt)| ≤ 0.9 (we denote this
by Pt∼U(T )

[
| cos(ωt)| ≤ 0.9

]
≥ 1/2). In the following lemma we show that this is satisfied

for a simple choice of T .

Lemma 2 Let 0 <
√
α ≤
√
β. If 0 < δ ≤ π/(20

√
β) and

T = {k · δ | k ∈ N, k · δ < 10π/
√
α} (6)

then we have for all ω ∈ [
√
α,
√
β] that

Pt∼U(T )

[
| cos(ωt)| ≤ 0.9

]
≥ 1/2. (7)

Proof First, we prove that if ζ > η ≥ 0, ω > 0, and T̃ = {η + nζ : n ∈ N, η + nζ ≤ π
2ω}

with |T̃ | ≥ 10, then for t chosen uniformly from T̃ we have

P
t∼U(T̃ )

{
| cos(ωt)| ≤ 0.9

}
≥ 3/5. (8)

To see this, note that ζ ≤
⌊

π

2ω(|T̃ |−1)

⌋
implies that

P
t∼U(T̃ )

{
| cos(ωt)| ≤ 0.9

}
= P

t∼U(T̃ )

{
t ≥ 1

ω
arccos(0.9)

}
≥ 1

|T̃ |

⌊
π/2− arccos(0.9)

ωζ

⌋
≥ 1

|T̃ |

⌊(
1− 2 arccos(0.9)/π

)
(|T̃ | − 1)

⌋
.

10. We will always apply this with t/δ ∈ N.
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The last quantity is at least 3/5 for |T̃ | ≥ 10.
We now make use of the above to show the desired bound for the set T defined in

Eq. (6). Let ω be such that
√
α ≤ ω ≤

√
β. Note that | cos(ωt)| is periodic with period π

2ω .
We write T as the disjoint union

T =
N⋃
n=1

(
T ∩

[(n− 1)π

2ω
,
nπ

2ω

])

where N is the least integer such that Nπ
2ω > 10π√

α
, i.e., N =

⌊
20ω√
α

⌋
. Note that N ≥ 20. Since

δ ≤ π
20
√
β

and ω ≤
√
β, the first N − 1 such intervals contain at least⌊

π

2ωδ

⌋
≥ 10

equally spaced points. Now note that the subset T ∩ [ (n−1)π
2ω , nπ2ω ]) takes precisely the form

as considered at the start of the proof, and we just proved that |T ∩ [ (n−1)π
2ω , nπ2ω ])| ≥ 10.

Hence, Eq. (8) shows that for each of these N − 1 intervals we have

P
t∼U(T ∩[

(n−1)π
2ω

,nπ
2ω

])

[
| cos(ωt)| ≤ 0.9

]
≥ 3

5
.

Given that there are N ≥ 20 intervals in total, we get

Pt∼U(T )

[
| cos(ωt)| ≤ 0.9

]
≥ N − 1

N

3

5
≥ 19

20

3

5
≥ 1

2
,

where the first inequality comes from the fact that with probability at least (N − 1)/N we
pick a “good” interval, and conditioned on that we have that | cos(ωt)| ≤ 0.9 with proba-
bility at least 3/5.

We formulate the HMC algorithm using this definition of T as Algorithm 1.

Algorithm 1: Markov kernel P (idealized HMC with random integration time)

Input: x ∈ Rd, stepsize δ ≤ π
20
√
β

, T = {k · δ | k ∈ N, k · δ < 10π/
√
α} as in Eq. (6)

Output: x′ ∈ Rd

1 Draw v ∼ N (0, Id) and t ∼ U(T );
2 Define x′ by following Hamiltonian dynamics for H for time t, starting from (x, v);

It is well known that idealized HMC with a fixed integration time has the desired
stationary distribution π whose density at (x, v) is related to the Hamiltonian H(x, v) =
1
2x
> diag(ω2)x+ 1

2v
>v, i.e., π(x, v) ∝ exp(−H(x, v)) (cf. Duane et al. (1987); Neal (1996);

Vishnoi (2021)). From this it follows that also P has stationary distribution π. In Section 3.1
we show that P has a small mixing time. We then extend this result to the setting where
we use a numerical integrator (leapfrog) instead of the idealized time evolution according
to Hamiltonian dynamics. For this we use the fact (cf. Section 2.3.1) that the leapfrog
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integrator applied to H(x, v) can be viewed as an exact integrator for the Hamiltonian
dynamics of a modified Hamiltonian Ĥ(x, v). By bounding the distance between π and
π̂ ∝ exp(−Ĥ(x, v)), we output a distribution that is ε-close to π in total variation distance
using a number of gradient evaluations that scales as Õ(

√
κd1/4/

√
ε), see Section 3.2.

3.1 Idealized HMC

Let P tx denote the density function of the proposal distribution from x ∈ Rd, conditioned
on having picked t ∈ [0, T ]. Using the explicit expression Eq. (1), we can relate this to
the density function of the standard Gaussian: the momentum term v needs to satisfy
cos(ωit)xi + 1

ωi
sin(ωit)vi = zi ∀i ∈ [d]. This gives us the density function P tx as

P tx(z) = (2π)−d/2
∏
i∈[d]

ωi
| sin(ωit)|

exp

−1

2

(
zi − cos(ωit)xi

1
ωi

sin(ωit)

)2
 . (9)

The probability density with which idealized HMC moves from x to z is then given by
Px(z) = 1

|T |
∑

t∈T P
t
x(z).

We analyze the convergence in total variation distance by explicitly writing out the
distribution PK obtained by taking K steps of the idealized HMC method. If we condi-
tion on the choice of random integration times in step 2 of Algorithm 1, then the resulting
distribution is again a normal distribution. Indeed, let (v(1), . . . , v(K)), (t1, . . . , tK) and
(x(1), . . . , x(K)) denote the velocities, integration times and positions, respectively, encoun-
tered during the first K steps. By repeatedly applying (9), we can express

x
(K)
i = x

(K−1)
i cos(ωitK) +

1

ωi
sin(ωitK)v

(K)
i

= x
(0)
i

 K∏
k=1

cos(ωitk)

+
1

ωi

K∑
k=1

v
(k)
i sin(ωitk)

 K∏
j=k+1

cos(ωitj)

 .

For a fixed tuple t = (t1, . . . , tK) ∈ T K of integration times, but random choices (v(1), . . . , v(K)) ∼
N (0, Id)

K of momenta, we can argue that this describes a Gaussian distribution, which we
denote by P t

x. First, note that P t
x is a product distribution: P t

x(z) =
∏
i∈[d] P

t,i
x (zi) where

we use P t,i
x for the marginal distribution of P t

x with respect to the i-th coordinate. Then,
note that P t,i

x describes a sum of Gaussians with the same mean, and hence forms again a
Gaussian. We formalize this in the next lemma.

Lemma 3 Let t ∈ T K , ω > 0, x ∈ R, and consider

z = x

 K∏
k=1

cos(ωtk)

+
1

ω

K∑
k=1

v(k) sin(ωtk)

 K∏
j=k+1

cos(ωtj)


where v(k) ∼ N (0, 1) for each k ∈ [K]. Then z ∼ N (x

∏K
k=1 cos(ωtk),

1
ω2 (1−

∏K
k=1 cos(ωtj)

2)).

10
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Proof It is clear that E[z] = x
∏K
k=1 cos(ωtk). The sum of Gaussian random variables

is again distributed according to a Gaussian whose variance is the sum of the individual
variances. That is,

E[(z − E[z])2] =
1

ω2

K∑
k=1

sin(ωtk)
2

 K∏
j=k+1

cos(ωtj)
2


=

1

ω2

K∑
k=1

(1− cos(ωtk)
2)

 K∏
j=k+1

cos(ωtj)
2


=

1−
∏K
j=1 cos(ωtj)

2

ω2
.

If the term
∏K
k=1 cos(ωtk) is sufficiently small, then P t

x is close to π. Lemma 2 and
Hoeffding’s inequality show that for a random tuple t = (t1, . . . , tK) ∼ U(T K) this term
will indeed be small. Then we use this to prove convergence of the proposal distribution
to π. We mention for completeness that we have made no effort to determine the optimal
constants: the rate 0.9K/4 below suffices for our purposes, but can likely be improved.

Lemma 4 Let 0 < α ≤ ω2 ≤ β and T as in Lemma 2. Then

Pt∼U(T K)

∣∣∣ K∏
k=1

cos(ωtk)
∣∣∣ ≥ 0.9K/4

 ≤ exp(−K/8).

Proof Let t = (t1, . . . , tK) with tk ∼ U(T ), and define the i.i.d. Boolean variables Xk as
indicating whether | cos(ωtk)| ≤ 0.9. Define ρ = P[Xk = 1]. By Lemma 2 we know that
ρ ≥ 1/2. By the multiplicative Chernoff bound this implies that

P

 K∑
k=1

Xk ≤
K

4

 ≤ P

 K∑
k=1

Xk ≤
Kρ

2

 ≤ exp

(
−K

8

)
.

It remains to note that if
∑K

k=1Xk > K/4 then
∣∣∣∏K

k=1 cos(ωtk)
∣∣∣ < 0.9K/4, and this implies

that

Pt∼U(T K)

∣∣∣ K∏
k=1

cos(ωtk)
∣∣∣ ≥ 0.9K/4

 ≤ P

 K∑
k=1

Xk ≤
K

4

 .

Using the above lemma, we show that the proposal distributions PKx (z) := PK(x, z)
and PKy := PK(y, z) are close provided that x and y are close.

11
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Proposition 5 For every x, y ∈ Rd, if

K ≥ 38 log

(
d(2 +

√
β‖x− y‖∞)

ε

)
,

then, with P the kernel of idealized HMC, we have

‖PKx − PKy ‖TV ≤ ε.

We remark that the lower bound on K is stated in a coordinate-dependent way through the
use of ‖ · ‖∞ (which should be interpreted in the eigenbasis of B), however, it can be made
coordinate-independent by using the 2-norm instead and the inequality ‖ · ‖∞ ≤ ‖ · ‖2.

Proof Recall that PKx = 1
|T |K

∑
t∈T K P

t
x and P t

x =
∏
i∈[d] P

t,i
x is a product distribution.

Hence, we can twice apply a triangle inequality to obtain

‖PKx − PKy ‖TV ≤
1

|T |K
∑
t∈T K

‖P t
x − P t

y‖TV

≤
∑
i∈[d]

1

|T |K
∑
t∈T K

‖P t,i
x − P t,i

y ‖TV (10)

Now let δ = 1√
2

min
{

1, ε
2d(2+

√
β‖x−y‖∞)

}
and K ≥ 38 log(1/δ). We will invoke Lemma 4.

By our choice of K we have that 0.9K/4 ≤ 0.938 log(1/δ) ≤ exp(− log(1/δ)) ≤ δ, where the
second inequality follows from 0.938 < 1/e, and exp(−K/8) ≤ ε/(2d), and so the lemma
ensures that

Pt∼U(T K)

∣∣∣ K∏
k=1

cos(ωitk)
∣∣∣ ≥ δ

 ≤ ε

2d

for each i ∈ [d]. Hence for each coordinate i ∈ [d] we have

1

|T |K
∑
t∈T K

‖P t,i
x − P t,i

y ‖TV ≤
ε

2d
+

1

|T |K
∑

t∈T K :|
∏K
k=1 cos(ωitk)|≤δ

‖P t,i
x − P t,i

y ‖TV

≤ ε

2d
+ (1− ε

2d
)|xi − yi|δ

√
2ωi ≤ ε, (11)

where we use that for t ∈ T K for which
∣∣∏K

k=1 cos(ωitj)
∣∣ ≤ δ ≤ 1√

2
, the proposal distribu-

tions P t,i
x and P t,i

y are univariate Gaussians with means µx, µy that satisfy |µx − µy| ≤
δ|xi − yi|, and both have variance σ2 ≥ 1−δ2

ω2
i
≥ 1

2ω2
i
. (For univariate Gaussians one

has ‖N (µ,σ
2) − N (µ2, σ

2)‖TV < |µ1 − µ2|/σ.) Combining Eqs. (10) and (11) we obtain
‖PKx − PKy ‖TV ≤ ε.

This bound then easily leads to a bound on the total variation distance between PKx
and π for x that is sufficiently close to 0, and this is the main conclusion of this section.
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Theorem 6 (Idealized HMC) There exists a constant C > 0 such that for every x ∈ Rd,
if

K ≥ C log

(
dκ(
√
α‖x‖∞ + 1)

ε

)
,

then, with π ∝ exp(−1
2x
>Bx) and P the kernel of idealized HMC, we have

‖PKx − π‖TV ≤ ε.

Proof We write π =
∫
Rd
δy dπ(y). Using that π is stationary for P (and hence PK), we

also have that π =
∫
Rd
PKy dπ(y). Now we apply Jensen’s inequality:

‖PKx − π‖TV ≤
∫
y∈Rd

‖PKx − PKy ‖TV dπ(x)

≤ π({y : ‖y‖ > η}) +

∫
y∈Rd:‖y‖≤η

‖PKx − PKy ‖TV dπ(x).

We use Lemma 11 to choose an η that is sufficiently large to ensure that π({y : ‖y‖ > η}) ≤
ε/2. In particular, using the notation of that lemma, for γ = Θ(log(1/ε)) we know that
π(Eγ) ≥ 1− ε/2, and we can bound the norm of each y ∈ Eγ as

α2‖y‖2 ≤ y> diag(ω)4y ≤
∑
i

ω2
i + γ

√∑
i

ω4
i ≤ dβ + γβ

√
d,

which yields the bound ‖y‖ ≤
√

(γ+1)κd
α for y ∈ Eγ . We use this to bound the quantity

d
√
β‖x−y‖∞
ε as follows

d
√
β‖x− y‖∞

ε
≤
d
√
β(‖x‖∞ +

√
(γ + 1)κd/α)

ε

≤
d
√
κ(
√
α‖x‖∞ +

√
(γ + 1)κd)

ε

≤
d3/2κ

√
(γ + 1)(

√
α‖x‖∞ + 1)

ε
.

Here the last inequality is a rather crude upper bound that only serves to show that there

exists a C > 0 such that for K ≥ C log(
dκ(
√
α‖x‖∞+1)
ε ) we have K ≥ 38 log

(
d(2+

√
β‖x−y‖∞)
ε/2

)
.

With such a bound on K, Proposition 5 implies that ‖PKx −PKy ‖TV ≤ ε/2 for all x, y ∈ Rd

with ‖x− y‖∞ ≤ η + ‖x‖∞. Combining these two bounds shows that ‖PKx − π‖TV ≤ ε.

13



Apers, Gribling, and Szilágyi

3.2 Unadjusted HMC

The results from the previous section extend from the idealized setting where one can
integrate exactly, to the setting where one uses the leapfrog integrator.

Algorithm 2: Markov kernel Q̂ (leapfrog HMC with random integration time)

Input: x ∈ Rd, stepsize δ ≤ π
20
√
β

, T = {k · δ | k ∈ N, k · δ < 10π/
√
α} as in Eq. (6)

Output: x′ ∈ Rd

1 Draw v ∼ N (0, Id) and move from x to (x, v) ;
2 Draw t ∼ U(T ) and set (x′, v′) = leapfrog(x, v, t, δ) ;

As discussed in Section 2.3.1, the leapfrog dynamics correspond to Hamiltonian dynam-
ics for a slightly modified Hamiltonian Ĥ. Bounding the distance between the stationary
distribution π̂ and π leads to the following poly(1/ε)-algorithm for sampling from a distri-
bution ε-close to π.

Proposition 7 (Unadjusted HMC) There exist constants C,C ′ > 0 such that for every
x ∈ Rd, if

K ≥ C log

(
dκ(
√
α‖x‖∞ + 1)

ε

)
and δ ≤ C ′

√
ε√

βd1/4
,

then

‖Q̂Kx − π‖TV ≤ ε

where π(x) ∝ exp(−1
2x
>Bx) and Q̂ is the kernel of the unadjusted leapfrog HMC chain with

step size δ. A sample from Q̂Kx can be obtained using O(
√
κd1/4K√

ε
) gradient evaluations.

Proof By our discussion of the leapfrog integrator in Section 2.3.1, we know that Q̂
corresponds to the idealized HMC algorithm for the modified Hamiltonian Ĥ. Here we
assume δ2ω2

i ≤ 4 for all i ∈ [d], i.e., δ ≤ 1√
β

. It thus follows from Theorem 6 that if we start

from x ∈ Rd and take K ≥ C log
(
dκ(
√
α‖x‖∞+1)
ε

)
steps of the chain Q̂, for an appropriate

constant C > 0, then it returns a distribution that is ε/2-close to the modified stationary
π̂ defined as

π̂(x) ∝ exp(−1

2
x>B̂x).

Using that π̂ and π are both multivariate Gaussians, one can show (see Lemma 8 below for
completeness)

‖π − π̂‖TV ≤
3

8
δ2

√∑
i

ω4
i ≤

3

8
δ2β
√
d.

Hence by choosing a sufficiently small stepsize δ ∈ O(
√
ε/(
√
βd1/4)), we have that ‖π̂ −

π‖TV ≤ ε/2. Together this shows that the resulting distribution after K steps will be
ε-close to π.

It remains to bound the complexity of the algorithm. A single leapfrog step requires 2
gradient evaluations, and so a single step of the Markov chain Q̂ requires t/δ ∈ O(

√
κd1/4/

√
ε)

14
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gradient evaluations. Applying K steps of the Markov chain yields a total number of gra-
dient evaluations

O

(√
κd1/4K√

ε

)
.

Lemma 8 Let π(x) ∝ exp(−x> diag(ω)x/2), ω̂i = ωi

√
1− δ2ω2

i
4 and π̂(x) ∝ exp(−x> diag(ω̂)x/2).

Then

‖π − π̂‖TV ≤
3

8
δ2

√∑
i

ω4
i ≤

3

8
δ2β
√
d.

Proof For multivariate mean-zero Gaussians we have the following bound by (Devroye
et al., 2022, Theorem 1.1):∥∥N (0,Σ1)−N (0,Σ2)

∥∥
TV
≤ 3

2
min

{
1,
∥∥∥Σ−1

1 Σ2 − I
∥∥∥
F

}
. (12)

Applying this bound for Σ1 = diag(ω̂) and Σ2 = diag(ω) we get

‖π − π̃‖TV ≤
3

2

√√√√√∑
i

(1−
δ2ω2

i

4

)
− 1

2

=
3

8
δ2

√∑
i

ω4
i ≤

3

8
δ2β
√
d.

4. Metropolis-Adjusted HMC

Here we study the Metropolis-adjusted HMC algorithm. The algorithm applies a Metropolis
filter to correct for the numerical errors of the integrator. This ensures that the algorithm
has the correct stationary distribution, and leads to an overall improved error dependence.

Algorithm 3: Markov kernel Q (Adjusted leapfrog HMC with random integra-
tion time)

Input: x ∈ Rd, stepsize δ ∈ O(1/(
√
βd1/4)), T := {k · δ | k ∈ N, k · δ < 10π/

√
α}

Output: x′ ∈ Rd

1 Draw v ∼ N (0, Id) and move from x to (x, v) ;
2 Draw t ∼ U(T ) and set (x′, v′) = leapfrog(x, v, t, δ) ;
3 Accept with probability

A(x, x′) := min
{

1, exp
(
−H(x′,−v′) +H(x, v)

)}
and return x′. Otherwise return x′ = x;

We make a few (standard) observations about the adjusted HMC algorithm, whose
proofs we defer to Appendix A.
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Lemma 9 The Markov kernel Q defined in Algorithm 3 has the following properties:

1. Kernel Q is reversible with respect to the stationary distribution π(x) ∝ exp(−1
2x
>Bx).

2. The acceptance probability is a function of only x and x′:

A(x, x′) = min
{

1, exp
(
−H(x′,−v′)+H(x, v)

)}
= min

{
1, exp

(
δ2

8

∑
i∈[d]

ω4
i (x

2
i−x′i

2
)

)}
,

and we can rewrite Qx(x′) = Q̂x(x′)A(x, x′) for x 6= x′.

4.1 Concentration bounds on high-dimensional Gaussian random variables

Here we use concentration bounds on high-dimensional Gaussians to show that if x ∼ π
or x ∼ π̂ then with high probability the quantity

∑
i∈[d] ω

4
i x

2
i is close to

∑
i∈[d] ω

2
i . We

moreover show that in that case π(x) and π̂(x) differ by at most a small multiplicative
factor.

We will use the following version of the Hanson-Wright inequality (Hanson and Wright
(1971)) which gives a concentration inequality for quadratic forms of independent Gaussian
random variables.

Theorem 10 (Hanson-Wright inequality (Vershynin, 2018, Thrm 6.2.1)) Let X =
(X1, . . . , Xd) ∈ Rd be a random vector with independent N (0, 1) coordinates. Let A be a
d× d matrix. Then, for every t ≥ 0, we have

P

[
|X>AX − E[X>AX]| ≥ t

]
≤ 2 exp

(
−C1 min

{
t2

C4
2‖A‖2F

,
t

C2
2‖A‖

})
,

where C1, C2 > 0 are constants.11

Note that if X ∈ Rd is a random vector with independent N (0, 1) coordinates, then so is
Y = UX for a rotation matrix U . This rotation-invariance allows us to again assume, for
ease of notation, that the input precision matrix B = diag(ω). For convenience, recall that

π(x) =
∏
i ωi

(2π)d/2
exp

(
−1

2

∑
i x

2
iω

2
i

)
, and (cf. Eq. (4)) that π̂ is constructed similarly using ω̂

which is defined, for each i ∈ [d], as ω̂i = ωi

√
1− δ2ω2

i
4 . We have ω2

i − ω̂2
i = 1

4δ
2ω4

i . For
γ ≥ 1, we define the measurable set

Eγ :=

x ∈ Rd |
∣∣∣x> diag(ω)4x−

∑
i

ω2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i

 . (13)

The Hanson-Wright inequality gives us the following concentration of measure for π and π̂.

Lemma 11 Let γ ≥ 1 and consider Eγ as in Eq. (13) then we have the following:

11. The theorem holds more generally for independent mean zero sub-gaussian variables Xi. The constant
K then upper bounds the sub-gaussian norm of all Xi.
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1. Let π(x) ∝ exp(−1
2x
> diag(ω)2x), then π(Eγ) ≥ 1 − 2 exp

(
− Cγ

)
where C > 0 is a

constant.

2. If 0 < δ ≤ β−1/2d−1/4, then for π̂(x) ∝ exp(−1
2x
> diag(ω̂)2x) we have π̂(Eγ) ≥

1− 2 exp(−C ′γ) where C ′ > 0 is a constant.

Proof We first prove the concentration of measure for π. We have

π(Eγ) = Px∼π

∣∣∣x> diag(ω)4x−
∑
i

ω2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i


= Pz∼N (0,Id)

∣∣∣z> diag(ω)2z −
∑
i

ω2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i


where we set zi = ωixi for each i ∈ [d] and observe that zi ∼ N (0, 1). We apply Theorem
10 to the vector z, matrix A = diag(ω)2, t = γ‖A‖F , and note that‖A‖F ≥‖A‖ implies the
lower bound

C1 min

{
(γ‖A‖F )2

C4
2‖A‖

2
F

,
γ‖A‖F
C2

2‖A‖

}
≥ C1 min

{
γ2

C4
2

,
γ

C2
2

}
≥ γC1 min{C−2

2 , C−4
2 }.

Therefore, for C ≤ C1 min{C−2
2 , C−4

2 } we obtain the desired bound for π.
We now use the same proof strategy to show concentration for π̂. We have

π̂(Eγ) = Px∼π̂

∣∣∣x> diag(ω)4x−
∑
i

ω2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i


= Pz∼N (0,Id)

∣∣∣z> diag(ω)4 diag(ω̂)−2z −
∑
i

ω2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i


≥ Pz∼N (0,Id)

∣∣∣z> diag(ω)4 diag(ω̂)−2z −
∑
i

ω4
i /ω̂

2
i

∣∣∣ ≤ γ√∑
i∈[d]

ω4
i −

∣∣∣∑
i

ω2
i − ω4

i /ω̂
2
i

∣∣∣


By definition ω4
i /ω̂

2
i = ω2

i /(1 − δ2ω2
i /4), and the upper bound on δ implies that δ2ω2

i ≤ 2.
Using this bound, we get∣∣∣∣∣∣

∑
i

ω2
i − ω4

i /ω̂
2
i

∣∣∣∣∣∣ =
∑
i

ω2
i

(
1− 1

1− δ2ω2
i /4

)

≤
∑
i

ω2
i (1− 1 + δ2ω2

i /2)

=
1

2

∑
i

δ2ω4
i ≤

1

2
√
d

∑
i

ω2
i ≤

1

2

√∑
i

ω4
i .
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Again using the fact that ω4
i /ω̂

2
i ≤ 2ω2

i , we can further lower bound π̂(Eγ) as follows:

π̂(Eγ) ≥ Pz∼N (0,Id)

∣∣∣z> diag(ω)4 diag(ω̂)−2z −
∑
i

ω4
i /ω̂

2
i

∣∣∣ ≤ γ

4

√∑
i∈[d]

(ω4
i /ω̂

2
i )

2

 .
We can then again apply Theorem 10 to obtain π̂(Eγ) ≥ 1 − 2 exp(−C ′γ) for a suitable
constant C ′ > 0.

Next we give a bound on π̂(x)/π(x) for all x ∈ Eγ , which we will use later to show that
π̂ can be used as a warm start for π.

Lemma 12 Let π(x) ∝ exp(−1
2x
> diag(ω)2x), let γ ≥ 1 and consider Eγ as defined in

Eq. (13). Let δ = 1
10
√
γβd1/4

, set ω̂i = ωi

√
1− δ2ω2

i
4 for each i ∈ [d], and let π̂(x) ∝

exp(−1
2x
> diag(ω̂)2x). Then for all x ∈ Eγ we have

0.9 ≤ π̂(x)

π(x)
≤ 1.1.

Proof For x ∈ Rd we have

π̂(x)

π(x)
=

∏
i

(
1− δ2ω2

i

4

)1/2

exp

δ2

8

∑
i

x2
iω

4
i

 .

We first obtain an upper bound on π̂(x)
π(x) for x ∈ Eγ . Using the inequality 1− z ≤ exp(−z)

(which holds for all z ∈ R), we obtain

π̂(x)

π(x)
≤ exp

δ2

8

∑
i

x2
iω

4
i − ω2

i


 ≤ exp

1

8
δ2γ

√∑
i∈[d]

ω4
i

 ≤ exp

(
1

800

)
≤ 1.1

where in the second inequality we use that x ∈ Eγ .

We can similarly bound π̂(x)
π(x) from below for x ∈ Eγ . For this we use the inequality

1 − z ≥ exp(−ηz) which holds for 0 ≤ z < 1 and η ≥ 1
z ln( 1

1−z ). For z ≤ 1/2 one has

1
z ln( 1

1−z ) ≤ 1 + z and thus η = 1 + z suffices. We apply this with z =
δ2ω2

i
4 ≤ 1

400γ
√
d
< 1/2.

This allows us to lower bound π̂(x)
π(x) as

π̂(x)

π(x)
≥ exp

−1

2

(
1 +

1

400γ
√
d

)
δ2

4

∑
i

ω2
i

 exp

δ2

8

∑
i

x2
iω

4
i


≥ exp

−1

2

1

400γ
√
d

δ2

4

∑
i

ω2
i −

δ2

8

∣∣∣∣∣∣
∑
i

x2
iω

4
i −

∑
i

ω2
i

∣∣∣∣∣∣


≥ exp

− 1

3200 · 100γ2dβ

∑
i

ω2
i −

1

800

 ≥ exp

(
− 1

400

)
≥ 0.9
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where in the third inequality we use that δ2 = 1
100γβ

√
d

and x ∈ Eγ .

Finally, we note that the acceptance probability is large on Eγ .

Lemma 13 Let A(x, x′) be the acceptance probability of the adjusted leapfrog HMC with

step size δ. If x, x′ ∈ Eγ then A(x, x′) ≥ exp
(
− δ2γ

4 d1/2β
)

.

Proof If both x, x′ ∈ Eγ then we have that
∑

i∈[d] ω
4
i (x

2
i − x′i

2) ≤ 2γ
√∑

i ω
4
i ≤ 2γd1/2β.

Lemma 12 and Lemma 13 tell us that the stepsize δ should scale with γ, d and β as

δ =
1

10
√
γβd1/4

. (14)

This choice of δ ensures a high acceptance probability whenever x, x′ ∈ Eγ and a pointwise
bound on the ratio π̂(x)/π(x) for x ∈ Eγ . In the next section we tune the choice of γ ≥ 1
to apply an argument based on the s-conductance.

4.2 s-conductance and warm start

We will bound the mixing time of the Metropolis-adjusted chain using the so-called s-
conductance. This is a generalization of the conductance that allows one to ignore small
subsets of measure π(S) ≤ s. For context, the conductance of a set S with respect to a
chain T roughly measures how quickly the chain T can escape the set S, which intuitively
is a bottleneck on how fast a chain can mix. Jerrum and Sinclair (1989) made this intuition
precise for discrete Markov chains, by showing that it is (quadratically) related to the
spectral gap. In the continuous setting, Lovász and Simonovits (1993) showed that a related
notion, s-conductance, implies a similar convergence rate. We state the necessary definitions
and results below and we refer the interested reader to, e.g., Vempala (2005) for a survey
on the analysis of geometric random walks.

Definition 14 (s-conductance) Let 0 < s < 1/2 and define the s-conductance Cs of a
Markov chain with transition kernel T and stationary distribution π as

Cs := inf

{
Cs(S) | S ⊆ Rd measurable, s < π(S) ≤ 1

2

}
, with Cs(S) :=

∫
S T (x, Sc)π(dx)

π(S)− s
.

The s-conductance leads to a mixing time bound through the following theorem from
Lovász and Simonovits (1993) (the exact formulation below is from (Wu et al., 2021,
Lem. 1)). It uses a warmness parameter Dµ0,π

s between the initial distribution µ0 and
target distribution π, which for 0 < s < 1/2 is defined by

Dµ0,π
s := sup{|µ0(A)− π(A)| : A ⊆ Rd measurable, π(A) ≤ s}.
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Lemma 15 (Lovász and Simonovits (1993)) Consider a reversible, lazy12 Markov chain
with transition kernel R, stationary distribution π and initial distribution µ0. Then for any
K ≥ 0 it holds that

‖RKµ0 − π‖TV ≤ Dµ0,π
s +

Dµ0,π
s

s

(
1− C2

s

2

)K
.

Using Lemma 12 we can prove that the stationary distribution π̂ of the unadjusted chain
Q̂ for sufficiently small step size forms a warm start, if we take γ ∈ Θ(log(1/s)).

Lemma 16 (unadjusted warm start) Let π(x) ∝ e−
1
2
x> diag(ω)2x and let π̂(x) ∝ e−

1
2
x> diag(ω̂)2x

with ω̂i = ωi

√
1− δ2ω2

i
4 . For any 0 < s < 1/2, if δ ≤ C√

β log(1/s)d1/4
for a sufficiently small

constant C > 0, then
Dπ̂,π
s ≤ 3s.

Proof Consider the set Eγ defined in (13) for a sufficiently large γ ∈ O(log(1/s)). Then
by Lemma 11 and Lemma 12 both π(Eγ) ≥ 1− s and π̂(Eγ) ≥ 1− s, and π̂(x)/π(x) ≤ 1.1
for all x ∈ Eγ . Now let A ⊆ Rd with π(A) ≤ s. Then we have

|π̂(A)− π(A)| = |π̂(A ∩ Eγ) + π̂(A ∩ Ecγ)− π(A ∩ Eγ)− π(A ∩ Ecγ)|
≤ |π̂(A ∩ Eγ)− π(A ∩ Eγ)|+ π̂(A ∩ Ecγ) + π(A ∩ Ecγ)

≤ π(A ∩ Eγ) + π̂(A ∩ Ecγ) + π(A ∩ Ecγ)

≤ π(A) + s+ s ≤ 3s.

Here in the second inequality we use that |π̂(x)− π(x)| ≤ π(x) for all x ∈ Eγ .

4.3 Bounding the s-conductance of the adjusted HMC chain

To bound the s-conductance of the adjusted chain, we first bound the s-conductance of the
unadjusted HMC chain Q̂, and then relate both conductances. For the unadjusted chain,
we can use our bounds on the mixing time of that chain to lower bound its conductance.

Lemma 17 (s-conductance unadjusted HMC) Let 0 < s < 1/2 and let Ĉs be the
s-conductance of the unadjusted HMC chain Q̂ with step size δ ≤ C√

β log(1/s)d1/4
for a suffi-

ciently small constant C > 0. Then

Ĉs ∈ Ω(1/ log(dκ log(1/s))).

Proof First consider the s-conductance Ĉ
(K)
s of the K-step kernel Q̂K . From Lemma 7

we know that ‖Q̂Kx − π̂‖TV ≤ 1/10 for K ≥ C log(dκ(
√
α‖x‖∞ + 1)) for an appropriate

constant C > 0. In particular, if x ∈ Eγ with γ ≥ 1 then ‖x‖∞ ≤
√

(γ+1)κd
α and hence

12. A lazy chain takes a step with probability 1/2, and otherwise does nothing.
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‖Q̂Kx − π̂‖TV ≤ 1/10 for all x ∈ Eγ and K ≥ C ′ log(γdκ) for an appropriate constant
C ′ > 0. By Lemma 11 we can ensure π̂(Eγ) ≥ 1− s by picking γ ∈ O(log(1/s)) (recall that
δ = 1

10
√
γβd1/4

). This choice of γ ensures there exists a K ∈ O(log(dκ log(1/s))) with the

above properties. Combining these properties, for any S for which s < π̂(S) ≤ 1/2 we have
that

Ĉ(K)
s (S) =

∫
S π̂(x)Q̂Kx (Sc)

π̂(S)− s
≥

∫
S∩Eγ π̂(x)Q̂Kx (Sc)

π̂(S)− s

≥ π̂(S ∩ Eγ)(π̂(Sc)− 1/10)

π̂(S)− s
≥ π̂(Sc)− 1

10
≥ 2

5
,

and hence Ĉ
(K)
s ≥ 2/5.

Now we can use the fact that Ĉ
(K)
s ≤ KĈ

(1)
s = KĈs to conclude that Ĉs ≥ 2/(5K),

which is Ω(1/ log(dκ log(1/s))) as claimed. To see that Ĉ
(K)
s ≤ KĈ(1)

s (which is well-known,
see e.g. (Levin et al., 2017, Eq. (7.10))), define π̂S by π̂S(x) = π̂(x) for x ∈ S and π̂S(x) = 0

elsewhere. Then note that Ĉ
(K)
s (S) = ‖QKπ̂S − π̂S‖TV/(π̂(S)− s). Using a telescoping sum

and a triangle inequality we can bound

‖QKπ̂S − π̂S‖TV ≤ ‖QKπ̂S −Q
K−1
π̂S
‖TV + ‖QK−1

π̂S
−QK−2

π̂S
‖TV + · · ·+ ‖Qπ̂S − π̂S‖TV

≤ K‖Qπ̂S − π̂S‖TV,

where the second inequality follows from submultiplicativity of the total variation distance.

Dividing both sides by π̂(S)−s and taking the infimum over S proves that Ĉ
(K)
s ≤ KĈ(1)

s .

To relate the s-conductance of the adjusted chain to the one of the unadjusted chain, we
use the properties of π and π̂ shown in Section 4.1: there is a set E ⊆ Rd of large measure
on which π and π̂ pointwise differ by at most a small multiplicative constant. Moreover,
if both x ∈ E and x′ ∈ E, then the acceptance probability of the adjusted chain satisfies
A(x, x′) ≥ 99/100.

Lemma 18 (s-conductance adjusted HMC) Let 0 < s < C/ log(dκ) for a sufficiently
small constant C > 0, and let Cs and Ĉs/2 be the s-conductance and the s/2-conductance

of the adjusted and unadjusted chains Q and Q̂ with step size δ ≤ C′√
β log(1/s)d1/4

for a

sufficiently small constant C ′ > 0. Then

Cs ≥ Ĉs/2/2.

Proof Our goal is to lower bound 1
π(S)−s

∫
S π(x)Q(x, Sc) dx for all sets S such that s <

π(S) ≤ 1
2 . To this end, we will use that by the Lemmas 11, 12 and 13 the set E := Eγ ⊂ Rd

(defined in Eq. (13)) for a suitable γ ∈ Θ(log(1/s)) and δ = 1
10
√
γβd1/4

(as in Eq. (14))

satisfies

1. π(Ec) ≤ s/10,

2. π̂(Ec) ≤ s2/10,

21



Apers, Gribling, and Szilágyi

3. 0.9 ≤ π̂(x)
π(x) ≤ 1.1 for all x ∈ E,

4. the acceptance probability A(x, x′) ≥ 99/100 for all x, y ∈ E.

Note that in Lemma 17 we have shown that Ĉs/2 ∈ Ω(1/ log(dκ log(1/s))). Therefore, for

s < C/ log(dκ) for a small enough constant C > 0, we have s ≤ Ĉs/2 and thus π̂(Ec) ≤
sĈs/2/10.

We can use this to lower bound the integral

∫
S
π(x)Q(x, Sc) dx ≥

∫
S∩E

π(x)Q(x, Sc ∩ E) dx

=

∫
S∩E

π(x)

∫
Sc∩E

Q(x, y) dy dx

=

∫
S∩E

π(x)

∫
Sc∩E

Q̂(x, y)A(x, y) dy dx

≥ 0.85

∫
S∩E

π̂(x)

∫
Sc∩E

Q̂(x, y) dy dx

= 0.85

∫
S∩E

π̂(x)Q̂(x, Sc ∩ E) dx

= 0.85

(∫
S∩E

π̂(x)Q̂(x, Sc ∪ Ec) dx−
∫
S∩E

π̂(x)Q̂(x,Ec) dx

)
≥ 0.85

(∫
S∩E

π̂(x)Q̂(x, Sc ∪ Ec) dx− π̂(Ec)

)
,

where the last inequality follows from detailed balance:

∫
S∩E

π̂(x)Q̂(x,Ec) dx =

∫
Ec
π̂(x)Q̂(x, S ∩ E) dx ≤ π̂(Ec).

We recognize the last integral as the ergodic flow from the set S′ := S∩E to its complement,
and so we can lower bound it in terms of the conductance of Q̂, provided that S′ has an
appropriate measure according to π̂. We bound π̂(S′) from below

π̂(S′) ≥ 0.9π(S′) = 0.9(π(S)− π(S ∩ Ec)) ≥ 0.9s− π(Ec) ≥ 0.8s,

and from above:

π̂(S′) ≤ 1.1π(S′) ≤ 1.1π(S) ≤ 0.55.

We proceed in two different ways depending on the measure π̂(S′).
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1. If 0.8s ≤ π̂(S′) ≤ 1/2, we have the lower bound

Cs =

∫
S π(x)Q(x, Sc) dx

π(S)− s
≥ 0.85

Ĉs/2(π̂(S′)− s/2)− π̂(Ec)

π(S)− s

≥ 0.85
Ĉs/2(π̂(S′)− 0.6s)

π(S)− s

≥ 0.85
Ĉs/2(0.9π(S′)− 0.6s)

π(S)− s

≥ 0.85
Ĉs/2(0.9π(S)− π(Ec)− 0.6s)

π(S)− s

≥ 0.85
Ĉs/2(0.9π(S)− 0.7s)

π(S)− s

≥ 0.85
Ĉs/2(0.7π(S)− 0.7s)

π(S)− s
≥
Ĉs/2

2
.

2. If 1/2 ≤ π̂(S′) ≤ 0.55, we have s ≤ π̂(S′c) ≤ 1/2. Additionally, we know that Q̂
satisfies detailed balance:∫

S′
π̂(x)Q̂(x, S′c) dx =

∫
S′c
π̂(x)Q̂(x, S′) dx.

Therefore, we have the following lower bound

Cs =

∫
S π(x)Q(x, Sc) dx

π(S)− s
≥ 0.85

Ĉs/2(π̂(S′c)− s/2)− π̂(Ec)

π(Sc)− s

≥ 0.85
Ĉs/2(π̂(S′c)− 0.6s)

π(Sc)− s

= 0.85
Ĉs/2(1− π̂(S′)− 0.6s)

1− π(S)− s

≥ 0.85
Ĉs/2(1− 1.1π(S)− 0.6s)

1− π(S)− s

≥ 0.85
Ĉs/2(1− 1.1π(S)− 0.6s)

1− π(S)− 0.6s
≥
Ĉs/2

2
.

4.4 Mixing time of adjusted HMC

We can now plug our bounds on the s-conductance into Lemma 15 to get the following
bound on the mixing time of the (lazy) Metropolis-adjusted HMC chain,13 when starting
from a warm start.

13. Making the chain lazy reduces the s-conductance only by a factor 2.
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Theorem 19 (Metropolis-adjusted HMC with warm start) Let 0 < ε < C/ log(dκ)
for a sufficiently small constant C > 0, and let µ0 be an initial distribution with warmness
Dµ0,π
s ≤ ε/2 for s = ε/6. There exist constants C ′, C ′′ > 0 such that for every x ∈ Rd, if

K ≥ C ′ log(dκ log(1/ε)) log(1/ε) and δ ≤ C ′′√
β log(1/ε)d1/4

,

then
‖QKµ0 − π‖TV ≤ ε

where π ∝ exp(−x>Bx/2) and Q is the kernel of the (lazy) Metropolis-adjusted leapfrog
HMC chain with step size δ.

Proof For s = ε/6 and our choice of δ we know from Lemma 18 and Lemma 17 that Q
has s-conductance Cs ∈ Ω(1/ log(dκ log(1/s))). By invoking Lemma 15 we know that

‖QKµ0 − π‖TV ≤ Ds +
Ds

s

(
1− C2

s

2

)K
≤ ε

2
+ 3

(
1− C2

s

2

)K
≤ ε

for K ∈ Ω(log(1/ε)/Cs) and hence K ∈ Ω(log(dκ log(1/ε)) log(1/ε)).

Hence, starting from a warm start µ0 we can sample from a distribution ε-close to π
in TV-distance using Õ(

√
κd1/4 log(1/ε)) gradient evaluations. To get around this warm

start, recall from Lemma 16 that the stationary distribution of the unadjusted chain (with
sufficiently small step size δ) provides a warm start for the adjusted chain. This gives the
following, main theorem.

Theorem 20 (Metropolis-adjusted HMC) Let 0 < ε < C/ log(dκ) for a sufficiently
small constant C > 0. There exists constants C ′0, C

′, C ′′ > 0 such that for every x ∈ Rd, if

K ≥ C ′ log(dκ log(1/ε)) log(1/ε), K0 ≥ C ′0 log

(
dκ(
√
α‖x‖∞ + 1)

ε

)
, δ ≤ C ′′√

β log(1/s)d1/4
,

then
‖(QK ◦ Q̂K0)x − π‖TV ≤ ε

where π ∝ exp(−x>Bx/2) and Q (resp. Q̂) is the kernel of the (lazy) Metropolis-adjusted
(resp. unadjusted) leapfrog HMC chain with step size δ. We can thus obtain a sample
from a distribution that is ε-close to π in TV-distance using Õ(

√
κd1/4 log(1/ε)) gradient

evaluations.

Proof From Lemma 16 we know that there exists a constant C ′′ > 0 such that if δ ≤
C′′√

β log(1/s)d1/4
, then π̂ is such that Dπ̂,π

s ≤ ε/4 for s = ε/12, i.e., π̂ is warm for π. Theorem 19

shows that there exists a constant C ′ > 0 such that for all K ≥ C ′ log(dκ log(1/ε)) log(1/ε)
we have ‖QKπ̂ − π‖TV ≤ ε/2. On the other hand, for the unadjusted chain, by Corollary 6,

there exists a constant C ′0 > 0 such that for all x ∈ Rd and K0 ≥ C ′0 log
(
dκ(
√
α‖x‖∞+1)
ε

)
we

24



HMC for efficient Gaussian sampling: long and random steps

have ‖Q̂K0
x − π̂‖TV ≤ ε/2. Combining these two estimates we obtain for such K and K0

that

‖(QK ◦ Q̂K0)x − π‖TV ≤ ‖(QK ◦ Q̂K0)x −QKπ̂ ‖TV + ‖QKπ̂ − π‖TV

≤ ‖Q̂K0
x − π̂‖TV + ‖QKπ̂ − π‖TV ≤ ε,

where we used submultiplicativity (‖QKµ −QKν ‖TV ≤ ‖µ − ν‖TV) in the second inequality.

5. Conclusions and open questions

To conclude, we studied the Hamiltonian Monte Carlo algorithm for sampling from high-
dimensional Gaussian distributions, focusing on the dependency on both condition number
κ and dimension d of the Gaussian. We showed that a HMC algorithm with the leapfrog
integrator and long, randomized integration times can be used to sample from a distribu-
tion ε-close in TV-distance to a Gaussian distribution by making only Õ(

√
κd1/4 log(1/ε))

gradient queries. Such scaling for leapfrog HMC in both the dimension and the condition
number matches with well-known scaling limits due to Duane et al. (1987); Neal (2011)
and empirical observations (see e.g. the recent (Chada et al., 2023, Figure 4)). Rigorous
optimality of the scaling with κ follows from the Ω̃(

√
κ) lower bound by Chewi et al. (2023).

The
√
κ-dependency also improves over similar, preceding work on leapfrog HMC that

achieved at best a linear κ-dependency (Mangoubi and Vishnoi (2018); Chen et al. (2020)).
While these works typically consider more general logconcave distributions, we feel that our
work enhances the possibility of obtaining a similar

√
κ-dependency for such distributions

as well. This would disprove the Ω(κ) versus O(
√
κ) gap that was suggested by Lee et al.

(2020) between logconcave sampling and convex optimization, respectively.

Our analysis through s-conductance naturally leads to error bounds on the TV-distance.
A natural open question is whether similar results can be obtained for different distance
measures such as for example the KL-divergence or a Wasserstein distance. Understanding
the KL-divergence would require pointwise bounds on the proposal distribution (which we
do not obtain via our analysis). The Wasserstein distance depends on the geometry of
the state space and is typically analysed via coupling methods. For the unadjusted HMC
algorithm and the Wasserstein-2 distance, such a result has recently been obtained in Jiang
(2023), see also Footnote 6.

Finally, another interesting question concerns the necessity of a warm start, which we
obtain by first doing a number of un-adjusted HMC steps. A recent work Chada et al.
(2023) provides a new perspective on this by combining Langevin dynamics with splitting
methods, apparently avoiding the need for a warm start.
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Appendix A. Proof of Lemma 9

Proof [Proof of Lemma 9, part 1] This fact is well known for fixed integration times. Here
we prove that it also holds for randomized integration times.

We prove first that Q leaves the distribution π(x) ∝ exp(−x>Bx/2) invariant. To this
end, we look at the larger phase space. Starting from x ∼ π, the state (x, v) in step 2 is
distributed according to the distribution

π̃(x, v) ∝ exp(−x>Bx/2− v>v/2) = exp(−H(x, v)).

It remains to prove that steps 2. and 3. leave π̃ invariant. Let T denote the kernel of the
proposal generated in step 2. (i.e., proposal (x′,−v′) has density T ((x, v), (x′, v′))). First
we note that T is symmetric, i.e., T ((x, v), (x′, v′)) = T ((x′, v′), (x, v)). To see this, recall
that leapfrog integration is reversible in the sense that leapfrog(x, v, t/δ, δ) = (x′, v′) implies
that leapfrog(x′,−v′, t/δ, δ) = (x,−v), and hence

T ((x, v), (x′, v′)) =
1

|U(T )|
∑

t∈U(T )

1
{

leapfrog(x, v, t) = (x′,−v′)
}

=
1

|U(T )|
∑

t∈U(T )

1
{

leapfrog(x′, v′, t) = (x,−v)
}

= T ((x′, v′), (x, v)).

Then, note that step 3. effectively implements a Metropolis filter w.r.t. distribution π̃, which
has acceptance probability

A((x, v), (x′, v′)) = min

{
1,
π̃(x′, v′)

π̃(x, v)

}
= min

{
1, exp

(
−H(x′,−v′) +H(x, v)

)}
.

It is then a direct consequence that steps 2. and 3. leave π̃ invariant as well.
Next, we show that Q is in fact reversible with respect to π, i.e.,

π(x)Q(x, x′) = π(x′)Q(x′, x), for all x, x′ ∈ Rd.

To do this, we use the fact that for all x, v ∈ Rd, the density π̃(x, v) factorizes as π̃(x, v) =
π(x)µ(v) with µ(v) ∼ exp(−v>v/2) a standard Gaussian. Using this, we get that

π(x)Q(x, x′) = π(x)

∫∫
v,v′∈Rd

T ((x, v), (x′, v′))A((x, v), (x′, v′))µ(v) dv dv′

= π(x)

∫∫
v,v′∈Rd

T ((x, v), (x′, v′)) min

{
1,
π(x′)µ(v′)

π(x)µ(v)

}
µ(v) dv dv′

=

∫∫
v,v′∈Rd

T ((x, v), (x′, v′)) min
{
π(x)µ(v), π(x′)µ(v′)

}
dv dv′.

Since each term in the last expression is symmetric under the exchange of (x, v) with (x′, v′),
we conclude that it is equal to π(x′)Q(x, x′) for all x, x′, and conclude that the chain is re-
versible.
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Proof [Proof of Lemma 9, part 2] First recall that (x′, v′) = leapfrog(x, v, t/δ, δ). From
Section 2.3.1 we know that the leapfrog integrator preserves the modified Hamiltonian and
therefore we have

Ĥ(x, v) = Ĥ(x′, v′) = Ĥ(x′,−v′).

Moreover, by Eq. (5) we have

H(x, v)− Ĥ(x, v) =
δ2

8

∑
i∈[d]

ω4
i x

2
i

for all x, v ∈ Rd. Combining these two identities we find that

H(x, v)−H(x′,−v′) =

Ĥ(x, v) +
δ2

8

∑
i∈[d]

ω4
i x

2
i

−
Ĥ(x′,−v′) +

δ2

8

∑
i∈[d]

ω4
i x
′
i
2


=
δ2

8

∑
i∈[d]

ω4
i (x

2
i − x′i

2
),

and hence the acceptance probability takes the form A(x, x′) as claimed.

From this, it easily follows that Qx takes the form Qx(x′) = Q̂x(x′)A(x, x′) for x 6= x′:

Qx(x′) =

∫∫
v,v′∈Rd

T ((x, v), (x′, v′))A((x, v), (x′, v′))µ(v) dv dv′

= A(x, x′)

∫∫
v,v′∈Rd

T ((x, v), (x′, v′))µ(v) dv dv′ = A(x, x′)Q̂x(x′).
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