
Journal of Machine Learning Research volume (2024) 1-42 Submitted 11/23; Revised 6/24; Published 12/24

Optimal Decision Tree and Adaptive Submodular Ranking
with Noisy Outcomes

Su Jia sj693@cornell.edu
Center of Data Science for Enterprise and Society
Cornell University

Fatemeh Navidi navidi@umich.edu
Midpoint Markets

Viswanath Nagarajan viswa@umich.edu
Industrial & Operations Engineering
University of Michigan

R. Ravi ravi@andrew.cmu.edu

Tepper School of Business

Carnegie Mellon University

Editor: Kevin Jamieson

Abstract

In pool-based active learning, the learner is given an unlabeled data set and aims to effi-
ciently learn the unknown hypothesis by querying the labels of the data points. This can
be formulated as the classical Optimal Decision Tree (ODT) problem: Given a set of tests,
a set of hypotheses, and an outcome for each pair of test and hypothesis, our objective is
to find a low-cost testing procedure (i.e., decision tree) that identifies the true hypothesis.
This optimization problem has been extensively studied under the assumption that each
test generates a deterministic outcome. However, in numerous applications, for example,
clinical trials, the outcomes may be uncertain, which renders the ideas in the deterministic
setting invalid. In this work, we study a fundamental variant of the ODT problem in which
some test outcomes are noisy, even in the more general case where the noise is persistent,
i.e., repeating a test gives the same noisy output. Our approximation algorithms provide
guarantees that are nearly best possible and hold for the general case of a large number
of noisy outcomes per test or per hypothesis where the performance degrades continuously
with this number. Furthermore, most of our results hold for a more general problem called
Adaptive Submodular Ranking with Noise (ASRN). We numerically evaluated our algo-
rithms for identifying toxic chemicals and learning linear classifiers and observed that our
algorithms have costs very close to the information-theoretic minimum.1

Keywords: approximation algorithms, active learning, optimal decision tree, submodular
functions, stochastic set cover

1. A preliminary version of this paper appeared as Jia et al. (2019) in the Proceedings of the Thirty-third
Neural Information Processing Systems (NeurIPS’19). This paper substantially expanded the proceed-
ings version by (i) generalizing our results beyond decision trees to a novel problem called Adaptive
Submodular Ranking with Noise (ASRN), and (ii) extending our analysis from binary outcome space to
finite outcome space.
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1. Introduction

In the Optimal Decision Tree (ODT) problem, our objective is to identify an unknown true
hypothesis drawn from a known prior distribution over a given set of hypotheses. To collect
information on the true hypothesis, we are also given a set of tests. Upon selection, a test
produces a binary (i.e., positive or negative) outcome that depends on the true hypothesis,
and a certain cost is incurred. Finally, we are given a binary matrix that documents the
outcome of every pair of test and hypothesis. The goal is to find a low-cost testing procedure
(i.e., decision tree) that always identifies the true hypothesis.

This fundamental problem encapsulates many real-world challenges wherein the learner
aims to interactively gather information to identify the unknown ground truth. For example,
in medical diagnosis, a doctor must diagnose a patient’s unknown disease by performing a
low-cost sequence of medical tests, chosen from a set of available tests (Loveland, 1985).
As another example, in active learning (e.g., Dasgupta 2005), the learner is given a set
of unlabeled data points and aims to find a correct binary classifier by efficiently querying
the labels of the data points. Other applications include entity identification in databases
(Chakaravarthy et al. 2011) and experimental design to choose the most accurate theory
among competing candidates (Golovin et al. 2010).

The ODT problem has been extensively studied under the assumption that each test
generates a deterministic outcome. However, this assumption is unrealistic in many appli-
cations. For example, in clinical trials, the results of the same medical test may vary among
individuals due to genetic differences, despite the fact that they share the same underlying
disease. Similarly, in online A/B experiments, users’ reactions to a particular treatment
(“test”) may vary within the same user group (“hypothesis”) due to personal preferences.

Despite the considerable literature on the ODT problem, the fundamental problem of
ODT with noisy outcomes is not yet adequately understood, especially from the perspec-
tive of approximation algorithms. Previous work incorporating noise (e.g., Golovin et al.
2010) was restricted to settings with very few noisy outcomes. One of the central technical
challenges in the presence of noise is that each hypothesis can potentially follow one of an
exponential (in the level of uncertainty) number of trajectories. This leads to an unfavorable
approximation ratio if the noise-free analysis is applied directly.

Against this backdrop, we embark on a comprehensive study of the fundamental problem
of Optimal Decision Tree with Noise (ODTN) in full generality and design novel approxi-
mation algorithms with provable guarantees. Essentially, we generalize the ODT problem
to the setting where the test-hypothesis matrix may contain some independently random
entries. The positions of these entries are known but their values can only be revealed when
the corresponding test is performed. We consider the persistent noise model, where repeat-
ing the same test always produces the same outcome. Persistent noise is more challenging
than independent noise, since we can no longer “denoise” by repeating a test many times.

Beyond the ODTN problem, our results are valid in a substantially more general setting,
called Adaptive Submodular Ranking with Noise (ASRN): Given a set of elements, we need
to construct a subset of elements sequentially to cover an unknown target function, which
comes from a given family of submodular functions. When an element is selected, we not
only increase the value of the target function but also receive a random response that helps
further localize the target function in the given family. Therefore, we face a learning-
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what to choose what is unknown what to observe

AL unlabeled data classifier label
ODT test hypothesis outcome
ASR element target function response

Table 1: One stone, three birds: Analogous terminologies in active learning (AL), optimal
decision tree (ODT), and adaptive submodular ranking (ASR).

versus-earning trade-off: An intelligent algorithm must consider both the coverage and the
information gain when selecting the next element. The goal is to minimize the cover time
of the target function, i.e., the expected number of elements selected until the value of the
target function reaches a prescribed threshold.

The ASRN problem generalizes the ODTN problem. To see this, note that since the
output must be correct with probability 1, we need to eliminate all but one hypothesis. This
motivates us to consider a set function for each hypothesis, whose value is proportional to
the number of other hypotheses eliminated. Intuitively, this function is submodular: The
elimination power of the same test diminishes as we select more tests. Our objective is to
cover the submodular function of the true hypothesis, which is unknown initially but can
be “learned” as we observe more test outcomes. To help the reader see the connection, we
list and compare analogous concepts in these problems in Table 1.

In the absence of noisy outcomes, this problem has been studied in both non-adaptive
(Azar and Gamzu, 2011) and adaptive (Navidi et al., 2020) settings. In addition to the ODT
problem, this submodular setting captures a number of applications such as Multiple-intent
Search Ranking (Azar et al., 2009), Decision Region Determination (Javdani et al., 2014)
and Correlated Knapsack Cover (Navidi et al., 2020). Our work is the first to handle noisy
outcomes in all of these applications in a unified manner.

1.1 Contributions

Our results can be categorized into the following four parts.

1. Non-adaptive Setting. We first consider the non-adaptive version of the ASRN
problem, dubbed Submodular Function Ranking with Noise (SFRN). We obtain a
polynomial-time algorithm with cost O(log 1

ε ) times the optimum; see Theorem 14.
Here, ε > 0 is the separability of the family of submodular functions, formally defined
in Section 2. This result is significant because of the following aspects.

(a) Implications for the ODTN Problem: The above implies an O(logm)-
approximation for the non-adaptive ODTN problem where m is the number
of hypotheses. This is best possible assuming P 6= NP, due to the renowned
hardness of approximation for the Set Cover problem; see Theorem 4.4 in Feige
1998.

(b) Optimality: Unless P = NP, there is no polynomial-time o(log 1
ε )-approximation

algorithm (even without noise); see Theorem 3.1 in Azar and Gamzu 2011.
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2. Adaptive Setting with Low Noise. We present an algorithm whose performance
guarantee degrades with the noise level. Specifically, we introduce the notions of row
uncertainty r and column uncertainty c (formally defined in Section 5), and present
an O(min{c, r} + log m

ε )-approximation algorithm for the ASRN problem where m
is the number of submodular functions; see Theorem 19. In the noiseless case, i.e.,
c = r = 0, our result matches the known bound (Theorem 1 in Navidi et al. 2020) for
the special case without noise. Our result is significant in the following respects.

(a) Implications for the ODTN Problem: By setting ε = 1
m , we immediately

obtain an O(min{c, r}+logm) approximation for the (adaptive) ODTN problem.
In this context, c (resp. r) is the maximum number of noisy outcomes in each
column (resp. row) of the test-hypothesis matrix.

(b) Optimality Under Low Noise Level: If the number of noisy outcomes in each
row or column is O(log m

ε ), the approximation ratio becomes O(log m
ε ), which is

best possible due to Theorem 4.1 in Chakaravarthy et al. 2011.

(c) Improved Approximation for the ODTN Problem: Golovin et al. (2010)
obtained an approximation algorithm that is polynomial-time only when c =
O(logm). Our result improves the above by a logarithmic factor and is polynomial-
time regardless of c, r.

3. Adaptive Setting with High Noise. So far we have focused on the case with
few uncertain entries in the test-hypothesis matrix. Now, we consider the other ex-
treme, where this matrix has few deterministic entries. At first sight, considering the
increased level of noise, the problem appears considerably more challenging. Surpris-
ingly, we obtain a logarithmic approximation by combining the following components.

(a) Sparsity of the Instance: An ODTN instance is α-sparse for some α ∈ [0, 1] if
each test has O(mα) deterministic outcomes. The lower α, the more challenging
it is to identify the true hypothesis. We quantify this relation by showing that
the optimum is Ω(m1−α); see Proposition 21.

(b) Lower Bound via Stochastic Set Cover: As the key technical novelty, we
relate the ODTN problem to the Stochastic Set Cover (SSC) problem by “charg-
ing” the cost to a family of SSC instances. For each hypothesis i, we associate an
SSC instance and show that its optimum, denoted OPTSSC(i), is a lower bound
on the cost of any algorithm attributed to i. We then show that the optimum is
at least the sum of OPTSSC(i)’s, weighted by the prior probabilities.

(c) A Novel Greedy Algorithm: Motivated by the above observation, we present
a hybrid algorithm that integrates (i) the greedy algorithm for the SSC prob-
lem and (ii) a brute-force subroutine that checks whether one of the hypotheses
with the highest posterior probability is the true hypothesis; see Algorithm 3.
This algorithm has a low cost since (i) the greedy SSC algorithm is an O(logm)-
approximation, and (ii) the brute-force subroutine enumerates only a small num-
ber of hypotheses.

(d) Approximation for α-Sparse Instances: Building on (b) and (c), we show
that the above algorithm has cost O(mα+logm·OPT) for any α-sparse instance;
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see Theorem 27. When α ≤ 1
2 , we have OPT = Ω(mα) due to (a), and we obtain

an O(logm)-approximation.

4. Comprehensive Numerical Experiments. We tested our algorithms on both a
synthetic and a real data set arising from toxic chemical identification. We compared
the empirical performance guarantee of our algorithms to an information-theoretic
lower bound. The cost of the solution returned by our non-adaptive algorithm is
typically within 50% of this lower bound, and typically within 20% for the adaptive
algorithm, demonstrating the effective practical performance of our algorithms.

1.2 Related Work

The ODT problem has been extensively studied for several decades; see Garey and Graham
1974; Hyafil and Rivest 1976/77; Loveland 1985; Arkin et al. 1998; Kosaraju et al. 1999;
Adler and Heeringa 2008; Chakaravarthy et al. 2009; Gupta et al. 2017; Li et al. 2020. The
state-of-the-art result is an O(logm)-approximation (Gupta et al., 2017), for instances with
arbitrary probability distribution and costs. On the other hand, Chakaravarthy et al. (2011)
showed that ODT cannot be approximated to a factor better than O(logm) unless P=NP.

The application of ODT to Bayesian active learning was formalized in Dasgupta 2005.
There are also several results on the statistical complexity of active learning; see, e.g., Balcan
et al. 2006; Hanneke 2007; Nowak 2009. There are two main differences compared to our
setting. First, they focus on proving sample complexity bounds for structured hypothesis
classes, such as threshold functions or linear classifiers. Secondly, these works primarily
focus on analyzing the sample complexity, rather than comparing the cost with the optimal
algorithm. On the contrary, we consider arbitrary (finite) hypothesis classes and obtain
computationally efficient policies with provable approximation bounds relative to the opti-
mal (instance-specific) policy. This approach is similar to that of Dasgupta 2005; Guillory
and Bilmes 2009; Golovin and Krause 2011; Golovin et al. 2010; Cicalese et al. 2014; Javdani
et al. 2014.

The noisy ODT problem was studied previously in Golovin et al. 2010, but their results
relied on a flawed claim in Golovin and Krause 2011; the error was pointed out by Nan
and Saligrama (2017). We note that an O(logm) approximation ratio (still only for very
sparse noise) follows from the work on the “equivalence class determination” problem by
Cicalese et al. (2014). For this setting, our result is also an O(logm) approximation, but
our algorithm is simpler. More importantly, ours is among the first to handle any number
of noisy outcomes for cost-minimization;2 other such work include Gan et al. (2021a,b).

Other variants of noisy ODT have also been considered, where the goal is to identify
the correct hypothesis with at least some target probability (Naghshvar et al., 2012; Bellala
et al., 2011; Chen et al., 2017). Chen et al. (2017) provided a bi-criteria approximation in
which the algorithm has a higher error probability than the optimal policy. Our setting is
different because we require zero probability of error.

Many results for ODT (including some of ours) rely on certain submodularity properties.
We briefly survey some background results. In the basic Submodular Cover problem, we
are given a set of elements and a submodular function f . The goal is to use the minimal

2. The approach of Chen et al. (2015) can also handle a large number of noisy outcomes, but their objective
is to maximize the information gained, rather than identifying the true hypothesis.
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number of elements to increase the value of f to reach a certain threshold. Wolsey (1982)
first considered this problem and proved that the natural greedy algorithm is a (1 + ln 1

ε )-
approximation, where ε is the minimal positive marginal increment of the function. As a
natural generalization, in the Submodular Function Ranking problem we are given multiple
submodular functions and aim to sequentially select elements so as to minimize the total
cover time of these functions. Azar and Gamzu (2011) proposed a best-possible O(log 1

ε )-
approximation algorithm for this problem, and Im et al. (2016) extended this result to also
handle arbitrary costs. More recently, Navidi et al. (2020) studied an adaptive version of the
submodular ranking problem and presented a best-possible O(log m

ε )-approximation where
m is the number of functions.

Finally, we note that there is also work considering the worst-case (instead of average
case) cost in ODT and active learning; see, e.g., Moshkov 2010; Saettler et al. 2017; Guillory
and Bilmes 2010, 2011. These results are incomparable to ours because we are interested in
the average cost. Moreover, the analysis of average cost is, in general, more intricate than
that of the worst-case cost.

2. Preliminaries

In the problem of Optimal Decision Tree with Noise (ODTN), we are given a set of m
possible hypotheses with a prior probability distribution {πi}mi=1, from which an unknown
true hypothesis ī is drawn. There is also a set T of n binary tests. Each test T ∈ T is a
mapping T : [m]→ {+1,−1, ?}. Equivalently, a test is a three-way partition T+ ∪ T− ∪ T ∗
of [m], where T o = {h ∈ [m] : T (h) = o} for each o ∈ {+,−, ?}. When this test is
performed, we will observe an outcome T (̄i) if T (̄i) 6= ?, and observe +,− with probability
1
2 if T (̄i) = ?. We assume that the random outcomes are independent conditioned on the
true hypothesis.3

Alternatively, we can view an instance as a matrix M ∈ {+1,−1, ?}n×m, where each
?-entry is independently drawn from +1 and −1 uniformly. We emphasize that we only
know the positions of the ? entries but not their realized binary values, which can only be
revealed when the corresponding test is selected.

We aim to identify ī by iteratively eliminating hypotheses. Suppose we select a test T
and observe an outcome O ∈ {±1}. Then, we can rule out the hypotheses i ∈ [m] with
T (i) = −O. We emphasize that we can not rule out hypotheses h with T (h) = ?. In fact,
if h is the true hypothesis, then there is still non-zero probability that we will observe O
when T is selected.

We consider the persistent noise model. That is, repeating a test T with ī ∈ T ∗ always
produces the same outcome. This model is (a) more general and (b) more challenging than
the non-persistent (i.i.d.) noise model, where repeating the same test multiple times results
in independent noisy outcomes. The non-persistent noise model is more common in the
literature on active learning and ODT. To see (a), we can reduce the independent noise
model to the persistent noise model by creating sufficiently many copies of each test. To see
(b), note that in the independent noise model, we can “denoise” by repeating a test many

3. The independent noise assumption is somewhat strong, as it disallows correlation between the test
outcomes, conditional on ī. This assumption is commonly used in previous works; see, e.g., Section 3.1
of Chen et al. 2015.
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times and reducing the problem to a deterministic one. However, this approach fails under
persistent noise.

We require that the output be correct with probability 1. To ensure that this is feasible,
we assume that the true hypothesis ī can be uniquely identified by performing all tests,
regardless of the outcomes of ?-tests, i.e., tests T where T (̄i) = ?.

Assumption 1 (Identifiability). For any hypotheses i, j ∈ [m], there exists a test T such
that T (i) 6= T (j) and T (i), T (j) ∈ {+1,−1}.

Many of our results still hold (with possibly weaker guarantees) without the identifi-
ability assumption; see Section 7. Our goal is to minimize the expected number of tests
performed. We formally define the cost when we introduce the more general problem of
ASRN in Section 3.

3. Submodular Function Ranking and Its Variants

Many of our results for the ODTN problem are obtained as corollaries of a more general
problem, Adaptive Submodular Ranking with Noise (ASRN). To define this problem, we first
review the basic versions. In Section 3.1, we introduce the Submodular Function Ranking
(SFR) problem (Azar and Gamzu, 2011), where elements are selected non-adaptively to
cover a family of submodular functions. Then, in Section 3.2, we review the adaptive
version of SFR, called the Adaptive Submodular Ranking (ASR) problem (Navidi et al.,
2020), where the elements are selected to cover an unknown target submodular function,
adaptively based on observed information on the target function. Finally, in Section 3.3, we
dive into full generality by introducing the problem of Adaptive Submodular Ranking with
Noise (ASRN), which generalizes both the ASR and ODTN problems.

3.1 Submodular Function Ranking, Noiseless Case

Let us begin with the simplest setting and gradually add components in the next two sub-
sections. Azar and Gamzu (2011) introduced the following Submodular Function Ranking
(SFR) problem. We are given a ground set of elements [n] := {1, ..., n} and a collection of
monotone submodular functions {f1, ..., fm} where fi : 2[n] → [0, 1] satisfies fi(∅) = 0 and
fi([n]) = 1 for all i ∈ [m]. It is without loss of generality (w.l.o.g.) to assume that the range
is [0, 1], since any bounded function can be normalized to take values in [0, 1]. Each i ∈ [m]
is called a scenario. An unknown target scenario is drawn from a known distribution {πi}
over [m].

Note that in this problem, we are not able to “learn” the target function based on any
observable information. Therefore, a decision rule can be formulated as a permutation of
elements. For a fixed permutation σ, we define the cover time of a scenario i as the first
time fi reaches the value 1 if we select elements one by one according to σ. The objective
in the SFR problem is to find a permutation σ of [n] with minimal expected cover time.

Definition 1 (Cover Time and Cost). Let σ = (σ(1), . . . , σ(n)) be any permutation of the
elements and i ∈ [m] be a scenario. Then, the cover time is defined as

C(i, σ) := min {t |fi({σ(1), ..., σ(t)}) = 1} .

The cost of σ is Cost(σ) :=
∑

i∈[m] πi · C(i, σ).
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Azar and Gamzu (2011) proposed a greedy algorithm that constructs a permutation of
elements by iteratively selecting the next element with the highest score. This score assigns
higher priority to those scenarios close to being covered. Specifically, the weight of each
scenario is inversely proportional to the distance from 1 and the current value of fi. We will
formally state this algorithm in the form of pseudo-code in Algorithm 1 after we introduce
the noisy variant in the next subsection.

This algorithm has the best possible approximation ratio in terms of separability param-
eter ε > 0, defined as the minimum positive marginal increment of any function.

Definition 2 (Separability). Given a family of non-decreasing set functions {fi}mi=1, its
separability is defined as

ε := min{fi(S ∪ {e})− fi(S) > 0 | ∀S ⊆ [n], i ∈ [m], e ∈ [n]}.

Azar and Gamzu (2011) showed the following in their Theorem 2.1.

Theorem 3 (Azar and Gamzu 2011). There is a polynomial-time algorithm whose cost is
O(log 1

ε ) times the optimum for any SFR instance with separability parameter ε > 0.

3.2 Adaptive Submodular Ranking, Noiseless Case

An instance of the Adaptive Submodular Ranking (ASR) problem is more involved than in
the SFR problem in the following two ways. First, for each scenario i ∈ [m], there is a
known response function ri : [n] → Ω where Ω is a finite set of responses (or outcomes,
which we use interchangeably). If i is the true scenario and an element e ∈ [n] is selected,
then a response ω = ri(e) ∈ Ω is generated and thus any scenario j with rj(e) 6= ω can be
eliminated. Second, the domain of each submodular function is expanded to incorporate
the variability of the responses: The domain for each submodular function is 2[n] in an SFR
instance, and is instead 2[n]×Ω in an ASR instance. The SFR problem can be cast as a
special case of the ASR problem: The reduction is immediate by setting the response set Ω
to a singleton.

An adaptive policy (or decision tree) constructs a sequence of elements incrementally and
adaptively, based on the responses of the previous elements. A policy is simply a function
that maps the current state, i.e., elements selected so far and their responses, to an element
that will be selected next. We formalize this concept below.

Definition 4 (Adaptive Policy). An adaptive policy is a mapping Φ : 2[n]×Ω → [n],
where 2[n]×Ω denotes the state space.

Note that not every subset of [n]×Ω constitutes a valid state (as each element can have
at most outcome); strictly speaking, the policy only needs to be defined on valid states.

Similarly to the non-adaptive setting, we aim to minimize the expected cover time. Let
Φ be an adaptive policy. Observe that, conditional on any true scenario i ∈ [n], the sequence
of elements selected is uniquely determined by Φ. In fact, this sequence can be specified
inductively and explicitly as follows. Suppose that elements e1, . . . , ek have been selected
in the first k iterations. Then, the responses are ri(e1), . . . , ri(ek). By the definition of Φ,
the next element selected would be ek+1 := Φ({(et, ri(et)) : t = 1, . . . , k}). We denote this
sequence by σi,Φ and define the cover time as follows.
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Definition 5 (Cover Time, Adaptive Setting). Let Φ be a policy and i ∈ [m] be a scenario.
Suppose e1, . . . , en is the (deterministic) sequence of elements selected by Φ if i is the true
scenario. The cover time of i is then defined as

C(i,Φ) := min{k | fi({(et, ri(et)) : t ∈ [k]}) = 1}.

The expected cover time is ECT(Φ) :=
∑

i∈[m] πi · C(i,Φ).

The objective of the ASR problem is to find an adaptive policy Φ with minimal expected
cover time. Navidi et al. (2020) showed a best-possible approximation algorithm (see their
Theorem 1) that we will apply in Section 5.

Theorem 6 (Navidi et al. 2020). There is a polynomial-time algorithm whose cost is
O(log m

ε ) times the optimum for any ASR instance with separability parameter ε > 0.

Note that the ASR problem is a generalization of the (noiseless) ODT problem. In fact,
for any hypothesis i in the ODT problem, we can define a submodular function fi that
maps a subset of tests to the number of other hypotheses eliminated by these tests, if i is
the true hypothesis.

Analogously, we next introduce a noisy version of the ASR problem and show that it
generalizes the ODTN problem.

3.3 Adaptive Submodular Ranking with Noise

We now formally define the problem of Adaptive Submodular Ranking with Noise (ASRN).
An ASRN instance is almost identical to that of an ASR instance: We are given a set of
n elements and a set of m scenarios. Each scenario i ∈ [m] is associated with a known
submodular function fi : 2[n]×Ω → [0, 1]. We are also given a known prior distribution (πi)
over the scenarios.

The only difference lies in the response function: For each scenario i, the response
function ri : [n]→ Ω∪{?} can take a special value ?. Suppose i ∈ [m] is the true hypothesis
and ri(e) = ?, then the response will be independently drawn from a known distribution
on Ω. For simplicity, we will consider uniform distribution, although our results extend to
arbitrary distributions.

Although the responses are random, we can still use them to eliminate scenarios. To
see this, take Ω = {±1}. Suppose i ∈ [m] is the true hypothesis and ri(e) = ? for some
element e ∈ [n]. When e is selected, we observe +1,−1 with probability 1/2. If +1 is
observed, then we eliminate every scenario j with rj(e) = −1. Similarly, if −1 is observed,
then we eliminate every scenario j with rj(e) = +1. In other words, a random outcome
helps eliminate a random subset of scenarios.

As a key technique challenge, unlike in the deterministic case, a scenario i ∈ [m] may
follow multiple (more precisely, exponentially many in the number of ?’s) paths in the
decision tree corresponding to policy Φ. To formally define the cover time, we observe
that, conditioned on the realized responses of all elements, the policy selects a deterministic
sequence of elements. To formalize this idea, we need the following notion of consistent
vectors.
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Definition 7 (Consistency of Response Vectors). A vector ω = (ωe)e∈[n] ∈ Ωn is con-
sistent with a scenario i ∈ [m] if for any element e ∈ [n] with ri(e) 6= ?, it holds that
ri(e) = ωe.

Using terminologies from probability theory, conditioned on the event that the true
scenario is i, we can view Ωn as the ground set (for the probability space) and ω as a
“sample path”. This probability space is equipped with a uniform probability mass function
(pω|i) over all sample paths ω consistent with i. Next, we define conditional cover time as a
random variable (i.e., a function defined on Ωn) that maps each sample path ω to the cover
time conditioned on ω.

Definition 8 (Conditional Cover Time). Let Φ be an adaptive policy. Let i ∈ [m] be a
scenario and ω ∈ Ωn be consistent with i. We denote by σi,ω = (σi,ω(1), . . . , σi,ω(n)) the
unique sequence of elements selected by Φ if i is the true scenario and the responses are
given by ω. We write σ := σi,ω as a shorthand and define the conditional cover time as

C(i,Φ|ω) := min{k | fi({(eσ(1), ωσ(1)), . . . , (eσ(k), ωσ(k))}) = 1}.

To define the cost of a policy, we take the expectation over (i) all scenarios and (ii) all
sample paths, conditional on a scenario.

Definition 9 (Cost of a Policy). Let Φ be a policy and ω ∈ Ωn. Let pω|i be the probability
mass of ω when i is the true hypothesis, and define the expected cover time of i as
ECT(i,Φ) :=

∑
ω∈Ωn pω|i · C(i,Φ|ω). The cost of Φ is defined as

Cost(Φ) :=
∑
i∈[m]

πi · ECT(i,Φ).

To ensure the existence of a policy with finite cost, we need an assumption analogous
to the identifiability assumption for the ODTN problem (Assumption 1). We assume that
for each scenario i ∈ [m], the function fi can be covered w.p. 1 if we select all elements.

Assumption 2 (Feasibility of Coverage). For any scenario i ∈ [m] and any ω ∈ Ωn

consistent with i, we have fi({(e, ωe) : e ∈ [n]}) = 1.

An important special case is where Ω is a singleton set. In this case, adaptivity does
not provide any additional advantage because we never observe anything informative. This
setting is equivalent to the SFR problem.

3.4 Connection to the ODTN Problem

We illustrate the connections between the problems in Figure 1. We observe that the ODTN
problem can be reduced to the ASRN problem. Let us view the tests and hypotheses in
the ODTN problem as elements and scenarios respectively in the ASRN problem. For any
hypothesis i ∈ [m], define its response function ri(T ) = T (i) ∈ Ω ∪ {?}. Furthermore, for
any i ∈ [m] and any S ⊆ T × {±1}, we define a submodular function

fi(S) =
1

m− 1

∣∣∣∣∣∣
⋃

T :(T,+1)∈S

T−
⋃ ⋃

T :(T,−1)∈S

T+

∣∣∣∣∣∣ ,
10



ODT and ASR with Noisy Outcomes

Figure 1: Connections between problems: Edges represent reductions between problems.
The test cover problem (De Bontridder et al., 2003) , which was not mentioned
so far, is a non-adaptive version of the ODT problem, and can be reduced to the
SFR problem. We highlight the new problems introduced in this work in red.

where we recall that each test is a three-way partition (T+, T−, T ∗) of [m]. In words, fi(S)
is the fraction of hypotheses (other than i) that are incompatible with at least one outcome
in S.

It is easy to see that each function fi : 2[n]×Ω → [0, 1] is monotone and submodular.
Furthermore, the separability parameter ε = 1

m−1 . More importantly, we observe that i is
identified if and only if the function fi has value 1. The reduction follows by combining the
above observations.

3.5 Expanded Scenario Set

For both non-adaptive and adaptive settings, given an ASRN instance I, we will consider
an equivalent ASR instance J . Thus, we can apply known algorithms for the ASR problem
to the ASRN setting, and immediately bound the approximation ratio.

We emphasize that this does not suggest that our results are mere straightforward
extensions of the known results for the ASR problem. In fact, the instance J is exponentially
large compared to the original instance I, and therefore it is non-trivial to find an efficient
implementation of the ASR-based algorithm. In fact, most of Section 4 and Section 5 is
dedicated to elucidating our efficient implementation.

In this subsection, we focus on explaining how to define the equivalent ASR instance.
Let I be a given ASRN instance with scenarios [m], submodular functions {fi(·)} and
response functions {ri(·)}. In the ASR instance J = J (I), each scenario in the original
instance is divided into an exponential number of expanded scenarios, each corresponding
to a sample path.

Definition 10 (Expanded Scenarios). For each i ∈ [m], denote

Ω(i) := {ω ∈ Ωn : ω is consistent with i}
= {ω ∈ Ωn : ωe = ri(e) for all e ∈ [n] with ri(e) 6= ?}.

11
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An expanded scenario is a tuple (i, ω) where ω ∈ Ω(i). Furthermore, we denote Hi :=
{(i, ω) : ω ∈ Ω(i)} and H :=

⋃m
i=1Hi.

To define the prior distribution in the new instance, for a fixed scenario i, consider
ci := |{e ∈ [n] : ri(e) = ?}|. Since the response of any ?-element for i is uniformly drawn
from Ω, each of these |Ω|ci possible expanded scenarios occurs with the same probability
πi,ω = πi/|Ω|ci . 4 To complete the reduction, for each (i, ω) ∈ H, we define the response
function ri,ω : [n]→ Ω where

ri,ω(e) = ωe, ∀e ∈ [n],

and the submodular function fi,ω : 2[n] → [0, 1] where

fi,ω(S) = fi ({(e, ωe)}e∈S), ∀S ⊆ [n].

By this definition, since fi is monotone and submodular on [n]×Ω, the function fi,ω is also
monotone and submodular on [n]. We will formally show the following in Appendix A.

Proposition 11 (Reduction to the Noiseless Setting). The ASRN instance I is equivalent
to the ASR instance J .

We reiterate that the number of expanded scenarios can be exponential in the number
of uncertain entries, and therefore we cannot directly apply the existing algorithms for the
ASR problem. We explain how to circumvent this issue in Section 4 and Section 5.

4. The Non-adaptive ASRN Problem

This main result in this section is an O(log 1
ε )-approximation for the SFRN problem, where

we recall that ε > 0 is the minimal marginal increment of any submodular function in the
given family. As a corollary, we obtain an O(log 1

m)-approximation for the non-adaptive
ODTN problem where m is the number of hypotheses.

4.1 The Greedy Score

Azar and Gamzu (2011) proposed a greedy algorithm for the SFR problem. We rephrase
this algorithm in the context of expanded scenarios. Suppose we have selected a set E of
elements. We then select the next element to be the one with the highest score, which
measures the additional coverage it provides when selected.

Definition 12 (Non-adaptive Greedy Score). Let E ⊆ [n] be a subset of elements. Then,
for each e ∈ [n] \ E, we define

∆E(i, ω, e) :=

{
fi,ω({e}∪E)−fi,ω(E)

1−fi,ω(E) , if fi,ω(E) < 1,

0, otherwise.
(1)

Furthermore, we define the greedy score as

GE(e) :=
∑

(i,ω)∈H

πi,ω ·∆E(i, ω; e), (2)

4. For a general noise distribution, we can redefine πi,ω = pω|i ·πi, where we recall that pω|i is the probability
mass function of the sample path ω conditional on hypothesis i.

12
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Let us understand the intuition behind the above definition. The numerator in the ratio
is the increase of fi,ω when e is selected. The denominator measures the remaining distance
from the current value to 1, and helps prioritize the scenarios that are close to being covered.
The algorithm then selects an element e with the highest GE(e).

4.2 Estimating the Greedy Score

Since the summation in eqn.(2) has exponentially many terms, it is not clear how to compute
the exact value of GE(e) in polynomial time. However, since GE(e) is the expectation of
∆E(i, ω; e) over the expanded scenarios, we can estimate it and select an approximately
greediest element by sampling. The performance of this approach is guaranteed by the
following result, which follows directly from the analysis in Azar and Gamzu (2011) and Im
et al. (2016).

Theorem 13 (Approximate Greedy Algorithm). Let σ = (e1, . . . , en) be a permutation
of elements and denote Et := (e1, . . . , et) for t ≥ 1 and E0 := ∅. Suppose for each t =
0, . . . , n− 1, we have

GEt(et+1) ≥ Ω(1) · max
e′∈[n]\Et

GEt(e
′).

Then,

Cost(σ) ≤ O
(

log
1

ε

)
·OPT

where OPT denotes the optimum of the SFRN problem.

Algorithm 1 Non-adaptive SFRN algorithm

1: Initialize E ← ∅ and permutation σ = ∅.
2: for t = 1, . . . , n do
3: E ← {σ(1), . . . , σ(t− 1)}
4: For each e ∈ [n]\E, letGE(e) be the empirical mean of ∆E(i, ω; e) overN = m3n4ε−1

independent draws of expanded scenarios (i, ω) from the distribution (πi,ω).
5: Let σ(t) be the element e ∈ [n] \ E that maximizes GE(e).

6: Return the permutation σ.

To find such an approximately greediest element, for a fixed element e, we independently
sample a polynomial number of expanded scenarios from the distribution (πi,ω). We evaluate
∆E(i, ω, e) for each expanded scenario (i, ω) sampled, and compute their empirical mean.
Due to standard concentration bounds, the deviation from GE(e), which is its expectation,
is likely small. Therefore, the empirical mean can serve as a reliable estimate of the greedy
score. We formally define this algorithm in Algorithm 1.

4.3 Handling Small Greedy Score

The desired O(log 1
ε )-approximation would immediately follow if we could show that the

estimation is always within a (multiplicative) O(1) factor to the true score GE(e) for every
element e. Unfortunately, this is not true. In fact, it may fail when GE(e) is tiny for every
element e.

13



Jia, Navidi, Nagarajan and Ravi

To see this, consider an i.i.d. sample X1, . . . , Xk (which corresponds to ∆E(i, ω;E)),
each with mean µ > 0 (which corresponds to GE(e)). Chernoff’s inequality states that the
probability of having a large deviation decays exponentially in kµ. In other words, to ensure
a target level of confidence, we need the sample complexity k to scale as Ω(1/µ), which can
be large when µ is small.

To overcome this, we observe that if the score is small for all elements, then the set of
elements selected so far is likely to have already covered all scenarios. Therefore, the choice
of the next element is barely relevant. More precisely, we show that if GE(e) is less than
a certain (small) threshold that scales polynomially in n,m and 1/ε, then with probability
1 − n−Ω(1), the current set already covers all scenarios. We formalize this in Lemma 36 in
Appendix B.

So far, we have explained why our algorithm (a) is efficient (in Section 4.1), (b) identifies
a sufficiently greedy element until all scenarios are covered (in Section 4.3), and (c) leads
to a low approximation factor (in Section 4.2). Combining the above components, we have
the following main result of this section.

Theorem 14 (Approx. Algo. for SFRN). Algorithm 1 is a poly(1
ε , n,m) time O(log 1

ε )-
approximation for the SFRN problem.

It should be noted that the approximation factor is best possible due to Theorem 3.1
in Azar and Gamzu 2011. Furthermore, observe that for the ODTN problem, we have
ε = 1

m−1 , so we obtain the following.

Corollary 15 (Approx. Algo. for Non-adaptive ODTN). Algorithm 1 gives an O(logm)-
approximation for the non-adaptive ODTN problem where m is the number of hypotheses.

We defer all details to Appendix B.

5. Adaptive ASRN with Low Noise Level

In this section, we present an adaptive algorithm whose performance depends on the uncer-
tainty level of the instance. Informally, suppose we store the response functions {ri(·)}i∈[m]

as a matrix whose rows and columns correspond to the elements and scenarios. Then, the
column/row uncertainty is the maximum number of ?’s in any column/row, formally defined
as follows.

Definition 16 (Column and Row Uncertainty). Given an ASRN instance, the column
uncertainty is c := maxi∈[m] |{e ∈ [n] : ri(e) = ?}|. Similarly, the row uncertainty is
r := maxe∈[n]{i ∈ [m] : ri(e) = ?}.

The main result of this section is an O
(
log m

ε + min{c log |Ω|, r}
)
-approximation for

the ASRN problem for instances that have column uncertainty c, row uncertainty r and
separability ε. This is achieved by choosing between two algorithms, each having an ap-
proximation ratio of O(c log |Ω| + log m

ε ) and an O(r + log m
ε ). In both algorithms, we

maintain the posterior probability of each scenario based on the responses of the selected
elements. We use these probabilities to calculate a score for each element, which depends
on (a) the balancedness of the partition on the remaining scenarios, resulting from selecting
this element, and (b) the expected number of scenarios eliminated.

14
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Unlike the noiseless setting, in the ASRN (and ODTN) problem, each scenario can follow
an exponential number of paths in the decision tree. Therefore, a naive generalization of
the analysis in Navidi et al. (2020) incurs an undesirable approximation factor.

We overcome this challenge by reducing to the ASR instance J defined in Section 3.5.
However, since J involves exponentially many scenarios, a naive implementation of the
algorithm in Navidi et al. (2020) leads to an exponential running time. In Section 5.1
we exploit the special structure of J and devise a polynomial-time algorithm. Then, in
Section 5.2, we propose a slightly different algorithm than that of Navidi et al. (2020), and
show an O(r + log m

ε ) approximation ratio.

Algorithm 2 Algorithm for ASR instance J , based on Navidi et al. (2020)

1: Initialize E ← ∅, H ′ ← H.
2: while H ′ 6= ∅ do
3: For any element e ∈ [n], let Be(H

′) be the largest cardinality set among

{(i, ω) ∈ H ′ : ri,ω(e) = o} ∀o ∈ Ω

4: Define Le(H
′) = H ′ \Be(H ′)

5: Select the element e ∈ [n] \ E maximizing

Scorec(e, E,H
′) = π

(
Le(H

′)
)

+
∑

(i,ω)∈H′,fi,ω(E)<1

πi,ω ·
fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
(3)

6: Observe response o and updateH ′ asH ′ ← {(i, ω) ∈ H ′ : ωe = o and fi,ω(E∪e) < 1}
7: E ← E ∪ {e}

5.1 An O(c log |Ω|+ log m
ε )-Approximation Algorithm

Our first adaptive algorithm is based on the O(log m
ε )-approximation algorithm for the

(noiseless) ASR problem from Navidi et al. (2020), rephrased in our notation Algorithm
2. Here we emphasize that H is the set of expanded scenarios; see Definition 10. Applying
this result to the ASR instance J , we obtain an O(log |H|ε )-approximation. Note that
|H| ≤ |Ω|c ·m, we immediately obtain the desired guarantee on the cost.

This algorithm maintains the set H ′ ⊆ H of expanded scenarios that are compatible
with all the observed outcomes, and iteratively selects the element with maximum score, as
defined in (3)‡. This score strikes a balance between covering the submodular functions (of
the remaining scenarios) and shrinking H ′ (thereby reducing the uncertainty in the target
scenario).

To interpret the first term in Scorec, for simplicity, assume that Ω = {±1}. Upon
selecting an element, H ′ is split into two subsets, among which Le(H

′) is the lighter (in
cardinality). Thus, this term is simply the number of expanded scenarios eliminated in
the worst case (over the responses in Ω). The higher this term, the more progress is made

‡. We use the subscript c to distinguish from the score function Scorer considered in Section 5.2, but for
ease of notation, we will suppress the subscript in this subsection.
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towards identifying the target (expanded) scenario. The second term is similar to the score
in our non-adaptive algorithm (Algorithm 1). It involves the sum of incremental coverage
over all expanded scenarios, weighted by their current coverage, with higher weights on
expanded scenarios closer to being covered.

As noted above, computing the summation in Scorec naively requires exponential time.
However, in Appendix C we explain how to utilize the structure of the ASRN instance J to
reformulate each of the two terms in Scorec in a manageable form, enabling a polynomial-
time implementation. Now we are ready to formally state the main result of this subsection.

Theorem 17 (Approx. Algo., Low Column Uncertainty). Algorithm 2 can be implemented
in polynomial time and is an O(c log |Ω| + log m

ε )-approximation algorithm for the ASRN
problem on any instance with column uncertainty c.

5.2 An O(r + log m
ε )-Approximation Algorithm

In this section, we consider a slightly different score function, Scorer, and obtain an O(r +
log m

ε )-approximation. Recall that in Algorithm 2, upon selecting an element e, the re-
maining expanded scenarios are partitioned into at most |Ω| subsets, where the one with
the lightest cardinality is denoted Le(H

′).
In the modified score function Scorer, we instead consider the partition on the original

scenarios, rather than the expanded scenarios. We define the subset S of the remaining
original scenarios that has at least one expanded scenario remaining. If an element e is
selected, then S is partitioned into (at most) |Ω| subsets, where the subset with the largest
cardinality is denoted as Ce(S) ⊆ [m]. The set Re(H

′) ⊆ H ′ is then defined as the consistent
expanded scenarios that have a different response than Ce(S). We formally describe this
score function in Algorithm 4 in Appendix D.2.

Note that S can be maintained efficiently. More generally, for each scenario i, we can
efficiently maintain the number ni of expanded scenario of i that is not eliminated. In fact,
observe that if we select a ?-element e for i, then ni decreases by a factor |Ω|. Moreover,
the response is incompatible with the outcome, i.e., ri(e) 6= o, then ni becomes 0.

Similarly to Algorithm 2, the main computational challenge lies in evaluating the second
term, since it involves summing over exponentially many terms, but a polynomial-time
implementation follows by a similar approach as outlined in Section 5.1.

The main result of this section, stated below, is proved by adapting the proof technique
from Navidi et al. (2020) and formally proved in Appendix D.2.

Theorem 18 (Apxn. Algo., Low Row Uncertainty). Algorithm 4 can be implemented in
polynomial time and is an O(r+log m

ε )-approximation algorithm for the ASRN problem for
any instance with row uncertainty r.

By selecting between Algorithm 2 and Algorithm 4 depending on whether c log |Ω| > r,
we immediately obtain the following.

Theorem 19 (Meta Algo. for ASRN). There is an adaptive O(min{c log |Ω|, r}+ log m
ε )-

approximation algorithm for the ASRN problem.

In particular, this gives an O(min{c log |Ω|, r}+ log m
ε )-approximation algorithm for the

ODTN problem. We also provide closed-form expressions for the scores used in Algorithm
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2 and Algorithm 4 for the ODTN problem in Appendix D.1, which will be used for our
experiments.

6. ODTN with Many Unknowns

Our adaptive algorithm in Section 5 has a low approximation ratio when the vast majority
of entries in the test-hypothesis matrix are deterministic. In this section, we focus on the
other extreme, where ODTN instance has very few deterministic outcomes.

More precisely, we quantify the noise level by its sparsity. An ODTN instance is α-sparse
if every test has O(mα) deterministic hypotheses. Our main result is a polynomial-time
approximation algorithm with cost O(mα + logm ·OPT) where OPT is the optimum of the
ODTN problem. We allow our algorithm to err with some tiny probability. Furthermore,
we show that for any α ∈ [0, 1] we have OPT = Ω(m1−α). Therefore, when α < 1

2 , we
obtain an O(logm)-approximation for the ODTN problem. It should be noted that the
cost matches the APX-hardness result (Theorem 4.1 of Chakaravarthy et al. 2011) within
O(1) factors. We next explain the ideas in more detail.

6.1 Stochastic Set Cover

The design and analysis of our algorithm are closely related to the problem of Stochastic
Set Cover (SSC) (Liu et al. 2008; Im et al. 2016). An SSC instance consists of a ground
set [m] of items and a collection of random subsets S1, · · · , Sn of [m]. The distribution of
each subset is known, but its instantiation is unknown until being selected. The goal is to
minimize the expected number of sets to cover all elements in [m].

A key component of our analysis is the following lower bound on the optimum of the
ODTN problem, in terms of the optima of the following SSC instances. Recall that a test
T can be represented as a three-way partition (T+, T−, T ∗) of [m].

Definition 20 (Induced SSC Instances). For any hypothesis i ∈ [m], let SSC(i) denote the
SSC instance with ground set [m] \ {i} and n random sets, given by

ST (i) =


T+ with prob. 1 if i ∈ T−
T− with prob. 1 if i ∈ T+

T− or T+ with prob. 1
2 each if i ∈ T ∗

, ∀T ∈ [n].

To see the connection between the SSC and ODTN problem, observe that when i is
the target hypothesis in the ODTN instance, any feasible algorithm must identify i by
eliminating all other hypotheses. In the SSC terminology, we have covered all items in
[m]\{i}. This leads to the following lower bound.

Proposition 21 (SSC-based Lower Bound). For any ODTN instance with optimum OPT
and induced SSC instancees {SSC(i)}i∈[m], we have

OPT ≥
∑
i∈[m]

πi ·OPTSSC(i).

Therefore, to bound the cost of an ODTN algorithm, we only need to charge its cost to
the corresponding SSC instances and apply the above inequality. The next two subsections
are dedicated to constructing such an algorithm.
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6.2 A Greedy SSC Algorithm

A natural greedy algorithm is known to be an O(logm)-approximation (Liu et al. 2008; Im
et al. 2016). As we recall, the greedy algorithm for the (deterministic) Set Cover problem
iteratively selects a set that covers the largest number of new items (i.e., items that are not
covered so far). Analogously, in the SSC problem, the greedy algorithm selects the set that
maximizes the expected number of new items covered.

We will consider an even more general version of the greedy algorithm, dubbed (β, ρ)-
greedy where β, ρ > 1 are constants. This algorithm applies the greedy rule for an Ω(1/ρ)
fraction of iterations. Furthermore, in those iterations, instead of implementing the exact
greedy rule, it selects a set whose coverage is Ω(1/β) fraction that of the greediest set.
To formalize, for any deterministic subset U ⊆ [n] and a random subset S, we denote by
Cov(S;U) = ES [|S\U |] the expected coverage.

Definition 22 ((β, ρ)-greedy). An algorithm is (β, ρ)-greedy for the SSC problem, if the
(random) sequence of sets S1, S2, . . . it selects satisfy the following with probability 1: For
any t ≥ 1, there is a subset I ⊆ {1, . . . , t} with |I| ≥ t/ρ, such that for any i ∈ I, we have

Cov(Si;S1 ∪ · · · ∪ Si−1) ≥ 1

β
max
S∈C

Cov(S;S1 ∪ · · · ∪ Si−1).

The following is implied by Theorem 1.1 of Im et al. 2016 and serves as the cornerstone
for our analysis.

Theorem 23 (Greedy SSC Algorithm). Any (β, ρ)-greedy algorithm with β, ρ > 1 is an
O(βρ logm)-approximation for the SSC problem.

This result inspires a simple greedy algorithm for the ODTN problem, which we describe
in the next subsection and use as a strawman to motivate further algorithmic ideas.

6.3 A First Attempt: SSC-based Greedy ODTN Algorithm

Our ODTN algorithm is inspired by the following key observation. Suppose A is the set of
alive (i.e., not yet eliminated) hypotheses in the ODTN problem, and a test T maximizes
|T+ ∩ A| + |T− ∩ A|. Then, T results in good progress for all SSC instances SSC(i) with
i ∈ T ∗ simultaneously.

Lemma 24 (Greedy Is Good for Most Hypotheses). Let A ⊆ [m] and T be a test such that

E [|ST (i) ∩ (A\i)|] =
1

2

(
|T+ ∩A|+ |T− ∩A|

)
≥ max

T ′∈[n]

1

2

(
|(T+)′ ∩A|+ |(T−)′ ∩A|

)
. (4)

Then, for any hypothesis i ∈ T ∗, we have

E [|ST (i) ∩ (A\i)|] ≥ 1

2
· max
T ′∈[n]

E [|ST ′(i) ∩ (A\i)|] .

It should be noted that, in general, the above does not hold for i /∈ T ∗. To see this,
suppose a test T satisfies eqn. (4) and has imbalanced deterministic sides, for example,
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|T+| = mα and |T−| = 1. Then, for each i ∈ T+, the random set ST has poor coverage in
the SSC instance SSC(i), since it covers only one item (w.p. 1).

By Lemma 24, a test T makes good progress for most SSC instances if (i) T satisfies
eqn. (4), and (ii) i ∈ T ∗ is satisfied for most hypotheses i. This motivates us to consider
the class of ODTN instances where (ii) is satisfied.

Definition 25 (Sparse Instance). An ODTN instance is α-sparse for some α ∈ [0, 1] if
for all tests T ∈ T we have max{|T+|, |T−|} ≤ mα.

By this definition, if an ODTN instance is α-sparse, then most hypotheses are in T ∗.
Consequently, by Lemma 24, a test T satisfying eqn. (4) is 2-greedy for most (more precisely,
m−O(mα)) SSC instances.

This motivates the following naive greedy algorithm. Suppose A is the set of consistent
hypotheses. In each iteration, we select a test T that maximizes 1

2 |T
+ ∩ A| + 1

2 |T
− ∩ A|.

Furthermore, consider the following ideal event:

For every t ≥ 1, when we select the t-th test, for every hypothesis i ∈ [m], the algorithm
has selected Ω(t/ρ) tests T with i ∈ T ∗.

If this event occurs, then the naive greedy algorithm gives an O(logm)-approximation. In
fact, since the sequence of tests selected is (2, ρ)-greedy for every i, by Theorem 23, the
expected cost conditional on i being the true hypothesis is O(ρ logm) ·OPTSSC(i). Taking
the expectation over all hypotheses and combining with the SSC-based lower bound in
Proposition 21, we deduce that the total cost is O(ρ · logm)OPT.

However, the ideal event may not always occur. Next, we explain how to fix this prob-
lem by intermittently enumerating a small subset of hypotheses with the highest posterior
probabilities.

6.4 Last Piece of the Puzzle: the Membership Oracle

Suppose the ideal event fails, that is, up until some iteration, the sequence of tests selected
is no longer (2, ρ)-greedy for some hypothesis i. To handle this issue, we modify the above
greedy algorithm as follows: For each iteration t = 2k where k = 1, 2, . . . , logm, we consider
the set Z = Zk of O(mα) hypotheses with the fewest ?-tests selected so far. Equivalently,
we may maintain a posterior probability using Bayes’ rule and define Z as the subset of
O(mα) hypotheses with the highest posterior probabilities.

Then, we invoke a membership oracle Member(Z) to check whether the target hypothesis
ī ∈ Z. If so, then the algorithm terminates and returns ī. Otherwise, it continues with the
greedy algorithm until the next power-of-two iteration.

Specifically, the membership oracle Member(Z) takes a subset Z ⊆ [m] of hypotheses
as input, and decides whether the target hypothesis ī is in Z. Whenever |Z| ≥ 2, we pick
an arbitrary pair (j, k) of hypotheses in Z and choose a test where these two hypotheses
have distinct deterministic outcomes. Such a test exists due to Assumption 1. Moreover,
since each of these tests rules out at least one hypothesis, within |Z| − 1 iterations, there is
only one hypothesis left. In Appendix E.1, we explain how to verify whether this remaining
scenario is the true hypothesis using O(logm) tests.

We can bound the cost of the membership oracle as follows.
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Lemma 26 (Membership Oracle Has Linear Cost). If ī ∈ Z, then Member(Z) declares ī = i
with probability 1; otherwise, it declares ī /∈ Z with probability 1 − O(m−2). Furthermore,
the expected cost of Member(Z) is O(|Z|+ logm).

The formal proof of the above result is deferred to Appendix E.1. At this juncture, we
have introduced all relevant concepts and ideas. In the next subsection, we formally state
our results.

6.5 Sparsity-dependent Approximation Algorithm

We are now ready to state the overall algorithm in Algorithm 3. In each iteration, we
maintain a subset of consistent hypotheses, and iteratively compute the greediest test, as
formally specified in Step 7. At each power-of-two iteration t = 2k where k = 1, 2, . . . , logm,
we invoke the membership oracle and terminate if it declares a true hypothesis. This
algorithm has the following guarantee.

Algorithm 3 Main algorithm for large number of noisy outcomes

1: Initialization: consistent hypotheses A ← [m], weights wi ← 0 for i ∈ [m], iteration
index t← 0

2: while |A| > 1 do
3: if t is a power of 2 then
4: Let Z ⊆ A be the subset of 2mα hypotheses with lowest wi
5: Invoke Member(Z)
6: If a hypothesis is identified in Z, then Break

7: Select a test T ∈ T maximizing 1
2(|T+ ∩A|+ |T− ∩A|)

8: Observe outcome oT
9: R← {i ∈ [m] : MT,i = −oT } and A← A\R . Remove incompatible hypotheses

10: wi ← wi + 1 for each for each i ∈ T ∗ . Update the weights of the hypotheses
11: t← t+ 1.

Theorem 27 (Apxn. Algo. for Sparse Instances). Algorithm 3 is a polynomial-time algo-
rithm which (a) has cost O(mα + logm · OPT) for any α-sparse instance with α ∈ [0, 1],
where OPT is the optimum for the ODTN problem, and (b) returns the true hypothesis with
probability 1−m−1.

The choice of m−1 is not essential: To reduce the error probability, we can simply repeat
the algorithm many times and perform a majority vote, i.e., return the most frequent output.
Next, we argue that the first term, mα, is negligible compared to OPT when α ≤ 1

2 .

Proposition 28 (Sparsity-based Lower Bound on OPT). For any α-sparse instance, we
have OPT = Ω(m1−α).

In particular, when α < 1
2 the above implies that the cost O(mα) for each call of the

membership oracle is lower than OPT, and therefore the total cost incurred in the power-
of-two steps is O(logm ·OPT). We therefore conclude the following.

Corollary 29 (Logarithmic-Approximation for Sparse Instances). Algorithm 3 has cost
O(logm · OPT) for any ODTN instance with α ≤ 1

2 and returns the true hypothesis with
probability 1−m−1.

20



ODT and ASR with Noisy Outcomes

6.6 Analysis Outline

We outline the proof of Theorem 27 and defer the formal proof to Appendix E.

Truncated Decision Tree. Let T denote the decision tree corresponding to our algorithm.
We only consider tests that correspond to step 7. Recall that H is the set of expanded
hypotheses and that any expanded hypothesis traces a unique path in T. For any (i, ω) ∈ H,
let Pi,ω denote this path traced; so |Pi,ω| is the number of tests performed in Step 7 under
(i, ω). We will work with a truncated decision tree T, defined below.

Fix any expanded hypothesis (i, ω) ∈ H. For any t ≥ 1, let θi,ω(t) denote the fraction
of the first t tests in Pi,ω that are ?-tests for hypothesis i. Recall that Pi,ω only contains
tests from Step 7. Let ρ = 4 and define

ti,ω = max

{
t ∈ {20, 21, · · · , 2logm} : θi,ω(t′) ≥ 1

ρ
for all t′ ≤ t

}
. (5)

If ti,ω > |Pi,ω| then we simply set ti,ω = |Pi,ω|.
Now we define the truncated decision tree T. By abuse of notation, we will use θi(t)

and ti as random variables, with randomness over ω. Observe that for any (i, ω), at the
next power-of-two step¶ 2dlog tie, which we call the truncation time, the membership oracle
will be invoked. Moreover, 2dlog tie ≤ 2ti, . This motivates us to define T is the subtree
of T consisting of the first 2dlog ti,ωe tests along path Pi,ω, for each (i, ω) ∈ H. Under this
definition, the cost of Algorithm 3 clearly equals the sum of the cost the truncated tree and
cost for invoking membership oracles.

Our proof proceeds by bounding the cost of Algorithm 3 at power-of-two steps and
other steps. In other words, we will decompose the cost into the cost incurred by invoking
the membership oracle and selecting the greedy tests. We start with the easier task of
bounding the cost for the membership oracle. The oracle Member is always invoked on
|Z| = O(mα) hypotheses. Using Lemma 26, the expected total number of tests due to
Step 4 is O(mα logm). By Lemma 28, when α ≤ 1

2 , this cost is O(logm ·OPT).

The remaining part of this subsection focuses on bounding the cost of the truncated
tree as O(logm) ·OPT. With this inequality, we obtain an expected cost of

O(logm) · (mα + OPT) ≤(as α< 1
2

) O(logm) · (m1−α + OPT) ≤(
Lemma 28

) O(logm) ·OPT,

and Theorem 27 follows. At a high level, for a fixed hypothesis i ∈ [m], we will bound the
cost of the truncated tree as follows:

i has low fraction of ?-tests at ti

=⇒
Lemma 30

i is among the top O(mα) hypotheses at ti

=⇒
Lemma 26

i is identified w.h.p. by Member(Z) at 2dlog tie ≤ 2ti,

hence the truncated path is (2, 2)-greedy

=⇒
Theorem 23

the expected cost conditional on i is O(logm) · SSC(i)

¶. Unless stated otherwise, we denote log := log2.
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and finally by summing over i ∈ [m], it follows from Lemma 21 that the cost of the truncated
tree is O(logm)·OPT. We formalize each step below.

Consider the first step, formally we show that if θi(t) < 1
4 , then there are O(mα)

hypotheses with fewer ?-tests than i. Suppose i is the target hypothesis and θi(t) drops
below 1

4 at t, that is, only less than a quarter of the tests selected are 2-greedy for SSC(i).
Recall that if i ∈ T ∗ where T maximizes 1

2(|A∩ T+|+ |A∩ T−|), then ST (i) is 2-greedy set
for SSC(i), so we deduce that less than a t

4 tests selected are ?-tests for i, or, at least 3t
4

tests selected thus far are deterministic for i. We next utilize the sparsity assumption to
show that there can be at most O(mα) such hypotheses.

Lemma 30. Consider any W ⊆ T and I ⊆ [m]. For i ∈ I, let D(i) = |{T ∈W : MT,i 6= ∗}|
denote the number of tests in W for which i has deterministic (i.e. ±1) outcomes. For each
κ ≥ 1, define I ′ = {i ∈ I : D(i) > |W |/κ}. Then, |I ′| ≤ κmα.

Proof By definition of I ′ and α-sparsity, it holds that

|I ′| · |W |
κ

<
∑
i∈I

D(i) =
∑
T∈W

|{i ∈ I : MT,i 6= ∗}| ≤ |W | ·mα,

where the last step follows since |T ∗| ≤ mα for each test T . The proof follows immediately
by rearranging.

We now complete the analysis using the relation to SSC. Fix any hypothesis i ∈ [m]
and consider the decision tree Ti obtained by conditioning T on ī = i. Lemma 24 and the
definition of truncation together imply that Ti is (2, 4)-greedy for SSC(i), so by Theorem 23,
the expected cost of Ti is O(logm) ·OPTSSC(i). Now, taking expectations over i ∈ [m], the

expected cost of T is O(logm)
∑m

i=1 πi ·OPTSSC(i). Recall from Proposition 21 that

OPT ≥
∑
i∈[m]

πi ·OPTSSC(i),

and therefore the cost of T is O(logm) ·OPT.

Correctness. We finally show that our algorithm identifies the target hypothesis ī with
high probability. By the definition of ti, where the path is truncated, ī has less than 1

4

fraction of ?-tests. Thus, at iteration 2dlog t̄ie, i.e., the first time the membership oracle is
invoked after ti, ī has less than 1

2 fraction of ?-tests. Hence, by Lemma 30, ī is among the
O(mα) hypotheses with fewest ?-tests. Finally it follows from Lemma 26 that ī is identified
correctly with probability at least 1− 1

m .

Remark 31. Unfortunately, Theorem 27 cannot be extended to the ASRN setting unless
we impose extra assumptions on the instance. Essentially, our analysis crucially relied on
Lemma 24, which states that the greediest set makes a good progress simultaneously to
most SSC instances, provided the ODTN instance is sparse. However, we are not sure how
to translate this property to a natural condition in the ASRN setting.
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7. Extension to Non-identifiable ODT Instances

Previous work on ODT problem usually imposes the following identifiability assumption
(e.g. Kosaraju et al. (1999)): for every pair hypotheses, there is a test that distinguishes
them deterministically. However in many real world applications, such assumption does not
hold. In this section, we explain how our results can be extended also to non-identifiable
ODTN instances.

To this end, we introduce a slightly different stopping criterion for non-identifiable in-
stances. (Note that is is no longer possible to stop with a unique compatible hypothesis.)
Define a similarity graph G on m nodes, each corresponding to a hypothesis, with an edge
(i, j) if there is no test separating i and j deterministically. Our algorithms’ performance
guarantees will now also depend on the maximum degree d of G; note that d = 0 in the per-
fectly identifiable case. For each hypothesis i ∈ [m], let Di ⊆ [m] denote the set containing
i and all its neighbors in G. We now define two stopping criteria.

• Neighborhood stopping criterion: Stop when the set K of compatible hypotheses
is contained in some Di, where i might or might not be the true hypothesis x̄.

• Clique stopping criterion: Stop when K is contained in some clique of G.

Note that clique stopping is clearly a stronger notion of identification than neighborhood
stopping. That is, if the clique-stopping criterion is satisfied then so is the neighborhood-
stopping criterion. We now obtain an adaptive algorithm with approximation ratio O(d+
min(h, r) + logm) for clique-stopping as well as neighborhood-stopping.

Consider the following two-phase algorithm. In the first phase, we will identify some
subset N ⊆ [m] containing the realized hypothesis ī with |N | ≤ d + 1. Given an ODTN
instance with m hypotheses and tests T , we construct the following ASRN instance with
hypotheses as scenarios and tests as elements (this is similar to the construction in §3.3). The
responses are the same as in ODTN: so the outcomes Ω = {+1,−1}. Let U = T ×{+1,−1}
be the element-outcome pairs. For each hypothesis i ∈ [m], we define a submodular function:

f̃i(S) = min

 1

m− d− 1
·
∣∣ ⋃
T :(T,+1)∈S

T−
⋃ ⋃

T :(T,−1)∈S

T+
∣∣ , 1

 , ∀S ⊆ U.

It is easy to see that each function f̃i : 2U → [0, 1] is monotone and submodular, and the
separability parameter ε = 1

m−d−1 . Moreover, f̃i(S) = 1 if and only if at least m − d − 1

hypotheses are incompatible with at least one outcome in S. Equivalently, f̃i(S) = 1 iff
there are at most d+ 1 hypotheses compatible with S. By definition of graph G and max-
degree d, it follows that function f̃i can be covered (i.e. reaches value one) irrespective of the
noisy outcomes. Therefore, by Theorem 19 we obtain an O(min(r, c)+logm)-approximation
algorithm for this ASRN instance. Finally, note that any feasible policy for ODTN with
clique/neighborhood stopping is also feasible for this ASRN instance. So, the expected cost
in the first phase is O(min(r, c) + logm) ·OPT .

Then, in the second phase, we run a simple splitting algorithm that iteratively selects
any test T that splits the current set K of consistent hypotheses (i.e., T+ ∩ K 6= ∅ and
T− ∩ K 6= ∅). The second phase continues until K is contained in (i) some clique (for
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clique-stopping) or (ii) some subset Di (for neighborhood-stopping). Since the number of
consistent hypotheses |K| ≤ d+1 at the start of the second phase, there are at most d tests
in this phase. So, the expected cost is at most d ≤ d · OPT . Combining both phases, we
obtain the following.

Theorem 32 (Apxn. Algo. for Non-identifiable Instances). There is an adaptive O(d +
min(c, r) + logm)-approximation algorithm for the ODTN problem with the clique-stopping
or neighborhood-stopping criterion.

8. Experiments

We implemented our algorithms on real-world and synthetic data sets. We compared our
algorithms’ cost (expected number of tests) with an information theoretic lower bound on
the optimal cost and show that the difference is negligible. Thus, despite our logarithmic
approximation ratios, the practical performance is much better.

Chemicals with Unknown Test Outcomes. We considered a data set called WISER‖,
which includes 414 chemicals (hypothesis) and 78 binary tests. Every chemical has either
positive, negative or unknown result on each test. The original instance (called WISER-
ORG) is not identifiable: so our result does not apply directly. In Section 7 we show how
our result can be extended to such “non-identifiable” ODTN instances (this requires a more
relaxed stopping criterion defined on the “similarity graph”). In addition, we also generated
a modified dataset by removing chemicals that are not identifiable from each other, to
obtain a perfectly identifiable dataset (called WISER-ID). In generating the WISER-ID
instance, we used a greedy rule that iteratively drops the highest-degree hypothesis in the
similarity graph until all remaining hypotheses are uniquely identifiable. WISER-ID has
255 chemicals.

Random Binary Classifiers with Margin Error. We construct a dataset containing
100 two-dimensional points, by picking each of their attributes uniformly in [−1000, 1000].
We also choose 2000 random triples (a, b, c) to form linear classifiers ax+by√

a2+b2
+ c ≤ 0, where

a, b ∼ N(0, 1) and c ∼ U(−1000, 1000). The point labels are binary and we introduce noisy
outcomes based on the distance of each point to a classifier. Specifically, for each threshold
d ∈ {0, 5, 10, 20, 30} we define dataset CL-d that has a noisy outcome for any classifier-
point pair where the distance of the point to the boundary of the classifier is smaller than
d. In order to ensure that the instances are perfectly identifiable, we remove “equivalent”
classifiers and we are left with 234 classifiers.

Distributions. For the distribution over the hypotheses, we considered permutations of
power law distribution (Pr[X = x;α] = βx−α) for α = 0, 0.5 and 1. Note that, α = 0
corresponds to uniform distribution. To be able to compare the results across different
classifiers’ datasets meaningfully, we considered the same permutation in each distribution.

Algorithms. We implement the following algorithms: the adaptive O(r + logm + log 1
ε )-

approximation (which we denote ODTNr), the adaptive O(c log |Ω| log m
ε )-approximation

(ODTNc), the non-adaptive O(logm)-approximation (Non-Adap) and a slightly adaptive
version of Non-Adap (Low-Adap). Algorithm Low-Adap considers the same sequence of
tests as Non-Adap while (adaptively) skipping non-informative tests based on observed

‖. https://wiser.nlm.nih.gov
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Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.994 7.870 7.870 7.870 7.870 7.870

ODTNr 8.357 7.910 7.927 7.915 7.962 8.000

ODTNh 9.707 7.910 7.979 8.211 8.671 8.729

Non-Adap 11.568 9.731 9.831 9.941 9.996 10.204

Low-Adap 9.152 8.619 8.517 8.777 8.692 8.803

Table 2: Cost of Different Algorithms for α = 0 (Uniform Distribution).

outcomes. For the non-identifiable instance (WISER-ORG) we used the O(d+ min(c, r) +
logm+log 1

ε )-approximation algorithms with both neighborhood and clique stopping criteria
(see Section 7). The implementations of the adaptive and non-adaptive algorithms are
available online.∗∗

Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 7.702 7.582 7.582 7.582 7.582 7.582

ODTNr 8.177 7.757 7.780 7.789 7.831 7.900

ODTNh 9.306 7.757 7.829 8.076 8.497 8.452

Non-Adap 11.998 9.504 9.500 9.694 9.826 9.934

Low-Adap 8.096 7.837 7.565 7.674 8.072 8.310

Table 3: Cost of Different Algorithms for α = 0.5. The (Low-adap, Cl-5) entry (7.565) is
lower than Low-BND due to error in the sampling.

Algorithm
Data

WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

Low-BND 6.218 6.136 6.136 6.136 6.136 6.136

ODTNr 7.367 6.998 7.121 7.150 7.299 7.357

ODTNh 8.566 6.998 7.134 7.313 7.637 7.915

Non-Adap 11.976 9.598 9.672 9.824 10.159 10.277

Low-Adap 9.072 8.453 8.344 8.609 8.683 8.541

Table 4: Cost of Different Algorithms for α = 1.

Results. Table 2, Table 3 and Table 4 show the expected costs of different algorithms on
all uniquely identifiable data sets when the parameter α in the distribution over hypothesis
is 0, 0.5 and 1 correspondingly. These tables also report values of an information-theoretic
lower bound (the entropy) on the optimal cost (Low-BND), estimated using 200 independent
samples. As the approximation ratio of our algorithms depend on maximum number c of
unknowns per hypothesis and the maximum number r of unknowns per test, we have also
included these parameters as well as their average values in Table 5. Table 6 summarizes the
results on WISER-ORG with clique and neighborhood stopping criteria. We can see that
ODTNr consistently outperforms the other algorithms and is very close to the information-
theoretic lower bound.

∗∗. https://github.com/FatemehNavidi/ODTN ; https://github.com/sjia1/ODT-with-noisy-outcomes
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Parameters
Data

WISER-ORG WISER-ID Cl-0 Cl-5 Cl-10 Cl-20 Cl-30

r 388 245 0 5 7 12 13

Avg-r 50.46 30.690 0 1.12 2.21 4.43 6.54

h 61 45 0 3 6 8 8

Avg-h 9.51 9.39 0 0.48 0.94 1.89 2.79

Table 5: Maximum and Average Number of Stars per Hypothesis and per Test in Different
Data sets.

Algorithm Neighborhood Stopping Clique Stopping

ODTNr 11.163 11.817

ODTNh 11.908 12.506

Non-Adap 16.995 21.281

Low-Adap 16.983 20.559

Table 6: Algorithms on WISER-ORG dataset with Neighborhood and Clique Stopping for
Uniform Distribution.
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Appendix A. Proof of Proposition 11: Reduction from ASRN to ASR

It suffices to show that any feasible decision tree for the ASR instance J is also feasible for
the ASRN instance I with the same objective and vice versa.

First, consider a feasible decision tree T for the ASR instance J . For any expanded
scenario (i, ω) ∈ H, let Pi,ω be the unique path traced in T, and Si,ω the elements selected
along this path. By the definition of a feasible decision tree, at the last node (i.e., leaf) of
Pi,ω, we have fi,ω(Si,ω) = 1, i.e.,

fi({(e, ωe) : e ∈ Si,ω}) = 1.

Therefore, T is a feasible decision tree to I.
Now, we consider the other direction. Let T′ be a decision tree for the ASRN instance

I. Suppose the true scenario is i ∈ [m] and the outcomes are given by a consistent vector
ω ∈ Ωn. Then, a unique path P ′i,ω is traced in T′, whose elements we denote by S′i,ω. Since i
is covered at the end of P ′i,ω, we have fi({(e, ωe) : e ∈ S′i,ω}) = 1. Now view T′ as a decision
tree for the ASR instance J . Then, the expanded scenario (i, ω) corresponds to a unique
path P ′i,ω, and therefore the elements S′i,ω are selected. It follows that

fi,ω(S′i,ω) = fi({(e, ωe) : e ∈ S′i,ω}) = 1,
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i.e., (i, ω) is covered at the end of P ′i,ω. Therefore, T′ is also a feasible tree for J .

Appendix B. Details for the SFRN Problem (Section 4)

Recall that the non-adaptive SFRN algorithm (Algorithm 1) involves two phases. In the
first phase, we run the SFR algorithm using sampling to obtain estimates GE(e) of the
scores. If at some step, the maximum sampled score is “too low” then we go to the second
phase where we perform all remaining elements in an arbitrary order. The number of
samples used to obtain each estimate is polynomial in m,n, ε−1, so the overall runtime is
polynomial.

Pre-processing. We first show that by losing an O(1)-factor in approximation ratio,
we may assume that πi ≥ n−2 for all i ∈ [m]. Let A = {i ∈ [m] : πi ≤ n−2}, then∑

i πi ≤ n−2 · n ≤ n−1. Replace all scenarios in A with a single dummy scenario “0” with
π0 =

∑
i∈A πi, and define f0 to be any fi where i ∈ A. By our assumption that each fi

must be covered irrespective of the noisy outcomes, it holds that fi,ω([n]) = 1 for each
ω ∈ Ω(i), and hence the cover time is at most n. Thus, for any permutation σ, the expected
cover time of the old and new instance differ by at most O(n−1 · n) = O(1). Therefore, the
cover time of any sequence of elements differs by only O(1) in this new instance (where we
removed the scenarios with tiny prior densities) and the original instances.

To analyze our randomized algorithm, we need the following sampling lemma, which
follows from the standard Chernoff bound.

Lemma 33 (Concentration Bound). Let X be a bounded random variable with EX ≥
m−2n−4ε and X ∈ [0, 1] a.s. Denote by X̄ the average of m3n4ε−1 many independent
samples of X. Then,

Pr

[
X̄ /∈

[
1

2
EX, 2EX

]]
≤ e−Ω(m)

Proof Let X1, ..., XN be i.i.d. samples of random variable where N = m3n4ε−1 is the
number of samples. Letting Y =

∑
i∈[N ]Xi, Chernoff’s inequality implies for any δ ∈ (0, 1),

Pr (Y /∈ [(1− δ)EY, (1 + δ)EY ]) ≤ exp

(
−δ

2

2
· EY

)
.

The claim follows by setting δ = 1
2 and using the assumption that

EY = N · EX1 = Ω(m).

The next lemma shows that sampling does find an approximate maximizer unless the
score is very small, and also bounds the failure probability.

Definition 34 (Failure). Consider any iteration in Algorithm 1 with S = maxe∈[n]GE(e)

and S̄ = maxe∈[n]GE(e) with GE(e∗) = S̄. We say that this step is a failure if either (i)

S̄ < 1
4m
−2n−4ε and S ≥ 1

2m
−2n−4ε, or (ii) S̄ ≥ 1

4m
−2n−4ε and GE(e∗) < S

4 .

Lemma 35 (Failure Probability Is Low). The probability of failure is e−Ω(m).
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Proof We will consider the two types of failure separately. For the first type, suppose
S ≥ 1

2m
−2n−4ε. Applying Lemma 33 on the element e ∈ [n] with GE(e) = S, we obtain

Pr

[
S̄ <

1

4
m−2n−4ε

]
≤ Pr

[
GE(e) <

1

4
m−2n−4ε

]
≤ e−Ω(m).

So the probability of the first type of failure is at most e−Ω(m). For the second type of
failure, we consider two cases.

Case 1: Suppose S < 1
8m
−2n−4ε. For any e ∈ [n] we have GE(e) ≤ S < 1

8m
−2n−4ε.

Note that GE(e) is the average of N independent draws, each with mean GE(e). We now
upper bound the probability of the event Be that GE(e) ≥ 1

4m
−2n−4ε. We first artificially

increase each sample mean to 1
8m
−2n−4ε: note that this only increases the probability of

the event Be. Now, using Lemma 33 we obtain Pr[Be] ≤ e−Ω(m). By a union bound, it
follows that Pr[S̄ ≥ 1

4m
−2n−4ε] ≤

∑
e∈[n] Pr[Be] ≤ e−Ω(m).

Case 2: Suppose S ≥ 1
8m
−2n−4ε. Consider now any e ∈ U with GE(e) < S/4. By

Lemma 33 (artificially increasing GE(e) to S/4 if needed), it follows that Pr[GE(e) > S/2] ≤
e−Ω(m). Now consider the element e′ with GE(e′) = S. Again, by Lemma 33, it follows that
Pr[GE(e′) ≤ S/2] ≤ e−Ω(m). This means that element e∗ has GE(e∗) ≥ GE(e′) > S/2 and
GE(e∗) ≥ S/4 with probability 1 − e−Ω(m). In other words, assuming S ≥ 1

8m
−2n−4ε, the

probability that GE(e∗) < S/4 is at most e−Ω(m).
Adding the probabilities over all possibilities for failures, the lemma follows.
Based on Lemma 35, in the remaining analysis, we condition on the event that our

algorithm never encounters failures, which occurs with probability 1− e−Ω(m). To conclude
the proof, we need the following key lemma which essentially states that if the score of
the greediest element is low, then the elements selected so far suffices to cover all scenarios
with high probability, and therefore the ordering of the remaining elements does not matter
much.

Lemma 36 (Handling Small Greedy Score). Assume that there are no failures. Consider
the end of phase 1 in our algorithm, i.e., the first step with GE(e∗) < 1

4m
−2n−4ε. Then,

the probability that the realized scenario is not covered is at most m−2.

Proof Let E denote the elements chosen so far and p the probability that E does not cover
the realized scenario-copy of H, formally,

p = Pr
(i,ω)∈H

(fi,ω(E) < 1) =

m∑
i=1

πi · Pr
ω∈Ω(i)

(fi,ω(E) < 1).

It follows that there is some i with Prω∈Ω(i)(fi,ω(E) < 1) ≥ p. By definition of separa-
bility, if fi,ω(E) < 1 then fi,ω(E) ≤ 1− ε. Thus,∑

ω∈Ω(i)

πi,ωfi,ω(E) ≤
∑

ω:fi,ω(E)=1

πi,ω · 1 +
∑

ω:fi,ω(E)<1

πi,ω · fi,ω(E) ≤ (1− εp)πi.

On the other hand, taking all the elements, we have fi,ω([n]) = 1 for all ω ∈ Ω(i). Thus,∑
ω∈Ω(i)

πi,ωfi,ω([n]) =
∑
ω∈Ω(i)

πi,ω = πi.
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Taking the difference of the above two inequalities, we have∑
ω∈Ω(i)

πi,ω · (fi,ω([n])− fi,ω(E)) ≥ πi · εp.

Consider function g(S) :=
∑

ω∈Ω(i) πi,ω · (fi,ω(S ∪ E)− fi,ω(E)) for S ⊆ [n], which is also
submodular. From the above, we have g([n]) ≥ πi · εp. Using the submodularity of g,

max
e∈[n]

g({e}) ≥ εpπi
n

=⇒ ∃ẽ ∈ [n] :
∑
ω∈Ω(i)

πi,ω · (fi,ω(E ∪ {ẽ})− fi,ω(E)) ≥ εpπi
n

.

It follows that GE(ẽ) ≥ εpπi
n ≥ n−3εp, where we used mini πi ≥ n−2. Now, suppose for a

contradiction that p ≥ m−2. Since there is no failure and GE(ẽ) ≥ n−3m−2ε ≥ 1
4n
−4m−2ε,

by case (ii) of Lemma 35 , we deduce that GE(e∗) ≥ 1
4m
−2n−4, a contradiction.

The above is essentially a consequence of the submodularity of the target functions.
Suppose for contradiction that there is a scenario i that, with at least m−2 probability
over the random outcomes, remains uncovered by the currently selected elements. Recall
that according to our feasibility assumption, if all elements were selected, then fi is covered
with probability 1. Therefore, by submodularity, there exists an individual element ẽ whose
inclusion brings more coverage than the average coverage over all elements in [n], and
therefore ẽ has a “high” score.
Proof of Theorem 14. Assume that there are no failures. We proceed by bounding
the expected costs (number of elements) from phases 1 and 2 separately. By Lemma 35,
the element chosen in each step of phase 1 is a 4-approximate maximizer (see case (ii)
failure) of the score used in the SFR algorithm. Thus, by Theorem 13, the expected cost in
phase 1 is O(logm) times the optimum. On the other hand, by Lemma 36 the probability
of performing phase 2 is at most e−Ω(m). As there are at most n elements in phase 2, the
expected cost is only O(1). Therefore, Algorithm 1 is an O(logm)-approximation algorithm
for the SFRN problem.

Appendix C. Efficient Implementation of Algorithm 2

As we recall, it was not clear why the score function in Algorithm 2 can be efficiently
computed. In this section, we explain why this algorithm can be implemented in polynomial
time.

C.1 Computing the First Term in Scorec.

Recall that Hi is the set of all expanded scenarios for i. Since each (i, ω) ∈ Hi has an equal
share πi,ω = |Ω|−ciπi of prior probability mass the (original) scenario i ∈ [m], computing
the first term in Scorec reduces to maintaining the number ni = |Hi ∩ H ′| of consistent
copies of i. We observe that ni can be easily updated in each iteration. In fact, suppose
outcome o ∈ Ω is observed when selecting element e. We consider how H ′ ∩ Hi changes
after selecting in the following three cases.

1. if ri(e) /∈ {?, o}, then none of i’s expanded scenarios would remain in H ′, so ni becomes
0,
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2. if ri(e) = o, then all of i’s expanded scenarios would remain in H ′, so ni remains the
same,

3. if ri(e) = ?, then only those (i, ω) with ω(e) = o will remain, and so ni shrinks by an
|Ω| factor.

As ni’s can be easily updated, we are also able to compute the first term in Scorec
efficiently. Indeed, for any element e (that is not yet selected), we can implicitly describe
the set Le(H

′) as follows. Note that for any outcome o ∈ Ω,

|{(i, ω) ∈ H ′ : ri,ω(e) = o}| =
∑

i∈[m]:ri(e)=o

ni +
1

|Ω|
∑

i∈[m]:ri(e)=?

ni,

so the largest cardinality set Be(H
′) can be easily determined using ni’s. In fact, let b be

the outcome corresponding to Be(H
′). Then,

π
(
Le
(
H ′
))

=
∑

i∈[m]:ri(e)/∈{b,?}

πi
|Ω|ci

· ni +
|Ω| − 1

|Ω|
∑

i∈[m]:ri(e)=?

πi
|Ω|ci

· ni.

C.2 Computing the Second Term in Scorec

The second term in Scorec involves summing over exponentially many terms, so a naive
implementation is inefficient. Instead, we will rewrite this summation as an expectation
that can be calculated in polynomial time.

We introduce some notation before formally stating this equivalence. Suppose the al-
gorithm selected a subset E of elements, and observed outcomes {νe}e∈E . We overload
notation slightly and use f(νE) := f

(
{(e, νe) : e ∈ E}

)
for any function f defined on

2[m]×Ω. For each scenario i ∈ [m], let pi = ni · πi
|Ω|ci be the total probability mass of the

surviving expanded scenarios for i.† Finally, for any element e and scenario i, let Ei,νe be the
expectation over the outcome νe of element e conditional on i being the realized scenario.
We can then rewrite the second term in Scorec as follows.

Lemma 37 (Reformulation of the Greedy Score). For each i ∈ [m], and e /∈ E,∑
(i,ω)∈H′

πi,ω ·
fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
=
∑
i∈[m]

pi ·
Ei,νe [fi(νE ∪ {νe})− fi(νE)]

1− fi(νE)
(6)

Proof By decomposing the summation in the left hand side of (3) as H ′ = ∪iH ′ ∩Hi, and
noticing that fi,ω(E) = fi(νE), the problem reduces to showing that for each i ∈ [m],∑

(i,ω)∈H′∩Hi

πi,ω ·
(
fi,ω(e ∪ E)− fi,ω(E)

)
= pi · Ei,νe [fi(νE ∪ {νe})− fi(νE)].

Recall that pi = ni · πi
|Ω|ci and π(i,ω) = πi

|Ω|ci , the above simplifies to

1

ni

∑
(i,ω)∈H′∩Hi

(
fi,ω(e ∪ E)− fi,ω(E)

)
= Ei,νe [fi(νE ∪ {νe})− fi(νE)].

†. One may easily verify via the Bayesian rule that pi/p([m]) is indeed the posterior probability of scenario
i ∈ [m], given the previously observed outcomes.
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Note that ni = |H ′ ∩Hi|, so the above is equivalent to

1

ni

∑
(i,ω)∈H′∩Hi

fi,ω(e ∪ E) = Ei,νe [fi
(
νE ∪ {νe}

)
]. (7)

It is straightforward to verify that the above by considering the following two cases.
Case 1: If ri(e) = νe ∈ Ω \ {∗}, then the outcome νe is deterministic conditional on

scenario i, and so is fi
(
νE ∪ {νe}

)
, the value of fi after selecting e. On the left-hand side,

for every ω ∈ Hi, by definition of Hi it holds νe = ωe, and hence fi,ω(e∪E) = fi(νE ∪ {νe}
for every (i, ω) ∈ Hi. Therefore all terms in the summation are equal to fi(νE ∪ {νe} and
hence (7) holds.

Case 2: If ri(e) = ?, then each outcome o ∈ Ω occurs with equal probabilities, thus we
may rewrite the right hand side as

Ei,νe [fi (νE ∪ {νe})] =
∑
o∈Ω

Pi[νe = o] · fi (νE ∪ {νe}) =
1

|Ω|
∑
o∈Ω

fi (νE ∪ {(e, o)}) .

To analyze the other side, note that by the definition of Hi and H ′, there are equally many
expanded scenarios (i, ω) in H ′ ∩ Hi with ωe = o for each outcome o ∈ Ω. Thus, we can
rewrite the left hand side as

1

ni

∑
(i,ω)∈H′∩Hi

fi,ω(e ∪ E) =
1

ni

∑
o∈Ω

∑
(i,ω)∈H′∩Hi,

ωe=o

fi,ω(e ∪ E)

=
1

ni

∑
o∈Ω

ni
|Ω|

fi,ω(e ∪ E)

=
1

|Ω|
∑
o∈Ω

fi
(
νE ∪ {(e, o)}

)
,

which matches the right hand side of (7) and completes the proof.
This lemma suggests the following efficient implementation of Algorithm 2. For each i,

compute and maintain pi using ni. To find the expectation in the numerator, note that if
ri(e) 6= ?, then νe is deterministic and hence it is straightforward to find this expectation.
In the other case, if ri(e) = ?, recalling that the outcome is uniform over Ω, we may simply
evaluate fi(νE ∪ {(e, o)}) − fi(νE) for each o ∈ Ω and take the average, since the noisy
outcome is uniformly distributed over Ω.

Appendix D. Analysis of the ASRN Problem (Section 5)

This section is dedicated to presenting the details of how we establish our results for the
adaptive SFRN problem, mainly Theorem 17 and Theorem 18.

D.1 Application of Algorithm 2 and Algorithm 4 to ODTN.

For concreteness, we provide a closed-form formula for Scorec and Scorer in the ODTN
problem using Lemma 37, which were used in our experiments for ODTN. In §3.3, we
formulated ODTN as an ASRN instance. Recall that the outcomes Ω = {+1,−1}, and
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the submodular function f (associated with each hypothesis i) measures the proportion of
hypotheses eliminated after observing the outcomes of a subset of tests.

As in §5, at any point in Algorithm 2 or 4, after selecting set E of tests, let νE : E → ±1
denote their outcomes. For each hypothesis i ∈ [m], let ni denote the number of surviving
expanded-scenarios of i. Also, for each hypothesis i, let pi denote the total probability
mass of the surviving expanded-scenarios of i. For any S ⊆ [m], we use the shorthand
p(S) =

∑
i∈S pi. Finally, let A ⊆ [m] denote the compatible hypotheses based on the

observed outcomes νE (these are all the hypotheses i with ni > 0). Then, f(νE) = m−|A|
m−1 .

Moreover, for any new test/element T ,

f(νE ∪ {νT }) =

{
m−|A|+|A∩T−|

m−1 if νT = +1
m−|A|+|A∩T+|

m−1 if νT = −1
.

Recall that T+, T− and T ∗ denote the hypotheses with +1, −1 and ∗ outcomes for test T .
So,

f(νE ∪ {νT })− f(νE)

1− f(νE)
=

{ |A∩T−|
|A|−1 if νT = +1
|A∩T+|
|A|−1 if νT = −1

.

It is then straightforward to verify the following.

Proposition 38. Consider implementing Algorithm 2 on an ODTN instance. Suppose
after selecting tests E, the expanded-scenarios H ′ (and original scenarios A) are compatible
with the parameters described above. For any test T , if bT ∈ {+1,−1} is the outcome
corresponding to BT (H ′) then the second term in Scorec(T ;E,H ′) and Scorer(T ;E,H ′) is:(
|A ∩ T−|
|A| − 1

+
|A ∩ T+|
|A| − 1

)
· p (A ∩ T ∗)

2
+
|A ∩ T−|
|A| − 1

· p
(
A ∩ T+

)
+
|A ∩ T+|
|A| − 1

· p
(
A ∩ T−

)
.

The above expression has a natural interpretation for ODTN: conditioned on the out-
comes νE so far, it is the expected number of newly eliminated hypotheses due to test T
(normalized by |A| − 1).

The first term of the score π (LT (H ′)) or π (RT (H ′)) is calculated as for the general
ASRN problem. Finally, observe that for the submodular functions used for ODTN, the
separation parameter is ε = 1

m−1 . So, by Theorem 19 we immediately obtain a polynomial
time O(min(r, c) + logm)-approximation for ODTN.

D.2 Proof of Theorem 18

The proof is similar to the analysis in Navidi et al. (2020). With some foresight, set
α := 15(r+logm). Write Algorithm 4 as ALG and let OPT be the optimal adaptive policy.
It will be convenient to view ALG and OPT as decision trees where each node represents the
“state” of the policy. Nodes in the decision tree are labelled by elements (that are selected
at the corresponding state) and branches out of each node are labelled by the outcome
observed at that point. At any state, we use E to denote the previously selected elements
and H ′ ⊆ M to denote the expanded-scenarios that are (i) compatible with the outcomes
observed so far and (ii) uncovered. Suppose at some iteration, elements E are selected and
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Algorithm 4 Modified algorithm for ASR instance J .

1: Initialize E ← ∅, H ′ ← H
2: while H ′ 6= ∅ do
3: S ← {i ∈ [m] : Hi ∩H ′ 6= ∅} . Consistent original scenarios
4: For e ∈ [n], let Ue(S) = {i ∈ S : ri(e) = ∗} and Ce(S) be the largest cardinality set

among
{i ∈ S : ri(e) = o}, ∀o ∈ Ω,

and let oe(S) ∈ Ω be the outcome corresponding to Ce(S).
5: For each e ∈ [n], let

Re(H
′) = {(i, ω) ∈ H ′ : i ∈ Ce(S)}

⋃
{(j, oe(S)) ∈ H ′ : j ∈ Ue(S)},

be those expanded-scenarios that have outcome oe(S) for element e, and Re(H
′) :=

H ′ \Re(H ′).
6: Select element e ∈ [n] \ E that maximizes

Scorer(e, E,H
′) = π

(
Re(H

′)
)

+
∑

(i,ω)∈H′,fi,ω(E)<1

πi,ω ·
fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
(8)

7: Observe outcome o
8: H ′ ← {(i, ω) ∈ H ′ : ri,ω(e) = o and fi,ω(E ∪ e) < 1} . Update the (expanded)

scenarios
9: E ← E ∪ {e}

33



Jia, Navidi, Nagarajan and Ravi

outcomes νE are observed, then a scenario i is said to be covered if fi(E ∪ νE) = 1, and
uncovered otherwise.

For ease of presentation, we use the phrase “at time t” to mean “after selecting t ele-
ments”. Note that the cost incurred until time t is exactly t. The key step is to show

ak ≤ 0.2ak−1 + 3yk, for all k ≥ 1, (9)

where

• Ak ⊆ M is the set of uncovered expanded scenarios in ALG at time α · 2k and
ak = p(Ak) is their total probability,

• Yk is the set of uncovered scenarios in OPT at time 2k−1, and yk = p(Yk) is the total
probability of these scenarios.

As shown in Section 2 of Navidi et al. (2020), (9) implies that Algorithm 4 is an O(α)-
approximation and hence Theorem 18 follows. To prove (9), we consider the total score
collected by ALG between iterations α2k−1 and α2k, formally given by

Z :=

α2k∑
t>α2k−1

∑
(E,H′)∈V (t)

max
e∈[n]\E

 ∑
(i,ω)∈Re(H′)

πi,ω +
∑

(i,ω)∈H′
πi,ω ·

fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)

 (10)

where V (t) denotes the set of states (E,H ′) that occur at time t in the decision tree ALG.
We note that all the expanded-scenarios seen in states of V (t) are contained in Ak−1.

Consider any state (E,H ′) at time t in the algorithm. Recall that H ′ are the expanded-
scenarios and let S ⊆ [m] denote the original scenarios in H ′. Let TH′(k) denote the subtree
of OPT that corresponds to paths traced by expanded scenarios in H ′ up to time 2k−1. Note
that each node (labeled by any element e ∈ [n]) in TH(k) has at most |Ω| outgoing branches
and one of them corresponds to the outcome oe(S) defined in Algorithm 4. We define
Stemk(H

′) to be the path in TH′(k) that at each node (labeled e) follows the oe(S) branch.
We also use Stemk(H

′) ⊆ [n] × Ω to denote the observed element-outcome pairs on this
path.

Definition 39. Each state (E,H ′) is exactly one of the following types:

• bad if the probability of uncovered scenarios in H ′ at the end of Stemk(H
′) is at least

Pr(H′)
3 .

• okay if it is not bad and Pr(∪e∈Stemk(H′)Re(H
′)) is at least Pr(H′)

3 .

• good if it is neither bad nor okay and the probability of scenarios in H ′ that get

covered by Stemk(H
′) is at least Pr(H′)

3 .

Crucially, this categorization of states is well defined. Indeed, each expanded-scenario
in H ′ is (i) uncovered at the end of Stemk(H

′), or (ii) in Re(H
′) for some e ∈ Stemk(H

′), or
(iii) covered by some prefix of Stemk(H

′), i.e. the function value reaches 1 on Stemk(H
′).

So the total probability of the scenarios in one of these 3 categories must be at least Pr(H)
3 .

In the next two lemmas, we will show a lower bound (Lemma 40) and an upper bound
(Lemma 41) for Z in terms of ak and yk, which together imply (9) and complete the proof.
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Lemma 40. For any k ≥ 1, it holds Z ≥ α · (ak − 3yk)/3.

Proof The proof of this lower bound is identical to that of Lemma 3 in Navidi et al. (2020)
for noiseless-ASR. The only difference is that we use the scenario-subset Re(H

′) ⊆ H ′

instead of subset “Le(H) ⊆ H” in the analysis of Navidi et al. (2020).

Lemma 41. For any k ≥ 1, Z ≤ ak−1 · (1 + ln 1
ε + r + logm).

Proof This proof is analogous to that of Lemma 4 in Navidi et al. (2020) but requires new
ideas, as detailed below. Our proof splits into two steps. We first rewrite Z by interchanging
its double summation: the outer layer is now over the Ak−1 (instead of times between α2k−1

to α2k as in the original definition of Z). Then for each fixed (i, ω) ∈ Ak−1, we will upper
bound the inner summation using the assumption that there are at most r original scenarios
with ri(e) = ? for each element e.
Step 1: Rewriting Z. For any uncovered (i, ω) ∈ Ak−1 in the decision tree ALG at time
α2k−1, let Pi,ω be the path traced by (i, ω) in ALG, starting from time α2k−1 and ending
at time α2k or when (i, ω) is covered.

Recall that in the definition of Z, for each time t between α2k−1 and α2k, we sum over
all states (E,H ′) at time t. Since t ≥ α2k−1, and the subset of uncovered scenarios only
shrinks at t increases, for any (E,H ′) ∈ V (t) we have H ′ ⊆ Ak−1. So, only the expanded
scenarios in Ak−1 contribute to Z. Thus we may rewrite (10) as

Z =
∑

(i,ω)∈Ak−1

πi,ω ·
∑

(e;E,H′)∈Pi,ω

(
fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
+ 1[(i, ω) ∈ Re(H ′)]

)

≤
∑

(i,ω)∈Ak−1

πi,ω ·

 ∑
(e;E,H′)∈Pi,ω

fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
+

∑
(e;E,H′)∈Pi,ω

1[(i, ω) ∈ Re(H ′)]

 .

(11)

Step 2: Bounding the Inner Summation. The rest of our proof involves upper bound-
ing each of the two terms in the summation over e ∈ Pi,ω for any fixed (i, ω) ∈ Ak−1. To
bound the first term, we need the following standard result on submodular functions.

Lemma 42 (Azar and Gamzu (2011)). Let f : 2U → [0, 1] be any monotone function with
f(∅) = 0 and ε = min{f(S ∪ {e}) − f(S) : e ∈ U, S ⊆ U, f(S ∪ {e}) − f(S) > 0} be the
separability parameter. Then for any nested sequence of subsets ∅ = S0 ⊆ S1 ⊆ · · ·Sk ⊆ U ,
it holds

k∑
t=1

f(St)− f(St−1)

1− f(St−1)
≤ 1 + ln

1

ε
.

It follows immediately that∑
(e;E,H′)∈Pi,ω

fi,ω(e ∪ E)− fi,ω(E)

1− fi,ω(E)
≤ 1 + ln

1

ε
. (12)

Next we consider the second term
∑

(e;E,H′)∈Pi,ω
1[(i, ω) ∈ Re(H ′)]. Recall that S ⊆ [m]

is the subset of original scenarios with at least one expanded scenario in H ′. Consider the
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partition of scenarios S into |Ω| + 1 parts based on the response entries (from Ω ∪ {∗})
for element e. From Algorithm 4, recall that Ue(S) denotes the part with response ∗ and
Ce(S) denotes the largest cardinality part among the non-∗ responses. Also, oe(S) ∈ Ω is
the outcome corresponding to part Ce(S). Moreover, Re(H

′) ⊆ H ′ consists of all expanded-
scenarios that do not have outcome oe(S) on element e. Suppose that (i, ω) ∈ Re(H

′).
Then, it must be that the observed outcome on e is not oe(S). Let S′ ⊆ S denote the
subset of original scenarios that are also compatible with the observed outcome on e. We
now claim that |S′| ≤ |S|+r2 . To see this, let De(S) ⊆ S denote the part having the second
largest cardinality among the non-∗ responses for e. As the observed outcome is not oe(S)
(which corresponds to the largest part), we have

|S′| ≤ |Ue(S)|+ |De(S)| ≤ |Ue(S)|+
(
|S| − |Ue(S)|

2

)
=
|S|+ |Ue(S)|

2
≤ |S|+ r

2
.

The first inequality above uses the fact that S′ consists of Ue(S) (scenarios with ∗ response)
and some part (other than Ce(S)) with a non-∗ response. The second inequality uses

|De(S)| ≤ |De(S)|+|Ce(S)|
2 ≤ |S|−|Ue(S)|

2 . The last inequality uses the upper-bound r on the
number of ∗ responses per element. It follows that each time (i, ω) ∈ Re(H ′), the number

of compatible (original) scenarios on path Pi,ω changes as |S′| ≤ |S|+r2 . Hence, after log2m
such events, the number of compatible scenarios on path Pi,ω is at most r. Finally, we
use the fact that the number of compatible scenarios reduces by at least one whenever
(i, ω) ∈ Re(H ′), to obtain ∑

(e;E,H′)∈Pi,ω

1[(i, ω) ∈ Re(H ′)] ≤ r + log2m. (13)

Combining (11), (12) and (13), we obtain the lemma.

Appendix E. ASRN with High Noise: Details of Section 6

E.1 Details of the Membership Oracle: Proof of Lemma 26

We first describe how to verify whether a given hypothesis is the true hypothesis using
(logm) tests. Select an arbitrary set W of 4 logm deterministic tests for i, and let Y be
the set of consistent hypotheses after performing these tests. Without loss of generality, we
assume i ∈ T+ for all T ∈W . There are three cases:

• Trivial Case: if ī ∈ T− for some T ∈ W , then we rule out i when any test T is
performed.

• Good Case: if ī ∈ T ∗ for more than half of the tests T in W , then by Chernoff’s
inequality, with high probability we observe at least one “-”, hence ruling out i.

• Bad Case: if ī ∈ T+ for less than half of the tests in W , then we may not be able to
ruling out i with a high probability. To overcome this, we then test between i with
each hypothesis in Y by selecting a test where these two hypotheses have distinct
deterministic outcomes. This test exists due to Assumption 1.
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At this juncture, we formally define the membership oracle Member(Z) in Algorithm
5. Note that Steps 3, 9 and 18 are well-defined because the ODTN instance is assumed to
be identifiable. If there is no new test in Step 3 with T+ ∩ Z ′ 6= ∅ and T− ∩ Z ′ 6= ∅, then
we must have |Z ′| = 1. If there is no new test in Step 9 with z 6∈ T ∗ then we must have
identified z uniquely, i.e. Y = ∅. Finally, in step 18, we use the fact that there are tests
that deterministically separate every pair of hypotheses.

Algorithm 5 Member(Z) oracle that checks if ī ∈ Z.

1: Initialize: Z ′ ← Z.
2: while |Z ′| ≥ 2 do % While-loop 1: Finding a suspect – reducing |Z ′| to 1
3: Choose any new test T ∈ T with T+ ∩ Z ′ 6= ∅ and T− ∩ Z ′ 6= ∅, observe outcome
ωT ∈ {±1}.

4: Let R be the set of hypotheses ruled out, i.e. R = {j ∈ [m] : MT,j = −ωT }.
5: Let Z ′ ← Z ′\R.

6: Let z be the unique hypothesis when the while-loop ends. . Identified a “suspect”.
7: Initialize k ← 0 and Y = H.
8: while Y 6= ∅ and k ≤ 4 logm do . While-loop 2: choose deterministic tests for z.
9: Choose any new test T with MT,i 6= ∗ and observe outcome ωT ∈ {±1}.

10: if ωT = −MT,i then . i ruled out.
11: Declare “̄i 6∈ Z” and stop.
12: else
13: Let R be the set of hypotheses ruled out, Y ← Y \R and k ← k + 1.

14: if Y = ∅ then
15: Declare “̄i = i” and terminate.
16: else
17: Let W ⊆ T denote the tests performed in step 9 and . Now consider the“bad” case.

J = {j ∈ Y : MT,j = MT,i for at least 2 logm tests T ∈W}
= {j ∈ Y : MT,j = ∗ for at most 2 logm tests T ∈W}.

(14)

18: For each j ∈ J , choose a test T = T (j) ∈ T with MT,j ,MT,i 6= ∗ and MT,j = −MT,i

19: let W ′ ⊆ T denote the set of these tests.

20: if no tests in W ∪W ′ rule out i then . Let i duel with hypotheses in J .
21: Declare “̄i = i”.
22: else
23: Declare “̄i /∈ Z”.

Now, let us show that the membership oracle in Algorithm 5 has cost O(|Z|+ logm) as
stated in Lemma 26.

Proof of Lemma 26. If ī ∈ Z then it is clear that i = ī in step 6 and Member(Z) declares
ī = i. Now consider the case ī 6∈ Z. Recall that i ∈ Z denotes the unique hypothesis that
is still compatible in step 6, and that Y denotes the set of compatible hypotheses among
[m] \ {i}, so it always contains ī. Hence, Y 6= ∅ in step 14, which implies that k = 4 logm.
Also recall the definition of set S and J from (14).
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• Case 1. If ī ∈ J then we will identify correctly that ī 6= i in step 20 as one of the
tests in W ′ (step 18) separates ī and i deterministically. So in this case we will always
declare ī /∈ Z.

• Case 2. If ī 6∈ J , then by definition of J , we have ī ∈ T ∗ for at least 2 logm tests
T ∈ W . As i has a deterministic outcome for each test in W , the probability that
all outcomes in W are consistent with i is at most m−2. So with probability at least
1 − m−2, some test in W must have an outcome (under ī) inconsistent with i, and
based on step 20, we would declare ī /∈ Z.

In order to bound the cost, note that the number of tests performed are at most: |Z| in
step 3, 4 logm in step 9 and |J | ≤ |Z| in step 18, and the proof follows.

E.2 Proof of Proposition 21: SSC-based Lower Bound on OPT

Consider any feasible decision tree T for the ODTN instance and any hypothesis i ∈ [m]. If
we condition on ī = i, then T corresponds to a feasible adaptive policy for SSC(i). In fact,

• for any expanded hypothesis (ω, i) ∈ Ω(i), the tests performed in T must rule out all
the hypotheses [m]\{i}, and

• the hypotheses ruled-out by any test T (conditioned on ī = i) is a random subset that
has the same distribution as ST (i).

Formally, let Pi,ω denote the path traced in T under test outcomes ω, and |Pi,ω| the number
of tests performed along this path. Recall that ui is the number of unknown tests for i, and
that the probability of observing outcomes ω when ī = i is 2−ui , so this policy for SSC(i)
has cost

∑
(i,ω)∈Ω(i) 2−ui · |Pi,ω|. Therefore,

OPTSSC(i) ≤
∑

(i,ω)∈Ω(i)

2−ui · |Pi,ω|.

Taking expectations over i ∈ [m] the lemma follows.

E.3 Proof of Lemma 24: Greedy Is Good for Most Hypotheses

For simplicity, write (T ′)+ as T ′+ (similarly define T ′−, T
′
∗). Note that E[|ST (i) ∩ (A\i)|] =

1
2 (|T+ ∩A|+ |T− ∩A|) because i ∈ T ∗. We consider two cases for the test T ′ ∈ T .

• If MT ′,i = ?, then by the definition of the greedy rule (Step 7), we have

E[|ST ′(i) ∩ (A\i)|] =
1

2

(
|T ′+ ∩A|+ |T ′− ∩A|

)
≤ 1

2

(
|T+ ∩A|+ |T− ∩A|

)
.

• If i ∈ T ′+ ∪ T ′−, then

E[|ST ′(i) ∩ (A\i)|] ≤ max{|T ′+ ∩A|, |T ′− ∩A|} ≤ |T ′+ ∩A|+ |T ′− ∩A|,

which is at most |T+ ∩A|+ |T− ∩A| by the choice of T .

Therefore, in either case, the claim holds.
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E.4 Proof of Proposition 28: Sparsity-based Lower Bound on OPT

To ensure the output is correct w.p. 1, we need to eliminate all (m− 1) hypotheses except
the true hypothesis. By the definition of α-sparse instances, each test eliminates only O(mα)
hypotheses, we need to perform Ω(m−1

mα ) = Ω(m1−α) tests.
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