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Abstract

Motivated by several examples, we consider a general framework of learning with linear
loss functions. In this context, we provide excess risk and estimation bounds that hold
with large probability for four estimators: ERM, minmax MOM and their regularized
versions. These general bounds are applied for the problem of robustness in sparse PCA.
In particular, we improve the state of the art result for this this problems, obtain results
under weak moment assumptions as well as for adversarial contaminated data.

Keywords: SDP relaxation, empirical processes, robustness, heavy-tailed, adversarial
contamination, high-dimensional statistics.

1. Introduction

Community detection, phase recovery, signed clustering, angular group synchronization,
Max-Cut, sparse PCA, and the sparse single index model are all classical topics in machine
learning and statistics. At first glance, they are pretty different problems with different types
of data and different goals. However, they can all be written in such a way that a common
analysis of various estimators introduced for these problems can be analyzed the same
way. All these problems can be recast in the classical machine learning framework of risk
minimization Vapnik (2000). It is therefore possible to leverage the vast literature related
to risk minimization to derive excess risk and estimation bounds as well as algorithms for all
the problems cited above as well as many other ones. It appears that the general framework
that can encapsulate all these problems relies in fact on a simple loss function, maybe the
simplest one: the linear loss function. Indeed, this observation is the baseline of Chrétien
et al. (2021): several estimators introduced recently in some of the problems cited at the
beginning are in fact empirical risk minimizers (ERM) for linear loss functions. They can
therefore be analyzed using all the machinery (see, for instance, Vapnik (2000), Boucheron
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et al. (2013) or Koltchinskii (2011a)) developed during the last fifty years for ERM in this
very specific framework of the linear loss function.

General excess risk and estimation bounds have therefore been obtained in Chrétien et al.
(2021) for ERM using a linear loss function. State-of-the art techniques like localization,
homogeneity argument, local curvature and complexity fixed points equation have been
used in Chrétien et al. (2021) to obtain these general bounds that have then been applied
in Community detection, phase recovery, signed clustering, angular group synchronization
and Max-Cut. This new perspective allowed us to obtain new results or recover older
one with a new proof technique but most importantly it showed that a common analysis of
several problems that looks a priori very different can be performed.

The aim of the article is to push forward the analysis of statistical procedures based
on linear loss functions and to show that this viewpoint allows to deal with the problem of
structural risk minimization and of robustness1 in all the problems cited above and in many
other ones (some of them are given below). Indeed, Chrétien et al. (2021) only deals with
ERM procedures. However, some problems rely on some structure such as sparsity and
other are facing the problem of robustness. For these issues, ERM is not the right answer
and these two problems call for other procedures such as regularized ERM (for structural
risk minimization) or the recently introduced minmax MOM estimator Lecué and Lerasle
(2020) (for robustness issues). It is therefore the first contribution of this paper to derive
general statistical bounds for regularized ERM, minmax MOM and its regularized version
in the framework of linear loss functions. As an illustration these bounds are applied to the
problem of sparse PCA. Using our viewpoint, we improve state-of the art results for this
problem (improvement on the rates and the deviation for less stringent assumptions) as well
as getting robust (to heavy-tailed data and to adversarial contamination) versions of these
results thanks to the minmax MOM approach. Another aim of this article is to show that
the linear loss functions appears in many problems and so we provide a list of problems
that can be recast in this framework. But first, we explain how linear loss function appear
only recently, even though they are simpler than many other loss functions previously used
in machine learning such as the quadratic or the logistic loss functions.

Statistics, machine learning and optimization got closer during the last twenty years and
gave birth in part to data sciences. One consequence of these connections is that nowadays
statistical estimators and machine learning procedures should be computable on a laptop in
a reasonable amount of time and should not be purely theoretical objects. This viewpoint
shed some lights on algorithms from the statistical perspective and may now be seen as
statistical procedures that can receive a statistical analysis such as satisfying excess risk
bounds. For instance, statistical properties of some gradient-descent based algorithms and
SDP relaxation procedures have been obtained during the last twenty years. In particular,
the SDP relaxation has proved to be very successful first in optimization and nowadays in
statistics for many graph related issues such as community detection. From our perspective,
SDP relaxation has been at the origin of many examples of ERMs based on a linear loss
function.

Semidefinite programming (SDP) as a mathematical concept was introduced in the late
1980s and early 1990s. The foundations of SDP were laid down by researchers such as

1. In all this article, robustness means robust to data contamination and to heavy-tailed data.
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Yurii Nesterov, Arkadi Nemirovski, and others (Nemirovskii and Nesterov (1985), Boyd
and Vandenberghe (1997), Nesterov (1998)), who extended the ideas of linear programming
to semidefinite matrices, allowing for the optimization of linear functions subject to semidef-
inite constraints. The theoretical development and algorithms for solving SDP problems
gained significant attention during this period, leading to its establishment as a fundamental
optimization framework within the mathematical community.

The growing interest in SDPs in recent years is due to several compelling factors. One of
the main factors is its broad applicability, as it can address a wide variety of complex prob-
lems arising in various mathematical contexts, including graph theory Gaar et al. (2022),
Gualandi (2009), combinatorial optimization Gutekunst and Williamson (2019), signal pro-
cessing Luo and Yu (2006), quantum information Wang et al. (2016b), for the Komlós
conjecture Bansal et al. (2019) or in integer programming Rendl (2016). Its potency lies
in its ability to efficiently handle non-convex and combinatorial optimization challenges by
approximating them with convex semidefinite constraints. At the same time, the devel-
opment of efficient algorithms for solving SDP problems, such as interior-point methods
Helmberg et al. (1996) and first-order methods Monteiro (2003), has significantly improved
the feasibility of tackling large-scale SDPs, thereby broadening the range of possibilities for
applying SDP to real-world problems.

From our point-of-view SDP relaxations provide many examples of machine learning
procedures such as ERM or RERM (regularized ERM) based on a linear loss function. We
are now providing some of these examples and later we will dive deeper into the example
of sparse PCA.

Notations. Throughout this paper, we use uppercase letters for matrix and lowercase
letters for vectors. For a matrix A P RNˆP , we note A ě 0 to indicate that Aij ě 0 for
any pi, jq P t1, . . . , Nu ˆ t1, . . . , P u and A ľ 0 to say that A is positive semidefinite. For
A and B P RNˆP , we define their Frobenius inner product as

〈
A,B

〉
:“ TracepBJAq, and

we write A ˝ B for their element-wise product. If x is a vector in Cd then |x| denotes the
vector in Rd made of the modules of the coordinates of x. We denote rN s “ t1, . . . , Nu.

Community detection. SDPs have been used to handle the problem of community
detection on graphs in Guédon and Vershynin (2016) or Fei and Chen (2019) under the
Stochastic Block Model assumption, which is as follows. We consider a set of vertices
V “ t1, ¨ ¨ ¨ , du, and assume it is partitioned into K communities C1, ¨ ¨ ¨ , CK of arbitrary
sizes |C1|, ¨ ¨ ¨ , |CK |. For any pair of nodes i, j P V , we denote by i „ j when i and j belong
to the same community, and by i  j if i and j do not belong to the same community. For
each pair pi, jq of nodes from V , we draw an edge between i and j with a fixed probability
pij independently from the other edges. We assume that there exist numbers p and q
satisfying 0 ă q ă p ă 1, such that pij ą p if i „ j and i ‰ j, pij “ 1 if i “ j and pij ă q
otherwise. We denote by A “ pAi,jq1ďi,j,ďd the observed symmetric adjacency matrix, such
that, for all 1 ď i ď j ď d, Aij is distributed according to a Bernoulli of parameter pij .
The community structure of such a graph is captured by the membership matrix Z̄ P Rdˆd,
defined by Z̄ij “ 1 if i „ j, and Z̄ij “ 0 otherwise. The objective is to reconstruct Z̄ from
the observation A. Lemma 7.1 of Guédon and Vershynin (2016) shows that the membership
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Lecué and Neirac

matrix Z̄ is given by the following oracle:

Z˚ P argmax
ZPC

〈
ErAs, Z

〉
, C :“

#

Z P Rdˆd : Z ľ 0, Z ě 0,diagpZq ĺ Id,
d
ÿ

i,j“1

Zij ď λ

+

where λ “
řd
i,j“1 Z̄ij “

řK
k“1 |Ck|2 denotes the number of nonzero elements in the mem-

bership matrix Z̄. Since only the A matrix is observed, the authors consider the following
estimator for Z˚:

Ẑ P argmax
ZPC

〈
A,Z

〉
.

This estimator is therefore obtained as the solution of an ERM with the linear loss function
Z Ñ `ZpAq :“ ´

〈
A,Z

〉
, constructed from a single observation of the random matrix A.

Variable clustering. SDP estimators have been used in Bunea et al. (2018) to solve the
variable clustering problem. The problem is that of grouping into clusters similar com-
ponents of a vector X P Rd, that is to find a partition G “ tG1, . . . , GKu of t1, . . . , du
that separates the components of X. To that end, the authors observe N independant
copies X1, . . . , XN of X and place themselves in the case where the covariance matrix Σ
of X follows a block model. To describe this model, we need to define the membership
matrix Q P RpˆK associated with a partition G as Qak “ 1taPGku. Then, Σ is said to

follow an exact G-block covariance model when it decomposes as Σ “ QCQJ ` Γ, where
C is a symmetric K ˆ K matrix and Γ is a diagonal d ˆ d matrix. For a given par-
tition G, we also introduce its corresponding membership matrix Z˚ P Rdˆd defined by
Z˚ij “ |Gk|

´1
1
ti and j belong to the same group Gku

. There is a one-to-one correspondence

between partitions G and their corresponding membership matrices, so that looking for G
is equivalent to looking for Z˚. Using the K-means algorithm and a relaxation of it given in
Peng and Wei (2007), the authors show that the best partition for the Xi’s can be estimated
with the one corresponding to the following membership matrix:

Ẑ P argmax
ZPC

〈
A,Z

〉
, C :“

#

Z P Rdˆd : Z ľ 0, Z ě 0,
ÿ

j

Zij “ 1@i,Tr pZq “ K

+

where A :“ 1
N

řN
i“1XiX

J
i is the empirical covariance of the Xi’s. In the noiseless case, we

would have Z˚ P argmaxZPC
〈
ErAs, Z

〉
. The estimator Ẑ can therefore be seen as an ERM

with the linear loss function Z Ñ `ZpAq :“ ´
〈
A,Z

〉
, constructed from the observation of

A.

Angular synchronization. The angular synchronization problem consists of estimating
d unknown angles θ1, ¨ ¨ ¨ , θd (up to a global shift angle) given a noisy subset of their pairwise
offsets δij “ θi ´ θj . This problem is investigated in Bandeira et al. (2016). The authors
consider that they observe dpd´ 1q{2 measurements of the following form:

aij “ eιδij ` εij , for 1 ď i ă j ď d.

They assume the pεijqiăj ’s to be i.i.d complex Gaussian variables. The problem can be
rewritten under the following form:

A “ XX̄J ` σW
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with X P Cd defined by Xi “ eιθi , W being a complex Wigner matrix and σ ą 0 being
the variance of the noise. The aim is then to reconstruct the vector x˚ “ peιθiqdi“1, whose
maximum likelihood estimator is, up to a global rotation of its coordinates, the unique
solution to the following maximization problem:

argmax
xPE

 

x̄J EA x
(

where E :“
!

x P Cd : |xi| “ 1 for all i “ 1, . . . , d
)

.

By noticing that E “ tZ P Hn : Z ľ 0, diagpZq “ 1d, rankpZq “ 1u, they lead to the
following SDP formulation of the problem, after removing the rank constraint:

Z˚ P argmin
ZPC

`

´
〈
ErAs, Z

〉˘
where C :“ tZ P Hn : Z ľ 0, diagpZq “ 1du. (1)

They show that in this setting, x˚ can be obtain from Z˚ as its leading unit-length eigen
vector. Since ErAs is not known and only observed through A, Ẑ P argminZPC

`

´
〈
A,Z

〉˘
is

a natural estimator for Z˚. This is therefore another example of an ERM estimator based
on the observation of the matrix A and the linear loss function Z Ñ `ZpAq “ ´

〈
A,Z

〉
.

Max-Cut. In Hong et al. (2021), the authors propose an SDP estimator to handle the
Max-Cut problem. The Max-Cut problem is a classical graph theory problem, which
consists of taking a graph with vertices V :“ t1, . . . , du and edges E Ă V ˆV and finding a
partition S Y S̄ “ V of vertices such that the number of edges connecting a vertex in S to
a vertex in S̄ is maximal among all possible partitions. Most of the time, we observe only
A P t0, 1udˆd a noisy or partial version of the adjacency matrix of the graph. Hence, the
true adjacency matrix of the graph is not observed but it is usually assumed to be equal to
the expectation EA of the observed one A. Hence, A is considered as our data and from this
data, we wish to find an optimal partition S˚ of the original graph. Choosing a partition S
being equivalent to choosing x P t´1, 1uN , it is shown in Goemans and Williamson (1995),
via a lifting argument, that an optimal partition is a first eigenvector of a solution to the
following optimization problem:

Z˚ P argmin
ZPRdˆd

`〈
ErAs, Z

〉
: Z ľ 0, Zii “ 1 @i, rankpZq “ 1

˘

.

Then, using an SDP relaxation by removing the rank constraint, we recover the classical
Max-Cut SDP relaxation procedure introduced by Goemans and Williamson. The ERM
counterpart based on the data A is

Ẑ P argmin
ZPC

〈
A,Z

〉
for C :“

!

Z P Rdˆd, Z ľ 0, Zii “ 1 @i
)

It is indeed an ERM procedure based on the observation of A and the linear loss function
Z Ñ `ZpAq :“

〈
A,Z

〉
over a convex set.

Phase recovery. The former problem is close to the one of phase recovery, which aims
at recovering a vector x P Cd from the noisy observation of the amplitude of N random
linear measurements: X “ |Bx| P RN , with B P CNˆd a random matrix. In Waldspurger
et al. (2013), the authors use a strategy that involves separating phase from amplitude
and optimizing only the values of the phase variables. In the noiseless case, they write
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x “ B`diagpXqu, where u P CN is a phase vector and B` P CNˆN is the pseudo-inverse
of B. In this format, they show that finding x P Cd such that |Bx| “ X is equivalent to
solving the following problem:

z˚ P argmin
zPE

〈
ErAs, zz̄J

〉
where E :“

 

z P CN : |zi| “ 1 ,@i P rN s
(

and A :“
`

XXJ
˘

˝ pIN ´BB
`q. Writing Z “ zz̄J, this problem is equivalent to the

following one:

min
`〈

ErAs, Z
〉

: Z ľ 0, Zii “ 1@i, rankpZq “ 1
˘

which may be relaxed by dropping the rank constraint:

Z˚ P argmin
ZPC

〈
ErAs, Z

〉
for C :“

 

Z P RNˆN : Z ľ 0, Zii “ 1 @i P rN s
(

.

The optimal value of z˚ is then obtained as the first eigenvector of the oracle Z˚. An
estimator of Z˚ from the observation of A is then Ẑ P argminZPC

〈
A,Z

〉
which is a SDP

optimization problem that we see as an ERM with the linear loss function Z Ñ `ZpAq :“〈
A,Z

〉
.

Distance metric learning SDP estimators can also be used in learning distance metrics,
as it is done in Xing et al. (2002). Learning distances is particularly important, as the choice
of a metric that is correctly adapted to the input space is crucial to the acuity of many
learning algorithms, especially in clustering, where it is essential to take deep account of
the relationships between the data. Let’s consider a set of points pXiqi“1,...,N P Rd that we
observe partially or with noise. Now, consider the task of learning a distance metric of the
form

dZpX,Y q “
b

TrppX´YqpX´YqJZq,

where Z ľ 0 is positive semidefinite. We note that, since one has TrppX´YqpX´YqJZq “
}Z1{2pX ´ Y q}22, learning such a distance metric amounts to finding a rescaling of data
that replaces each point X with Z1{2X and applying the standard Euclidean metric to the
rescaled data. Now, assume that we want the Xi’s to be as close as possible to each other for
this metric. This leads us to solve the problem minZľ0

řN
i,j“1 dZpXi, Xjq

2. However, this
last problem is trivially solved by Z “ 0 hence, we may add some constraints: we suppose to
know M points pYiqi“1,...,M , distinct from the Xi’s, for which we want

řM
i,j“1 dZpYi, Yjq ě 1

to be satisfied. This prevent the situation where dZ collapses the dataset into a single point.
Let us then define A :“

řN
i,j“1 pXi ´Xjq pXi ´Xjq

J. In the noiseless case, the matrix Z˚

we are looking for can then be taken as a solution to the following problem:

Z˚ P argmin
ZPC

〈
ErAs, Z

〉
where C :“

#

Z P Rdˆd : Z ľ 0,
M
ÿ

i,j“1

〈
pYi ´ Yjq pYi ´ Yjq

J , Z
〉1{2

ě 1

+

.

One can show that the set C is convex (see Appendix A.1). In practice, the observation
A is a noisy version of ErAs, so we just replace ErAs with A to get an estimator of Z˚:
Ẑ P argminZPC

〈
A,Z

〉
which is again an ERM estimator with the linear loss function Z Ñ

`ZpAq “
〈
A,Z

〉
, constructed from an observation of the random matrix A.
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Noisy optimal transport. Let X “ px1, . . . , xN q and Y “ py1, . . . , yN q be two clouds of
points in Rd. The quadratic optimal transport problem (or quadratic assignment problem)
is defined by the W2-Wasserstein distance

W 2
2 pX ,Yq “ min

τPSN

N
ÿ

i“1

}xi ´ yτpiq}
2 (2)

where SN is the set of all permutations of rN s. Finding a solution to (2) is a standard
problem in optimal transport that can be lifted to the matrix problem

Z˚ P argmin
ZPC

ÿ

i,j

}xi ´ yj}
2
2Pij

and C is the set of all N ˆ N bi-stochastic matrices (i.e. of matrices with non-negative
entries summing to one along rows and columns). Indeed, if τ˚ denotes an optimal solution
to (2) then for all i P rN s, Z˚iτ˚piq “ 1 and Z˚ij “ 0 when j ‰ τ˚piq.

Let us now assume that we do not observe exactly the points in X and Y but we only
have access to a noisy version of these points: for all i P rN s, Xi “ xi`σGi and Yi “ yi`σG

1
i

where σ ě 0 and pGi, G
1
iq
N
i“1 are 2N i.i.d. standard mean zero random vectors in Rd. The

quadratic assignment problem for this two noisy cloud of points is a solution to the problem

Ẑ P argmin
ZPC

〈
A,Z

〉
where A “ p}Xi ´ Yj}

2
2q1ďi,jďN

and it can be shown that in the free noise case, we have Z˚ P argminZPC
〈
EA,Z

〉
. The noisy

quadratic OT problem is to identify a sharp phase transition that is a σ˚ such that 1) if
σ ă σ˚ then with high probability Ẑ “ Z˚ and 2) for all σ ą σ˚, with probability larger
than 1{2, Ẑ ‰ Z˚. Once again, one may looked at Ẑ as an ERM for a linear loss function.

The sparse single index model. For this last example, we consider a semi-parametric
model where an output Y P R is generated from an input X P Rd, via a ‘link’ function in
the following way:

Y “ f
`〈
X,β˚

〉˘
` ε

where β˚ P Rd is assumed to be a k-sparse unit vector, f : R Ñ R is an unknown univariate
measurable function and ε is a noise that is generally assumed to be independent of the
input. The entries of X are assumed to be i.i.d with a given density p0. The joint density of
X is then p “ bdj“1p0 with respect to the Lebesgue measure. We define a univariate score
function s : x P R Ñ R by spxq “ ´p10pxq{p0pxq, defined for p0-almost all x P R and the first
and second score functions associated with p are defined for p-almost all x “ pxjq

d
j“1 by

Spxq “ pspxjqq1ďjďd P Rd and T pxq “ SpxqSpxqJ ´ diag
´

`

s1pxjq
˘

1ďjďd

¯

.

Unlike the previous examples, the dimension d may be larger than N however, the
target index β˚ is assumed to be k-sparse with k ă N . We therefore fall into the realm
of structural learning. The work of Yang et al. (2018) focuses on this problem where it is
proved that β˚ can be obtained as the leading eigenvector of

Z˚ P argmin
ZPC

`

´
〈
ErAs, Z

〉˘
where C :“ t0 ĺ W ĺ Id, TrpW q “ 1u
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and A :“ Y T pXq. Regularized ERM promotes the sparsity structure via a `1-regularization.
The oracle Z˚ can then be estimated as follows:

Ẑ P argmin
ZPC

`

´
〈
A,Z

〉
` λ}Z}1

˘

which takes the form of a regularized ERM estimator based on the observation A, the linear
loss function Z Ñ `ZpAq “ ´

〈
A,Z

〉
and a `1 regularization.

Goal of the paper. The list of examples provided above indicates that there is a real
interest in the general study of linear loss functions in machine learning (we will provide later
one more examples in structural learning for which we will provide a complete statistical
analysis). Our aim is to propose such a unified methodology to obtain statistical properties
of classical machine learning procedures based on linear loss functions such as the SDP
procedures introduced above that we are now looking as ERM procedures constructed with
a linear loss function. We continue the work begun in Chrétien et al. (2021) and go further
here by presenting three other estimators that address the two problems of structural risk
minimization and robustness. Our machine learning viewpoint allows to introduce new
procedures (addressing the previously mentioned two issues) as well as study their statistical
properties.

Framework. Our general framework is as follows. Let H be a Hilbert space. Let A be
a random vector in H that we observe and C Ă H be a constraint set (most of the time it
will be a convex set). We suppose to be interested in an object which is the solution to the
‘oracle’ optimization problem

Z˚ P argmax
ZPC

〈
ErAs, Z

〉
. (3)

In some cases, Z˚ is not our direct object of interest, but knowing about it enables us to
achieve our objective (for instance, by retrieving one of its first eigen-vector). We then
propose several estimators for the estimation of the oracle Z˚, among which we will choose
depending on the presence or not of some particular structure and on the quality of the
data (presence or not of corrupted and/or heavy-tailed data).

The first estimator we propose is the one studied in Chrétien et al. (2021) and is the
standard ERM estimator built on the random matrix A but for the (non standard) linear
loss function, that is Z Ñ `ZpAq “ ´

〈
A,Z

〉
:

Ẑ P argmax
ZPC

〈
A,Z

〉
. (4)

Then, we turn to two classical machine learning and statistics problems: structured learn-
ing and robustness. Leveraging on our view point (i.e. all the previous procedures are all
ERMs), we attack the structural learning problem by proposing a regularized version of this
ERM estimator by adding a regularization function to the objective function in (4). After-
wards, we turn to the robustness problem and introduce an estimator based on the median
of means (MOM) principle, which has been introduced in Lecué and Lerasle (2020) and
that is called the minmax MOM. This latter estimator addresses the problem of robustness
and can be constructed whatever the loss function is and in particular it fits our linear loss

8



Structural and robust learning with linear loss functions

function setup. We show that the resulting estimators are robust to data contamination as
well as to heavy-tailed data. As for ERMs, we present a classical and a regularized version
of the minmax MOM estimator in this setup.

For each of those estimators we are able to propose statistical guarantees when ErAs is
only partially observed through A. In particular, our approach leads to new non-asymptotic
rates of convergence or exact reconstruction properties for a wide range of estimators that
fall within our framework. Then, in order to show the versatility of our approach, we apply
these general bounds to the sparse PCA problem. Using our approach we are able to handle
this classical statistical problem using our general excess risk and estimation bounds. As
a result we improve the state-of-the art results in sparse PCA as well as introduce new
procedures with statistical optimal guarantees that solve the problems of robust structural
learning for this problem. Efficient robust gradient descent based algorithms may easily
be derived from these procedures as in Lecué and Lerasle (2020). We provide such a
construction in Remark 5 below. We will however not dive deeper into the algorithmic
consequences of our approach.

2. General excess risk and estimation bounds for ERM, minmax MOM
estimators and their regularized versions

In this section, we provide high probability excess risk and estimation bounds satisfied by
four procedures (ERM, minmax MOM and their regularized versions) in the setup intro-
duced above, that is for the linear loss function. The results for ERM are taken from
Chrétien et al. (2021) and are recalled here for completeness and because it presents an
‘easy’ setup for the introduction of two key tools: local complexity fixed points and local
curvature equations. The proofs of all the results are postponed to Section 5. They use
state-of-the art machinery such as localization, homogeneity argument, local curvature and
fixed point complexity parameters.

In particular, there are several ways to localize around the oracle depending on the metric
used; it can be either the excess risk itself or a natural local curvature metric, denoted later
by the G function or the standard L2 metric with respect to the probability measure of the
data. Depending on the metric, this defines different local curvatures and different fixed
points. For each type of localization, we state a statistical result. We therefore obtain
various bounds for each of the four estimators in this section. Hence, this section provides
a complete description of the results one can obtain for these estimators in the setup of
linear loss functions and for any regularization norm. We will apply these results in the
sparse PCA framework later to show how these general bounds can be applied in a concrete
example.

2.1 General framework

Throughout this section, we place ourselves in the classical context considered in machine
learning and provide its relation with the setup from the Introduction section, in particular,
we provide for each example the random matrix A appearing in (3) and (4).

Let H be a Hilbert space and X be a random vector with values in H distributed
according to a distribution P . For any function g : H Ñ R for which it makes sense, we
denote by Pg :“ EX„P rgpXqs the expectation of the g function under the distribution P .

9
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For each p ě 1, we denote by }g}Lp “ pP r|g|
psq

1
p its LppP q-norm. Let C be a subset of H.

For all Z in H, the loss function of Z is the linear loss function, `Z : X P H Ñ ´
〈
X,Z

〉
(it

is an alignment measure, which quantifies the error made when estimating Z with X). As
usual in machine learning, we are interested in the best element in H that minimizes the risk
(i.e. the expectation of the loss function) over C, i.e. we want to estimate/learn/infer/test

Z˚ P argmin
ZPC

P`Z . (5)

Sometimes Z˚ is called the oracle because it is a quantity we would like to know but we
usually cannot have a direct access to it because the distribution P of X is not known to
the Statistician and so is the risk function Z Ñ P`Z . However, we have access to a sample
distributed according to P . This sample / dataset is denoted by tXi : i P rN su where
N P N is called the sample size. From a mathematical point of view pXiqiPrNs is a family
of i.i.d. random variables distributed according to P – in the section below concerning
median-of-means estimators we will relax this assumption and consider a situation where a
fraction of the dataset may have been corrupted by an adversary, in that case the Xi’s are
not anymore assumed to be i.i.d..

The setup we just introduced is pretty much the same as in the Introductory section.
We just have to identify the random matrix A for each particular examples. Since, the
’linear loss function’ setup is not standard in machine learning, we provide the connection
between A and the Xi’s for each example:

• in community detection, N “ 1 and A “ X1 is the adjacency matrix of the observed
graph;

• in variable clustering, A :“ 1
N

řN
i“1XiX

J
i is the empirical covariance of the observed

variables Xi’s;

• in angular synchronization, A “
`

eιδij ` εij
˘

1ďiăjďd
is made of the noisy measure-

ments of the pairwise offsets;

• in the Max-Cut problem, A is the adjacency matrix of the observed graph;

• in phase recovery, A :“
`

XXJ
˘

˝pIN ´BB
`q, where X is the vector of the N observed

measurements and B is the measurement matrix;

• in distance metric learning, A :“
řN
i,j“1 pXi ´Xjq pXi ´Xjq

J where the Xi’s are the
observed data from which we want to learn the metric;

• in noisy optimal transport, A “ p}Xi´Yj}
2
2q1ďi,jďN , where tX1, . . . , XNu and tY1, . . . , YNu

are the two sets of observed vectors that we wish to transport one over the other;

• in the sparse single index model, A “ 1
N

řN
i“1 YiT pXiq, where for any i P rN s, Yi “

fp
〈
Xi, β

˚
〉
q ` εi is the noisy output associated to the input Xi via the link function

f , and T pXiq P Rdˆd is the second order score matrix of X.

Remark 1 Most of the problems introduced in Section 1 are presented as maximization
problems, whereas ERM is a minimization problem. Given the linearity of the loss function,

10
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there are several ways to write the maximization problem into a minimization one: one may
take the opposite of the linear loss function, or replace A with ´A, or C with ´C. Here, we
consider the loss function `Z : AÑ ´

〈
A,Z

〉
, i.e. we take the opposite of the loss function,

which is still a linear one.

Moving back to the “learning with a linear loss function” introduced at the beginning
of this section, we want to estimate/learn the oracle Z˚ from the data pXiqiPrNs. Let Ẑ be

an estimator constructed with these data. The quality of prediction of Ẑ is measured via
the excess risk PLẐ where Z P C Ñ LZ :“ `Z ´ `Z˚ is called the excess loss. The quality of

estimation of Ẑ is measured by the error rate }Ẑ ´ Z˚}2L2
, where L2 is taken with respect

to the P distribution.
There are many ways to construct estimators in the machine learning context consid-

ered here. We will see four of them below. The most classical one is the empirical risk
minimization procedure Vapnik (2000) introduced in the next section. Before moving to
the construction of estimators, we say a word about the set C. In all examples introduced
in Section 1, C is a convex set by construction. For our theoretical purpose, we will however
need a weaker assumption given now: the star-shaped property.

Definition 2.1 We say that a set C is star-shaped in Z˚ when for all Z P C, the segment
rZ,Z˚s is in C.

In all our results we will assume C to be star-shaped in Z˚. This property is satisfied
in all examples introduced in Section 1 because a convex set is star-shaped in any of its
elements.

2.2 The ERM estimator and its regularized version: definition and general
bounds

In this section, we consider the ‘i.i.d setup’ introduced in the previous section and consider
the standard ERM estimator and its regularized version for which we provide high proba-
bility excess risk and estimation bounds. The bounds for the ERM are taken from Chrétien
et al. (2021). We reproduce them here because they introduce key quantities (localization,
local curvature and complexity fixed points) in an ’easy’ setup and they will appear in the
study of the three other estimators in a more convoluted way.

2.2.1 ERM for the linear loss function

For any loss function and in particular for the linear one considered here `Z : X P H Ñ

´
〈
X,Z

〉
, defined for all Z P C, the ERM is

Ẑ P argmin
ZPC

PN`Z where PN`Z “
1

N

N
ÿ

i“1

`ZpXiq “
1

N

N
ÿ

i“1

〈
´Xi, Z

〉
.

The ERM is the natural empirical version of the oracle Z˚ since P`Z appearing in the
definition of Z˚ in (5) has been replaced by its empirical counterpart PN`Z . When there
is only one observation, ie N “ 1, for instance in the community detection problem, we
simply have PN`Z “ P1`Z “ ´

〈
X1, Z

〉
“ ´

〈
A,Z

〉
.

11
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The study of the statistical properties of ERM estimators goes back to Vapnik and
Chervonenkis (1974) and has been at the heart of many researches since then (see, for
instance, Koltchinskii (2011a) and Boucheron et al. (2005)). The results recalled below are
for the special case of the linear loss function and are taken from Chrétien et al. (2021).
They are however based on nowadays classical concepts in machine learning.

A key quantity driving the rate of convergence of the ERM is a local complexity fixed
point parameter. This kind of parameter carries all the statistical complexity of the problem.
It can however be hard to compute (see for instance Chrétien et al. (2021) or Section 3
below), since it requires to control with large probability the supremum of an empirical
processes indexed by a ”localized classes”, i.e. of the set C intersected with a neighborhood
of the oracle. We now define such a complexity fixed point related to the problem we are
considering here.

Definition 2.2 [Complexity fixed point parameter] Let 0 ă ∆ ă 1. The fixed point com-
plexity parameter at deviation 1´∆ is

r˚p∆q “ inf

˜

r ą 0 : P

«

sup
ZPC:PLZďr

pPN ´ P qLZ ď
r

2

ff

ě 1´∆

¸

. (6)

In what follows, we give some statistical properties of the ERM Ẑ build from this com-
plexity parameter. They are taken from Chrétien et al. (2021) up to the slight modification
that the results from Chrétien et al. (2021) have been stated in the case N “ 1 and X1 “ A.
They can however be extended to the general sample size N just by replacing the empirical
measure P1 by PN . Below we state these results in the general case.

Theorem 2.3 (Theorem 1 in Chrétien et al. (2021)) We assume that the constraint
C is star-shaped in Z˚. Then, for all 0 ă ∆ ă 1, with probability at least 1 ´ ∆, it holds
true that PLẐ ď r˚p∆q.

From Theorem 2.3, we get that one way to grab some information on the ERM is to get
an upper bound for the complexity fixed point r˚p∆q. To that end, one needs to understand
the shape of the sets C X tZ : PLZ ď ru for r ą 0. This task may however be hard because
of the shape of the neighborhoods tZ : PLZ ď ru given by the excess risk. In that case, it
has been shown Chinot et al. (2018) that one can leverage on a local curvature of the excess
risk to introduce easier to compute fixed points. We are now introducing the complexity
fixed point associated with this other localization and then the notion of local curvature.
In what follows, G is some function from H to R.

Definition 2.4 [Complexity fixed point parameter with G-localization] Let 0 ă ∆ ă 1. The
fixed point complexity parameter with respect to the G-localization at deviation 1´∆ is

r˚Gp∆q “ inf

˜

r ą 0 : P

«

sup
ZPC:GpZ´Z˚qďr

pPN ´ P qLZ ď
r

2

ff

ě 1´∆

¸

. (7)

The difference between r˚ and r˚G lies in the fact that the local subsets are not defined
with the same proximity function: r˚ used the excess risk function for localization whereas
r˚G uses the G function. The latter G function should play the role of a simple description of
the curvature of the excess risk around the oracle as it is granted in the following assumption.

12
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Assumption 2.5 For all Z P C, if PLZ ď r˚Gp∆q then PLZ ě GpZ˚ ´ Zq.

There are examples where one can show a curvature of the excess risk over the entire set
C - this is for instance the case in the sparse PCA example below (see Lemma 4.3 below).
In that case, we speak about a global curvature. What shows the following result is that we
only need a local curvature of the excess risk around Z˚ to hold in order to get statistical
bounds for the ERM Ẑ.

Theorem 2.6 (Corollary 1 in Chrétien et al. (2021)) We assume that the constraint
C is star-shaped in Z˚ and that the “local curvature” Assumption 2.5 holds for some 0 ă
∆ ă 1. With probability at least 1´∆, it holds true that

r˚Gp∆q ě PLẐ ě GpZ˚ ´ Ẑq.

Finally a third and final estimation bound is given in the following for cases where
Assumption 2.5 is hard to verify. They are situations where the shape of the local subsets
C X tZ : PLZ ď ru is hard to understand. In that case, we can simplify this assumption by
considering neighborhoods with respect to the G function.

Assumption 2.7 For all Z P C, if GpZ˚ ´ Zq ď r˚Gp∆q, then PLZ ě GpZ˚ ´ Zq.

The following result establishes that, under Assumption 2.7, Ẑ is a good estimate of Z˚

with respect to the G function, but no guarantee on the excess risk is obtained.

Theorem 2.8 (Theorem 2 in Chrétien et al. (2021)) We assume that the constraint
C is star-shaped in Z˚ and that the “local curvature” Assumption 2.7 holds for some 0 ă ∆ ă

1. We assume that the G function is continuous, Gp0q “ 0 and GpλpZ˚´Zqq ď λGpZ˚´Zq
for any λ P r0, 1s and Z P C. Then, with probability at least 1 ´ ∆, it holds true that
GpZ˚ ´ Ẑq ď r˚Gp∆q.

We refer the reader to Chrétien et al. (2020) for the application of these results in com-
munity detection, signed clustering, angular group synchronization (for both multiplicative
and additive models) and the Max-Cut problem. All these problems share the feature that
the oracle Z˚ does not have some special structure onto which one can leverage to improve
the rates of convergence. They are however situations such as in sparse PCA or in the
sparse single index model where the target has a structure that can be beneficial in order
to improve statistical performance. In such cases, one may consider some regularization
procedures like in the following section.

2.2.2 Regularized ERM for the linear loss

We focus here on structural learning in which targets/oracles have a structure (such as
sparsity, low rank or regularity) onto which the statistician can leverage to construct more
statistically efficient estimators. The typical approach to this problem is to regularize the
ERM in order to force the estimator toward the desired structure.

We place ourselves in the framework defined above in Section 2.1 except that we need
here a regularization function, i.e. a function that favors some structure. In this work, we
consider a general norm defined at least on the span of C and denoted by } ¨ }. Typical

13
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examples are the `1 norm and the trace-norm used in high-dimensional statistics to induce
sparsity or low-rank. When Z˚ has some structure a natural way to force an estimator
toward Z˚ is by adding a mutliple of this norm. This yields to the regularized ERM, later
called RERM:

ẐRERM P argmin
ZPC

pPN`Z ` λ}Z}q (8)

where λ ą 0 is called the regularization parameter and has the role to make a trade-off
between the data adequation term PN`Z and the regularization term }Z}.

As for the ERM, convergence rates achieved by the RERM ẐRERM are driven by a local
complexity fixed point parameter. However, the regularization norm appears in this type
of parameter: it is now the set C intersected with balls with respect to } ¨ } centered at
Z˚ (and for some radius) that are “localized” by some neighborhood of Z˚. Somehow the
model in structural learning is of the form CXtZ : }Z´Z˚} ď ru. As in the ERM case, one
may consider two different ways to construct localization: either via the excess risk or via
a local curvature G function. However, to avoid a lengthy presentation, we focus only on
the latter one, i.e. on a localization via a local curvature G function because it is this result
that we will use for the our application later in sparse PCA. In what follows, we consider
a function G : H Ñ R, which characterizes the curvature of the objective function, i.e. the
risk, Z P H Ñ P`Z around its minimizer Z˚.

Definition 2.9 For parameter A ą 0, radius ρ ą 0 and deviation parameter δ P p0, 1q, we
define the complexity fixed point for the structural learning with a linear loss function by

r˚RERM,GpA, ρ, δq “ inf

˜

r ą 0 : P

˜

sup
ZPC:}Z´Z˚}ďρ,GpZ´Z˚qďr

|pP ´ PN qLZ | ď
r

3A

¸

ě 1´ δ

¸

,

where we recall that for all Z P C, LZ “ `Z ´ `Z˚ is the excess loss function of Z.

After introducing the fixed point r˚RERM,GpA, ρ, δq, we are now in a position to introduce
the G function as a description of the local curvature of the excess risk. As we already
mentioned above, the G function describes the curvature of the excess risk locally around
the oracle.

Assumption 2.10 We assume there exist A ą 0, ρ˚ ą 0 and δ P p0, 1q such that, for
all Z P C satisfying GpZ ´ Z˚q “ r˚RERM,GpA, ρ

˚, δq and }Z ´ Z˚} ď ρ˚, then APLZ ě
GpZ ´ Z˚q.

We now leverage on the structure inducing property of the regularization norm and
explain what features must the radius ρ˚ appearing in Assumption 2.10 have in relation to
this property. We will use the assumption below, that is adapted from the one in Lecué and
Mendelson (2017), to get the statistical bounds satisfied by the RERM estimator ẐRERM .
The idea is that the regularization norm }.} is expected to promote some structure by having
a large subdifferential at elements in H having this structure. First, let us recall what the
subdifferential of }.} at a point Z is:

pB}.}qZ :“
 

Φ P H : }Z ` h} ´ }Z} ě
〈
Φ, h

〉
for all h P H

(

.
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Elements in pB}.}qZ are called the subgradients of } ¨ } in Z. What matters in structural
learning to get fast rates is that Z˚ is close to an element with a structure induced by the
regularization norm. Therefore we consider the set of all subgradients of } ¨ } of points close
to Z˚:

for any ρ ą 0 : ΓZ˚pρq “
ď

ZPZ˚` ρ
20
B

pB}.}qZ

where B is the unit ball of }.}. We expect ΓZ˚pρq to be a large subset of the unit dual
sphere (or dual ball, when 0 P Z˚ ` pρ{20qB) of }.} when Z˚ is structured or close to a
structured element in H, for the notion of structure associated with }.}. This intuition is
formalized in the following definition.

Definition 2.11 For A ą 0, ρ ą 0 and δ P p0, 1q we define:

Hρ,A :“
 

Z P C : }Z ´ Z˚} “ ρ and GpZ ´ Z˚q ď r˚RERM,GpA, ρ, δq
(

and

∆pρ,Aq :“ inf
ZPHρ,A

sup
ΦPΓZ˚ pρq

〈
Φ, Z ´ Z˚

〉
.

We say that ρ ą 0 satisfies the A-sparsity equation when ∆pρ,Aq ě p4{5qρ.

Note that it is always true that ∆pρ,Aq ď ρ – because }Z´Z˚} “ ρ and Φ is a subgradient
of } ¨ } – hence, a radius ρ satisfying the A-sparsity equation is somehow extremal up to the
absolute constant 4{5 (the analysis works for any other absolute constant, there is nothing
special with 4{5). It means that ΓZ˚pρq is almost as big as the unit dual sphere (or ball) of
} ¨ }. More details and intuition on the objects introduced in Definition 2.11 may be found
in Lecué and Mendelson (2017) and Chinot et al. (2018).

All the material introduced above (complexity fixed points, local curvatures and the
sparsity equation) are the corner stones of our statistical analysis of RERMs. Once intro-
duced, we are in a position to state our main result on RERM estimators for linear loss
functions and a general regularization norm.

Theorem 2.12 Let δ P p0, 1q. Assume that the constraint set C is star-shaped in Z˚.
Consider a continuous function G : H Ñ R such that Gp0q “ 0. Suppose the existence of
A ą 0 and ρ˚ ą 0 such that Assumption 2.10 holds and ρ˚ ą 0 satisfies the A-sparsity
equation from Definition 2.11. Define the function r˚p.q :“ r˚RERM,GpA, ., δq and assume
that

10

21A

r˚pρ˚q

ρ˚
ă λ ă

2

3A

r˚pρ˚q

ρ˚
. (9)

Then, with probability at least 1 ´ δ, the following bounds hold for the RERM estimator
defined in (8):

}ẐRERM ´ Z˚} ď ρ˚ , GpẐRERM ´ Z˚q ď r˚pρ˚q and PLẐRERM ď
r˚pρ˚q

A
.

We note that in the case where G is the risk function Z Ñ P`Z - that is when the
excess risk is used for localization, because, by linearity GpZ ´ Z˚q “ P`Z´Z˚ “ PLZ -
Assumption 2.10 is trivially verified with A “ 1, and as a consequence Theorem 2.12 applies.
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2.3 Median of Means estimators: definitions and general bounds

In this section, we move to the construction and the statistical analysis of another family
of estimators introduced in Lecué and Lerasle (2020) whose aims are to solve robustness
issues related to adversarial contamination of the dataset as well as heavy-tailed data. We
are interested here in the case where our data could be contaminated by possible outliers
generated by an adversary and the inliers data may be heavy-tailed. Even though the
framework seems not in favor of statisticians because the dataset is of poor quality, we still
want to achieve the same statistical performance as if there was no outliers and light-tailed
(such as sub-gaussian) data. It is known that the classical ERM or RERM approaches from
the previous section do not perform well in general on this type of dataset and that is the
reason why we move to median-of-means (MOM) estimators.

The statistical framework considered in this section cannot be the ideal i.i.d. setup
considered in the previous section that fits well for ERM and RERM. Indeed, the i.i.d.
framework do not allow for adversarial corruption. That is why we consider the following
setup in this section.

Assumption 2.13 [Adversarial contamination setup] Let N i.i.d. random vectors p rXiq
N
i“1

in H. These vectors are first given to an adversary who is allowed to modify up to |O| of
them. This modification does not have to follow any rule and is unknown to the statistician.
This leads to the modified dataset tX1, . . . , XNu that the adversary gives to the statistician.
Hence, the dataset at hands tX1, . . . , XNu is said to be ‘adversarially’ contaminated. It can
be partitioned into two groups: the modified data pXiqiPO, which can be seen as outliers
and the ‘good data’, or inliers, pXiqiPI such that for any i P I, Xi “ rXi. Of course,
the statistician does not know which data has been modified or not so that the partition
O Y I “ t1, . . . , Nu is unknown to the statistician.

Remark 2 Since there are two types of data considered in Assumption 2.13 (the ’good’ X̃is
and the corrupted ones Xis), we need to be clear on the objects we will be using later: the
risk function and its associated oracle are the one associated with the ’good’ data:

Z P C Ñ P`Z “ E
〈
´X̃, Z

〉
and Z˚ P argmin

ZPC
P`Z

where X̃ has the same probability distribution as X̃1, . . . , X̃N . It is also the same for the

L2-norm: for all Z P H, }Z}L2 “

b

E
〈
X̃, Z

〉2
. Note that the L2-norm is in general different

from the original Hilbert norm defining H, which is denoted by } ¨ }2.

The adversarial contamination setup addresses several questions in statistics regarding
the rates of convergence, the probability deviations and the number of outliers. Many
approaches have been introduced to answer these questions Huber and Ronchetti (2009).
There was an important renewal of this topic during the last ten years with Catoni (2012),
in statistics and Diakonikolas et al. (2016) in computer science. The approach we use
in this section is based on the median-of-means principle introduced in Alon et al. (1999),
Nemirovsky and Yudin (1983) and Jerrum et al. (1986): rN s is partitioned into K equal-size
groups B1, . . . , BK (w.l.o.g. K is assumed to divide N , otherwise we only have to remove
some data). For any function g : H Ñ R and k P rKs we define PBkg “ pK{Nq

ř

iPBk
gpXiq,
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the empirical mean of g over Bk. Then, we define MOMkpgq as the median of these K
empirical means:

MOMKpgq :“ MedpPB1g, . . . , PBKgq.

This data partition scheme is at the heart of our approach to answer the robustness issues.
It is used as a building block in the minmax MOM estimator. We recall its construction and
provide its statistical properties in the remaining of this section as well as for its regularized
version for the robust structural learning problem.

2.3.1 The minmax MOM estimator for the linear loss function.

To solve the robustness to adversarial corruption as well as to heavy-tailed data, one can use
a systematic approach called the minimax MOM estimator in Lecué and Lerasle (2020). It
works whenever a loss function exists and a robust gradient descent algorithm may also be
constructed out of it (see Lecué and Lerasle (2020) and Remark 5 below for more details).
When the dataset has been split into K equal size blocks, it takes the following form:

ẐMOM
K P argmin

ZPC
sup
Z1PC

MOMKp`Z ´ `Z1q (10)

and can therefore be used in the particular case studied here of the linear loss function
x Ñ `Zpxq “ ´

〈
Z, x

〉
. From our theoretical perspective, the aim of the minmax MOM

estimator ẐMOM
K is to achieve the rates of convergence for the same deviation probability

in the contaminated and heavy-tailed setup as in the ideal i.i.d. setup with light-tailed
data, as long as the number of outliers is not too large. It is the aim of the next section
to prove such statistical bounds. As for the ERM case, rates of convergence are given by
local complexity fixed points that depends on the choice of localization. Below, we consider
three different ways to localize: either via the L2pP q-norm, or via the excess risk or via
some general curvature function G.

MOM estimator with excess-risk localization. As previously for ERMs, the con-
vergence rate of the minmax MOM estimator is driven by a local complexity fixed point
parameters. In this section, we consider the case where the excess risk is simple enough
so that it can serve as a localization. In that case, there is no need to identify the curva-
ture of the excess risk locally around Z˚ since the excess risk describes it by itself. There is
therefore no curvature assumption. In the next two paragraphs the picture will be different.

Definition 2.14 Let σ1, . . . , σN be N independent Rademacher variables which are inde-
pendent of the X̃i’s. For γ ą 0, we define:

r˚MOM,ERpγq :“ inf

"

r ą 0 : max

ˆ

Eprq

γ
,
?

12800VKprq

˙

ď r2

*

where, for all r ą 0,

Eprq :“ E

«

sup
ZPC:PLZďr2

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

and VKprq :“

c

K

N
sup

ZPC:PLZďr2

b

V arpLZpX̃qq.
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In the case of excess risk localization, there is no need for other tools than the fixed
point r˚MOM,ERpγq to describe the rate of convergence of the minmax MOM. This is what
shows the following result.

Theorem 2.15 We consider the adversarial contamination setup of Assumption 2.13. We
assume that the constraint set C is star-shaped in Z˚. Let γ “ 1{6400 and consider K,
a divisor of N such that K ě 100|O|. Then, it holds true that with probability at least
1´ expp´72K{625q, PLẐMOM

K
ď r˚MOM,ERpγq

2.

Compared to the fixed point from Definition 2.2 describing the rate of convergence of
the ERM, we note that the one from Definition 2.14 uses a local Rademacher complexity,
denoted by Eprq , and a variance term, denoted by VKprq. In particular, there is no need
to upper bound with high probability the supremum of an empirical process but only its
expectation. For minmax MOM estimators, the task of computing fixed point complexity
parameters is therefore easier. Moreover, as one can see in Theorem 2.15, the convergence
rate is obtained with an exponentially large probability even though no strong concentration
property is assumed; only the existence of a second moment (so that the variance term
VKprq exists) is required. This shows the robustness to heavy-tail data of minmax MOM
estimators for the linear loss function as well as its robustness with respect to adversarial
contamination since it is proved in the setup of Assumption 2.13. However, the computation
of the complexity term Eprq may require more moments than just 2 in order to recover a
Gaussian regime, i.e. a rate achieved when the data have a (light) subgaussian tail.

MOM estimator with L2-localization. In this section, we consider the case where
the behaviour / curvature of the excess risk locally around the oracle Z˚ is well described
by the L2-norm to the square. This is the situation when a margin assumption APLZ ě
}Z´Z˚}2L2

,@Z P C holds, i.e. with a margin parameter equal to 2, as introduced in Mammen
and Tsybakov (1999). In that case, one needs to modify the definition of the complexity
fixed point parameter by using a L2-localization.

Definition 2.16 Let σ1, . . . , σN be independent Rademacher variables which are indepen-
dent of the X̃i’s. For γ ą 0, we define

r˚MOM,L2
pγq :“ inf

˜

r ą 0 : E

«

sup
ZPC: }Z´Z˚}L2

ďr

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď γr2

¸

where we recall that }Z}L2 “

b

E
〈
X̃, Z

〉2
for all Z P H.

As we said above, we use the L2-norm in the localization to define the fixed point
r˚MOM,L2

pγq when it describes the curvature of the excess risk around Z˚. We now formalize
this property in the next assumption.

Assumption 2.17 There exists A ą 0 such that for any Z P C, if }Z´Z˚}2L2
ď CK,A, then

}Z ´ Z˚}2L2
ď APLZ , where CK,A :“ max

´

r˚MOM,L2
pγq2, γ´1A2pK{Nq

¯

for γ “ 1{3200.
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Looking at Assumption 2.17, this may be surprising to have a quadratic term }Z´Z˚}2L2

describing a linear term PLZ “
〈
EX̃, Z˚ ´ Z

〉
. However, one may see that the local

curvature of the excess risk from Assumption 2.17 holds only for Z in C not in H. Thanks to
the two tools introduced above (a local complexity fixed point and a curvature assumption),
we are now ready to state our main result on the minmax MOM estimator in the adversarial
contamination setup for a L2-localization.

Theorem 2.18 We consider the adversarial contamination setup of Assumption 2.13. We
assume that the constraint set C is star-shaped in Z˚. Let γ “ 1{3200. Assume the existence
of 0 ă A ă 1 such that Assumption 2.17 holds. Let K be a divisor of N such that K ě

100|O|. Then, it holds true that with probability at least 1´ expp´72K{625q:

PLẐMOM
K

ď
CK,A
A

and }ẐMOM
K ´ Z˚}2L2

ď CK,A.

Theorem 2.18 can be used under a margin assumption with a margin parameter equal to
2. It can be extended to margin parameter other than 2. However, one may be interested in
other situations where the local curvature of the excess risk is not described by the square
of the L2 norm but for instance by the square of the native Hilbert norm of H - as it will
be the case for the sparse PCA problem. In the next paragraph, we provide a statistical
bound for the minmax MOM estimator for a local curvature of the excess risk described by
a general G function.

MOM estimator with G localization. In this final paragraph regarding the minmax
MOM estimator, we consider a general G function describing locally the excess risk around
Z˚ and derive statistical bounds when this function is used for localization. When applied
to the particular cases of the excess risk or the L2 norm to the square, we recover the last
two results. However, other G functions may be considered, for instance, if the calculation
of r˚MOM,ERpγq is too hard or if L2-norm to the square does not describe well enough the
excess risk. We need first to define a complexity fixed point for a localization w.r.t. a general
G function. Unlike in the previous section dealing with the L2 to the square localization
and as in the last but one section dealing with a excess risk localization, there is a variance
term in this fixed point equation.

Definition 2.19 Let σ1, . . . , σN be N independent Rademacher variables which are inde-
pendent of the X̃i’s. For G : H Ñ R and γ ą 0, we define:

r˚MOM,Gpγq :“ inf

"

r ą 0 : max

ˆ

EGprq

γ
,
?

12800VK,Gprq

˙

ď r2

*

where, for all r ą 0,

EGprq :“ E

«

sup
ZPC:GpZ´Z˚qďr2

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

and

VK,Gprq :“

c

K

N
sup

ZPC:GpZ´Z˚qďr2

b

V arpLZpX̃qq.
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The function G characterizes the curvature of the excess risk Z P C Ñ PLZ “
〈
EX,Z˚´

Z
〉

locally around its minimizer Z˚. This is formalized in the following assumption.

Assumption 2.20 There exist A ą 0 and γ ą 0 such that for all Z P C, if GpZ ´ Z˚q ď
pr˚MOM,Gpγqq

2, then APLZ ě GpZ ´ Z˚q.

The difference between r˚MOM,ER and r˚MOM,G is that the local subsets are not defined
using the same proximity function to the oracle Z˚. The main advantage in finding a
curvature function G satisfying Assumption 2.20 is that r˚MOM,G may be easier to compute
than r˚MOM,ER, since the shape of a neighborhood defined by G may be easier to understand
than the one defined by the excess risk. However, one always has r˚MOM,ER ď r˚ERM,G since
there is no better way to describe the excess risk than the excess risk itself. We now obtain
statistical bounds satisfied by the minmax MOM estimator (10) under this local curvature
assumption.

Theorem 2.21 We consider the adversarial contamination setup of Assumption 2.13. We
assume that the constraint set C is star-shaped in Z˚. We consider a continuous function
G : H Ñ R. Let γ “ 1{6400. We assume the existence of 0 ă A ă 2 such that the local
curvature Assumption 2.20 holds for those values of γ and G. Then, with probability at
least 1´ expp´72K{625q it holds true that:

PLẐMOM
K

ď
1

2
r˚MOM,Gpγq

2 and GpZ˚ ´ ẐMOM
K q ď r˚MOM,Gpγq

2.

Theorem 2.21 may be applied in the examples introduced from Section 1 if one is willing
to handle robustness issues for these (none structured) learning problems. If one wants
to handle the robustness issues in structural learning then one may consider regularized
versions of the minmax MOM estimator as in the next section.

2.3.2 Regularized minmax MOM estimators for the linear loss function

We are now considering the setup of robust structural learning that allows for high-dimensional
statistics, i.e. when the dimension of the parameter to estimate Z˚ is larger than the num-
ber of observations. In that case, some structure is usually assumed to be satisfied by Z˚

and should be taken into account for the construction of estimators. On top of that, we
consider a setup where the data may have been corrupted by some outliers and the inliers
may be heavy-tailed. We therefore have to face several issues related to robustness and
high-dimensions that we propose to solve using a regularized version of the minmax MOM
estimator introduced in Section 2.3.1:

ẐRMOM
K,λ P argmin

ZPC
sup
Z1PC

`

MOMKp`Z ´ `Z1q ` λp}Z} ´ }Z
1}q

˘

(11)

where λ ą 0 is some regularization parameter and }¨} is a norm inducing some structure. In
the following sections, we provide statistical guarantees for this estimator. As in the previous
sections, the convergence rates depend on local complexity fixed points, local curvature
properties of the excess risk and of the ’structure inducing power’ of the regularization
norm } ¨ }. As previously, the choice of the localization function plays a key role in the
definition of all these concepts. We therefore consider three paragraphs depending on the
localization function used: it can either be the excess risk, the L2-norm or some general
function G.

20



Structural and robust learning with linear loss functions

RMOM estimator with excess-risk localization. As in the previous section, we start
with the excess risk localization.

Definition 2.22 Let σ1, . . . , σN be independent Rademacher variables which are indepen-
dent of the X̃i’s. For γ ą 0 and ρ ą 0, we define:

r˚RMOM,ERpγ, ρq :“ inf

"

r ą 0 : max

ˆ

Epr, ρq

γ
, 400

?
2VKpr, ρq

˙

ď r2

*

where, for all ρ, r ą 0 and Cρ,r “
 

Z P C : }Z ´ Z˚} ď ρ, PLZ ď r2
(

,

Epr, ρq :“ E

«

sup
ZPCρ,r

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

and VKpr, ρq :“

c

K

N
sup
ZPCρ,r

b

V arpLZpX̃qq.

The sparsity equation introduced for the study of the RERM in Definition 2.11 has to be
slightly modified according to this new definition of the complexity parameter.

Definition 2.23 For γ ą 0 and ρ ą 0, let

H̄ρ :“
 

Z P C : }Z ´ Z˚} “ ρ and PLZ ď r˚RMOM,ERpγ, ρq
2
(

and ∆̄pρq :“ infZPH̄ρ supΦPΓZ˚ pρq

〈
Φ, Z´Z˚

〉
. We say that ρ satisfies the sparsity equation

if ∆̄pρq ě 4ρ{5.

We are now ready to state our main statistical result satisfied by the regularized minmax
MOM estimator for the linear loss function and for an excess-risk localization.

Theorem 2.24 We consider the adversarial contamination setup of Assumption 2.13. Let
K P rN s be such that K ě 100|O|. Let ρ˚ ą 0 satisfying the sparsity equation from Def-
inition 2.23. Let γ “ 1{3200 and take λ “ p11{p40ρ˚qqr˚RMOM,ERpγ, 2ρ

˚q as regularization
parameter. Then, with probability at least 1´ 2 expp´72K{625q,

PLẐRMOM
K,λ

ď r˚RMOM,ERpγ, 2ρ
˚q2 and }ẐRMOM

K,λ ´ Z˚} ď 2ρ˚.

Note that one may replace r˚RMOM,ERpγ, 2ρ
˚q by any real number r˚ larger than r˚RMOM,ERpγ, 2ρ

˚q.
This observation is particularly useful since we usually only know how to upper bound lo-
cal complexity fixed points such as r˚RMOM,ERpγ, 2ρ

˚q and that we use it to define λ, the
regularization parameter.

RMOM estimator with L2 localization. In this section, we look at the case where
the L2-norm to the square is used to describe the local curvature of the excess risk. As we
mentioned above, it is the case when the margin assumption with margin parameter equals
to 2 holds. We define below the appropriate complexity fixed point parameter, the local
curvature assumption and the associated sparsity equation.

Definition 2.25 Let pσiqiďN be independent Rademacher variables independent of the X̃i’s.
For ρ ą 0 and γ ą 0, we define:

r˚RMOM,L2
pγ, ρq :“ inf

˜

r ą 0 : E

«

sup
ZPC:}Z´Z˚}ďρ,}Z´Z˚}L2

ďr

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď γr2

¸

.
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We turn now to the sparsity equation that is used to construct the radius ρ˚ which
defines the model C X pZ˚ ` ρ˚Bq where both Z˚ and ẐRMOM

K,λ lie (with high probability).

Definition 2.26 For γ, ρ and A ą 0, let:

CKpγ, ρ,Aq :“ max

ˆ

320000A2K

N
, r˚RMOM,L2

pγ, ρq2
˙

,

rHρ,A :“
!

Z P C : }Z ´ Z˚} “ ρ and }Z ´ Z˚}L2 ď
a

CKpγ, ρ,Aq
)

and

r∆pρ,Aq :“ inf
ZP rHρ,A

sup
ΦPΓZ˚ pρq

〈
Φ, Z ´ Z˚

〉
.

A real number ρ ą 0 is said to satisfy the A-sparsity equation if r∆pρ,Aq ě 4ρ{5.

The next definition is the formal way to say that the L2-norm to the square can be used
to describe the curvature of the excess risk closed to the oracle.

Assumption 2.27 There exists A, γ and ρ˚ ą 0 such that ρ˚ satisfies the A-sparsity
equation from Definition 2.26 and for both b P t1, 2u and all Z P C, if }Z ´ Z˚}2L2

“

CKpγ, bρ
˚, Aq and }Z ´ Z˚} ď bρ˚, then }Z ´ Z˚}2L2

ď APLZ .

After introducing the three key concepts in structural learning: local complexity fixed
point, local curvature assumption and the sparsity equation, we can now state our excess
risk and estimation (w.r.t. to both L2 and the regularization norm) bounds.

Theorem 2.28 We consider the adversarial contamination setup of Assumption 2.13. Let
K be a divisor of N and assume that K ě 100|O|. Grant Assumption 2.27 for some
A P p0, 1s, γ “ 1{32000 and ρ˚ that satisfies the A-sparsity equation from Definition 2.26.
Define λ “ p11{p40ρ˚qqCKpγ, 2ρ

˚, Aq. Then it holds true that with probability at least
1´ 2 expp´72K{625q:

}ẐRMOM
K,λ ´ Z˚} ď 2ρ˚ , PLẐRMOM

K,λ
ď

93

100
r˚RMOM,L2

pγ, 2ρ˚q2

and

}ẐRMOM
K,λ ´ Z˚}2L2

ď r˚RMOM,L2
pγ, 2ρ˚q2.

Again the same result as the one of Theorem 2.28 holds if one replaces r˚RMOM,L2
by any

upper bound on r˚RMOM,L2
.

22



Structural and robust learning with linear loss functions

RMOM estimator with G localization. Finally, we consider a function G : H Ñ R
that is expected to describe well the local curvature of the excess risk and that is used to
define all the subsequent localizations. An example of such aG function is given in the sparse
PCA case studied later. Indeed, in Lemma 4.3 below, we will use Z P Rdˆd Ñ GpZq “ }Z}22
as a localization function (we recall that } ¨ }2 is the canonical norm over H; it is in general
different from the L2 one that was used above for localization). We are now introducing a
complexity fixed point that uses the G function for localization.

Definition 2.29 Let σ1, . . . , σN be independent Rademacher variables independent of the
X̃i’s. For G : H Ñ R and A, γ and ρ ą 0, we define:

r˚RMOM,Gpγ, ρq :“ inf

"

r ą 0 : max

ˆ

EGpr, ρq

γ
, 400

?
2VK,Gpr, ρq

˙

ď r2

*

where, for all r, ρ ą 0,

EGpr, ρq :“ E

«

sup
ZPCρ,r

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpX̃iq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

and VK,Gpr, ρq :“

c

K

N
sup
ZPCρ,r

b

V arpLZpX̃qq,

with Cρ,r “ tZ P C : }Z ´ Z˚} ď ρ,GpZ ´ Z˚q ď r2u

An example of computation of an upper bound of the local complexity fixed point r˚RMOM,Gpγ, ρq
is provided in the sparse PCA example in Lemma 4.13 below. The final ingredient to derive
the rate of convergence is the radius ρ that needs to satisfy a sparsity equation.

Definition 2.30 For all γ and ρ ą 0, consider

H̄ρ :“
 

Z P C : }Z ´ Z˚} “ ρ and GpZ ´ Z˚q ď r˚RMOM,Gpγ, ρq
2
(

and ∆̄pρq :“ infZPH̄ρ supΦPΓZ˚ pρq

〈
Φ, Z´Z˚

〉
. We say that ρ satisfies the sparsity equation

if ∆̄pρq ě 4ρ{5.

Finally, we write the assumption saying that the G function is indeed appropriate to
describe the excess risk locally around Z˚.

Assumption 2.31 There exists A ą 0, γ ą 0 and ρ˚ ą 0 such that ρ˚ satisfies the
spartsity equation from Definition 2.30 and for both b P t1, 2u and all Z P C, if GpZ´Z˚q “
r˚RMOM,Gpγ

˚, bρ˚q2 and }Z ´ Z˚} ď bρ˚, then APLZ ě GpZ ´ Z˚q.

We are now ready to state the following result on the statistical properties of the regular-
ized minimax MOM in the context of robust structural learning with a linear loss function
and for a general G function describing the local curvature of the excess risk.

Theorem 2.32 We consider the adversarial contamination setup of Assumption 2.13. Let
G : H Ñ R be a continuous function such that Gp0q “ 0 and for all α ě 1 and Z P

C, GpαpZ ´Z˚qq ě αGpZ ´Z˚q. Let K P rN s be such that K ě 100|O|. Grant Assumption
2.31 for some A P p0, 1s, γ “ 1{32000 and ρ˚ that satisfies the sparsity equation from
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Definition 2.30. Define λ “ p11{p40ρ˚qqr˚RMOM,Gpγ, 2ρ
˚q. Then with probability at least

1´ 2 expp´72K{625q, it holds true that:

}ẐRMOM
K,λ ´ Z˚} ď 2ρ˚ , PLẐRMOM

K,λ
ď

93

100
r˚RMOM,Gpγ, 2ρ

˚q2

and

GpẐRMOM
K,λ ´ Z˚q ď r˚RMOM,Gpγ, 2ρ

˚q2.

In the sparse PCA example, Theorem 2.32 will be applied for the study of a `1-
regularized minmax MOM estimator. However, applying Theorem 2.32 requires several
intermediate results such as proving that Z Ñ GpZq “ }Z}22 can be used as a local cur-
vature of the excess risk, find a ρ˚ satisfying the sparsity equation of Definition 2.30 and
compute an upper bound for the local complexity fixed point r˚RMOM,Gpγ, ρq. For the last
task, one needs to handle the variance term VK,G as well as the complexity term EGpr, ρq.
For the latter, we need to find an upper bound on the expected supremum of a Rademacher
process over the interpolation body Cρ,r “ tZ P C : }Z ´ Z˚} ď ρ,GpZ ´ Z˚q ď r2u. This
step is usually the hardest one.

Remark 3 The implementation of the methodology presented in this article depends on
our ability to efficiently calculate the local curvature of the excess risk close to the oracle,
some complexity fixed points as well as solving the sparsity equation in the case of structural
learning. The most demanding step in this scheme is the computation of the local complexity
fixed points which may require technical skills in empirical process theory, random matrices
theory as well as in the geometry of Banach spaces. This is particularly true under weak
moments assumptions. In our previous work Chrétien et al. (2020), we provide several
examples of such computations of complexity fixed points. In the next section to come, we
provide two other examples proving that performing such computations is possible. However,
this step may be identified as the main limitation of our approach to the study of structural
and robust learning with a linear loss function.

3. Two examples of computation of local complexity fixed points

In this section, we present concentration and in expectation results for two specific inter-
polation norms of the difference between the covariance matrix and its empirical version.
These results are typical results that we use to compute local complexity fixed points like
the ones used in the previous section. Indeed, in order to use any of the general statistical
bounds presented in Section 2, we have to compute local complexity fixed points. We pro-
vide two such examples in this section that will be useful for the next section on the sparse
PCA problem. Note that the bounds presented here hold under weak moment assumptions
(i.e. roughly speaking logpdq moments are enough) and may be of independent interest.

In this section, we use the following notations: X1, . . . , XN are i.i.d. centered random
vectors in Rd and we denote by Σ their covariance matrix, i.e. EX1X

J
1 “ Σ. The entries

of Σ are denoted by Σpq i.e. EX1pX1q “ Σpq for all p, q P rds where X1 “ pX1jq
d
j“1. We

denote the empirical covariance matrix by Σ̂N “ p1{Nq
řN
i“1XiX

J
i and its entries by Σ̂pq,

p, q P rds. The aim of this section is to provide large deviation and in expectation upper

24



Structural and robust learning with linear loss functions

bounds for the norm of Σ´ Σ̂N for two norms defined by interpolation bodies. The proofs
of the two Theorems 3.2 and 3.4 below are postponed to Section 5.2.

3.1 Control of }Σ´ Σ̂N} for a B2{B1 interpolation norm.

In order to upper bound the deviation of the empirical covariance matrix Σ̂N around Σ
w.r.t. some norm we need to assume some concentration properties on the Xi’s. We
therefore consider such an assumption now.

Assumption 3.1 There exists w ě 0 and t ě 1 such that the following holds: for all
p, q P rds and all 2 ď r ď 2 logped{kq ` t we have }X1pX1q ´ EpX1pX1qq}Lr ď w2r.

In other words, Assumption 3.1 is a growth condition on the first 2 logped{kq`t moments
of the products X1pX1q of the coordinates of X1. This growth condition is the one exhibited
by sub-exponential (i.e. ψ1) variables. This is, for instance, the case of a product of two
sub-gaussian (i.e. ψ2) variables because }UV }ψ1 ď }U}ψ2}V }ψ2 and the r-th moment of
a ψα variable growths like r1{α (see Chapter 1 in Chafäı et al. (2012) for more details).
Assumption 3.1 does not require the existence of any moment beyond the p2 logped{kq` tq-
th moment and is therefore called a weak moment assumption: Assumption 3.1 essentially
assumes the existence of logped{kq subgaussian moments on the coordinates of the data. We
will see below that this assumption is enough to get estimation result for the first k-sparse
principal component in deviation with an improved rate of convergence of order

c

k2 logped{kq

N
. (12)

Let k P rds. We denote by }¨} the following interpolation pseudo-norm onto Rdˆd defined
by

}A} “ sup
`〈
A,Z

〉
: Z P kB1 XB2

˘

. (13)

Theorem 3.2 There exists an absolute constant c0 such that the following holds. Grant
Assumption 3.1 for some w and t ě 1 and assume that N ě 2 logped{kq`t. With probability
at least 1´ expp´tq,

}Σ̂N ´ Σ} ď c0w
2

c

k2plogped{kq ` tq

N
.

Moreover, if N ě 2 logped{kq`1, it holds true that E
”

}Σ̂N ´ Σ}
ı

ď c0w
2
a

6k2 logped{kq{N .

Remark 4 Classical estimation result require the number of observations to be larger than
s logped{sq where s is the sparsity of signal to be reconstructed. Here, we observe in Theo-
rem 3.2 that N is only asked to be larger than logped{kq so it is a much weaker assumption
than in the classical high-dimensional setup. The rational behind this phenomenon is that
we do not have to lower bound a quadratic process since our loss function is linear. It is
usually isomorphic or just lower bounds results on a quadratic processes that require N to
be larger than the sparsity up to a log factor. We don’t have such a quadratic process to
lower bound in our ’linear loss function’ framework.
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3.2 Control of }Σ´ Σ̂N} for a B2/SLOPE interpolation norm.

As in the last section, we need some assumption on the existence of moments on the coor-
dinates of X1. We consider such an assumption now.

Assumption 3.3 There exists w ě 0 and t ě 3 such that the following holds. For all
p, q P rds and all 2 ď r ď logped2q ` t we have }X1pX1q ´ EpX1pX1qq}Lr ď w2r.

Our aim is to analyze the statistical properties of a SLOPE regularization for the sparse
PCA problem and to show that the optimal rate (12) can be achieved by a unique regular-
ization method which does not require the a priori knowledge of the sparsity parameter k.
To that end we introduce the SLOPE regularization norm of a dˆ d matrix A

}A}SLOPE “
d
ÿ

p,q“1

bpqA
˚
pp,qq

where b :“ pbpq : p, q P rdsq are decreasing weights for some lexicographical order over rds2

starting at p1, 1q such that for all k P rds, bkk “
a

logped2{k2q ` t. For instance, one may
assume that b is a symetric matrice and set bpq “

a

logped2{ppqqq ` t when q ě p. We
also denote by pA˚

pp,qq : p, q P rdsq the non-increasing sequence (for the same lexicographical

order over rds2 used before) of the rearrangement of the absolute values of the entries of A,
for instance A˚

pd,dq “ minp|Apq| : p, q P rdsq and A˚
p1,1q “ maxp|Apq| : p, q P rdsq. We denote

by BSLOPE the unit ball of the SLOPE norm.

Let ρ ą 0. We denote by }¨}ρ the following interpolation pseudo-norm onto Rdˆd defined
by

}A}ρ “ sup
`〈
A,Z

〉
: Z P ρBSLOPE XB2

˘

. (14)

Theorem 3.4 There exists an absolute constant c0 such that the following holds. Let k P rds
and γ ě 1. Grant Assumption 3.3 for some w and t ě max

`

2 logprlogpk2qsq, γ logped2{k2q
˘

and assume that N ě logped2q ` t. With probability at least 1´ 2 expp´t{2q,

}Σ̂N ´ Σ}ρ ď
c0w

2

?
N

minpρ, dq.

4. Sparse PCA

Principal Components analysis (PCA) is one of the most fundamental dimension reduction
algorithm as well as one of the most used data visualization tool. It can be efficiently
performed via some truncated SVD algorithms on the N ˆ d data matrix (N being the
number of data and d the dimension of the data, that is the number of features) which
requires only Opk2 minpd,Nqq operations to get the first k top eigenvectors (see Halko et al.
(2011) and Golub and Van Loan (2013)).

However, principal components are linear mixture of features that may be of very dif-
ferent nature and as so are for most of the time meaningless. This problem becomes more
salient for high-dimensional data (i.e. when d ą N) where the diversity of features (text,
socio-professional categories, geographic location, familiar situation, consumption habits,

26



Structural and robust learning with linear loss functions

etc.) may be very large. Moreover, in the high-dimensional setting, PCA no longer pro-
vides meaningful estimates of the principal components of the actual covariance matrix Σ
as exhibited by the phase transition from Baik et al. (2005).

One way to alleviate both interpretation and inconsistency in the high-dimensional
setting is to look for principal components which are linear mixture of a small number of
features – that is ”sparse” principal component. This problem is known as sparse PCA
and was introduced in Johnstone and Lu (2009b,a). It can be stated as the following
optimization problem:

v̂1 P argmax
}v}2“1,}v}0ďk

}Σ̂Nv}2 (15)

where the Xi’s are i.i.d centered vectors in Rd with covariance ErXiX
J
i s “ Σ, Σ̂N “

p1{Nq
řN
i“1pXi´ X̄N qpXi´ X̄N q

J is the empirical covariance matrix, }v}0 is the size of the
support of v and k is some fixed sparsity level.

From an algorithmic point of view there are two major issues in the optimization problem
(15): 1) the objective function that we want to maximize is convex; and it is notoriously
difficult to maximize a convex function even on a convex set 2) because of the sparsity
constraint ’}v}0 ď k’, the constraint set is not convex. If the sparsity constraint was not
there, then (15) would be the classical PCA problem for finding a first principal component,
that is a top eigenvector of Σ̂N . In that case, even though it is a maximization problem of a
convex function on a convex set, this problem can be solved efficiently for instance via the
power method and is in fact one of the few situation where maximizing a convex function
can be performed efficiently.

The extra sparsity constraint in (15) somehow emphasis this original issue that the
objective function to maximize is convex. One way to overcome this issue is to adapt the
power method to this extra constraint, see Journée et al. (2010). Another way is via SDP
relaxation d’Aspremont et al. (2007). We will use this latter approach so we present it in
the next subsection in more details.

4.1 SDP relaxation in sparse PCA

Let X P Rd be a centered random vector with distribution P . Let X1, . . . , XN P Rd be N
independant copies of X. Define A :“ p1{Nq

řN
i“1XiX

J
i , the empirical covariance matrix

of the Xi’s. Let Σ :“ ErAs “ EX„P rXXT s be their covariance matrix. We are looking for
a first principal component with a support of small cardinality, that is for a vector v˚ P Rd

with unit-length and cardinality less than a certain integer k ď d, and such that the variance
of the Xi’s when projected onto v˚ is maximal. This can be written as follows:

v˚ P argmax
vPE

Er
〈
X, v

〉2
s where E :“

!

v P Rd : }v}2 “ 1, }v}0 ď k
)

. (16)

This problem is known to be NP-hard in general Magdon-Ismail (2015), so we are looking to
relax it. One way to do this is to replace the cardinality function by the `d1-norm. Another
way is via the lifting procedure, which is described for example in Lemaréchal and Oustry
(2018) and is based on the principle that quadratic objective functions and constraint sets of
a vector v can be written as linear objective functions and constraint sets of the symmetric
rank one matrix vvJ .
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In our case, we first note that Er
〈
X, v

〉2
s “

〈
ErAs, vvJ

〉
“
〈
Σ, vvJ

〉
. Then, if Z “ vvT

with v P Sd´1
2 and }v}0 ď k, we have TrpZq “ }v}22 “ 1 and }Z}0 ď k2. Finding a solution of

(16) is then equivalent (see d’Aspremont et al. (2007) and Lemaréchal and Oustry (2018))
to finding a top singular vector of Z‹, where Z‹ is solution of the optimization problem

Z‹ P argmax
ZPC0

〈
ErAs, Z

〉
where C0 :“

!

Z P Rdˆd : Z “ vvT , v P Rd,TrpZq “ 1, }Z}0 ď k2
)

.

In the latter problem, the objective function has now become a linear one thanks to
the lifting approach, however the constraint set is not convex. We are now working on
that issue to get a full SDP relaxation of (16). First, we may replace the condition
“Z “ vvT ” by the equivalent condition “Z ľ 0 and rankpZq “ 1” in C0. However,
C0 :“

 

Z P Rdˆd : Z ľ 0,TrpZq “ 1, }Z}0 ď k2, rankpZq “ 1
(

is not convex, because of two
non-convex constraints: the cardinality constraint “ }Z}0 ď k2” and the rank constraint
“ rankpZq “ 1” that we are just dropping out of C0. By doing so, we end up with the
following convex optimization problem:

Z˚ P argmax
ZPC

〈
ErAs, Z

〉
where C :“ tZ P Rdˆd : Z ľ 0,TrpZq “ 1u. (17)

We then see Z˚ as an oracle for the linear loss function Z Ñ `ZpXq “ ´
〈
XXJ, Z

〉
and its

associated risk function Z Ñ E`ZpXq over the model C, that is Z˚ P argminZPC P`Z . This
enables us to leverage the methodological tools introduced in Section 2 to derive estimators
for Z˚ and provide statistical guarantees thanks to the results from Section 3.

This configuration allows us to refer to the work of Wang et al. (2016a). The authors
study the sparse PCA problem where the distribution of the data X1, . . . , XN belongs to
a class P of distributions that all have a sub-exponential tail; it includes, among others,
sub-Gaussian distributions (see equation (4) in Wang et al. (2016a) for a definition). In
particular, they propose the following `1-regularized ERM estimator

Ẑ P argmin
ZPC

˜〈´1

N

N
ÿ

i“1

XiX
J
i , Z

〉
` λ}Z}1

¸

where C :“ tZ : Z ľ 0,TrpZq “ 1u (18)

and provide an algorithm for solving it in polynomial time. We report below their main
results for this estimator.

Theorem 4.1 [Theorem 5 in Wang et al. (2016a)] Let X1, . . . , XN P Rd be i.i.d random
vectors with distribution in P and a covariance matrix satisfying the spiked covariance
model: ErXiX

J
i s “ Id ` θβ

˚pβ˚qJ, where β˚ is a k-sparse vector with unit euclidean norm.
Let λ “ 4

a

logpdq{N , ε “ logpdq{p4Nq and consider v̂λ,ε P argmax}v}2“1 v
JẐεv, where Ẑε

is an ε-maximizer of Z Ñ
〈

1
N

řN
i“1XiX

J
i , Z

〉
´ λ}Z}1 over the model C defined in (18).

Finally, let v̂0
λ,ε be the k-sparse vector derived from v̂λ,ε by setting all but its largest k

coordinates in absolute value to 0. If 4 logpdq ď N ď k2d2θ´2 and 0 ă θ ď k, then it holds
true that:

E
”?

2}v̂0
λ,εpv̂

0qJλ,ε ´ β
˚pβ˚qJ}2

ı

ď p32
?

2` 3q

c

k2 logpdq

Nθ2
.
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We are now using our methodology to propose several estimators and provide our insights
on the sparse PCA problem. In particular, we will extend Theorem 4.1 to the heavy-
tailed framework, provide in-deviation results and improve the rate to the optimal one
k2 logped{kq{N (thanks to localization). On top of that, we will construct new estimators
based on the MOM principle to handle robustness issues in sparse PCA.

4.2 Exactness and curvature in the spiked covariance model.

We present here two results that will be of crucial importance in the analysis of our esti-
mators (the proofs are postponed to Section 5). The first one concerns the exactness in the
spiked covariance model. That is, the oracle Z˚ as defined by equation (17), obtained after
a lifting and a convex relaxation of the initial problem, turns out to be a matrix of rank
one whose unit-norm leading eigenvector is ˘β˚.

Lemma 4.2 In the spiked covariance model Σ “ θpβ˚qpβ˚qJ ` Id with β˚ P Sd´1
2 and β˚

is k-sparse, we have Z˚ “ pβ˚qpβ˚qJ, for Z˚ defined in (17).

The second one concerns the curvature of the excess risk function around the oracle Z˚.
Following our methodology, we need to understand the behavior of the excess risk around
Z˚ in order to find a good G function that will be used to define localized subsets of our
model. Then, later, based on the results from Section 3 we will compute the Rademacher
complexities of these localized subsets and then the local complexity fixed points as in-
troduced in Section 2. The fixed point is then used to establish statistical bounds on our
estimators. Finding the ’right’ curvature function of the excess risk is therefore important
in our approach. The following result provides a curvature of the excess risk ‘globally’, that
is on the entire set C and not just around Z˚ (see the proof in Section 4.3).

Lemma 4.3 In the spiked covariance model Σ “ θpβ˚qpβ˚qJ` Id with β˚ P Sd´1
2 and β˚ is

k-sparse, the following holds. For all Z P C, we have PLZ “
〈
Σ, Z˚´Z

〉
ě pθ{2q}Z˚´Z}22.

As a consequence, using our terminology, the problem has an excess risk curvature
function given by G : Z Ñ }Z}22 - where } ¨ }2 is the canonical Hilbertian norm in Rdˆd. We
will therefore use the `2-norm to the square to define our localized models for the study of
all estimators introduced below.

4.3 `1-Regularized ERM estimator

Since the parameter we want to estimate has a sparse structure, the choice of estimators
regularized by an appropriate norm will enable us to take advantage of this structural
property. We start with a regularized ERM estimator, as presented in Section 2.2.2, where
the `1-norm is used as regularization norm:

ẐRERM
λ P argmin

ZPC
pPN`Z ` λ}Z}1q , where C :“

!

Z P Rdˆd : Z ľ 0,TrpZq “ 1
)

(19)

and `ZpXq “ ´
〈
XXJ, Z

〉
and PN`Z “ p1{Nq

řN
i“1 `ZpXiq. This puts us in condition to

use the results of Section 2.2.2 to provide statistical guarantees on ẐRERM
λ .
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Lemma 4.3 shows that, for any value of ρ ą 0 and δ P p0, 1q, Assumption 2.10 is satisfied
with A “ 2{θ and G : Z P Rdˆd Ñ }Z}22. In order to proceed with our methodology, the
next step is then to identify a value of ρ˚ which satisfies the 2{θ-sparsity equation from
Definition 2.11. This is the purpose of the following Lemma (the proof is given in section
5.3.3).

Lemma 4.4 Let A ą 0, δ P p0, 1q, and define r˚p.q :“ r˚RERM,GpA, ., δq. If ρ ě 10k
a

r˚pρq,
then ρ satisfies the A-sparsity equation from Definition 2.11.

The last step is to compute the local complexity fixed point of Definition 2.9, which is
what we are working on below.

Lemma 4.5 Grant Assumption 3.1 with t “ logped{10kq. Suppose that β˚ is k-sparse,
with k ď ed{200. Let A “ 2{θ and assume that N ě 3 log ped{10kq. Then there exists an
absolute constant b ą 0 such that, defining:

ρ˚ :“ 200bAk2

d

1

N
log

ˆ

ed

k

˙

and r˚pρq :“ bA

d

ρ2

N
log

ˆ

b2A2pedq4

Nρ2

˙

, (20)

one has r˚RERM,G pA, ρ
˚, 10k{edq ď r˚pρ˚q and ρ˚ satisfies the A-sparsity equation from

Definition 2.11.

We are now ready to state our main result concerning the `1-regularized ERM estimator
for the sparse PCA problem.

Theorem 4.6 Grant Assumption 3.1 with t “ logped{10kq. Suppose that β˚ is k-sparse,
with k ď ed{200. Assume that N ě 3 log ped{10kq and that λ satisfies the following inequal-
ities:

20

21
b

d

1

N
log

ˆ

ed

2001{2 logp200q1{4k

˙

ď λ ď
2
?

3
b

d

1

N
log

ˆ

ed

2002{3k

˙

(21)

where b is the absolute constant introduced in Lemma 4.5 above. Let C “ 40b. Then, with
probability at least 1´ 10k{ed, it holds true that:

}ẐRERM
λ ´ Z˚}1 ď 10Ck2

d

1

Nθ2
log

ˆ

ed

k

˙

, }ẐRERM
λ ´ Z˚}2 ď C

d

k2

Nθ2
log

ˆ

ed

k

˙

and

PLẐRERM
λ

ď
C2

2

k2

Nθ
log

ˆ

ed

k

˙

.

Note that if one is willing to get a better deviation parameter, one can assume N larger
than Υ logped{10kq, for Υ large enough.

Up to this point, we have introduced an estimator for Z˚ and provided a convergence
rate with high probability. However, our primary focus is not on Z˚ itself, but rather on
its unit-norm leading eigenvectors ˘β˚. The purpose of the upcoming result is to leverage
the preceding one in order to establish properties related to β˚.
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Corollary 4.7 Let β̂ P Rd be a leading unit length eigenvector of ẐRERM
λ . Under the

conditions of Theorem 4.6, there exists an absolute constant D ą 0 such that with probability
at least 1´ 10k{ed:

}β̂β̂J ´ β˚pβ˚qJ}2 ď D

d

k2

Nθ2
log

ˆ

ed

k

˙

.

We therefore obtain a convergence rate of magnitude
`

k2 log ped{kq {pNθ2q
˘1{2

, when
our dataset is made up of i.i.d random variables whose distribution satisfies Assumption
3.1, which includes the case of i.i.d sub-Gaussian variables but it goes much beyond up to
variables with only log d moments. The result of Wang et al. (2016a) is available for a class of
distributions, including sub-Gaussian distributions, whose covariance matrix fits within the

spiked covariance model. They obtain a convergence rate of magnitude
`

k2 logpdq{pNθ2q
˘1{2

,
although our result holds with polynomial deviation while theirs is in expectation. We
also note that our result does not suffer from any restrictive condition concerning θ. We
therefore slightly improve the results from Wang et al. (2016a); this improvement is of the
same order as the one obtained for the LASSO in Bellec et al. (2018) and is due to a careful
localization argument. This shows that our analysis is precise enough to catch the subtle
difference between the log d rate from Wang et al. (2016a) and the logped{kq obtained in
Theorem 4.6. Our result also extend the scope of Theorem 4.1 to heavy-tailed data since
we only require the existence of log d moments. However, to get this improvement for the
Lasso type estimator (22), one needs to choose λ depending on k in (21), which is unknown
in practice. To solve this issue, we could use a Lepskii’s adaptation scheme as in Bellec et al.
(2018). However, we will not follow this path but rather consider another regularization
norm: the SLOPE norm, that allows to get the same results as in Theorem 4.6 but for a
choice of λ independent of k. This will also give us the opportunity to run our methodology
one more time for a different regularization norm.

4.4 SLOPE regularized ERM estimator

In this section, we study a regularized ERM estimator of Z˚ with the SLOPE norm (intro-
duced in Section 3.2, and whose definition is restated below) as the regularization norm. We
consider a lexicographical order over rds2 such that for any k P rds, the k2 largest elements
in rds2 belong to rks2. We fix t ą 0 (which will be choosen appropriately later) and we
define, for p ď q, bpqptq “:

a

logped2{pqq ` t, and bpqptq “ bqpptq for p ą q. For Z P Rdˆd,
we define Z7 the matrix obtained from Z by reordering its element in absolute value in
non-increasing order, and we finally define its SLOPE norm by:

}Z}SLOPE :“
d
ÿ

p,q“1

bpqZ
7
pq.

Our estimator is then:

ẐRERM
SLOPE P argmin

ZPC
pPN`Z ` λ}Z}SLOPEq for C :“ tZ P Rdˆd : Z ľ 0,TrpZq “ 1u (22)

and a regularization parameter λ ą 0 to be chosen later. This puts us in condition to use
the results of Section 2.2.2 to provide statistical guarantees on ẐRERM

SLOPE .
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As before, the essence of Lemma 4.3 in this context is that, for any value of ρ ą 0 and
δ P p0, 1q, Assumption 2.10 is satisfied with A “ 2{θ and G : Z P Rdˆd Ñ }Z}22. In order to
proceed with our methodology, our next step is then to identify a value of ρ˚ which satisfies
the 2{θ-sparsity equation. This is the purpose of the following Lemma.

Lemma 4.8 Assume that β˚ is k-sparse, for some k P rds. Let A ą 0, δ P p0, 1q and

t ą 0. Define Γkptq :“ 3
řk
`“1 b``ptq. If ρ ě 10Γkptq

b

r˚RERM,GpA, ρ, δq, then ρ satisfies the

A-sparsity equation from Definition 2.11.

Following the path traced by our methodology, all that remains is to calculate the
complexity fixed-point parameter r˚RERM,GpA, ρ, δq defined as

inf

˜

r ą 0 : P

˜

sup
ZPC:}Z´Z˚}SLOPEďρ,}Z´Z˚}2ď

?
r

|pP ´ PN qLZ | ď
r

3A

¸

ě 1´ δ

¸

.

The next Lemma gives us an upper bound for r˚RERM,GpA, ρ, δq, when ρ satisfies the
sparsity equation of Definition 2.11.

Lemma 4.9 Grant Assumption 3.3 for t “ 2 logped2{k2q. Suppose that β˚ is k-sparse,
with k ď d{pe2 logpdqq. Let A ą 0, and assume that N ě 3 logped2q. Then, there exists an
absolute constant b ą 0 such that, defining:

ρ˚ :“ 10Γ˚k
bA
?
N

min p10Γ˚k; dq and r˚ :“
b2A2

N
min p10Γ˚k; dq2

one has r˚RERM,GpA, ρ
˚, 2k2{ped2qq ď r˚ and ρ˚ satisfies the A-sparsity equation rom Defi-

nition 2.11, where Γ˚k “ Γkp2 logped2{k2qq is the quantity introduced in Lemma 4.8.

We are now ready to state our main result concerning the SLOPE regularized ERM
estimator for the sparse PCA problem.

Theorem 4.10 Grant Assumption 3.3 for t “ 2 logped2{k2q. Suppose that β˚ is k-sparse,
with k ď min

`

d{pe2 logpdqq, pe{140
?

2q2d
˘

. Assume that N ě 3 logped2q and that λ satisfies
the following inequalities:

10b

21
?
N
ă λ ă

2b

3
?
N
, (23)

where b is the constant previously defined in Lemma 4.9. Then there exist an absolute
constants C1 ą 0 such that one has with probability at least 1´ 2k2{ped2q:

}ẐRERM
SLOPE ´ Z

˚}SLOPE ď C1
k2

?
Nθ2

log

ˆ

ed2

k2

˙

,

}ẐRERM
SLOPE ´ Z

˚}2 ď C1

d

k2

Nθ2
log

ˆ

ed2

k2

˙

and 〈
Σ, Z˚ ´ ẐRERM

SLOPE

〉
ď C1

k2

Nθ
log

ˆ

ed2

k2

˙

.
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We can now use this result to obtain properties about our object of interest, which is
not directly Z˚, but its unit-length leading eigenvectors ˘β˚.

Corollary 4.11 Let β̂ P Rd be a leading unit-eigen vector of ẐRSLOPE
λ . Under the condi-

tions of Theorem 4.10, there exists an absolute constant C ą 0 such that with probability at
least 1´ 2k2{ed2:

}β̂β̂J ´ β˚pβ˚qJ}2 ď C

d

k2

Nθ2
log

ˆ

ed2

k2

˙

.

Here again, we obtain a rate of convergence of magnitude
a

p1{Nθ2q log ped2{k2q, holding
with polynomial deviation, with no restriction on the value of θ. We note that this result
holds with a value of the regularization parameter λ that does not depend on the sparsity
level k of β˚.

4.5 `1 regularized minmax MOM estimator.

Here, we consider the case where data may be corrupted with outliers. We place ourselves in
the framework of the adversarial contamination, which is described in Assumption 2.13: the
dataset tX1, . . . , XNu used by the statistician may have been corrupted by an adversary. As
a consequence, on top of the structural learning problem, we now have to face a robustness
to data contamination problem. To deal with these issues all together, we use a regularized
minmax MOM estimator.

We therefore consider an equi-partition of t1, . . . , Nu into B1 \ ¨ ¨ ¨ \BK “ rN s, where
|Bk| “ N{K for all k P rKs. We consider a `1-regularized minmax MOM estimator

ẐRMOM
K,λ P argmin

ZPC
sup
Z1PC

`

MOMKp`Z ´ `Z1q ` λp}Z}1 ´ }Z
1}1q

˘

(24)

for C :“
 

Z P Rdˆd : 0 ĺ Z ĺ Id,TrpZq “ 1
(

and a regularization parameter λ to be chosen
later.

In what follows, we provide some statistical guarantees on ẐRMOM
K,λ based on Theo-

rem 2.32 which is our general result for regularized minmax MOM estimators for a general
G function used for localization. Here, following Lemma 4.3, we will use G : Z Ñ }Z}22 (and
A “ 2{θ) for such a localization function. Following our methodology, once the curvature
of the excess risk is chosen, we have to find an upper bound on the local complexity fixed
point r˚RMOM,Gpγ, ρq from Definition 2.29. But before that we find a sufficient condition on
a radius ρ so that it satisfies the sparsity equation from Definition 2.23.

Lemma 4.12 Consider γ ą 0. If ρ ą 0 is such that ρ ě 10k
a

2{θr˚RMOM,Gpγ, ρq, then ρ
satisfies the sparsity equation from Definition 2.23.

Now that we know how to grasp a value of ρ that satisfies the sparsity equation, the
subsequent task is to compute the fixed-point parameter r˚RMOM,Gpγ, ρq as introduced in
Definition 2.29, after which, thanks to Theorem 2.24, we will be able to provide some
statistical bounds on ẐRMOM

K,λ .
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Lemma 4.13 Grant assumption 3.1 for t “ 1. Suppose that β˚ is k-sparse, for some
k P rds. Assume that N ě 2 logped{kq`1 and that θ ď k. Define G : Z P Rdˆd Ñ pθ{2q}Z}22.
Consider γ ą 0. There exist absolute constants B and D ą 0 such that, defining:

ρ˚pγq :“ max

˜

?
480B

k2

γ

d

1

Nθ2
log

ˆ

ed

k

˙

; 10Dk

c

2K

Nθ2

¸

and

r˚pγ, ρq :“ max

¨

˝

d

Bρ

γ

˜

6

N
log

˜

2Bpedq2

γθρ

c

6

N

¸¸1{4

;D

c

K

Nθ

˛

‚

one has r˚RMOM,Gpγ, ρ
˚pγqq ď r˚pγ, ρ˚pγqq and ρ˚pγq satisfies the sparsity equation from

Definition 2.23. The values of B and D are explicited in Section 5.3.12.

We are now ready to state our main result about the `1-regularized MOM estimator
(24) for the sparse PCA problem.

Theorem 4.14 Grant assumption 3.1 for t “ 1. Suppose that β˚ is k-sparse, for some
k P rds. Assume that N ě 2 logped{kq`1 and let K be a divisor of N such that K ě 100|O|.
Let γ “ 1{32000 and λ :“ 11r˚pγ, 2ρ˚pγqq{p40ρ˚pγqq, where r˚p., .q and ρ˚p.q are defined
in Lemma 4.13 above. Then, there exists positive constants C1, C2 and C3 such that, with
probability at least 1´ expp´72K{625q, it holds true that:

}ẐRMOM
K,λ ´ Z˚}1 ď

C1k
?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

,

}ẐRMOM
K,λ ´ Z˚}2 ď

C2
?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

and

PLẐRMOM
K,λ

ď
C3

Nθ
max

ˆ

k2 log

ˆ

ed

k

˙

;K

˙

.

Since our primary focus is not on Z˚ itself, but its unit-norm leading eigenvector β˚, we
are now providing a result on β˚.

Corollary 4.15 Let β̂ P Rd be a leading unit length eigenvector of ẐRMOM
K,λ . Under the con-

ditions of Theorem 4.14, there exists a universal constant D ą 0 such that with probability
at least 1´ expp´72K{625q:

}β̂β̂J ´ β˚pβ˚qJ}2 ď
D

?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

.

WhenK ď k2 log ped{kq, we get a rate of convergence of magnitude
a

k2{pNθ2q log ped{kq,
with no restrictions on the value of θ. This happens with an exponentially large probability
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depending on the number of groups K even though we only have log d moments and a
dataset that may have been corrupted by an adversary. A similar analysis of a SLOPE
regularization of the minmax MOM estimator will lead to a similar bound with a choice of
λ independent of k.

Remark 5 Our final remark deals with the implementation of an algorithm for an approx-
imate construction of β̂ from Corollary 4.15. The aim of this algorithm is to construct a
sparse first principal component given a set of heavy-tailed data that may have been corrupted
by an adversary.

Using a similar approach to the MOM version of the projected sub-gradient descent
algorithm introduced in Lecué and Lerasle (2020), we first derive a pseudo-algorithm for
(24). We will then take a top eigenvector to the solution provided by such algorithm to get
a (robust) sparse first principal component. But first, let us focus on the construction of
an approximate solution to ẐRMOM

K,λ . We slightly modify the original version of the MOM
version of the projected gradient descent algorithm from Lecué and Lerasle (2020) with
respect to the following two points:

a) instead of designing an alternating ascent/descent minmax MOM algorithm for (24),
we will describe a MOM version of the projected (sub)gradient descent algorithm for
the minimization problem minZPC pMOMKp`Zq ` λ}Z}1q,

b) instead of selecting the median block of data and making a gradient descent over it at
every iterations, we consider a larger set of data by taking all the ’inter-quartile blocks’
of data and perform a gradient descent over it as in Depersin and Lecué (2022).

Before writting the pseudo-code, we recall and introduce several notation. The dataset
tX1, . . . , XNu is split into K equal size blocks of data indexed by pBkqk forming an equipar-
tition of rN s. On each block, an empirical covariance matrix is constructed pXXJqk “
|Bk|

´1
ř

iPBk
XiX

J
i . The next function is using the K bucketed empirical covariance ma-

trices ppXXJqkqk as input data: for all Z P Rdˆd,

fpZq “
´1

|IK |

ÿ

kPIK

〈
pXXJqk, Z

〉˚
pkq

where if pakqk “ p
〈
pXXJqk, Z

〉
qk then p

〈
pXXJqk, Z

〉˚
pkq
qk are the rearrangement of pakqk

such that a˚
p1q ď . . . ď a˚

pKq (this is the rearrangement of the values ak’s themselves and not

of their absolute values) and

IK “

„

K ` 1

4
,
3pK ` 1q

4



“

"

K ` 1

2
˘ k : k “ 0, 1, ¨ ¨ ¨ ,

K ` 1

4

*

is the inter-quartiles interval - without loss of generality we assume that K`1 can be divided
by 4. In other words, fpZq is the average sum over all inter-quartile values of the vector
p
〈
pXXJqk, Z

〉
qkPrKs. Note that we have taken quartiles but we could also have considered

other quantiles; for instance a 95% coverage of the data in YkPIKBk may also be consid-
ered. We denote by projC the projection over C “

 

Z P Rdˆd : 0 ĺ Z ĺ Id,TrpZq “ 1
(

. The
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next algorithm is a MOM version of the projected sub-gradient descent algorithm for the
minimization problem

min
ZPC

pfpZq ` λ}Z}1q .

input : the data X1, . . . , XN , a number K of blocks, a regularization parameter λ,
a decreasing steps size sequences pηtqt Ă R˚` and ε ą 0 a stopping
parameter

output: A robust and sparse first principal component
1 Construct an equipartition B1 \ ¨ ¨ ¨ \BK “ t1, ¨ ¨ ¨ , Nu at random

2 Construct the K empirical covariance matrices pXXJqk “ pK{Nq
ř

iPBk
XiX

J
i

3 Compute the coordinate-wise median-of-means

Zp0q “
´

Med
`

ppXXJqkqpq : k P rKs
˘

¯

1ďp,qďd

4 while }Zptq ´ Zpt`1q}1 ě ε do

5 Construct an equipartition B1 \ ¨ ¨ ¨ \BK “ t1, ¨ ¨ ¨ , Nu at random

6 Construct the K empirical covariance matrices pXXJqk “ pK{Nq
ř

iPBk
XiX

J
i

7 Find the inter-quartile block numbers k1, . . . , kpK`1q{2 P rKs such that

fpZptqq “
´1

|IK |

pK`1q{2
ÿ

j“1

〈
pXXJqkj , Z

ptq
〉
.

Construct Gptq a subgradient of } ¨ }1 at Zptq and the descent direction

∇pt`1q “
´1

|IK |

pK`1q{2
ÿ

j“1

pXXJqkj ` λG
ptq.

Update Zpt`1q Ð projCpZ
ptq ´ ηt∇pt`1qq.

8 end

9 Return a top singular vector of Zpt`1q.

Algorithm 1: A MOM projected sub-gradient descent algorithm for robust and
sparse PCA.

Several variations of Algorithm1 may be considered. In particular, one can use proximal
operators in place of sub-gradients. We refer the interested reader to Lecué and Lerasle
(2020) for more examples of MOM versions of classical regularized algorithms.

5. Proofs

All the proofs from the previous sections – general excess risk and estimation bounds as
well as applications – are gathered in this section.
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5.1 Proofs of section 2

We define the regularized excess risk LλZ :“ LZ ` λp}Z} ´ }Z˚}q, and the regularized loss
`λZ :“ `Z ` λ}.} for all Z P C.

5.1.1 Proof of Theorem 2.12

Let δ P p0, 1q. Let A ą 0 and ρ˚ ą 0 be such that Assumption 2.10 holds, and assume that
ρ˚ ą 0 satisfies the A-sparsity equation from Definition 2.11. Let γ :“ 1{p3Aq. In the rest
of the proof, we write r˚p.q for r˚RERM,GpA, ., δq. Let us define

B :“ tZ P C : }Z ´ Z˚} ď ρ˚ and GpZ ´ Z˚q ď r˚pρ˚qu .

Consider the following event:

Ω :“ t@Z P B, |pP ´ PN qLZ | ď γr˚pρ˚qu .

By definition of r˚p.q, Ω holds with probability at least 1´δ. Let us now prove the statistical
bounds announced in Theorem 2.12 on the event Ω.

Suppose that Ẑ P B. This means that }Ẑ´Z˚} ď ρ˚ and GpẐ´Z˚q ď r˚pρ˚q. Moreover,
on Ω it also means that |pP ´ PN qLẐ | ď γr˚pρ˚q, and then:

PLẐ “ pP ´ PN qLẐ ` PNLẐ ď γr˚pρ˚q ` PNLẐ “ γr˚pρ˚q ` PN pLλẐ ´ λp}Ẑ} ´ }Z
˚}qq

“ γr˚pρ˚q ` PNLλẐ ` λp}Z
˚} ´ }Ẑ}q

piq
ď γr˚pρ˚q ` λ}Ẑ ´ Z˚} ď γr˚pρ˚q ` λρ˚

piiq
ď 3γr˚pρ˚q

“
r˚pρ˚q

A

where piq holds since PNLλẐ ď 0 by definition of Ẑ and piiq holds because of the choice of λ
given in (9).

Then, if we can show that Ẑ P B, we will have the desired bounds on Ω. Since we know
that PNLλẐ ď 0, it is sufficient to prove that for any Z P CzB, PNLλZ ą 0.

Let Z P CzB. Because C is star-shaped in Z˚ and by the regularity properties assumed
for G, we have the existence of Z0 P BB, the border of B, and α ą 1 such that Z ´ Z˚ “
αpZ0 ´ Z˚q. The border of B, that we denoted by BB is the set of all Z P C such that
either }Z ´ Z˚} “ ρ˚ and GpZ ´ Z˚q ď r˚pρ˚q or }Z ´ Z˚} ď ρ˚ and GpZ ´ Z˚q “ r˚pρ˚q.
By linearity of the loss function, we have PNLZ “ αPNLZ0 . Moreover, we have by the
triangular inequality that

}Z} ´ }Z˚} “ }αZ0 ´ pα´ 1qZ˚} ´ }Z˚} ě α}Z0} ´ pα´ 1q}Z˚} ´ }Z˚} ě αp}Z0} ´ }Z
˚}q

and so

PNLλZ “ PNLZ ` λp}Z} ´ }Z˚}q ě αPNLZ0 ` λαp}Z0} ´ }Z
˚}q “ αPNLλZ0

. (25)

We showed that for any Z P CzB, there exist Z0 P BB and α ą 1 such that PNLλZ ą αPNLλZ0
.

Hence, we only have to show that Z Ñ PNLλZ is positive on the border of B to show that
it is positive over CzB.
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Let Z0 P BB. Two cases arise: either }Z0 ´ Z˚} “ ρ˚ and GpZ ´ Z˚q ď r˚pρ˚q, or
}Z0 ´ Z

˚} ď ρ˚ and GpZ ´ Z˚q “ r˚pρ˚q.
First case: We assume that }Z0´Z

˚} “ ρ˚ and GpZ´Z˚q ď r˚pρ˚q, that is Z0 P Hρ˚,A.
Let V P H be such that }Z˚ ´ V } ď ρ˚{20 and Φ P B}.}pV q. We have:

}Z0} ´ }Z
˚} ě }Z0} ´ }V } ´ }Z

˚ ´ V }

ě
〈
Φ, Z0 ´ V

〉
´ }Z˚ ´ V } p since Φ P B}.}pV qq

“
〈
Φ, Z0 ´ Z

˚
〉
´
〈
Φ, V ´ Z˚

〉
´ }Z˚ ´ V }

ě
〈
Φ, Z0 ´ Z

˚
〉
´ 2}Z˚ ´ V } p since

〈
Φ, U

〉
ď }U} for any U P Hq

ě
〈
Φ, Z0 ´ Z

˚
〉
´
ρ˚

10

This is true for any Φ P Y
V PZ˚` ρ˚

20

B}.}pV q “ ΓZ˚pρ
˚q. Then taking the sup over ΓZ˚pρ

˚q

gives:

}Z0} ´ }Z
˚} ě sup

ΦPΓZ˚ pρ
˚q

〈
Φ, Z0 ´ Z

˚
〉
´
ρ˚

10

and then taking the infimum over Hρ˚,A gives:

}Z0} ´ }Z
˚} ě inf

Z0PHρ˚,A
}Z0} ´ }Z

˚} ě inf
Z0PHρ˚,A

sup
ΦPΓZ˚ pρ

˚q

〈
Φ, Z0 ´ Z

˚
〉
´
ρ˚

10

“ ∆pρ˚, Aq ´
ρ˚

10
ě

7

10
ρ˚

where the last inequality holds since ρ˚ is supposed to satisfy the A-sparsity equation. Then,
we have:

PNLλZ0
“ PNLZ0 ` λp}Z0} ´ }Z

˚}q ě PNLZ0 `
7

10
λρ˚ “ PLZ0 ´ pP ´ PN qLZ0 `

7

10
λρ˚

But on Ω, we have pP ´ PN qLZ0 ď γr˚pρ˚q since Z0 P B, and we know by definition of Z˚

that PLZ0 ě 0. Then we conclude that:

PNLλZ0
ě

7

10
λρ˚ ´ γr˚pρ˚q ą 0

where the last inequality is due to the choice of λ given in (9).

Second case: Now we assume that }Z0 ´ Z
˚} ď ρ˚ and GpZ ´ Z˚q “ r˚pρ˚q. We have:

PNLλZ0
“ PNLZ0 ´ λp}Z

˚} ´ }Z0}q ě PLZ0 ´ pP ´ PN qLZ0 ´ λ}Z
˚ ´ Z0}

ě PLZ0 ´ pP ´ PN qLZ0 ´ λρ
˚.

But we know from Assuption 2.10 that PLZ0 ě A´1GpZ0 ´ Z˚q, and on Ω we have pP ´
PN qLZ0 ď γr˚pρ˚q. Then we get:

PNLλZ0
ě A´1GpZ0 ´ Z

˚q ´ γr˚pρ˚q ´ λρ˚ “ A´1r˚pρ˚q ´ γr˚pρ˚q ´ λρ˚ ą 0
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where the last inequality comes from the choice of λ given in (9).

Then, we proved that PNLλZ0
ą 0 for any Z0 P BpBq and as we said before, this implies

that PNLλZ is positive over CzB. Since PNLλẐ ă 0 we conclude that on Ω, Ẑ necessarily
belongs to B, which proves the bounds announced in Theorem 2.12.

5.1.2 Proof of Theorem 2.15

The proof of this theorem is broken down into two steps. First, we identify an event
Ω on which the estimator ẐMOM

K has the desired properties. Then, we show that this
event holds with high probability. For the sake of simplicity, in the rest of the proof
we write r˚ for r˚MOM,ERpγq and Ẑ for ẐMOM

K . Let γ “ 1{6400, and consider the set

Cγ :“
 

Z P C : PLZ ď pr˚q2
(

. Define the event ΩK as follows:

ΩK :“
 

@Z P Cγ , DJ Ă rKs : |J | ą K{2 and @k P J, |pPBk ´ P qLZ | ď pr
˚q2{4

(

.

We start with showing that on ΩK , the estimator Ẑ satisfies the excess risk bound announced
in Theorem 2.15.

Lemma 5.1 On the event ΩK , PLẐ ď r˚.

Proof Let Z P CzCγ . Let α :“ pr˚q´2PLZ ą 1, and let Z0 :“ Z˚ ` α´1pZ ´ Z˚q. By
the star-shaped property of C, Z0 P C, and by linearity of `, PLZ0 “ α´1PLZ “ pr˚q2,
so that Z0 P Cγ . Then, on ΩK , there exists strictly more than K{2 blocks Bk on which
|pPBk ´ P qLZ0 | ď pr

˚q2{4, that is PBkLZ0 ě PLZ0 ´ pr
˚q2{4 “ p3{4qpr˚q2 and so PBkLZ “

αPBkLZ0 ě αp3{4qpr˚q2 because α ą 1. This holds on strictly more than half of the blocks
Bk, therefore Medp´PBkLZ : k P rKsq ě ´p3{4qpr˚q2 and this holds for all Z P CzCγ , hence,
we have

sup
ZPCzCγ

MOMKp`Z˚ ´ `Zq ď ´p3{4qpr
˚q2. (26)

Moreover, on ΩK , for Z P Cγ , there exists strictly more than K{2 blocks Bk on which
´PBkLZ ď pr˚q2{4 ´ PLZ ď pr˚q2{4, since PLZ ě 0 by definition of Z˚. Therefore, we
have

sup
ZPCγ

MOMKp`Z˚ ´ `Zq ď pr
˚q2{4. (27)

But by definition of Ẑ, we have:

MOMKp`Ẑ ´ `Z˚q ď sup
ZPC

MOMKp`Z˚ ´ `Zq

ď max

˜

sup
ZPCγ

MOMKp`Z˚ ´ `Zq, sup
ZPCzCγ

MOMKp`Z˚ ´ `Zq

¸

ď
pr˚q2

4

that is, MOMKp`Z˚ ´ `Ẑq ě ´p1{4qpr˚q2 ą ´p3{4qpr˚q2. From (26) we conclude that,

necessarily, Ẑ P Cγ , that is, PLẐ ď pr
˚q2.
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At this point, we proved that on the event ΩK , the estimator Ẑ satisfies the statistical
bounds announced in Theorem 2.15. Now it remains to prove that ΩK holds with high
probability.

Lemma 5.2 Assume that |O| ď K{100. Then ΩK holds with probability at least 1 ´
expp´72K{625q.

Proof Let φ : t P R Ñ 1ttě1u ` 2pt ´ p1{2qq1t1{2ďtď1u, so that for any t P R, 1ttě1u ď

φptq ď 1ttě1{2u. For k P rKs, let Wk :“ tXi : i P Bku and FZpWkq “ pPBk ´ P qLZ . We
also define the counterparts of these quantities constructed with the non-corrupted vectors:
ĂWk :“

!

rXi : i P Bk

)

and FZpĂWkq “ pĄPBk ´ P qLZ , where ĄPBkLZ :“ pK{Nq
ř

iPBk
LZp rXiq.

Let ψpZq “
ř

kPrKs 1t|FZpWkq|ďpr˚q2{4u. We show now that, with high probability, if Z P Cγ ,
then ψpZq ą K{2. In the contaminated framework, it is sufficient to prove that, with high
probability, for all Z P Cγ ,

ÿ

kPrKs

1!

|FZpĂWkq|ą
pr˚q2

4

) ď
49K

100
. (28)

Indeed, consider Z P Cγ such that (28) holds. Then, there exist at least p1 ´ 49{100qK “

p51{100qK blocks Bk on which |FZpĂWkq| ď pr
˚q2{4. On the other hand, we know that |O| ď

K{100, so that among the p51{100qK previous blocks, at most K{100 contain corrupted

data. The other p50{100qK “ K{2 contain only non-corrupted data, so we have FZpĂWkq “

FZpWkq on these blocks. We conclude that
ř

kPrKs 1t|FZpWkq|ďpr˚q2{4u ą K{2, that is ψpZq ą
K{2, if (28) holds.

Let Z P Cγ . We have:

ÿ

kPrKs

1!

|FZpĂWkq|ą
pr˚q2

4

) (29)

“
ÿ

kPrKs

„

1!

|FZpĂWkq|ą
pr˚q2

4

) ´ P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

` P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

“
ÿ

kPrKs

ˆ

1!

|FZpĂWkq|ą
pr˚q2

4

) ´ E

„

1!

|FZpĂWkq|ą
pr˚q2

8

)

˙

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

ď
ÿ

kPrKs

˜

Φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ E

«

Φ

˜

4|FZpĂWkq|

pr˚q2

¸ff¸

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

ď sup
ZPCγ

¨

˝

ÿ

kPrKs

Φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ E

«

Φ

˜

4|FZpĂWkq|

pr˚q2

¸ff

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

.

(30)
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We start with bounding the last sum in the previous inequality. For each k P rKs, it follows
from Markov’s inequality and the definition of r˚ that

P

ˆ

|FZpĂWkq| ą
pr˚q2

8

˙

ď
64

pr˚q4
E
”

FZpĂWkq
2
ı

“
64

pr˚q4

ˆ

K

N

˙

VarpLZp rXqq

“
64

pr˚q4
pVKpr

˚qq
2
ď

1

200
.

Plugging that into (29), we get:

ÿ

kPrKs

1!

|FZpĂWkq|ą
pr˚q2

4

) ď
K

200
` sup
ZPCγ

¨

˝

ÿ

kPrKs

Φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ E

«

Φ

˜

4|FZpĂWkq|

pr˚q2

¸ff

˛

‚.

(31)

We now we have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2
in Boucheron et al. (2013) for t “ 12{25), we get that with probability at least 1 ´
expp´72K{625q, for all Z P Cγ ,

ÿ

kPrKs

φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ Eφ

˜

4|FZpĂWkq|

pr˚q2

¸

ď
12

25
K ` E

»

– sup
ZPCγ

ÿ

kPrKs

φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ Eφ

˜

4|FZpĂWkq|

pr˚q2

¸

fi

fl . (32)

Let now ε1, . . . , εK be Rademacher variables independent from the rXi’s. By the symmetriza-
tion Lemma, we have:

E

»

– sup
ZPCγ

ÿ

kPrKs

φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ E

«

φ

˜

4|FZpĂWkq|

pr˚q2

¸ff

fi

fl ď 2E

»

– sup
ZPCγ

ÿ

kPrKs

εkφ

˜

4|FZpĂWkq|

pr˚q2

¸

fi

fl .

(33)

As φ is 2-Lipschitz with φp0q “ 0, we can use the contraction Lemma (see Ledoux and
Talagrand (2013), Theorem 4.12) to get that:

E

»

– sup
ZPCγ

ÿ

kPrKs

εkφ

˜

4|FZpĂWkq|

pr˚q2

¸

fi

fl ď 8E

»

– sup
ZPCγ

ÿ

kPrKs

εk
FZpĂWkq

pr˚q2

fi

fl

“
8

pr˚q2
E

»

– sup
ZPCγ

ÿ

kPrKs

εkpĄPBk ´ P qLZ

fi

fl . (34)

Now, let pσiqi“1,...,N be a family of Rademacher variables independent from the rXi’s and
the εi’s. For any k P rKs and any i P rN s, the variables εkσiLZpXiq and σiLZpXiq have the
same distribution, so that we get, using the symmetrization Lemma:

E

»

– sup
ZPCγ

ÿ

kPrKs

εkpĄPBk ´ P qLZ

fi

fl ď 2E

«

sup
ZPCγ

K

N

N
ÿ

i“1

σiLZp rXiq

ff

“ 2KEpr˚q ď 2Kγpr˚q2.
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Combining this with (32), (33) and (34), we finally get that, with probability at least
1´ expp´72K{625q

sup
ZPCγ

ÿ

kPrKs

φ

˜

4|FZpĂWkq|

pr˚q2

¸

´ E

«

φ

˜

4|FZpĂWkq|

pr˚q2

¸ff

ď

ˆ

12

25
` 32γ

˙

K. (35)

Plugging that into (31), we conclude that with probability at least 1´ expp´72K{625q, one
has

ÿ

kPrKs

1!

|FZpĂWkq|ą
pr˚q2

4

) ď

ˆ

1

200
`

12

25
` 32γ

˙

K ď
49

100
K

from our choice of parameters. This allows to affirm that ΩK holds with probability at least
1´ expp´72K{625q, which concludes the proof.

5.1.3 Proof of Theorem 2.18.

The proof is divided into two parts. First, we identify an event ΩK on which the estimator
has the desired statistical properties. Second, we prove that this event holds with high
probability. For the sake of simplicity, we write Ẑ for ẐMOM

K and r˚ for r˚MOM,L2
pγq with

γ “ 1{3200. Let 0 ă A ă 1 be such that Assumption 2.17 holds. We define ν “ A2{γ,
τ “ p2Aq´1, CK,A “ max

`

pr˚q2, νK{N
˘

and BK,A :“
 

Z P C : }Z ´ Z˚}L2 ď
a

CK,A
(

-

where the L2-norm is defined as Z Ñ }Z}L2 “ Er
〈
rX,Z

〉2
s1{2. We consider the following

event:

ΩK :“

"

@Z P BK,A, DJ Ă t1, . . . ,Ku : |J | ą
K

2
and @k P J, |pPBk ´ P qLZ | ď τCK,A

*

.

We show in the next three lemmas that, on ΩK , Ẑ satisfies the statistical bounds announced
in Theorem .2.18. Then the fourth lemma will prove that ΩK holds with large probability,
the one announced in Theorem .2.18.

Lemma 5.3 If there exists η ą 0 such that:

sup
ZPCzBK,A

MOMKp`Z˚ ´ `Zq ă ´η and sup
ZPBK,A

MOMKp`Z˚ ´ `Zq ď η (36)

then }Ẑ ´ Z˚}2L2
ď CK,A.

Proof Assume that (36) holds. Then:

inf
ZPCzBK,A

MOMKp`Z ´ `Z˚q ą η. (37)

Moreover, if we define Z Ñ TKpZq “ supZ1PCMOMKp`Z ´ `Z1q, then:

TKpZ
˚q “ max

˜

sup
ZPCzBK,A

MOMKp`Z˚ ´ `Zq, sup
ZPBK,A

MOMKp`Z˚ ´ `Zq

¸

ď η. (38)
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By definition of Ẑ, we have TKpẐq “ supZPCMOMKp`Ẑ ´ `Zq ď TKpZ
˚q ď η. But by (37),

any Z P CzBK,A satisfies:

TKpZq ě MOMKp`Z ´ `Z˚q ě inf
ZPCzBK,A

MOMKp`Z ´ `Z˚q ě η

which allows us to conclude that, necessarily, Ẑ P BK,A, i.e. }Z˚ ´ Ẑ}2L2
ď CK,A.

Lemma 5.4 Assume that K ě 100|O|. Then on ΩK , (36) holds with η “ τCK,A.

Proof Let Z P C be such that }Z ´ Z˚}L2 ą
a

CK,A. By the star-shaped property of C,
there exists Z0 P C and α ą 1 such that }Z0 ´ Z

˚}L2 “
a

CK,A and Z ´ Z˚ “ αpZ0 ´ Z
˚q.

Now, for each block Bk we have by the linearity of the loss function:

PBkLZ “ αPBkLZ0 . (39)

As Z0 P BK,A, on ΩK there exist strictly more than K{2 blocks on which |pPBk ´P qLZ0 | ď

τCK,A. Moreover, since }Z0´Z
˚}L2 “

a

CK,A, we get from Assumption 2.17 that PLZ0 ě

A´1}Z0 ´ Z˚}2L2
“ A´1CK,A. Then, on these blocks, PBkp`Z0 ´ `Z˚q ě PLZ0 ´ τCK,A ě

pA´1´ τqCK,A, which implies that PBkp`Z˚ ´ `Z0q ď ´pA
´1´ τqCK,A ď ´τCK,A, since we

have τ “ p2Aq´1. From (39) we conclude that, on ΩK , there exist srictly more than K{2
blocks Bk on which PBkp`Z˚ ´ `Zq ď ´ατCK,A ď ´τCK,A, since α ě 1. This is true for all
Z P CzBK,A; in other words, we have

sup
ZPCzBK,A

MOMKp`Z˚ ´ `Zq ď ´τCK,A

Moreover, on ΩK , for any Z P BK,A, there exist stricly more than K{2 blocks Bk such that
|pPBk ´ P qLZ | ď τCK,A, so that PBkp`Z ´ `Z˚q ě ´τCK,A ` P p`Z ´ `Z˚q ě ´τCK,A, since
P p`Z´ `Z˚q ě 0 by definition of Z˚. Then, we have PBkp`Z˚´ `Zq ď τCK,A on stricly more
than K{2 blocks, which implies that MOMKp`Z˚ ´ `Zq ď τCK,A. This being true for any
Z P BK,A, we conclude that (36) holds with η “ τCK,A.

Lemma 5.5 Grant Assumption 2.17 and assume that K ě 100|O|. On ΩK , PLẐ ď

2τCK,A.

Proof Assume that ΩK holds. From Lemmas 5.3 and 5.4 , }Ẑ´Z˚}2L2
ď CK,A, that is Ẑ P

BK,A. Therefore, on strictly more than K{2 blocks Bk, we have
ˇ

ˇpPBk ´ P qLẐ
ˇ

ˇ ď τCK,A,
and then on these blocks:

PLẐ ď PBkLẐ ` τCK,A. (40)

In addition, by definition of Ẑ and (38) (for η “ τCK,A):

MOMKp`Ẑ ´ `Z˚q ď sup
ZPC

MOMKp`Z˚ ´ `Zq ď τCK,A

which implies the existence of K{2 blocks (at least) on which:

PBkLẐ ď τCK,A (41)

As a consequence, there exist at least one block Bk on which (40) and (41) holds simulta-
neously. On this block, we have: PLẐ ď τCK,A ` τCK,A “ 2τCK,A, which concludes the
proof.
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At this point, we proved that on the event ΩK , the estimator Ẑ has the statistical
properties announced in Theorem 2.18. In the final lemma, we show that ΩK holds with
high probability.

Lemma 5.6 Assume that |O| ď K{100. Then ΩK holds with probability at least 1 ´
expp´72K{625q.

Proof Let φ : t P R Ñ 1ttě1u ` 2pt ´ 1{2q1t1{2ďtď1u, so that for any t P R, 1ttě1u ď

φptq ď 1ttě1{2u. For k P rKs, let Wk :“ tXi : i P Bku and FZpWkq “ pPBk ´ P qLZ . We
also define the counterparts of these quantities constructed with the non-corrupted vectors:
ĂWk :“

!

rXi : i P Bk

)

and FZpĂWkq “ pĄPBk ´ P qLZ , where ĄPBkLZ :“ pK{Nq
ř

iPBk
LZp rXiq.

Let ψpZq “
ř

kPrKs 1t|FZpWkq|ďτCK,Au
. We are now showing that, with high probability, if

Z P BK,A, then ψpZq ą K{2. In the adversarial corruption setup, it is enough to prove that
the following inequality occurs with high probability: for all Z P BK,A,

ÿ

kPrKs

1
t|FZpĂWkq|ąτCK,Au

ď
49K

100
. (42)

Indeed, consider Z P C such that (42) holds. Then, there exist at least p1 ´ 49{100qK “

p51{100qK blocks Bk on which |FZpĂWkq| ď τCK,A. On the other hand, we know that |O| ď
K{100, so that among the p51{100qK previous blocks, at most K{100 contain corrupted

data. The other p50{100qK “ K{2 contain only non-corrupted data, so we have FZpĂWkq “

FZpWkq on these blocks. We conclude that
ř

kPrKs 1t|FZpWkq|ďτCK,Au
ą K{2, that is ψpZq ą

K{2, if (42) holds.

Then, we only have to show that (42) holds uniformly over all Z P BK,A with high
probability. This is what we do now. Let Z P BK,A. We have:

ÿ

kPrKs

1
t|FZpĂWkq|ąτCK,Au

“
ÿ

kPrKs

„

1
t|FZpĂWkq|ąτCK,Au

´ P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

` P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

“
ÿ

kPrKs

ˆ

1
t|FZpĂWkq|ąτCK,Au

´ E

„

1!

|FZpĂWkq|ą
τCK,A

2

)

˙

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

ď
ÿ

kPrKs

˜

Φ

˜

|FZpĂWkq|

τCK,A

¸

´ E

«

Φ

˜

|FZpĂWkq|

τCK,A

¸ff¸

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

ď sup
ZPBK,A

¨

˝

ÿ

kPrKs

Φ

˜

|FZpĂWkq|

τCK,A

¸

´ E

«

Φ

˜

|FZpĂWkq|

τCK,A

¸ff

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

.

(43)
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We start with bounding the last sum in the previous inequality. For each k P rKs, it follows
from Markov’s inequality, the definition of CK,A and the linearity of the loss function that

P

ˆ

|FZpĂWkq| ą
τCK,A

2

˙

ď
4

pτCK,Aq2
E
”

FZpĂWkq
2
ı

“
4

pτCK,Aq2

ˆ

K

N

˙

VarpLZp rXqq

ď
4

pτCK,Aq2

ˆ

K

N

˙

ErLZp rXq2s “
4

pτCK,Aq2
K

N
}Z ´ Z˚}2L2

ď
4

pτCK,Aq2
K

N
CK,A ď

4

τ2ν
“

1

200
.

Plugging the latter result into (43), we get:

ÿ

kPrKs

1
t|FZpĂWkq|ąτCK,Au

ď
K

200
` sup
ZPBK,A

¨

˝

ÿ

kPrKs

Φ

˜

|FZpĂWkq|

τCK,A

¸

´ E

«

Φ

˜

|FZpĂWkq|

τCK,A

¸ff

˛

‚.

(44)

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2 in
Boucheron et al. (2013) for taking t “ 12{25), we get that with probability at least 1 ´
expp´72K{625q, for all Z P BK,A,

ÿ

kPrKs

φ

˜

|FZpĂWkq|

τCK,A

¸

´ Eφ

˜

|FZpĂWkq|

τCK,A

¸

ď
12

25
K ` E

»

– sup
ZPBK,A

ÿ

kPrKs

φ

˜

|FZpĂWkq|

τCK,A

¸

´ Eφ

˜

|FZpĂWkq|

τCK,A

¸

fi

fl .

Let now ε1, . . . , εK be Rademacher variables independent from the rXi’s. By the symmetriza-
tion Lemma, we have:

E

»

– sup
ZPBK,A

ÿ

kPrKs

φ

˜

|FZpĂWkq|

τCK,A

¸

´ E

«

φ

˜

|FZpĂWkq|

τCK,A

¸ff

fi

fl ď 2E

»

– sup
ZPBK,A

ÿ

kPrKs

εkφ

˜

|FZpĂWkq|

τCK,A

¸

fi

fl

As φ is 2-Lipschitz with φp0q “ 0, we can use the contraction Lemma (see Ledoux and
Talagrand (2013), Theorem 4.3) to get that:

E

»

– sup
ZPBK,A

ÿ

kPrKs

εkφ

˜

|FZpĂWkq|

τCK,A

¸

fi

fl ď 2E

»

– sup
ZPBK,A

ÿ

kPrKs

εk
FZpĂWkq

τCK,A

fi

fl

ď 2E

»

– sup
ZPBK,A

ÿ

kPrKs

εk
pĄPBk ´ P qLZ

τCK,A

fi

fl .

Now, let pσiqi“1,...,K be a family of Rademacher variables independant from the rXi’s and
the εk’s. Using the symmetrization Lemma one more time, we get

E

»

– sup
ZPBK,A

ÿ

kPrKs

εk
pĄPBk ´ P qLZ

CK,A

fi

fl ď 2E

«

sup
ZPBK,A

K

N

N
ÿ

i“1

σi
LZp rXiq

CK,A

ff

.
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To bound this last term, we consider two cases: either CK,A “ pr
˚q2 or CK,A “ νK{N . In

the first case, by definition of r˚ we have:

E

«

sup
ZPBK,A

N
ÿ

i“1

σi
LZp rXiq

CK,A

ff

ď
1

CK,A
γpr˚q2N “ γN.

In the second case, we decompose the supremum into two parts:

sup
ZPBK,A

N
ÿ

i“1

σiLZp rXiq

“ max

¨

˚

˝

sup
ZPBK,A:}Z´Z˚}L2

ďr˚

N
ÿ

i“1

σiLZp rXiq, sup

ZPBK,A:r˚ď}Z´Z˚}L2
ď

b

νK
N

N
ÿ

i“1

σiLZp rXiq

˛

‹

‚

.

Let Z P BK,A be such that r˚ ď }Z ´ Z˚}L2 ď

b

νK
N . Since C is star-shapped in Z˚, there

exists Z0 P C such that }Z0´Z
˚}L2 “ r˚ and Z ´Z˚ “ κpZ0´Z

˚q for some κ ě 1, so that

κ “
}Z´Z˚}L2
}Z0´Z˚}L2

ď

b

νK
N

1
r˚ . Moreover, we have by linearity of L that LZ0 “ κLZ . Therefore,

we obtain

sup

ZPBK,A:r˚ď}Z´Z˚}L2
ď

b

νK
N

N
ÿ

i“1

σiLZp rXiq ď sup

1ďκď 1
r˚

b

νK
N

sup
Z0PBK,A:}Z0´Z˚}L2

ďr˚

N
ÿ

i“1

σiκLZ0p
rXiq

“

c

νK

N

1

r˚
sup

Z0PBK,A:}Z0´Z˚}L2
ďr˚

N
ÿ

i“1

σiLZ0p
rXiq.

Since CK,A “ νK{N ě pr˚q2, we get, using the definition of r˚:

E

«

sup
ZPBK,A

N
ÿ

i“1

σiLZp rXiq

ff

ď

c

νK

N

1

r˚
E

«

sup
ZPBK,A:}Z´Z˚}L2

ďr˚

N
ÿ

i“1

σiLZp rXiq

ff

ď

c

νK

N

1

r˚
γpr˚q2N ď CK,AγN.

Finally, we get that whatever the value of CK,A is:

E

«

sup
ZPBK,A

N
ÿ

i“1

σi
LZp rXiq

CK,A

ff

ď γN.

Combining all these inequalities, we finally get that, with probability at least 1´expp´12K{625q,
for all Z P BK,A,

ÿ

kPrKs

1
t|FZpĂWkq|ąτCK,Au

ď
12

25
K `

1

200
K `

8γ

τ
K ď

49

400
K

From our choice of parameters. This concludes the proof.

46



Structural and robust learning with linear loss functions

5.1.4 Proof of Theorem 2.21

The proof of this theorem follows the same lines as the one of the last Theorem 2.15 and
2.18: we start with identifying an event on which our estimator has the desired properties,
and then we prove that this event holds with large probability.

For the sake of simplicity, we write Ẑ for ẐMOM
K and r˚ for r˚MOM,Gpγq for γ “ 1{6400.

Consider A and G : H Ñ R such that Assumption 2.20 holds. Define

Cγ,G :“
 

Z P C : GpZ ´ Z˚q ď pr˚q2
(

.

We consider the following event:

ΩK “

"

@Z P Cγ,G, DJ Ă rN s : |J | ą K{2 and @k P J, |pPBk ´ P qLZ | ď
pr˚q2

4

*

.

We first show that on the event ΩK , Ẑ satisfies the statistical bounds announced in
Theorem 2.21.

Lemma 5.7 If there exists η ą 0 such that

sup
ZPCzCγ,G

MOMKp`Z˚ ´ `Zq ă ´η and sup
ZPCγ,G

MOMKp`Z˚ ´ `Zq ď η (45)

then GpẐ ´ Z˚q ď pr˚q2.

Proof Assume that (45) holds. Then:

inf
ZPCzCγ,G

MOMKp`Z ´ `Z˚q ą η. (46)

Moreover, define Z Ñ TKpZq “ supZ1PCMOMKp`Z ´ `Z1q, we have

TKpZ
˚q “ max

˜

sup
ZPCzCγ,G

MOMKp`Z˚ ´ `Zq, sup
ZPCγ,G

MOMKp`Z˚ ´ `Zq

¸

ď η (47)

and, by definition of Ẑ, we also have TKpẐq “ supZPCMOMKp`Ẑ´`Zq ď supZPCMOMKp`Z˚´
`Zq “ TKpZ

˚q ď η. However, by (46), any Z P CzCγ,G must satisfy

TKpZq ě MOMKp`Z ´ `Z˚q ě inf
ZPCzCγ,G

MOMKp`Z ´ `Z˚q ą η.

Therefore, we necessarily have Ẑ P C X Cγ,G, that is GpẐ ´ Z˚q ď pr˚q2.

Lemma 5.8 Assume that A ă 2. On the event ΩK , (45) holds with η “ pr˚q2{4.

Proof Let Z be such that GpZ ´ Z˚q ą pr˚q2. By the star-shaped property of C and the
regularity property of G, there exist Z0 P BCγ,G and α ą 1 such that Z “ Z˚`αpZ0´Z

˚q.
Since GpZ0 ´ Z˚q “ pr˚q2, we have by Assumption 2.20 that PLZ0 ě A´1GpZ0 ´ Z˚q.
Moreover, on ΩK , there are at least K{2 blocks Bk on which |pPBk ´ P qLZ0 | ď pr

˚q2{4 and
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so PBkLZ0 ě PLZ0 ´ pr
˚q2{4 ě A´1GpZ0 ´Z

˚q ´ pr˚q2{4 ě pr˚q2{4 since we assumed that
A ă 2. Now, by linearity of the loss function, we have on these blocks

PBkLZ “ αPBkLZ0 ě αpr˚q2{4 ą pr˚q2{4.

We conclude that MOMKp`Z˚ ´ `Zq ă ´pr
˚q2{4. This being true for any Z P CzCγ,G we

have:

sup
ZPCzCγ,G

MOMKp`Z˚ ´ `Zq ď ´
pr˚q2

4
.

This shows the left-hand side inequality of (45) for η “ pr˚q2{4.
Next, let Z P C be such that GpZ ´ Z˚q ď pr˚q2. On ΩK , there are at least K{2

blocks Bk on which |pPBk ´ P qLZ0 | ď pr
˚q2{4, that is ´PBkLZ ď pr˚q2{4´ PLZ ď pr˚q2{4

since PLZ ě 0 by definition of Z˚. Then, MOMKp`Z˚ ´ `Zq ď pr
˚q2{4. This holds for all

Z P Cγ,G, in other words, the right-hand side inequality of (45) holds for η “ pr˚q2{4 and
this concludes the proof.

Lemma 5.9 Assume the conditions of Theorem 2.21 are met. Then, on ΩK , PLẐ ď

pr˚q2{2.

Proof From Assumption 2.20 combined with the fact that A ă 2, we have from Lemmas
5.7 and 5.8 that GpẐ´Z˚q ď pr˚q2. Then on ΩK there exist strictly more than K{2 blocks
Bk on which

ˇ

ˇpPBk ´ P qLẐ
ˇ

ˇ ď pr˚q2{4, that is:

PLẐ ď PBkLẐ `
pr˚q2

4
(48)

Moreover, by (47) and by definition of Ẑ, we have:

MOMKp`Ẑ ´ `Z˚q ď sup
ZPC

MOMKp`Ẑ ´ `Zq ď sup
ZPC

MOMKp`Z˚ ´ `Zq “ TKpZ
˚q ď η “

pr˚q2

4
.

As a consequence, there exist at least K{2 blocks Bk on which PBkp`Ẑ ´ `Z˚q ď pr
˚q2{4,

that is:

PBqLẐ ď
pr˚q2

4
. (49)

So there must be at least one block Bk0 on which (48) and (49) hold simultaneously. On
this block, we have:

PLẐ ď PBk0LẐ `
pr˚q2

4
ď
pr˚q2

4
`
pr˚q2

4
“
pr˚q2

2
.

At this stage of the proof, we have shown that on the event ΩK , the estimator Ẑ has the
statistical bounds announced in Theorem 2.21. The final ingredient is to show that, under
the conditions of Theorem 2.21, ΩK holds with exponentially large probability. This is the
purpose of the next result that can be proved using the same proof as the one of Lemma
5.2.

Lemma 5.10 Assume the conditions of Theorem 2.21 are met, with A ă 2. Then ΩK

holds with probability at least 1´ expp´72K{625q.
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5.1.5 Proof of Theorem 2.24

The proof is structured in the same way as the previous ones: we identify an event on
which ẐRMOM

K,λ has the desired statistical properties, then we show that this event holds
with high probability. Let γ “ 1{32000. Consider ρ˚ ą 0 such that ρ˚ satisfies the sparsity
equation of Definition 2.23. For the sake of simplicity, all along this proof we write Ẑ
for ẐRMOM

K,λ and r˚b :“ r˚RMOM,ERpγ, bρ
˚q for both b P t1, 2u. For b P t1, 2u, we define

Bb :“
 

Z P C : PLZ ď pr˚b q2 and }Z ´ Z˚} ď bρ˚
(

. Then we define:

ΩK “

"

@b P t1, 2u,@Z P Bb, DJ Ă rKs, |J | ą K{2,@k P J, |pPBk ´ P qLZ | ď
pr˚b q

2

20

*

.

Finally, we consider λ :“ p11{p40ρ˚qqpr˚2 q
2. We begin the proof by showing that on ΩK , Ẑ

has the statistical properties announced in Theorem 2.24.

Lemma 5.11 If there exists η ą 0 such that

sup
ZPCzB2

MOMKp`Z˚ ´ `Zq ` λ p}Z
˚} ´ }Z}q ă ´η (50)

and

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λ p}Z
˚} ´ }Z}q ď η (51)

then PLẐ ď pr
˚
2 q

2 and }Ẑ ´ Z˚} ď 2ρ˚.

Proof For Z P C, define SpZq “ supZ1PCMOMKp`Z´`Z1q`λp}Z}´}Z
1}q. For all Z P CzB2

we have:

SpZq ě MOMKp`Z ´ `
˚
Zq ` λp}Z} ´ }Z

˚}q ě inf
ZPCzB2

MOMKp`Z ´ `
˚
Zq ` λp}Z} ´ }Z

˚}q ą η

since (50) holds. Moreover, we have by definition of Ẑ:

SpẐq ď SpZ˚q “ sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď η

since (51) holds. This shows that necessarily Ẑ P B2.

We are now looking for η ą 0 such that (50) and (51) hold, which the following Lemma
allows us to do.

Lemma 5.12 Under the assumptions of Theorem 2.24 and on the event event ΩK , (50)
and (51) hold with η “ 19pr˚2 q

2{50.

Proof Let b P t1, 2u. Let Z P CzBb. By the star-shaped property of C, there exist Z0 P BBb
and α ą 1 such that Z “ Z˚ ` αpZ0 ´ Z˚q. As a consequence, by linearity of the loss
function and convexity of the regularization norm, for all k P rKs we have

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q “ αPBkLZ0 ` λp}αZ0 ` p1´ αqZ
˚} ´ }Z˚}q

ě αPBkLZ0 ` λαp}Z0} ´ }Z
˚}q “ αPBkL

λ
Z0
. (52)
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Now, since Z0 P BBb, we have either a) PLZ0 “ pr˚b q
2 and }Z0 ´ Z˚} ă bρ˚ or b)

PLZ0 ă pr
˚
b q

2 and }Z0 ´ Z
˚} “ bρ˚.

In the first case a), on ΩK , there are at least K{2 blocks Bk on which PBkLZ0 ě

PLZ0 ´ pr
˚
b q

2{20 “ p19{20qpr˚b q
2. Therefore, on these blocs, we have

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě
19

20
pr˚b q

2 ´ λ}Z0 ´ Z
˚}

ě
19

20
pr˚b q

2 ´ λbρ˚ “
19

20
pr˚b q

2 ´
11b

40
pr˚2 q

2 ě

"

2pr˚2 q
2{5 for b “ 2

pr˚2 q
2{5 for b “ 1.

(53)

where we used in the case b “ 1 that r˚1 ě r˚2{
?

2 thanks to Proposition A.1 from the
Appendix.

In the second case b), we have Z0 P H̄bρ˚ from Definition 2.23. Since the sparsity
equation holds for ρ “ ρ˚, it also holds for ρ “ bρ˚ (see Proposition A.2 in the Appendix).
Let V P H be such that }Z˚ ´ V } ď bρ˚{20 and Φ P B}.}pV q. We have:

}Z0} ´ }Z
˚} ě }Z0} ´ }V } ´ }Z

˚ ´ V }

ě
〈
Φ, Z0 ´ V

〉
´ }Z˚ ´ V } p since Φ P B}.}pV qq

“
〈
Φ, Z0 ´ Z

˚
〉
´
〈
Φ, V ´ Z˚

〉
´ }Z˚ ´ V }

ě
〈
Φ, Z0 ´ Z

˚
〉
´ 2}Z˚ ´ V } p since

〈
Φ, U

〉
ď }U} for any U P Hq

ě
〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10
.

This is true for any Φ P Y
V PZ˚`bρ˚{20

B}.}pV q “ ΓZ˚pbρ
˚q. Then taking the sup over ΓZ˚pbρ

˚q

gives:

}Z0} ´ }Z
˚} ě sup

ΦPΓZ˚ pbρ
˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

and then taking the infimum over H̄bρ˚ gives:

}Z0} ´ }Z
˚} ě inf

Z0PH̄bρ˚
}Z0} ´ }Z

˚} ě inf
Z0PH̄bρ˚

sup
ΦPΓZ˚ p2ρ

˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

“ ∆pbρ˚q ´
bρ˚

10
ě

7

10
bρ˚ (54)

where the last inequality holds since bρ˚ satisfies the sparsity equation. Then, λp}Z0} ´

}Z˚}q ě p7{10qλbρ˚ “ p77{400qbpr˚2 q
2. Now, since Z0 P Bb, on ΩK there exist at least

K{2 blocks Bk such that |pPBk ´ P qLZ0 | ď pr
˚
b q

2{20 and so PBkLZ0 ě pr
˚
b q

2{20 - because
PLZ0 ě 0. Therefore, on the very same blocks,

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě ´
1

20
pr˚b q

2 `
77

400
bpr˚2 q

2 ě

"

134pr˚2 q
2{400 for b “ 2

29pr˚2 q
2{400 for b “ 1

(55)

where we used that r˚1 ď r˚2 (see Proposition A.1 in the Appendix). As a consequence, it
follows from (52), the fact that α ą 1, (53) and (55) for b “ 2 that for all Z P CzB2, on more
than K{2 blocks Bk: PBkLλZ ě p134{400qpr˚2 q

2 and so (50) holds for η ď p134{400qpr˚2 q
2.
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Let us now turn to Equation (51). Let Z P B1. On ΩK there exist at least K{2 blocks
Bk such that |pPBk ´ P qLZ | ď pr˚1 q2{20. On these blocks Bk, all PBkLλZ ’s are such that

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q ě PLZ ´
1

20
pr˚1 q

2 ´ λ}Z ´ Z˚} ě ´
1

20
pr˚1 q

2 ´ λρ˚

“ ´
1

20
pr˚1 q

2 ´
11

40
pr˚2 q

2 ě ´
13

40
pr˚2 q

2 (56)

because r˚1 ď r˚2 (see Proposition A.1 in the Appendix). Next, it follows from (52), the fact
that α ą 1, (53) for b “ 1, (55) for b “ 1 and (56) that

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď max

ˆ

´1

5
,
´29

400
,
13

40

˙

r2
2 “

13

40
pr˚2 q

2 (57)

and so (51) holds for η ě 13pr˚2 q
2{40. As a consequence, (50) and (51) both hold for

η “ 132pr˚2 q
2{400.

At this stage, we have shown that on the event ΩK , the estimator Ẑ has the statistical
properties announced in Theorem 2.24. In what follows we prove that in the framework of
Theorem 2.24, ΩK holds with exponentially large probability.

Lemma 5.13 Assume that K ě 100|O|, and let ρ˚ ą 0 be such that it satisfies the sparsity
equation from Definition 2.23. Then, ΩK holds with probability at least 1´2 expp´72K{625q.

Proof Let φ : t P R Ñ 1ttě1u ` 2pt ´ 1{2q1t1{2ďtď1u, so that for any t P R, 1ttě1u ď

φptq ď 1ttě1{2u. For k P rKs, let Wk :“ tXi : i P Bku and FZpWkq “ pPBk ´ P qLZ . We
also define the counterparts of these quantities constructed with the non-corrupted vectors:
ĂWk :“

!

rXi : i P Bk

)

and FZpĂWkq “ pĄPBk ´
rP qLZ , where ĄPBkLZ :“ K

N

ř

iPBk
LZp rXiq and

rPLZ :“ ErLZp rXiqs. For both b P t1, 2u, let Z Ñ ψbpZq “
ř

kPrKs 1t|FZpWkq|ďpr
˚
b q

2{20u. Let

b P t1, 2u. We want to show that, with high probability, if Z P Bb, then ψbpZq ą K{2 which
follows if one can proves that

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď
49K

100
. (58)

Indeed, consider Z P Bb such that (58) holds. Then, there exist at least p1 ´ 49{100qK “

51K{100 blocks Bk on which |FZpĂWkq| ď pr˚b q
2{20. On the other hand, we know that

|O| ď K{100, so that among the 51K{100 previous blocks, at most K{100 contains cor-
rupted data. The other 50K{100 “ K{2 contain only non-corrupted data, so we have

FZpĂWkq “ FZpWkq on these block and so ψbpZq ą K{2.
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Let Z P Bb. We have:

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

*

“
ÿ

kPrKs

»

–1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ´ P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

` P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

fi

fl

“
ÿ

kPrKs

¨

˝1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ´ E

»

–1"

|FZpĂWkq|ą
pr˚
b
q2

40

*

fi

fl

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď
ÿ

kPrKs

˜

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff¸

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď sup
ZPBb

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

(59)

We start with bounding the last sum in the previous inequality. For each k P rKs, Markov’s
inequality and the definition of r˚b yield to

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď
1600

pr˚b q
4
E
”

FZpĂWkq
2
ı

“
1600

pr˚b q
4

ˆ

K

N

˙

VarpLZp rXqq

ď
1600

pr˚b q
4
pVKpr

˚
b qq

2
ď

1

200

Plugging this last result into (59), we get:

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď
K

200
` sup
ZPBb

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

˛

‚.

(60)

We now we have to bound this last term. Using Mc Diarmind inequality (Theorem
6.2 in Boucheron et al. (2013) with t “ 12{25), we get that with probability at least
1´ expp´72K{625q, for all Z P Bb,

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ Eφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

ď
12K

25
` E

»

– sup
ZPBb

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ Eφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl . (61)
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Let now ε1, . . . , εK be Rademacher variables independant from the rXi’s. By the symmetriza-
tion Lemma, we have:

E

»

– sup
ZPBb

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

fi

fl ď 2E

»

– sup
ZPBb

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl .

(62)

As φ is Lipschitz with φp0q “ 0, we can use the contraction Lemma (see Ledoux and
Talagrand (2013), chapter 4) to get that:

E

»

– sup
ZPBb

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl ď 2E

»

– sup
ZPBb

ÿ

kPrKs

εk
20FZpĂWkq

pr˚b q
2

fi

fl

“
40

pr˚b q
2
E

»

– sup
ZPBb

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl (63)

Now, let pσiqi“1,...,N be a family of Rademacher variables independant from the rXi’s
and the εi’s. Using the symmetrization Lemma again, we get:

E

»

– sup
ZPBb

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl ď 2E

«

sup
ZPBb

K

N

N
ÿ

i“1

σiLZp rXiq

ff

ď 2KEpr˚b , bρ
˚q ď 2Kγpr˚b q

2.

Combining this with (61), (62) and (63), we finally get that, with probability at least
1´ expp´72K{625q:

sup
ZPCγ

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

ď

ˆ

12

25
` 160γ

˙

K (64)

Plugging that into (60), we conclude that, with probability at least 1´ expp´72K{625q, for
all Z P Bb,

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď

ˆ

1

200
`

12

25
` 160γ

˙

K ď
49

100
K

for our choice of parameters. Now, in order for ΩK to hold, this inequality must be verified
for both b “ 1 and 2. Then, we finally conclude that ΩK holds with probability 1 ´
2 expp´72K{625q, which concludes the proof.

5.1.6 Proof of Theorem 2.28

Let K ą 0 be a divisor of N such that K ě 100|O|. Let γ “ 1{32000. Let A P p0, 1s
and ρ˚ ą 0 be such that Assumption 2.27 holds and satisfying the sparsity equation from
Definition 2.26. Define ν “ 320000A2.
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For the sake of simplicity, we write all along this proof Ẑ for ẐRMOM
K,λ . For b P t1, 2u, we

define r˚b “ r˚RMOM,L2
pγ, bρ˚q,

CK,b :“ max

ˆ

ν
K

N
, pr˚b q

2

˙

“ CKpγ, bρ
˚, Aq,

and the localized models BK,b :“
 

Z P C : }Z ´ Z˚} ď bρ˚ and }Z ´ Z˚}L2 ď
a

CK,b
(

- we

recall that the L2-norm associated with the good data rX is defined as }Z}L2 “ Er
〈
rX,Z

〉2
s1{2.

With these notation, we have λ :“ p11{p40ρ˚qqCK,2. Finally, we define the event onto which

Ẑ will have the desired properties:

ΩK “

#

@b P t1, 2u,@Z P BK,b,
K
ÿ

k“1

1!

|pPBk´P qLZ |ď
CK,b
20

) ą
K

2

+

.

First, we show that on ΩK , Ẑ has the statistical properties announced in Theorem 2.28.
Then, we show that ΩK holds with high probability.

Lemma 5.14 If there exists η ą 0 such that

sup
ZPCzBK,2

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ă ´η (65)

and

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď η (66)

then }Z ´ Z˚} ď 2ρ˚ and }Z ´ Z˚}L2 ď
a

CK,2.

Proof Assume that such an η exists. For Z P C, define SpZq “ supZ1PCMOMKp`Z´ `Z1q`
λp}Z} ´ }Z 1}q. For Z P CzBK,2 we have:

SpZq ě MOMKp`Z ´ `Z˚q ` λp}Z} ´ }Z
˚}q ě inf

ZPCzBK,2
MOMKp`Z ´ `Z˚q ` λp}Z} ´ }Z

˚}q ą η

since (65) holds. Moreover, we have by definition of Ẑ:

SpẐq ď SpZ˚q “ sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď η

since (66) holds. This shows that necessarily Ẑ P BK,2.

We are now looking for η ą 0 such that (65) and (66) hold. In the following result we
identify such a η on the event ΩK .

Lemma 5.15 Under the conditions of Theorem 2.28 and on the event ΩK , (65) and (66)
hold with η “ 33CK,2{100.
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Proof Consider b P t1, 2u and Z P CzBK,b. From the star-shaped property of C, we have
the existence of Z0 P BBK,b and α ą 1 such that Z “ Z˚ ` αpZ0 ´ Z

˚q. As a consequence,
by linearity of the loss function and convexity of the regularization norm, for all k P rKs we
have

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q “ αPBkLZ0 ` λp}αZ0 ` p1´ αqZ
˚} ´ }Z˚}q

ě αPBkLZ0 ` λαp}Z0} ´ }Z
˚}q “ αPBkL

λ
Z0
. (67)

Now, since Z0 P BBK,b, we have either a) }Z0´Z
˚}L2 “

a

CK,b and }Z0´Z
˚} ă bρ˚ or

b) }Z0 ´ Z
˚}L2 ă

a

CK,b and }Z0 ´ Z
˚} “ bρ˚.

In the first case a), on ΩK , there are at least K{2 blocks Bk on which PBkLZ0 ě PLZ0´

CK,b{p20q. But from Assumption 2.27, we have in this case that APLZ0 ě }Z0 ´ Z˚}2L2
“

CK,b, so that, on the same blocks of data, PBkLZ0 ě p1{AqCK,b´p1{20qCK,b ě p19{20qCK,b,
since we assumed that 0 ă A ď 1. Therefore, on these blocs, we have

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě
19

20
CK,b ´ λ}Z0 ´ Z

˚}

ě
19

20
CK,b ´ λbρ

˚ “
19

20
CK,b ´

11b

40
CK,2.

But thanks to Proposition A.1 from the Appendix, we have that r˚1 ě r˚2{
?

2, from which
we deduce that CK,1 ě CK,2{2. As a consequence, on the previous blocks, we have

PBkL
λ
Z0
ě

"

7CK,2{40 for b “ 1
16CK,2{40 for b “ 2.

(68)

In the second case b), we have Z0 P rHbρ˚,A from Definition 2.26. Since the sparsity
equation is satisfied by ρ˚, it is also satisfied by bρ˚ as well (see Proposition A.2 in the
Appendix). Let V P H be such that }Z˚ ´ V } ď bρ˚{20 and Φ P B}.}pV q. We have:

}Z0} ´ }Z
˚} ě }Z0} ´ }V } ´ }Z

˚ ´ V }

ě
〈
Φ, Z0 ´ V

〉
´ }Z˚ ´ V } p since Φ P B}.}pV qq

“
〈
Φ, Z0 ´ Z

˚
〉
´
〈
Φ, V ´ Z˚

〉
´ }Z˚ ´ V }

ě
〈
Φ, Z0 ´ Z

˚
〉
´ 2}Z˚ ´ V } p since

〈
Φ, U

〉
ď }U} for any U P Hq

ě
〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10
.

This is true for any Φ P Y
V PZ˚`bρ˚{20

B}.}pV q “ ΓZ˚pbρ
˚q. Then taking the sup over ΓZ˚pbρ

˚q

gives:

}Z0} ´ }Z
˚} ě sup

ΦPΓZ˚ pbρ
˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

and then taking the infimum over rHbρ˚,A gives:

}Z0} ´ }Z
˚} ě inf

Z0P rHbρ˚,A

}Z0} ´ }Z
˚} ě inf

Z0P rHbρ˚,A

sup
ΦPΓZ˚ p2ρ

˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

“ ∆pbρ˚q ´
bρ˚

10
ě

7

10
bρ˚ (69)
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where the last inequality holds since bρ˚ satisfies the sparsity equation. Then, λp}Z0} ´

}Z˚}q ě p7{10qλbρ˚ “ p77{400qbCK,2. Now, since Z0 P BK,b, on ΩK there exist at least K{2
blocks Bk such that |pPBk ´ P qLZ0 | ď CK,b{p20q and so PBkLZ0 ě ´CK,b{p20q (because
PLZ0 ě 0). Therefore, on the very same blocks,

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě ´
1

20
CK,b `

77b

400
CK,2 ě

"

57pr˚2 q
2{400 for b “ 1

134pr˚2 q
2{400 for b “ 2

(70)

where we used that CK,1 ď CK,2 because r˚1 ď r˚2 (see Proposition A.1 in the Appendix).
As a consequence, it follows from (67), the fact that α ą 1, (68) and (70) for b “ 2 that, for
all Z P CzBK,2, on more than K{2 blocks Bk: PBkLλZ ě p134{400qCK,2 and so (65) holds
for η ă p134{400qCK,2.

Let us now turn to Equation (66). Let Z P BK,1. On ΩK there exist at least K{2 blocks
Bk such that |pPBk ´ P qLZ | ď CK,1{20. On these blocks Bk, all PBkLλZ ’s are such that

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q ě PLZ ´
1

20
CK,1 ´ λ}Z ´ Z

˚} ě ´
1

20
CK,1 ´ λρ

˚

“ ´
1

20
CK,1 ´

11

40
CK,2 ě ´

13

40
CK,2 (71)

where we used the fact that, thanks to Proposition A.1 in the Appendix, CK,1 ď CK,2.
Next, it follows from (67), the fact that α ą 1, (68) and (67) for b “ 1 and (71) that

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď max

ˆ

´7

40
,
´57

400
,
13

40

˙

CK,2 “
13

40
CK,2 (72)

and so (66) holds for η ě 13CK,2{40. As a consequence, (65) and (66) both hold for
η “ 132CK,2{400.

From Lemmas 5.14 and 5.15, we conclude that on the event ΩK , Ẑ P BK,2. We use this

information to upper bound the excess risk of Ẑ in the following result.

Lemma 5.16 Under the conditions of Theorem 2.28 and on the event ΩK , we have PLẐ ď
p27{100qCK,2.

Proof From Lemmas 5.14 and 5.15, we have that Ẑ P BK,2. On ΩK , this implies the
existence of stricly more than K{2 blocks Bk on which

PLẐ ď PBkLẐ ` CK,2{20. (73)

Now, by definition of Ẑ, (66) and Lemma 5.15 we get

MOMKp`Ẑ ´ `Z˚q ` λp}Ẑ} ´ }Z
˚}q ď sup

ZPC
MOMKp`Z˚ ´ `Zq ` λp}Z

˚} ´ }Z}q ď 33CK,2{100.

56



Structural and robust learning with linear loss functions

This means that there exist at least K{2 blocks Bk on which PBkLẐ ` λp}Ẑ} ´ }Z˚}q ď

33CK,2{100. Since λp}Z˚} ´ }Ẑ}q ď λ}Z˚ ´ Ẑ} ď 2λρ˚ “ 11CK,2{20, we have on these
blocks

PBkLẐ ď 33CK,2{100` 11CK,2{20 “ 22CK,2{100. (74)

Therefore, there exist at least a block Bk0 on which (73) and (74) hold simultaneously. On
this block, we can write

PLẐ ď PBk0LẐ ` CK,2{20 ď 22CK,2{100` CK,2{20 “ 27CK,2{100.

At this stage, we have shown that on the event ΩK , the regularized minmax MOM-
estimator Ẑ has the statistical properties announced in Theorem 2.28. In what follows, we
prove that, in the framework of Theorem 2.28, ΩK holds with exponentially large probability.

Proposition 5.17 Consider ρ˚ that satisfies the sparsity equation from Definition 2.26.
Assume that K ě 100|O|. Then, ΩK holds with probability at least 1´ 2 expp´72K{625q.

Proof Let b P t1, 2u. Let φ : t P R Ñ 1ttě1u ` 2pt ´ 1{2q1t1{2ďtď1u, so that for any
t P R, 1ttě1u ď φptq ď 1ttě1{2u. For k P rKs, let Wk :“ tXi : i P Bku and FZpWkq “

pPBk ´ P qLZ . We also define the counterparts of these quantities constructed with the

non-corrupted vectors: ĂWk :“
!

rXi : i P Bk

)

and FZpĂWkq “ pĄPBk ´P qLZ , where ĄPBkLZ :“

pK{Nq
ř

iPBk
LZp rXiq. Let ψbpZq “

ř

kPrKs 1t|FZpWkq|ďCK,b{p20qu. We would like to show

that, if Z P BK,b, then ψbpZq ą K{2 with high probability. As we showed in the proof
of Lemma 5.2, in our framework this is true if we show that with high probability, for all
Z P BK,b,

ÿ

kPrKs

1!

|FZpĂWkq|ą
CK,b
20

) ď
49K

100
(75)

and this is what we do now. Let Z P BK,b. We have:
ÿ

kPrKs

1!

|FZpĂWkq|ą
CK,b
20

)

“
ÿ

kPrKs

„

1!

|FZpĂWkq|ą
CK,b
20

) ´ P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

` P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

“
ÿ

kPrKs

ˆ

1!

|FZpĂWkq|ą
CK,b
20

) ´ E

„

1!

|FZpĂWkq|ą
CK,b
40

)

˙

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

ď
ÿ

kPrKs

˜

φ

˜

20|FZpĂWkq|

CK,b

¸

´ E

«

φ

˜

20|FZpĂWkq|

CK,b

¸ff¸

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

ď sup
ZPBK,b

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ E

«

φ

˜

20|FZpĂWkq|

CK,b

¸ff

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

(76)
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We start with bounding the last sum in the previous inequality. For each k P rKs, Markov’s
inequality and the definition of CK,b yield to

P

ˆ

|FZpĂWkq| ą
CK,b
40

˙

ď

ˆ

40

CK,b

˙2

E
”

|FZpĂWkq|
2
ı

“

ˆ

40

CK,b

˙2 ˆK

N

˙2

E

»

–

˜

ÿ

iPBk

LZp rXiq ´ E
”

LZp rXiq

ı

¸2
fi

fl

ď

ˆ

40

CK,b

˙2 K

N
}Z ´ Z˚}2L2

ď

ˆ

40

CK,b

˙2 K

N
CK,b ď 402ν´1 “

1

200
.

Plugging this last result into (76), we get:

ÿ

kPrKs

1!

|FZpĂWkq|ą
CK,b
20

) ď
K

200
` sup
ZPBK,b

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ E

«

φ

˜

20|FZpĂWkq|

CK,b

¸ff

˛

‚.

(77)

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2
in Boucheron et al. (2013) with t “ 12{25), we get that with probability at least 1 ´
expp´72K{625q, for all Z P BK,b,

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ Eφ

˜

20|FZpĂWkq|

CK,b

¸

ď
12K

25
` E

»

– sup
ZPBK,b

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ Eφ

˜

20|FZpĂWkq|

CK,b

¸

fi

fl . (78)

Let now ε1, . . . , εK be Rademacher variables independant from the rXi’s. By the symmetriza-
tion Lemma, we have:

E

»

– sup
ZPBK,b

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ E

«

φ

˜

20|FZpĂWkq|

CK,b

¸ff

fi

fl

ď 2E

»

– sup
ZPBK,b

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

CK,b

¸

fi

fl . (79)

As φ is Lipschitz with φp0q “ 0, we can use the contraction Lemma (see Ledoux and
Talagrand (2013), chapter 4) to get that:

E

»

– sup
ZPBK,b

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

CK,b

¸

fi

fl

ď 2E

»

– sup
ZPBK,b

ÿ

kPrKs

εk
20FZpĂWkq

CK,b

fi

fl “
40

CK,b
E

»

– sup
ZPBK,b

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl (80)
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Now, let pσiqi“1,...,N be a family of Rademacher variables independant from the rXi’s
and the εi’s. Using the symmetrization Lemma again, we get:

E

»

– sup
ZPBK,b

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl ď 2E

«

sup
ZPBK,b

K

N

N
ÿ

i“1

σiLZp rXiq

ff

ď 2Kpr˚b q
2 ď 2KγCK,b.

Combining this with (78), (79) and (80), we finally get that, with probability at least
1´ expp´72K{625q:

sup
ZPBK,b

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

CK,b

¸

´ E

«

φ

˜

20|FZpĂWkq|

CK,b

¸ff

ď

ˆ

12

25
` 160γ

˙

K (81)

Plugging that into (77), we conclude that, with probability at least 1´ expp´72K{625q, for
all Z P BK,b,

ÿ

kPrKs

1!

|FZpĂWkq|ą
CK,b
20

) ď

ˆ

1

200
`

12

25
` 160γ

˙

K ď
49

100
K

for our choice of parameters. Now, in order for ΩK to hold, this inequality must be verified
for both b “ 1 and 2. Then, we finally conclude that ΩK holds with probability 1 ´
2 expp´72K{625q, which concludes the proof.

5.1.7 Proof of Theorem 2.32

The proof is structured in the same way as the previous ones: we identify an event on
which ẐRMOM

K,λ has the desired statistical properties, then we show that this event holds
with high probability. We place ourselves under the conditions of Theorem 2.32, i.e., we
assume the existence of A P p0, 1s such that Assumption 2.31 holds, γ “ 1{32000 and
ρ˚ which satisfies the sparsity equation from Definition 2.30. For b P t1, 2u we define
r˚b “ r˚RMOM,Gpγ, 2ρ

˚q and Bb :“
 

Z P C : GpZ ´ Z˚q ď pr˚b q
2 and }Z ´ Z˚} ď bρ˚

(

. With
these notation, λ “ p11{p40ρ˚qqr˚2 . We consider the event

ΩK,G “

#

@b P t1, 2u,@Z P Bb,
K
ÿ

k“1

1

ˆ

|pPBk ´ P qLZ | ď
1

20
pr˚b q

2

˙

ą
K

2

+

For the sake of simplicity, in the rest of the proof we write Ẑ “ ẐRMOM
K,λ .

Lemma 5.18 If there exists η ą 0 such that

sup
ZPCzB2

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ă ´η (82)

and

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď η (83)

then }Z ´ Z˚} ď 2ρ˚ and GpZ ´ Z˚q ď r˚RMOM,Gpγ, 2ρ
˚q2.
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Proof Let η be such that (82) and (83) hold. For all Z P C, define SpZq “ supZ1PCMOMKp`Z´
`Z1q ` λp}Z} ´ }Z

1}q. It follows from (82) that for all Z P CzB2,

SpZq ě MOMKp`Z ´ `Z˚q ` λp}Z} ´ }Z
˚}q ą η

Moreover, it follows from the definition of Ẑ and (83) that

SpẐq ď SpZ˚q “ sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď η

This shows that necessarily Ẑ P B2.

Lemma 5.19 Under the conditions of Theorem 2.32 and on the event ΩK,G, (82) and (83)
hold with η “ p33{100qpr˚2 q

2.

Proof Let b P t1, 2u. Let Z P CzBb. By the star-shaped property of C and the regularity
property of G, there exist Z0 P BBb and α ą 1 such that Z “ Z˚ ` αpZ0 ´ Z˚q. As a
consequence, by linearity of the loss function and convexity of the regularization norm, for
all k P rKs we have

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q “ αPBkLZ0 ` λp}αZ0 ` p1´ αqZ
˚} ´ }Z˚}q

ě αPBkLZ0 ` λαp}Z0} ´ }Z
˚}q “ αPBkL

λ
Z0
. (84)

Now, since Z0 P BBb, we have either a) GpZ0 ´ Z
˚q “ pr˚b q

2 and }Z0 ´ Z
˚} ă bρ˚ or b)

GpZ0 ´ Z
˚q ă pr˚b q

2 and }Z0 ´ Z
˚} “ bρ˚.

In the first case a), on ΩK,G, there are at leastK{2 blocks Bk on which PBkLZ0 ě PLZ0´

pr˚b q
2{p20q. But we also have from Assumption 2.31 that APLZ0 ě GpZ0 ´ Z˚q “ pr˚b q

2,
so that PBkLZ0 ě p1{Aqpr

˚
b q

2 ´ p1{20qpr˚b q
2 ě p19{20qpr˚b q

2, since we assumed that A ď 1.
Therefore, on these blocs, we have

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě
19

20
pr˚b q

2 ´ λ}Z0 ´ Z
˚}

ě
19

20
pr˚b q

2 ´ λbρ˚ “
19

20
pr˚b q

2 ´
11b

40
pr˚2 q

2 ě

"

pr˚2 q
2{5 for b “ 1

2pr˚2 q
2{5 for b “ 2.

(85)

where we used in the case b “ 1 that r˚1 ě r˚2{
?

2 thanks to Proposition A.1 from the
Appendix.

In the second case b), we have Z0 P H̄bρ˚ from Definition 2.30. Since the sparsity
equation holds for ρ “ ρ˚, it also holds for ρ “ bρ˚ (see Proposition A.2 in the Appendix).
Let V P H be such that }Z˚ ´ V } ď bρ˚{20 and Φ P B}.}pV q. We have:

}Z0} ´ }Z
˚} ě }Z0} ´ }V } ´ }Z

˚ ´ V }

ě
〈
Φ, Z0 ´ V

〉
´ }Z˚ ´ V } p since Φ P B}.}pV qq

“
〈
Φ, Z0 ´ Z

˚
〉
´
〈
Φ, V ´ Z˚

〉
´ }Z˚ ´ V }

ě
〈
Φ, Z0 ´ Z

˚
〉
´ 2}Z˚ ´ V } p since

〈
Φ, U

〉
ď }U} for any U P Hq

ě
〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10
.
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This is true for any Φ P Y
V PZ˚`bρ˚{20

B}.}pV q “ ΓZ˚pbρ
˚q. Then taking the sup over ΓZ˚pbρ

˚q

gives:

}Z0} ´ }Z
˚} ě sup

ΦPΓZ˚ pbρ
˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

and then taking the infimum over H̄bρ˚,A gives:

}Z0} ´ }Z
˚} ě inf

Z0PH̄bρ˚,A

}Z0} ´ }Z
˚} ě inf

Z0PH̄bρ˚,A

sup
ΦPΓZ˚ p2ρ

˚q

〈
Φ, Z0 ´ Z

˚
〉
´
bρ˚

10

“ ∆pbρ˚q ´
bρ˚

10
ě

7

10
bρ˚ (86)

where the last inequality holds since bρ˚ satisfies the sparsity equation. Then, λp}Z0} ´

}Z˚}q ě p7{10qλbρ˚ “ p77{400qbpr˚2 q
2. Now, since Z0 P Bb, on ΩK,G there exist at least K{2

blocks Bk such that |pPBk ´ P qLZ0 | ď pr
˚
b q

2{p20q and so PBkLZ0 ě ´pr
˚
b q

2{p20q (because
PLZ0 ě 0). Therefore, on the very same blocks,

PBkL
λ
Z0
“ PBkLZ0 ` λp}Z0} ´ }Z

˚}q ě ´
1

20
pr˚b q

2 `
77

400
bpr˚2 q

2

ě

"

57pr˚2 q
2{p400q for b “ 1

134pr˚2 q
2{p400q for b “ 2

(87)

where we used that r˚1 ď r˚2 (see Proposition A.1 in the Appendix). As a consequence, it
follows from (84), the fact that α ą 1, (85) and (87) for b “ 2 that, for all Z P CzB2, on more
than K{2 blocks Bk: PBkLλZ ě p134{400qpr˚2 q

2 and so (82) holds for η ă p134{400qpr˚2 q
2.

Let us now turn to Equation (83). Let Z P B1. On ΩK,G there exist at least K{2 blocks
Bk such that |pPBk ´ P qLZ | ď pr˚1 q2{p20q. On these blocks Bk, all PBkLλZ ’s are such that

PBkL
λ
Z “ PBkLZ ` λp}Z} ´ }Z

˚}q ě PLZ ´
1

20
pr˚1 q

2 ´ λ}Z ´ Z˚} ě ´
1

20
pr˚1 q

2 ´ λρ˚

“ ´
1

20
pr˚1 q

2 ´
11

40
pr˚2 q

2 ě ´
13

40
pr˚2 q

2 (88)

because r˚1 ď r˚2 (see Proposition A.1 in the Appendix). Next, it follows from (84), the fact
that α ą 1, (85) and (87) for b “ 1 and (88) that

sup
ZPC

MOMKp`Z˚ ´ `Zq ` λp}Z
˚} ´ }Z}q ď max

ˆ

´1

5
,
´57

400
,
13

40

˙

r2
2 “

13

40
pr˚2 q

2 (89)

and so (83) holds for η ě 13pr˚2 q
2{p40q. As a consequence, (82) and (83) both hold for

η “ 132pr˚2 q
2{p400q.

From Lemmas 5.18 and 5.19, we conclude that on the event ΩK,G, Ẑ P B2, that is

}Ẑ ´Z˚} ď 2ρ˚ and GpẐ ´Z˚q ď pr˚2 q
2. The following lemma gives us an upper bound on

the excess risk PLẐ .

Lemma 5.20 Under the conditions of Theorem 2.32, and on the event ΩK,G, we have
PLẐ ď p93{100qpr˚2 q

2.

61
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Proof From Lemmas 5.18 and 5.19, we get that on ΩK,G, Ẑ P B2. This implies the
existence of stricly more than K{2 blocks Bk on which

ˇ

ˇpPBk ´ P qLẐ
ˇ

ˇ ď pr˚2 q
2{p20q, that is:

PLẐ ď PBkLẐ ` pr
˚
2 q

2{p20q. (90)

Moreover, by (83), the definition of Ẑ and (5.19), we have:

MOMKp`Ẑ ´ `Z˚q ` λ
´

}Ẑ} ´ }Z˚}
¯

ď sup
ZPC

MOMKp`Ẑ ´ `Zq ` λ
´

}Ẑ} ´ }Z}
¯

ď sup
ZPC

MOMKp`Z˚ ´ `Zq ` λ p}Z
˚} ´ }Z}q ď

33

100
pr˚2 q

2.

As a consequence, there exist at least K{2 blocks Bk on which

PBkLẐ ď
33

100
pr˚2 q

2 ´ λ
´

}Ẑ} ´ }Z˚}
¯

ď
33

100
pr˚2 q

2 ` λ}Ẑ ´ Z˚}

ď
33

100
pr˚2 q

2 ` 2λρ˚ “
88

100
pr˚2 q

2. (91)

So there must be at least a block Bk0 on which (90) and (91) hold simultaneously. On this
block, we have

PLẐ ď PBk0LẐ `
1

20
pr˚2 q

2 ď
88

100
pr˚2 q

2 `
1

20
pr˚2 q

2 “
93

100
pr˚2 q

2.

At this stage, we have shown that on the event ΩK,G, the estimator Ẑ has the statistical
properties announced in Theorem 2.32. In what follows we prove that under the conditions
of Theorem 2.32, ΩK,G holds with exponentially large probability.

Lemma 5.21 Assume that K ě 100|O|, and let ρ˚ ą 0 be such that it satisfies the sparsity
equation from Definition 2.30. Then, ΩK holds with probability at least 1´2 expp´72K{625q.

Proof Let φ : t P R Ñ 1ttě1u ` 2pt ´ 1{2q1t1{2ďtď1u, so that for any t P R, 1ttě1u ď

φptq ď 1ttě1{2u. For k P rKs, let Wk :“ tXi : i P Bku and FZpWkq “ pPBk ´ P qLZ . We
also define the counterparts of these quantities constructed with the non-corrupted vectors:
ĂWk :“

!

rXi : i P Bk

)

and FZpĂWkq “ pĄPBk ´
rP qLZ , where ĄPBkLZ :“ K

N

ř

iPBk
LZp rXiq and

rPLZ :“ ErLZp rXiqs. For both b P t1, 2u, let Z Ñ ψbpZq “
ř

kPrKs 1t|FZpWkq|ďpr
˚
b q

2{p20qu. Let

b P t1, 2u. We want to show that, with high probability, if Z P Bb, then ψbpZq ą K{2. As
we showed in the proof of Lemma 5.2, in our framework this is equivalent to proving that
the following inequality occurs with high probability:

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď
49K

100
, (92)
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and this is what we do now. Let Z P Bb. We have:

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

*

“
ÿ

kPrKs

»

–1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ´ P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

` P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

fi

fl

“
ÿ

kPrKs

¨

˝1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ´ E

»

–1"

|FZpĂWkq|ą
pr˚
b
q2

40

*

fi

fl

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď
ÿ

kPrKs

˜

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff¸

`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď sup
ZPBb

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

˛

‚`
ÿ

kPrKs

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

(93)

We start with bounding the last sum in the previous inequality. For each k P rKs, Markov’s
inequality and the definition of r˚b yield to

P

ˆ

|FZpĂWkq| ą
pr˚b q

2

40

˙

ď
16002

pr˚b q
4

E
”

FZpĂWkq
2
ı

“
16002

pr˚b q
4

ˆ

K

N

˙

VarpLZp rXqq

ď
16002

pr˚b q
4
pVKpr

˚
b qq

2
ď

1

200

Plugging this last result into (93), we get:

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď
K

200
` sup
ZPBb

¨

˝

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

˛

‚.

(94)

We now have to bound this last term. Using Mc Diarmind inequality (Theorem 6.2
in Boucheron et al. (2013) with t “ 12{25), we get that with probability at least 1 ´
expp´72K{625q, for all Z P Bb,

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ Eφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

ď
12K

25
` E

»

– sup
ZPBb

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ Eφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl . (95)
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Lecué and Neirac

Let now ε1, . . . , εK be Rademacher variables independant from the rXi’s. By the symmetriza-
tion Lemma, we have:

E

»

– sup
ZPBb

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

fi

fl ď 2E

»

– sup
ZPBb

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl .

(96)

As φ is Lipschitz with φp0q “ 0, we can use the contraction Lemma (see Ledoux and
Talagrand (2013), chapter 4) to get that:

E

»

– sup
ZPBb

ÿ

kPrKs

εkφ

˜

20|FZpĂWkq|

pr˚b q
2

¸

fi

fl ď 2E

»

– sup
ZPBb

ÿ

kPrKs

εk
20FZpĂWkq

pr˚b q
2

fi

fl

“
40

pr˚b q
2
E

»

– sup
ZPBb

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl (97)

Now, let pσiqi“1,...,N be a family of Rademacher variables independant from the rXi’s
and the εi’s. Using the symmetrization Lemma again, we get:

E

»

– sup
ZPBb

ÿ

kPrKs

εkpĄPBk ´
rP qLZ

fi

fl ď 2E

«

sup
ZPBb

K

N

N
ÿ

i“1

σiLZp rXiq

ff

ď 2KEGpr
˚
b , bρ

˚q ď 2Kγpr˚b q
2.

Combining this with (95), (97) and (98), we finally get that, with probability at least
1´ expp´72K{625q:

sup
ZPCγ

ÿ

kPrKs

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸

´ E

«

φ

˜

20|FZpĂWkq|

pr˚b q
2

¸ff

ď

ˆ

12

25
` 160γ

˙

K (98)

Plugging that into (94), we conclude that, with probability at least 1´ expp´72K{625q, for
all Z P Bb,

ÿ

kPrKs

1"

|FZpĂWkq|ą
pr˚
b
q2

20

* ď

ˆ

1

200
`

12

25
` 160γ

˙

K ď
49

100
K

for our choice of parameters. Now, in order for ΩK,G to hold, this inequality must be
verified for both b “ 1 and 2. Then, we finally conclude that ΩK,G holds with probability
1´ 2 expp´72K{625q, which concludes the proof.

5.2 Proofs of section 3

5.2.1 Proof of Theorem 3.2

The proof of Theorem 3.2 relies on several Lemmas. We first recall that kB1 X B2 Ă

2convpUk2XSdˆd2 q where Sdˆd2 is the unit sphere of `dˆd2 and Uk2 is the set of all matrices in
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Rdˆd with at most k2 non zero entries (see, for instance, equation (3.1) in Mendelson et al.
(2007)). Hence, for all A P Rdˆd, we have

}A} ď 2 sup
IĂrdsˆrds:|I|“k2

¨

˝

ÿ

pp,qqPI

A2
pq

˛

‚

1{2

.

We therefore need to find a high probability upper bound on the `2 norm of the k2 largest
entries of Σ̂N ´ Σ. To that end, we start with the following result.

Lemma 5.22 Let pzpq : p, q P rdsq be real-valued random variables (not necessarily inde-
pendent) and λ, t ě 1 be two positive constants. We assume that for r “ 2 logped{kq` t, we
have }zpq}Lr ď λ

?
r for all p, q P rds. Then, with probability at least 1´ expp´tq,

sup
IĂrdsˆrds:|I|“k2

¨

˝

ÿ

pp,qqPI

z2
pq

˛

‚

1{2

ď e2λ
a

2k2 plogped{kq ` tq.

Moreover:

E

»

—

–

sup
IĂrdsˆrds:|I|“k2

¨

˝

ÿ

pp,qqPI

z2
pq

˛

‚

1{2
fi

ffi

fl

ď e2λ
a

6k2 logped{kq

Proof. We define for all p, q P rds,

Zpq “ zpqIp|zpq| ď eλ
?
rq and Ypq “ zpqIp|zpq| ą eλ

?
rq

so that we have |zpq|
t “ |Zpq|

t`|Ypq|
t. As a consequence and by convexity of x P R` Ñ xt{2,

we have for all I Ă rds ˆ rds

¨

˝

1

|I|

ÿ

pp,qqPI

z2
pq

˛

‚

t{2

ď
1

|I|

ÿ

pp,qqPI

|zpq|
t “

1

|I|

ÿ

pp,qqPI

|Zpq|
t `

1

|I|

ÿ

pp,qqPI

|Ypq|
t. (99)

Let I Ă rds ˆ rds be such that |I| “ k2. We have

1

|I|

ÿ

pp,qqPI

|Zpq|
t ď peλ

?
rqt. (100)

For the second term in the right hand side inequality of (99), we have

1

|I|

ÿ

pp,qqPI

|Ypq|
t ď

1

|I|

ÿ

pp,qqPrdsˆrds

|Ypq|
t

and for θ :“ r{t and all p, q P rds, we have

Er|Ypq|
ts “ E

“

|zpq|
tIp|zpq| ą eλ

?
rq
‰

ď E
”

|zpq|
tθ
ı1{θ

P
“

|zpq| ą eλ
?
r
‰1´1{θ

ď pλ
?
rqt

ˆ

}zpq}Lr
eλ
?
r

˙r´t

ď pλ
?
rqter´t “ pλ

?
rqt

k2

e2d2
.
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Lecué and Neirac

It follows that

E sup
IĂrdsˆrds:|I|“k2

1

|I|

ÿ

pp,qqPI

|Ypq|
t ď

d2

k2
pλ
?
rqt

k2

e2d2
“
pλ
?
rqt

e2
.

Hence, using (99), (100) and the last inequality, we get EZt ď peλ
?
rqt ` pλ

?
rqt{e2 ď

2peλ
?
rqt where

Z :“ sup
IĂrdsˆrds:|I|“k2

¨

˝

1

|I|

ÿ

pp,qqPI

z2
pq

˛

‚

1{2

.

As a consequence, }Z}Lt ď eλ
?

2r and so, for t ě 2 we get by Markov’s inequality that
Z ď e2λ

?
2r with probability at least 1´ expp´tq.

Finally, by taking t “ 1 above we get:

}Z}L1 ď eλ
?

2r “ eλ
a

2p2 logped{kq ` 1q ď eλ
a

6 logped{kq

since k ď d. As a consequence, ErZs “ }Z}L1 ď eλ
a

6 logped{kq, which concludes the proof.

The proof of Theorem 3.2 will follow from Lemma 5.22 if one can apply the latter to
the variables zpq “ Σ̂pq ´ Σpq. We therefore have to check that pΣ̂pq ´ Σpq : p, d P rdsq
satisfies the assumptions of Lemma 5.22. In other words, it only remains to show that for
all p, q P rds, Σ̂pq´Σpq has r :“ 2 logped{kq` t sub-gaussian moment under Assumption 3.1.
To that end we use a version (see Lemma 2.8 in Lecué and Mendelson (to appear)) of a
result due to Lata la taken from Lata la et al. (1997) (see Theorem 2 and Remark 2 in Lata la
et al. (1997)) which states the following:

Lemma 5.23 Lata la et al. (1997) There exists an absolute constant c0 for which the fol-
lowing holds. Let z be a mean-zero random variable and z1, . . . , zN be N independent copies
of z. Let p0 ě 2 and assume that there exists κ1 ą 0 and α ě 1{2 for which }z}Lp ď κ1p

α

for every 2 ď p ď p0. If N ě p
maxt2α´1,1u
0 then for every 2 ď p ď p0,

›

›

›

1
?
N

N
ÿ

i“1

zi

›

›

›

Lp
ď c1pαqκ1

?
p,

where c1pαq “ c0 exppp2α´ 1qq.

We use Lemma 5.23 to prove the following moment growth condition on the Σ̂pq ´

Σpq, p, q P rds.

Lemma 5.24 There exists an absolute constant c0 such that the following holds. Grant
Assumption 3.1 with parameters w and t ě 2. For all p, q P rds and all 2 ď r ď 2 logped{kq`
t, if N ě 2 logped{kq ` t then }Σ̂pq ´ Σpq}Lr ď pc0w

2{
?
Nq
?
r.

Proof. Let p, q P rds. It follows from Assumption 3.1 and Lemma 5.23 that for all p, q P rds
and all 2 ď r ď 2 logped{kq ` t,

}Σ̂pq ´ Σpq}Lr ď
1
?
N
}

1
?
N

N
ÿ

i“1

XipXiq ´ EXipXiq}Lr ď
c0w

2

?
N

?
r.
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Proof of Theorem 3.2 We set for all p, q P rds, zpq “ Σ̂pq ´ Σpq. It follows from
Lemma 5.24 for α “ 1 that for all 2 ď r ď 2 logped{kq ` t, }zpq}Lr ď λ

?
r where λ “

c0w
2{
?
N . The result now follows from Lemma 5.22.

5.2.2 Proof of Theorem 3.4

The proof of Theorem 3.2 relies on several Lemmas. We first use a decomposition similar
to the one from Lecué and Mendelson (2018). We have

}Σ̂N ´ Σ}ρ ď min

˜

sup
ZPB2

d
ÿ

p,q“1

ZpqpΣ̂N ´ Σqpq, sup
ZPρBSLOPE

d
ÿ

p,q“1

ZpqpΣ̂N ´ Σqpq

¸

“ min

¨

˝

g

f

f

e

d
ÿ

p,q“1

pΣ̂N ´ Σq2pq, ρ sup
ZPρBSLOPE

d
ÿ

p,q“1

Z˚pp,qqβpq
pΣ̂N ´ Σq˚

pp,qq

βpq

˛

‚

“ min

¨

˝

g

f

f

e

d
ÿ

p,q“1

pΣ̂N ´ Σq2pq, ρ max
p,qPrds

pΣ̂N ´ Σq˚
pp,qq

βpq

˛

‚. (101)

We already proved a high probability upper bound on the `2 norm of the k2 largest entries of
Σ̂N ´Σ in the previous section under a weaker assumption than the one in Assumption 3.3.
We just have to use it for k “ d to handle the left-hand side term of (101). Therefore, with
probability at least 1´ expp´tq,

g

f

f

e

d
ÿ

p,q“1

pΣ̂N ´ Σq2pq ď c0w
2

c

d

N
.

It only remains to handle the second term in the right-hand side inequality of (101). To
that end, we start with the following result.

Lemma 5.25 Let z :“ pzpq : p, q P rdsq be real-valued random variables (not necessarily
independent) and λ, t ě 1 be two positive constants. We denote by pz˚

pp,qq : p, q P rdsq the

non-increasing sequence (for the same lexicographical order over rds2 used before) of the
rearrangement of the absolute values of the entries of z. Let p0, q0 P rds. We assume that
for r “ logred2{pp0q0qs ` t, we have }zpq}Lr ď λ

?
r for all p, q P rds. Then,

}
z˚
pp0,q0q

βp0q0
}Lt ď e2λ.

Proof. To make the presentation of the proof simpler, we index the entries of d ˆ d
matrices by rd2s. We therefore have d2 random variables pzjqj (not necessarily independent)
and βj “

a

logped2{jq ` t for all j P rd2s. Let j0 P rd
2s and set r0 “ logped2{j0q ` t. We

assume that }zj}Lr0 ď λ
?
r0 for all p, q P rds. We want to prove that }z˚j0{βj0}Lt ď e2λ. We

first remark that
z˚j0
βj0

ď max
IĂrd2s:|I|“j0

1

βj0 |I|

ÿ

jPI

|zj | :“ Z. (102)
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We define for all j P rd2s,

Zj “ zjI p|zj | ď eλ
?
r0q and Yj “ zjI p|zj | ą eλ

?
r0q .

It follows from the convexity of x P R` Ñ xt and the definitions above that

EZt ď max
IĂrd2s:|I|“j0

1

βtj0 |I|

ÿ

jPI

|zj |
t ď

ˆ

eλ
?
r0

βj0

˙t

`
1

j0

d2
ÿ

j“1

E|Yj |t

βtj0
. (103)

Next, for the second term in the right-hand side inequality of (103) for θ :“ r0{t and all
j P rd2s, we have

E|Yj |
t “ E

“

|zj |
tIp|zj | ą eλ

?
r0q

‰

ď E
”

|zj |
tθ
ı1{θ

P r|zj | ą eλ
?
r0s

1´1{θ

ď pλ
?
r0q

t

ˆ

}zj}Lr0
eλ
?
r0

˙r0´t

ď peλqtr
t{2
0 e´r0 “ peλqtβtj0e

´t j0
ed2

.

We end up in (103) with EZt ď peλqt ` λt ď pe2λqt.

Lemma 5.26 Let z :“ pzpq : p, q P rdsq be real-valued random variables (not necessarily
independent) and λ ě 0, t ě 3 be two constants. We denote by pz˚

pp,qq : p, q P rdsq the

non-increasing sequence (for the same lexicographical order over rds2 used before) of the
rearrangement of the absolute values of the entries of z. Let r0 “ logped2q ` t and assume
that }zpq}Lr ď λ

?
r for all p, q P rds and 2 ď r ď r0. Let k P rds and γ ě 1. Then, when

t ě max
`

2 logprlogpk2qsq, γ logped2{k2q
˘

, with probability at least 1´ expp´t{2q,

max
p,qPrd2s

˜

z˚
pp,qq

βpq

¸

ď
?

2e3λ.

Proof. We use the same ’vectorial’ notation as the one introduced in the proof of
Lemma 5.25. We remark that for all j P rd2s, we have p1{β2jq ď

?
2{βj when t ě 3

and for all j ě k2, 1{βj ď
?

2{βk2 when t ě γ logped2{k2q, hence,

max
jPrd2s

ˆ

z˚j
βj

˙

ď
?

2 max

ˆ

z˚
2j

β2j
: j “ 0, 1, . . . , rlogpk2qs

˙

.

Il follows from Lemma 5.25 that for all j “ 0, 1, . . . , rlogpk2qs, we have }z˚
2j
{β2j}Lt ď e2λ

and so by Markov’s inequality with probability at least 1 ´ expp´tq, z˚
2j
{β2j ď e3λ. The

union bound yields that with probability at least 1´ rlogpk2qs expp´tq,

max
`

z˚2j{β2j : j “ 0, 1, . . . , rlogpk2qs
˘

ď e3λ.
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The proof of Theorem 3.2 will follow from Lemma 5.26 if one can apply the latter to the
variables zpq “ Σ̂pq ´ Σpq. We therefore have to check that the family of random variables
pΣ̂pq ´ Σpq : p, d P rdsq satisfies the assumptions of Lemma 5.26. In other words, it only
remains to show that for all p, q P rds, Σ̂pq ´Σpq has r :“ logped2q` t sub-gaussian moment
under Assumption 3.3. To that end we use Lemma 5.23 to prove the following moment
growth condition on the Σ̂pq ´ Σpq, p, q P rds.

Lemma 5.27 There exists an absolute constant c0 such that the following holds. Grant
Assumption 3.3 with parameters w and t ě 3. For all p, q P rds and all 2 ď r ď 2 logped2q`t,
if N ě 2 logped2q ` t then }Σ̂pq ´ Σpq}Lr ď pc0w

2{
?
Nq
?
r.

Proof. Let p, q P rds. It follows from Assumption 3.3 and Lemma 5.26 that for all p, q P rds
and all 2 ď r ď 2 logped2q ` t,

}Σ̂pq ´ Σpq}Lr ď
1
?
N
}

1
?
N

N
ÿ

i“1

XipXiq ´ EXipXiq}Lr ď
c0w

2

?
N

?
r.

Proof of Theorem 3.2 We set for all p, q P rds, zpq “ Σ̂pq ´ Σpq. It follows from
Lemma 5.27 for α “ 1 that for all 2 ď r ď 2 logped2q`t, }zpq}Lr ď λ

?
r where λ “ c0w

2{
?
N .

The result now follows from Lemma 5.26.

5.3 Proofs of section 4

5.3.1 Proof of Lemma 4.2

Let Z P C and consider its SVD Z “
ř

i σiuiu
J
i . We have〈

Σ, pβ˚qpβ˚qJ ´ Z
〉
“ θ
〈
pβ˚qpβ˚qJ, pβ˚qpβ˚qJ ´ Z

〉
`
〈
Id, pβ

˚qpβ˚qJ ´ Z
〉

piq
“ θ

〈
pβ˚qpβ˚qJ, pβ˚qpβ˚qJ ´

ÿ

i

σiuiu
J
i

〉
“ θ

˜

1´
ÿ

i

σi
〈
ui, β

˚
〉2

¸

“ θ
ÿ

i

σip1´
〈
ui, β

˚
〉2
q
piiq
ě 0

where we used in (i) that
〈
Id, pβ

˚qpβ˚qJ ´ Z
〉
“ Tr

`

pβ˚qpβ˚qJ
˘

´ Tr pZq “ 0, and in (ii)
that |

〈
ui, β

˚
〉
| ď 1 (by Cauchy-Schwart). Hence, β˚pβ˚qJ is a solution to the problem

max
`〈

Σ, Z
〉
, Z P C

˘

. Moreover, using the latter computation, it is straightforward to check
that it is unique, that is σ1 “ 1 and u1u

J
1 “ β˚pβ˚qJ, otherwise inequality (ii) would be

strict.

5.3.2 Proof of Lemma 4.3

Let Z P C and consider its SVD Z “
ř

i σiuiu
J
i . In the proof of Lemma 4.2, we proved that〈

Σ, Z˚ ´ Z
〉
“ θ

ÿ

i

σip1´
〈
ui, β

˚
〉2
q.
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On the other-hand, we have

}Z˚ ´ Z}22 “ Tr
`

pZ˚ ´ ZqpZ˚ ´ ZqJ
˘

“ Tr

¨

˝

˜

ÿ

i

σippβ
˚qpβ˚qJ ´ uiu

J
i q

¸2
˛

‚

“
ÿ

i,j

σiσjTr
`

puiu
J
i ´ pβ

˚qpβ˚qJqpuju
J
j ´ pβ

˚qpβ˚qJq
˘

“
ÿ

i

σi

´

σi ´ 2
〈
ui, β

˚
〉2
` 1

¯

“ 2
ÿ

i

σip1´ 2
〈
ui, β

˚
〉2
q `

˜

ÿ

i

σ2
i ´ σi

¸

“
2

θ

〈
Σ, Z˚ ´ Z

〉
`
`

}Z}22 ´ }Z}˚
˘

ď
2

θ

〈
Σ, Z˚ ´ Z

〉
.

5.3.3 Proof of Lemma 4.4

It follows from the k-sparsity of β˚ that Z˚ “ β˚pβ˚qJ is k2-sparse. Let us denote I :“
supppZ˚q: we have |I| ď k2. Consider ρ ą 0. To solve the sparsity equation, we will use
the following result on the sub-differential of a norm: if }.} is a norm over Rdˆd, we have
for Z P Rdˆd:

B}.}pZq “

"

tΦ P S˚ :
〈
Φ, Z

〉
“ }Z}u if Z ‰ 0

B˚ if Z “ 0

where S˚ (resp. B˚) is the unit-sphere (resp. unit-ball) for the dual norm associated with
}.}, that is Z P Rdˆd Ñ }Z}˚ “ sup}H}“1

〈
Z,H

〉
. Here, we consider the `1-norm, whose dual

norm is the `8 norm.

Since Z˚ P Z˚ ` pρ{20qB, we have

B}.}1pZ
˚q Ă ΓZ˚pρq :“

ď

V PZ˚`pρ{20qB

B}.}1pV q.

Then, there exists Φ˚ P ΓZ˚pρq which is norming for Z˚, that is }Φ˚}8 “ 1 and
〈
Φ˚, Z˚

〉
“

}Z˚}1. Let Z P Hρ,A :“ Z˚ ` pρS1 X
a

r˚pρqB2q. For J Ă rds2, let PJ be the coordinate
projection on J . Since the supports of PIcZ and Z˚ are disjoints, we can choose Φ˚ such
that it is also norming for PIcZ. Then, we have:〈

Φ˚, Z ´ Z˚
〉
“
〈
Φ˚, PIpZ ´ Z

˚q
〉
`
〈
Φ˚, PIcpZ ´ Z

˚q
〉
ě ´|

〈
Φ˚, PIpZ ´ Z

˚q
〉
| ` }PIcZ}1

ě ´}Φ˚}8}PIpZ ´ Z
˚q}1 ` }PIcZ}1 “ ´}PIpZ ´ Z

˚q}1 ` }PIcpZ ´ Z
˚q}1

“ }Z ´ Z˚}1 ´ 2}PIpZ ´ Z
˚q}1 “ ρ´ 2}PIpZ ´ Z

˚q}1.

Now, we have }PIpZ´Z
˚q}1 ď k}PIpZ´Z

˚q}2 ď k}Z´Z˚}2 ď k
a

r˚pρq. We conclude that〈
Φ˚, Z´Z˚

〉
ě ρ´2k

a

r˚pρq. Then, sup
ΦPΓZ˚ pρq

〈
Φ, Z´Z˚

〉
ě
〈
Φ˚, Z´Z˚

〉
ě ρ´2k

a

r˚pρq.

Since this is true for any Z P Hρ,A, we conclude that c ě ρ´2k
a

r˚pρq, where PIpZ´Z
˚q is

the quantity introduced in Definition 2.11. Then, if we choose ρ such that ρ ě 10k
a

r˚pρq,
we have ∆pρ,Aq ě p4{5qρ, and the A-sparsity equation is satisfied by such a ρ.
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5.3.4 Proof of Lemma 4.5

From Lemma 4.3, we get that Assumption 2.10 holds with G : Z P Rdˆd Ñ }Z}22 and A “
2{θ, for any ρ ą 0 and δ P p0, 1q. Moreover, Assumption 3.1 is granted for t “ logped{10kq
and w ě 0. Let then c0 ą 0 be the constant provided by Theorem 3.2, and define b “ 3c0w

2.
Let us define the following function:

r : ρ ą 0 Ñ bA

d

ρ2

N
log

ˆ

b2A2pedq4

Nρ2

˙

.

We also consider

ρ˚ :“ 200Abk2

d

1

N
log

ˆ

ed

k

˙

,

as well as r˚ “ rpρ˚q. We have:

100k2r˚ “ 100k2bA

g

f

f

e

pρ˚q2

N
log

˜

pedq4

4.104k4 logp edk q

¸

ď 200k2bA

g

f

f

e

pρ˚q2

N
log

˜

ˆ

ed

k

˙4
¸

“ pρ˚q2,

(104)

so that ρ˚ ě 10k
?
r˚. Let us then define k˚ :“ ρ˚{

?
r˚. Since k˚ ą k, any 2 ď r ď

2 logped{k˚q` t satisfies 2 ď r ď 2 logped{kq` t, so that Assumption 3.1 holds with w, t and
k˚. We are then in measure to apply Theorem 3.2 with those parameters. As a consequence,
as soon as N ě 2 logped{k˚q ` t, one has with probability at least 1´ expp´tq:

}Σ̂N ´ Σ}k˚ ď c0w
2

d

pk˚q2
`

log
`

ed
k˚

˘

` t
˘

N
(105)

where }.}k˚ is the `1{`2 interpolation norm defined in (13). Now, we have:

sup
ZPCXpZ˚`ρ˚B1X

?
r˚B2q

|pP ´ PN qLZ | ď
?
r˚ sup

ZPCXpZ˚`k˚B1XB2q

|pP ´ PN qLZ |

“
?
r˚

›

›

›

›

›

1

N

N
ÿ

i“1

XiX
J
i ´ ErXiX

J
i s

›

›

›

›

›

k˚

“
?
r˚}Σ̂N ´ Σ}k˚ .

(106)

Combining it with (105), we get that with probability at least 1´ expp´tq:

sup
ZPCXpZ˚`ρ˚B1X

?
r˚B2q

|pP ´ PN qLZ | ď c0w
2

d

pρ˚q2
`

log
`

ed
k˚

˘

` t
˘

N
ď c0w

2

d

2pρ˚q2

N
log

ˆ

ed

10k

˙

(107)

since k˚ ě 10k. Now, we have:

r˚ “ bA

d

pρ˚q2

N
log

ˆ

b2A2pedq4

Npρ˚q2

˙

“ bA

d

pρ˚q2

N
log

ˆ

pedq4

2002k4 logped{10kq

˙

ě bA

d

pρ˚q2

N
log

ˆ

pedq3

2002k3

˙

ě bA

d

pρ˚q2

N
log

ˆ

ed

10k

˙
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where the last inequality holds since we assumed that k ď ed{200. Combining it with (107),
we conclude that:

sup
ZPCXpZ˚`ρ˚B1X

?
r˚B2q

|pP ´ PN qLZ | ď
r˚

3A

which allows us to conclude that r˚RERM,GpA, ρ
˚, e´tq ď r˚. Moreover, we have from (104)

that

ρ˚ ě 10k
?
r˚ ě 10k

b

r˚RERM,GpA, ρ
˚, e´tq

that is, ρ˚ satisfies the A-sparsity equation from Definition 2.11. These results are valid pro-
vided that N ě 2 logped{k˚q`t, which is ensured by the assumption that N ě 3 logped{10kq,
given that k˚ ě 10k. This concludes the proof.

5.3.5 Proof of Theorem 4.6

From Lemma 4.3, we get that Assumption 2.10 holds with G : Z P Rdˆd Ñ }Z}22 and
A “ 2{θ, for any ρ ą 0 and δ P p0, 1q. Moreover, since we assumed that N ě 3 logped{10kq,
Lemma 4.5 applies and so, for ρ˚ and r˚pρ˚q (defined in (20)) we have r˚RERM,GpA, ρ

˚, 10k{edq ď
r˚pρ˚q and ρ˚ satisfies the A-sparsity equation from Definition 2.11. We are then in position
to apply Theorem 2.12, provided that λ satisfies (9). Now, we have:

r˚pρ˚q

ρ˚
“ bA

d

1

N
log

ˆ

pbAq2pedq4

Npρ˚q2

˙

“ bA

g

f

f

e

1

N
log

˜

pedq4

2002k4 logp edk q

¸

,

so that:

bA

d

3

N
log

ˆ

ed

2002{3k

˙

ď
r˚pρ˚q

ρ˚
ď bA

d

4

N
log

ˆ

ed

2001{2 logp200q1{4k

˙

,

since we assumed that k ď ed{200. As a consequence, (9) is satisfied as soon as:

20

21
b

d

1

N
log

ˆ

ed

2001{2 logp200q1{4k

˙

ď λ ď
2
?

3
b

d

1

N
log

ˆ

ed

2002{3k

˙

which is the assumption made in (21). We only have to check that this authorized interval
for λ is not empty, which is ensured as soon as ed{k ě 20048{47{ logp200q25{47, which is
granted by the assumption that k ď ed{200.

We are then in measure to apply Theorem 2.12, which enables us to state that, with
probability at least 1´ 10k{ed:

}ẐRERM
λ ´ Z˚}1 ď ρ˚ “ 200Abk2

d

1

N
log

ˆ

ed

k

˙

“ 400bk2

d

1

Nθ2
log

ˆ

ed

k

˙

,

}ẐRERM
λ ´ Z˚}2 ď

b

r˚RERM,G pA, ρ
˚, 10k{edq ď

ρ˚

10k
“ 40b

d

k2

Nθ2
log

ˆ

ed

k

˙
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and

PLẐRERM
λ

ď A´1r˚RERM,G pA, ρ
˚, 10k{edq ď

pρ˚q2

100k2A
“ 800b2

k2

Nθ
log

ˆ

ed

k

˙

.

This concludes the proof.

5.3.6 Proof of Corollary 4.7

From Theorem 4.6, we get the existence of a universal constant C ą 0 such that with
probability at least 1´20 pk{edq3{4, }ẐRERM

λ ´Z˚}2 ď C
a

k2pNθ2q logped{kq. Now, we can
use Davis-Kahan sin-theta theorem (see Corollary 1 in Yu et al. (2014)) to get the exis-
tence of a universal constant c0 ą 0 such that sinpΘpβ̂, β˚qq “ p1{

?
2q}β̂β̂J ´ β˚pβ˚qJ}2 ď

pc0{gq}Ẑ
RERM
λ ´Z˚}2 where g :“ λ1 ´ λ2 (λi being the ith largest eigen value of Z˚) is the

spectral gap of Z˚. Here, we know that Z˚ “ β˚pβ˚qJ is rank one, with 1 as order one
eigen value and 0 as order pd ´ 1q eigen value. Then we get g “ 1, which leads us to the
desired result, with D “

?
2c0 ˆ C.

5.3.7 Proof of Lemma 4.8

Let A, δ and t ą 0. In the rest of the proof, we write r˚Gp.q for r˚RERM,GpA, ., δq, bpq for

bpqptq and Γk for Γkptq. We consider a lexicographical order on rds2, b P Rdˆd and the norm
}.}SLOPE as they are defined in section 4.4.

Let I :“ supp
`

pZ˚q7
˘

be the set of non-zero coefficients of pZ˚q7. Since Z˚ “ β˚pβ˚qJ

is k2-sparse, whe have by construction that |I| ď k2. Let PI (resp. PIc) be the coordinate
projection on I (resp. on Ic).

We know that for Z ‰ 0:

B}.}SLOPEpZq “
 

Φ P S˚SLOPE :
〈
Φ, Z

〉
“ }Z}SLOPE

(

,

where we denoted S˚SLOPE the unit-sphere of the dual norm of the SLOPE norm. Since
Z˚ P Z˚ ` ρ

20BSLOPE , we know that B}.}SLOPEpZ
˚q Ă ΓZ˚pρq. Then:

sup
ΦPΓZ˚ pρq

〈
Φ, Z ´ Z˚

〉
ě sup

ΦPB}.}SLOPEpZ˚q

〈
Φ, Z ´ Z˚

〉
.

Let σ, π be the permutations of rds2 such that, for any pp, qq P rds2, pZ˚q7p,q “ |Z˚σpp,qq|

and pZ ´ Z˚q7p,q “ |pZ ´ Z˚qπpp,qq|. Notice that we have by assumption σprks2q “ I. We

then define Φ˚ and rΦ˚ as follows: for all 1 ď p, q ď d,

Φ˚p,q “

#

sgnpZ˚p,qq bσ´1pp,qq if pp, qq ď pk, kq;

sgnppZ ´ Z˚qp,qq bπ´1pp,qq otherwise

and

rΦ˚p,q “ sgnppZ ´ Z˚qp,qq bπ´1pp,qq.
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We easily check that such a Φ˚ belongs to B||¨||SLOPEpZ
˚q and rΦ˚ to B||¨||SLOPEpZ´Z

˚q.
Now let Z P Hρ,A. We have:

xΦ˚, Z ´ Z˚y “ xΦ˚, PIpZ ´ Z
˚qy ` xΦ˚, PIcpZ ´ Z

˚qy

“

k
ÿ

p,q“1

sgnpZ˚σpp,qqqbp,qpZ ´ Z
˚qσpp,qq ` xΦ

˚, PIcpZ ´ Z
˚qy .

(108)

Regarding the first term, we have:

ˇ

ˇ

ˇ

ˇ

ˇ

k
ÿ

p,q“1

sgnpZ˚σpp,qqqbp,qpZ ´ Z
˚qσpp,qq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

p,q“1

bp,q
ˇ

ˇpZ ´ Z˚qπpp,qq
ˇ

ˇ “

k
ÿ

p,q“1

bp,qpZ ´ Z
˚q7p,q,

where the first inequality comes from the fact that the operator p¨q7 orders the absolute
values of pZ ´ Z˚q in non-increasing order (notice that the inequality holds only for the
sum, not for each independent term of the sum). Therefore:

k
ÿ

p,q“1

sgnpZ˚σpp,qqqbp,qpZ ´ Z
˚qσp,q ě ´

k
ÿ

p,q“1

bp,qpZ ´ Z
˚q7p,q. (109)

Concerning the second term in (108):

xΦ˚, PIcpZ ´ Z
˚qy “

A

rΦ˚, PIcpZ ´ Z
˚q

E

“

A

rΦ˚, Z ´ Z˚
E

´

A

rΦ˚, PIpZ ´ Z
˚q

E

“ ||Z ´ Z˚||SLOPE ´
k
ÿ

p,q“1

bπ´1˝σpp,qqpZ ´ Z
˚q
7

π´1˝σpp,qq

ě ||Z ´ Z˚||SLOPE ´
k
ÿ

p,q“1

bp,qpZ ´ Z
˚q7p,q.

(110)

Putting (108), (109) and (110) together, we obtain

xΦ˚, Z ´ Z˚y ě ||Z ´ Z˚||SLOPE ´ 2
k
ÿ

p,q“1

bp,qpZ ´ Z
˚q7p,q “ ρ´ 2

k
ÿ

p,q“1

bp,qpZ ´ Z
˚q7p,q.

(111)

Now, since }Z´Z˚}2 ď
a

r˚G, we can show that for any k P rds, pZ´Z˚q7kk ď

?
r˚G
k . Indeed,

assume the existence of k0 P rds such that pZ ´ Z˚q7k0k0 ą

?
r˚G
k0

. Then by construction we

have that for any pp, qq ď pk0, k0q, pZ ´ Z
˚q
7
pq ě pZ ´ Z˚q

7

k0k0
, so that

}Z ´ Z˚}22 “ }pZ ´ Z
˚q7}22 ě

ÿ

pp,qqďpk0,k0q

ppZ ´ Z˚q7pqq
2 ą

ÿ

pp,qqďpk0,k0q

r˚G
k2

0

“ r˚G,
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since the k2
0 largest elements of pZ ´ Z˚q7 belong to rk0s

2, as a result of which

| tpp, qq : pp, qq ď pk0, k0qu | ď k2
0.

This is inconsistent with the fact that }Z ´ Z˚}2 ď
a

r˚G.

As a consequence, we have:

k
ÿ

p,q“1

bpqpZ ´ Z
˚q7pq “

k´1
ÿ

`“1

ÿ

p`,`qďpp,qqăp``1,``1q

bpqpZ ´ Z
˚q
7

`` ` bkkpZ ´ Z
˚q
7

kk

ď

k´1
ÿ

`“1

|tp`, `q ď pp, qq ă p`` 1, `` 1qu| b``pZ ´ Z
˚q
7

`` ` bkk

a

r˚G
k

ď

k´1
ÿ

`“1

p2`` 1qb``

a

r˚G
`

` bkk

a

r˚G
k

ď 3
b

r˚G

k´1
ÿ

`“1

b`` ` bkk

a

r˚G
k

ď 3
b

r˚G

k
ÿ

`“1

b`` “
b

r˚GΓk.

Then, under the assumption that ρ ě 10Γk
a

r˚GpA, ρ, δq, we get from (111) that
〈
Φ˚, Z´

Z˚
〉
ě p4{5qρ. and then:

sup
ΦPS˚SLOPE

〈
Φ, Z ´ Z˚

〉
ě
〈
Φ˚, Z ´ Z˚

〉
ě

4

5
ρ.

Since this is true for any Z P Hpρ,Aq, we conclude that:

∆pρ,Aq “ inf
ZPHpρ,Aq

sup
ΦPS˚SLOPE

〈
Φ˚, Z ´ Z˚

〉
ě

4

5
ρ.

that is, ρ satisfies the A-sparsity equation from Definition 2.11.

5.3.8 Proof of Lemma 4.9

From Lemma 4.3, we get that Assumption 2.10 holds with G : Z P Rdˆd Ñ }Z}22 and
A “ 2{θ, for any ρ ą 0 and δ P p0, 1q.

For r and ρ ą 0, we define Cr,ρ :“ tZ P C : }Z ´ Z˚}SLOPE ď ρ, }Z ´ Z˚}2 ď
?
ru. Let

A ą 0. For any ρ and r ą 0. We have

sup
ZPCr,ρ

|
〈
Σ´ Σ̂N , Z ´ Z

˚
〉
| ď sup

ZPpρBSLOPEX
?
rB2q

|
〈
Σ´ Σ̂N , Z

〉
|

“
?
r sup
ZPp ρ?

r
BSLOPEXB2q

|
〈
Σ´ Σ̂N , Z

〉
| “

?
r}Σ´ Σ̂N} ρ

?
r

(112)

where }.}ρ{
?
r is the SLOPE/`2 interpolation norm defined in (14). Assumption 3.3 is

granted for t “ 2 logped2{k2q. Let us now check that k ď d{pe2 logpdqq: we have that
k2 logpek2q ď ed2, hence,

2 logprlogpk2qsq ď 2 logplogpk2q ` 1q “ 2 logplogpek2qq ď 2 log

ˆ

ed2

k2

˙

,
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that is, t ě max
`

2 logprlogpk2qsq, 2 logped2{k2q
˘

. We are then in position to apply Theorem
3.4 with γ “ 2 and t “ 2 logped2{k2q: there exists a universal constant c0 ą 0 such that,
provided that N ě log

`

ed2
˘

` t, one has with probability at least 1´ 2 expp´t{2q:

}Σ´ Σ̂N} ρ
?
r
ď
c0w

2

?
N

min

ˆ

ρ
?
r
, d

˙

.

Plugging this last result into (112), we get that:

sup
ZPCr,ρ

|
〈
Σ´ Σ̂N , Z ´ Z

˚
〉
| ď

?
r
c0w

2

?
N

min

ˆ

ρ
?
r
, d

˙

(113)

with probability at least 1 ´ 2 expp´t{2q. Next, let us define b :“ 3c0w
2 and for ρ ą 0,

consider

r˚pρq :“
bA
?
N

min

ˆ

bA
d2

?
N

; ρ

˙

.

One can check that for this choice of r˚, one has p
a

r˚pρqc0w
2{
?
Nqmin

´

ρ{
a

r˚pρq, d
¯

ď

r˚pρq{3A whatever the value of ρ is. From (113) we then deduce that r˚RERM,GpA, ρ, 2e
´t{2q ď

r˚pρq. Let us now consider

ρ˚ :“ 10Γ˚k
bA
?
N

min p10Γ˚k; dq ,

where Γ˚k :“ 3
řk
`“1 b``ptq. It is straighforward to verify that ρ˚ ě 10Γ˚kr

˚pρ˚q1{2 ě

10Γ˚kr
˚
RERM,G

´

A, ρ˚, 2e´t
˚{2

¯1{2
which, according to Lemma 4.8, guarantees that ρ˚ sat-

isfies the A-sparsity equation from Definition 2.11. Finally, plugging the expression of ρ˚

into the one of r˚pρ˚q, we get that r˚pρ˚q “ pb2A2{Nqmin pd, 10Γ˚kq
2. Finally, the previous

results hold provided that N ě log
`

ed2
˘

` t, which is granted by the assumption that
N ě 3 logped2q. This concludes the proof, noting that 2 expp´t{2q “ 2k2{ped2q.

5.3.9 Proof of Theorem 4.10

From Lemmas 4.2 and 4.3, we get that Assumption 2.10 holds with G : Z Ñ }Z}22 and A “
2{θ. From Lemma 4.9, we get the existence of a constant b ą 0 such that, provided that N ě

3 logped2q, defining ρ˚ :“ 10Γ˚kpbA{
?
Nqmin p10Γ˚k; dq and r˚ “ pb2A2{Nqmin pd, 10Γ˚kq

2,
with Γ˚k “ Γkp2 logped2{k2qq, one has r˚RERM,GpA, ρ

˚, 2k2{ed2q ď r˚ and ρ˚ satsifies the
A-sparsity equation from Definition 2.11. Let us now upper bound Γ˚k:

Γ˚k “ 3
k
ÿ

`“1

b``

ˆ

2 log

ˆ

ed2

k2

˙˙

ď 3

˜

k
ÿ

`“1

d

log

ˆ

ed2

`2

˙

`

k
ÿ

`“1

d

2 log

ˆ

ed2

k2

˙

¸

ď 3
k
ÿ

`“1

d

log

ˆ

ed2

`2

˙

` 3k

d

2 log

ˆ

ed2

k2

˙

. (114)
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Concerning the first term in this last inequality, we have:

˜

k
ÿ

`“1

d

log

ˆ

ed2

`2

˙

¸2

“ 2
ÿ

mă`

d

log

ˆ

ed2

`2

˙

d

log

ˆ

ed2

m2

˙

`

k
ÿ

`“1

log

ˆ

ed2

`2

˙

ď 2
ÿ

mă`

log

ˆ

ed2

`2

˙

`

k
ÿ

`“1

log

ˆ

ed2

`2

˙

ď 3k
k
ÿ

`“1

log

ˆ

ed2

`2

˙

. (115)

Moreover, we have:

k
ÿ

`“1

log

ˆ

ed2

`2

˙

ď

k
ÿ

`“1

ż `

u“`´1
log

ˆ

ed2

u2

˙

du “

ż k

u“0
log

ˆ

ed2

u2

˙

“ k logped2q ´ 2 ru logpuq ´ usk0

“ k log

ˆ

ed2

k2

˙

` 2k ď 3k log

ˆ

ed2

k2

˙

. (116)

Combining (114), (115) and (116), we finally get that Γ˚k ď p9 ` 3
?

2qk

c

log
´

ed2

k2

¯

ď

14k
a

log ped2{k2q. As a consequence, we have

10Γ˚k ď 140k

d

log

ˆ

ed2

k2

˙

ď 140k
a

2 log pdq ď 140k

c

2d

e2k
ď d,

since we assumed that k ď min
`

d{pe2 logpdqq, pe{p140
?

2qq2d
˘

. We conclude that min p10Γ˚k, dq “

10Γ˚k ď 140k
a

log ped2{k2q. Plugging this result into the expression of r˚ and ρ˚, we finally
get that:

r˚ ď 1402b2A2k
2

N
log

ˆ

ed2

k2

˙

and ρ˚ ď 1402bA
k2

?
N

log

ˆ

ed2

k2

˙

so that r˚{ρ˚ “ bA{
?
N . As a consequence, (9) is satisfied as soon as:

10b

21
?
N
ă λ ă

2b

3
?
N

which is (23). We are then in position to apply Theorem 2.12, which allows us to conclude
that, with probability at least 1´ 2k2{ed2:

}ẐRERMλ ´ Z˚}SLOPE ď ρ˚ , GpẐRERMλ ´ Z˚q ď r˚ and PLẐRERMλ
ď A´1r˚.

This concludes the proof.

5.3.10 Proof of Corollary 4.11

The proof follows exactly the same lines as the one of Corollary 4.7, so we do not detail it
here.
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5.3.11 Proof of Lemma 4.12

Consider A “ 2{θ and γ ą 0. In the rest of the proof we write r˚pρq for r˚RMOM,GpA, γ, ρq.

For any J Ă rds2, let PJ be the coordinate projection on J . Consider ρ ą 0. Let I :“
supppZ˚q be the set of non-zero coefficients of Z˚. From Lemma 4.2, we have that |I| ď k2.
Moreover, we know that for any Z ‰ 0, B}.}1pZq “

 

Φ P S8 :
〈
Φ, Z

〉
“ }Z}1

(

, where S8
is the unit-sphere for }.}8. Since Z˚ P Z˚ ` ρ

20B1, we have that B}.}1pZ
˚q Ă ΓZ˚pρq “

Y
ZPZ˚` ρ

20
B1

B}.}1pZq. Let then Φ˚ P B}.}1pZ
˚q. Consider Z P H̄ρ,A that is }Z ´Z˚}1 “ ρ and

}Z ´ Z˚}2 ď
a

2{θr˚pρq. Since Z˚ and P cI pZq have disjoint supports, we can choose Φ˚ so
that it is also norming for P cI pZq. Then, we have:〈
Φ˚, Z ´ Z˚

〉
“
〈
Φ˚, PIpZ ´ Z

˚q
〉
`
〈
Φ˚, P cI pZ ´ Z

˚q
〉
ě ´}Φ˚}8}PIpZ ´ Z

˚q}1 `
〈
Φ˚, P cI pZq

〉
“ ´p}Z ´ Z˚}1 ´ }PIpZ ´ Z

˚q}1q ` }P
c
I pZ ´ Z

˚q}1

“ 2}P cI pZ ´ Z
˚q}1 ´ }Z ´ Z

˚}1 “ }Z ´ Z
˚}1 ´ 2}PIpZ ´ Z

˚q}1 “ ρ´ 2}PIpZ ´ Z
˚q}1

(117)

where we used the fact that }Φ˚}8 “ 1. Then, since Z P H̄ρ,A, we have:

}PIpZ ´ Z
˚q}1 ď k}PIpZ ´ Z

˚q}2 ď k}Z ´ Z˚}2 ď k

c

2

θ
r˚pρq (118)

Combining (117) and (118), we finally get that:

〈
Φ˚, Z ´ Z˚

〉
ě ρ´ 2k

c

2

θ
r˚pρq. (119)

As a consequence, supΦPΓZ˚ pρq

〈
Φ, Z ´Z˚

〉
ě
〈
Φ˚, Z ´Z˚

〉
ě ρ´ 2k

a

2{θr˚pρq. This being

true whatever Z P H̄ρ,A, it follows that ∆̄pρq ě ρ´ 2k
a

2{θr˚pρq. We conclude that any ρ
such that ρ ě 10k

a

2{θr˚pρq satisfies ∆̄pρq ě p4{5qρ.

5.3.12 Proof of Lemma 4.13

Consider γ ą 0. From Lemma 4.3, we get that Assumption 2.31 holds with G : Z P Rdˆd Ñ
pθ{2q}Z}22 and A “ 1, for any γ ą 0, in particular for the value of γ we have just set.
Moreover, Assumption 3.1 is granted for t “ 1 and w ě 0. Let then c0 ą 0 be the constant
provided by Theorem 3.2, and consider B :“ 3c0w

2 and D :“ 1600w2. Let us define the
following function:

r : pγ, ρq Ñ max

¨

˝

d

Bρ

γ

˜

6

N
log

˜

2Bpedq2

γθρ

c

6

N

¸¸1{4

;D

c

K

Nθ

˛

‚.

We also consider

ρ˚ :“ max

˜

400
?

3B
k2

γ

d

1

Nθ2
log

ˆ

ed

k

˙

; 10Dk

c

2K

Nθ2

¸

,
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as well as r˚pγq “ rpγ, ρ˚q. One can check that ρ˚ such defined satisfies both of the two
conditions below:

p1q ρ ě 10k

d

2Bρ

θγ

˜

6

N
log

˜

2Bpedq2

γθρ

c

6

N

¸¸1{4

and p2q ρ ě 10kD

c

2K

Nθ2
, (120)

so that ρ˚ ě 10k
a

2{θr˚. Let us define k˚ “
a

θ{2ρ˚{r˚. We have logped{k˚q ` 1 ď
logped{10kq ` 1, so that Assumption 3.1 still holds with w, t “ 1 and k˚. Then, since we
assumed that N ě 2 logped{kq ` 1 ě 2 logped{k˚q ` 1, Theorem 3.2 applies and allows us to
affirm that

E

«
›

›

›

›

›

1

N

N
ÿ

i“1

rXi
rXJi ´ Er rXi

rXJi s

›

›

›

›

›

k˚

ff

ď c0w
2

c

6pk˚q2 logped{k˚q

N
, (121)

where } ¨ }k˚ is the `1{`2 interpolation norm defined in (13) for k “ k˚.

For r and ρ ą 0, define Cr,ρ :“
!

Z P C : }Z ´ Z˚}1 “ ρ and }Z ´ Z˚}2 ď
a

2{θr˚pρq
)

.

Let us now upper bound EGpr
˚, ρ˚q and VK,Gpr

˚, ρ˚q from Definition 2.29.

Bounding the complexity term EGpr
˚, ρ˚q. Let σ1, . . . , σN be i.i.d. rademacher vari-

ables independent from the rXi’s. We have Cr˚,ρ˚ Ă
a

2{θr˚ pk˚B1 XB2q. As a consequence:

sup
ZPCr˚,ρ˚

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZp rXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

c

2

θ
r˚ sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZp rXiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

c

2

θ
r˚ sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

ˇ

ˇ

〈
1

N

N
ÿ

i“1

σi rXi
rXJi , Z

〉ˇ
ˇ

ˇ

ˇ

ˇ

. (122)

Now, it follows from the desymmetrization inequality (see Theorem 2.1 in Koltchinskii
(2011b)) that:

E

«

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

ˇ

ˇ

〈
1

N

N
ÿ

i“1

σi rXi
rXJi , Z

〉ˇ
ˇ

ˇ

ˇ

ˇ

ff

ď 2E

«

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

ˇ

ˇ

〈
1

N

N
ÿ

i“1

rXi
rXJi ´ Er

rXi
rXJi s, Z

〉ˇ
ˇ

ˇ

ˇ

ˇ

ff

`
2
?
N

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

〈
E
”

rX rXJ
ı

, Z
〉ˇ
ˇ

ˇ

ď2E

«›

›

›

›

›

1

N

N
ÿ

i“1

rXi
rXJi ´ Er

rXi
rXJi s

›

›

›

›

›

k˚

ff

`
2
?
N

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

〈
E
”

rX rXJ
ı

, Z
〉ˇ
ˇ

ˇ

ď 2c0w
2

c

6pk˚q2 logped{k˚q

N
`

2
?
N

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

〈
E
”

rX rXJ
ı

, Z
〉ˇ
ˇ

ˇ
, (123)

where we used (121) in the last inequality.
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Concerning the second term in (123), we have for any Z P pk˚B1 XB2q X pC ´ Z˚q:〈
E
”

rX rXJ, Z
ı〉
“
〈
θβ˚pβ˚qJ ` Id, Z

〉 piq
“ θ

〈
β˚pβ˚qJ, Z

〉 piiq
ď θ}β˚}22}Z}2 ď θ

where we used the fact that
〈
Id, Z

〉
“ TrpZq “ 0 in piq and Cauchy-Schwarz in piiq. as a

consequence:

sup
ZPpk˚B1XB2qXpC´Z˚q

ˇ

ˇ

ˇ

〈
E
”

rX rXJ
ı

, Z
〉ˇ
ˇ

ˇ
ď θ. (124)

Combining (122), (123) and (124), we finally get that:

EGpr
˚, ρ˚q “ E

«

sup
Cr˚,ρ˚

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZp rXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď

c

2

θ
r˚

˜

2c0w
2

c

6pk˚q2 logped{k˚q

N
`

2θ
?
N

¸

ď
?

2θr˚

˜

3c0w
2

c

6pk˚q2 logped{k˚q

θ2N

¸

, (125)

where we used the assumption that θ ď k ď k˚.

Bounding the variance term VK,Gpr
˚, ρ˚q. Let us now upper bound the variance term

VK,Gpr
˚, ρ˚q “

c

K

N
sup

ZPCr˚,ρ˚

b

V arpLZp rXiqq.

For rX distributed as the rXi’s and Z P Cr˚,ρ˚ , one has:

V arpLZp rXqq “ ErppLZp rXq ´ P pLZp rXqq2s “ Er
〈
rX rXJ ´ Er rX rXJs, Z ´ Z˚

〉2
s

“

d
ÿ

p,q,s,t“1

E
”

p rXppq rXpqq ´ Er rXppq rXpqqsqp rXpsq rXptq ´ Er rXpsq rXptqsq
ı

pZ ´ Z˚qpqpZ ´ Z
˚qst

“

d
ÿ

p,q,s,t“1

Tp,q,s,tpZ ´ Z
˚qpqpZ ´ Z

˚qst

where we defined Tp,q,s,t :“ E
”

p rXppq rXpqq ´ Er rXppq rXpqqsqp rXpsq rXptq ´ Er rXpsq rXptqsq
ı

for all

1 ď p, q, s, t ď d. Remembering that Assumption 3.1 is granted, we have:

Tp,q,s,t “

$

&

%

}p rXppqq2 ´ Erp rXppqq2s}2L2
ď p2w2q2 if p “ q “ s “ t

} rXppq rXpqq ´ Er rXppq rXpqqs}2L2
ď p2w2q2 if pp, qq “ ps, tq, p ‰ q

0 otherwise.

Then:

V arpLZp rXqq ď
d
ÿ

p“1

4w4pZ ´ Z˚q2pp `
ÿ

p‰q

4w4pZ ´ Z˚q2pq

“

q
ÿ

p,q“1

4w4pZ ´ Z˚q2pq “ 4w4}Z ´ Z˚}22 ď p8w
4{θqpr˚q2.
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This being true for any Z P Cρ˚,r˚ and any rX distributed as the rXi’s, we conclude that:

VK,Gpr, ρq ď 2w2

c

2K

Nθ
r˚. (126)

Combining (125) and (126), we finally get that:

max

ˆ

EGpr
˚, ρ˚q

γ
, 400

?
2VK,Gpr

˚, ρ˚q

˙

ď max

¨

˝

B

γ

g

f

f

e

6pρ˚q2

N
log

˜

c

2

θ

edr˚

ρ˚

¸

, D

c

K

Nθ
r˚

˛

‚

Now, one can check that r˚ satisfies both of the two conditions below:

p3q
B

γ

g

f

f

e

6pρ˚q2

N
log

˜

c

2

θ

edr˚

ρ˚

¸

ď pr˚q2 and p4q D

c

K

Nθ
r˚ ď pr˚q2

Then, we have:

max

ˆ

EGpr
˚, ρ˚q

γ
, 400

?
2VK,Gpr

˚, ρ˚q

˙

ď pr˚q2

which, according to Definition 2.29, allows us to conclude that r˚RMOM,Gpγ, ρ
˚q ď r˚. More-

over, we have from (120) that ρ˚ ě
a

2{θ10kr˚ ě
a

2{θ10kr˚RMOM,Gpγ, ρ
˚q, that is, ρ˚

satisfies the sparsity equation from Definition 2.30. This concludes the proof.

5.3.13 Proof of Theorem 4.14

The assumptions of Lemma 4.13 are met, which gives us the existence of two positive
constants B and D such that, defining

ρ˚ :“ max
´

400
?

3Bk2γ´1
a

pNθ2q´1 log ped{kq; 10Dk
a

2KpNθ2q´1
¯

and

r˚pγ, ρq :“ max

ˆ

a

Bργ´1
´

p6{Nq log
´

2Bpedq2pγθρq´1
a

p6{Nq
¯¯1{4

;D
a

K{pNθq

˙

,

one has r˚RMOM,Gpγ, ρ
˚q ď r˚pγ, ρ˚q and ρ˚ satisfies the sparsity equation from Definition

2.30. From Lemma 4.3, we get that Assumption 2.31 holds with G : Z P Rdˆd Ñ pθ{2q}Z}22
and A “ 1 for any γ ą 0, as a result of which the validity conditions of Theorem 2.32 are
met. Then, fixing γ “ 1{32000 and defining λ “ p11r˚pγ, 2ρ˚qq{p40ρ˚q, it is true that with
probability at least 1´ 2 expp´72K{625q,

}ẐRMOM
K,λ ´ Z˚}1 ď 2ρ˚, PLẐRMOM

K,λ
ď

93

100
pr˚pγ, 2ρ˚qq2 and }ẐRMOM

K,λ ´ Z˚}2 ď

c

2

θ
r˚pγ, 2ρ˚q.

(127)

Now, we can write:

ρ˚ ď D1
k

?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

(128)
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with D1 :“ maxp400
?

3Bγ´1, 10
?

2Dq. On the other hand, since d ě k, we get that:

ρ˚ ě D2k
2

d

1

Nθ2
log

ˆ

ed

k

˙

ě D2
k2

?
Nθ2

where D2 :“ 400
?

3Bγ´1. As a consequence, we have:

log

˜

Bpedq2

γθρ˚

c

6

N

¸

ď log

˜

Bpedq2

γθ

c

6

N

?
Nθ2

D2k2

¸

“ log

˜

1

4
?

5

ˆ

ed

k

˙2
¸

ď 2 log

ˆ

ed

k

˙

,

so that:

r˚pγ, 2ρ˚q ď max

˜

d

2Bρ˚

γ

ˆ

12

N
log

ˆ

ed

k

˙˙1{4

;D

c

K

Nθ

¸

ď max

˜

d

2B

γ

ˆ

12

N
log

ˆ

ed

k

˙˙1{4 ?
D1k

pNθ2q1{4
max

˜

?
k log

ˆ

ed

k

˙1{4

;K1{4

¸

;D

c

K

Nθ

¸

ď max

¨

˝

d

2BD1

γNθ
121{4 max

˜

?
k log

ˆ

ed

k

˙1{4

;K1{4

¸2

;D

c

K

Nθ

˛

‚

ď
C
?
Nθ

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

, (129)

where C :“ max
´

121{4
a

2BD1γ´1;D
¯

. Combining (127), (128) and (129), we finally get

that, with probability at least 1´ 2 expp´72K{625q:

}ẐRMOM
K,λ ´ Z˚}1 ď 2D1

k
?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

}ẐRMOM
K,λ ´ Z˚}2 ď

?
2C

?
Nθ2

max

˜

k

d

log

ˆ

ed

k

˙

;
?
K

¸

and

PLẐRMOM
K,λ

ď
93C2

100Nθ
max

ˆ

k2 log

ˆ

ed

k

˙

;K

˙

.

This concludes the proof.

5.3.14 Proof of Corollary 4.15

From Theorem 4.14, we get the existence of a universal constant C2 ą 0 such that with prob-

ability at least 1´expp´72K{625q, }ẐRMOM
K,λ ´Z˚}2 ď C2pNθ

2q´1{2 max
´

k
a

log ped{kq;
?
K
¯

.

Now, we can use Davis-Kahan sin-theta theorem (see Corollary 1 in Yu et al. (2014)) to
get the existence of a universal constant c0 ą 0 such that sinpΘpβ̂, β˚qq “ p1{

?
2q}β̂β̂J ´

β˚pβ˚qJ}2 ď pc0{gq}Ẑ
RMOM
K,λ ´Z˚}2 where g :“ λ1´ λ2 (λi being the ith largest eigen value

of Z˚) is the spectral gap of Z˚. Here, we know that Z˚ “ β˚pβ˚qJ is rank one, with 1 as
order one eigen value and 0 as order d´ 1 eigen value. Then we get g “ 1, which leads us
to the desired result, with D “

?
2c0 ˆ C2.
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Appendix A.

A.1 Distance metric learning: convexity of the constraint set

Here we show that the constraint set C of the ERM estimator of the distance metric learning
problem presented in Section 1 is convex. We recall the definition of this set:

C :“

#

Z P Rdˆd : Z ľ 0,
M
ÿ

i,j“1

〈
pYi ´ Yjq pYi ´ Yjq

J , Z
〉1{2

ě 1

+

where pYiq
N
i“1 are N given points in Rd. Fot the sake of simplicity, we define, for pi, jq P rds2,

Vij “ pYi ´ Yjq P Rd. Let Z1 and Z2 be two elements of C, and consider t P r0, 1s. Let us
show that Z 1 “ tZ1 ` p1´ tqZ2 still belongs to C. We have:

˜

M
ÿ

i,j“1

〈
VijV

J
ij , Z

1
〉1{2

¸2

“
ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z

1
〉
`

ÿ

pi,jq‰ppqq

〈
VijV

J
ij , Z

1
〉1{2〈

VpqV
J
pq , Z

1
〉1{2

ě
ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z

1
〉
“ t

ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z1

〉
` p1´ tq

ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z2

〉

“ t

¨

˝

d

ÿ

pi,jqPrNs2

〈
VijV Jij , Z1

〉˛
‚

2

` p1´ tq

¨

˝

d

ÿ

pi,jqPrNs2

〈
VijV Jij , Z2

〉˛
‚

2

ě t

¨

˝

ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z1

〉1{2

˛

‚

2

` p1´ tq

¨

˝

ÿ

pi,jqPrNs2

〈
VijV

J
ij , Z2

〉1{2

˛

‚

2

ě t` p1´ tq “ 1

since each
ř

pi,jqPrNs2
〈
VijV

J
ij , Z`

〉1{2
, ` P t1, 2u, is larger or equal to one, as Z` P C. Then,

Z 1 P C. We conclude that C is convex.

A.2 A property of local complexity fixed points

Let H be a Hilbert space and C Ă H. We consider a linear loss function defined for all
Z P C by `Z : X P H Ñ ´

〈
X,Z

〉
and its associated oracle over C: Z˚ P argminZPC P`Z .

The excess loss function of Z P C is defined as LZ “ `Z ´ `Z˚ . Let } ¨ } be a norm defined
(at least) over the span of C. Let G : H Ñ R be a function. For all ρ ą 0 and r ą 0, we
consider the localized model Cρ,r “ tZ P C : }Z ´ Z˚} ď ρ,GpZ ´ Z˚q ď ru with respect to
a G localization and the associated Rademacher complexity

Epr, ρq “ E

«

sup
ZPCρ,r

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpXiq

ˇ

ˇ

ˇ

ff

and variance term
V pr, ρq “ sup

ZPCρ,r

a

VarpLZq.

Let θ and τ be two positive constants. We consider a local complexity fixed point: for all
ρ ą 0,

r˚pρq “ inf
`

r ą 0 : max pθEpr, ρq, τV pr, ρqq ď r2
˘

.
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Proposition A.1 We assume that C is star-shaped in Z˚. We assume that G is such that
for all α ě 1 and all Z P C, GpαpZ ´ Z˚qq ě αGpZ ´ Z˚q. Then, for all ρ ą 0 and b ě 1,
we have r˚pρq ď r˚pbρq ď

?
br˚pρq.

Proof. Let ρ ą 0 and b ě 1. For all r ą 0, Cρ,r Ă Cbρ,r and so r˚pρq ď r˚pbρq. Let us
now prove the second inequality.

We start with some homogeneity property of the complexity and variance terms:

Ep
?
br, bρq ď bEpr, ρq and V p

?
br, bρq ď bV pr, ρq. (130)

We prove (130) for the complexity term, the proof for the variance term is identical. Let
Z P Cbρ,?br and define Z0 such that Z “ Z˚ ` bpZ0 ´ Z˚q. Since b ě 1 and C is star-
shaped in Z˚, Z0 P C. Moreover, b}Z0 ´ Z˚} “ }Z ´ Z˚} ď bρ and, by the property of G,
bGpZ0´Z

˚q ď GpZ´Z˚q ď br2. We conclude that Z0 P Cρ,r. Moreover, by linearity of the
loss function, we have LZ “ bLZ0 . We deduce that

sup
ZPCbρ,?br

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZpXiq

ˇ

ˇ

ˇ
ď b sup

Z0PCρ,r

ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

σiLZ0pXiq

ˇ

ˇ

ˇ
(131)

and so (130) holds for the complexity term. It also holds for the variance using similar
tools.

Next, it follows from (130) that

r˚pbρq “ inf
`

r ą 0 : max pθEpr, bρq, τV pr, bρqq ď r2
˘

“ inf

ˆ

r ą 0 : max

ˆ

θE

ˆ

?
b
r
?
b
, bρ

˙

, τV

ˆ

?
b
r
?
b
, bρ

˙˙

ď r2

˙

ď inf

˜

r ą 0 : max

ˆ

θE

ˆ

r
?
b
, ρ

˙

, τV

ˆ

r
?
b
, ρ

˙˙

ď

ˆ

r
?
b

˙2
¸

ď
?
br˚pρq.

A.3 A property of the sparsity equation

We consider the same setup as in Section A.2 and define for all ρ ą 0,

Hρ “
 

Z P C : }Z ´ Z˚} “ ρ,GpZ ´ Z˚q ď pr˚pρqq2
(

,ΓZ˚pρq “
ď

Z:}Z´Z˚}ďρ{20

B} ¨ }pZq

and ∆pρq “ infZPHρ supΦPΓZ˚ pρq

〈
Φ, Z´Z˚

〉
. In the previous section we said that ρ satisfies

the sparsity equation when ∆pρq ě c0ρ where 0 ă c0 ă 1 is some absolute constant. In
the following result we show that if ρ satisfies the sparsity equation then any number larger
than ρ also satisfies this equation.

Proposition A.2 We assume that C is star-shaped in Z˚. We assume that G is such that
for all α ě 1 and all Z P C, GpαpZ ´ Z˚qq ě αGpZ ´ Z˚q. Let 0 ă c0 ă 1. Then, for all
ρ ą 0 and b ě 1, if ρ is such that ∆pρq ě c0ρ then ∆pbρq ě c0bρ.
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Proof. Let ρ ą 0 be such that ∆pρq ě c0ρ and let b ě 1. Let Z P Hbρ. Let us show that
there exists Φ P ΓZ˚pbρq such that

〈
Φ, Z ´ Z˚

〉
ě c0bρ.

Let Z0 be such that Z “ Z˚`bpZ0´Z
˚q. Since b ě 1 and C is star-shaped in Z˚, Z0 P C.

Moreover, b}Z0 ´ Z
˚} “ }Z ´ Z˚} “ bρ and, using the property of G and Proposition A.1,

bGpZ0´Z
˚q ď GpZ´Z˚q ď pr˚pbρqq2 ď bpr˚pρqq2. Therefore, we have Z0 P Hρ. But, since

we assumed that ∆pρq ě c0ρ, there exists Φ P ΓZ˚pρq such that
〈
Φ, Z0 ´ Z˚

〉
ě c0ρ and

so
〈
Φ, Z ´ Z˚

〉
ě c0bρ. We conclude the proof by noting that ΓZ˚pρq Ă ΓZ˚pbρq and so

Φ P ΓZ˚pbρq.
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Lecué and Neirac

Florentina Bunea, Christophe Giraud, Xi Luo, Martin Royer, and Nicolas Verzelen. Model
assisted variable clustering: Minimax-optimal recovery and algorithms, 2018.

Olivier Catoni. Challenging the empirical mean and empirical vari-
ance: A deviation study. Annales de l’Institut Henri Poincaré, Proba-
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ISBN 978-2-85629-370-6.
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Lecué and Neirac

Tengyao Wang, Quentin Berthet, and Richard J. Samworth. Statistical and computational
trade-offs in estimation of sparse principal components. The Annals of Statistics, 44(5):
1896–1930, Oct 2016b. ISSN 0090-5364. doi: 10.1214/15-aos1369. URL http://dx.doi.

org/10.1214/15-AOS1369.

Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learn-
ing, with application to clustering with side-information. In Proceedings of the 15th Inter-
national Conference on Neural Information Processing Systems, NIPS’02, page 521–528,
Cambridge, MA, USA, 2002. MIT Press.

Zhuoran Yang, Krishnakumar Balasubramanian, and Han Liu. On stein’s identity and
near-optimal estimation in high-dimensional index models, 2018.

Yi Yu, Tengyao Wang, and Richard J. Samworth. A useful variant of the davis–kahan
theorem for statisticians, 2014.

90

http://dx.doi.org/10.1214/15-AOS1369
http://dx.doi.org/10.1214/15-AOS1369

	Introduction
	General excess risk and estimation bounds for ERM, minmax MOM estimators and their regularized versions
	General framework
	The ERM estimator and its regularized version: definition and general bounds
	ERM for the linear loss function
	Regularized ERM for the linear loss

	Median of Means estimators: definitions and general bounds
	The minmax MOM estimator for the linear loss function.
	Regularized minmax MOM estimators for the linear loss function


	Two examples of computation of local complexity fixed points
	Control of "067D80F -N"067D80F  for a B2/B1 interpolation norm.
	Control of "067D80F -N"067D80F  for a B2/SLOPE interpolation norm.

	Sparse PCA
	SDP relaxation in sparse PCA
	Exactness and curvature in the spiked covariance model.
	1-Regularized ERM estimator
	SLOPE regularized ERM estimator
	1 regularized minmax MOM estimator.

	Proofs
	Proofs of section 2
	Proof of Theorem 2.12
	Proof of Theorem 2.15
	Proof of Theorem 2.18.
	Proof of Theorem 2.21
	Proof of Theorem 2.24
	Proof of Theorem 2.28
	Proof of Theorem 2.32

	Proofs of section 3
	Proof of Theorem 3.2
	Proof of Theorem 3.4

	Proofs of section 4
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6
	Proof of Corollary 4.7
	Proof of Lemma 4.8
	Proof of Lemma 4.9
	Proof of Theorem 4.10 
	Proof of Corollary 4.11
	Proof of Lemma 4.12
	Proof of Lemma 4.13
	Proof of Theorem 4.14
	Proof of Corollary 4.15


	
	Distance metric learning: convexity of the constraint set
	A property of local complexity fixed points
	A property of the sparsity equation


