
Journal of Machine Learning Research 25 (2024) 1-38 Submitted 10/23; Revised 7/24; Published 10/24

Memorization With Neural Nets:
Going Beyond the Worst Case

Sjoerd Dirksen s.dirksen@uu.nl
Mathematical Institute
Utrecht University
3584 CD Utrecht, Netherlands

Patrick Finke p.g.finke@uu.nl
Mathematical Institute
Utrecht University
3584 CD Utrecht, Netherlands

Martin Genzel∗ martin.genzel@merantix-momentum.com

Merantix Momentum GmbH

13355 Berlin, Germany

Editor: Mahdi Soltanolkotabi

Abstract

In practice, deep neural networks are often able to easily interpolate their training data.
To understand this phenomenon, many works have aimed to quantify the memorization
capacity of a neural network architecture: the largest number of points such that the ar-
chitecture can interpolate any placement of these points with any assignment of labels.
For real-world data, however, one intuitively expects the presence of a benign structure so
that interpolation already occurs at a smaller network size than suggested by memorization
capacity. In this paper, we investigate interpolation by adopting an instance-specific view-
point. We introduce a simple randomized algorithm that, given a fixed finite data set with
two classes, with high probability constructs an interpolating three-layer neural network
in polynomial time. The required number of parameters is linked to geometric properties
of the two classes and their mutual arrangement. As a result, we obtain guarantees that
are independent of the number of samples and hence move beyond worst-case memoriza-
tion capacity bounds. We verify our theoretical result with numerical experiments and
additionally investigate the effectiveness of the algorithm on MNIST and CIFAR-10.

Keywords: memorization, interpolation, neural networks, random hyperplane tessella-
tions, high-dimensional geometry

1. Introduction

The bias-variance tradeoff (Shalev-Shwartz and Ben-David, 2014; Hastie et al., 2009) has
been a cornerstone of classical machine learning theory that illustrates the relationship
between the bias of a model and its variance, and how they affect its generalization perfor-
mance. It states that if the model is too simple (high bias), it may underfit as it does not
capture the underlying patterns in the data. However, if it is too complex (high variance), it
may overfit noise in the training data and fail to generalize well. The resulting conventional

∗. Work done while at Utrecht University.

c©2024 Sjoerd Dirksen, Patrick Finke and Martin Genzel.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1376.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1376.html

Dirksen, Finke and Genzel

wisdom was to adjust the model complexity to achieve a balance between underfitting and
overfitting, which would then lead to good generalization.

This classical viewpoint has been uprooted by modern practice in deep learning, where
it is common to use heavily overparameterized neural networks that fit the used training
data (almost) perfectly. In spite of this (near-)perfect fit, these models can generalize well
to new data. In fact, it can be observed that as the model complexity increases, the test
error first decreases, then increases (as predicted by the bias-variance trade-off), and then
decreases again. This phenomenon, coined the double descent phenomenon (Belkin et al.,
2019), is well documented not only for deep neural networks but for a wide range of machine
learning methods, see, e.g., Belkin et al. (2019); Belkin (2021); Nakkiran et al. (2021); Mei
and Montanari (2022); Hastie et al. (2022). The second descent of the test error is observed
at the interpolation threshold, where the model has become complex enough to interpolate
the training samples. Thus, to gain a deeper understanding of double descent it is important
to identify at which size a neural network can interpolate finitely many samples.

To determine the interpolation threshold, we may look at the literature on the memo-
rization capacity of neural networks, which quantifies the number of parameters and neurons
necessary for a network to be able to interpolate any N data points with arbitrary labels.
Thus, memorization capacity offers a worst-case quantitative analysis of the interpolation
threshold. In this analysis, ‘the network architecture comes first and the data comes later’.
As a result, the required network complexity for memorization scales in terms of the number
of training data (see Section 1.3 for more details). In practical applications, however, ‘the
data comes first and the network architecture comes later’: the neural network architecture
and size are tuned to given training data via cross-validation. Intuitively, one expects that
the training data possesses some ‘nice’ structure so that interpolation is achievable with
a smaller network complexity than suggested by memorization capacity—which assumes
arbitrary data and arbitrary labels.

In this paper, we investigate interpolation by adopting an instance-specific viewpoint.
We introduce a simple randomized algorithm that, given a fixed finite data set with two
classes, with high probability constructs an interpolating neural network in polynomial
time, see Theorem 4. We then link the required number of parameters to the mutual
complexity of the data set, which depends on both the geometric properties of two data
classes as well as their mutual arrangement. As a result, we obtain guarantees that are
independent of the number of samples and instead yield a ‘problem-adaptive’ bound on the
interpolation threshold. Finally, we carry out numerical simulation experiments to illustrate
our theoretical result. In addition, we investigate the effectiveness of our interpolation
algorithm on MNIST and CIFAR-10.

1.1 Summary of Results

Let us first formalize the concept of interpolation in a classification setting with two classes.
The setting with binary labels is considered for simplicity—our results can be readily ex-
tended to multiple classes by a one-versus-many approach (see Section 4.4 for details). In
the following, X−,X+ ⊂ RBd2 denote disjoint and finite sets, representing two classes of
objects, where Bd2 denotes the unit Euclidean ball in Rd.

2

Memorization With Neural Nets: Going Beyond the Worst Case

Definition 1 (Interpolation) We say that a classification function F : Rd → {±1} inter-
polates X− and X+ if, for all x− ∈ X− and x+ ∈ X+,

F (x−) = −1 and F (x+) = +1.

In this work, we will formulate a concrete, randomized algorithm that takes X− and
X+ as inputs and produces an interpolating neural net as an output (Algorithm 1). As the
statement of the algorithm requires some technical preparation, we postpone its discussion
to Section 2. Our main result, informally stated as Theorem 4 below and developed in full
detail in Section 2, shows that this algorithm succeeds with high probability in polynomial
time and provides bounds on the size of the interpolating network. The bounds are phrased
in terms of two structural assumptions on the data, that together quantify the difficulty of
the interpolation problem.

First, we will assume that the classes are δ-separated. This assumption is also common
in a number of works on memorization capacity, e.g., Vershynin (2020); Rajput et al. (2021);
Vardi et al. (2022). Below we will write, for any sets A,B ⊂ Rd,

d(a,B) = inf
b∈B
‖a− b‖2, d(A,B) = inf

a∈A
d(a,B).

Definition 2 (δ-separation) A and B are δ-separated if d(A,B) ≥ δ.

Second, we will quantify the problem difficulty using the following notion that was first
introduced in Dirksen et al. (2022a) (in a slightly different form).

Definition 3 (Mutual covering) We call

C− = {c−1 , . . . , c−M−} ⊂ X
−, r−1 , . . . , r

−
M− ≥ 0,

C+ = {c+
1 , . . . , c

+
M+} ⊂ X+, r+

1 , . . . , r
+
M+ ≥ 0

a mutual covering for X− and X+ if the sets

X−` := X− ∩ Bd2(c−` , r
−
`) and X+

j := X+ ∩ Bd2(c+
j , r

+
j),

for ` ∈ [M−] and j ∈ [M+], cover X− and X+, respectively. We call these sets the
components of the mutual covering and call M− and M+ the mutual covering numbers.

As we have only finitely many inputs, clearly a mutual covering always exists. However,
if the arrangement of the classes is benign, the mutual covering numbers can be much
smaller than the number of samples.

To see how the notion of mutual covering allows us to quantify the difficulty of a (binary)
interpolation problem, we turn to our main result. In Theorem 4 we require the existence
of a mutual covering with radii

r−` .
d(c−` , C+)

log1/2(eR/d(c−` , C+))
and r+

j .
d(c+

j , C−)

log1/2(eR/d(c+
j , C−))

. (1)

Geometrically, this means that the components covering X− and X+ cannot intersect (more
precisely, need to be slightly separated from) the ideal decision boundary between the two

3

Dirksen, Finke and Genzel

<latexit sha1_base64="/NTE/xiYEN1jnonZOiX07XF6XFI=">AAACoHicbZFNb9QwEIa94assXy0cuVhdIXFaJRUCjlW59EaL2G5Fs1RjZ7K11h+RPaFaopz4BVzhl/FvcLY5sCkj2Xr1Ph7pHY+otAqUpn9GyZ279+4/2Hk4fvT4ydNnu3vPz4KrvcSZdNr5cwEBtbI4I0UazyuPYITGuVh96Pj8G/qgnP1M6woXBpZWlUoCRWueC8E/fS0udyfpNN0Uvy2yXkxYXyeXe6MfeeFkbdCS1BDCRZZWtGjAk5Ia23FeB6xArmCJF1FaMBgWzSZvy19Fp+Cl8/FY4hv3344GTAhrI+JLA3QVhqwz/8s6p4LvLkLead6NHJBI2eV2JCrfLxplq5rQyptEZa05uU0LL5RHSXodBUiv4lBcXoEHSfEvx7nFa+mMAVs0uQhtvJwuusROtwMqIu2iRLFNpO6JhGGTMj0KJVcDVhdt0+Te8KJt49qy4ZJui7ODafZ2enD6ZnJ41C9wh71k++w1y9g7dsiO2QmbMclW7Cf7xX4n+8lx8jE5vXmajPqeF2yrki9/AXnq1B0=</latexit>

Rd

<latexit sha1_base64="uKxagpLewImHfhl8fpKfvMBRew0=">AAACoHicbZFNa9tAEIbX6lfifiXNMZclplAoGCmUtsfQXnJLAnFsGrlhNRo5i/dD7I5aXKFTf0GvzS/Lv8nK0aFWOrDLy/vswDs7Wamkpzi+HUSPHj95+mxre/j8xctXr3d231x4WznACVhl3SwTHpU0OCFJCmelQ6EzhdNs+bXl0x/ovLTmnFYlzrVYGFlIEBSsaQqKz76/v9oZxeN4XfyhSDoxYl2dXu0Ofqe5hUqjIVDC+8skLmleC0cSFDbDtPJYCliKBV4GaYRGP6/XeRv+Njg5L6wLxxBfu/921EJ7v9JZeKkFXfs+a83/stYpxS8bIG81b0f2SCTNYjMSFZ/ntTRlRWjgPlFRKU523cJz6RBIrYIQ4GQYisO1cAIo/OUwNfgTrNbC5HWa+SZcVuVtYquaHs0CbaMEsUlAdQREv0nqDvmCyx6r8qauU6d53jRhbUl/SQ/FxeE4+Tg+PPswOvrSLXCL7bMD9o4l7BM7YsfslE0YsCX7w/6ym+ggOo5OorP7p9Gg69ljGxV9uwMhs9P1</latexit>

X +

<latexit sha1_base64="dc5hK0VWLrs+EbxMQd19OIIIjX0=">AAACoHicbZFNT9tAEIY37hekX1COXFZElXppZKOq7RG1F26AREhUnKL1eBxW2Q9rd9wqtXzqL+i1/DL+DevgQ2M60q5evc+O9M5OVirpKY5vB9Gjx0+ePtvaHj5/8fLV653dNxfeVg5wAlZZN8uERyUNTkiSwlnpUOhM4TRbfm359Ac6L605p1WJcy0WRhYSBAVrmoLis+/vr3ZG8TheF38okk6MWFenV7uD32luodJoCJTw/jKJS5rXwpEEhc0wrTyWApZigZdBGqHRz+t13oa/DU7OC+vCMcTX7r8dtdDer3QWXmpB177PWvO/rHVK8csGyFvN25E9Ekmz2IxExed5LU1ZERq4T1RUipNdt/BcOgRSqyAEOBmG4nAtnAAKfzlMDf4Eq7UweZ1mvgmXVXmb2KqmR7NA2yhBbBJQHQHRb5K6Q77gsseqvKnr1GmeN01YW9Jf0kNxcThOPo4Pzz6Mjr50C9xi++yAvWMJ+8SO2DE7ZRMGbMn+sL/sJjqIjqOT6Oz+aTToevbYRkXf7gAmH9P3</latexit>X�

<latexit sha1_base64="vUWWgI6s/4GVtorge6r066FpXCE=">AAACnnicbZFNaxRBEIZ7x2ji+pXo0UuTJSAIy4wJxmNQkFzECG6ykFmXmp6aTSf9MXTXKOswJ39ArvrT/Df2bObgTlLQzcv7dMFbXVmppKc4/juI7m3cf7C59XD46PGTp8+2d56fels5gRNhlXXTDDwqaXBCkhROS4egM4Vn2dWHlp99R+elNV9pWeJMw8LIQgqgYE3c/PLb6/n2KB7Hq+K3RdKJEevqZL4z+JXmVlQaDQkF3p8ncUmzGhxJobAZppXHEsQVLPA8SAMa/axepW34XnByXlgXjiG+cv/vqEF7v9RZeKmBLnyfteadrHVK+GkD5K3m7cAeiaRZrEei4t2slqasCI24SVRUipNdtfBcOhSklkGAcDIMxcUFOBAUfnKYGvwhrNZg8jrNfBMuq/I2sVVNj2aBtlGCWCdCdURAv0nqDvmCyx6r8qauU6d53jRhbUl/SbfF6Ztx8na8/+VgdPS+W+AWe8l22SuWsEN2xI7ZCZswwSS7Zr/Zn4hHH6NP0eebp9Gg63nB1iqa/gPtm9N6</latexit>

r+
jr�`c�` <latexit sha1_base64="MLMkr4LIXMlHf5OcAhdMSl4CcBU=">AAACrXicbZFNb9QwEIa94assX9ty5GKxQkJCWpKCgGMFF45FYttKzXY1cSZbU39E9gRYrJz4H1zhL/FvcLY5dFNGsvzqfTzSO56iVtJTmv4dJTdu3rp9Z+fu+N79Bw8fTXb3jrxtnMC5sMq6kwI8KmlwTpIUntQOQRcKj4uLDx0//orOS2s+07rGhYaVkZUUQNFaTvbywqrSr3W8gmiXX85eLCfTdJZuil8XWS+mrK/D5e7oZ15a0Wg0JBR4f5qlNS0COJJCYTvOG481iAtY4WmUBjT6RdiEb/mz6JS8si4eQ3zjXu0IoH2XL77UQOd+yDrzv6xzavhhI+Sd5t38HomkWW1HourdIkhTN4RGXCaqGsXJblp4KR0KUusoQDgZh+LiHBwIih87zg1+E1ZrMGXIC9+GKz/aDmgRaRclim0iVE8EDJuk7pGvuBywpmxDyJ3mZdvGtWXDJV0XR/uz7M3s1afX04P3/QJ32BP2lD1nGXvLDthHdsjmTLDv7Bf7zf4kL5N5kidnl0+TUd/zmG1VsvoHwVPZqQ==</latexit>

c+
j

Figure 1: The mutual covering is ‘problem-adaptive’. Condition (1) on the radii in
Theorem 4 allows a covering ‘adapted to’ the mutual arrangement of the data:
only the parts of the data that lie close to the ideal decision boundary need to
be covered using balls with small diameters—other parts can be crudely covered
using larger balls.

sets, as is illustrated in Figure 1. In particular, components with a small radius are only
needed close to the ideal decision boundary, while parts that are far away from this boundary
can be crudely covered with large components. Compared to classical coverings with balls
of a fixed radius (as used in the classical notion of the Euclidean covering number of a set,
see, e.g., Vershynin, 2018), this can drastically reduce the required number of components.

While the mutual covering numbers M− and M+ can be viewed as a measure of the
global complexity of the data, our result also involves the local complexity, measured by the
‘sizes’ of the components. Specifically, define ω := max{ω−, ω+} where

ω− := max
`∈[M−]

w2(X−` − c−`)

d3(c−` , C+)
and ω+ := max

j∈[M+]

w2(X+
j − c+

j)

d3(c+
j , C−)

. (2)

The quantities ω− and ω+ measure the scaled version of the ‘size’ of the largest (centered)
component of X− and X+, respectively. Here, the Gaussian mean width of a set A ⊂ Rd is
defined as

w(A) := E sup
x∈A
|〈g,x〉|,

where g ∼ N(0, Id) denotes a standard Gaussian random vector. The mean width is a
well-established complexity measure in high-dimensional statistics and geometry which is
sensitive to low-dimensional structures such as sparsity, unions of low-dimensional sub-

4

Memorization With Neural Nets: Going Beyond the Worst Case

spaces, or manifolds, see, e.g., Vershynin (2018) for a detailed discussion and examples. We
refer to Remark 12 for straightforward estimates of ω.

We are now ready to present the informal version of our main result, which we state for
the case of threshold activations. Intuitively, this should be the most challenging because
the signal amplitude is lost. It is possible to prove analogous results for other activations.
In fact, Algorithm 1 only requires an activation function σ such that σ(t) = 0 for t ≤ 0 and
σ(t) > 0 for t > 0, which, e.g., includes the ReLU. Note, however, that the bounds on the
network size may change for different activations.

Theorem 4 (Informal) Let X−,X+ ⊂ RBd2 be finite and disjoint. Suppose that there
is a mutual covering with δ-separated centers and radii satisfying (1). Then, with high
probability, Algorithm 1 terminates in polynomial time and outputs a 2-hidden-layer fully-
connected neural network with threshold activations,

O
(
M− +Rδ−1 log(2M−M+) +Rω

)
neurons and

O
(
R(d+M−)(δ−1 log(2M−M+) + ω)

)
parameters, that interpolates X− and X+.

A first interesting feature of this result is the asymmetric dependence on the complexities
of the classes: the network size depends linearly on M− but only logarithmically on M+.
As it is possible to interchange the roles of X− and X+, we may always think of X− as
the ‘smaller’ set. Second, our bounds are independent of the number of samples. This is a
fundamental difference between memorization capacity and our instance-specific approach
to interpolation, see the discussion in Section 1.3. To highlight this second point further, we
deduce an interpolation result for infinite sets from our analysis. In contrast to Theorem 4,
the proof is nonconstructive.

Corollary 5 Let X−,X+ ⊂ RBd2 be (possibly infinite) sets. Suppose that there is a mu-
tual covering with δ-separated centers and radii satisfying (1). Then, there exists a neural
network of the same size as in Theorem 4 that interpolates X− and X+.

1.2 Organization

The rest of the paper is organized as follows. In Section 1.3 we discuss related works, then
introduce notation in Section 1.4. In Section 2 we present Algorithm 1 and give intuition
on how it works. We also state the formal counterpart of our main result in Theorem 11.
All proofs are contained in Section 3. In Section 4, we verify our theoretical findings
in illustrative numerical experiments and additionally investigate the performance of our
algorithm on real data sets. We conclude with a short summary in Section 5.

1.3 Related Works

Memorization capacity. Neural network architectures used in practice are powerful
memorizers: it has been observed that various popular architectures for image classification
do not only interpolate their training data, but can even interpolate this data when the

5

Dirksen, Finke and Genzel

labels are replaced by random labels (after re-training), see, e.g., Zhang et al. (2021a). To
understand this phenomenon, an extensive literature has studied the memorization capacity
of neural networks, by quantifying how large a network needs to be to interpolate any N
points with arbitrary labels. In this case, we will say that the network can memorize N
points. In practice, memorization results often include some assumptions on the inputs.
Here we will summarize relevant memorization literature that makes similar structural
assumptions on the inputs, such as δ-separation or a bound on the norm. Other works
consider randomized samples or samples drawn from a distribution, see, e.g., Ge et al.
(2019); Daniely (2020); Zhang et al. (2021b).

The study of the memorization capacity of neural networks with threshold activations
has a rich history. Assuming that the points are in general position,1 Baum (1988) showed
that a 1-hidden-layer threshold network with O(N + d) parameters and O(dN/de) neurons
is enough to memorize binary labels of N points in Rd. In Huang and Huang (1990) it
was shown that O(Nd) parameters and O(N) neurons are enough to memorize real labels,
without placing any additional constraints on the points. Assuming that the points are
δ-separated and lie on the unit sphere, Vershynin (2020) proved that a deep threshold (or
ReLU) network can memorize binary labels using Õ(e1/δ2(d +

√
N) + N) parameters and

Õ(e1/δ2 +
√
N) neurons. The exponential dependence on δ was improved by Rajput et al.

(2021), who proved that Õ(d/δ+N) parameters and Õ(1/δ+
√
N) neurons are enough for

memorization of binary labels, while further only requiring bounded norm instead of unit
norm. The constructions of both Vershynin (2020) and Rajput et al. (2021) are probabilistic,
while the ones of Baum (1988) and Huang and Huang (1990) are purely deterministic.

There have been a number of works on the memorization capacity of networks with other
activations. We will only summarize the results for ReLU activations due to its popularity
in practice, and refer to, e.g., Huang (2003); Park et al. (2021); Madden and Thrampoulidis
(2024) and the references therein for other activations. The work Bubeck et al. (2020)
extended the result of Baum (1988) to the case of real-valued labels using a network with
ReLU activation with a size of the same order. Using weight sharing in the first layer, Zhang
et al. (2021a) showed that a 1-hidden-layer ReLU network could memorize real-valued labels
using O(N + d) parameters and O(N) neurons, with no further assumptions on the points.
Yun et al. (2019) proved that both multi-class and real-valued labels can be memorized by
a ReLU net with two and three hidden layers, respectively, using O(d

√
N +N) parameters

and O(
√
N) neurons. Park et al. (2021) achieved the first result on memorization with a

sublinear number of parameters: assuming that the points are separated, they showed that
ReLU (or hard-tanh) nets can memorize multiple classes using Õ(d + N2/3) parameters,
constant width and Õ(N2/3) layers. Vardi et al. (2022) improved the above dependence on
N from N2/3 to

√
N , which is optimal. Specifically, assuming that the points are δ-separated

and have bounded norm, they show that a ReLU net with Õ(d+
√
N) parameters, constant

width and Õ(
√
N) layers is enough to memorize multi-class labels.

To directly compare the above with our results, we consider a trivial mutual covering
that always ‘works’ regardless of the labels of the points: we cover each point by its own
component with a radius of zero. Thus, M− = N− := |X−|, M+ = N+ := |X+| and ω = 0.
Hence, in the worst case Theorem 4 yields a network with O(R(d+N−)δ−1 log(2N−N+))

1. A set of N points in Rd is said to be in general position if any subset of d vectors is linearly independent.

6

Memorization With Neural Nets: Going Beyond the Worst Case

parameters andO
(
N− +Rδ−1 log(2N−N+)

)
neurons. If N− ' N+, the number of neurons

scales (slightly worse than) linear in the number of points, which is worse than the best result
on memorization capacity for networks using the threshold activation. In Proposition 13
we show that the linear scaling in terms of M− in Theorem 4 is not a proof artifact. Hence,
our method cannot recover optimal performance in the worst case. It is an interesting open
question whether our method can be modified to achieve this.

Nevertheless, in practical situations one can hope that a much better mutual covering
exists, due to intrinsic low-dimensional structure of the input data and/or a more be-
nign label assignment than arbitrary labelling. In such cases Theorem 4 can guarantee a
much smaller interpolating network. In particular, since our bounds are independent of
the number of samples we can derive interpolation results for infinite sets (Corollary 5). In
contrast, results on memorization capacity cannot have this feature. The VC-dimension2 of
feed-forward neural networks with threshold activation is O(W logW) (Baum and Haussler,
1988), where W denotes the total number of parameters, i.e., the sum of the number of
weights and biases over all layers. Hence, to memorize more samples than this upper bound,
one would necessarily need to add more parameters to the network. Similar results hold for
arbitrary piecewise linear activations such as the ReLU (Bartlett et al., 2019) or analytic
definable activation functions (Sontag, 1997).

Upon acceptance of this paper, the work of Lee et al. (2024) was pointed out to us by
one of the reviewers, which bears some similarities to ours. It introduces the concept of
a polytope-basis cover of a dataset of two classes. They show that if this basis is known,
then an interpolating three-layer fully-connected ReLU network can be associated to such
a cover. They then provide upper (and some lower) bound on the network width sufficient
for the existence of an interpolating net if the data is a convex polytope, structured as a
simplicial complex, or can be covered by the difference of prismatic polytopes. While their
theoretical guarantees are pure existence results, they also introduce a number of heuristic
algorithms that yield small near-interpolating ReLU nets on, e.g., MNIST and CIFAR10.
These methods are only guaranteed to terminate and, in contrast to our work, no guarantees
are derived on the runtime, size of the network, and interpolation success.

Separation capacity. Related to interpolation is the question of separation capacity of
a neural network: under what conditions can a neural network make two (not necessarily
finite) classes linearly separable? Obviously, a network with separation capacity can be
extended to an interpolating network by adding the separating hyperplane as an additional
layer.

In An et al. (2015) it was shown that any two disjoint sets can be made linearly separable
using a deterministic two-layer ReLU neural net. However, their proof is non-constructive
and they provided no estimates on the size of the network. Inspired by this work, Dirksen
et al. (2022a) showed that a wide enough two-layer random ReLU network can make any
two δ-separated sets linearly separable if the weights and biases are chosen from appropriate
distributions. Unlike the existence result of An et al. (2015), they provided bounds linking
the number of required neurons to geometric properties of the classes and their mutual

2. The VC-dimension is the maximal N for which there exist points x1, . . . ,xN ∈ Rd such that for ev-
ery assignment of labels y1, . . . , yN ∈ {±1} there exists a set of parameters θ such that the network
interpolates the samples, i.e., Fθ(xi) = yi for all i ∈ [N].

7

Dirksen, Finke and Genzel

arrangement via a notion of mutual covering similar to Definition 3. This instance-specific
viewpoint allows them to overcome the curse of dimensionality if the data carries a low-
complexity structure. Following up on this, Ghosal et al. (2022) showed that even a wide
enough one-layer ReLU net is enough to accomplish separation. They introduced a deter-
ministic memorization algorithm which is then ‘implemented’ by a random neural network.
As Dirksen et al. (2022a) they also used a mutual covering to capture the complexity of the
data.

While the above results could be applied to interpolation, the required number of pa-
rameters would be larger than what we require in Theorem 4. Both Dirksen et al. (2022a)
and Ghosal et al. (2022) yield networks scaling polynomially in terms of the mutual covering
numbers, while our network scales only linearly.

The present paper is strongly influenced by Dirksen et al. (2022a)—we adopt an instance-
specific viewpoint and the notion of mutual covering. However, instead of separation, we
directly focus on interpolation. Together with our only partially randomized approach, this
allows us to prove better bounds for this case.

Random hyperplane tesselations. As will become apparent below, our technical anal-
ysis is linked to tessellations created by random hyperplanes with Gaussian directions and
uniformly distributed shifts, which were recently intensively studied in Dirksen and Mendel-
son (2021); Dirksen et al. (2022b). In particular, Dirksen et al. (2022b) derived a sharp
bound on the number of hyperplanes needed to induce a uniform tessellation of a given
set, meaning that the Euclidean distance between any two points in the set corresponds to
the fraction of hyperplanes separating them up to a prespecified error. We will use some
insights from these works, see in particular Lemma 18.

1.4 Setup and Notation

For any 1 ≤ p ≤ ∞ we let ‖·‖p denote the `p norm. We use Bd2(c, r) to denote the Euclidean

ball in Rd with center c ∈ Rd and radius r ≥ 0 and we denote the unit ball by Bd2. For
n ∈ N, we set [n] := {1, . . . , n}. For any set A we use |A| to denote its cardinality and let
1A denote its indicator. We let sign denote the function

sign(x) =

{
+1 if x ≥ 0,

−1 else.

For a function σ : R → R and a vector x ∈ Rd we denote the element-wise application by
σ(x) = (σ(xi))

d
i=1. If an equality holds up to an absolute constant C, we write A & B

instead of A ≥ C · B. We write A ' B if A & B & A. We use O(·) to omit constant
terms and Õ(·) to additionally omit logarithmic terms. We define the distance between
any point x ∈ Rd and a set X ⊂ Rd as d(x,X) := inf{‖x− y‖2 : y ∈ X}. We denote the
hyperplane with direction v ∈ Rd and shift τ ∈ R by H[v, τ] := {x ∈ Rd : 〈v,x〉+ τ = 0}.
For x,y ∈ Rn we define 1[x = y] ∈ {0, 1}n by

(1[x = y])i =

{
1 if xi = yi,

0 else.

8

Memorization With Neural Nets: Going Beyond the Worst Case

x+

x−

<latexit sha1_base64="zc2A2HON047nBXLw/zq5v36ZeiI=">AAACp3icbZFNb9NAEIY35quErxaOXFZESHCJ7BYBx6pcuFEkkkaq02h2PU5X3Q9rdwwKlk/8Ca7wr/g3rBMfqMtIu3r1PjvSOzui0ipQmv4ZJbdu37l7b+/++MHDR4+f7B88nQdXe4kz6bTzCwEBtbI4I0UaF5VHMELjmbj60PGzr+iDcvYLbSpcGlhbVSoJFK2L3ABdCtGctKvDi2K1P0mn6bb4TZH1YsL6Ol0djH7khZO1QUtSQwjnWVrRsgFPSmpsx3kdsAJ5BWs8j9KCwbBstrFb/jI6BS+dj8cS37r/djRgQtgYEV92McOQdeZ/WedU8N1FyDvNu8kDEim7vh6JyvfLRtmqJrRyl6isNSe3beGF8ihJb6IA6VUcistL8CApfuk4t/hNOmPAFk0uQhsvp4susdPtgIpId389IFL3RMKwSZkehZKrAauLtmlyb3jRtnFt2XBJN8X8cJq9nR59fjM5PukXuMeesxfsFcvYO3bMPrJTNmOSefaT/WK/k9fJp2SeLHZPk1Hf84xdqwT+AkfS12c=</latexit>

Bd
2

Figure 2: Random hyperplanes in the input domain Rd. In Algorithm 1 we iteratively
sample random hyperplanes H[wi, bi] until every pair of points with opposite
labels is separated by at least one of them. This tessellates the space into multiple
cells, where each cell is only populated with points of the same label. Each
hyperplane can be associated with one of the neurons of the first layer Φ.

We denote by 0,1 ∈ Rd the vector with entries all equal to 0 and all equal to 1, respectively.
We denote the standard multivariate normal distribution in d dimensions by N(0, Id) and
the uniform distribution on A ⊂ Rd by Unif(A).

2. Interpolation Algorithm and Main Results

Consider any disjoint X−,X+ ⊂ RBd2 with N− := |X−| and N+ := |X+|. Let σ : R → R
satisfy σ(t) = 0 for t ≤ 0 and σ(t) > 0 for t > 0. Let us outline our method to construct an
interpolating three-layer neural network:

1. To build the first layer Φ: Rd → Rn, we iteratively sample i.i.d. random hyperplanes
H[wi, bi] until any x− ∈ X− is separated from any x+ ∈ X+ by at least one of them
(see Figure 2 and Definition 14). Each hyperplane includes a shift bi so that it is able
to separate points located on a ray emanating from the origin. In the worst case, one
could have points with opposite labels close to the boundary of RBd2, hence one needs
the maximal shift to scale at least like R. We let W be the matrix containing the
wi as its rows and let b be the vector having the bi as its coordinates. We define the
first, random layer Φ of the network by Φ(x) = σ(Wx + b). Since all pairs of points
with opposite labels are separated by at least one hyperplane, Φ has the following
property: for any (x−,x+) ∈ X− ×X+ there exists at least one i ∈ [n] with

Φi(x
−) = 0 and Φi(x

+) > 0. (3)

9

Dirksen, Finke and Genzel

conv(Φ(X +))

<latexit sha1_base64="h+vUJJ41m0mIIFeOFm87F2rBcEQ=">AAACoHicbZFNb9QwEIa94assXy0cuVhdIXFaJRUCjlW59EaL2G5Fs1RjZ7K11h+RPaFaopz4BVzhl/FvcLY5sCkj2Xr1Ph7pHY+otAqUpn9GyZ279+4/2Hk4fvT4ydNnu3vPz4KrvcSZdNr5cwEBtbI4I0UazyuPYITGuVh96Pj8G/qgnP1M6woXBpZWlUoCRWueC8E/fbWXu5N0mm6K3xZZLyasr5PLvdGPvHCyNmhJagjhIksrWjTgSUmN7TivA1YgV7DEiygtGAyLZpO35a+iU/DS+Xgs8Y37b0cDJoS1EfGlAboKQ9aZ/2WdU8F3FyHvNO9GDkik7HI7EpXvF42yVU1o5U2istac3KaFF8qjJL2OAqRXcSgur8CDpPiX49zitXTGgC2aXIQ2Xk4XXWKn2wEVkXZRotgmUvdEwrBJmR6FkqsBq4u2aXJveNG2cW3ZcEm3xdnBNHs7PTh9Mzk86he4w16yffaaZewdO2TH7ITNmGQr9pP9Yr+T/eQ4+Zic3jxNRn3PC7ZVyZe/kAbUJw==</latexit>

Rn

Φ(x−)

Figure 3: The effect of the first layer Φ. After transforming the data with the first
layer Φ we can, for each x− ∈ X−, construct a hyperplane H[−ux− ,mx−] that
separates Φ(X+) from Φ(x−). Each hyperplane can be associated with one of
the neurons in the second layer.

This enables us to distinguish between points of different labels.

2. We then exploit (3) in the following way. For x− ∈ X− consider the mask ux− =
1[Φ(x−) = 0]. By (3),

〈ux− ,Φ(x−)〉 = 0 and 〈ux− ,Φ(x+)〉 > 0 for all x+ ∈ X+.

Geometrically, this means that the hyperplane H[−ux− ,mx−], where

mx− = min
x+∈X+

〈ux− ,Φ(x+)〉,

separates Φ(X+) from Φ(x−) (see Figure 3). Let U ∈ RN−×n be the matrix with
rows ux− and let m ∈ RN− be the vector with coordinates mx− . We then define the
second layer Φ̂ : Rn → Rn̂ of the network by Φ̂(z) = σ(−Uz+m). This layer satisfies,
for every x− ∈ X−,

[Φ̂(Φ(x−))]x− > 0 and [Φ̂(Φ(x+))]x− = 0 for all x+ ∈ X+. (4)

Thus, in the second hidden layer, there is a dedicated neuron to detect each point of
X−, but none of them activates on X+.

10

Memorization With Neural Nets: Going Beyond the Worst Case

conv(Φ(X +))

<latexit sha1_base64="h+vUJJ41m0mIIFeOFm87F2rBcEQ=">AAACoHicbZFNb9QwEIa94assXy0cuVhdIXFaJRUCjlW59EaL2G5Fs1RjZ7K11h+RPaFaopz4BVzhl/FvcLY5sCkj2Xr1Ph7pHY+otAqUpn9GyZ279+4/2Hk4fvT4ydNnu3vPz4KrvcSZdNr5cwEBtbI4I0UazyuPYITGuVh96Pj8G/qgnP1M6woXBpZWlUoCRWueC8E/fbWXu5N0mm6K3xZZLyasr5PLvdGPvHCyNmhJagjhIksrWjTgSUmN7TivA1YgV7DEiygtGAyLZpO35a+iU/DS+Xgs8Y37b0cDJoS1EfGlAboKQ9aZ/2WdU8F3FyHvNO9GDkik7HI7EpXvF42yVU1o5U2istac3KaFF8qjJL2OAqRXcSgur8CDpPiX49zitXTGgC2aXIQ2Xk4XXWKn2wEVkXZRotgmUvdEwrBJmR6FkqsBq4u2aXJveNG2cW3ZcEm3xdnBNHs7PTh9Mzk86he4w16yffaaZewdO2TH7ITNmGQr9pP9Yr+T/eQ4+Zic3jxNRn3PC7ZVyZe/kAbUJw==</latexit>

Rn

Φ(x−)

Figure 4: Motivation for forward selection. While each Φ(x−) is separated by a corre-
sponding ‘dedicated’ hyperplane from Φ(X+) (depicted in dashed grey), we can
identify a single hyperplane H[−ux−∗

,mx−∗
] (depicted in grey) that separates sev-

eral Φ(x−) from Φ(X+) simultaneously. The other hyperplanes are redundant
and the corresponding neurons do not need to be included in the second layer Φ̂.

3. In the output layer, we simply sum the output from the second layer Φ̂. By (4), for
all x− ∈ X− and x+ ∈ X+,

〈1, Φ̂(Φ(x−))〉 > 0 and 〈1, Φ̂(Φ(x+))〉 = 0

and hence sign(−·) outputs the correct label.

The second step of this method is rather naive: for every x− ∈ X−, we construct a
dedicated neuron

ϕ̂x−(z) = σ(−〈ux− , z〉+mx−) (5)

that distinguishes Φ(x−) and Φ(X+), i.e., ϕ̂x−(Φ(x−)) > 0 and ϕ̂x−(Φ(x+)) = 0 for all
x+ ∈ X+. This potentially leads to redundancy, since to get an interpolating net at the
third step, it suffices if for each x− there is some x−∗ such that ϕ̂x−∗

distinguishes Φ(x−)

and Φ(X+). We can especially hope for this to be true if x− is ‘close enough to’ x−∗ in a
suitable sense. This is illustrated in Figure 4. Thus we can improve the second step by
forward selection: we iteratively select elements x−∗ from X− and construct the associated
neuron ϕ̂x−∗

until there is a distinguishing neuron for each element in X−.

These considerations lead to our interpolation algorithm formalized in Algorithm 1.

11

Dirksen, Finke and Genzel

Algorithm 1 Interpolation

Input: Disjoint and finite X−,X+ ⊂ Rd, activation σ : R→ R satisfying σ(t) = 0 for t ≤ 0
and σ(t) > 0 for t > 0, (minimal) width of the first layer nmin ≥ 0.

Output: A three-layer fully-connected neural network F : Rd → {±1} that interpolates
X− and X+.

1: Calculate R← maxx∈X−∪X+ ‖x‖2 and choose λ & R.
2: Initialize S ← ∅ and n← 0.
3: while S 6= X− ×X+ or n < nmin do
4: Update n← n+ 1.
5: Sample

wn ∼ N(0, Id), bn ∼ Unif([−λ, λ]).

6: Update S according to

S ← S ∪ {(x−,x+) ∈ X− ×X+ : 〈wn,x
−〉 ≤ −bn < 〈wn,x

+〉}.

7: end while
8: Define Φ(x) = σ(Wx + b) with W ∈ Rn×d and b ∈ Rn where

W ←

w
>
1
...

w>n

 and b←

b1...
bn

 .

9: Initialize C ← X− and n̂← 0.
10: while C 6= ∅ do
11: Update n̂← n̂+ 1.
12: Select x−n̂ ∈ C uniformly at random from C and calculate

un̂ ← 1[Φ(x−n̂) = 0], mn̂ ← min
x+∈X+

〈un̂,Φ(x+)〉.

13: Update C according to

C ← C \ {x− ∈ C : 〈ux−n̂
,Φ(x−)〉 < mx−n̂

}.

14: end while
15: Define Φ̂(z) = σ(−Uz + m) with U ∈ Rn̂×n and m ∈ Rn̂ where

U ←

u
>
1
...

u>n̂

 and m←

m1
...
mn̂

 .

16: Return F (x) = sign(−〈1, Φ̂(Φ(x))〉).

12

Memorization With Neural Nets: Going Beyond the Worst Case

Remark 6 First, let us briefly comment on the parameter nmin in the first loop of Algo-
rithm 1, which is the minimal width of the first layer Φ. In (the proof of) Proposition 7 we
will see that the first loop (and hence, the algorithm) terminates with probability 1, regard-
less of the choice of nmin. In Theorem 11, we will derive a lower bound on nmin that ensures
that the algorithm terminates with high probability after nmin iterations and derive an upper
bound on the total size of the output net F . The first condition in line 3 of the algorithm
will in this case be redundant. We include this condition to ensure that the algorithm is
always guaranteed to terminate, for any choice of nmin.

Second, we comment on the parameter λ, which is the maximal shift of the hyperplanes
in the first layer. The condition λ & R in the first line of Algorithm 1 is used to guarantee
that every pair of samples with different labels is separated by at least one of the hyperplanes
(even if they are on a line through the origin, Proposition 15), and that they induce a
uniform tesselation, allowing us to relate the fraction of hyperplanes between points to their
Euclidean distance (Lemmas 17 and 18). As this condition involves an unknown constant,
for a practical application λ can be treated like a hyperparameter. In Section 4 we will see
that λ ≥ R typically is sufficient and, depending on the data set, smaller values might also
work.

Let us now state our main results.

Proposition 7 (Termination and correctness) Let X−,X+ ⊂ Rd be disjoint and fi-
nite. Then Algorithm 1 terminates with probability 1 and its output F interpolates X− and
X+.

From the discussion at the start of this section, it is clear that Algorithm 1 produces an
interpolating network if the first loop of the algorithm terminates. We will prove termina-
tion in Section 3.1.

Additionally, the following gives an estimate of the run time of Algorithm 1.

Proposition 8 (Run time) Let X−,X+ ⊂ Rd be finite and δ-separated. Let N− := |X−|
and N+ := |X+| and denote N := N−+N+. Assume that N− ' N+, the input dimension d
is constant and the activation function σ is computable in constant time. Then Algorithm 1
has a run time of at most

O(δ−1λ log(N/η)N2),

with probability at least 1− η.

Remark 9 The run time of Algorithm 1 has a bottleneck of O(N2) in terms of the number
of samples, which may be serious for large data sets. This bottleneck already occurs in the
first loop. In Section 4 we will consider a variation of the algorithm in which the number
of hyperplanes drawn in the first layer is a hyperparameter. As we will see in Theorem 11,
this algorithm is guaranteed to succeed with high probability if the number of draws is chosen
large enough. In this case, the run time of the algorithm is dictated by the construction of
the second layer, which takes time O(M−N+).

To complement Proposition 7 we derive a high probability bound on the size of the
network produced by Algorithm 1. This bound will (at least in our proof) depend on the

13

Dirksen, Finke and Genzel

choice of the activation function σ. We focus on the setting with threshold activations, i.e.,
we consider

σ(t) = Thres(t) =

{
1 if t > 0,

0 else.

Let us first observe that in the limit, the shape of the activation region of every neuron
in the second layer is a Euclidean ball of a ‘maximal radius’, i.e., that touches the closest
point in the set X+. This gives geometric intuition on why the size of the second layer is
naturally connected with the mutual covering numbers.

Proposition 10 (Limit shape of activation regions—threshold activations) Take
any x−∗ ∈ X− and let Ax−∗

be the activation region of ϕ̂x−∗
. Then, for any x ∈ Rd \ ∂Bx−∗ ,

lim
λ→∞

lim
n→∞

1A
x−∗

(x) = 1B
x−∗

(x)

almost surely, where Bx−∗ = Bd2(x−∗ ; d(x−∗ ,X+)).

Let us give an intuitive sketch for the proof of Proposition 10. Roughly speaking, the
neuron ϕ̂x−∗

activates when the fraction of hyperplanes separating the reference point x−∗ and
the input x is smaller than a threshold value, which is the minimal fraction of hyperplanes
separating x−∗ and any x+ ∈ X+. If n → ∞, then the fraction of hyperplanes separating
x−∗ and any z becomes proportional to the probability that a hyperplane separates the two.
Finally, as λ → ∞, this probability becomes proportional to d(x−∗ , z)/λ. Hence, in the
double limit, the neuron activates when d(x−∗ ,x) is smaller than d(x−∗ ,X+).

Let us now state the main result of our work.

Theorem 11 (Size of interpolating net—threshold activations) Let X−,X+ ⊂ RBd2
be finite and disjoint. Let σ be the threshold activation and λ & R. Suppose that there is
a mutual covering of X− and X+ such that the centers C− and C+ are δ-separated and the
radii satisfy

r−` .
d(c−` , C+)

log1/2(eλ/d(c−` , C+))
and r+

j .
d(c+

j , C−)

log1/2(eλ/d(c+
j , C−))

for all ` ∈ [M−] and j ∈ [M+]. Set ω := max{ω−, ω+} where

ω− := max
`∈[M−]

w2(X−` − c−`)

d3(c−` , C+)
and ω+ := max

j∈[M+]

w2(X+
j − c+

j)

d3(c+
j , C−)

.

Suppose that
nmin & λδ−1 log(2M−M+/η) + λω. (6)

Then, with probability at least 1− η, the neural network computed by Algorithm 1 has layer
widths n = nmin and n̂ ≤M−.

Remark 12 We give a few examples of estimates of the Gaussian mean width (see, e.g.,
Vershynin, 2018, for further details) to highlight some special cases of the condition (6).

14

Memorization With Neural Nets: Going Beyond the Worst Case

1. For a finite set A ⊂ Bd2 we have w(A) .
√

log(|A|). As Algorithm 1 requires a finite
number N of input samples, ω . δ−1 log(N).

2. If A ⊂ Bd2 lies in a k-dimensional subspace, then w(A) .
√
k. Hence, for samples in

a k-dimensional subspace, ω . δ−1k.

3. The set Σd
s := {x ∈ Bd2 : ‖x‖0 ≤ s} of s-sparse vectors in the unit ball, where

‖x‖0 counts the number of non-zero coordinates in x, satisfies w(Σd
s) .

√
s log(ed/s).

Hence, if the input samples are s-sparse, ω . δ−1s log(ed/s).

Notice that the latter two estimates are independent of the number of samples.

The idea of the proof of Theorem 11 is to show that if Φ is wide enough, then the neuron
ϕ̂x−∗

associated with x−∗ (defined in (5)) not only separates Φ(x−∗) and Φ(X+), but in fact

acts as a robust separator : it will also separate Φ(x−) and Φ(X+) for all points x− ‘close
enough to’ x−∗ . The key formal observation is stated below in Lemma 19. Intuitively, the
notion of ‘close enough’ should be relative to the distance of x−∗ to the decision boundary.
As a result, the size of the interpolating neural net is related to the ‘complexity’ of a mutual
covering of X− and X+ in which only the parts of X− and X+ that lie close to the decision
boundary need to be covered using components with small diameter—other parts can be
crudely covered using large components (see Figure 1).

Finally, we prove that the statement of Theorem 11 cannot be improved in a certain
sense. Proposition 13 below shows that the upper bound on the size of the second layer Φ̂, as
stated in Theorem 11, cannot be improved in general, assuming that, in addition, σ is non-
decreasing. Note that this assumption is satisfied by many popular activations, including
the ReLU. In the proof, we construct a one-dimensional data set of points with alternating
labels, which one could however embed (e.g., by appending zeros) into Rd for an arbitrary
dimension d ≥ 1. Note that the result holds independently of the random sampling of the
first layer, so one cannot even find a benign choice of hyperplanes to improve the situation
described below.

Proposition 13 Assume that σ is non-decreasing, σ(t) = 0 for t ≤ 0 and σ(t) > 0 for
t > 0. Let M− ≥ 2 and M+ := M− − 1. Then, for all N− ≥ M− and N+ ≥ M+,
there exists X−,X+ ⊂ [0, 1] with N− = |X−| and N+ = |X+|, and a mutual covering
C− = {c−1 , . . . , c−M−} ⊂ X− and C+ = {c+

1 , . . . , c
+
M+} ⊂ X+ such that the output F of

Algorithm 1 has at least M− neurons in its second layer.

3. Proofs

In this section, we present the proofs that have previously been omitted.

3.1 Proof of Proposition 7

We use the following terminology.

Definition 14 Let v ∈ Rd \ {0}, τ ∈ R and t ≥ 0. A hyperplane H[v, τ] t-separates X−
from X+ if

〈v,x−〉+ τ ≤ −t for all x− ∈ X−,
〈v,x+〉+ τ > +t for all x+ ∈ X+.

15

Dirksen, Finke and Genzel

If t = 0, we simply say that H[v, τ] separates X− from X+.

To prove Proposition 7 it suffices to prove the following statement. It shows that the
probability that the first loop of Algorithm 1 stops, and hence the algorithm terminates,
increases exponentially in terms of the number of hyperplanes n. Allowing n to grow
unbounded then directly yields Proposition 7.

Proposition 15 Let X−,X+ ⊂ RBd2 be finite and δ-separated with N− := |X−| and N+ :=
|X+|. Let λ & R. Assume that the loop in Algorithm 1 ran for at least n iterations, where

n & δ−1λ · log(N−N+/η). (7)

Then, the exit condition of the loop is satisfied with probability at least 1− η.

In the proof, we will use the following lower bound on the probability that a random
hyperplane from Algorithm 1 separates a fixed pair of points.

Lemma 16 (Dirksen et al., 2022a, Theorem 18) There is an absolute constant c > 0 such
that the following holds. Let x−,x+ ∈ RBd2. Let g ∈ Rd denote a standard Gaussian random
vector and let τ ∈ [−λ, λ] be uniformly distributed. If λ & R, then with probability at least
c‖x+ − x−‖2/λ, the hyperplane H[g, τ] ‖x+ − x−‖2-separates x− from x+.

Proof [Proposition 15] Fix x− ∈ X− and x+ ∈ X+. We consider i.i.d. copies H1, . . . ,Hn of
a hyperplane H = H[w, b], where w ∼ N(0, Id) and b ∼ Unif([−λ, λ]) are independent. By
Lemma 16, the probability that x− and x+ is not separated by any of these hyperplanes is
at most (1− cδ/λ)n. By taking a union bound over all N−N+ pairs of points, we see that
the probability that at least one pair has no separating hyperplane is at most

N−N+

(
1− c δ

λ

)n
≤ N−N+e−c

δ
λ
n ≤ η,

where we used that 1 + x ≤ ex for x ∈ R and the last inequality follows from (7).

3.2 Proof of Proposition 8

The calculation of the radius takes time O(N−+N+). The loops run for n and n̂ iterations
where each iteration takes time O(N−N+) and O(n(N−+N+)), respectively. Transforming
all samples once with the first layer (which is needed to compute the second loop) takes
time O(n(N−+N+)). This totals O(n(N−N+ + n̂N−+ n̂N+)) = O(nN2), where we used
that n̂ ≤ N . Applying Proposition 15 completes the proof.

3.3 Proof of Proposition 10

Recall that the neuron ϕ̂x−∗
activates on x ∈ Rd if and only if

〈ux−∗
,Φ(x)〉 < mx−∗

= min
x+∈X+

〈ux−∗
,Φ(x+)〉.

16

Memorization With Neural Nets: Going Beyond the Worst Case

We make two observations. First, for any x ∈ Rd,

〈ux−∗
,Φ(x)〉 =

n∑
i=1

1{Φ(x−∗)i=0}Φ(x)i =
n∑
i=1

1{〈wi,x−∗ 〉+bi≤0<〈wi,x〉+bi},

and hence, by the law of large numbers and by symmetry,

lim
n→∞

1

n
〈ux−∗

,Φ(x)〉 =
1

2
P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x〉+ b)) (8)

almost surely, where w ∼ N(0, Id) and b ∼ Unif([−λ, λ]) are independent. Second, by
(Dirksen et al., 2022b, Lemma A.1), for any x,y ∈ Rd,

2λPb(sign(〈w,x〉+ b) 6= sign(〈w,y〉+ b))

= |〈w,x− y〉|1{|〈w,x〉|≤λ,|〈w,y〉|≤λ}
+ 2λ(1{〈w,x〉>λ,〈w,y〉<−λ} + 1{〈w,x〉<−λ,〈w,y〉>λ})

+ (λ− 〈w,x〉)1{〈w,y〉>λ,|〈w,x〉|≤λ} + (λ− 〈w,y〉)1{〈w,x〉>λ,|〈w,y〉|≤λ}
+ (λ+ 〈w,x〉)1{〈w,y〉<−λ,|〈w,x〉|≤λ} + (λ+ 〈w,y〉)1{〈w,x〉<−λ,|〈w,y〉|≤λ},

where Pb is the probability with respect to b. As P(|〈w, z〉| > λ) ≤ 2e−cλ
2/‖z‖22 for any

z ∈ Rd, we find by taking expectations with respect to w, taking the limit for λ→∞, and
using monotone convergence that

lim
λ→∞

2λP(sign(〈w,x〉+ b) 6= sign(〈w,y〉+ b)) = E|〈w,x− y〉| =
√

2/π‖x− y‖2. (9)

We proceed with the proof by distinguishing two cases. Let x ∈ Rd, assume ‖x−∗ − x‖2 <
minx+∈X+ ‖x−∗ − x+‖2 and define

ε :=
minx+∈X+ ‖x−∗ − x+‖2 − ‖x−∗ − x‖2

2
> 0.

By (9), there exists Λ > 0 such that for λ > Λ,

√
2πλP(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x〉+ b))

<
∥∥x−∗ − x

∥∥
2

+ ε

= min
x+∈X+

∥∥x−∗ − x+
∥∥

2
− ε

< min
x+∈X+

√
2πλP(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x+〉+ b)),

and hence
P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x〉+ b))

< min
x+∈X+

P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x+〉+ b)).

Further, define

δ :=
1

2

(
min

x+∈X+
P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x+〉+ b))

− P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x〉+ b))
)
> 0.

17

Dirksen, Finke and Genzel

By (8), almost surely, there exists N ∈ N such that for n > N ,

2

n
〈ux−∗

,Φ(x)〉 < P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x〉+ b)) + δ

= min
x+∈X+

P(sign(〈w,x−∗ 〉+ b) 6= sign(〈w,x+〉+ b))− δ

< min
x+∈X+

2

n
〈ux−∗

,Φ(x+)〉,

and hence
〈ux−∗

,Φ(x)〉 < min
x+∈X+

〈ux−∗
,Φ(x+)〉.

This shows that
lim
λ→∞

lim
n→∞

1A
x−∗

(x) = 1B
x−∗

(x)

almost surely if ‖x−∗ − x‖2 < minx+∈X+ ‖x−∗ − x+‖2. The remaining case ‖x−∗ − x‖2 >
minx+∈X+ ‖x−∗ − x+‖2 can be proved with only minor changes and is omitted.

3.4 Proof of Theorem 11

The key observation to prove Theorem 11 is stated in Lemma 19. To prove it we will need
two ingredients. The first is a slight modification of (Dirksen et al., 2022a, Theorem 26).

Lemma 17 There exists an absolute constant c > 0 such that the following holds. Let
X−,X+ ⊂ RBd2 be δ-separated sets with N− := |X−|, N+ := |X+|. Let W ∈ Rn×d be a
matrix with standard Gaussian entries, b ∈ Rn be uniformly distributed in [−λ, λ]n and let
W and b be independent. Consider the associated random threshold layer Φ: Rd → Rn

Φ(x) = Thres(Wx + b), x ∈ Rd.

Suppose that λ & R and
n & δ−1λ · log(2N−N+/η). (10)

Then with probability at least 1 − η, the following event occurs: For every x− ∈ X−, the
vector ux− ∈ {0, 1}n

(ux−)i =

{
1, (Φ(x−))i = 0,

0, otherwise,
(11)

satisfies 〈ux− ,Φ(x−)〉 = 0 and

〈ux− ,Φ(x+)〉 ≥ c‖x+ − x−‖2 · λ−1n for all x+ ∈ X+.

Geometrically, Lemma 17 states that with high probability the hyperplane H[ux− , 0]
linearly separates Φ(x−) from Φ(X+) and the separation margin increases with both n and
the distance between x− and X+.
Proof By (11) it is clear that 〈ux− ,Φ(x−)〉 = 0. Let W = [w1, . . . ,wn]> ∈ Rn×d and
b = (b1, . . . , bn)> ∈ Rn be the weight matrix and bias vector of Φ, respectively. For x− ∈ X−
and x+ ∈ X+ define

Ix−,x+ = {i ∈ [n] : 〈wi,x
−〉 ≤ −bi < 〈wi,x

+〉},

18

Memorization With Neural Nets: Going Beyond the Worst Case

and define the events

Bi
x−,x+ = {H[wi, bi]

∥∥x+ − x−
∥∥

2
-separates x− from x+},

For n′(x−,x+) > 0 to be specified later, set

Bx−,x+,n′(x−,x+) =
{ n∑
i=1

1Bi
x−,x+

≥ n′(x−,x+)
}
,

B =
⋂

(x−,x+)∈X−×X+

Bx−,x+,n′(x−,x+).

On the event B, for every x− ∈ X− and x+ ∈ X+,

〈ux− ,Φ(x+)〉 =
∑

i∈Ix−,x+

Thres(〈wi,x
+〉+ bi) = |Ix−,x+ | ≥ n′(x−,x+).

For every i ∈ [n], Lemma 16 implies that P(Bi
x−,x+) ≥ c ‖x+ − x−‖2 λ−1 for an absolute

constant c > 0 if λ & R. Therefore, Chernoff’s inequality for sums of independent Bernoulli
random variables (see, e.g., Vershynin, 2018, Section 2.3) implies that

P

(
n∑
i=1

1Bi
x−,x+

≤ c

2
λ−1

∥∥x+ − x−
∥∥

2
n

)
≤ exp(−c′λ−1

∥∥x+ − x−
∥∥

2
n),

where c′ > 0 is an absolute constant. Setting n′(x−,x+) = c
2 ‖x+ − x−‖2 λ−1n, we obtain

P(Bc
x−,x+,n′(x−,x+)) ≤ exp(−c′λ−1

∥∥x+ − x−
∥∥

2
n) ≤ exp(−c′λ−1δn).

Hence, by the union bound and (10),

P(Bc) ≤ N−N+ exp(−c′λ−1δn) ≤ η.

Our second proof ingredient is the following lemma. It is an immediate consequence of
(Dirksen and Mendelson, 2021, Theorem 2.9).

Lemma 18 Consider c1, . . . , cM ⊂ Rd and X1, . . . ,XM ⊂ Rd such that Xj ⊂ Bd2(cj , rj) ⊂
RBd2 for all j ∈ [M]. Let

rj .
r′j√

log(eλ/r′j)
, r′ = min

j∈[M]
r′j .

Let further w1, . . . ,wn ∼ N(0, Id) and b1, . . . , bn ∼ Unif([−λ, λ]) all be independent. If
λ & R and

n &
λ

r′
log(2M/η) + max

j∈[M]

λ

(r′j)
3
w2(Xj − cj),

then, with probability at least 1− η, for all j ∈ [M] and x ∈ Xj,

|{i ∈ [n] : Thres(〈wi, cj〉+ bi) 6= Thres(〈wi,x〉+ bi)}| .
r′jn

λ
.

19

Dirksen, Finke and Genzel

The following result shows that the ‘dedicated’ neuron ϕ̂x−∗
associated with x−∗ (defined

in (5)) not only separates Φ(x−∗) and Φ(X+), but in fact acts as a robust separator: it also
separates Φ(x−) and Φ(X+) for all points x− in the component of the mutual covering in
which x−∗ resides.

Lemma 19 Consider the setting of Theorem 11. For x−∗ ∈ X− we define the associated
neuron ϕ̂x−∗

: Rn → {0, 1} by

ϕ̂x−∗
(z) = Thres(−〈ux−∗

, z〉+mx−∗
),

where
ux−∗

= 1[Φ(x−∗) = 0] and mx−∗
= min

x+∈X+
〈ux−∗

,Φ(x+)〉.

Then, with probability at least 1− η, for all ` ∈ [M−] and x−∗ ∈ X−` ,

ϕ̂x−∗
(Φ(x−)) > 0 for all x− ∈ X−` , (12)

and
ϕ̂x−∗

(Φ(x+)) = 0 for all x+ ∈ X+. (13)

Proof Clearly, the choice of mx−∗
ensures that (13) holds. It remains to show that, with

probability at least 1− η,

〈ux−∗
,Φ(x−)〉 < mx−∗

= min
x+∈X+

〈ux−∗
,Φ(x+)〉

for all ` ∈ [M−] and x−∗ ,x
− ∈ X−` . Let A be the event where, for every ` ∈ [M−] and

j ∈ [M+],

〈uc−`
,Φ(c+

j)〉 ≥ c1λ
−1
∥∥∥c−` − c+

j

∥∥∥
2
n.

By Lemma 17, P(A) ≥ 1 − η under our assumptions. Let B be the event where, for all
` ∈ [M−] and x− ∈ X−` ,∥∥Φ(c−`)− Φ(x−)

∥∥
1

= |{i ∈ [n] : Thres(〈wi, c
−
` 〉+ bi) 6= Thres(〈wi,x

−〉+ bi)}|

≤ c2
(r′`)

−n
λ

,

and, for all j ∈ [M+] and x+ ∈ X+
j ,∥∥∥Φ(c+

j)− Φ(x+)
∥∥∥

1
= |{i ∈ [n] : Thres(〈wi, c

+
j 〉+ bi) 6= Thres(〈wi,x

+〉+ bi)}|

≤ c2

(r′j)
+n

λ
,

where
(r′`)

− =
c1

12c2
d(c−` , C+), (r′j)

+ =
c1

4c2
d(c+

j , C−).

By Lemma 18, P(B) ≥ 1− η under the stated assumptions. For the remainder of the proof,
we condition on the event A ∩B.

20

Memorization With Neural Nets: Going Beyond the Worst Case

By using B, we find

|〈ux−∗
,Φ(x−)〉| = |〈ux−∗

,Φ(x−)− Φ(x−∗)〉|
≤
∥∥Φ(x−)− Φ(x−∗)

∥∥
1

≤
∥∥Φ(x−)− Φ(c−`)

∥∥
1

+
∥∥Φ(c−`)− Φ(x−∗)

∥∥
1

≤ 2c2
(r′`)

−

λ
n.

Now pick j ∈ [M+] and x+ ∈ X+
j . Using A and B,

〈ux−∗
,Φ(x+)〉
= 〈uc−`

,Φ(c+
j)〉+ 〈ux−∗

− uc−`
,Φ(c+

j)〉+ 〈ux−∗
,Φ(x+)− Φ(c+

j)〉
≥ 〈uc−`

,Φ(c+
j)〉 − |〈Φ(x−∗)− Φ(c−`),Φ(c+

j)〉| − |〈ux−∗
,Φ(x+)− Φ(c+

j)〉|

≥ 〈uc−`
,Φ(c+

j)〉 −
∥∥Φ(x−∗)− Φ(c−`)

∥∥
1
−
∥∥∥Φ(x+)− Φ(c+

j)
∥∥∥

1

≥ c1λ
−1
∥∥∥c−` − c+

j

∥∥∥
2
n− c2

(r′`)
−

λ
n− c2

(r′j)
+

λ
n,

where in the second step we used that ux = 1− Φ(x) due to the threshold activation.
Combining the above we see that, for all ` ∈ [M−], x−∗ ,x

− ∈ X−` , j ∈ [M+], and
x+ ∈ X+

j ,

〈ux−∗
,Φ(x−)〉 < 〈ux−∗

,Φ(x+)〉,
where we have used that

(r′`)
− <

c1

6c2

∥∥∥c−` − c+
j

∥∥∥
2
, (r′j)

+ <
c1

2c2

∥∥∥c−` − c+
j

∥∥∥
2
.

Since for any x+ ∈ X+ there is some j ∈ [M+] such that x+ ∈ X+
j , we find for all ` ∈ [M−]

and x−∗ ,x
− ∈ X−` ,

〈ux−∗
,Φ(x−)〉 < min

x+∈X+
〈ux−∗

,Φ(x+)〉 = mx−∗
,

as desired.

We can now complete the proof.
Proof [Theorem 11] Throughout, we condition on the event from Lemma 19. Let us first
observe that the first loop of Algorithm 1 terminates after nmin iterations and hence the
first layer Φ of F has width nmin. Indeed, taking x−∗ = x− in (12), we see that ϕ̂x−(x−) > 0
for any x− ∈ X− and hence

0 = 〈ux− ,Φ(x−)〉 < mx− = min
x+∈X+

〈ux− ,Φ(x+)〉.

This estimate implies that for all x+ ∈ X+, there must be a hyperplane that separates x−

from x+.
Next, using induction we show that the second loop terminates after at most M− steps,

thus n̂ ≤ M−. In the first iteration, we select x−1 ∈ C = X− which is part of at least one

21

Dirksen, Finke and Genzel

component of the mutual covering, say X−i1 . By Lemma 19, the associated neuron ϕ̂x−1
acti-

vates on all of X−i1 and hence C ∩X−i1 = ∅ after the update. Suppose that the p-th iteration

finished, thus C ∩X−ij = ∅ for all j ∈ [p]. We select x−p+1 ∈ C ⊂ X− \ (X−i1 ∪ · · · ∪ X
−
ip

) which

must be part of a new component, say X−ip+1
. Again, by the lemma the associated neuron

activates on all of the component, and thus, after the update C ∩X−ij = ∅ for all j ∈ [p+ 1].

By induction, after at most M− iterations C = ∅ and hence the algorithm terminates with
n̂ ≤M−.

3.5 Proof of Corollary 5

Let C− and C+ denote the centers of the mutual covering. We apply Algorithm 1 to C− and
C+ (with λ ≈ R and nmin from Theorem 11) with the following change: when computing
the biases in the second layer, instead of taking the minimum only over C+ we set, for all
` ∈ [M−],

mc−`
= min

x+∈X+
〈uc−`

,Φ(x+)〉.

Inspecting the proof of Theorem 11, we see that with positive probability this network has
the asserted size and, moreover, interpolates X− and X+.

3.6 Proof of Proposition 13

Before we construct a data set that satisfies the properties of the proposition, we make some
preliminary observations. Consider any X−,X+ ⊂ Rd. Let Φ denote the first layer of the
output F of Algorithm 1. For a given x−∗ ∈ X−, consider its associated neuron ϕx−∗

defined

in (5). Consider x−∗ 6= x− ∈ X− and for t ≥ 0 set

xt = x−∗ + t(x− − x−∗),

so that {xt : t ≥ 0} is the ray originating from x−∗ and passing through x−.

First, we claim that t 7→ 〈ux−∗
,Φ(xt)〉 is non-decreasing. This is an immediate conse-

quence of the fact that Φi(xt) ≤ Φi(xs) for all i ∈ [n] such that Φi(x
−
∗) = 0 and for all

0 ≤ t ≤ s. This is clear in the case Φi(xt) = 0. Assuming Φi(xt) > 0 (and hence t > 0),
the assumptions imposed on σ imply that

0 < 〈wi,xt〉+ bi = 〈wi,x
−
∗ 〉+ bi + t〈wi,x

− − x−∗ 〉.

As t > 0 and 〈wi,x
−
∗ 〉+ bi ≤ 0 due to Φi(x

−
∗) = 0, it follows that

〈wi,x
− − x−∗ 〉 > 0.

Finally, since σ is non-decreasing,

Φi(xt) = σ(〈wi,xt〉+ bi)

≤ σ(〈wi,xt〉+ bi + (s− t)〈wi,x
− − x−∗ 〉)

= σ(〈wi,xs〉+ bi) = Φi(xs),

22

Memorization With Neural Nets: Going Beyond the Worst Case

proving our claim.

Now let us make the following observation: suppose there is x+ ∈ X+ which lies between
x−∗ and x− in the sense that there exists t+ ∈ (0, 1) such that xt+ = x+. Then, the neuron
ϕ̂x−∗

does not activate on Φ(x−). To see this, we simply invoke the above claim, which
yields

mx−∗
≤ 〈ux−∗

,Φ(x+)〉 ≤ 〈ux−∗
,Φ(x−)〉,

and directly implies ϕ̂x−∗
(Φ(x−)) = 0.

With these observations, we can now prove the statement of the proposition. Consider
the interval [0, 1] and place points c−` and c+

j in an alternating fashion on an equispaced

grid: formally, for ` ∈ [M−] and j ∈ [M+] we set

c−` =
`− 1

M− − 1
and c+

j =
j − 1/2

M− − 1
.

Let r−` and r+
j be as in Theorem 11. Choose the remaining N− −M− points x− ∈ X−

and N+ −M+ points x+ ∈ X+ such that for each of them there exists ` ∈ [M−] with∥∥x− − c−`
∥∥

2
≤ r−` and j ∈ [M+] with

∥∥∥x+ − c+
j

∥∥∥
2
≤ r+

j , respectively. Then, C− =

{c−1 , . . . , c−M−} and C+ = {c+
1 , . . . , c

+
M+} form a mutual covering of X− and X+ as required

by Theorem 11.

Let ` ∈ [M−] be fixed. By our earlier observation, for each x− ∈ X−\X−` , ϕx−(Φ(c−`)) =
0, as there is a point c+

j ∈ X+ between x− and c−` . Thus, to classify c−` correctly, we need

to choose (at least) one neuron corresponding to a point in X−` . As we need to classify the
points c−` for all ` ∈ [M−] correctly, we cannot include less than M− neurons in the second
layer.

4. Numerical Experiments

In this section, we study the performance of Algorithm 1 through numerical simulations on
different data sets.3 In particular, we want to investigate how the interpolation probability
(approximated as the fraction of a fixed amount of runs that produce an interpolating
network) and the width of the second layer respond to changes in the width of the first
layer n and the maximal bias λ. Recall that the algorithm was designed in such a way that
it adapts the width of the first layer to guarantee interpolation on the input data. To have
free control over this parameter we adapt the algorithm slightly for the experiments.

Hence, we formulate Algorithm 2 which has both n and λ as hyperparameters. As the
first layer might be such that not every pair of samples with different labels is separated by
at least one hyperplane, we have to adjust the construction of the second layer. We keep
track of the set C of candidate samples whose associated neurons might be accepted into
the second layer, the set U of samples that have yet to be correctly classified by a neuron
(the universe), and the set A of samples whose associated neurons have been accepted into
the second layer. Note that C ⊂ U but there might not be equality. The algorithm stops if
we either run out of candidates or all points are classified correctly. In every iteration, we

3. Code is available at https://github.com/patrickfinke/memo. We use Python 3, Scikit-learn, and
NumPy.

23

https://github.com/patrickfinke/memo

Dirksen, Finke and Genzel

draw a candidate sample at random and compute the associated neuron. If the neuron at
least correctly classifies the candidate itself, we accept it into the second layer and remove
every point that the neuron classifies correctly from both C and U . This check could be
omitted in Algorithm 1 due to the construction of the first layer which also guaranteed that
C = U .

Algorithm 2 Interpolation (experiments)

Input: Disjoint and finite X−,X+ ⊂ Rd with N− := |X−|, N+ := |X+|, activation σ : R→
R satisfying σ(t) = 0 for t ≤ 0 and σ(t) > 0 for t > 0, width of first layer n ≥ 1,
maximal bias λ ≥ 0.

Output: A three-layer fully-connected neural network F : Rd → {±1}.

1: Randomly sample W ∈ Rn×d and b ∈ Rn where

Wi ∼ N(0, Id) and bi ∼ Unif([−λ, λ]).

are all independent and define the first layer Φ(x) = σ(Wx + b).

2: Initialize C ← X−, U ← X− and A ← ∅.
3: while C 6= ∅ and U 6= ∅ do
4: Select a candidate x−∗ ∈ C at random and update C ← C \ {x−∗ }.
5: Calculate ux−∗

∈ {0, 1}n and mx−∗
≥ 0 according to

ux−∗
← 1[Φ(x−∗) = 0] and mx−∗

← min
x+∈X+

〈ux−∗
,Φ(x+)〉.

6: if mx−∗
> 0 then

7: Calculate T ← {x− ∈ U : 〈ux−∗
,Φ(x−)〉 < mx−∗

}.
8: Update C, U and A according to

C ← C \ T , U ← U \ T and A ← A∪ {x−∗ }.

9: end if
10: end while
11: Define Φ̂(z) = σ(−Uz + m) with U ∈ R|A|×n and m ∈ R|A| where

U ←
[
u>
x−∗

]
x−∗ ∈A

and m←
[
mx−∗

]
x−∗ ∈A

.

12: Return F (x) = sign(−〈1, Φ̂(Φ(x))〉).

In the following, we present five experiments. First, we focus on the verification of our
theoretical results through illustrative experiments on simple data sets. In Section 4.1, we
apply Algorithm 2 to the Two Moons data set, which allows us to verify our main result and
illustrate the underlying geometric intuition. In Section 4.2 we verify that, in a controlled
setting which is guaranteed to satisfy our assumptions, the network size indeed does not

24

Memorization With Neural Nets: Going Beyond the Worst Case

depend on the number of samples. Next, we examine the performance on real world data.
In Section 4.3 we investigate binary classification subproblems of the MNIST data set. We
introduce an extension to multi-class classification in Section 4.4 and apply it to MNIST.
Additionally, in Section 4.5, we consider the CIFAR-10 data set. Finally, we present a
worst-case example in Section 4.6. In all experiments, we let σ be the threshold activation.

4.1 Binary Classification on Two Moons

In this section, we apply Algorithm 2 to the 2D Two Moons4 data set (Figure 5a), allowing
us to easily visualize the output of the algorithm in the input domain. While this is only
a synthetic toy data set, it provides a clear geometric structure with well-separated classes.
At the same time, the data is not linearly separable, and not all pairs of samples with
different labels can be efficiently separated by hyperplanes that pass through the origin,
making it a good first testing ground for the effect of the parameter λ.

Interpolation probability. In Figure 5b we observe a clear phase transition in the inter-
polation probability which is in line with the prediction of Theorem 11, where we treat all
complexity terms depending on the data set as constant. As can be seen from the contour
lines, for λ larger than the data radius, n & λ is enough to guarantee interpolation with
any fixed probability. On the other hand, one can observe that a large enough λ is also
necessary for efficient interpolation, as for λ = 0 interpolation does not happen for any
value of n.

It is noteworthy that the optimal value of λ is smaller than the data radius. This is
intuitive here, as a maximal bias exceeding the radius of X+ already guarantees the efficient
separation of pairs of opposite labels in the first layer.

Width of the second layer Φ̂. As can be seen in Figure 5c, the width of the second
layer becomes much smaller than the number of points. We are mainly interested in the
part of the parameter space where the interpolation probability is close to one. In this
region, the width attains its minimum and is essentially constant.

Due to the two-dimensionality of the data, it is possible to visualize the decision bound-
ary of our method in input space, see Figure 6. Neurons of the second layer have (ap-
proximately) circular activation regions that are centered at their corresponding candidate
points and which extend all the way to the other class. The third layer takes a union of
these regions—the boundary of this union is the decision boundary. We can repeat this vi-
sualization for different values of the hyperparameters, see Figure 7. For λ = 0 the method
fails to separate pairs of samples with opposite labels because all hyperplanes pass through
the origin. If λ is large enough and as n grows, the method begins to succeed. In line with
Proposition 10, the activation regions of the individual neurons become more circular as n
increases, which can be best seen in the rightmost column of Figure 7.

4.2 Behaviour in the Sample Size Limit

In Theorem 11, the size of the interpolating network is independent of the number of samples
and only dictated by the parameters of the mutual covering. To illustrate this numerically,

4. See https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html.

25

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

Dirksen, Finke and Genzel

0.5 0.0 0.5 1.0

0.25

0.00

0.25

0.50

(a) Two Moons. A d = 2 dimensional data set of two interleaving half circles. Each class has
N− = N+ = 500 samples and the radius is R = 1.

0.
0

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

maximal bias

10
60

110
160
210
260
310
360
410
460

w
id

th
 o

f f
irs

t l
ay

er
 n

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2
maximal bias

0.0

0.5

1.0 width n
50
200
500

0 200 400
width of first layer n

0.0

0.5

1.0 max bias
0.0
0.75
2.5

(b) Interpolation probability. (Left) The interpolation probability (average over 250 runs) as
a function of the width of the first layer n and maximal bias λ. The 99% contour line is at the
dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of the heatmap with 95%
confidence intervals.

0.
0

0.
25 0.
5

0.
75 1.
0

1.
25 1.
5

1.
75 2.
0

2.
25 2.
5

maximal bias

10
60

110
160
210
260
310
360
410
460

w
id

th
 o

f f
irs

t l
ay

er
 n

0

10

20

0 1 2
maximal bias

0

10

20
width n

50
200
500

0 200 400
width of first layer n

0

10

20
max bias

0.0
0.75
2.5

(c) Width of the second layer Φ̂. (Left) The width of the second layer Φ̂ (average over 250 runs)
as a function of the width of the first layer n and maximal bias λ. The 99% interpolation probability
contour line is at the dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of
the heatmap with 95% confidence intervals. Markers indicate an interpolation probability ≥ 99%,
compare Figure 5b.

Figure 5: Binary classification on the Two Moons data set.

26

Memorization With Neural Nets: Going Beyond the Worst Case

0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.2

0.0

0.2

0.4
+

Figure 6: Decision boundary. Each star marks an accepted point and the region of
the same color is the activation region of its associated neuron. The decision
boundary of the network is the boundary of the union of these regions. Here, we
used n = 2 000 and λ = 1.

n
=

50
0

n
=

25
0

= 0.0

n
=

10
0

= 0.5

= 1.0

Figure 7: Decision boundaries for different choices of hyper-parameters. Similar
to Figure 6 but includes all combinations of hyper-parameters n ∈ {100, 250, 500}
(rows) and λ ∈ {0, 0.5, 1} (columns). Plots in which the network interpolates the
data are marked with a thick dashed frame.

27

Dirksen, Finke and Genzel

we consider a scenario where we sample points from a distribution whose support consists
of two disjoint, compact sets representing two classes. We expect that as we iteratively
sample points from the distribution, the size of the interpolating network should saturate
and be bounded by the parameters of the mutual covering of the support of the distribution
(satisfying the restrictions in Theorem 11).

To verify this, we return to the Two Moons data set from Section 4.1. We fix the
maximal bias λ = 1 and vary the number of points N by drawing samples from the data
distribution.5

Interpolation probability. The contour lines in the heatmap in Figure 8b show which
width of the first layer is required to achieve interpolation with a fixed probability for a
certain number of samples. We can observe that there is an increase in the required width
up to around 800 000 samples. After this threshold, however, a constant width of the first
layer is enough to interpolate any number of samples.

Width of the second layer Φ̂. As in the other experiments we are interested in the
part of the parameter space where the interpolation probability is almost one. Similar to
the contour lines of the interpolation probability we observe that to obtain a fixed width
of the second layer there is an increase in the required width of the first layer only up to a
certain threshold (again, around 800 000 samples). After this threshold, a constant width
of the first layer is enough to obtain a fixed width of the second layer.

Combining the above observations we note the following: there is a threshold in the
number of samples such that for larger sample sizes there is a width of the first layer for
which the network interpolates with probability close to one and the width of the second
layer stays constant. Hence, as the width of the second layer is only lower for smaller
sample sizes, a neural network of constant size (whose parameters can be computed via our
algorithm) suffices to interpolate any number of samples.

4.3 Binary Classification on MNIST

In the previous section, we ran a controlled experiment with a data generating distribution
that was guaranteed to satisfy the assumptions of our main theorem and which could be
used to draw an unlimited number of samples. It is natural to ask if the network size can
also be observed to saturate in terms of the number of samples on real data. Examining
binary classification subproblems of the MNIST data set (LeCun et al., 1998), we find that
the answer is ‘only sometimes’. We illustrate this in Figure 9, which depicts the results for
the ‘1 vs. 9’ and ‘1 vs. 8’ subproblems. For ‘1 vs. 9’, the second layer width clearly saturates
as the number of samples grows. On the other hand, for ‘1 vs. 8’, although the curve seems
to flatten a little, the second layer essentially grows linearly. For other binary subproblems,
we observed that it was more common that the network size did not completely saturate.
We emphasize that this does not contradict our claim that our approach yields a network
of a size that is independent from the number of samples. Let us point to two possible
explanations. First, MNIST may not contain enough samples to accurately represent the

5. We use sklearn.datasets.make moons(n samples=N, noise=0.05) from the scikit-learn Python pack-
age to generate the samples.

28

Memorization With Neural Nets: Going Beyond the Worst Case

N = 100 N = 1 000 N = 5 000
(a) Two Moons. Continuously drawing samples from the distribution of Two Moons (Figure 5a)
leads to a better representation of the support. Each class has always N/2 samples and the radius
is R = 1.

10
00

00
20

00
00

30
00

00
40

00
00

50
00

00
60

00
00

70
00

00
80

00
00

90
00

00
10

00
00

0

number of samples N

200
400
600
800

1000
1200
1400
1600
1800
2000

w
id

th
 o

f f
irs

t l
ay

er
 n

0.0

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00
number of samples N 1e6

0.0

0.5

1.0 width n
600
1000
2000

500 1000 1500 2000
width of first layer n

0.0

0.5

1.0 samples N
100000
300000
1000000

(b) Interpolation probability. (Left) The interpolation probability (average over 100 runs) as a
function of the width of the first layer n and the number of samples N . The 99% contour line is at
the dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of the heatmap with
95% confidence intervals.

10
00

00
20

00
00

30
00

00
40

00
00

50
00

00
60

00
00

70
00

00
80

00
00

90
00

00
10

00
00

0

number of samples N

200
400
600
800

1000
1200
1400
1600
1800
2000

w
id

th
 o

f f
irs

t l
ay

er
 n

0.0

2.5

5.0

7.5

10.0

0.25 0.50 0.75 1.00
number of samples N 1e6

0

5

10 width n
600
1000
2000

500 1000 1500 2000
width of first layer n

0

5

10 samples N
100000
300000
1000000

(c) Width of the second layer Φ̂. (Left) The width of the second layer Φ̂ (average over 100 runs)
as a function of the width of the first layer n and the number of samples N . The 99% interpolation
probability contour line is at the dashed purple line. (Right) Horizontal (top) and vertical (bottom)
slices of the heatmap with 95% confidence intervals. Markers indicate an interpolation probability
≥ 99%, compare Figure 8b.

Figure 8: Sample size limit on the Two Moons data set.

29

Dirksen, Finke and Genzel

5000 10000 15000
number of samples N

0

50

(a) 1 vs. 8

5000 10000 15000
number of samples N

0

50

(b) 1 vs. 9

Figure 9: Width of the second layer Φ̂ on MNIST subproblems. The width of the
second layer Φ̂ (average over 25 runs) as a function of the number of samples N for
two binary classification subproblems of MNIST. We fixed n = 5 000 and λ = 0.5.
Markers indicate an interpolation probability ≥ 99%, which is everywhere on all
curves in this figure.

underlying distribution. Recall from Section 4.2 that, even for the simple Two Moons data
set, we needed around 800 000 samples to demonstrate a clear saturation effect. Second,
there may be an overlap in the class distributions which violates our separation assumption.
This can happen quite easily for real data due to the presence of noise.

4.4 Multi-Class Classification on MNIST

Recall that our method is designed for binary problems. One-versus-many is a common
strategy to extend binary classification methods to multi-class problems: for each class,
train a binary classifier to distinguish between this class and all other classes. At inference
time, query all classifiers and output the class label corresponding to the classifier with the
highest confidence score.

We extend Algorithm 2 to multi-class problems in a similar manner. However, as the
first layer is obtained in an identical way for every execution of our method, we reuse
it across all classes. One can use a simple union bound argument to prove high success
probability for this case. Let K ≥ 2 denote the total number of classes and Xk the set of
samples of class k ∈ [K]. Sample the first layer Φ at random as in Algorithm 2. Then, for
each class k ∈ [K] compute the second and third layer while using Φ as the first layer and
X− = Xk and X+ =

⋃
6̀=k X` as input data. It is convenient to modify the third layer to

map samples of X− to 1 and samples of X+ to 0. Denote the concatenation of the second
and third layers by Fk. Define the final classifier F : (X1 ∪ · · · ∪ XK)→ {0, 1}K by

F (x) = (F1(Φ(x)), . . . , FK(Φ(x)))

which outputs the class label as a one-hot encoding. We apply this method to MNIST.

Interpolation probability. In Figure 10b we again observe a clear phase transition in
the interpolation probability. As in the case of Two Moons, this behaves as predicted by
Theorem 11, as for λ larger than the radius of the data, n & λ is enough to guarantee
interpolation with any fixed probability. For λ = 0 the method not only interpolates but
it does so with the narrowest first layer. That this works can be intuitively explained by

30

Memorization With Neural Nets: Going Beyond the Worst Case

the angular separation of MNIST. The minimal angle between two samples from MNIST
is around 0.17 (in contrast to about 2.44 · 10−6 for Two Moons). Hence, it is possible to
efficiently separate pairs of samples with hyperplanes through the origin.

Width of the second layer Φ̂. Again we are interested in the part of the parameter
space where the interpolation probability is close to one. In Figure 10c we observe that,
while λ = 0 seems to be the optimal choice (for the interpolation probability), increasing
n may still lead to a reduction of the width of the second layer. Figure 11 reveals that the
width does decrease well after interpolation is possible, and in fact, λ ≈ 0.5 yields an even
lower value. This might be due to the effect that can be seen in Figure 7, where for λ = 0 the
activation regions of the neurons of the second layer are ‘wedges’ and become more circular
for larger λ, which then might prove beneficial to the width of the second layer. Compared
to the binary classification experiments in the previous sections, the width of the second
layer is relatively large. For the most part, this is due to the larger number of classes: due
to our one-versus-many approach, the width of the second layer scales as

∑K
i=1M

−
i , where

K is the number of classes and M−i is the mutual covering number for the one-versus-rest
problem for class i. Additionally, MNIST may simply not admit a ‘small’ mutual covering.
Although the concept of mutual covering adapts to the relative positioning of the classes, it
is not clear whether a covering with Euclidean balls yields the right complexity measure for
image data. It would be an interesting future research direction to adapt our method to a
different notion of covering that is more suitable for specific types of data, such as images.

4.5 Multi-Class Classification on CIFAR-10

Next, we apply the extension for multi-class problems from the previous section to CIFAR-
10. Due to the color channels and a slightly higher resolution, the dimension is larger than
that of MNIST. Additionally, photos of real objects provide more variety than handwritten
digits.

Interpolation probability. In Figure 12b we see a clear phase transition in the interpola-
tion probability. As in the other experiments, this behaves as predicted by the Theorem 11:
for λ larger than the data radius, n & λ yields interpolation for any fixed probability. As
with MNIST in the previous section, λ = 0 is the best choice.

Width of the second layer Φ̂. In Figure 12c we observe that the width of the second
layer seems almost constant in the part of the parameter space where the interpolation
probability is close to one. Considering even larger values of n in Figure 13, the width of
the second layer decreases well beyond the interpolation threshold and the optimal choice
of the maximal bias seems to be around λ = 0.25. Again, relative to the number of samples,
the width of the second layer is very large. As in the case of MNIST in the previous section,
one might conjecture that the data is either ill-conditioned in terms of the mutual covering
or violates one of our assumptions. We will come back to this in Section 5.

4.6 A Worst-Case Example

We conclude with a constructed example that demonstrates that our algorithm can in cer-
tain cases fail to produce a small interpolating net. Figure 14 shows samples drawn from two

31

Dirksen, Finke and Genzel

(a) MNIST. A multi-class classification data set containing a total of 70.000 grayscale images of
handwritten digits. Each image has dimension d = 28×28 = 784. We mapped the pixel values from
{0, . . . , 255} to [0, 1] and normalized the radius to R = 1.

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

maximal bias

20
80

140
200
260
320
380
440
500

w
id

th
 o

f f
irs

t l
ay

er
 n

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2
maximal bias

0.0

0.5

1.0 width n
100
300
500

0 200 400
width of first layer n

0.0

0.5

1.0 max bias
0.0
1.0
2.5

(b) Interpolation probability. (Left) The interpolation probability (average over 25 runs) as
a function of the width of the first layer n and maximal bias λ. The 99% contour line is at the
dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of the heatmap with 95%
confidence intervals.

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

maximal bias

20
80

140
200
260
320
380
440
500

w
id

th
 o

f f
irs

t l
ay

er
 n

0

10000

20000

30000

40000

0 1 2
maximal bias

0

20000

40000 width n
100
300
500

0 200 400
width of first layer n

0

20000

40000 max bias
0.0
1.0
2.5

(c) Width of the second layer Φ̂. (Left) The width of the second layer Φ̂ (average over 25 runs)
as a function of the width of the first layer n and maximal bias λ. The 99% interpolation probability
contour line is at the dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of
the heatmap with 95% confidence intervals. Markers indicate an interpolation probability ≥ 99%,
compare Figure 10b.

Figure 10: Multi-class classification on the MNIST data set.

32

Memorization With Neural Nets: Going Beyond the Worst Case

0 1 2
maximal bias

0

20000

width n
2500
5000
10000

2500 5000 7500 10000
width of first layer n

0

20000

max bias
0.0
1.0
2.5

Figure 11: Width of the second layer Φ̂ on MNIST. Horizontal (left) and vertical
(right) slices of the heatmap in Figure 10c for an extended range of the width
n of the first layer. Markers again indicate an interpolation probability ≥ 99%,
which is everywhere on all curves in this figure.

parallel lines, where the distances of samples between classes are smaller than the distances
of samples within each class. This forces the components of the mutual covering (and the
activation regions of the neurons in the second layer) to be so small that they only cover a
single point. Hence, the width of the second layer scales as the number of samples, which is
the worst case. This example shows that, although our algorithm is guaranteed to produce
small interpolating neural networks on data with a small mutual covering number, it may
not take advantage of alternative benign structures (linear separability in this constructed
example).

5. Conclusion

In this paper, we presented an instance-specific viewpoint on the memorization problem for
neural networks. We quantified the sufficient network size that guarantees interpolation of
given data with two classes in terms of a mutual covering that takes both the geometric
complexities and the mutual arrangement of the classes into account. Under our assump-
tions, the network size depends only on the mutual covering and does not depend on the
number of samples in the data set. In this way, our result moves beyond worst-case memo-
rization capacity bounds, which cannot be independent of the number of samples. We gave
a constructive proof by presenting a randomized algorithm that is guaranteed to produce
an interpolating network for given input data with high probability. We illustrated our
theoretical guarantees, in particular the independence of the number of samples, by testing
our randomized interpolation algorithm in controlled numerical experiments. In addition,
we tested our algorithm on image data and found that it produced relatively large interpo-
lating networks in many cases. In future work, we aim to improve our algorithm for real
data by making it robust to noise and by making it tailored to low-complexity structures
present in real data such as images.

33

Dirksen, Finke and Genzel

(a) CIFAR-10. The CIFAR-10 data set consists of 60 000 color images in 10 classes of different
objects, with 6 000 images per class. Each image has dimension d = 32× 32× 3 = 3072. The pixel
values reside in [0, 1] and we normalized the radius to R = 1.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

maximal bias

150
300
450
600
750
900

1050
1200
1350
1500

w
id

th
 o

f f
irs

t l
ay

er
 n

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2
maximal bias

0.0

0.5

1.0 width n
600
1200
1500

500 1000 1500
width of first layer n

0.0

0.5

1.0 max bias
0.0
1.0
2.5

(b) Interpolation probability. (Left) The interpolation probability (average over 10 runs) as
a function of the width of the first layer n and maximal bias λ. The 99% contour line is at the
dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of the heatmap with 95%
confidence intervals.

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

maximal bias

150
300
450
600
750
900

1050
1200
1350
1500

w
id

th
 o

f f
irs

t l
ay

er
 n

0

20000

40000
0 1 2

maximal bias

0

25000

50000 width n
600
1200
1500

500 1000 1500
width of first layer n

0

25000

50000 max bias
0.0
1.0
2.5

(c) Width of the second layer Φ̂. (Left) The width of the second layer Φ̂ (average over 10 runs)
as a function of the width of the first layer n and maximal bias λ. The 99% interpolation probability
contour line is at the dashed purple line. (Right) Horizontal (top) and vertical (bottom) slices of
the heatmap with 95% confidence intervals. Markers indicate an interpolation probability ≥ 99%,
compare Figure 10b.

Figure 12: Multi-class classification on the CIFAR-10 data set.

34

Memorization With Neural Nets: Going Beyond the Worst Case

0 1 2
maximal bias

50000

55000

width n
2500
5000
10000

2500 5000 7500 10000
width of first layer n

50000

55000

max bias
0.0
1.0
2.5

Figure 13: Width of the second layer Φ̂ on CIFAR-10. Horizontal (left) and vertical
(right) slices of the heatmap in Figure 12c for an extended range of the width
n of the first layer. Markers again indicate an interpolation probability ≥ 99%,
which is everywhere on all curves in this figure.

1.0 0.5 0.0 0.5 1.0

0.50

0.25

0.00

0.25

0.50 +

Figure 14: Parallel lines. Points are sampled from two parallel lines such that the dis-
tance of samples between classes is smaller than the distance of samples within
each class. In this case, each neuron in the second layer activates only for its
associated point, and hence the second layer has maximal width. Note, as all
points of X− are accepted into the second layer, they are all marked with stars.
Here, we used n = 2 000 and λ = 1.0.

35

Dirksen, Finke and Genzel

Acknowledgments

S.D. and M.G. acknowledge support by the DFG Priority Programme DFG-SPP 1798 Grant
DI 2120/1-1. The authors thank the anonymous reviewers for their comments and sugges-
tions that lead to improvements in our work.

References

Senjian An, Farid Boussaid, and Mohammed Bennamoun. How can deep rectifier net-
works achieve linear separability and preserve distances? In International Conference on
Machine Learning, pages 514–523. PMLR, 2015.

Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20(63):1–17, 2019.

Eric Baum and David Haussler. What size net gives valid generalization? In Advances
in Neural Information Processing Systems, volume 1, pages 81–90. Morgan-Kaufmann,
1988.

Eric B. Baum. On the capabilities of multilayer perceptrons. Journal of Complexity, 4(3):
193–215, 1988.

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning
through the prism of interpolation. Acta Numerica, 30:203–248, 2021.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849–15854, 2019.

Sebastien Bubeck, Ronen Eldan, Yin T. Lee, and Dan Mikulincer. Network size and size
of the weights in memorization with two-layers neural networks. In Advances in Neural
Information Processing Systems, volume 33, pages 4977–4986. Curran Associates, Inc.,
2020.

Amit Daniely. Neural networks learning and memorization with (almost) no over-
parameterization. In Advances in Neural Information Processing Systems, volume 33,
pages 9007–9016. Curran Associates, Inc., 2020.

Sjoerd Dirksen and Shahar Mendelson. Non-Gaussian hyperplane tessellations and robust
one-bit compressed sensing. Journal of the European Mathematical Society, 23(9):2913–
2947, 2021.

Sjoerd Dirksen, Martin Genzel, Laurent Jacques, and Alexander Stollenwerk. The sepa-
ration capacity of random neural networks. Journal of Machine Learning Research, 23
(309):1–47, 2022a.

Sjoerd Dirksen, Shahar Mendelson, and Alexander Stollenwerk. Sharp estimates on random
hyperplane tessellations. SIAM Journal on Mathematics of Data Science, 4(4):1396–1419,
2022b.

36

Memorization With Neural Nets: Going Beyond the Worst Case

Rong Ge, Runzhe Wang, and Haoyu Zhao. Mildly overparametrized neural nets can mem-
orize training data efficiently. Preprint arXiv:1909.11837, 2019.

Promit Ghosal, Srinath Mahankali, and Yihang Sun. Randomly initialized one-layer neural
networks make data linearly separable. Preprint arXiv:2205.11716, 2022.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction, volume 2. Springer, 2009.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in
high-dimensional ridgeless least squares interpolation. Annals of Statistics, 50(2):949–986,
2022.

Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE Transactions on Neural Networks, 14(2):274–281, 2003.

Shih-Chi Huang and Yih-Fang Huang. Bounds on number of hidden neurons of multilayer
perceptrons in classification and recognition. In 1990 IEEE International Symposium on
Circuits and Systems, pages 2500–2503. IEEE, 1990.

Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of
handwritten digits. http://yann.lecun.com/exdb/mnist/, 1998.

Sangmin Lee, Abbas Mammadov, and Jong Chul Ye. Defining neural network architec-
ture through polytope structures of datasets. In Proceedings of the 41st International
Conference on Machine Learning, volume 235, pages 26789–26836. PMLR, 2024.

Liam Madden and Christos Thrampoulidis. Memory capacity of two layer neural networks
with smooth activations. SIAM Journal on Mathematics of Data Science, 6(3):679–702,
2024.

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4):667–766, 2022.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: where bigger models and more data hurt. Journal
of Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021.

Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable memorization via deep
neural networks using sub-linear parameters. In Proceedings of Thirty Fourth Conference
on Learning Theory, pages 3627–3661. PMLR, 2021.

Shashank Rajput, Kartik Sreenivasan, Dimitris Papailiopoulos, and Amin Karbasi. An
exponential improvement on the memorization capacity of deep threshold networks. In
Advances in Neural Information Processing Systems, volume 34, pages 12674–12685. Cur-
ran Associates, Inc., 2021.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, 2014.

37

http://yann.lecun.com/exdb/mnist/

Dirksen, Finke and Genzel

Eduardo D. Sontag. Shattering all sets of k points in “general position” requires (k − 1)/2
parameters. Neural Computation, 9(2):337–348, 1997.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. On the optimal memorization power of ReLU
neural networks. In International Conference on Learning Representations, 2022.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science, volume 47. Cambridge University Press, 2018.

Roman Vershynin. Memory capacity of neural networks with threshold and rectified linear
unit activations. SIAM Journal on Mathematics of Data Science, 2(4):1004–1033, 2020.

Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small ReLU networks are powerful memorizers:
a tight analysis of memorization capacity. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning (still) requires rethinking generalization. Communications of the
ACM, 64(3):107–115, 2021a.

Jiawei Zhang, Yushun Zhang, Mingyi Hong, Ruoyu Sun, and Zhi-Quan Luo. When ex-
pressivity meets trainability: Fewer than n neurons can work. In Advances in Neural
Information Processing Systems, volume 34, pages 9167–9180. Curran Associates, Inc.,
2021b.

38

	Introduction
	Summary of Results
	Organization
	Related Works
	Setup and Notation

	Interpolation Algorithm and Main Results
	Proofs
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 10
	Proof of Theorem 11
	Proof of Corollary 5
	Proof of Proposition 13

	Numerical Experiments
	Binary Classification on Two Moons
	Behaviour in the Sample Size Limit
	Binary Classification on MNIST
	Multi-Class Classification on MNIST
	Multi-Class Classification on CIFAR-10
	A Worst-Case Example

	Conclusion

