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Abstract

Interested in estimating the order of a finite-state Hidden Markov Model (HMM) with
non-parametric emission distributions from a single observed sequence, we introduce a new
method that only requires full rank transition matrix and linear independence between the
emission distributions. This method relies on the equality between the order of the HMM
and the rank of a specific integral operator. Since only the empirical counter-part of the
singular values of the operator can be obtained, a thresholding procedure is proposed. At a
non-asymptotic level, an upper-bound on the probability of overestimating the order of the
HMM is provided. At an asymptotic level, the consistency of the estimator is established.
In addition, we introduce a general heuristic that can be successfully applied to several
problems in spectral analysis for designing a data-driven procedure for the threshold. The
approach has the advantage of not requiring any knowledge of an upper-bound on the order
of the HMM. Moreover, different types of data (including circular or mixed-type data) can
be managed. The relevance of the approach is illustrated on numerical experiments and on
real data considering multivariate data with directional variables.

Keywords: Hidden Markov models, Latent state model, Model selection, Non-parametric
estimation.

1. Introduction

A discrete-time homogeneous hidden Markov model (HMM) defines the distribution of an
observed process (Y t)t∈N and a latent process (Xt)t∈N, such that the sequence of unobserved
states (Xt)t∈N follows a Markov chain and the observations (Y t)t∈N are independent given
the state sequence (Xt)t∈N. The conditional distribution of Yt, called emission distribution,
only depends on the current state Xt. This paper focuses on finite state HMMs, where the
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latent process has a finite state space {1, . . . , L}, the integer L being called the order of
the HMM. In this framework, the model is completely described by the order L, the initial
distribution and the transition matrix of the hidden chain, and the emission distributions.
Since the marginal distribution of each Y t is a finite mixture model, finite state HMMs
can be seen as an extension of finite mixture models where the assumption of independence
between observations is relaxed (i.e., Y t and Y t′ are not independent). HMMs are popu-
lar tools for modeling the dependency structure for univariate and multivariate processes
driven by a latent Markov chain (see Juang and Rabiner (1991); Yang et al. (1995); Krogh
et al. (2001); Choo et al. (2004); Zucchini and MacDonald (2009) for examples of applica-
tions). They also provide tractable models for circular time series widely used in biology,
meteorology and climate applications to model for instance the speed and the direction of
wind, ocean current, or animal movements (see Holzmann et al. (2006); Bulla et al. (2012);
Mastrantonio and Calise (2016)). Inferring the right order of the latent chain is an impor-
tant issue, which precedes the estimation of the model parameters and their interpretation.
This paper focuses on the estimation of the order L from univariate and multivariate data
(Y t)t∈N in a non-parametric setting. The estimation of L is made from a single observed
sequence (y>1 , . . . ,y

>
n+1)> and does not rely on any parametric assumptions on the emission

distribution. Indeed, it only requires linear independence between their probability distri-
bution functions. Consistency of the estimator of L is obtained by considering that the size
of the single sequence tends to infinity. At the end of the paper, we show that the method
can also be used to estimate the order of the HMM based on many independent sequences.

Initial developments on HMMs have been made in a parametric framework, which con-
siders that the emission distributions belong to some given parametric distribution family.
Considering the order of the HMM as known, the existing literature ensures the parameters
identifiability (Petrie, 1969), provides an algorithm for assessing the maximum likelihood
estimator (MLE; Baum et al. (1970)) and states the consistency and asymptotic normality
of the MLE (Leroux, 1992; Bickel et al., 1998). The identification of the order is more
challenging and represents a difficult task. This difficulty is mainly due to a loss of identifi-
ability of the model parameters when the order is overestimated. The standard assumptions
used to control the likelihood ratio test statistics are thus not satisfied, when the order is
overestimated. For instance, Gassiat and Keribin (2000) show that this statistic can diverge
even for bounded parameters. Note that this issue already appears when estimating the
number of components in parametric finite mixture models from independent observations
(Ciuperca, 2002). Therefore, the order of parametric HMMs can be estimated by homo-
geneous tests (Holzmann and Schwaiger, 2016), penalized likelihood approaches (Volant
et al., 2014) or cross-validation approaches (Celeux and Durand, 2008). Using tools from
information theory, Gassiat and Boucheron (2003) have shown the strong consistency of
the estimator of the order obtained by penalized maximum likelihood. Moreover, Bayesian
approaches can be used by penalizing the likelihood and thus avoiding the issues due to
the lack of identifiability of the parameters when the order is overestimated (Gassiat and
Rousseau, 2014). Alternatively, Robert et al. (2000) propose a Bayesian inference of the
order L through a reversible jump Markov Chain Monte Carlo method (MCMC). In Chopin
(2007), the author also proposes a Bayesian strategy based on sequential Monte Carlo filter
and MCMC. All these approaches consider parametric emission distributions. However, it
is not always possible to restrict the model to such a convenient finite-dimensional space.
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Moreover, they provide biased results when their parametric assumptions are violated. In
such cases, non-parametric approaches can be used to model the emission distributions.

Non-parametric HMMs have been proved to be useful in a wide range of applications
(see Zhao (2011) for financial applications, Couvreur and Couvreur (2000) for voice activity
detection, Lambert et al. (2003) for climate state identification and Yau et al. (2011) for
genomic applications). Nevertheless, identifiability of the parameters of finite state HMMs
with non-parametric emission distributions has been investigated recently. Gassiat and
Rousseau (2016) consider the case of translation HMMs. They show that all the model
parameters (including the infinite dimensional parameters) are identifiable as soon as the
matrix that defines the joint distribution of two consecutive latent variables, is non-singular
and the translation parameters are distinct. Note that their conditions are weaker than those
used to obtain identifiability for location-scale mixture models in the independent setting.
Indeed, for the latter, constraints must be added such as considering symmetric distributions
(Hunter et al., 2007). This additional assumption is no longer required for translation
HMMs because of the dependency between a pair of consecutive observations. Based on
the results of parameter identifiability for a mixture of products of univariate distributions
(Allman et al., 2009), Gassiat et al. (2016) state weaker sufficient conditions for parameter
identifiability since they consider a full rank transition matrix of the latent chain and linearly
independent emission probability distributions. In the same kind of result, Bonhomme
et al. (2016b) show the same identification requirement as the latter for HMMs with finite
observations but the technique of proof is different. The method introduced, by the present
paper, for estimating the order of an HMM is developed under these assumptions. However,
we focus on the distribution of the pair of consecutive observations because our interest
is the estimation of L, while Gassiat et al. (2016) must consider the distribution of a
triplet of consecutive observations because they are also interested in estimating the (finite
and infinite dimensional) parameters. Note that the assumptions made on the emission
distributions have been weakened again by Alexandrovich et al. (2016) since they only
require that the emission distributions are different.

To estimate the (finite and infinite dimensional) parameters of non-parametric HMMs,
kernel-based (Bonhomme et al., 2016b) or wavelet-based (Jin and Mokhtarian, 2006) ap-
proaches can be used. Alternatively, Bonhomme et al. (2016b) and De Castro et al. (2017)
extended the spectral method proposed by Hsu et al. (2012) for estimating parametric
HMMs, in order to deal with a non-parametric framework. However, all these methods are
developed for a known order of the HMM. Estimating the order of a generic non-parametric
HMM is still a challenging problem and to the best of our knowledge Lehéricy (2019) is the
only paper to consider this problem in this non-parametric setting. The author proposes
two methods that provide strongly consistent estimators of the order of the HMM. The
first method considers a minimization of a penalized least-square criterion that relies on a
projection of the emission distributions onto a family of nested parametric subspaces. For
each subspace and each number of latent states, the criterion used for model selection is
computed by minimizing the empirical counterpart of the penalized L2 distance. Thus,
the method provides an estimator of the order of the HMM together with estimators of
the emission distributions. The second method uses an estimator of the rank of a matrix
computed from the distribution of a pair of consecutive observations. More precisely, this
method relies on a spectral approach applied on the matrix containing the coordinates of
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the density of a pair of consecutive observations in some orthonormal basis. Thus, this
method could be seen as an extension of the spectral method described in the Section 5
of Supplementary material of Bonhomme et al. (2016a) to HMM. These two methods are
complementary in practice. Indeed, numerical experiments presented in Lehéricy (2019)
show that the penalized least-square method is more efficient for moderate sample sizes.
Indeed, the non-convex criterion raises many problems for the minimization, in practice. To
overcome this difficulty, the author proposes to use an approximate minimization algorithm
(see Hansen and Auger (2011)) that requires a good initial condition since it might oth-
erwise remain trapped in a local minima which renders this approach time-consuming for
multivariate data and large sample. Furthermore, considering all the subspaces and all the
possible numbers of latent states makes this method computationally greedy. Therefore,
the spectral method should be considered for large sample sizes. Both methods involve an
unknown tuning parameter (i.e., constant in the penalty term of the penalized criterion and
threshold for the spectral method) but also choices of the subspaces (i.e., family of nested
parametric subspaces or the orthonormal basis) that can highly impact the results (see our
numerical experiments).

This paper introduces a new simple method for selecting the order of a non-parametric
HMM, by using the rank of an integral operator relying on the distribution of a pair of
consecutive observations. The interest of this approach from integral operators lies in the
fact that unlike most of the spectral methods based on noisy matrices (Bonhomme et al.,
2016b; De Castro et al., 2017; Lehéricy, 2019), the method does not require any choices of
a functional basis or its number of elements. Hence, the proposed method does not require
any knowledge of an upper bound of the order of the HMM. However, the method requires
choosing a kernel, a bandwidth and a constant. Note that, unlike choosing an upper-bound
on the order, we show that these choices do not impact the asymptotic properties of the
method. Moreover, different types of data (including circular or mixed-type data) can be
managed. Since the distribution of the pair of consecutive observations is estimated with
kernel method, only the empirical counter-part of the singular values of the operator can be
obtained, we propose to use our new data-driven method for the thresholding procedure.

The proposed approach extends the scope of the method proposed in Kwon and Mbakop
(2021) to estimate the number of components in nonparametric i.i.d. mixture models to the
HMM framework. Indeed, results of Kwon and Mbakop (2021) could be used on independent
realizations of (Y >t , Y

>
t+1)>. Since, our framework considers one large sequence arisen from

an HMM, the estimation is based on identically distributed and dependent realizations
of (Y >t , Y

>
t+1)>. In addition, a procedure is given for tuning the constant involved in the

thresholding procedure. In this context, the paper presents three main contributions. As a
first contribution, we show that the order of the HMM can be identified from the distribution
of a pair of consecutive observations of the sequence (see Lemma 1). This result can be
interpreted as an extension of Proposition 3 of Kasahara and Shimotsu (2014) to the HMM
framework. As a second contribution, at a non-asymptotic level, an upper-bound on the
probability of overestimating the order of the HMM is provided (see Theorem 4) while,
at an asymptotic level, the consistency of the estimator is established (see Corollary 5).
The controls at non-asymptotic and asymptotic levels are obtained by a concentration
inequality of the Hilbert-Schmidt norm of the empirical version of the operator. These
results can be seen as an extension of Theorem 3.1 Kwon and Mbakop (2021) to the HMM
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framework. However, since the observations are not independent due to the hidden Markov
structure, the statistical tools needed to establish these results are fully different from
those used in Kwon and Mbakop (2021). Indeed, in the independent framework, Kwon
and Mbakop (2021) used a slight modification of Theorem 3.4 of Pinelis (1994), applied to
sums of independent random elements in the space of Hilbert-Schmidt. However, to the
best of our knowledge, this result cannot be directly extended to the HMM framework.
Thus, we obtain a concentration inequality for the Hilbert-Schmidt norm by combining
McDiarmid’s inequality for Markov Chain (Paulin, 2015) and coupling approaches. Since
the tools used in the proofs considering independent setting and HMM setting are different,
we can see that the thresholds are also different. However, in both independent and HMM
settings, the results establish a range of rates that the thresholds must satisfy to ensure
consistency. As a third contribution, we propose a general data-driven method for tuning
the constant involved in the thresholds, whose determination is often left to the choice of
the practitioners. Despite the fact that the choice of the constant does not impact the
asymptotic results, it can have a strong impact on finite sample size. To circumvent this
issue and for practical convenience, we propose a new data-driven procedure based on an
unsupervised classification of the singular values of the operator and computed on mini-
batches, for estimating the constant in the concentration inequality. Note that this method
can be used in many situations for tuning the constant in any thresholding procedure. Hence
in Lehéricy (2019) the model selection for the spectral method is also based on a thresholding
rule applied on the singular values whose choice is a delicate issue since it depends on the
functional basis and on the number of elements. Hence, in his paper the author proposes
an empirical method based on a slope heuristic for the practical application. However, this
approach requires an additional tuning parameter that states the number of singular values
used to apply the slope heuristic. In theory, for the spectral methods to work, the rank of
the spectral matrix needs to be equal to the order of the chain. Thus, it is necessary that
the number of elements of the orthonormal basis tends to infinity, otherwise we only obtain
an estimator of an upper-bound of the order. However, defining the thresholding rule for
the case of increasing number of basis elements is still an open problem for the spectral
methods. Indeed, for instance, the rank study performed in Kleibergen and Paap (2006)
should be extended to matrix with increasing dimension (but fixed rank). Thus, in practice,
the number of basis elements is set a priori. This number corresponds to an upper-bound on
the order of the HMM. To the best of our knowledge, since the proposed method avoids the
use of functional basis, it is the first method which does not make assumptions on an upper-
bound of the order to be estimated. Recently, in Donoho et al. (2023) the authors propose
a new method called ScreeNot for threshold selection of singular values in the presence of
unknown correlated additive noises. This method extends the one proposed by Perry (2009)
and Shabalin and Nobel (2013) and selects an optimal threshold for singular values, under
compacity assumptions of the distribution of the noises and a priori upper-bound of the
rank of the spectral matrix. In practice, although this method requires knowledge of an
upper bound on the rank, it yields good results within the framework of spectral methods
based on noisy matrices like the approach proposed in Bonhomme et al. (2016b); De Castro
et al. (2017); Lehéricy (2019) but it is less effective for our regularization operator matrix
combined with the K-means threshold selection. Numerical studies illustrate the relevance
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of the K-means proposal for our approach but also the relevance of both of the K-means
approach and ScreeNot approach in the spectral method of Lehéricy (2019).

This paper is organized as follows. Section 2 introduces the specific integral operator.
Section 3 presents the finite-sample size and the asymptotic properties of the estimator
(including its consistency). Section 4 describes the new data-driven procedure with a the-
oretical justification. Section 5 is devoted to the computational aspects of the methods.
Section 6 illustrates the consistency of the estimator on simulated data and shows the rele-
vance of the proposed method on benchmark data (including circular data). Section 7 shows
the contribution of our approach on one real-life data set. Section 8 gives a conclusion and
all the proofs are given in Appendix.

2. Order of a HMM and rank of integral operators

2.1 Hidden Markov model

Let Y = (Y >1 , . . . ,Y
>
n+1)> be a stationary sequence of random vectors Y t, where Y t ∈ Rd

follows a finite state hidden Markov model (HMM) with L latent states. This model assumes
that there exists a stationary Markov chain X = (X1, . . . , Xn+1)> that is unobserved,
where Xt ∈ {1, . . . , L}. Moreover, conditionally on X, the Y t’s are independent and their
distribution only depends on the current state Xt. The Markov chain is defined by a full
rank transition matrix A having π = (π1, . . . , πL)> as stationary distribution. Finally, the
densities of the emission distributions f1, . . . , fL are assumed to be linearly independent,
where f` defines the conditional distribution of Y t given Xt = `. The density of y is defined
by

p(y) =
∑

x∈{1,...,L}n+1

πx1fx1(y1)
n∏
t=1

A[xt, xt+1]fxt+1(yt+1). (1)

The conditions made on the transition matrix and on the emission distributions are stated
by the following set of assumptions. Note that these assumptions are mild and have been
considered already in Gassiat et al. (2016) to state the identifiability of an HMM based on
the distribution of three consecutive observations (see also De Castro et al. (2016, 2017)).

Assumption 1 • The transition matrix A has full rank, is irreducible and aperiodic
with stationary distribution π = (π1, . . . , πL)>.

• The densities defining the emission distributions {f`}L`=1 are linearly independent ( i.e.,

if ξ = (ξ1, . . . , ξL) ∈ RL is such that for any z ∈ Rd,
∑L

`=1 ξ`f`(z) = 0 then ξ = 0)
and are square integrable on Rd.

Under Assumption 1, the identifiability of the finite and infinite parameters of a HMM can
be obtained from the distribution of three consecutive observations (Gassiat et al., 2016) or
from the distribution of a pair of consecutive observations when the emission distributions
are defined as translations of the same distribution (Gassiat and Rousseau, 2016).

The aim is to make inference on the order L. This can be achieved by using the
distribution of a pair of consecutive observations. From (1), the distribution of a pair of
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consecutive observations (Y >t ,Y
>
t+1)> is defined by the density

p(yt,yt+1) =
L∑
`=1

π`f`(yt)g`(yt+1), (2)

where g` is the density of Y t+1 given Xt = ` and is defined by

g`(yt+1) =

L∑
m=1

A[`,m]fm(yt+1). (3)

Note that (2) is a mixture model where the density of each of the L components is defined as
a product of two specific densities. The mixture proportions correspond to the probabilities
of latent states defined by the stationary distribution of the Markov chain. Moreover,
due to the structure of the HMM, the second density of any component (i.e., g`) is a
convex combination of the first densities of all the components (i.e., f1, . . . , fL), while, in
the standard setting of mixtude model, g` and f` are not related. Note that the pairs of
consecutive observations (y>t ,y

>
t+1)> are identically distributed according to (2) but they

are not independent due to the dependency between the elements of the whole vector y. The
following lemma shows that the order of the HMM can be identified from the distribution
of a pair of consecutive observations.

Lemma 1 If Assumption 1 holds true, then L is identifiable from the distribution of a pair
of consecutive observations defined by (2) and (3).

Note that Lemma 1 is related to different results of the literature. Indeed, Proposition
3 of Kasahara and Shimotsu (2014) shows the identifiability of L in model defined by (2)
if {f1, . . . , fL} and {g1, . . . , gL} are two families of linearly independent density functions.
However, no assumptions on {g1, . . . , gL} can be made, in the HMM framework. Indeed,
these densities are directly defined from the HMM model. This avoids a direct application of
Proposition 3 of Kasahara and Shimotsu (2014). Hence, Lemma 1 aims to prove this linear
independence between {g1, . . . , gL} since assumptions can only be made on {f1, . . . , fL} and
the transition matrix A. In addition, Assumption 1 is standard to state the identifiability
of the order of an HMM and of its parameters. However, Gassiat and Rousseau (2016)
states this result by considering the distribution of a triplet of consecutive observations
while Lemma 1 is based on the distribution of a pair of observations.

As a direct consequence of Lemma 1, estimating the number of latent states is equivalent
to estimating the number of components in (2). A specific integral operator can be used
to select the number of components in (2) inspired from Kwon and Mbakop (2021). In
this paper, we present some extensions of this approach that permit to deal with the non-
independence between the pairs of consecutive observations (y>t ,y

>
t+1)> and to define all

the tuning parameters with a new data-driven procedure.

2.2 Integral operators

Let L2(Rd) be the Hilbert space of square integrable functions on Rd. We consider the
integral operator T : L2(Rd)→ L2(Rd) defined, for any function ω ∈ L2(Rd), by

[T (ω)](z2) =

∫
Rd
ω(z1)p(z1, z2)dz1,
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where p is the joint distribution given in (2). From the observed sample y, controlling the
accuracy of the estimators of the singular values of T is a delicate task because the density
p(z1, z2) cannot be estimated without bias by the usual kernel method. Therefore, we
introduce a smoothed version of the integral operator, denoted by Th, for which we will be
able to compute unbiased estimators of its singular values (see Section 2.3). The operator
Th : L2(Rd)→ L2(Rd) is defined, for any function ω ∈ L2(Rd), by

[Th(ω)](z2) =

∫
Rd
ω(z1)ph(z1, z2) dz1,

where ph is the function obtained by the convolution between the density p of a pair of
consecutive observations given in (2) and a multivariate kernel defined as a product of
univariate kernels, as follows,

ph(z1, z2) =

∫
Rd×Rd

p(y1,y2)Kd
h(z1 − y1)Kd

h(z2 − y2) dy1dy2,

where z1 ∈ Rd, z2 ∈ Rd, Kd
h(u) =

∏d
j=1Khj(uj), u = (u1, . . . , ud)

> ∈ Rd, Khj being
univariate kernels and h > 0 the associated bandwidth. Under usual assumptions on the
kernel (see Assumption 2), the ranks of T and Th are equal to the order of the HMM (see
Proposition 2).

Assumption 2 Each of the kernels Khj, for j = 1, . . . , d, has a non-vanishing Fourier

transform, belongs to L1(Rd)∩L2(Rd) and satisfies

∫
uKhj(u)du = 0 and 0 <

∫
u2Khj(u)du <

∞.

Proposition 2 (Proposition 2.1 and Proposition 2.2 in Kwon and Mbakop (2021))
Under Assumption 1,

rank(T ) = L,

where rank(T ) is defined as the dimension of the operator T . If in addition, Assumption 2
holds true, then

rank(Th) = L.

Proposition 2 implies that the operators T and Th are compact and admit a singular
value decomposition based on L non-zero singular values σ1(T ) ≥ . . . ≥ σL(T ) > 0 and
σ1(Th) ≥ . . . ≥ σL(Th) > 0, where σj(T ) denotes the j-th largest singular value of operator
T . Hence, for any j > L, σj(T ) = σj(Th) = 0. Therefore, estimating the number of latent
states L can be done by estimating the number of non-zero singular values of T . Under
regularity conditions on the density of a pair of consecutive observations (see Assumption 3),
the differences between the non-zero singular values of T and Th can be controlled (see
Lemma 3).

Assumption 3 The density function p has partial derivatives at least until order 3 that all
belong to L1(Rd) ∩ L2(Rd).

Lemma 3 Under Assumptions 1, 2 and 3, we have

L∑
`=1

(σ`(T )− σ`(Th))2 = O(h4).
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Thus, Proposition 2 implies that T and Th have L non-zero singular values. In addition,
Lemma 3 provides a control of the bias induced by the approximation of the non-zero
singular values σ`(T ) by the σ`(Th), for each ` = 1, . . . , L and for any bandwidth h.

Note that, if the density function admits partial derivatives that all belong to L1(Rd)∩
L2(Rd) until order r+1, then the result of Lemma 3 could be improved. Indeed, considering
a kernel such that its first r − 1 moments are zero and its moment of order r exists and is
not zero, a careful reading of proof of Lemma 3 provides

∑L
`=1(σ`(T )− σ`(Th))2 = O(h2r).

2.3 Estimator of the order of the HMM

From the observed sample y, we can compute the unbiased estimator of ph denoted by p̂h,y
defined for any z1 ∈ Rd and z2 ∈ Rd by

p̂h,y(z1, z2) =
1

n

n∑
t=1

Kd
h(z1 − yt)Kd

h(z2 − yt+1). (4)

Thus, we can deduce the empirical version of the smoothed operator T̂h,y defined by[
T̂h,y(ω)

]
(z2) =

∫
ω(z1)p̂h,y(z1, z2) dz1.

To estimate the order of the HMM, it suffices to estimate the singular values of Th by
considering a singular value decomposition of T̂h,y. However, the rank of T̂h,y is not equal
to L, since in general, the number of non-zero singular values of such an operator is n.
Therefore, to build the estimator L̂(τα,h, h), we need to apply, on σ1(T̂h,y), . . . , σn(T̂h,y),
a threshold τα,h > 0 that depends on the probability α of overestimating the order of the
HMM (see Section 3) and on the bandwidth h. This estimator of the number of latent
states L̂ is defined by

L̂(τα,h, h) = card
({
` : r`(T̂h,y) > τα,h

})
, (5)

where for any operator T we have

r`(T ) =

 n∑
j=`

σ2
j (T )

1/2

. (6)

The threshold τα,h depends on the probability of overestimating the order and the band-
width. The next section shows that its consistency can be stated with suitable choices of α
and h.

3. Properties of the estimator of the HMM order

3.1 Non-asymptotic results

The following theorem gives an upper-bound on the probability of overestimating the num-
ber of latent states when this number is estimated by L̂(τ, h). This result is stated by
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controlling ‖T̂h,y−Th‖HS = [
∫
R2d (p̂h(z1, z2)− ph(z1, z2))2 dz1dz2]1/2 (see Lemma 13 in Ap-

pendix for the definition) via a concentration inequality. This control is achieved under mild
assumptions (Assumptions 1 and 2) because it only requires that rank(T ) = rank(Th) = L.
The second part of the theorem shows that, under additional conditions, L̂(τα,h, h) does not
underestimate the order of the HMM. Thus, we obtain a lower-bound on the probability
that L̂(τ, h) = L.

Theorem 4 Under Assumptions 1 and 2, for any 0 < α < 1, there exists some positive
threshold τα,h such that the probability to overestimate the number of states is less than α,
leading that

P(L̂(τα,h, h) > L) < α, (7)

with

τα,h =
‖Kh‖2d2
n1/2

[(
n+ 1

n
Cα,1

)1/2

+ C
1/2
2

]
, (8)

where ‖Kh‖22 =
∫
RK

2
h(u)du, Cα,1 = 36 ln(1/α)tmix, C2 = 9 + 8tmix and tmix is the mixing

time of the underlying Markov chain recalled in Definition 8 in Appendix.

If, in addition, Assumption 3 holds true and if h is small enough and n is large enough
to ensure that for some ε > 0, σL(T ) > 2τα,h + ε, then

P(L̂(τα,h, h) < L) = 0 and P(L̂(τα,h, h) = L) ≥ 1− α. (9)

From (7), the probability of overestimating the order of the HMM can be set as small
as wanted for any value of the bandwidth h, by considering the threshold given by (8).
Therefore, even if the singular values of T are estimated with bias from Th (when h > 0,
rank(T ) = rank(Th) = L but for any j = 1, . . . , L σj(T ) 6= σj(Th)), we can make the
probability of overestimating L as small as wanted. However, to avoid underestimating L,
the method requires to consistently approximate p by ph, and so that the bandwidth h
tends to zero at a suitable rate in order to have σL(T ) > 2τα,h. Thus, only the variance of

the estimators σj(T̂h,y) can lead to the overestimation of L. Indeed, despite the bias, the
ranks of T and Th are the same. However, both the bias and the variance of the estimators
σj(T̂h,y) impact the underestimation. Note that the condition σL(T ) > 2τα,h cannot be
verified in practice since it depends on the singular values of the theoretical operator. The
following section gives rules on α and h, which are sufficient to ensure the consistency of
the estimator (5).

We now discuss the connections between the results stated by Theorem 4 and those pre-
sented in Theorem 3.1 in Kwon and Mbakop (2021). Both theorems allow for a control of
the probability of overestimating the rank of the operator by controlling the concentration
of ‖T̂h,y − Th‖HS . However, this control is achieved in two different manners. Kwon and
Mbakop (2021) consider an estimator based on independent realizations of (Y >t ,Y

>
t+1)>.

Therefore, the concentration inequality for ‖T̂h,y − Th‖HS (see Proposition 3.1) is obtained
by combining Theorem 3.4 of Pinelis (1994) applied to sums of independent random ele-
ments in the space of Hilbert-Schmidt operators and Hoeffding’s concentration inequality.
In the latter, the concentration bound, and thus the threshold, can be explicitly bounded as
it involves quantities which only depend on the kernel and the bandwidth, see (3.8) in their
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paper. Similar reasoning cannot be used in our context due to the dependency between
the observations implied by the HMM structure. Thus, the proof of Theorem 4 presented
in Appendix relies on specific statistical tools for HMM since it combines McDiarmid in-
equalities for HMM and coupling methods. The bound obtained in Theorem 4 involves the
mixing time of the Markov chain, which is unknown and cannot be estimated without any
knowledge on the order of the HMM. Thus, contrary to the i.i.d. context, we do not bound
the quantities involved in the concentration inequality. This choice raises the question of
the tuning of some constant that we discuss in Section 4.

3.2 Asymptotic results

The following corollary states the consistency of the estimator of the number of states
defined by (5). This consistency is obtained by considering an appropriate rate of decreasing
of the probability αn of overestimating the order and a suitable bandwidth hn whose values
depend on the sample size n, without requiring the consistency on the smallest non-zero
singular value of T . The threshold ταn,hn depends on both the probability of overestimating
the order and the bandwidth (see (8)). The quantities αn and hn tend to zero when n tends
to infinity. However, these quantities should tend to zero at an appropriate rate which
ensures that limn→∞ rL+1(T̂hn,y)/ταn,hn = 0 and limn→∞ ταn,hn/rL(T̂hn,y) = 0. Indeed,
considering αn tending to zero ensures that the order is not overestimated. However, to
ensure that the order is not underestimated (see condition σL(T ) > 2τα + ε in Theorem 4),
the threshold needs to tend to zero as the sample size tends to infinity.

Corollary 5 Under Assumptions 1 and 2, if it exists u > 0 such that ‖Kh‖22 . h−u, then
for a bandwidth hn = O(n−β) with 0 < β < (2du)−1, then considering the threshold ταn,hn
satisfying

ταn,hn = o(1) and n−
1
2

+duβτ−1
αn,hn

= o(1), (10)

implies that L̂(ταn,hn , hn) is a consistent estimator of L meaning that

lim
n→∞

P(L̂(ταn,hn , hn) = L) = 1.

The conditions (10) in Corollary 5 permit avoiding underestimation and overestimation of
the order of the HMM. Indeed, since ταn,hn = o(1), for n large enough σL(T ) > 2ταn,hn + ε
and thus the approach does not asymptotically underestimate the order of the HMM (see

(9) in Theorem 4). Moreover, since n−
1
2

+duβτ−1
αn,hn

= o(1), then
(
n+1
n Cαn,1

)1/2
+C

1/2
2 tends

to infinity as n tends to infinity (see (8) in Theorem 4), and so αn tends to zero leading
that the approach does not asymptotically overestimate the order of the HMM. Corollary 5
implies the consistency of the estimator by defining the threshold

ταn,hn = Cn−
1
2

+duβ lnn, (11)

for any positive constant C. If the choice of the value of the constant does not influence the
asymptotic behavior L̂(ταn,hn , hn) because this threshold respects (10), the impact of the
unknown constant C on the resulting estimator can be strong on finite sample size. Hence,
we now discuss computational aspects of the method, including the tuning of this constant.
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4. A Data-driven calibration procedure

In this section, we present a data driven procedure to calibrate positive constant C in a
threshold procedure based on the threshold defined by:

τn = Cυ(n),

where υ(n) is a positive function that tends to zero when n tends to infinity. This situation
covers the problem of the proposed procedure and its threshold (11) by considering υ(n) =

n−
1
2

+duβ lnn. The idea of the procedure is to split the data into S mini-batches of size m
and to compute the statistics requiring thresholding on each mini-batch. Then, a K-means
is run with two groups on the means of these statistics computed over the S mini-batches.
We show that, under some assumptions made on the first L statistics, the K-means approach
allows to split the significant and the non-significant statistics. Thus, we select the constant
such that the thresholding rule applied on the mini-batches provides the same estimator.
Then, we use the thresholding procedure on the whole sample by considering this particular
value of the constant. The proposed method can be run to tune the constant in (11) but also
in the spectral-approach proposed by (Lehéricy, 2019). Numerical experiments presented
in Section 6 illustrate the interest of the proposed approach.

Considering the mini-batch y[s] of sizem, we compute the statistics r1(T̂m−β ,y[s]), . . . , rm(T̂m−β ,y[s])
and we define for ` = 1, . . . ,m

r̂` =
1

S

S∑
s=1

r`(T̂m−β ,y[s]),

S being the number of mini-batches of size m. We perform a clustering of the values
r̂1, . . . , r̂m into two groups in order to minimize the within-group variance with K-means.
The idea behind this clustering is to group all the values of r̂` with ` > L into the same
cluster since these values should concentrate around zero. Let g1 be the cluster with the
highest mean and G1 the subset of {1, . . . ,m} belonging to g1. The following proposition
gives sufficient conditions that ensure that the K-means algorithm run in two groups on the
r̂1, . . . , r̂m groups the first L values into the same groups. Therefore, under assumptions on
r̂1, . . . , r̂L, if the size of the mini-batches is large enough then r̂` is as small as wanted with
high probability when ` > L and so the cardinal of g1 is equal to the L.

Proposition 6 Let r̂1, . . . , r̂m be positive variables with r̂` ≥ r̂`+1 and r̂L+1 < ε for some
positive ε. Then, if ε is small enough, m is large enough and if (1/s)

∑s
`=1 r̂` < [(s/ξ(s +

1))1/2 + 1]r̂s+1 for any s ∈ {1, . . . , L− 1}, where ξ > 1, then K-means run with two groups
gathers all the first L variables in the same group, if m is fixed.

Considering the partition provided by the K-means, a threshold that allows the groups
provided by the clustering to be recovered is

σm := max
`∈{1,...,m−1}\G1

r̂`.

The idea behind the definition of σm is to set the smallest threshold that would provide a
number of latent states equal to the cardinal of g1, if the method would be applied on the
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values of r̂1, . . . , r̂m. To set the constant, it suffices to consider that the threshold σm has
the shape Ĉυ(m), leading that

Ĉ = σm/υ(m).

Therefore, when Ĉ has been tuned on the mini-batches, the estimation of the order can
be performed on the full sample by plugging this constant into the threshold (12). As
an example, considering continuous data and a Gaussian kernel leads that u = 1 (since
‖Kh‖22 = O(h−1

n )) where we consider the same bandwidth h = n−β for the kernel density
estimation with the usual bandwidth β = 1/(4 + 2d) after scaling the data. Thus, in such
case, the proposed threshold is defined by

τ̂αn,hn = Ĉn−
1

2+d lnn, (12)

where Ĉ is defined by the data-driven procedure based on K-means.

As a consequence of Proposition 6, the strategy used to tune the constant is relevant
since r̂L+1 converges to zero as m tends to infinity. Indeed, this strategy allows for a
consistent detection of the order of the HMM, under the assumptions made on the first L
statistics. Note that the role of the K-means procedure is only to provide a relevant value
for the constant in (11). Thus, if the K-means procedure fails to provide two groups that
gather all the first L variables in the same group, the global procedure stays consistent.
Indeed, the K-means approach is only used to provide an estimator of C, but does not
impact the rate of convergence of ν(n) since the method is used with fixed sample size of
the mini-batches (i.e., m does not grow with n). With a careful reading of the proof, we can
see that the K-means procedure is still consistent, if the size of the mini-batches m grows
with the sample size n such that m/υ(n) tends to zero as n tends to infinity. In such case,
consistency of the K-means procedure only requires that the assumption made on the first
L statistics is satisfied.

5. Computing the singular values

To estimate the rank of Th, it suffices to estimate the singular values of Th by considering a
singular value decomposition of T̂h,y. However, performing the singular value decomposition
(SVD) of an operator directly is not straightforward. Therefore, we introduce a n×n matrix
V̂ h,y that has the same singular values as T̂h,y and for which we will be able to perform the

SVD. Let the empirical n× n matrix V̂ h,y be defined by

V̂ h,y =
1

n
∆>1 Ŵ

1/2

h,y∆1∆>n+1Ŵ
1/2

h,y∆n+1, (13)

where ∆1 and ∆n+1 are the (n+1)×n matrices defined as block matrices by ∆>1 =
[
0n In

]
and ∆>n+1 =

[
In 0n

]
, where In is the identity matrix of size n×n and 0n is the null vector of

length n, and where Ŵ h,y is the (n+1)× (n+1) matrix defined by Ŵ h,y[t, s] = φh(yt,ys),
for 1 ≤ t, s ≤ (n+ 1) where the function φh is such that φh : R2d → R and

φh(yt,ys) =

∫
Rd
Kd
h(z1 − yt)Kd

h(z1 − ys) dz1,
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where h > 0 is a bandwidth andKd is a d-dimensional kernel. In our setting, the kernelKd
h is

defined as a product of univariate kernels, Kd
h(u) =

∏d
j=1Khj(uj), which permits rewriting

φh(yt,ys) =
∏d
j=1

∫
RKhj(z1j−ytj)Khj(z1j−ysj) dz1j . In many cases, the function φh can be

computed in closed form. For instance, with the Gaussian kernel defined on R by Khj(x) =

(2h2π)−1/2 exp(−x2/2h2), we obtain φh(yt,ys) = (2h
√
π)−d exp(−

∑d
j=1(ytj−ysj)2/(4h2)),

and with the Von-Mises Kernel defined on [−π, π] byKhj(x) = (2πI0(h−2))−1 exp(cos(x)/h2),
with I0 being the modified Bessel function of the first kind, we obtain that φh(yt,ys) =
(
√

2πI0(h−2))−2d
∏d
j=1 I0(2 cos((ytj − ysj)/2)/h2).

As a direct consequence of Corollary 3.1 of Kwon and Mbakop (2021), the singular
values of V h,y are equal to the singular values of T̂h,y leading that for any j = 1, . . . , n, we
have

σj(V̂ h,y) = σj(T̂h,y).

6. Numerical experiments

During the numerical experiments, the results of proposed method are obtained by consid-
ering the threshold (12) and have been obtained by the R package HMMselect used with the
computational aspects described in Section 5 with m = 125, and with Gaussian kernel for
the continuous data and Von-Mises kernel for the circular data. Data are generated from
an HMM defined with L = 3 hidden states and transition matrix

Aν =

1− 2ν ν ν
ν 1− 2ν ν
ν ν 1− 2ν

 ,
where the parameter ν allows us to define different mixing times. Indeed, in the case
where ν = 1/3, this setup generates independent data, while the mixing time increases
when ν tends to zero. Conditionally on the hidden state Xt, the components of the vector
Y t = (Yt1, . . . , Ytd) are independently generated from the model defined, for any (t, j),
by Ytj =

(
1{Xt=2} − 1{Xt=3}

)
δ + εtj , where all εtj are generated independently and δ is

a constant tuning parameter. Three distributions for continuous data are considered for
εtj (Gaussian, Student with three degrees of freedom, Laplace) and one distribution for
circular data is considered for εtj (Von-Mises). The parameter δ allows us to tune the
overlaps between the emission distributions of each state.

In this experiment, we compare our integral-based method and the spectral method
for recovering the true order L = 3. In addition, we investigate the relevance of the K-
means procedure used for tuning the constant in the threshold (12). Thus, we compare the
results obtained by the proposed procedure where the constant is tuned with the K-means
procedure (proposed K-means) and with the ScreeNOT procedure with k = 10 (proposed
screenot) proposed recently in Donoho et al. (2023). The spectral method proposed in
Lehéricy (2019) estimates the order from the rank of the (M × M) matrix N̂M defined
by N̂M [k, `] = 1

n

∑n
t=1 φk(Y t)φ`(Y t+1) where the functions φ1, . . . , φM are basis functions.

The spectral method is used with histogram basis defined by the M quantiles. Moreover, a
threshold must be applied on the observed singular values of N̂M . As suggested in Section
5.3.2 of Lehéricy (2019), we consider an integer Mreg ≤ M , and we estimate the affine

dependency of the singular values of N̂ with respect to their index with a linear regression

14



Estimation of the Order of Non-Parametric Hidden Markov Models

using its smallest Mreg singular values. Then, we set a thresholding parameter τ = 1.5,
and we say that a singular value is significant if it is above τ times the value that the
regression predicts for it. The estimator of the order is the number of consecutive significant
singular values starting from the largest one. Thus, the spectral method has three tuning
parameters: the basis family, the number of basis elements M (note that by construction,
the estimator of the order is upper-bounded by M) and the number Mreg of singular values
used for determining the threshold. In our experiments, we denote by spectral slope the
results obtained by the spectral method with M = 30 and Mreg = 20 suggesting that the
order of the HMM is upperbounded by 10. Alternatively, we use the spectral method where
the threshold is defined by C

√
lnn/n, as suggested in Lehéricy (2019). This constant is

tuned with the proposed approach based on mini-batches and K-means algorithm described
in Section 4. The related results are denoted by spectral K-means. Finally, we run the
ScreeNot approach on N̂M with M = 30 and k = 10 (results are denoted by spectral
screeNot).

The methods are compared by considering different overlaps between the emission dis-
tributions. The data are thus generated with different values of δ, which define different
error rates (2.5%, 5% and 10%) based on the distribution of a single observation. Table 1
indicates the order estimated by the proposed method on 100 samples generated with d = 1,
ν = 0.1, different sample sizes n, different families of emission distributions and an error
rate of 5%. Table 3 and Table 4, presented in Appendix, show the results obtained with
error rates of 2.5% and 10%. Overall, the results illustrate the consistency of the pro-
posed estimator, as stated by Theorem 5. Indeed, for any family of distributions and any
value of δ, the estimator selects the true order with probability 1 when the sample size
increases. Moreover, for small samples, the estimator does not overestimate the order but
may underestimate it. Note that this phenomenon was already observed in the i.i.d. setting.
Finally, the more different the emission distributions, the more accurate the estimator for
small samples. Furthermore, the comparison made with the spectral method proposed in
Lehéricy (2019) shows that our approach gives the best results whatever the setting and the
data-driven procedure proposed in this paper improves his results obtained with the slope
heuristics.

Now, if we focus on the various threshold selection methods, we observe that our ap-
proach combined with the K-means yields better results than the ScreeNot threshold selec-
tion regardless of the sample size. The latter, when applied to our matrix operator defined
in (13), tends to overestimate the order irrespective of the sample size and the configuration
tested. However, for the spectral approach proposed by Lehéricy (2019), the observation is
more nuanced. We notice that the ScreeNot performs better at small sample sizes, but both
methods become comparable as the sample size increases. On the other hand, the threshold
based on the slope heuristics in Lehéricy (2019) yields the worst results across all tested
configurations. These conclusions remain unchanged regarding the additional numerical
results presented in Appendix.

7. Identifying movement regimes from masked boobies trajectories

Following Nathan et al. (2008), animal movement depends on internal states of individuals
and therefore the segmentation of the trajectories helps ecologists to characterize different
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Method n Gaussian Student Laplace Von-Mises
L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3

proposed 250 0 40 60 0 0 23 77 0 0 21 79 0 0 2 92 6
K-means 500 0 23 77 0 0 10 90 0 0 9 91 0 0 2 97 1

1000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0
2000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0
4000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0

proposed 250 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
screeNOT 500 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

1000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
2000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
4000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

spectral 250 11 21 19 40 15 17 14 44 20 18 17 37 17 13 17 44
K-means 500 30 24 27 10 26 30 21 13 30 31 20 9 33 38 11 7

1000 30 37 27 0 22 38 32 2 24 44 25 1 26 37 28 1
2000 7 22 71 0 10 12 77 0 7 22 67 2 8 21 69 0
4000 1 2 97 0 2 3 95 0 3 4 93 0 2 4 94 0

spectral 250 6 37 36 21 5 31 42 22 0 23 33 44 9 31 31 29
screeNOT 500 2 39 41 18 1 27 49 23 0 12 28 60 1 34 44 21

1000 0 8 72 20 0 2 71 27 0 2 41 57 0 7 72 21
2000 0 0 93 7 0 0 82 18 0 0 59 41 0 0 89 11
4000 0 0 95 5 0 0 87 13 0 0 64 36 0 0 93 7

spectral 250 0 1 3 96 0 0 0 100 0 0 0 100 0 1 2 97
slope 500 0 0 9 91 0 0 1 99 0 0 0 100 0 0 4 96

1000 0 0 16 84 0 0 0 100 0 0 0 100 0 0 13 87
2000 0 0 20 80 0 0 3 97 0 0 0 100 0 0 11 89
4000 0 0 28 72 0 0 5 95 0 0 0 100 0 0 23 77

Table 1: Percentage of number of states selected by the competing methods (proposed
method with K-means procedure for tuning the constant ”proposed K-means”,
proposed method with ScreeNOT procedure for tuning the constant ”proposed
screeNOT”, spectral method with K-means procedure for tuning the constant
”spectral K-means”, spectral method with ScreeNOT procedure for tuning the
constant ”spectral screeNOT” and with slope heuristic used for tuning threshold
”spectral slope”), according to the family of the emission distributions and the
sample size, obtained on 100 replicates generated with d = 1, ν = 0.1, with an
marginal overlap between the emission distributions of 5%.
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movement patterns interpreted as different internal states. We present one example of such
an approach by studying three trajectories of a masked booby bird living on Meion Island
in the Fernando de Noronha archipelago in Brazil. The bird is equipped with a GPS that
records its position every 10 seconds. The initial data expressed in latitude and longitude
are projected onto a local coordinate system, and we use a HMM approach to identify
different movement patterns within the trajectory. The number of patterns is unknown and
Pohle et al. (2017) advocate that AIC and BIC tend to overestimate the order of the HMM
and that this order should be chosen according to biological consideration. We compare the
order estimated by the different criteria and the order estimated by the method proposed
in this paper.

The data consist in three different trips composed of 2712, 2451, and 2229 GPS positions
respectively. The data come from the field work of Sophie Bertrand (IRD), Guilherme
Tavares (UFRGS), Christophe Barbaud and Karine Delord (CNRS) and are kindly made
available by the IRD Tabasco Young International Team (JEAI).

Rather than analyzing absolute positions, the classical movement ecology approach con-
sists in deriving different metrics from the sequence of positions. This either the bivariate
sequence (Lt, φt)1≤t≤n of the step length and turning angle sequence as proposed in Ver-
mard et al. (2010); Walker and Bez (2010) or the bivariate sequence (V p

t , V
r
t )1≤t≤n of the

orthogonal components of persistence velocity and rotational velocity as in Gurarie et al.
(2009). Biological knowledge concerning the movement of these birds supports the use of
these metrics to distinguish between different behaviors.

We used the R package moveHMM (Michelot et al., 2016), a very popular package in the
movement ecology community, to fit a HMM on the bivariate sequence (Lt, φt)1≤t≤n where
the emission distributions are assumed to be a product between a gamma distribution and
a Von Mises distribution to respect the typical choice of such analysis as in Morales et al.
(2004), this model will be referred to as GVM model. We also fit a Normal Mixture model,
referred to as NM model, using depmixS4 (Visser and Speekenbrink, 2010) on the bivariate
sequence of persistence velocity and rotational velocity. Table 2 presents the order of the
HMM obtained by the proposed method and by the information criteria (AIC, BIC and
ICL) under the parametric assumptions detailed previously.

Variables Method Trip 1 Trip 2 Trip 3

step length and turning angle Proposed method 3 3 3
AIC (GVM) 10 9 10
BIC (GVM) 10 5 8
ICL (GVM) 4 6 4

velocity and rotational velocity Proposed method 3 3 3
AIC (NM) 10 10 9
BIC (NM) 9 7 7
ICL (NM) 9 7 7

Table 2: Estimated order of the HMM obtained by the proposed method, by AIC, BIC
and ICL for the two parametric models and for three different trips of the same
Red-footed booby (Sula sula) individual.
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Figure 1: Latent states during the trips obtained by considering the variables of step length
and turning angle

We propose to compare the estimators of the latent sequences obtained by considering
the variables of step length and turning angle and by considering the variables of velocity
and rotational velocity. Thus, we consider the order selected by the proposed method and
when kernel density estimator are used to fit the emission distributions. The adjusted Rand
indexes between the two estimators of the latent sequences are 0.959, 0.751 and 0.980 for
the trips 1, 2 and 3 respectively.

It is difficult to justify the choice of one or another family for the emission distributions,
however a poorly-adapted choice will often lead to an overestimation of the HMM order.
This is likely the case when fitting the model to the velocity sequence, which explains
the very high order estimated by the penalized likelihood criteria. In contrast, the non-
parametric approach finds the same order for each of the bird’s trips considered and for
the two metrics derived from the initial GPS relocation data. On this example, the non-
parametric approach proposed in this paper seems to be more robust and provides an
interesting alternative to parametric views, which tends to favor high orders, as indicated
in Pohle et al. (2017). For the two metrics considered, our approach returns three states
(see Figure 1 and Figure 2). This corroborates the interpretation of the ecologists. State 1,
2, 3, respectively correspond to the activity with the lowest average speed, a medium speed
and the fastest average speed.

8. Conclusion

In this paper, we introduced a new estimator for assessing the order of a non-parametric
HMM by using the rank of an integral operator. To take into account the variability of the
empirical singular values of a smoothed version of this operator, a data-driven thresholding
rule is proposed and based on a new heuristic for setting the unknown constants. We give a
theoretical justification and numerical studies have shown that it can be successfully applied
to several problems. Under standard assumptions for non-parametric HMMs (i.e., full rank
covariance matrix and linear independence between the emission distributions), consistency
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Figure 2: Latent states during the trips obtained by considering the variables of velocity
and rotational velocity

of the estimator is established. As illustrated on benchmark and real data, the proposed
approach considers different types of data including continuous data but also multivariate
data or directional data. Numerical experiments illustrate that the proposed approach
gives good results and provides greater flexibility enabling the modeling and analysis of
more complex data. In this paper, the consistency of estimator of the order L is obtained
by considering that the size of the single sequence tends to infinity. The proposed approach
can be extended to the case where multiple independent and finite sequences are observed.
In such case, the consistency will be achieved by considering that the number of finite
sequences tends to infinity. Hence, we consider that we observe N independent sequences

arisen from (1) and denoted by (y
(i)
t )i=1,...,N

t=1,...,ni+1. In this case, the unbiased estimator of ph
denoted by p̂h,y is defined for any z1 ∈ Rd and z2 ∈ Rd becomes

p̂h,y(z1, z2) =
1∑N

i′=1 ni′

N∑
i=1

ni∑
t=1

Kd
h(z1 − y(i)

t )Kd
h(z2 − y(i)

t+1).

Hence, considering that
∑N

i=1 ni tends to infinity, the consistency of the estimator of the
order is proved with the same arguments that those used in proof of Theorem 4. Note that∑N

i=1 ni tends to infinity if the number of sequences N tends to infinity or if the length ni
of at least one sequence tends to infinity.
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Hidden markov models with mixtures as emission distributions. Statistics and Computing,
24(4):493–504, 2014.

Emily Walker and Nicolas Bez. A pioneer validation of a state-space model of vessel tra-
jectories (vms) with observers’ data. Ecological Modelling, 221(17):2008–2017, 2010.

Geoffrey Wolfer and Aryeh Kontorovich. Estimating the mixing time of ergodic markov
chains. In Conference on Learning Theory, pages 3120–3159. PMLR, 2019.

L Yang, BK Widjaja, and R Prasad. Application of hidden markov models for signature
verification. Pattern recognition, 28(2):161–170, 1995.

Christopher Yau, Omiros Papaspiliopoulos, Gareth O Roberts, and Christopher Holmes.
Bayesian non-parametric hidden markov models with applications in genomics. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 73(1):37–57, 2011.

Zhibiao Zhao. Nonparametric model validations for hidden markov models with applications
in financial econometrics. Journal of econometrics, 162(2):225–239, 2011.

Walter Zucchini and Iain L MacDonald. Hidden Markov models for time series: an intro-
duction using R. Chapman and Hall/CRC, 2009.

Appendix A. Preliminary results

We recall here some definitions and basic properties of the mixing rate of Markov chains.
We also provide some useful Lemmas, which will be proven in Appendix C.

In the following, we denote by (Xt)t∈Z ∼ (A,π) a Markov chain with irreducible tran-
sition matrix A and stationary distribution π and denote by ~Xt the pair (Xt, Xt+1). First
of all, we define the total variation distance between two probability distributions µ and ν
on {1, . . . , L} by

‖µ− ν‖TV =
1

2

∑
`∈{1,...,L}

|µ(`)− ν(`)|.
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Definition 7 Let (Xt)t∈Z ∼ (A,π) a Markov chain and define, for any t,

d(t) = sup
`∈{1,...,L}

‖At(`, .)− π‖TV .

The Markov chain is uniformly ergodic if d(t) goes to zero at a geometric rate as t goes to
infinity, i.e. if there exists two constants c > 0 and 0 < ρ < 1 such that d(t) ≤ cρt.

However, the constants supplied by Definition 7 are generally very difficult to calculate
and too conservative to be of any practical use. Fortunately, we can do much better with the
spectral gap and the mixing time. Hence, it is useful to introduce the mixing time variable
which measures the time required by a Markov chain for the distance to stationarity to be
small.

Definition 8 Let (Xt)t∈Z ∼ (A,π) . Its mixing time tmix is defined by

tmix = min{t : d(t) ≤ 1

4
}.

It is well known that irreducible and aperiodic finite state chains are always uniformly
ergodic and we can easily note that in this case, tmix is finite and can be bounded by the
(pseudo)-spectral gap of the transition matrix, see Wolfer and Kontorovich (2019).

First of all, we need to ensure that the hidden process ~Zs = ( ~Xs, ~Y s) is a Markov chain
with a mixing time that we are able to control, using the mixing time of the hidden Markov
chain (Xt)t.

Lemma 9 Suppose that Assumption 1 holds true. Let X1, . . . , Xn ∼ (A,π) be a Markov
chain with mixing time tmix and stationary distribution π. The hidden chain ~Z = (~Z1, . . . , ~Zn)

is also then a Markov chain with kernel transition A
~Z : {1, . . . , L}2 × R2d → [0, 1] and sta-

tionary distribution π
~Z = π

~X ⊗G with G the transition kernel from {1, . . . , L}2 to R2d and

π
~X such that π

~X(`, k) = Pπ(Xs = `,Xs+1 = k) for all (`, k) ∈ {1, . . . , L}2. Furthermore,

the mixing time of the Markov chain ~Z denoted t
~Z
mix is at most tmix + 1.

Lemma 10 (Covariance inequality for hidden Markov chains) Suppose that Assump-
tions 1 and 2 hold true. Let X1, . . . , Xn ∼ (A,π) be a Markov chain with mixing time tmix

and stationary distribution π and define the hidden Markov chain (~Z1, . . . , ~Zn) ∼ (A
~Z ,π

~Z)

from Lemma 9 with mixing time t
~Z
mix. Then for any measurable function in L2(π

~Z):
φ : {1, . . . , L}2 × R2d → R, we have

n∑
t=1

E[φ(~Z1)φ(~Zt)] ≤ 4t
~Z
mixV[φ( ~Z1)].

In particular, for ψ : R2d → R we have

n∑
t=1

E[ψ(~Y 1)ψ(~Y t)] ≤ 4t
~Z
mixV[ψ(~Y 1)].
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Lemma 11 (Hoffman-Wielandt inequality (Bhatia and Elsner, 1994)) Let T and
T ′ be two operators with finite ranks, then we have that for any positive integer j∑

i≥j

(
σi(T )− σi(T ′)

)2 ≤ ‖T − T ′‖2HS .
Lemma 12 Under Assumptions 1 and 2, we have the following upper-bound, for any pos-
itive integer j,

|rj(T̂h,y)− rj(Th)| ≤ ‖T̂h,y − Th‖HS ,
where rj is defined by (6).

Lemma 13 Let φ : Rd × Rd → R+ be a square-integrable function with

‖φ‖2 =

[∫
φ2(z1, z2) dz1 dz2

]1/2

<∞

and T : L2(Rd)→ L2(Rd) be the integral operator defined by

[T (ω)](z2) =

∫
Rd
ω(z1)φ(z1, z2) dz1,

then we have the following equivalence between the norms ‖T ‖HS = ‖φ‖2.

Lemma 14 With the notations of Section 2.3, let g : Rd×(n+1) → R+ be given, for any
Y = (Y 1, . . . ,Y n+1), by

g(Y ) = ‖p̂h,Y − E[Kd
h(· − Y 1)Kd

h(· − Y 2)‖2.

Then, under Assumption 2, for any y ∈ Rd(n+1) and ỹ ∈ Rd(n+1),

|g(y)− g(ỹ)| ≤ 2
√

2

n
‖Kh‖2d2

n+1∑
t=1

1{yt 6=ỹt}.

Lemma 15 Assume that Assumptions 1 and 2 are fulfilled. Then, for any h > 0, we have

E[g(Y )] ≤ ‖Kh‖2d2
n1/2

(9 + 8tmix)
1/2 (14)

with tmix defined in Lemma 9 and g defined in Lemma 14.

Lemma 16 (McDiarmid’s inequality for Markov Chains (Paulin, 2015)) • Let
V = (V1, . . . , Vn)> be a (not necessarily time homogeneous) Markov chain, taking val-
ues in a Polish state space Λ = Λ1 × . . . × Λn. Suppose that g : Λ → R is such that
there exists some c = (c1, . . . , cn), which satisfies that, for any v ∈ Λ and ṽ ∈ Λ,

|g(v)− g(ṽ)| ≤
n∑
t=1

ct1{vt 6=ṽt}.

Then for any t ≥ 0, we have

P (|g(V )− Eg(V )| ≥ t) ≤ 2 exp

(
−2t2

9‖c‖2tmix

)
,

where tmix is the mixing time of the Markov chain defined in Lemma 9.
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• Let W = (W1, . . . ,Wn)> be an hidden Markov chain with underlying chain V =
(V1, . . . , Vn)> having mixing time tmix. Suppose that g : Λ → R satisfies that for any
w ∈ Λ and w̃ ∈ Λ

|g(w)− g(w̃)| ≤
n∑
t=1

ct1{wt 6=w̃t}, (15)

for some c = (c1, . . . , cn), then for any t ≥ 0, we have

P (|g(W )− Eg(W )| ≥ t) ≤ 2 exp

(
−2t2

9‖c‖2tmix

)
,

Appendix B. Proofs of the main results

Proof [Proof of Lemma 1] Since, by Assumption 1.1, the densities {f1, . . . , fL} are linearly
independent, there exist κ1, . . . , κL with κ` ∈ Rd such that the L×L matrix M f defined by
M f [`, j] = f`(κj), has full rank. Let the L×L matrix M g be defined by M g[`, j] = g`(κj).
From (2), we have M g = AMf . Noting that det(M g) = det(A)det(M f ) and that A is
invertible by Assumption 1.1, we have that M g has full rank and thus that the densities
{g1, . . . , gL} are linearly independent. Thus, using Proposition 3 of Kasahara and Shimotsu
(2014), we obtain that L is identifiable from the distribution of a pair of consecutive obser-
vations.

Proof [Proof of Lemma 3] By Lemma 11, we have under Assumptions 1 and 2

L∑
j=1

(σj(Th)− σj(T ))2 ≤ ‖Th − T‖2HS . (16)

We now show that the right-hand side of (16) is of order h4. First, note that Th − T is an
integral operator given, for any function ω ∈ L2(Rd), by

[Th − T ](ω)(z1) =

∫
Rd
ω(z1) [ph(z1, z2)− p(z1, z2)] dz2,

with ph defined, for some bandwidth h > 0 and some kernel Kd
h(z) =

∏d
j=1Khj(zj), by

ph(z1, z2) =
∫
Rd×Rd p(y1,y2)Kd

h(z1 − y1)Kd
h(z2 − y2) dy1 dy2. From Lemma 13, we thus

have

‖Th − T‖2HS = ‖ph − p‖22.

Besides, variable change theorem implies that

ph(z1, z2) = h2d

∫
Rd×Rd

p(z1 − hu1, z2 − hu2)Kd
h(hu1)Kd

h(hu2) du1 du2

=

∫
Rd×Rd

p(z1 − hu1, z2 − hu2)

d∏
j=1

K1j(u1j)K1j(u2j) du1 du2.
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Therefore, a Taylor expansion of order 2 of p(z1 − u1h, z2 − u2h) around (z>1 , z
>
2 )> leads

to

p(z1 − u1h, z2 − u2h) = p(z1, z2)− [∇p(z1, z2)]> uh+
1

2
uT H(z1, z2)uh2 + o(h2),

where u = (u>1 ,u
>
2 )>, ∇p is the gradient of p and H(z1, z2) denotes its hessian evaluated

at (z1, z2). Assumptions 3 implies uT H(z1, z2)u is upper-bounded an integrable function
of (z>1 , z

>
2 )> and that the first order of the K1j is zero and that its second order is finite,

leading that ‖ph − p‖22 = O(h4) and hence,
we have

‖Th − T‖2HS = O(h4). (17)

Proof [Proof of Theorem 4] By Lemma 12, applied with j = L+1, we have, for any positive
τ , the following inclusion of events

{‖T̂h,y − Th‖HS ≤ τ} ⊆ {|rL+1(T̂h,y)− rL+1(Th)| ≤ τ},

which leads to this keystone inclusion

{‖T̂h,y − Th‖HS ≤ τ} ⊆ {L̂(τ, h) ≤ L}. (18)

Indeed, using the fact that Th is of rank L, we have rL+1(Th) = 0, which implies that

{L̂(τ, h) ≤ L} = {rL+1(T̂h,y) ≤ τ} = {|rL+1(T̂h,y)− rL+1(Th)| ≤ τ}.

Thus, controlling the probability that L̂(τ, h) overestimates L can be achieved via a con-
centration inequality on ‖T̂h,y − Th‖HS . Noting that ET̂h,y = Th, Lemma 13 implies

‖T̂h,y − Th‖HS = g(Y ),

with g : Rd×(n+1) → R+ and

g(Y ) = ‖p̂h,Y − E[Kd
h(· − Y 1)Kd

h(· − Y 2)]‖2.

Therefore, a concentration inequality on ‖T̂h,y−Th‖HS can be obtained from a concentration
inequality on g(Y ). From Lemma 14, we have for any y ∈ Rd(n+1) and ỹ ∈ Rd(n+1),

|g(y)− g(ỹ)| ≤ 2
√

2

n
‖Kh‖2d2

n+1∑
t=1

1{yt 6=ỹt}. (19)

Thus, a concentration inequality on g(Y ) can be achieved by a McDiarmid’s inequality for
Markov Chains (see Lemma 16) stated by Paulin (2015) since condition (15) is satisfied.
Therefore, noting that vector c defined in Lemma 16 is here a vector of length n+ 1 where
each element is equal to 2

√
2‖Kh‖2d2 /n, we have for any t > 0

P(‖T̂h,y − Th‖HS ≥ t+ E [g(Y )]) ≤ exp

(
− n2

n+ 1

t2

36‖Kh‖4d2 tmix

)
. (20)
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Thus, we can rewrite that, for any 0 < α < 1

P
(
‖T̂h,y − Th‖L2(Rd) ≥

(
Cα,1‖Kh‖4d2 (n+ 1)/n2

)1/2
+ E [g(Y )]

)
≤ α, (21)

where Cα,1 = 36 ln(1/α)tmix. Moreover, from Lemma 15, we have

E[g(Y )] ≤
(
‖Kh‖4d2
n

C2

)1/2

,

where C2 = 9 + 8 tmix. Therefore, replacing E [g(Y )] by its upper-bound in (21), we obtain
that for any 0 < α < 1

P

(
‖T̂h,y − Th‖HS ≥

‖Kh‖2d2
n1/2

((
Cα,1

n+ 1

n

)1/2

+ C
1/2
2

))
≤ α. (22)

Combining (18) and (22) leads to (7).

In addition, to obtain (9), it is important to first notice the following equality of events

{L̂(τ, h) = L} =
{
{rL(T̂h,y) > τ} ∩ {rL+1(T̂h,y) < τ}

}
.

We then recall that rL+1(Th) = 0 and that rL(Th) = σL(Th). Thus, by Lemma 12 applied
with j = L+ 1 and j = L respectively, we obtain that

rL+1(T̂h,y) ≤ ‖T̂h,y − Th‖HS ,

and

rL(T̂h,y) ≥ σL(Th)− ‖T̂h,y − Th‖HS .

Therefore, on the event {σL(Th) > 2τ}∩ {‖T̂h,y −Th‖HS < τ}, we have rL+1(T̂h,y) < τ and

rL(T̂h,y) ≥ τ , which leads to the following inclusion of events{
{σL(Th) > 2τ} ∩ {‖T̂h,y − Th‖HS < τ}

}
⊆ {L̂(τ, h) = L}.

For any 0 < α < 1, the event {σL(Th) > 2τα} is not random (see (8) for the definition of
τα). Thus, if there exists an h̃ such that σL(Th̃) > 2τα, we can then conclude that

P(L(τα, h̃) = L) ≥ 1− α.

To complete the proof, we have to show that such an h̃ exists. Note that using Lemma 3
and the assumption that σL(T ) > 2τα + ε, we obtain that

σL(Th) > 2τα + ε+O(h2),

which ensures the existence of h̃.
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Proof [Proof of Proposition 6] Let µa,b = 1
b−a+1

∑b
`=a r̂`, we have

µ1,s+1 =
s

s+ 1
µ1,s +

1

s+ 1
r̂s+1

and

µs+1,n =
n− s− 2

n− s− 1
µs+2,n +

1

n− s− 1
r̂s+1.

Thus, we have for any s ∈ {1, . . . ,m− 1}

s+1∑
`=1

(r̂` − µ1,s+1)2 =

s∑
`=1

(r̂` − µ1,s+1)2 + s(µ1,s − µ1,s+1)2 + (r̂s+1 − µ1,s+1)2

=

s∑
`=1

(r̂` − µ1,s)
2 +

s

s+ 1
(µ1,s − r̂s+1)2,

and

m∑
`=s+1

(r̂` − µs+1,m)2 =
m∑

`=s+2

(r̂` − µs+2,m)2 + (n− s− 2)(µs+2,m − µs+1,m)2 + (r̂s+1 − µs+2,m)2

=
m∑

`=s+2

(r̂` − µs+2,m)2 +
m− s− 2

m− s− 1
(r̂s+1 − µs+2,m)2.

The K-means algorithm aims to minimize the within-group variance. Since the r̂` are
ordered, by considering two groups, the K-means algorithm aims to find s? such that

s? = arg min
s∈{2,...,m−1}

∆(s),

where

∆(s) =
s∑
`=1

(r̂` − µ1,s)
2 +

m∑
`=s+1

(r̂` − µs+1,m)2.

Therefore, the proof is complete if we show that s? = L and so that ∆(s) > ∆(L) for any
s 6= L. For any s < L− 1, we have

∆(s)−∆(s+ 1) =
m− s− 2

m− s− 1
(r̂s+1 − µs+2,m)2 − s

s+ 1
(µ1,s − r̂s+1)2.

Noting that µs+2,m < r̂s+2(L − s − 2)/(n − s − 2) + ε(n − L)/(n − s − 2) ≤ r̂s+1(L − s −
2)/(n− s− 2) + ε(n− L)/(n− s− 2), then

m− s− 2

m− s− 1
(r̂s+1 − µs+2,m)2 >

(n− L)2

(n− s− 1)(n− s− 2)
(r̂s+1 − ε)2.

Since µ1s < [(s/ξ(s+ 1))1/2 + 1]r̂s+1 for s < L, and since µ1s > r̂s+1, we have

s

s+ 1
(µ1,s − r̂s+1)2 >

1

ξ
r̂2
s+1.
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Therefore,

∆(s)−∆(s+ 1) >
ξ − 1

ξ
r̂2
s+1 + o(m) +O(ε).

and thus since ξ > 1, if m is large enough and if ε is small enough, then for s ∈ {1, . . . , L−1},
we have ∆(s)−∆(s+1) > 0 implying that for any s ∈ {1, . . . , L−1}, we have ∆(s) > ∆(L).

If s > L+ 1, then

∆(s) =
L∑
`=1

(r̂` − µ1L)2 + L(µ1L − µ1s)
2 + (s− L)(ε− µ1s)

2 + (m− s− 1)O(ε2).

Thus, for any s ∈ {L+ 1, . . . ,m}

∆(s)−∆(L) = (L− s− 1)O(ε2) + L(µ1L − µ1s)
2 + (s− L)µ2

1s + (s− L)O(ε).

Therefore, if ε is small enough then ∆(s) > ∆(L) for s > L.

Appendix C. Proofs of the preliminary lemmas

Proof [Proof of Lemma 9]

Step 1: The Markov and stationary properties of the process ~X = ( ~X1, . . . , ~Xn) is
straightforward. It remains just to prove that its mixing time is controlled by the mixing

time tmix of the process (Xt)t∈Z. We denote by A
~X : {1, . . . , L}2 × {1, . . . , L}2 the ker-

nel transition and by π
~X its stationary distribution, which are given for all (i, j, k, `) ∈

{1, . . . , L}4 by

A
~X((i, j), (k, `)) = 1{k=j}A[k, `] and π

~X(i, j) = Pπ(Xs = i,Xs+1 = j).

Let t ≥ tmix+1 and δ(i1,j1) the Dirac distribution on {1, . . . , L}2 that puts mass 1 at the pair

(i1, j1) and 0 everywhere else, the total variation distance between (A
~X)t and the stationary

distribution π
~X is then given by
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‖δ(i1,j1)(A
~X)t − π ~X‖TV =

1

2

∑
(i,j)∈{1,...,L}2

|δ(i1,j1)(A
~X)t[i, j]− π ~X(i, j)|

=
1

2

∑
(i,j)∈{1,...,L}2

|P( ~Xt+1 = (i, j)| ~X1 = (i1, j1))−A[i, j]π(i)|

=
1

2

∑
(i,j)∈{1,...,L}2

|P((Xt+1, Xt+2) = (i, j)|(X1, X2) = (i1, j1))−A[i, j]π(i)|

=
1

2

∑
(i,j)∈{1,...,L}2

|P(Xt+2 = j|Xt+1 = i)P(Xt+1 = i|X2 = j1)−A[i, j]π(i)|

=
1

2

∑
i∈{1,...,L}

 ∑
j∈{1,...,L}

A[i, j]

 |At−1[j1, i]− π(i)|

=
1

2

∑
i∈{1,...,L}

|At−1[j1, i]− π(i)|

= ‖δj1At−1 − π‖TV .

By making use of Assumption 1 and the definition of the mixing time of (Xt)t, we deduce
that

‖δ(i1,j1)(A
~X)t − π ~X‖TV ≤ 1/4

Step 2: : The Markov property and the mixing rate of the hidden state ~Z is ensured
from the stability properties of hidden chains, i.e. by taking the same strategy as in Step 1

for the Markov kernel A
~Z and let δ(i1,j1,ỹ1,ỹ2) the Dirac distribution on {1, . . . , L}2 × R2d

that puts mass 1 at the pair (i1, j1, ỹ1, ỹ2) and 0 everywhere else, we have that

‖δ(i1,j1,ỹ1,ỹ2)(A
~Z)t − π~Z‖TV = ‖δ(j1,ỹ2)(A

X,Y )t−1 − πX,Y ‖TV ≤ 1/4

where AX,Y is the Markov kernel transition of the hidden chain (Xt,Y t) and πX,Y its
stationary distribution which is also uniformly ergodic by stability and Assumption 1.

Proof [Proof of Lemma 10] The proof of the first part is a direct consequence of Theorem

3.4 and Proposition 3.4 in Paulin (2015) for the hidden Markov chains ~Z ∼ (A
~Z ,π

~Z)

defined in Lemma 9 with mixing time t
~Z
mix. The second part follows straightforwardly by

taking for φ the following particular function

φ :

{
{1, . . . , L}2 × R2d −→ R

(k, `, ~y1) 7−→ ψ(~y1)
,

with ψ being a measurable function from R2d −→ R. We get

n∑
t=1

E[ψ(~Y 1)ψ(~Y t)] ≤
2

γps
V[ψ(~Y 1)],
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where γps is the pseudo-spectral gap associated with the kernel transition A
~Z (see Paulin

(2015) for a definition). We conclude the proof by noting that, from Assumption 1, we have
2
γps
≤ 4t

~Z
mix.

Proof [Proof of Lemma 12] Using the reverse triangle inequality, we can easily show that,
for any positive integer j

|rj(T̂h,y)− rj(Th)| ≤

∑
i≥j

(
σi(T̂h,y)− σi(Th)

)2

1/2

.

We conclude the proof by using Lemma 11, which leads to the announced result

|rj(T̂h,y)− rj(Th)| ≤ ‖T̂h,y − Th‖HS .

Proof [Proof of Lemma 13] Considering an orthonormal basis {ek}∞k=1 of L2(Rd), we have

‖T ‖2HS =

∞∑
k=1

∫
ek(y1)φ(y1,y2) dy2 dy1.

Therefore, denoting φy2 = φ(·,y2), we have

‖T ‖2HS =

∫ ∞∑
k=1

< φy2 , ek > dy2.

Applying Parseval’s inequality, we obtain

‖T ‖2HS =

∫
‖φy2‖

2
2 dy2 = ‖φ‖22,

which concludes the proof.

Proof [Proof of Lemma 14] For any y ∈ Rd(n+1) and ỹ ∈ Rd(n+1), define ∆ = {t : yt 6= ỹt}.
Let the vectors y(s) defined by y(0) = y and for s = 1, . . . , card(∆) by

y
(s)
t =

{
y

(s−1)
t if t 6= t(s)

ỹt if t = t(s)
,

where t(s) denotes the element s of ∆. Applying the reverse triangle inequality, we have

|g(y(s−1))− g(y(s))| ≤ ‖p̂h,y(s−1) − p̂h,y(s) ||2.

For any z1 and z2 in Rd, using (4), we have[
p̂h,y(s−1) − p̂h,y(s)

]
(z1, z2) =

1

n

n∑
t=1

(
Kd
h(z1 − y(s−1)

t )Kd
h(z2 − y(s−1)

t+1 )−Kd
h(z1 − y(s)

t )Kd
h(z2 − y(s)

t+1)
)
.

32



Estimation of the Order of Non-Parametric Hidden Markov Models

Using the fact that, by construction, for any t 6= t(s), y
(s)
t = y

(s−1)
t , we deduce that all

the terms in the previous sum vanish, except the ones for t = t(s) or t = t(s) − 1. Thus, if
1 < t(s) < n, we obtain that

‖p̂h,y(s−1) − p̂h,y(s) ||
2
2 =

1

n2

∫ [
Kd
h(z1 − y(s−1)

t(s)−1
)
(
Kd
h(z2 − y(s−1)

t(s)
)−Kd

h(z2 − y(s)

t(s)
)
)

+
(
Kd
h(z1 − y(s−1)

t(s)
)−Kd

h(z1 − y(s)

t(s)
)
)
Kd
h(z2 − y(s−1)

t(s)+1
)
]2

dz1 dz2.

Note that if t(s) = 1 or t(s) = n, then the same reasoning can be applied but only one term
appears in the integrand on the right-hand side of the previous equation. By Assumption 2,

we have that
∫ (
Kd
h(z1 − a)Kd

h(z2 − b)
)2

dz1 dz2 = ‖Kh‖4d2 for any a ∈ Rd and b ∈ Rd.
Thus, using that (a+ b)2 ≤ 4(a2 ∧ b2) and (a− b)2 ≤ 2(a2 ∧ b2) for any a > 0 and b > 0, we
deduce that

|g(y(s−1))− g(y(s))| ≤ 2
√

2

n
‖Kh‖2d2 .

The proof is completed by noticing that y(card(∆)) = ỹ and that

|g(y)− g(ỹ)| ≤
card(∆)∑
s=1

|g(y(s−1))− g(y(s))|.

Proof [Proof of Lemma 15]

Let us denote be Ut,n(z) the random variable defined as

Ut,n(z) = Kd
h(z1 − Y t)K

d
h(z2 − Y t+1)

where z = (z1, z2). We recall that the function g : Rd×(n+1) → R+ is such that

g(Y ) = ‖p̂h,Y − E[Kd
h(· − Y 1)Kd

h(· − Y 2)‖2

with

p̂h,y(z) =
1

n

n∑
t=1

Kd
h(z1 − yt)Kd

h(z2 − yt+1).

We also denote by ph(z) = E[p̂h,y(z)]. Hence, using the concavity of the square-root
function and the Jensen’s inequality, we get

E[g(Y )] = E

[
‖ 1

n

n∑
t=1

Ut,n(z)− E [Ut,n(z)] ‖2

]

≤ E1/2

[
‖ 1

n

n∑
t=1

(Ut,n(z)− E[Ut,n(z)])‖22

]
≤ E1/2

[
‖p̂h,y(z)− ph(z)‖22

]
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Using the standard bias variance decomposition, we obtain that

E
[
‖p̂h,y(z)− ph(z)‖22

]
= E

[ ∫
(p̂h,y(z)− ph(z))2 dz

]
=

∫
E
[
(p̂h,y(z)− ph(z))2

]
dz

=

∫
V[p̂h,y] dz

=

∫
V

[
1

n

n∑
t=1

Ut,n(z)

]
dz

=

∫ (
1

n2

n∑
t=1

V [Ut,n(z)] +
2

n2

∑
1≤t≤t′≤n

Cov(Ut,n(z), Ut′,n(z))

)
dz

=

∫ (
1

n
V[U1,n(z)] +

2

n2

n∑
t=2

(n− t)Cov(U1,n(z), Ut,n(z))

)
dz

≤
∫ (

1

n
V[U1,n(z)] +

2

n

n∑
t=2

Cov(U1,n(z), Ut,n(z))

)
dz

We start by computing the first term on the right-hand side

1

n

∫
V[U1,n(z)]dz =

1

n

∫
V
[
Kd
h(z1 − Y 1)Kd

h(z2 − Y 2)

]
dz

≤ 1

n

∫ (∫ ∫
K2d
h (z1 − y1)K2d

h (z2 − y2)p(y1,y2) dy1 dy2

)
dz

≤ 1

n

∫ ∫ ∫
K2d
h (u)K2d

h (v)p(z1 − u, z2 − v) du dv dz

≤ 1

n
‖Kh‖4d2 (23)

Concerning the covariance terms, taking for ψ:

ψ :

{
R2d −→ R
~y1 7−→ ψ(~y1) = Kd

h(z1 − y1)Kd
h(z2 − y2)
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we have from Lemma 10

n∑
t=2

Cov(U1,n(z), Ut,n(z))

=
n∑
t=2

Cov

(
Kd
h(z1 − Y 1)Kd

h(z2 − Y 2),Kd
h(z1 − Y t)K

d
h(z2 − Y t+1)

)

≤
n∑
t=1

(
E
[
|Kd

h(z1 − Y 1)Kd
h(z2 − Y 2)Kd

h(z1 − Y t)K
d
h(z2 − Y t+1)|

]

+

(
E
[
|Kd

h(z1 − Y 1)Kd
h(z2 − Y 2)|

])2)
≤ 4t

~Z
mix V

[
Kd
h(z1 − Y 1)Kd

h(z2 − Y 2)

]
≤ 4t

~Z
mix E

[
K2d
h (z1 − Y 1)K2d

h (z2 − Y 2)

]
≤ 4t

~Z
mix

(∫ ∫
K2d
h (z1 − y1)K2d

h (z2 − y2)p(y1,y2) dy1 dy2

)
,

with t
~Z
mix defined in Lemma 9. Integrating out the previous inequality over variable z, we

obtain that ∫ n∑
t=2

Cov(U1,n(z), Ut,n(z)) dz ≤ 4t
~Z
mix‖Kh‖4d2 . (24)

Combining (23) and (24), we obtain

E[‖p̂h,y(z)− ph(z)‖22] ≤ ‖Kh‖4d2
n

(1 + 8t
~Z
mix).

And, we can conclude with the announced bound, by making use of Lemma 9

E[g(Y )] ≤ ‖Kh‖2d2
n1/2

(1 + 8t
~Z
mix)1/2 ≤ ‖Kh‖2d2

n1/2
(9 + 8tmix)1/2

Appendix D. Additionnal numerical experiments
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Method n Gaussian Student Laplace Von-Mises
L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3

proposed 250 0 19 81 0 0 8 92 0 0 10 90 0 0 2 89 9
K-means 500 0 2 98 0 0 3 97 0 0 3 97 0 0 0 99 1

1000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 97 3
2000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0
4000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0

proposed 250 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
screeNOT 500 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

1000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
2000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
4000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

spectral 250 17 17 17 41 15 18 21 36 16 19 24 35 12 24 23 34
K-means 500 30 28 25 10 23 35 17 18 31 35 19 7 27 35 18 7

1000 26 41 26 0 17 40 31 4 19 46 25 2 21 34 35 2
2000 3 23 74 0 6 20 74 0 3 24 72 0 3 9 87 0
4000 0 3 97 0 2 2 96 0 3 6 91 0 0 1 99 0

spectral 250 4 34 32 30 5 25 37 33 1 17 32 50 6 36 42 16
screeNOT 500 4 30 43 23 1 21 44 34 0 9 35 56 2 25 52 21

1000 0 7 67 26 0 4 63 33 0 1 38 61 0 4 75 21
2000 0 0 90 10 0 0 87 13 0 0 68 32 0 0 93 7
4000 0 0 93 7 0 0 94 6 0 0 63 37 0 0 95 5

spectral 250 0 0 2 98 0 0 0 100 0 0 0 100 0 0 2 98
slope 500 0 0 6 94 0 0 0 100 0 0 0 100 0 0 2 98

1000 0 0 9 91 0 0 0 100 0 0 0 100 0 0 4 96
2000 0 0 11 89 0 0 0 100 0 0 0 100 0 0 6 94
4000 0 0 11 89 0 0 0 100 0 0 0 100 0 0 13 87

Table 3: Percentage of number of states selected by the competing methods (proposed
method with K-means procedure for tuning the constant ”proposed K-means”,
proposed method with ScreeNOT procedure for tuning the constant ”proposed
screeNOT”, spectral method with K-means procedure for tuning the constant
”spectral K-means”, spectral method with ScreeNOT procedure for tuning the
constant ”spectral screeNOT” and with slope heuristic used for tuning threshold
”spectral slope”), according to the family of the emission distributions and the
sample size, obtained on 100 replicates generated with d = 1, ν = 0.1, with an
marginal overlap between the emission distributions of 2.5%.
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Method n Gaussian Student Laplace Von-Mises
L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3 L-1 L-2 L-3 L>3

proposed 250 0 72 28 0 0 72 28 0 0 64 36 0 0 7 92 1
K-means 500 0 75 25 0 0 81 19 0 0 65 35 0 0 3 97 0

1000 0 51 49 0 0 32 68 0 0 22 78 0 0 0 100 0
2000 0 1 99 0 0 0 100 0 0 0 100 0 0 0 100 0
4000 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100 0

proposed 250 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
screeNOT 500 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

1000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
2000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100
4000 0 0 0 100 0 0 0 100 0 0 0 100 0 0 0 100

spectral 250 18 14 25 40 19 18 12 40 16 21 16 40 21 19 30 28
K-means 500 36 25 18 10 32 33 18 11 33 28 23 5 34 32 16 7

1000 39 46 12 0 23 47 23 3 25 50 16 2 24 49 23 0
2000 5 37 58 0 6 29 64 0 13 28 59 0 11 31 57 0
4000 1 5 94 0 2 4 94 0 4 9 87 0 0 3 97 0

spectral 250 18 33 35 14 7 34 40 19 6 24 40 30 16 30 34 20
screeNOT 500 8 55 31 6 5 35 42 18 2 17 50 31 3 27 52 18

1000 1 25 70 4 0 15 65 20 0 5 55 40 0 7 75 18
2000 0 0 100 0 0 0 94 6 0 0 67 33 0 0 89 11
4000 0 0 100 0 0 0 96 4 0 0 77 23 0 0 97 3

spectral 250 0 5 9 86 0 0 5 95 0 0 2 98 0 2 10 88
slope 500 1 6 24 69 0 1 3 96 0 0 0 100 0 0 6 94

1000 0 1 35 64 0 0 11 89 0 0 1 99 0 0 16 84
2000 0 0 66 34 0 0 16 84 0 0 0 100 0 0 32 68
4000 0 0 76 24 0 0 19 81 0 0 3 97 0 0 42 58

Table 4: Percentage of number of states selected by the competing methods (proposed
method with K-means procedure for tuning the constant ”proposed K-means”,
proposed method with ScreeNOT procedure for tuning the constant ”proposed
screeNOT”, spectral method with K-means procedure for tuning the constant
”spectral K-means”, spectral method with ScreeNOT procedure for tuning the
constant ”spectral screeNOT” and with slope heuristic used for tuning threshold
”spectral slope”), according to the family of the emission distributions and the
sample size, obtained on 100 replicates generated with d = 1, ν = 0.1, with an
marginal overlap between the emission distributions of 10%.
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