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Abstract

Diffusion models have had a profound impact on many application areas, including those
where data are intrinsically infinite-dimensional, such as images or time series. The stand-
ard approach is first to discretize and then to apply diffusion models to the discretized
data. While such approaches are practically appealing, the performance of the resulting
algorithms typically deteriorates as discretization parameters are refined. In this paper,
we instead directly formulate diffusion-based generative models in infinite dimensions and
apply them to the generative modelling of functions. We prove that our formulations
are well posed in the infinite-dimensional setting and provide dimension-independent dis-
tance bounds from the sample to the target measure. Using our theory, we also develop
guidelines for the design of infinite-dimensional diffusion models. For image distributions,
these guidelines are in line with current canonical choices. For other distributions, however,
we can improve upon these canonical choices. We demonstrate these results both theoret-
ically and empirically, by applying the algorithms to data distributions on manifolds and
to distributions arising in Bayesian inverse problems or simulation-based inference.

Keywords: diffusion models, score-based generative models, infinite-dimensional analysis,
hilbert spaces, bayesian inverse problems, function space

1. Introduction

Diffusion models (also score-based generative models or SGMs) (Sohl-Dickstein et al., 2015;
Song et al., 2021) have recently shown great empirical success across a variety of domains.
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In many applications, ranging from image generation (Nichol and Dhariwal, 2021; Dhariwal
and Nichol, 2021), audio (Kong et al., 2021), and time series (Tashiro et al., 2021) to
inverse problems (Kadkhodaie and Simoncelli, 2021; Batzolis et al., 2021), the signal to be
modeled is actually a discretization of an infinite-dimensional object (i.e., a function of space
and/or time). In such a setting, it is natural to apply the algorithm in high dimensions,
corresponding to a fine discretization and a better approximation of the true quantity.
Yet theoretical studies of current diffusion models suggest that performance guarantees
deteriorate with increasing dimension (Chen et al., 2022; Bortoli, 2022).

When studying a discretization of an infinite-dimensional object, many application areas
have found great success in directly studying the infinite-dimensional limit and only dis-
cretizing the problem in the last step, when implementing an algorithm on a computer. By
accurately understanding the infinite-dimensional problem, one can gain valuable insights
on how it should be discretized. Sometimes, this leads to algorithms that are dimension-
independent in that their performance does not degrade when one chooses a finer discretiz-
ation.

Important areas where it is now standard to study the infinite-dimensional object dir-
ectly are, for example, Bayesian inverse problems (Stuart, 2010) and nonparametric statist-
ics (Tsybakov, 2009; Giné and Nickl, 2015). Accordingly, many Markov chain Monte Carlo
algorithms used for sampling, such as the Metropolis-adjusted Langevin (Cotter et al., 2013)
or Hamiltonian Monte Carlo (Beskos et al., 2011) algorithms, have successfully been gen-
eralized to the infinite-dimensional setting; in addition to being an empirical success, these
efforts have also led to dimension-independent convergence guarantees (see Hairer et al.
(2014); Bou-Rabee and Eberle (2021); Pidstrigach (2022a)).

In the common implementation of the diffusion model algorithm, one first discretizes the
data (for example images to pixels or wavelet coefficients, or functions to their evaluations
on a grid) and then applies the algorithm in RD, as described in Song et al. (2021). When
doing so, one does not consider the implications of the discretization dimension D. In
particular, if there is no well-defined limiting algorithm as D →∞, one cannot expect the
algorithm’s performance to be stable as D becomes large. This instability can potentially
be mitigated by defining the diffusion model algorithm directly in infinite dimensions, and
studying its properties there. Once the algorithm is modified so that it exists in infinite
dimensions, the discretized formulations that are implementable on a computer will possess
dimension-independent properties.

1.1 Challenges in Extending Diffusion Models to Infinite Dimensions

Let us briefly recall the well-known finite-dimensional diffusion model setting. A forward
SDE, typically an Ornstein–Uhlenbeck process, is used to diffuse the data µdata:

dXt = −1

2
Xtdt+ dWt, X0 ∼ µdata . (1)

The densities of its marginal distributions are denoted by pt. The following so-called “reverse
SDE” will traverse the marginals of Xt backward:

dYt =
1

2
Ytdt+∇ log pT−t(Yt)dt+ dWt, Y0 ∼ pT , (2)
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where Wt is a different Wiener process/Brownian motion than in (1). In particular, YT ∼
pT−T = µdata, where by a slight abuse of notation we denote both the density and the
measure itself by µdata. The goal of the diffusion model algorithm is to approximate paths of
Yt and use the realizations at time T as approximate samples from µdata. Since the marginals
of the forward SDE Xt converge to N (0, I) at an exponential speed, one can approximate
the unknown term pT by N (0, I). Furthermore, ∇ log pt can be approximated using score-
matching techniques (Vincent, 2011). There are three main challenges in generalizing this
construction to infinite dimensions, which we highlight next.

1.1.1 Choice of the noising process

In finite dimensions, the process (Wt : t ≥ 0) in (1) is standard Brownian motion. Therefore,
the noise increments for different coordinates i and j, e.g., W i

t −W i
s and W j

t −W
j
s , are

independent and identically distributed. In infinite dimensions, one can associate a white-
noise process WU

t to each Hilbert space U , with the property that the coordinates of WU
t

in an orthonormal basis of U are independent and identically distributed. Therefore, one
has to determine which white-noise process (i.e., which Hilbert space) to choose in the
infinite-dimensional limit.

The common case of discretizing the infinite-dimensional target object to RD, e.g.,
discretizing a function onto a grid or real-life scenery into image pixels, and then choosing
Wt as a standard Brownian motion on RD, means that at each grid point we will add
independent noise values. In particular, as the grid grows finer, even for arbitrarily close
values a ≈ b, the evaluations Xt(a) and Xt(b) will be perturbed with independent noise.
The limiting Wiener process will be WL2

t , i.e., the process associated to U = L2, also called
space-time white noise. We have depicted space-time white noise in Figure 1a.

In infinite dimensions, however, the choice of the noise process is a subtle issue, as it
has a crucial impact on the space on which the diffusion process is supported. For instance,
the above ‘canonical’ choice of space-time white noise will lead to Xt and Wt having such
irregular samples that they are not supported in L2 anymore. While we will also study
such processes due to their widespread use in practice, we will see that other choices can
be beneficial from a theoretical as well as a practical standpoint.

1.1.2 Score function

The score function ∇ log pt in (2) is typically defined via the Lebesgue density pt of the law
of Xt. Yet in infinite-dimensional vector spaces, the Lebesgue measure no longer exists;
hence one can no longer specify the score functions in the same manner. Therefore, a key
question is: How does one define and make sense of ∇ log pt without relying on the notion
of Lebesgue density, and still define an algorithm which provably samples from the correct
measure?

1.1.3 Denoising score matching objective

The score ∇ log pt is typically approximated by a neural network s̃(t, x) in some chosen
neural network class, and identified by minimizing the denoising score-matching objective,

Loss(s̃) =

∫ T

0
E[‖∇ log pt(Xt)− s̃(t,Xt)‖2K ]dt,

3



Pidstrigach, Marzouk, Reich and Wang

over this class. Similarly to the choice of the noising process, it is not clear which Hilbert
space K and norm ‖ · ‖K should be used for the analogous objective in infinite dimensions.

1.2 Contributions

Our paper, for the first time, formulates the diffusion model algorithm directly on infinite-
dimensional spaces, and proves that this formulation is well-posed and satisfies crucial
theoretical guarantees.

To formulate the reverse SDE in infinite dimensions, we must find a way to handle the
∇ log pt term, as discussed in the last section. We do this by replacing the score with a
conditional expectation, in Definition 2. This definition then carries over to the infinite-
dimensional case. Furthermore, we are able to show under which circumstances one can
generalize the denoising score matching objective to identify the neural network s̃(t, x) in
Lemma 7.

To justify approximating the reverse SDE to obtain samples from µdata, we proceed
in multiple steps. First, in Theorem 9, we show that the time-reversal of the forward
SDE also satisfies an appropriate reverse SDE. The terminal condition of the reverse SDE
will have distribution µdata. To simulate this reverse SDE in practice, however, both its
initial conditions and drift must be approximated. In Lemma 7 we establish under which
conditions we can use the common denoising score matching objective to approximate the
drift of the reverse SDE in infinite dimensions.

Second, we prove that the solution to such an SDE exists for general initial conditions—
and in particular, for our approximate initial conditions. Moreover, we prove that the
solution is unique; otherwise we could be approximating a different reverse SDE solution
that does not sample µdata at the terminal time T . We provide rigorous uniqueness res-
ults under two distinct scenarios: first, in Theorem 12, for µdata which satisfies a manifold
hypothesis; and second, in Theorem 13, under the assumption that µdata has density with
respect to a Gaussian measure. The first case is relevant for the typical use cases of diffu-
sion models, as image data are usually supported on lower-dimensional manifolds or other
substructures. The second case is relevant when, for example, applying diffusion models to
Bayesian inverse problems or related problems of simulation-based inference.

Finally, building upon the preceding results, we establish dimension-independent con-
vergence rates in Theorem 14. Our bound is quantitative and shows how the distance relies
on different choices made in the diffusion model algorithm.

The theory described above guides choices for the noise process WU
t and the loss norm

‖ · ‖K . Both will depend on the properties of µdata. In Section 6 we discuss the implications
of the theory for implementing diffusion models in infinite dimensions. In Section 6.1, we
work out guidelines for choosing WU

t and K for a given µdata. In Section 6.2, we study
the case of image distributions and see that our theorems indeed apply for the typical
properties of µdata one expects in that setting; hence, we have proven that the standard
diffusion model algorithm is well-defined for image distributions as D →∞. Moreover, we
see that the choices WU

t = WL2

t and K = L2 actually follow the guidelines developed in
the preceding subsection. Therefore, the canonical choices made for diffusion models seem
to be good default choices for image distributions.
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For µdata with different smoothness properties, however, the insights from our theory
dictate other choices for U and K. In Section 7 we apply our guidelines to two specific data
distributions µdata. Our principled algorithms are compared to the common ad hoc imple-
mentation of diffusion models. These numerical findings confirm our theoretical insights:
our modifications outperform the canonical choices, and the ways in which they do can be
explained by the discussion in Section 6.

1.3 Related Work

The two efforts most related to ours are the concurrent works Hagemann et al. (2023) and
Lim et al. (2023).

In Hagemann et al. (2023), methods are developed to train diffusion models simultan-
eously on multiple discretization levels of (infinite-dimensional) functions. They build upon
our Wasserstein distance bounds to show that their multilevel approach is consistent.

Lim et al. (2023) are also able to generalize the trained model over multiple discretization
levels. They propose to run the annealed Langevin algorithm in infinite dimensions, and
use existing results for infinite-dimensional Langevin algorithms to justify their algorithms
theoretically. The forward-reverse SDE framework is not treated.

Both of these efforts encounter difficulties when defining the infinite-dimensional score.
Hagemann et al. (2023) circumvent this issue by only treating time-reversals of the discret-
ized forward SDE. Lim et al. (2023), on the other hand, only analyze the case in which
the measure is supported on the Cameron–Martin space of WU

t . One can then simplify
the problem by working with densities of Xt with respect to Gaussian measure. From a
practical point of view, both of these works employ Fourier neural operators (Li et al., 2020)
as their neural network architecture, while we work directly in the space domain and use
the popular U-Net architecture for our neural networks.

In Kerrigan et al. (2022) an infinite-dimensional time-discrete version of the diffusion
model algorithm is proposed. It is not studied whether the proposed algorithm is well
defined in infinite dimensions.

Other works also transform data into a representation that is well suited to functions,
e.g., by applying a wavelet (Guth et al., 2022; Phung et al., 2022) or spectral (Phillips
et al., 2022) transform. After the transformation, however, these works employ the finite-
dimensional formulation of the diffusion model algorithm; infinite-dimensional limits are
not treated. We discuss how different spatial discretization schemes can be related to our
results in Section 4.

Lastly, the subject of convergence of diffusion models to the target distribution has been
a very active field of research recently; see Chen et al. (2022, 2023); Bortoli (2022); Lee et al.
(2022); Yang and Wibisono (2022). In all these works, however, bounds on the distance to
the target measure depend at least linearly on the discretization dimension D, rendering
them vacuous in infinite dimensions.

1.4 A Primer on Probability in Hilbert Spaces

In this section, we will give a short summary of key concepts relating to probability theory on
infinite-dimensional (Hilbert) spaces which are required to study the infinite-dimensional
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formulation of SGMs rigorously. For an extensive introduction to this topic, see Hairer
(2009, Chapter 3).

1.4.1 Gaussian measures on Hilbert spaces

Let (H, 〈·, ·〉H) be a separable Hilbert space. We then say that a random variable X taking
values in H is Gaussian if, for every v ∈ H, the real-valued random variable 〈v,X〉H is also
Gaussian. If the 〈v,X〉H have mean zero, X is centered. The covariance operator of X is
the symmetric, positive-definite operator C : H → H defined through

〈g, Ch〉H = Cov (〈X, g〉H , 〈X,h〉H) = EX [〈X, g〉H〈X,h〉H ]. (3)

We denote the law of X in this case by N (0, C). Since X takes values in H, C is guaranteed
to be compact (Hairer, 2009). Therefore, there exists an orthonormal basis (ei : i ≥ 1) of
eigenvectors of C satisfying Cei = ciei. Fixing this basis, the second moment of X is given
by

E[‖X‖2H ] = E

[ ∞∑
i=1

〈X, ei〉2H

]
=
∞∑
i=1

E[〈X, ei〉2H ] =
∞∑
i=1

〈ei, Cei〉H =
∞∑
i=1

ci.

Since a Gaussian measure is supported on H if and only if its second moment on H is finite
(Hairer, 2009), and X takes values in H, the trace of C, tr(C) =

∑∞
i=1 ci, will be finite. We

then also say that C is of trace class. Note that this is not the case if one would choose
C = Id, since its trace is infinite. However, one could always just consider a larger space
H ′ ⊃ H, such that H ′ supports µ := N (0, C) and on which C would then have finite trace.

1.4.2 The Cameron–Martin space

The covariance operator C plays a special role in that it characterizes the ‘shape’ of the
Gaussian measure N (0, C). Indeed, one may define another canonical inner product space
U associated to C, which is a (compactly embedded) subspace U ⊆ H called the Cameron–
Martin space of N (0, C). Intuitively speaking, with respect to the geometry of U , a random
variable X ∼ N (0, C) will have ‘identity’ covariance. Assuming that C is non-degenerate,
the Cameron–Martin space is defined via the inner product

〈g, h〉U = 〈g, C−1h〉H = 〈C−1/2g, C−1/2h〉H .

Since C−1 is unbounded, U is indeed a smaller space than H; more specifically, one can
show that U = C1/2H. In order to generate a realization of X ∼ N (0, C), one may simply

draw i.i.d. coefficients (ξi ∼ N (0, 1) : i ≥ 1) and set X =
∑N

i=1 c
1/2
i ξiei where (ci, ei)

∞
i=1 are

the eigenpairs of C.1

It is important to note that X almost surely does not take values in U . As an example,
let H = L2([0, 1]), and consider a one-dimensional Brownian motion process (Bt : t ∈ [0, 1]).
Of course, B ∈ H almost surely. The Cameron–Martin space of B, however, is given as the
space U = H1([0, 1]) of weakly differentiable functions on [0, 1]. Since the sample paths of
B are almost surely nowhere differentiable (Karatzas et al., 1991), we conclude that almost

1. This is also called the Karhunen–Loève expansion of X, and in finite dimensions relates to the simple
fact that C−1/2X ∼ N (0, Id).
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surely B /∈ U .2 Nevertheless, U does indicate the regularity of the Gaussian process at
hand: the more regular U , the more regular the draws from the corresponding Gaussian
measure.

1.4.3 C-Wiener processes in Hilbert spaces

The standard Brownian motion in RD has increments Wt+∆t−Wt ∼ N (0,∆tID). However,
for the case of a general infinite-dimensional Hilbert space H, the meaning of an identity
covariance matrix depends on the choice of the scalar product with respect to which the
Gaussian measure has identity covariance. Therefore, we will from now on fix two Hilbert
spaces: the Cameron–Martin space U , with respect to which the increments of the Wiener
process would have covariance ∆tI, and a larger space H on which WU

t takes values and
has covariance operator C, i.e.

WU
t+∆t −WU

t ∼ N (0,∆tC).

In general, we will pick H large enough so that all of our objects take values in it (the target
measure µdata as well as the C-Wiener process WU

t ). The choice of U can then also be seen
as being equivalent to choosing a covariance operator C of WU

t on H.

1.4.4 Interpretation in finite dimensions

Given a Gaussian distribution N (0, C) on RD, its Cameron–Martin space will be again RD,
but equipped with the scalar product

〈x, y〉U = 〈C−1/2x,C−1/2y〉RD = xTC−1y.

Plugging U into definition (3), one sees thatX has an identity covariance matrix with respect
to U . If X ∼ N (0, C), then it can also be represented as

√
CZ, for Z ∼ N (0, ID). Similarly,

a C-Wiener process with increments N (0, C) in finite dimensions can be constructed by
using a standard Brownian motion Wt on RD and multiplying it with

√
C.

Therefore, in finite dimensions, most of the discussions above can be simplified to choos-
ing covariance matrices and representing objects of interest in terms of standard Gaussians
(Z) or Brownian motions (Wt). The main technical difficulties in infinite dimensions arise
because one has to choose a Hilbert space H on which Z would have the standard normal
distribution, and because Z will not take values in H.

However, in infinite dimensions, one can still understand most concepts that relate to
the choice of Gaussian measures by simply thinking about some large Hilbert space H ′ in
which all quantities of interest take values and then identifying Gaussian random variables
with their covariance operators on this space.

2. The Infinite-Dimensional Forward and Reverse SDEs

We will now formulate the forward and reverse SDEs of our generative model in infinite
dimensions, and show that the reverse SDE is, in fact, well-posed with the correct terminal
distribution.

2. Here, we have used that functions in H1 are absolutely continuous, and therefore almost everywhere
differentiable on [0, 1].
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To this end, let µdata be our target measure, supported on a separable Hilbert space
(H, 〈·, ·〉). Our goal is to generate samples from µdata, which is done by first adding noise
to given samples from µdata using a forward SDE and then generating new samples using a
learned reverse SDE (Song et al., 2021).

2.1 Forward SDE

We now define the infinite-dimensional forward SDE used to ‘diffuse’ the initial measure
µdata. As noted in Section 1.4, there is no natural Brownian motion process in infinite
dimensions; instead there is one white noise process WU

t for each Hilbert space U . From
now on, we fix some Cameron–Martin space U , together with its Gaussian measure N (0, C).
Furthermore, let H be large enough to not only support µdata, but also N (0, C). In practice,
an example would be to choose a Gaussian process (GP) with a Matérn covariance N (0, C)
(which implicitly defines U). As the embedding space H, one could for example choose L2.
Then WU

t would have increments that are samples from a Matérn GP.

We then define the forward SDE as

dXt = −1

2
Xtdt+ dWU

t = −1

2
Xtdt+

√
CdWH

t , X0 ∼ µdata . (4)

The marginal distributions of Xt will converge to the stationary distribution N (0, C) as
t → ∞ (Da Prato and Zabczyk, 2014, Theorem 11.11). We will denote the marginal
distributions of Xt by Pt.

The choice of U , or equivalently C, can be guided by the theory that we will develop
and strongly impacts empirical performance. We discuss these choices in Section 6.

2.2 Definition of the Score Function

Analogously to score-based generative models in finite dimensions, we now wish to define the
reverse SDE corresponding to (4); this SDE on H should approximately transform N (0, C)
to µdata. This can be achieved by time-reversing the SDE (4). In the finite-dimensional case,
the drift of the time reversal SDE involves the score function ∇ log pt (see (2)), where pt is
the density of Pt with respect to Lebesgue measure. More precisely, in the finite-dimensional
case H = RD, the reverse SDE to the Ornstein–Uhlenbeck process

dXt = −1

2
Xtdt+

√
CdWt

is given by

dYt =
1

2
Ytdt+ C∇ log pT−t(Yt)dt+

√
CdWt ;

see (Haussmann and Pardoux, 1986). In the infinite-dimensional case, the density pt is no
longer well-defined, since there is no Lebesgue measure. Hence, we need another way to
make sense of the score function. Interestingly, in finite dimensions, there is an alternative
way to express C∇H log pt via conditional expectations which is amenable to generalization
to infinite dimensions.
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Lemma 1 Assume the finite-dimensional setting H = RD. Denote by pt the Lebesgue
density of Xt, where X[0,T ] is a solution to (4). Then, we can express the function C∇ log pt
as

C∇ log pt(x) = − 1

1− e−t
(
E
[
Xt − e−

t
2X0 | Xt = x

])
= − 1

1− e−t
(
x− e−

t
2E[X0 | Xt = x]

)
for t > 0, where E[f(Xτ ) | Xt = x] is the conditional expectation of the function f(Xτ )
given Xt = x and τ ∈ [0, T ].

Conditional expectations are also well-defined in infinite dimensions. Therefore, we will
give the conditional expectation from Lemma 1 a name and make use of it as the drift of
the reverse SDE on Hilbert space H:

Definition 2 Let H be a possibly infinite-dimensional Hilbert space and X[0,T ] a solution
to (4). We define the reverse drift as a map s : [0, T ]×H → H,

s(t, x) := − 1

1− e−t
(
x− e−

t
2E[X0|Xt = x]

)
.

Remark 3 For a definition of conditional expectations and measures for Hilbert-space val-
ued random variables, see Bogachev (1997, Section 1.3).

Remark 4 Note that the above function is only defined up to Pt-equivalence classes, where
Pt is the distribution of the time-t marginal of the forward SDE. However, the loss function
for diffusion models is a L2 loss, integrated over Pt. Therefore, without restricting the func-
tion class that one optimizes over, the minimizer is also only defined up to Pt-equivalence.
Neural networks are normally contained in the class of continuous functions in t and x.
We will see that we can pick versions of s(t, x) satisfying continuity properties, for example
being locally Lipschitz continuous in x (see Section 3.2).

We will also frequently use the fact that the drift of the reverse SDE is actually a rescaled
martingale in reverse time. We will later show that this also holds in infinite dimensions,
in Theorem 9.

Lemma 5 Assume the finite-dimensional setting H = RD. Then, the quantity Mt =
e−t/2∇ log pt(Xt) is a time-continuous reverse time martingale, i.e.,

∇ log pt(Xt) = e
(t−τ)

2 E[∇ log pτ (Xτ ) | Xt] for all 0 < τ < t.

The proofs of both of these lemmas can be found in Appendix D.1.

2.3 Reverse SDE

We are now able to write down the infinite-dimensional forward SDE:

X0 ∼ µdata, dXt = −1

2
Xtdt+

√
CdWH

t , (5)

9
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where WU
t =

√
CWH

t are C-Wiener processes. Defining Ys := XT−t as the time-reversal
of a solution to (5), we want to show that it satisfies the following stochastic differential
equation:

Y0 ∼ PT ,dYt =
1

2
Ytdt+ s(T − t, Yt)dt+

√
CdWH

t . (6)

Here, the drift s(t, x) of the reverse SDE is given by Definition 2.

In finite dimensions, one could also rewrite the reverse SDE as

dYt =
1

2
Ytdt+ C∇ log pT−t(Xt)dt+

√
CdWH

t

=
1

2
Ytdt+ C∇ log

dpT−t
dN (0, C)

(Xt)dt+ C∇ logN (0, C)(Xt) +
√
CdWH

t

= −1

2
Ytdt+ C∇ log

dpT−t
dN (0, C)

(Xt)dt+
√
CdWH

t ,

(7)

where we denote by N (0, C)(x) the density of N (0, C) of evaluated at x. In finite as well
as in infinite dimensions, if X0 ∼ µdata has a density with respect to a Gaussian N (0, C),
then so will the distribution of Xt (see the proof of Theorem 13). Therefore, under that
assumption, the SDE in the last line of (7) can also be made sense of in infinite dimensions.
Rewriting the SDE in this form is helpful in the proof of Theorem 13.

Remark 6 Another forward SDE with invariant measure ν = N (0, C) is

dXt = −1

2
C−1Xtdt+ dWH

t , (8)

with corresponding reverse SDE

dYt = −1

2
C−1Ytdt+∇H log

dPT−t
dN (0, C)

(Yt)dt+ dWH
t . (9)

The operator C−1 can often be identified with a differential operator, turning (9) into a
stochastic partial differential equation (SPDE). One can then use numerical tools for SPDEs
to approximate the above. This constitutes an interesting direction for future work.

Note, however, that if C−1 is an unbounded operator, for any fixed positive time t >
0, the high frequencies of Yt will already have been smoothed out by the process. Since
the reverse SDE has to be discretized, care must be taken on how to train and evaluate
the diffusion model; otherwise one might lose all high-frequency information. By ‘high
frequencies,’ here we mean the eigenvectors corresponding to large eigenvalues of C−1.

2.4 Training Loss

To simulate the reverse SDE, we need a way to approximately learn the drift function s(t, x).
For another function s̃(t, x) (a candidate approximation to s), we measure the goodness of
the fit of s̃ using a score-matching objective, i.e.,

SMt(s̃) = E[‖s(t,Xt)− s̃(t,Xt)‖2K ]. (10)

10
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On RD, the norm ‖ ·‖K to measure the misfit is typically the Euclidean norm. For training,
this loss can be rewritten into the denoising score matching objective,

DSMt(s̃) = E[‖s̃(t,Xt)− (1− e−t)−1/2(Xt − e−t/2X0)‖2K ] = SMt(s̃) + Vt. (11)

One can then show (see (Vincent, 2011)), that SM and DSM only differ by a constant Vt
and therefore one can use DSM as an optimization objective to optimize SM. The DSM
loss is normally optimized on a sequence of times {tm}Mm=1 on which the reverse SDE is
discretized (since the score will only be evaluated at these ti values), i.e.,

Loss(s̃) =

M∑
m=1

SMtm(s̃) =

M∑
m=1

DSMtm(s̃)− Vtm

= Etm,X [‖s̃(tm, Xtm)− σ−1
tm (Xtm − e−tm/2X0)‖2K ]− V,

(12)

where the last expectation is taken over tm ∈ Unif({t1, . . . , tM}) and V =
∑M

m=1 Vtm .
We will see that the equivalence of SMt and DSMt does not hold in general in infinite

dimensions. Furthermore, we will study the choice of the norm ‖ · ‖K . Two natural choices
that come to mind are the norm of the embedding Hilbert space H and of the Cameron–
Martin space U of C. In the following lemma, we study conditions under which we can
rewrite the loss into the denoising score matching objective.

Lemma 7 Let (K, 〈·, ·〉K) be a separable Hilbert space. Furthermore, denote by s̃ an ap-
proximation to s, such that the score matching objective (10) is finite. Then,

SMt(s̃) = DSMt(s̃)− Vt,

where DSMt is defined in (11) and Vt is given by the conditional variance of X0,

Vt =
e−t

1− e−t
E[‖X0 − E[X0|Xt]‖2K ].

Furthermore, DSMt is infinite if Vt is.

Lemma 7 shows that in infinite dimensions there is the possibility that the true objective SM,
which we are trying to optimize, might be finite, while DSM is not. One might argue that
this is not relevant since in practice one always has to discretize and then both will be finite.
However, as we will argue in the following paragraph, the discretization level will impact
the variance of the gradients. In practice, we do not evaluate the full expectation values in
SM or DSM, but take Monte Carlo estimates in the form of mini-batches. Assuming that
we have already reached the optimum, i.e., s = s̃, then the SM objective would be zero
and also the gradient of any mini-batch taken to approximate it would be zero. However,
derivatives of Monte Carlo estimates of the DSM objective will have the form

∂θi DSM(s̃θ) =
1

M

M∑
i=1

〈∂θi s̃(t, x
M
t ), s̃(t,Xt)− σ−1

t (Xt − e−t/2X0)〉,

where me made the parameters θ (typically, the weights of a neural network) of s̃θ explicit.
The random variable s̃(t,Xt) − σ−1

t (Xt − e−t/2X0) has infinite variance, and therefore we

11
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can expect the above gradient estimates to have infinite variance too. Hence, if Vt is not
finite and therefore DSMt is not finite in infinite dimensions, one can expect variance of the
the gradient of the DSM to get arbitrarily large as the discretization gets finer, despite the
fact that the true gradient should be zero. In the following lemma, we study some cases in
which we can expect V to be finite.

Lemma 8 The denoising score matching objective (11) is finite in infinite dimensions if
one of the following two conditions holds:

1. We use the Cameron–Martin norm ‖ · ‖K = ‖ · ‖U in the objective, and µdata is
supported on the Cameron–Martin space U of N (0, C) and has finite second moment,
i.e.,

E[‖X0 − E[X0]‖2U ] <∞.

2. Both µdata and N (0, C) are supported on K.

A consequence of point 2 of Lemma 8 is that the norm of the embedding Hilbert space
K = H is always a valid choice. The proof of both lemmas above can be found in Appendix
D.2.

3. Well-Posedness of the Reverse SDE

We need to show that the reverse SDE possesses solutions and that they are unique in order
to prove that the reverse SDE samples from the target distribution in infinite dimensions.
In Section 3.1, we show that the time-reversal of the forward SDE satisfies the reverse SDE
in infinite dimensions and therefore samples the right final distribution µdata at its final
time. In Section 3.2, we will show strong uniqueness and existence of the reverse SDE for
general initial conditions.

3.1 The Time Reversal Satisfies the Reverse SDE

Thus far, we have formally formulated the reverse SDE (6) without showing that it actually
constitutes a time reversal of the stochastic dynamics from the forward equation. In the
following theorem, we show that Yt indeed constitutes a time reversal of Xt and that it
recovers the correct target distribution at terminal time T .

Theorem 9 Assume Xt is a solution to (4). Then, the time reversal Yt := XT−t solves
the SDE (6). Furthermore, if H is a Hilbert space such that µdata and N (0, C) are both
supported on H, we can choose s such that Mt = s(t,Xt) is almost surely continuous in t
with respect to the H-norm.

Proof (Sketch) We approximate the infinite-dimensional forward-SDE in finite dimensions
using a spectral approximation in the eigenbasis of the covariance operator C. The finite-
dimensional approximations are denoted by XD

t .
Next we show that the finite-dimensional time-reversals Y D

t := XD
T−t satisfy an equation

analogous to (6):

Y D
t − Y D

0 −
1

2

∫ t

0
Y D
r dr −

∫ t

0
sDT−rdr =

√
CDBD

t .

12
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We then show that all of those terms converge to their counterparts in (6), and therefore
Yt := XT−t satisfies the same equation. The convergence of Y D

t to Yt is trivial: the Y D
t

are spectral approximations. The convergence of the other terms is a bit more involved.
Unfortunately, for L > D, the conditional expectations sDt are not the projections of sLt to
a lower-dimensional space, and the same holds for the Brownian motions BD

t .

We can, however, show that sDt is a martingale in D. Combining this with the fact that
e−t/2sDt is also a martingale in time (see Lemma 5), we obtain uniform-in-time convergence
of sDt to st. The convergence of CDBD

t also follows, and we can identify the limit as a
C-Wiener process.

The full proof can be found in Appendix F.1.

Remark 10 The work Föllmer and Wakolbinger (1986) studies time-reversal of more gen-
eral forward SDEs. Due to the more general setting, the resulting SDE is only expressed
coordinate-wise, and the SDE as well as the assumptions are more technical. Using our
approach and the reverse drift s(t, x), we prove that we can still use the common denoising
score matching loss to approximate s(t, x); see Lemma 7. Another related concept is vector
logarithmic derivatives, as discussed in Bogachev (1997).

Due to Theorem 9, we know that there is a solution to (6) that will sample µdata at the
final time. To motivate approximating (6) for sampling from µdata, we also need to show
that these solutions are unique; otherwise there could be other solutions that have different
terminal conditions. We will achieve this in the following section.

3.2 Uniqueness and Existence of Solutions

We now study strong uniqueness and existence of the solutions to the reverse SDE. We say
an SDE satisfies strong existence if we can construct a solution to the SDE for any driving
Brownian motion and that solution will be adapted to the filtration of the Brownian motion.
We say that an SDE satisfies strong uniqueness if, for any two solutions Yt and Ỹt of that
SDE, with the same driving Brownian motion, it holds that P[Yt = Ỹt for all t] = 1.

Remark 11 Here we will prove strong uniqueness (also called pathwise uniqueness) of solu-
tions to the reverse SDE. For sampling purposes, uniqueness in law of the reverse SDE
would suffice and is generally easier to prove. However, for the Wasserstein distance bounds
which we will prove later (see Theorem 14) we will employ coupling arguments. These ar-
guments implicitly rely on strong existence of solutions to the reverse SDE and therefore we
will prove strong existence. Strong existence together with uniqueness in law already imply
strong uniqueness; see Karatzas et al. (1991, Section 5.3) (the result also holds here since
H is separable). Therefore, in our case we can obtain strong uniqueness no matter which
uniqueness we prove.

We will treat two different settings. The first setting is tailored to distributions suppor-
ted on substructures of the full space. The main motivation for this setting are measures
which are supported on a manifold-like structure M. Since many distributions that dif-
fusion models are applied to satisfy the manifold hypothesis, understanding how diffusion
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models interact with manifolds has been an active area of research (Pidstrigach, 2022b;
De Bortoli, 2022; Batzolis et al., 2022).

Theorem 12 Fix a covariance operator C in the forward SDE (5) together with its Cameron–
Martin space U . Assume that the support of µdata is contained in a ball BR in U of radius
R ≥ 0:

BR = {x : ‖x‖U ≤ R}.

Then there is a version of s which is Lipschitz continuous with respect to the Cameron–
Martin norm, i.e.,

‖s(t, x)− s(t, y)‖U ≤ Lt‖x− y‖U , (13)

where Lt ∈ R+ is a time-dependent Lipschitz constant. Moreover, the reverse SDE with the
Lipschitz continuous version of s(t, x) has a unique strong solution.

Proof (Sketch) The transition kernel of the forward SDE is given by

pt(x0, ·) ∼ N (e−tx0, vtC),

where we used the shorthand notation vt = 1 − e−t. If x0 is an element of the Cameron–
Martin space U of C, then the transition kernel is absolutely continuous with respect to
N (0, (1− e−t)C). The explicit formula for the density is

nt(x0, x) =
dN (e−tx0, vtC)

dN (0, vtC)
(x)

by the Cameron–Martin theorem. Since µdata almost surely takes values in U , one can use
the above to derive an explicit expression for the conditional expectation E[X0|Xt = x] in
terms of these densities:

E[X0|Xt = x] =

∫
x0nt(x0, x)dµdata(x0)∫
nt(x0, x)dµdata(x0)

.

This formula can be used to derive local Lipschitzness of

s(t, x) = − 1

1− e−t
x+

e−
t
2

1− e−t
E[X0|Xt = x].

Interestingly, the local Lipschitzness is in terms of the norm of U . Even if x and y themselves
are not in U , if their difference in is U , the U -norm of the difference s(t, x) − s(t, y) will
be bounded by (13). Taking some care, one can still use a fixed point argument to obtain
existence, but not uniqueness. One can then apply Grönwall’s lemma to obtain uniqueness.

Note that obtaining weak uniqueness would be easier, since under our assumptions the
drift s(t, x) will always map to the Cameron–Martin space of the C-Wiener process and one
could apply a Girsanov-type argument.

The full proof can be found in Appendix F.1.

The other case of interest is applying diffusion models to Bayesian inverse problems or
simulation-based inference. In this case, we assume that the true measure is given as a
density with respect to a Gaussian reference measure. We treat it in the theorem below:
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Theorem 13 Fix a covariance operator C in the forward SDE (5). Assume µdata is given
as

µdata ∝ exp(−Φ(x))dN (0, Cµ).

Let (H, 〈·, ·〉H) be a Hilbert space on which N (0, Cµ) is supported and C is bounded. For
the potential Φ ∈ C1(H) we assume,

• Φ(x) > E0,

• Φ(x) 6 E1 + E2‖x‖2, and

• ‖∇Φ(x)−∇Φ(y)‖ 6 L‖x− y‖,

where the gradient is the H-gradient. Then there is a version of s(t, x) that is locally
Lipschitz continuous with respect to the H-norm for each t, i.e., for ‖x‖, ‖y‖ ≤ r there is a
Lt,r <∞ such that

‖s(t, x)− s(t, y)‖ ≤ Lt,r‖x− y‖,

and the reverse SDE with the locally Lipschitz continuous version of s(t, x) has a unique
strong solution.

Proof (Sketch) The proof holds for any C that is diagonalizable with respect to the same
eigenbasis as Cµ (in particular, also for C = Id, i.e., H-white noise), but we will only treat
the less technical case C = Cµ here.

In the case of C = Cµ, the distribution Pt of Xt is absolutely continuous with respect
to N (0, C). One can rewrite the reverse SDE as in (7). It will then hold that

∇xt log
dpt

dN (0, C)
(xt) = E[C∇Φ(X0)|Xt = xt],

and the proof will mainly translate the Lipschitzness properties of∇Φ(x) to E[∇Φ(X0)|Xt =
x]. The global Lipschitzness of ∇Φ(x) only induces local Lipschitzness of E[∇Φ(X0)|Xt =
x], but that is enough to apply a Grönwall argument and deduce strong uniqueness.

Furthermore, one can obtain weak existence to the reverse SDE. By Theorem 9, the time
reversal will be a weak solution with initial condition PT . However, under the assumptions
of the theorem, N (0, C) will be absolutely continuous with respect to pT . Therefore, one
can obtain a weak solution with initial conditions N (0, C) by reweighting the time reversal.
However, weak existence together with strong uniqueness already imply strong uniqueness;
see Karatzas et al. (1991, Section 5.3).

The full proof can be found in Appendix F.2.

4. Algorithms and Discretizations

We state simplified versions of our proposed algorithms in Algorithms 1 and 2. There
are many potential modifications one might make to the above algorithms, as for example
discussed in Song et al. (2021); Song and Ermon (2020); Ho et al. (2020); we do not include
these here since they are not the focus of the current work. To implement any algorithm on
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Algorithm 1 Training

Require: Covariance operator C
Require: Training data {Xn}Nn=1

Require: Loss Norm ‖ · ‖
Require: Batch size B
Require: Discretization grid {t1, . . . , tM}

1: while Metrics not good enough do
2: Sample {ξi}Bi=1 ∼ N (0, C) i.i.d.
3: Subsample {xi0}Bi=1 from {Xn}Nn=1

4: Sample ti ∈ Unif({t1, . . . , tM})
5: xit ← e−t

i
xi0 +

√
1− e−tiξi

6: Loss(θ) =
∑B

i=1 ‖s̃θ(ti, xit) −
1√

1−e−ti
ξi‖2

7: Perform gradient step on Loss.
8: end while

Algorithm 2 Sampling

Require: Covariance operator C
Require: Discretization grid {t1, . . . , tM}
Require: Number of samples to generate L

1: {xiM}Li=1 ∼ N (0, C)
2: for m←M, . . . , 1 do
3: ∆t← tm − tm−1

4: Sample {ξi}Li=1 ∼ N (0, C) i.i.d.
5: xim−1 ← xim+∆t s̃θ(tm, x

i
m)+
√

∆t ξi

6: end for
7: return {xiM}Mi=1

a computer, the functions have to be discretized in some way. Discretization also interacts
with the covariance matrix C, as the same covariance matrix has different meanings in
different discretizations. We discuss this briefly now.

If the functions are discretized on a grid, i.e., if the samples are of the form {f(xd)}Dd=1 for
a fixed grid {xd}, choosing an identity covariance matrix corresponds to adding independent
noise at each grid point xd. The limiting object of the noise as the grid gets finer is space-
time white noise (recall Section 1.1). Furthermore, the Euclidean norm on RD in the loss
function (11) will correspond to using the L2 loss in the limit—i.e., the Cameron–Martin
norm of the noising process.

In RD the choice of the white noise process is equivalent to choosing a covariance matrix
C and adding

√
CdWt with a standard RD-valued Brownian motion Wt. Any correlated

Wiener noise process WU
t can be represented in this way on RD. If one wants the limit

of
√
CdWt to be a Gaussian process, one needs to plug in for C the kernel matrix of that

Gaussian process on the grid {xd}Dd=1. Alternatively, one can also use one of many available
libraries to generate Gaussian process realizations for common kernels (such as Matérn or
squared exponential).

Note that the meaning of C depends on the discretization. If f is discretized with
respect to some basis ei of a space U , then using the identity covariance matrix corresponds
to using the white noise process with Cameron–Martin space U . Therefore, discretizing the
functions in a wavelet or Fourier basis will also result in space-time white noise as these
both form an orthonormal basis of L2 (under the common scaling of the basis vectors).
However, if one does not want to work in the spatial domain, one can also just discretize
the functions in an orthonormal basis of the Cameron–Martin space U of the noise one is
targeting. Therefore, we can translate the approaches in Guth et al. (2022); Phillips et al.
(2022); Phung et al. (2022) into our setting.
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5. Bounding the Distance to the Target Measure

We now study how far the samples generated by the diffusion model algorithm lie from the
true target measure µdata. We do this in the Wasserstein-2-distance,

W2(µ, ν) =

(
inf

κ∈Q(µ,ν)

∫
‖x− y‖2Hdκ(x, y)

)1/2

,

where κ runs over all measures on H×H which have marginals µ and ν. The Wasserstein-2
distance in some sense “lifts” the distance induced by ‖ · ‖H to the space of measures. In
the following theorem, we give an upper bound for the Wasserstein distance between the
sample measure and the true data-generating measure. The bound holds irrespective of
‖ · ‖H , giving us the freedom to study how different choices of ‖ · ‖H affect the distance
bound.

Theorem 14 We denote the covariance of the forward noising process by C. Let (H, ‖·‖H)
be any Hilbert space such that the support of µdata and N (0, C) are contained in H. Assume
that ‖ · ‖H is at least as strong as the norm ‖ · ‖K used in the training of the diffusion model
(see (12)), i.e.,

‖x‖H ≤ a‖x‖K

for some constant a. Further, assume that s(t, x) is Lipschitz on H with constant L, i.e.,

‖s(t, x)− s(t, y)‖H ≤ L‖x− y‖H

and that the reverse SDE has a strong solution (see Theorem 12 or 13 for the requirements).
Let the reverse SDE (6) be discretized using an exponential integrator (see Appendix C).
Then,

W2(µdata, µsample) 6
(

exp(−T/2) W2(µdata,N (0, C)) + ε
1/2
Num + aε

1/2
Loss

)
exp

(
1

4
L2T

)
,

(14)
where εLoss is the value of the loss objective (12) and εNum denotes the error due to the
numerical integration procedure,

εNum = O(∆t) sup
0<t≤T

EXt∼pt [‖s(t,Xt)‖2H ].

Proof (Sketch) We define two strong SDE solutions: Yt, which is a solution to (6) with the
correct drift s(t, x) and started in PT ; and Ỹt, which uses the approximate drift s̃ and is
started in N (0, I).

Both solutions are run to time T . We couple them by using the same Brownian motion
process for both and starting them in W2-optimally coupled initial conditions.

We then obtain a bound on E[‖YT−ỸT ‖2H ]. Since we know that YT ∼ µdata, ỸT ∼ µsample

by definition, this gives us a coupling between µdata and µsample and therefore upper bounds
the Wasserstein-2 distance between those two.

We make use of the fact that the score is a martingale to obtain an upper bound for the
numerical integration error, depending only on the quantity sup0<t≤T EXt∼pt [‖s(t,Xt)‖2H ].
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The full proof can be found in Appendix G.

Since the choice of the embedding space (H, ‖·‖H) is left open in Theorem 14, we briefly
discuss the implications of that choice. Controlling the Wasserstein distance with respect to
a stronger underlying norm always implies the same Wasserstein-bound w.r.t. any weaker
underlying norm. Of course, there is the possibility to obtain a better bound by directly
applying the theorem for a weaker norm.

Picking stronger norms for H will in general result in the Wasserstein distance also
factoring in differences in sample smoothness as well as deviations in function values. For
example, picking H = L2 means that the bound only implies closeness of the function
evaluations while, for example, samples being too rough is not factored in. Picking positive
Sobolev spaces will punish deviations in function values and deviations in the derivatives
of the samples from the true samples. Picking negative Sobolev spaces for H (as we will
need to for the common implementation of diffusion models; see Section 6.2) means that the
samples are only close in a distributional sense. See Section B in the appendix for further
discussion.

6. Implementing Infinite-Dimensional Diffusion Models

Our theory yields several suggestions on how one should design infinite-dimensional dif-
fusion model algorithms. Section 6.1 gives a concise summary of those design principles,
while Section 6.2 discusses the extent to which those design principles align with common
implementations of diffusion models. In Section 7, we then show how to implement the
guidelines in some explicit examples.

The two main design choices we will discuss are

1. The choice of the forward noising process WU
t in (4).

2. The choice of the norm ‖ · ‖K in the denoising score matching objective in (12).

The first choice (of U and hence WU
t ) is equivalent to the choice of an invariant Gaussian

distribution N (0, C), and we will use these choices interchangeably. In general, picking a
C such that N (0, C) produces smoother samples corresponds to picking a smaller space
U , while rougher samples correspond to larger Cameron–Martin spaces U ; see also the
examples in Section 7.1 and Figure 1. Furthermore, after discretizing the problem to finite
dimensions, the choice of U or C corresponds to nothing else than specifying a covariance
matrix C, i.e., Wt is replaced by

√
CWt in the diffusion processes. See Section 4 for more

details.
After discretization, the second design choice of ‖ · ‖K corresponds to specifying a loss

norm of the form ‖K−1/2 · ‖ in place of the typical Euclidean norm ‖ · ‖.

6.1 Practical Implementation Guidance

6.1.1 Match C to µdata

First, we begin by pointing out the implications of Theorem 14 on the choice of C, or
equivalently, U . The term W2(µdata,N (0, C)) appearing in the error bound (14) clearly
indicates choosing C such that N (0, C) is as close as possible to µdata.
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6.1.2 Choosing C such that we can pick a strong H-norm

Second, as discussed at the end of Section 5, we would like to choose as strong an ‖·‖H -norm
as possible in Theorem 14. This suggests not picking C too rough (U too large) as the norm
space H in Theorem 14 has to support N (0, C).

This last points seems to suggest that we would want to pick C as smooth as possible
to allow for stronger H-norms. However, since H has to support µdata, there is a restriction
on how strong an H-norm can be chosen. Therefore, this suggests matching N (0, C) to
µdata so that they are supported on the same space H, similarly to our first observation.

6.1.3 Choosing the loss-norm ‖ · ‖K
The H-norm in Theorem 14 also has to be stronger than the loss norm ‖ · ‖K , again
suggesting choosing K as small as possible. However, besides numerical issues, also here
there are lower bounds on how strong we can choose K.

To that end, we take another look at Lemma 8 in which we study two separate cases. In
the first case, if C is rough enough such that U contains the support of µdata, we can choose
the Cameron–Martin norm of N (0, C) as the loss norm, i.e., K = U . In the second case,
K has to support both N (0, C) and µdata, which is the same condition as for the space H
chosen in Theorem 14.

Hence, there are predominantly two natural ways to design the algorithm:

1. Choose N (0, C) as smooth as possible / U as small as possible, but large enough
such that the support of µdata is contained in its Cameron–Martin space U . Then
choose the loss norm ‖ · ‖K in (12) equal to the Cameron–Martin norm, K = U . This
algorithm design is called Infinite-Dimensional Diffusion Model 1 (IDDM1)

2. Match C to the data, i.e., choose N (0, C) such that its samples are as similar to
the samples from µdata as possible. Then choose the loss norm ‖ · ‖K in (12) such
that it supports both µdata and N (0, C). Let us call this algorithm design Infinite-
Dimensional Diffusion Model 2 (IDDM2).

Note that by Theorem 12, if not much is known about the distribution, and if in particular
it might be supported on manifold-like structures, we must pick U large enough to contain
the support of µdata anyway. We will therefore use IDDM1 in these cases; see Section 7.2.
If one has more structural information, for example the knowledge that µdata has density
with respect to a Gaussian measure, we will use IDDM2; see Section 7.3.

6.2 Image Distributions and White Noise Diffusion Models

The common implementation of the diffusion model algorithm will converge as D →∞ to
U = L2, i.e., use space-time white noise in the forward noising process. Furthermore, the
loss function will also approach the L2 loss, which means we are in the setting where we
use the Cameron–Martin norm in the loss. For more details, see Section 4. We will call this
algorithm White Noise Diffusion Model (WNDM).

If µdata is an image distribution, we can expect it to lie on a manifold, or more generally
some lower-dimensional substructure. Furthermore, since the function values of an image
are bounded on [0, 1], the image samples are all contained in L2. Therefore, we are in the
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setting of Theorem 12, where the data are contained in the Cameron–Martin space U of
the noise. Furthermore, we can apply Lemma 8 (bullet point 1) to see that we can use
the Cameron–Martin norm, i.e., the L2 norm, and obtain a well-defined denoising score-
matching objective. Therefore, under these assumptions, we have shown that applying
WNDM to image distributions has a well-defined infinite-dimensional limit.

Coming back to the discussion in Section 6.1 (in particular the design guidance for
IDDM1), however, our theory suggests that we should try to pick U as small as possible,
while still containing the typical image distribution. However, this U cannot be too regular,
since images are quite irregular—for example, they can be discontinuous. If we identify
images with two-dimensional functions, then already the L2-Sobolev spaces Hα of order
α > 1 only contain continuous functions. Therefore, on the Sobolev scale (Hα : −∞ < α <
∞), the ‘optimal’ Cameron–Martin space would possess regularity of at most α = 1. In light
of this, setting U = H0 = L2 indeed seems like a natural choice that is close to matching
the maximal possible regularity. Strikingly, this is in line with the huge empirical success
of the WNDM algorithm for image distributions. To further refine the optimal choice of
the space U beyond L2 is an interesting avenue, both for theoretical and empirical future
study.

7. Numerical Illustrations

In this section, we illustrate our results through numerical experiments. We sample func-
tions defined on [0, 1], and we discretize this spatial domain into a uniform grid with D = 256
evenly spaced points. For other discretization schemes, see the discussion in Section 4.
We employ a grid-based spatial discretization since it allows us to use the popular U-Net
architecture. Other common discretization schemes ‘whiten’ the data, rendering the convo-
lutional layers of the U-Net unnecessary. For implementation details, see Appendix A.

Section 7.1 introduces some common preliminaries needed for both of the subsequent
numerical examples. Section 7.2 then compares various diffusion model constructions in the
setting of distributions that are not defined via Gaussian reference distributions, but rather
supported on submanifolds of the infinite-dimensional space. Section 7.3 demonstrates the
use of infinite-dimensional diffusion models for solving Bayesian inverse problems via a
simulation-based (i.e., conditional sampling) approach.

7.1 Families of Gaussian Measures

We first construct a family (πα, Hα : −∞ < α < ∞) of Gaussian measures πα and their
Cameron–Martin spaces Hα. This construction allows us to interpolate between measures
with different sample smoothness and compare between the algorithms described in Section
6.1 and the canonical implementation of diffusion models described in Section 6.2.

To that end, we fix an orthonormal basis ek of L2([0, 1]). Then, we construct a family
(πα : −∞ < α <∞) of Gaussian measures as the distributions of

∞∑
k=1

k−αZkek ∼ πα, (15)
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(a) α = 0, one sample (b) α = 1, six samples (c) α = 2, six samples

Figure 1: In each panel, we plot samples from πα for different values of α, where πα is
defined in Section 7.1. We chose ek(·) =

√
2 sin(2πk · ) as an orthonormal basis of L2. For

α = 0 we see a sample of space-time white noise, where no function value is correlated to
any of its neighboring function values. For α = 1 and our specific choice of ek, the sampled
measure is the Brownian bridge measure.

where Zk ∼ N (0, 1) i.i.d. The Cameron–Martin space of πα is denoted by Hα and has norm

‖x‖2α =
∞∑
k=1

k2α〈x, ek〉2L2([0,1]). (16)

Note that H0 = L2([0, 1]) and therefore π0 is space-time white noise. Furthermore, Hα ⊂
Hβ for α > β. As we have discussed before, samples of πα will (almost surely) not be
elements of the corresponding Cameron–Martin space Hα. Nevertheless, the distribution
πα is supported on Hα−κ as long as κ > 1

2 ; see Beskos et al. (2011, Proposition 3.1).
The exact form of samples of πα depends on the chosen basis ek in (15). In our examples

Hα will be L2-Sobolev spaces with either zero or periodic boundary conditions. For the
case of zero boundary conditions, we have visualized samples of πα for different values of α
in Figure 1.

As discussed in Section 6.1, we want to study two main modeling choices: First, we
must select a Gaussian measure N (0, C), or equivalently its Cameron–Martin space U , for
the noising process. We do that by fixing an αnoise and setting

U = Hαnoise .

Second, a loss norm ‖ · ‖K must be chosen. We do so by fixing an αloss and setting

K = Hαloss .

As recommended in Section 6.1, these choices should depend on the structure of µdata.
Therefore, we choose an αdata and define µdata through a nonlinear transformation of παdata .
This way, µdata will be non-Gaussian, but we still have perfect knowledge about where its
samples are supported. In particular, we will have

support(µdata) ≈ Hαdata− 1
2 .

This gives us the possibility to match U and K to µdata in different ways. In realistic
examples, knowledge about µdata could come from prior information or by studying the
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training samples—the empirical covariance matrix is, for example, a natural candidate for
specifying C in IDDM2.

Lastly, we will be able to make explicit statements about the norm of H for which the
distance bounds in Theorem 14 hold, which we will also quantify by choosing an αdist.
The larger αdist, the better, since the underlying norm for the distance measurement gets
stronger (see also the discussion in Section 6.1).

Note that the limit of the common implementation of diffusion models, which we called
WNDM (see Section 6.2) will use white noise for the noising process as well as the loss, i.e.,
αnoise = αloss = 0. In that case, N (0, C) will only be supported on any Hα with α < −1

2 .
Therefore, so that we can apply Theorem 14 with Hαdist we have to choose αdist < −1

2 , i.e.,
use the norm of a negative Sobolev space.

For the two numerical experiments in Sections 7.2 and 7.3, we will proceed as follows:

1. We have information about the sample smoothness and support of µdata, in this case
in the form of an αdata.

2. Based on Section 6.1, we then choose U and K, which boils down to the choice of
αnoise and αloss.

3. We then know for which norms ‖ · ‖H our Wasserstein bound in Theorem 14 holds.
In our interpolation family, this boils down to an upper bound for αdist. Therefore,
we can make statements about which properties of µdata the diffusion model should
successfully approximate.

7.2 Manifold Distribution on a Cameron–Martin Sphere

In this section, we will study a distribution which lies on an infinite-dimensional submanifold
of L2([0, 1]), namely the unit sphere of some Cameron–Martin space. To that end, choose
ek(·) =

√
2 sin(kπ ·) in the construction of Section 7.1. For this choice, the Cameron–Martin

spaces Hα will be the Sobolev spaces Wα,2
0 of functions vanishing at the boundary, and π1

is proportional to the distribution of a Brownian bridge. Here we see that we can not only
capture smoothness but also structural information, such as boundary conditions, through
the choice of an appropriate Gaussian measure. For a more in-depth study of this, see
Mathieu et al. (2023).

We draw N = 50 000 samples from παdata , where the data-generating αdata was set to

αdata = 2.

By our discussion in Section 7.1, these samples are supported on any Hα with α < 3
2 , in

particular H1. Now define αsupp = 1 < 3
2 . The target distribution µdata is created by

projecting παdata onto the 10-sphere in Hαsupp , i.e., applying the map

Hαsupp → Hαsupp , x 7→ 10
x

‖x‖Hα
supp

to all samples. We depict some of the training samples and a heatmap of their marginal
densities in Figure 2.

As described in Section 6.1, we use the theory to guide the choices for αnoise and αloss.
The data distribution was not absolutely continuous with respect to a Gaussian, since we
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Figure 2: We generated 50 000 training examples from the distribution described in Section
7.2. On the left, we show a heatmap of the resulting marginal densities of function values
at each point in the domain [0, 1]. On the right, we plot a few training samples.

(a) Epoch 10 (b) Epoch 30 (c) Epoch 60

Figure 3: Example of Section 7.2: samples generated by WNDM (row 1) and IDDM1 (row
2) after increasing numbers of training epochs. Samples from the true measure can be
compared in Figure 2.

projected it to a submanifold (the sphere). Therefore, we must apply Theorem 12 to obtain
uniqueness. To satisfy the assumptions of Theorem 12, however, the Cameron–Martin space
U has to contain µdata. Hence, we will apply the IDDM1 from Section 6.1.

To apply IDDM1, we choose U so that it contains the support of µdata and N (0, C).
This is accomplished by setting αnoise = 1. Then, following the design principles of IDDM1,
we pick the loss norm to be K = U , i.e., αloss = αnoise = 1, and learn the score by using the
Cameron–Martin norm in the loss.

Note that the bound in Theorem 14 holds for any αdist smaller than

αdist < min

{
αdata −

1

2
, αnoise −

1

2
, αloss

}
= min

{
3

2
,
1

2
, 1

}
=

1

2
.

For WNDM, i.e., the canonical implementation of diffusion models described in Section
6.2 with αloss = αnoise = 0, the upper bound is −1

2 . Therefore, while we do not expect
the samples of WNDM to match the smoothness class of µdata, we expect the samples of
IDDM1 to at least partially retain the smoothness.

Figure 3 shows samples generated by the two models. We see that our theoretical
findings are confirmed: WNDM fails to learn the smoothness or correlation structure of the
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(a) WNDM (b) IDDM1

Figure 4: Example of Section 7.2: each vertical slice shows a heatmap of the marginal
density estimated from 2048 samples generated by each of the diffusion models, after 60
epochs of training. For comparison, the heatmap of the 50 000 training examples is plotted
in Figure 2. The one-dimensional marginals are matched well by both algorithms.

samples. Solely at training epoch 10 the WNDM algorithm generated some samples that
seemed to have the right smoothness, but even those actually contain jitter if one looks
closely. Overall, the training process was very unstable regarding the data smoothness,
and minimizing the loss did not seem to correlate with also matching the derivatives of the
functions. On the other hand, IDDM1 produces samples from the correct smoothness class,
from the start of training onwards.

Note that both algorithms matched the marginals quite well, as can be seen in the
heatmap plots of Figure 4, which is also suggested by the theory: even if Theorem 14 only
holds for an underlying negative Sobolev norm, the overall distribution and in particular
its marginals should still match the true marginals (see Section B).

7.3 Conditional Sampling and Infinite-Dimensional Bayesian Inverse
Problems: Volatility Estimation

The following numerical experiment is inspired by Bayesian inverse problems (BIPs) (Stuart,
2010), which here we approach via the paradigm of simulation-based inference. In this
setting, we will use our infinite-dimensional diffusion models for conditional sampling.

We assume that we have some knowledge about an unknown random variable X ∈ H
in the form of a measurement y ∈ Rl drawn from

Y ∼ q(X, ·),

where q is an observation kernel. Furthermore, we have some prior information on X,
formalized through a prior probability distribution:

X ∼ π := N (0, Cµ).

By Bayes’ theorem, the posterior distribution ν of X given some observations Y = y is
given by

dπ( · |Y = y) ∝ q(·, y) dπ. (17)

Gold-standard methods for asymptotically exact sampling of distributions like (17) involve
Markov chain Monte Carlo (MCMC), e.g., Hamiltonian Monte Carlo (Duane et al., 1987) or,

24



Infinite-Dimensional Diffusion Models

in the infinite-dimensional case, Hilbert space Hamiltonian Monte Carlo (HSHMC) (Beskos
et al., 2011), or other geometry-exploiting infinite-dimensional MCMC methods (Cotter
et al., 2013; Cui et al., 2016; Kim et al., 2023).

These MCMC methods, however, rely on having an explicit formula for the density of ν
(up to a normalizing constant). In many cases this is not possible—for example, if q or any
of its components is given as a black-box model. To train a conditional diffusion model,
on the other hand, we only need samples from the joint distribution of (X,Y ). These can
be generated by sampling Xi from the prior measure and sampling Y ∼ q(Xi, ·). We then
train a conditional diffusion model to generate samples from X|Y = y for any y. This is
done by making the score model s not only depend on Xt, but also on Y , i.e., we have a
model s(t,Xt, Y ), which predicts X0 given Y = y. The only modification to Algorithm 1
is that one sub-samples paired states and observations (xi, yi) in line 3 from the training
data, and then inputs yi into the diffusion model on line 6. During generation, one can
then input the observation value y that one wants to condition on during simulation of the
reverse SDE (Batzolis et al., 2021). In Algorithm 2, this would correspond to inputting a
fixed value of y for all times t in line 5. Hence the entire procedure is sample-driven, and
an example of simulation-based inference (Cranmer et al., 2020).

We now proceed to a specific instance of a Bayesian inverse problem. The experiment
is inspired by volatility estimation. We assume that we observe a path of a time series, for
example a stock price, modeled as

dSτ = στSτdBτ ,

with no drift and a time-dependent volatility στ . The solution to the above equation is
given by a geometric Brownian motion, i.e.,

Sτ = S0 exp

(∫ τ

0
σrdBr −

1

2

∫ τ

0
σ2
rdr

)
.

We simulate paths of the above and observe Sτ at discrete times τ1 = 1
4 , τ2 = 2

4 , τ3 = 3
4 , τ4 =

1. Then, we apply a log-transformation and define ri as the log-returns:

ri := logSτi−logSτi−1 =

∫ τi

τi−1

σrdBr−
1

2

∫ τi

τi−1

σ2
rdr ∼ N

(
−1

2
vi, vi

)
, with vi :=

∫ τi

τi−1

σ2
rdr.

Here, we set τ0 = 0 for notational convenience. Since σ should be positive, we model it as

στ = exp(aτ ),

and seek to infer the log-volatility a : [0, 1]→ R.
Again, we define a family of Gaussian measures as in Section 7.1. This time we use a

different orthonormal basis of L2([0, 1]), given by

ek(τ) =

{√
2 cos(kπτ), if k even√
2 sin((k + 1)πτ), otherwise

.

This leads to Gaussian measures whose samples have periodic boundary conditions. Since
ek and ek+1 (for k uneven) should have the same ‘magnitude,’ we slightly modify (15) and
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(16): for k uneven, we replace (k+ 1)−α by k−α. All the discussed properties of the family
πα are not affected by this change, since the decay of the eigenvalues is asymptotically the
same. We put a prior on a. It’s covariance is given by 1

2Cprior, where Cprior is the covariance
of παdata , with αdata = 4:

a ∼ N (0, Cprior).

The goal of a conditional diffusion model is to generate samples from the posterior

dπαdata(aτ |r1, r2, r3, r4) ∝
4∏
i=1

N
(
ri;−

1

2
vi, vi

)
dπαdata , (18)

for a fixed observation r = (r1, r2, r3, r4). Via the model defined above, each vi is a functional
of στ and thus aτ .

For training, we generate N = 50 000 samples from the prior {an}Nn=1 together with
simulated observations {rn}Nn=1. The trained diffusion models should, for any input r ∈ R4,
generate samples from (18).

To assess the performance of the trained models, we drew a random ãτ and correspond-
ing observations r̃ = (r̃1, r̃2, r̃3, r̃4). We used the HSHMC algorithm to generate 50 000
“reference” posterior samples from (18) for this fixed observation value r̃. We plot these
posterior samples and their heatmap, as well as the data-generating value ã of the log-
volatility, in Figure 5. After training, we input r̃ (which the diffusion models have not seen
before) to the conditional diffusion models and compare the generated samples to those
from HSHMC.

As in Section 7.2, we again compare the canonical diffusion model implementation
WNDM against an implementation motivated by the infinite-dimensional theory. In this
case, since we are sampling from a Bayesian inverse problem with a Gaussian prior, we are
in the setting of Theorem 13. Therefore, we will implement the IDDM2 algorithm from
Section 6.1. We match the noise structure to the data by setting αnoise = αdata = 4, which
is justified by the form of (18) of µdata. Then we set αloss = 2, such that K supports
µdata and παnoise . Note that any αloss <

7
2 would also have been a valid choice. The choice

αloss = 3 worked comparably well in our numerical experiments.
We compare samples generated by the two diffusion models in Figure 6. Again, the

WNDM algorithm did not match the smoothness class of µdata in a stable way. While
during training, there were times at which the network generated smooth samples, it later
unlearned to do so. The IDDM2 algorithm outputs samples of the correct class at every point
during training. Both algorithms are able to match the marginal distributions, although
IDDM2 does slightly better, as seen in Figure 7. Therefore, as in Section 7.2, these numerical
experiments confirm the theoretical predictions made in Section 6.

Remark 15 Note that for our choice of αnoise, the reverse SDE now starts with initial
condition παdata(aτ ) = N (0, Cprior) and ends in the posterior παdata(aτ |r). Therefore, it has
learned to transport the prior to the posterior. Furthermore, in this case, we can interpret
the reverse SDE as a smoothed version of the forward process, i.e., an Ornstein–Uhlenbeck
process conditioned on its terminal values. This also opens up the way to interpret the
training of the reverse SDE as an infinite-dimensional control problem.
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Figure 5: Example of Section 7.3. As a reference/comparison, we generate 50 000 high-
quality posterior samples from dπαdata(aτ |r̃) using the Hilbert space Hamiltonian Monte
Carlo algorithm. On the left is a heatmap of posterior marginal densities of aτ , at each
point in the domain τ ∈ [0, 1]. On the right, we plot a few example posterior samples.

(a) Epoch 10 (b) Epoch 30 (c) Epoch 60

Figure 6: Example of Section 7.3. Conditional samples from WNDM (upper row) and
IDDM2 (lower row) after varyings number of training epochs. Compare to the high-quality
posterior samples generated using Hamiltonian Monte Carlo in Figure 5.

(a) Epoch 10 (b) Epoch 30 (c) Epoch 60

Figure 7: Example of Section 7.3. Heatmaps of the 2048 conditional samples generated by
WNDM (upper row) and IDDM2 (lower row), for increasing numbers of training epochs.
Reference heatmaps generated via Hilbert space Hamiltonian Monte Carlo are in Figure 5
for comparison.
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7.4 Limitations

It is important to point out that, generally, the white noise diffusion models were able to
generate samples from the appropriate smoothness class after several rounds of retraining.
However, the sample smoothness was not robust. While the models typically fitted the
moments and marginals of the distributions quite well, the smoothness of the samples
proved inconsistent—varying with the initial conditions and the duration of the training.
Specifically, depending on the network’s initial training parameters, the samples could either
be smooth, become less smooth over time, or exhibit initial smoothness that diminished as
the training progressed and the marginals were better fitted.

We also note that the numerics here are intended as an illustration of the preceding
theory and the resulting guidelines. A more comprehensive numerical study could train
multiple models with different random initial conditions on the same training data set,
perform ablation studies over individual design choices, and compare numerical measures
of the smoothness of paths. It would also be of interest to evaluate the impact of different
neural network architectures. Such studies are outside the scope of this article, however.

8. Summary

We have formulated the diffusion-based generative modeling approach directly on infinite-
dimensional Hilbert spaces. Our formulation involves specifying infinite-dimensional for-
ward and reverse SDEs and an associated denoising score matching objective. We prove
that our formulation is well-posed. To that end, we show that the reverse SDE we wish to
approximate has a unique solution; furthermore, we show under which conditions the de-
noising score matching objective generalizes to an infinite-dimensional setting. Building on
these results, we are able to prove dimension-independent convergence bounds for diffusion
models, which hold in the infinite-dimensional case.

These theoretical developments reveal an intricate relationship between the properties
of the target/data-generating measure µdata and the choices of the Wiener process WU

t and
the loss norm in the denoising score matching objective ‖ · ‖K . We utilize this knowledge to
develop guidelines on how to make such choices for a given µdata. For image distributions,
these guidelines are in line with the canonical choices made in practice. For other target
distributions µdata, however, the algorithm design should be modified. We apply these modi-
fications to two generative modeling tasks that are discretizations of infinite-dimensional
problems, and the numerical results confirm our theoretical findings.
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Appendix A. Numerical Details

We list some implementation details:

1. Instead of running the forward SDE with a uniform speed, we instead ran it using a
speed function α(t),

dXt = −1

2
β(t)Xtdt+

√
β(t)CdWt.

The SDE was then run on the interval [0, 1]. This corresponds to a time-change and
is common practice for diffusion models; see for example Song et al. (2021). We used
the time-change function β(t) as in Song et al. (2021), i.e.,

β(t) = 0.001 + t(20− 0.001).

2. We discretized the unit interval [0, 1] into M = 1000 evenly spaced points for training
and generation.

3. We added a last denoising step, as is common practice. That means, that in the
last step of the Euler-Maruyama integrator, we did not add any extra noise any
more, but just evaluated the drift and took a step in that direction. This is even
more important in our case for comparison than normally, since the added noise
has correlation structure N (0, C) which is close to µdata, while the added noise in
WNDM has structure N (0, I). Therefore, adding this noise to all samples right before
comparing them would have given an unfair disadvantage to WNDM.

4. Furthermore, we added εregId onto the covariance matrices for numerical stability,
where εreg = 0.0001.

5. Our experiments were implemented in JAX, and we used the U-Net architecture from
Song et al. (2021) for the neural network.

Appendix B. Negative Sobolev Wasserstein Distances

We briefly and heuristically explore what it means if µ and π are close in W2 when the
underlying norm is a negative Sobolev norm. Denote by Hα the spaces defined in Section
7.1. Now let f ∈ Hα. Assume that X,Y form a W−α2 -optimal coupling, i.e., X ∼ µ and
Y ∼ π and that

E[‖X − Y ‖−α] ≤ W−α2 (π, µ).

Now, H−α can be viewed as the dual of Hα and therefore we can evaluate X or Y on f .
Then,

E[|X(f)− Y (f)|] ≤ ‖f‖αE[‖X − Y ‖−α] ≤ ‖f‖αW−α2 (µ, π)

Therefore, we can expect the evaluations of X and Y on test-functions from Hα to be
close. The larger α gets, the fewer test functions are in Hα. Note that for any α ≥ 0
(and in particular for our typical case H0 = L2), Hα will not contain point evaluations,
and therefore we cannot expect point evaluations of X and Y to be close (in case they are
well-defined).
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Appendix C. Exponential Integrator

The exponential integrator (Certaine, 1960) is derived by splitting the following SDE

dYt =
1

2
Yt + s(t, Yt)dt+

√
CdWt =

1

2
Yt + s(t, Yt)dt+

√
CdWt (19)

into the linear and nonlinear part. The exact solution is then given by

Yt+∆t = et/2Yt = et/2Yt + (e∆t/2 − 1)s(t, Yt) +
√
e∆t − 1ξ.

The exponential integrator was first applied to diffusion models in Zhang and Chen (2023).

Appendix D. Proofs for Section 2

D.1 Proofs for Section 2.2

We first prove Lemma 1
Proof In finite dimensions we can explicitly write pt as

pt(x) =

∫
pt|0(x|x0)dµdata(x0) (20)

where pt|0 is the time t-transition kernel of the forward SDE, given by

pt|0(x|x0) =
1√

(2πvt)Ddet(C)
exp

(
− 1

2(1− e−t)

〈(
x− e−

t
2x0

)
, C−1

(
x− e−

t
2x0

)〉2

H

)
.

We can exchange the derivative with the integral by Leibniz rule since the derivative of the
integrand is bounded. Therefore, we have that

∇ log pt(x) =
1

pt(x)
∇x
∫
pt|0(x|x0)dµdata(x0)

= − 1

(1− e−t)

∫
C−1

(
x− e−

t
2x0

) pt|0(x|x0)

pt(x)
dµdata(x0)

= − 1

(1− e−t)
C−1

(
E
[
Xt − e−

t
2X0|Xt = x

])
.

In the last equation we used the formula for the conditional density; see Durrett (2005,
Section 4.1.c).

We now prove Lemma 5.
Proof We first treat continuity. Since pt can be written as the convolution of µdata with
a Gaussian kernel, we know that it is smooth in space and time on (0,∞]. Furthermore, it
holds that pt > 0 everywhere. Due to that, we can deduce that ∇ log pt = ∇pt

pt
is continuous

in t. Since Xt is also continuous in time, we get that ∇ log pt(Xt) is time-continuous.
Now we prove the reverse-time martingale property. Since we can write

pt(xt) =

∫
ps(xs)pt|s(xt|xs)dxs
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and by using since the transition kernel pt|s(xt|xs) is given by N (e−(t−s)/2xs,
1

1−e−(t−s)C),

∇pt(xt)

= ∇xt
∫

exp

(
− 1

2(1− e−(t−s))

〈
xt − e−

(t−s)
2 xs, xt − e−

(t−s)
2 xs

〉)
ps(xs)dxs

=

∫
e

(t−s)
2 ∇xs exp

(
− 1

2(1− e−(t−s))

〈
xt − e−

(t−s)
2 xs, xt − e−

(t−s)
2 xs

〉)
ps(xs)dxs

=

∫
e

(t−s)
2 exp

(
− 1

2(1− e−(t−s))

〈
xt − e−

(t−s)
2 xs, xt − e−

(t−s)
2 xs

〉)
∇xsps(xs)dxs

=

∫
e

(t−s)
2 pt|s(xt|xs)ps(xs)∇xs log ps(xs)dxs

= e
(t−s)

2

∫
ps,t(xs, xt)∇xs log ps(xs)dxs.

Since ∇ log pt(xt) = ∇pt(xt)
pt(xt)

and ps|t(xs|xt) =
ps,t(xs,xt)
pt(xt)

, we get that

∇ log pt(xt)

= e
(t−s)

2

∫
ps,t(xs, xt)

pt(xt)
∇xs log ps(xs)dxs = e

(t−s)
2

∫
ps|t(xs|xt)∇xs log ps(xs)dx

= e
(t−s)

2 E[∇ log ps(Xs)|Xt = xt].

The above calculations have already been done in Chen et al. (2022) to bound the
difference E[‖∇ log pt(xt)−∇ log ps(xs)‖2].

D.2 Proofs for Section 2.4

We start by proving Lemma 7.

Proof Let ei be a basis of K and KD = span〈e1, . . . , eD〉. We denote by PD the projection
onto KD and by XD

t = PDXt the projection of Xt onto KD. We will denote by

‖ · ‖ = ‖ · ‖K

throughout this proof. Let

sD = PDE[s(t,Xt)|XD
t ] = E[σ−1

t (XD
t − e−t/2XD

t )|XD
t ],

where σ−1
t = 1√

1−e−t . We have that

E[‖sD‖2] 6 E[‖σ−1
t (XD

t − e−t/2XD
0 )‖2] = σ−2

t E[‖N (0, PDCPD)‖2] <∞

since the right hand side is the expectation of the norm of a finite dimensional Gaussian,
which is finite. Let s̃D(t,Xt) = PDE[s̃(t,Xt)|XD

t ].
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Now,

E[‖sD − s̃D‖2K ] = E[‖PD(E[s̃(t,Xt)|XD
t ]− E[s(t,Xt)|XD

t ])‖2]

6 E[‖E[s̃(t,Xt)− s(t,Xt)|XD
t ]‖2] 6 E[‖s(t,Xt)− s̃(t,Xt)‖2] <∞,

and

E[‖s̃D‖2] 6 2(E[‖sD − s̃D‖2] + E[‖sD‖2]) <∞.

Therefore, we get that

E[‖sD − s̃D‖2] = E[‖sD‖2 + ‖s̃D‖ − 〈sD, s̃D〉] = E[‖sD‖2] + E[‖s̃D‖]− 2E[〈sD, s̃D〉],

where we used that all the terms are finite in the last equality, so that we are no adding
and subtracting infinities. Now, for

E[〈sD, s̃D〉] = E[〈E[σ−1
t (XD

t − e−t/2XD
0 )|XD

t ], s̃D〉] = E[〈σ−1
t (XD

t − e−t/2XD
0 ), s̃D〉],

and therefore, since E[‖XD
t − e−t/2XD

0 ‖2] is finite we can do a zero-addition of E[‖XD
t −

e−t/2XD
0 ‖2] and get that

E[‖sD − s̃D‖2] = E[‖s̃D − σ−1
t (XD

t − e−t/2XD
0 )‖2] + E[‖sD‖2]−E[‖σ−1

t (XD
t − e−t/2XD

0 )‖2].

By Lemma 16 we see that the left hand side converges to E[‖s− s̃‖2]. Therefore we get that
E[‖s̃D − σ−1

t (XD
t − e−t/2XD

0 )‖2] converges to something finite, if and only if

E[‖sD‖2]− E[‖σ−1
t (XD

t − e−t/2XD
0 )‖2]

does. For this term we get that since

E[〈sD, σ−1
t (XD

t − e−t/2XD
0 )〉] = E[〈E[σ−1

t (XD
t − e−t/2XD

0 )|XD
t ], σ−1

t (XD
t − e−t/2XD

0 )〉]
= E[‖E[σ−1

t (XD
t − e−t/2XD

0 )|XD
t ]‖2]

= E[‖sD‖2],

we can deduce

E[‖sD‖2]− E[‖σ−1
t (XD

t − e−t/2XD
0 )‖2]

= −E[‖sD‖2] + 2E[〈sD, σ−1
t (XD

t − e−t/2XD
0 )〉]− E[‖σ−1

t (XD
t − e−t/2XD

0 )‖2]

= −E[‖sD − σ−1
t (XD

t − e−t/2XD
0 )‖2]→L2 −E[‖s− σ−1

t (Xt − e−t/2X0)‖2]

where the last convergence is implied by Proposition 16. The last result now follows by
rewriting

Vt = E[‖E[σ−1
t (Xt − e−t/2X0)|Xt]− σ−1

t (Xt − e−t/2X0)‖2]

and using that Xt can be pulled out of the conditional expectation.

Now we prove Lemma 8:
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Proof Item 1: We know from Lemma 7 that DSM is finite if and only if V is finite.
Therefore, we will prove that V is finite:

Vt =
e−t

1− e−t
E[‖X0 − E[X0|Xt]‖2U ]

Now,

E[‖X0 − E[X0]‖2U ]

= E[‖X0 − E[X0|Xt] + E[X0|Xt]− E[X0]‖2U ]

= E[‖X0 − E[X0|Xt]‖2U ] + E[‖E[X0|Xt]− E[X0]‖2U ]

+E[〈X0 − E[X0|Xt],E[X0|Xt]− E[X0]〉U ]

= E[‖X0 − E[X0|Xt]‖2U ] + E[‖E[X0|Xt]− E[X0]‖2U ],

where the last term drops by taking the conditional expectation with respect to Xt. There-
fore,

E[‖X0 − E[X0|Xt]‖2U ] 6 E[‖X0 − E[X0]‖2U ] <∞

and so Vt is finite.
Item 2: In this case we use that we can also write Vt as

Vt =
1

1− e−t
E[‖Xt − e−t/2X0 − E[Xt − e−t/2X0|Xt]‖2H ]

Similarly as above,

E[‖Xt − e−t/2X0 − E[Xt − e−t/2X0|Xt]‖2H ] 6 E[‖Xt − e−t/2X0‖2H ]

where we used that E[Xt − e−t/2X0] = 0. Now, since Xt − e−t/2X0 ∼ N (0, (1 − e−t)C),
which is supported on H, the above expectation is finite.

We used the following lemma in the proofs of the two above lemmas:

Lemma 16 Let (K, 〈·, ·〉) be a separable Hilbert space, and Z, Z̃ random variables taking
values in K. Let ei be an orthonormal basis of K. Denote by KD = span〈e1, . . . , eD〉 and by
PD the projection onto KD. Furthermore, let ZD be given by ZD = PDE[Z|PDZ̃]. Then,
if E[‖E[Z|Z̃]‖2K ] <∞, ZD → E[Z|Z̃] in L2 and almost surely.

Proof We have that

E[‖ZD − E[Z|Z̃]‖2K ] = E[‖PD(E[Z|Z̃D]− E[Z|Z̃])‖2K ] + E[‖(I − PD)E[Z|Z̃]‖2K ]

6 E[‖E[Z|Z̃D]− E[Z|Z̃]‖2K ] + E[‖(I − PD)E[Z|Z̃]‖2K ] (21)

The cross term in the first equality is 0 since PD is the orthogonal projection. The first
term in the (21) converges to 0, since E[Z|Z̃D] = E[E[Z|Z̃]|Z̃D] is a family of conditional
expectations of the L2-random variable E[Z|Z̃]. The result follows by the L2-martingale
convergence theorem. The second term converges to 0 since

E[‖E[Z|Z̃]‖2K ] =

∞∑
d=1

E[〈ei,E[Z|Z̃]〉2K ] <∞.
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But E[‖(I − PD)E[Z|Z̃]‖2K ] is equal to
∑∞

d=D E[〈ei,E[Z|Z̃]〉2K ], which converges to 0 since
the full sum is finite.

Furthermore, we can write

‖ZD − E[Z|Z̃]‖K 6 ‖PD(E[Z|Z̃D]− E[Z|Z̃])‖2K + ‖(I − PD)E[Z|Z̃]‖2K
6 ‖E[Z|Z̃D]− E[Z|Z̃]‖2K + ‖(I − PD)E[Z|Z̃]‖2K

The second term on the right-hand vanishes as D → ∞ since E[Z|Z̃] ∈ K. The first term
almost surely converges to 0 due to the almost sure martingale convergence theorem.

Appendix E. Existence Proof

E.1 Spectral Approximation of C

Let ν = N (0, C) be a Gaussian measure with values in (H, 〈·, ·〉H). C has an orthonormal
basis ei of eigenvectors and corresponding non-negative eigenvalues ci > 0, i.e.,

Cei = ciei.

We define the linear span of the first D eigenvectors as

HD =

{
D∑
i=1

fiei|f1, . . . , fD ∈ R

}
⊂ H

Let PD : H → HD be the orthogonal projection onto HD. If we write an element f of H
as

f =
∞∑
i=1

〈f, ϕi〉Hϕi,

PD is equivalent to restricting f to its first D coefficients:

PD : H → HD, f 7→
D∑
i=1

〈f, ϕi〉Hϕi.

The push-forwards (PD)∗ν of ν under PD are denoted by

νD := (PD)∗ν, where (PD)∗ν(A) = ν((PD)−1(A)).

It is a Gaussian measure with covariance operator PDCPD.

By sending v ∈ RD to v̂ = v1e1 + · · ·+ vDeD we can identify HD with RD. Under these
identifications, νD would have distribution N (0, CD) on RD, where CD is a diagonal matrix
with entries c1, . . . , cD.
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E.2 Spectral Approximation of the SDEs

We define the finite-dimensional approximations of µdata by µDdata = (PD)∗µdata. We dis-
cretize the forward SDE (5) by

dXD
t = −1

2
XD
t dt+

√
PDCPDdWt, XD

0 ∼ µDdata (22)

Since µdata is supported on HD, PDCPD projects the noise down to HD, and the operation
Xt → −1

2Xt keeps HD invariant, XD
t will stay in HD for all times. Therefore we can view

XD
t as process on RD and define the Lebesgue densities pDt of XD

t there.

E.3 Proof of Theorem 9

We can now prove Theorem 9:
Proof The forward SDE is just a standard Ornstein–Uhlenbeck process and existence and
uniqueness of that is standard; see, for example, Da Prato and Zabczyk (2014, Theorem
7.4). We will now show that the time reversal

Yt := XT−t

is a solution to (6).
The solution to the forward SDE is given as the stochastic convolution,

Xt = e−tX0 +

∫ t

0
e−(t−s)√CdWs.

The processes XD
t := PD(Xt) (see Section E.1) are solutions to (22), since the SDE coeffi-

cients are decoupled. We now show that they converge to Xt almost surely in the supremum
norm. We define

XD:∞
t = Xt −XD

t .

Then

XD:∞
t = e−tXD:∞

0 +

∫ t

0
e−(t−s)√CdWD:∞

s ,

where WD:∞
s is the projection of Ws onto span{eD, eD+1 . . .}. It holds that

E[sup
t6T
‖XD:∞

t ‖2H ] 6 4e−2tE[‖XD:∞
0 ‖2H ] + 4(1− e−t)

∞∑
i=D

ci → 0

for D → ∞, where we used Doob’s L2 inequality to bound the stochastic integral. The
first term will converge to 0 almost surely, since X0 is H-valued and therefore the sum
‖X0‖2H =

∑∞
i=1〈X0, ϕi〉2 is almost surely finite, where the ϕi are defined in Section E.1.

Therefore, ‖XD:∞
0 ‖2H =

∑∞
i=D〈X0, ϕi〉2 will almost surely converge to zero. An analogous

argumentation holds for the second term since
∑∞

i=1 ci is finite because C is trace-class on
H.

Denote by E the Banach space of continuous, H-valued paths with the supremum norm,
E = C([0, T ], H). Then we can view X· as an E-valued random variable; see Da Prato and
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Zabczyk (2014, Theorem 4.12). Then we have just proven that XN converges to X in
L2(Ω, E).

We denote the time-reversals of XN
t by Y N

t := XN
T−t. These converge to their infinite-

dimensional counterpart Yt = XT−t in the same way as XN
t converge to Xt. The main

difficulty is to show Yt solves the SDE (6). We do this using an approximation argument.
We define pDt as in Section E.2. Furthermore, we define the finite-dimensional time

reversals of XD
t as Y D

t = XD
T−t. By Proposition 17, we know that they satisfy

Y D
t − Y D

0 −
1

2

∫ t

0
Y D
r dr −

∫ t

0
sDT−rdr =

√
PDCPDBD

t ,

for a HD-Brownian motion BD,t. It is important to note, that BD will not be equal to the
projection of BD+L onto HD in general, and the same hold for the ∇ log pDt . However, as we
will see now, we can prove some martingale-like properties for them to obtain convergence
to their infinite-dimensional counterpart.

By, Lemma 1, we know that we can replace the C∇ log pt term by a conditional expect-
ation sD,

sD(t, xD) =
1

1− e−t
E[XD

t − e−
t
2XD

0 |XD
t = xD].

However, since the forward SDE decouples, we can also write the above conditional expect-
ation in terms of the infinite-dimensional process Xt:

sD(t, xD) =
1

1− e−t
PDE

[
Xt − e−

t
2X0|PDXt = xD

]
,

where we use that the projections PDXt are solutions to (22). In particular, due to the
tower property of conditional expectations,

sDt = sD(t,XD
t ) = PDE[s(t,Xt)|XD

t ].

By Lemma 16, which makes use of the fact that E[s(t,Xt)|PDXt] is a martingale in D, the
sDt converge to s(t,Xt) in L2. Furthermore, by Lemma 5, we know that the e−t/2sDt form
a reverse-time martingale in t. However, due to Doob’s L2-inequality, we get that for any
ε > 0,

E[ sup
ε6t6T

‖sDt − sLt ‖2] 6 eTE[‖sDε − sLε ‖2].

The right hand side is Cauchy and therefore is the left-hand side is too. Therefore, the
convergence of sDt to st in L2 is uniform on [ε, T ], i.e., continuous martingales sDt form a
Cauchy sequence in the norm

‖N‖I,ε = E[sup
t≥ε
|Nt|2].

The continuous martingales are closed with respect to that norm (see Karatzas et al. (1991,
Section 1.3)), and st is also a continuous martingale on [ε, T ]. Since ε was arbitrary, we
have shown that s(t,Xt) is a continuous local martingale (in reverse time) up to t = 0.

Furthermore, since all the terms on the left-hand side converge in L2, uniformly in t,
so does the right-hand side. The right-hand side is PDCPD Brownian motion for each
D. Using again the that the spaces of martingales is closed and furthermore the Levy
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characterization of Brownian motion, we find that the BD
t have to converge to a C-Brownian

motion Bt. Therefore,

Yt = Y0 +
1

2

∫ t

0
Yrdr +

∫ t

0
sT−rdr +Bt (23)

is indeed a weak solution to (6). It is a weak solution since Ys is not necessarily measurable
with respect to the filtration generated by Bs. In general, it can even be the other way
around, see Proposition 17.

Proposition 17 Let Xt be a solution to (4). Assume H = RD. Then, the time-reversal
Yt = XT−t of the SDE satisfies the SDE

dYt =
1

2
Ytdt+ C∇ log pT−t(Yt)dt+

√
CdBt. (24)

Here, Bt is a different Brownian motion Bt to Wt. If C has full rank, Bt can be defined on
the same probability space as Xt itself.

Proof The above is the usual time-reversal formula. All we need to show is that for the
special case of the forward SDE (4) the conditions from Haussmann and Pardoux (1986)
are always satisfied. Assumption (A)(i) in Haussmann and Pardoux (1986) is satisfied since
b and σ are linear. Assumption (A)(ii) is that for each t0 > 0, it holds that

1.
∫ T
t0

∫
BR
|p(t, x)|2dx <∞, and

2.
∫ T
t0

∫
BR
|∂xip(t, x)|2dx <∞ for all im

where BR is the ball of Radius R on RD and p(t, x) is the Lebesgue-density of Pt. We now
prove that both of these conditions hold. We have the explicit formula

p(t, x) =
1√

2π(vt detC)D

∫
e−
‖x−x0‖

2
U

2 dµdata(x0)

and therefore, in particular |p(t, x)| 6 1√
2π(vt detC)D

. Since 1
vt

= 1
1−e−t is integrable on

[t0, T ] for t0 > 0, this implies 1. Furthermore, we get that

∇p(t, x) =
1√

2π(vt detC)D

∫
C−1xe−

‖x−x0‖
2
U

2 dµdata(x0),

where we used the Leibniz rule to exchange differentiation and integration, since the integ-

rand is bounded in x0. On BR this can be upper bounded by ‖∇p(t, x)‖ 6 ‖C−1‖R√
2π(vt detC)D

which is again integrable on [t0,T ].
By Haussmann and Pardoux (1986) we know that the time reversal Yt will have the

same generator as the SDE (24). In particular Mt = Yt−Y0−
∫ t

0
1
2Yr+C∇ log pT−r(Yr)dr is

a continuous martingale with quadratic variation C with respect to the canonical filtration
of Ys.
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We want to apply the Martingale representation theorem to express this martingale
in terms of a Brownian motion. In general, one might need to extend the probability
space to do so. However, since C has full rank, we can express the Brownian motion as
Bt = C−1/2Mt, which is defined on the same probability space as Yt.

Appendix F. Uniqueness Proofs

F.1 Proof of Theorem 12

First we prove Theorem 12:
Proof

Step 1: Prove that s is locally Lipschitz with respect to the Cameron-Martin
Norm Recall that

s(t, x) = − 1

1− e−t
x+

e−
t
2

1− e−t
E[X0|Xt = x]. (25)

The − 1
1−e−tx term is Lipschitz for any t ∈ [ε, T ]. Therefore, our goal is to show that

E[X0|Xt = x] is Lipschitz in x too. We will frequently use that for u ∈ U , we can write the
Radon-Nikodym derivative of N (u, vtC) with respect to N (0, vtC) as

dN (u, vtC)

dN (0, vtC)
(xt) = exp

(
〈u, xt〉U − ‖u‖2U

vt

)
,

by the Cameron-Martin theorem (see, for example, Hairer (2009)). Here vt is a shorthand
notation for

vt = 1− e−t.

To simplify notation, we will define

n(x0, xt) :=
dN (e−tx0, vtC)

dN (0, vtC)
(xt).

Then, the joint distribution of X0 and Xt is given by

dn(x0, xt) = d(N (0, vtC)(xt)⊗ µdata(x0)).

This can be seen by the following calculation:∫
A

∫
B
n(x0, xt) dN (0, vtC)(xt)dµdata(x0)

=

∫
A

∫
B

dN (e−tx0, vtC)

dN (0, vtC)
(xt)dN (0, vtC)(xt)dµdata(x0)

=

∫
A

∫
B

dN (e−tx0, vtC)(xt)dµdata(x0)

=P[X0 ∈ A,Xt ∈ B],
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where we used that N (e−tx0, vtC) is the transition kernel of the forward SDE (5). We show
that

f(xt) =

∫
x0n(x0, xt)dµdata(x0)∫
n(x0, xt)dµdata(x0)

is a version of the conditional expectation E[X0|Xt = x]. The function f is σ(Xt) measurable
by Fubini’s theorem. Furthermore, for A ∈ σ(Xt),

EXt [1Af(Xt)] =

∫
A

∫
H x0n(x0, xt)dµdata(x0)∫
H n(x0, xt)dµdata(x0)

dPt(xt)

=

∫
H

∫
A

∫
H x0n(x0, xt)dµdata(x0)∫
H n(x0, xt)dµdata(x0)

n(x̃0, xt) dN (0, vtC)(xt) dµdata(x̃0)

=

∫
A

∫
H
x0n(x0, xt)dµdata(x0)

∫
H n(x̃0, xt)dµdata(x̃0)∫
H n(x0, xt)dµdata(x0)

dN (0, vtC)(xt)

=

∫
A

∫
H
x0n(x0, xt)dµdata(x0) dN (0, vtC)(xt) = E[1AX0].

Since these two properties define the conditional expectation, we have shown that

E[X0|Xt = x] = f(x)

almost surely. We will now proceed to show that f is Lipschitz with respect to the Cameron-
Martin norm ‖ · ‖U . For notational convenience, we will define

πt(xt) =

∫
n(x0, xt)dµdata(x0) =

∫
exp

(
2〈e−t/2x0, xt〉U − e−t‖x0‖2U

2vt

)
dµdata(x0). (26)

We see that

πt(xt + z) =

∫
exp

(
2〈e−t/2x0, xt + z〉U − e−t‖x0‖2U

2vt

)
dµdata(x0)

=

∫
exp

(
〈e−t/2x0, z〉U

vt

)
n(x0, xt) dµdata(x0),

(27)

which differs from (26) only by exp
(
〈e−t/2x0,z〉U

vt

)
. By our assumption that the support of

µdata is contained in a Cameron-Martin ball of size R. Therefore,

〈z, e−t/2x0〉U
vt

≤ e−t/2

vt
‖z‖UR, (28)

and

exp

(
−R‖z‖U

e−t/2

vt

)
≤ πt(xt + z)

πt(xt)
≤ exp

(
R‖z‖U

e−t/2

vt

)
. (29)

With these estimates out of the way, let us show local Lipschitz continuity:

‖f(xt + z)− f(xt)‖U =

∥∥∥∥∫ x0 n(x0, xt + z)dµdata(x0)

πt(xt + z)
−
∫
x0 n(x0, xt)dµdata(x0)

πt(xt)

∥∥∥∥
U

=:

∥∥∥∥ A′

πt(xt + z)
− A

πt(xt)

∥∥∥∥
U

.
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We rewrite the above as∥∥∥∥ A′

πt(xt + z)
− A

πt(xt)

∥∥∥∥
U

≤
∣∣∣∣1− πt(xt + z)

πt(xt)

∣∣∣∣ ∥∥∥∥ A′

πt(xt + z)

∥∥∥∥
U

+
1

πt(xt)
‖A′ −A‖U .

We see that∣∣∣∣1− πt(xt)

πt(xt)

∣∣∣∣ ∥∥∥∥ A′

πt(xt + z)

∥∥∥∥
U

≤

(
exp

(
e−t/2

vt
‖z‖UR

)
− 1

)
‖E[X0|Xt = xt + z]‖U ,

where we used (29) for the first term. We also get that

‖A−A′‖U
πt(xt)

≤

(
exp

(
e−t/2

vt
‖z‖UR

)
− 1

)
1

pt(xt)

∫
‖x0‖U

dN (e−t/2x0, vtC)

dN (0, vtC)
(xt)dµdata(x0)

≤

(
exp

(
e−t/2

vt
‖z‖UR

)
− 1

)
R

where we used (28) and (27) and our assumption that ‖x0‖U ≤ R. Putting it all together,
we get that

‖f(xt + z)− f(xt)‖ ≤ 2

(
exp

(
e−t/2

vt
‖z‖UR

)
− 1

)
R,

where we again used that ‖x0‖ ≤ R to bound f(xt + z). However, we can strengthen this
bound. For any N , it holds that

‖f(xt + z)− f(xt)‖U ≤
N∑
i=1

‖f(xt + z
i

N
)− f(xt + z

i− 1

N
)‖U

≤ N 2

(
exp

(
e−t/2

vt

‖z‖U
N

R

)
− 1

)
R.

In particular, we can take the limit N →∞ and get that

‖f(xt + z)− f(xt)‖U ≤
d

dh
|h=02

(
exp

(
e−t/2

vt
h‖z‖UR

)
− 1

)
R = 2R2 e

−t/2

vt
‖z‖U .

From this we can conclude that f has the global Lipschitz constant 2R2 e−t/2

vt
. From (25)

we see that there is a version of s(t, ·), such that for any xt, yt ∈ H

‖s(t, xt)− s(t, yt)‖U ≤ Lt‖xt − yt‖U , Lt =
1

(1− e−t)2
max{1, 2R2e−t}.

Step 2: Existence of solutions Fix a C-Wiener process Wt. Denote by M : C([0, T −
u], H)→ C([0, T − u]) the map

(My)(t) =

∫ t

0
s(T − r, yr)dr +Wt.
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Then we have if u < T − ε,

sup
t6u
‖My(t)−Mỹ(t)‖U 6

∫ u

0
‖s(T − r, yr)−s(T − r, ỹr)‖Udr 6 uLT−ε sup

t6u
‖yt− ỹt‖U . (30)

Here we used that we can apply Jensen’s inequality because ‖ · ‖U : H → [0,∞] is lower-
semicontinuous on H; see Proposition 18. We now choose u smaller than 1

LT−ε
. Starting

with any y0, we can now define the sequence yn+1 = Myn. Applying (30) and noting that
u

LT−ε
< 1, we see that yn is Cauchy with respect to sup ‖ ·‖U and therefore also with respect

to sup ‖ · ‖H and has a limit. We then have a strong solution w.r.t. to the fixed Wiener
process Wt on [0, u]. We can extend the solution to [0, T − ε] by repeating this process and
gluing the solutions together. However, we cannot apply Banach’s fix point theorem to get
uniqueness, since ‖y − ỹ‖U might be infinite for two solutions y and ỹ.

Step 3: Strong uniqueness of solutions We now assume we have two solutions to
the reverse SDE, Yt and Ỹt solving the reverse SDE (6) with respect to the same Wiener
process Bt and Y0 = Ỹ0. Since Yt and Ỹt are not necessarily in U , we have to be a bit
careful before directly applying Grönwall. Again, in Proposition 18 we have proven that
‖ · ‖U : H → [0,∞] is lower-semicontinuous on H. We define the seminorms

‖x‖UD = ‖PDx‖U

where PD is the projection operator defined in Section . Those are smooth functions on H
and therefore the map t 7→ ‖Yt − Ỹt‖UD is continuous and we can apply Grönwall:

d

dt
‖Yt − Ỹt‖UD ≤

e−
t
2

1− e−t
‖E[X0|Xt = Yt]− E[X0|Xt = Ỹt]‖UD ≤

e−
T−t

2

1− e−(T−t) 2R.

which in particular shows that

‖Yt − Ỹt − (Ys − Ỹs)‖UD ≤
e−

T−t
2

1− e−T−t
2R(t− s)

for t ≥ s. By taking the limit, we see that t 7→ ‖Yt − Ỹt‖U is continuous. Therefore, we can
apply Grönwall to that quantity (continuity is a requirement for Grönwall).

Furthermore, by using the above calculation for τ = 0, we find that ‖Yt − Ỹt‖U will be
finite for all t, if ‖Y0 − Ỹ0‖U is finite (even if Yt and Ỹt are almost surely not in U). Now,
since Y0 = Ỹ0 and therefore ‖Y0 − Ỹ0‖U = 0,

‖Yt − Ỹt‖U 6
∫ t

0
‖s(T − r, Yr)− s(T − r, Ỹr)‖Uddr 6

∫ t

0
L2
T−r‖Yt − Ỹt‖Udr.

If t < T , the Lipschitz constant LT−t is finite. Therefore, we can apply Grönwall to see
that ‖Yt− Ỹt‖U = 0 to prove uniqueness on [0, t] for any t < T . Hence, we have shown that
there is a unique strong solution on [0, T − ε]. Since ε was arbitrary, we have shown strong
uniqueness on [0, T ).
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F.2 Proof of Theorem 13

Now we prove Theorem 13:
Proof

Step 0: A priori bounds Let H be any Hilbert space on which N (0, Cµ) is supported.
Let ei be an eigenbasis von Cµ and C, which exists by our assumptions. Let ci and µi be
the eigenvalues associated with C and Cµ respectively, i.e.,

Cei = ciei, Cµei = µiei.

Furthermore, we define Ct by

Ct = (e−tCµ + (1− e−t)C), (31)

which would be the covariance of Xt at time t in case Φ = 0. The following operators are
all bounded: CµC

−1
t , CC−1

t and CCtC
−1
µ . We will show it for the first operator, and the

others follow by similar arguments. The first operator will have eigenvalues

λi =
µi

e−tci + (1− e−t)µi
.

We know that µi → 0 since Cµ is trace class. For ci → 0, the eigenvalues converge to
λi → 1

(1−e−t) , while as ci →∞, we get that λi → 0. Furthermore, the derivative with respect

to ci is negative, which shows that the λi are bounded by 1
1−e−t . A similar calculation can

be done for the other operators listed.

Step 1: Rewrite the reverse SDE The goal of this section is to show that we can
write the drift in infinite dimensions as

s(t, xt) = −e
t
2E[C(CµC

−1
t )−1∇Φ(X0)|Xt = xt] + CC−1

t xt

without assuming any more conditions on Φ or ∇Φ. To that end, we will argue in finite
dimensions and take the limit in the end. Henceforth, unless we say otherwise, everything
will be in finite dimensions for this step. The projection of µdata to HD will be defined by

µDdata = exp(−ΦD)N (0, CDµ ),

where CDµ is defined as in Section E.1 and

exp(−ΦD(xD)) = EN (0,C)[exp(−Φ(X))|XD = xD]

=

∫
exp(−Φ(xD, xD+1:∞)) dN (0, CD+1:∞)(xD+1:∞)

For the gradient it will then hold that

∇ΦD(xD) = ∇ log exp(ΦD(xD))

=

∫
∇xD exp(−Φ(xD, xD+1:∞)) dN (0, CD+1:∞)(xD+1:∞)∫

exp(−Φ(xD, xD+1:∞)) dN (0, CD+1:∞)(xD+1:∞)

=
−
∫
∇xDΦ(xD, xD+1:∞) exp(−Φ(xD, xD+1:∞)) dN (0, CD+1:∞)(xD+1:∞)∫

exp(−Φ(xD, xD+1:∞)) dN (0, CD+1:∞)(xD+1:∞)

= Eµdata
[∇Φ(x)|XD = xD].
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We denote by (X̃t : 0 ≤ t ≤ T ) the Gaussian solution, started in X̃0 ∼ N (0, C) and as
always by (Xt : 0 ≤ t ≤ T ) the solution to the forward process started in X0 ∼ µdata. To
be precise, (

X̃0

X̃t

)
∼ N

(
0,

(
Cµ e−

t
2Cµ

e−
t
2Cµ Ct

))
,

where Ct is defined in (31). Therefore,

X̃0|X̃t ∼ N
(
e−

t
2CµC

−1
t X̃t, Cµ − e−tCµC−1

t Cµ

)
.

Then we have that

dpt
dN (0, Ct)

(x) = E[exp(−Φ(X̃0))|X̃t = x] = E
N

(
e−

t
2CµC

−1
t x,Cµ−e−tCµC−1

t Cµ
)[exp(−Φ(X̃0))].

(32)
We denote by

At = e−
t
2CµC

−1
t , Qt = Cµ − e−tCµC−1

t Cµ.

Note that for C = Cµ all of the definitions simplify to easier terms. Taking ∇ log of the
above leads to

∇xt
dpt

dN (0, Ct)
(xt) =

1

Z

∫
∇xt exp(−‖Atx0 − xt‖2Qt) exp(−Φ(x0))dx0

=
1

Z

∫
−A−1

t ∇x0 exp(−‖Atx0 − xt‖2Qt) exp(−Φ(x0))dx0

=
1

Z

∫
A−1
t exp(−‖Atx0 − xt‖2Qt)∇x0 exp(−Φ(x0))dx0

= − 1

Z

∫
A−1
t exp(−‖Atx0 − xt‖2Qt)∇x0Φ(x0) exp(−Φ(x0))dx0,

where B is the normalizing constant. Therefore,

C∇xt log
dpt

dN (0, Ct)
(xt) =

−
∫
CA−1

t exp(−‖Atx0 − xt‖2Qt)∇x0Φ(x0) exp(−Φ(x0))dx0∫
exp(−‖Atx0 − xt‖2Qt) exp(−Φ(x0))dx0

=

∫
CA−1

t ∇Φ(x) exp(−Φ(x))dN (Atxt, Qt)∫
exp(Φ(x))dN (Atxt, Qt)

= E[−CA−1
t ∇Φ(X0)|Xt = xt].

We make the dimension dependence explicit and get that

C∇xDt log
dpDt

dN (0, CDt )
(xDt ) = E[−CD(A−1

t )D∇ΦD(XD
0 )|XD

t = xDt ]

= E[−CD(A−1
t )DE[PD∇Φ(X0)|XD

0 ]|XD
t = xDt ]

= E[−CD(A−1
t )DPD∇Φ(X0)|XD

t = xDt ]

= PDE[−CA−1
t ∇Φ(X0)|XD

t = xDt ].
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Furthermore,

sD(t,XD
t ) = C∇ log pDt (xDt ) =C∇ log

pDt (xDt )

N (0, Ct)
+ C∇ logN (0, Ct)(x

D
t )

=PDE[−CA−1
t ∇Φ(X0)|XD

t = xDt ] + CD(C−1
t )DxDt . (33)

By Lemma 16 sD converges almost surely to s. Furthermore, since CA−1
t is bounded and

∇Φ(X0) is Lipschitz, we get that

E[‖E[CA−1
t ∇ log Φ(X0)|Xt]‖2] . E[‖∇ log Φ(X0)‖2] . E[‖X0‖2] <∞.

Therefore, also the first term in (33) converges to its infinite dimensional counterpart by
Lemma 16. The second term in (33) also converges. Therefore, we can take the limit on
both sides and obtain

s(t, xt) = E[−CA−1
t ∇Φ(X0)|Xt = xt] + CC−1

t xt.

The formula (32) for pt holds in infinite dimensions too, and therefore we can write the
conditional expectation as

f(t, xt) = E[−CA−1
t ∇Φ(X̃0)|X̃t = xt] =

∫
CA−1

t ∇Φ(x) exp(−Φ(x))dN (Atxt, Qt)∫
exp(−Φ(x))dN (Atxt, Qt)

.

Step 2: Local Lipschitzness in with respect to ‖ · ‖ Since CC−1
t is bounded by step

0, it suffices to show that f is locally Lipschitz. We will now bound the difference

f(t, yt)− f(t, xt)

=

∫
CA−1

t ∇Φ(x) exp(−Φ(x))dN (Atxt, Qt)∫
exp(−Φ(x))dN (Atxt, Qt)

−
∫
CA−1

t ∇Φ(x) exp(−Φ(x))dN (Atyt, Qt)∫
exp(−Φ(x))dN (Atyt, Qt)

=:
B1

Z1
− B2

Z2
=

(
1

Z1
− 1

Z2

)
B2 −

1

Z1
(B1 −B2) =

(
Z1 − Z2

Z1Z2

)
B2 −

1

Z1
(B1 −B2).

We will fix an R > 0 and assume that ‖xt‖, ‖yt‖ 6 R. Then, since At is bounded, there
exists an R̃ such that ‖Atxt‖, ‖Atyt‖ 6 R̃.

Then

Z1 =

∫
exp(−Φ(x))dN (Atxt, Qt)(x) =

∫
exp(−Φ(x+Atxt))dN (0, Qt)(x)

>
∫

exp(−(E1 + E2‖x+Atxt‖2))dN (0, Qt)(x)

= exp(−E1 + 2‖Atxt‖2)

∫
exp(−E2‖x‖2)dN (0, Qt)(x)

& E exp(−2‖Atx‖2) > E exp(−2R̃2)

where E is a finite constant that only depends on Cµ, C, L and the Ei. A similar bound
holds for Z2. For

Z1 − Z2 =

∫
exp(−Φ(x+Atxt))− exp(−Φ(x+Atyt))dN (0, Qt)(x)

6
∫

exp(−E0)L‖Atxt −Atyt‖dN (0, Qt)(x)

= exp(−E0)L‖Atxt −Atyt‖ 6 EL‖xt − yt, ‖

44



Infinite-Dimensional Diffusion Models

where we used that if Φ is C1 and its derivative is bounded by L, then exp(−Φ) has a
derivative bounded by exp(− inf Φ)L. Furthermore, we get that∫

CA−1
t ∇Φ(x) exp(−Φ(x))dN (Atxt, Qt)

6 exp(−E0)

∫
CA−1

t ∇Φ(x+Atxt)dN (0, Qt)

6 exp(−E0)

∫
‖CA−1

t ‖(‖∇Φ(0)‖+ L‖x+Atxt‖)dN (0, Qt)

6 exp(−E0)‖CA−1
t ‖

(
‖∇Φ(0)‖+ L‖Atxt‖+ L

∫
‖x‖dN (0, Qt)

)
6 E(1 + ‖xt‖) 6 E(1 +R),

where we used that CA−1
t and At are bounded. We also get that

‖B1 −B2‖

=

∫
‖CA−1

t ∇Φ(x+Atxt)‖| exp(−Φ(x+Atxt))− exp(−Φ(x+Atyt))|dN (0, Qt)(x)

+

∫
‖CA−1

t ∇Φ(x+Atyt)− CA−1
t ∇Φ(x+Atxt)‖ exp(−Φ(x+Atyt))dN (0, Qt)(x)

6 exp(−E0)L‖Atxt −Atyt‖‖CA−1
t ‖

(
‖∇Φ(0)‖+ L

(
‖Atxt‖+

∫
‖x‖dN (0, Qt)(x)

))
+L‖CA−1

t ‖‖Atxt −Atyt‖ exp(−E0)

6 E‖xt − yt‖(1 +R),

where we again used the boundedness of CA−1
t and At. Putting it all together, we get that∥∥∥∥C∇ log

dpt
dN (0, Ct)

(xt)− C∇ log
dpt

dN (0, Ct)
(yt)

∥∥∥∥
6 E exp(4R̃2)L‖xt − yt‖+ E exp(2R̃)‖xt − yt‖(1 +R) 6 E exp(4R̃2)‖xt − yt‖.

Step 3: Strong uniqueness and existence Using the local Lipschitzness, we apply
Grönwall to obtain strong uniqueness of solutions. This is a standard argument and similar
to what we did in Step 3 of the proof of Theorem 13. Alternatively, see, for example,
Karatzas et al. (1991, Theorem 2.5 in Section 5.2.B).

We can now prove weak existence of the reverse SDE. By Theorem 9, the time reversal
will be a weak solution with initial condition PT . Denote the path measure of Y by Q.
Under the assumptions of the Theorem, N (0, C) will be absolutely continuous with respect
to pT . We define Q̃ by

dQ̃
dQ

(y[0,T ]) =
dN (0, C)

dPT
(y0).

Q̃ is then the path measure of a solution Ỹ to 6 which has initial conditionN (0, C), therefore
we have constructed a weak solution. With that we conclude the proof since, weak existence
together with strong uniqueness imply strong existence, see Karatzas et al. (1991, Section
5.3).
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Appendix G. Wasserstein-Bound Proof

We now prove Theorem 14:

Proof We prove the theorem with the finite-dimensional notation, but one can replace
∇ log pt by s(t, ·) and nothing changes. We will partition [0, T ] into τ = {0 = t0, . . . , tN =
T}. For the given partition we denote

btc = max
ti∈τ
{ti 6 t}, dte = min

ti∈τ
{ti > t}, ∆ = max

k=0,...,N−1
tk+1 − tk.

We couple two strong solutions of Yt and Ỹt for the same Brownian motion Bt. These strong
solutions exist because of the assumptions of the theorem and Theorem 12 or Theorem 13.
The difference between Yt and Ỹt can be bounded as follows:

d‖Yt − Ỹt‖ =
1

2
‖Yt − Ỹt‖+

1

‖Yt − Ỹt‖
〈Yt − Ỹt, C∇ log pT−t(Yt)− s̃(T − btc, Ỹbtc)〉

6
1

2
‖Yt − Ỹt‖+ ‖C∇ log pT−t(Yt)− sθ(T − t, Ỹbtc)‖.

We bound

‖C∇ log pT−t(Yt)− s̃(T − t, Ỹt)‖
6 ‖C∇ log pT−t(Yt)− C∇ log pT−btc(Ybtc)‖

+‖C∇ log pT−btc(Ybtc)− s̃(btc, Ybtc)‖+ ‖s̃(btc, Ybtc)− s̃(btc, Ỹbtc)‖
6 ‖∇U log pT−t(Yt)−∇U log pT−btc(Ybtc)‖

+‖C∇ log pT−btc(Ybtc)− s̃(btc, Ybtc)‖+ Ls‖Ybtc − Ỹbtc‖.

We take the supremum to get rid of the delay term ‖Ybtc − Ỹbtc‖ and obtain

sup
τ6s
‖Yr − Ỹr‖ 6 L′s

∫ s

0
sup
r6t
‖Yr − Ỹr‖dt+

∫ s

0
‖∇U log pT−t(Yt)−∇U log pT−btc(Ybtc)‖dt

+

∫ ∥∥∥∇U log
pT−btc

ν
(Ybtc)− s̃(btc, Ybtc)

∥∥∥dt,

where L′s = L+ 1
2 . Squaring the above expression and taking expectations, we arrive at

E[sup
τ6s
‖Yr − Ỹr‖2]

. L′s
2
∫ s

0
E[sup

r6t
‖Yr − Ỹr‖2]dt+

∫ s

0
E[‖∇U log pT−t(Yt)−∇U log pT−btc(Ybtc)‖2]dt

+E
[∥∥∥∇U log

pT−btc

ν
(Ybtc)− s̃(btc, Ybtc)

∥∥∥2
]

dt

= L′s
2
∫ s

0
E[sup

r6t
‖Yr − Ỹr‖2]dt+

∫ s

0
B1 +B2dt
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We start by bounding B1:

B1 6 E
[∥∥∥∇U log pT−t(Yt)− e

(t−btc)
2 ∇U log pT−btc(Ybtc)

∥∥∥2
]

+
(

1− e
(t−btc)

2

)2
E[‖∇U log pT−btc(Ybtc)‖2]

= E[‖∇U log pT−t(Yt)‖2]− E
[∥∥∥e (t−btc)

2 ∇U log pT−btc(Ybtc)
∥∥∥2
]

+
(

1− e
(t−btc)

2

)2
E[‖∇U log pT−btc(Ybtc)‖2]

where we used that the L2 norm of the a martingale Mt difference is the difference of the
L2 norms, i.e., E[‖Mt −Ms‖2] = E[‖Mt‖2]− E[‖Ms‖2] for t > s. Then∫ T

0
B1dt 6

N∑
i=1

(E[‖∇U log pT−tk+1
(Ytk+1

)‖2]− E[‖e(tk+1−tk)∇U log pT−tk(Ytk)‖2])(tk+1 − tk)

+
(

1− e
∆t
2

)2
E[‖∇U log pT (YT )‖2]

6 ∆t

N∑
i=1

(E[‖∇U log pT−tk+1
(Ytk+1

)‖2]− E[‖e(tk+1−tk)∇U log pT−tk(Ytk)‖2])

+
(

1− e
∆t
2

)2
E[‖∇U log pT (YT )‖2]

6 ∆tE[‖∇U log p0(YT )‖2] +
(

1− e
∆t
2

)2
E[‖∇U log pT (YT )‖2]

=O(∆t)E[‖∇U log p0(YT )‖2]

where we used that the L2 norm of a martingale is increasing. The term B2 is nothing more
than the loss.

Putting it all together, we arrive at

E[sup
r6s
‖Yr − Ỹr‖2] 6 L2

∫ s

0
E[sup

r6t
‖Yr − Ỹr‖2]dt+O(∆t)E[‖∇U log p0(YT )‖2] + Loss

= L2

∫ s

0
E[sup

r6t
‖Yr − Ỹr‖2] + Error

and can apply Grönwall to get that

E[sup
r6s
‖Yr − Ỹr‖2] 6 (E[‖Y0 − Ỹ0‖2] + Error) exp(L2s).

Since YT ∼ µdata and ỸT ∼ µ̂sample we found a coupling of µdata and µ̂sample and bounded its
L2 distance. We have not picked the coupling of Y0 ∼ pT and Ỹ0 ∼ N (0, C) yet. Therefore
we just pick a ε-optimal coupling in the squared Wasserstein distance, i.e., E[‖Y0− Ỹ0‖2] 6
W2

2 (pT ,N (0, C)) + ε and obtain

W2
2 (µ̂sample, µdata) 6 E[sup

r6T
‖Yr − Ỹr‖2] 6 (W2(pT ,N (0, C)) + ε+ Error) exp(L2T ).
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Since ε was arbitrary, the statement of the theorem follows, we actually get

W2
2 (µ̂sample, µdata) 6 E[sup

r6T
‖Yr − Ỹr‖2] 6 (W2(pT ,N (0, C)) + Error) exp(L2T ).

Finally, W2
2 (pT ,N (0, C)) can be upper bounded by

W2
2 (pT ,N (0, C)) ≤ exp(−T )W2

2 (µdata,N (0, C))

since the Ornstein-Uhlenbeck forward process is contracting with rate exp(−t) in the squared
W2

2 -distance. From this, the statement of the theorem follows.

Proposition 18 Let U be the Cameron-Martin space associated to a measure N (0, C) tak-
ing values in H. Then, ‖ · ‖U : H → [0,∞] is lower-semicontinuous and convex on H.

Proof Let (ei, ci) be the eigenvectors and eigenvalues of C. Let fk → f in H. We will
prove lower semicontinuity for ‖ · ‖2U , the result for ‖ · ‖U then follows. Then,

‖f‖2U =
∞∑
d=1

lim
k→∞
〈fk, ei〉c−1

i 6 lim inf
k→∞

∞∑
d=1

〈fk, ei〉c−1
i = lim inf

k→∞
‖fk‖2U ,

which proves lower semi-continuity. Convexity follows since ‖ · ‖U is convex when restricted
to U , and infinite otherwise.
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