
Journal of Machine Learning Research 25 (2024) 1-57 Submitted 9/23; Revised 10/24; Published 11/24

PROMISE: Preconditioned Stochastic Optimization
Methods by Incorporating Scalable Curvature Estimates

Zachary Frangella∗ zfran@stanford.edu
Department of Management Science and Engineering
Stanford University

Pratik Rathore∗ pratikr@stanford.edu
Department of Electrical Engineering
Stanford University

Shipu Zhao sz533@cornell.edu
Department of Systems Engineering
Cornell University

Madeleine Udell udell@stanford.edu

Department of Management Science and Engineering

Stanford University

Editor: Peter Richtarik

Abstract

Ill-conditioned problems are ubiquitous in large-scale machine learning: as a data set grows
to include more and more features correlated with the labels, the condition number in-
creases. Yet traditional stochastic gradient methods converge slowly on these ill-conditioned
problems, even with careful hyperparameter tuning. This paper introduces PROMISE
(Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature
Estimates), a suite of sketching-based preconditioned stochastic gradient algorithms that
deliver fast convergence on ill-conditioned large-scale convex optimization problems arising
in machine learning. PROMISE includes preconditioned versions of SVRG, SAGA, and
Katyusha; each algorithm comes with a strong theoretical analysis and effective default
hyperparameter values. Empirically, we verify the superiority of the proposed algorithms
by showing that, using default hyperparameter values, they outperform or match popular
tuned stochastic gradient optimizers on a test bed of 51 ridge and logistic regression prob-
lems assembled from benchmark machine learning repositories. On the theoretical side, this
paper introduces the notion of quadratic regularity in order to establish linear convergence
of all proposed methods even when the preconditioner is updated infrequently. The speed
of linear convergence is determined by the quadratic regularity ratio, which often provides
a tighter bound on the convergence rate compared to the condition number, both in theory
and in practice, and explains the fast global linear convergence of the proposed methods.

Keywords: stochastic optimization, preconditioning, randomized low-rank approxima-
tion, lazy Hessians

*. Equal contribution. A longer, more detailed version of this manuscript is available at
https://arxiv.org/abs/2309.02014v2.

c©2024 Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v25/23-1187.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v25/23-1187.html

Frangella, Rathore, Zhao, and Udell

1. Introduction

Modern machine learning (ML) poses significant challenges for optimization, owing to the
sheer scale of the problems. Modern data sets are both enormous and high-dimensional,
often with millions of samples and features. As a consequence, classic methods such as
gradient descent and L-BFGS, which make a full pass through the data at each iteration,
are prohibitively expensive. In this context, stochastic gradient descent (SGD) and its
variants, which operate on only a small mini-batch of data at each iteration, have become
the dominant optimization methods for modern ML.

When the problem is well-conditioned, SGD quickly finds models that are nearly optimal.
Further, although classic SGD converges to a ball around the optimum (with fixed learning
rate) or sublinearly (with decaying learning rate) (Moulines and Bach, 2011; Gower et al.,
2019b), variance reduction techniques like SVRG, SAGA, Katyusha, and L-Katyusha sig-
nificantly improve performance on convex problems, and converge linearly to the optimum
for strongly convex problems (Johnson and Zhang, 2013; Defazio et al., 2014; Allen-Zhu,
2018; Kovalev et al., 2020).

0 20 40 60
Wall-clock time (min.)

0.20

2.00
×10−1 url

0 20 40 60
Wall-clock time (min.)

0.20

2.00
×10−1 url

T
ra

in
in

g
L

os
s

SVRG

SAGA

L-Katyusha

SketchyKatyusha (Ours)

Figure 1: SketchyKatyusha (an algorithm in the PROMISE suite, see Algorithm 5) with
its default hyperparameters outperforms standard stochastic gradient optimizers with both
default (left) and tuned (right) hyperparameters. The loss curves start after a single epoch
of training has been completed; the black dotted line indicates the training loss attained by
SketchyKatyusha after a single epoch. Each optimizer is allotted 1 hour of runtime.

Unfortunately SGD and related algorithms are difficult to tune and converge slowly when
the data is poorly conditioned. Parameters like the learning rate are difficult to choose and
important to get right: slow convergence or divergence loom on either side of the best
parameter choice (Nemirovski et al., 2009). Even with the best learning rate, in the worst
case, variance-reduced stochastic gradient methods require at least O((n+

√
nκ) log(1/ε))

stochastic gradient evaluations to reach ε accuracy (Woodworth and Srebro, 2016), which
is problematic as the condition number for many ML problems is typically on the order of
104 to 108 (see Figure 13 in Frangella et al. (2023a)). Hence the convergence of stochastic

2

PROMISE: Preconditioned Stochastic Optimization Methods

gradient methods can be excruciatingly slow (see Fig. 1) and popular stochastic optimizers
often provide low-quality solutions even with generous computational budgets.

How should the challenges of ill-conditioning and sensitivity to the learning rate be
addressed? Classical optimization wisdom suggests using second-order information based
on the Hessian. Second-order methods converge locally at superlinear rates under mild
assumptions and beat first-order methods in practice (Nocedal and Wright, 1999; Boyd and
Vandenberghe, 2004).

Many authors have attempted to develop second-order methods that use stochastic gra-
dients and Hessians, but major difficulties remain; see Section 4 and especially Table 9 for
details. First, no previous stochastic second-order method delivers fast local-linear conver-
gence without vanishing noise in the gradient estimates, as noted in Kovalev et al. (2019);
Frangella et al. (2023a). The strategies used to reduce this noise, including exponentially
increasing gradient batchsizes and Hessian batchsizes that may depend on the condition
number, lead to exceedingly slow iterations as the algorithm converges. Second, even the
methods that allow a stochastic Hessian require an expensive (and slow) new estimate of
the Hessian at every iteration. Finally, most of these methods are difficult to deploy in real-
world ML pipelines, as they introduce new hyperparameters without practical guidelines
for choosing them.

In this paper, we introduce PROMISE, a suite of preconditioned stochastic gradient
methods that use scalable curvature estimates to directly address each of these problems.
PROMISE methods estimate second-order information from minibatch data (i.e., stochastic
Hessians) to avoid difficulties with hyperparameter selection and ill-conditioning, and they
use infrequent (“lazy”) Hessian updates. The resulting algorithms, such as SketchyKatyusha
(Algorithm 5), are fast enough per-iteration to compete with first-order methods, yet con-
verge much faster on ill-conditioned problems with minimal or no hyperparameter tuning.

Figure 1 illustrates the benefits of PROMISE by applying SketchyKatyusha to a mali-
cious link detection task using the url data set (n = 2,396,130, p = 3,231,961), which yields
a large l2-regularized logistic regression problem. Popular stochastic optimizers, using the
default learning rates, perform poorly. In contrast, with default hyperparameters, the pro-
posed method SketchyKatyusha achieves a loss three times smaller than the best competing
method after an hour of training! In fact, even after an hour of training, the other opti-
mizers barely match the training loss that SketchyKatyusha achieves after a single epoch
(pass through the data). Even with extensive hyperparameter tuning (which, in practice,
increases the cost of optimization by orders of magnitude), the other first-order methods
cannot match the performance of SketchyKatyusha with its default hyperparameters.

PROMISE also improves on preexisting theory for stochastic second-order methods. In
contrast to prior approaches, PROMISE methods achieve linear convergence with lazy up-
dates to the preconditioner and without large batchsizes for the gradient and Hessian. Sig-
nificantly, PROMISE methods come with default hyperparameters (including the learning
rate) that enable them to work out-of-the-box and outperform or match popular stochastic
optimizers tuned to achieve their best performance. Numerical experiments on a test bed
of 51 ridge and logistic-regression problems verify this claim. Hence our methods avoid the
usual theory-practice gap: our theoretical advances yield practical algorithms.

In order to show linear convergence under lazy updates, our analysis introduces a new
analytic quantity, the quadratic regularity ratio, that controls the convergence rate of all

3

Frangella, Rathore, Zhao, and Udell

PROMISE methods. The quadratic regularity ratio generalizes the condition number to
the Hessian norm. Unlike the condition number, the quadratic regularity ratio equals
one for quadratic objectives and approaches one as the iterates approach the optimum
for any objective with a Lipschitz Hessian. Hence the quadratic regularity ratio often
gives tighter convergence rates than the condition number and explains why the proposed
methods empirically exhibit fast global linear convergence and outperform the competition.

1.1 PROMISE

PROMISE methods solve convex finite-sum minimization (FSM) problems of the form

minimize
w∈Rp

F (w) :=
1

n

n∑
i=1

fi(w) +
ν

2
‖w‖2, (FSM)

where each fi is real-valued, smooth, and convex, and ν > 0.
We provide a high-level overview of the PROMISE methods in the Meta-algorithm

and Table 1. Each iteration consists of two phases: a (lazy) preconditioner update and a
parameter update. By default, PROMISE methods update the preconditioner at a fixed
frequency (such as once per epoch) using a stochastic Hessian estimate at the current
iterate wk. The learning rate is then recomputed to adapt to the new preconditioner. For
the parameter update, our methods compute a stochastic gradient gk and preconditioned
direction vk = P−1gk. Our methods then use a parameter update subroutine S to compute
the next iterate wk+1. The ∗ in the call to S denotes additional arguments to perform
variance reduction and acceleration.

Meta-algorithm: PROMISE

Require: initial iterate w0, stochastic gradient oracle Og , stochastic Hessian oracle OH , gradient and Hessian batch-
sizes bg and bH , preconditioner object P, preconditioner update times U ⊆ N, parameter update subroutine S

for k = 0, 1, . . . do
Preconditioner update
if k ∈ U then
P.update(OH(wk, bH)) . Update preconditioner P via stochastic Hessian
η = P.get learning rate() . Compute learning rate based on P

end if

Parameter update
gk = Og(wk, bg) . Compute stochastic gradient
vk = P.direction(gk) . Compute vk = P−1gk
wk+1 = S(wk, gk, vk, ∗) . Compute next iterate

end for

The finite-sum structure of the objective (FSM) makes it easy to construct unbiased
estimators of the gradient ∇F (w) and the Hessian ∇2F (w), given batchsizes bg and bH , as

∇̂F (w) =
1

bg

∑
i∈Bg

∇fi(w) + νw, ∇̂2F (w) =
1

bH

∑
i∈BH

∇2fi(w) + νI,

where Bg and BH , with size bg and bH respectively, are sampled independently and uniformly
from {1, . . . , n}. As a concrete example, consider a generalized linear model (GLM) with
fi(w) = φi(a

T
i w). Then

∇fi(w) = φ′i(a
T
i w)ai, ∇2fi(w) = φ′′i (a

T
i w)aia

T
i .

4

PROMISE: Preconditioned Stochastic Optimization Methods

Input Description

w0 Initial iterate, typically set to 0.

Og Computes a stochastic gradient.

OH
Used for computing a stochastic/subsampled Hessian. Does

not compute the entire subsampled Hessian in practice.

bg, bH
Batchsizes for computing stochastic gradients and

Hessians. Used as inputs to Og and OH .

P Preconditioner object. Examples provided in Section 2.1.

U Times at which to update the preconditioner.

S Subroutine that updates the iterate. May include
calculations related to variance reduction and acceleration.

Table 1: Inputs to the Meta-algorithm.

The stochastic Hessian as written is a p × p matrix: rather large! But none of the
methods we discuss instantiate such a matrix. Instead, they take advantage of the low-
rank structure of the preconditioner to compute the approximate Newton direction P−1gk
efficiently using the Woodbury formula (see Table 4).

1.2 Contributions

We summarize the contributions of this work as follows:

1. We propose preconditioned versions of SVRG, SAGA, and Katyusha, which we call
SketchySVRG, SketchySAGA, and SketchyKatyusha. These methods use stochastic
approximations to the Hessian to perform preconditioning.

2. We formally describe a wide array of preconditioners that are compatible with our
methods. We show that any preconditioner that approximates the Hessian sufficiently
well is compatible with our theoretical convergence results.

3. We define the quadratic regularity ratio, which generalizes the condition number glob-
ally to the Hessian norm, and use this ratio to prove our methods converge linearly
to the optimum despite lazy updates to the preconditioner.

4. We show global linear convergence, independent of the condition number, for SketchySVRG,
SketchySAGA, and SketchyKatyusha applied to ridge regression. We also show local
linear convergence, independent of the condition number, for SketchySVRG on any
strongly convex finite-sum problem with Lipschitz Hessians.

5. We provide default hyperparameters and a heuristic to automatically compute a good
learning rate for our proposed methods.

6. We present extensive experiments demonstrating that SketchySVRG, SketchySAGA,
and SketchyKatyusha, equipped with their default hyperparameters and learning rate
heuristic, outperform popular stochastic optimizers for GLMs.

5

Frangella, Rathore, Zhao, and Udell

1.3 Roadmap

Section 2 introduces several scalable preconditioning techniques that are compatible with
the PROMISE framework; we provide both implementation details and theoretical results
for these preconditioners. Section 3 presents the algorithms that comprise the PROMISE
framework, along with default hyperparameters and algorithmic recommendations for vari-
ous GLMs. Section 4 reviews the literature on preconditioning and stochastic second-order
methods and places PROMISE in the context of these existing works. Section 5 establishes
linear convergence of all of the proposed methods for strongly convex machine learning
problems. Section 6 demonstrates the superior performance of the algorithms in PROMISE
over popular tuned stochastic optimizers through extensive numerical experiments.

1.4 Notation

Define [n] := {1, . . . , n}. Throughout the paper, let B (or Bk) denote subsets of [n] that are
sampled independently and uniformly without replacement. The corresponding (unregular-
ized) minibatch gradient and Hessian are given by

∇̂f(w) =
1

|B|
∑
i∈B
∇fi(w),

∇̂2f(w) =
1

|B|
∑
i∈B
∇2fi(w).

Throughout the paper, we use bg to refer to the gradient batchsize and bH to refer to the
Hessian batchsize. We abbreviate positive-semidefinite as psd and use S+

p (R) to denote the
convex cone of psd matrices in Rp×p. The symbol � denotes the Loewner order on the
convex cone of psd matrices: A � B means B − A is psd. Given a matrix A ∈ S+

p (R), its
eigenvalues in decreasing order are λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A). Moreover, the condition
number of A ∈ S+

p (R) is defined to be κ(A) := λ1(A)/λp(A). Define B(w, r) to be the
closed Euclidean norm ball of radius r, centered at w. We use Li to denote the smoothness
constant of fi and Lmax is defined as maxi Li.

Throughout the remainder of this paper, we assume we have access to some GLM M.
We note our theoretical convergence results do not require the objective to be a GLM,
but the implementation of the SASSN preconditioner (Section 2.1) requires this structure.
Moreover, most convex machine learning problems arising in practice are GLMs, so we
specialize our implementation to GLMs. Given that F is a GLM, we assume access to
oracles for obtaining the regularization parameter ν, row subsamples of the data matrix
A ∈ Rn×p, the diagonal of the stochastic Hessian of F (excluding the regularization ν),
stochastic gradients of F , and full gradients of F . We present the names, inputs, and
outputs of these oracles in Table 2.

6

PROMISE: Preconditioned Stochastic Optimization Methods

Oracle Output
M.get reg() ν
M.get data(B) AB

M.get hessian diagonal(B, w) Φ′′(ABw)

M.get stoch grad(B, w) 1
|B|
∑
i∈B∇fi(w) + νw

M.get full grad(w) ∇F (w)

Table 2: Oracles associated with the GLM M. B ⊆ [n] is a batch of indices and w ∈ Rp.

The oracles get data and get hessian diagonal output ABw and Φ′′(ABw), respec-
tively, for minibatch B = {i1, i2, . . . , i|B|} ⊆ [n], where

AB :=

aTi1
aTi2
...

aTi|B|

 , Φ′′(ABw) := diag

φ′′i1
(
aTi1w

)
φ′′i2
(
aTi2w

)
...

φ′′i|B|

(
aTi|B|w

)

 .

The oracles get reg, get data and get hessian diagonal are used in the preconditioners
described in Section 2.1, while the oracles get stoch grad and get full grad are used in
the optimization algorithms in Section 3. In practice, get hessian diagonal returns the
diagonal as a vector, not a matrix.

2. Scalable Preconditioning Techniques

We present three scalable preconditioning techniques: Subsampled Newton (SSN), Nyström
Subsampled Newton (NySSN), and Sketch-and-Solve Subsampled Newton (SASSN), all
of which are based on stochastic approximations of the Hessian. The key driver behind the
scalability of these methods is that subsampling and randomized low-rank approximation
provide cheap, reliable estimates of the curvature.

For general convex, finite-sum objectives, the SSN and NySSN preconditioners re-
quire access to a stochastic Hessian, while the SASSN preconditioner requires access to
the square root of the stochastic Hessian. Fortunately, the stochastic Hessian in GLMs,
1
bH
ATBΦ′′(ABw)AB, has a structure that allows us to compute all of these preconditioners

using its square root, 1√
bH

[Φ′′(ABw)]1/2AB.

We present mathematical and algorithmic formulations of the four preconditioning tech-
niques (specialized to GLMs) in Section 2.1. We then compare the computational costs
associated with each preconditioner and provide preconditioner recommendations for vari-
ous problem regimes in Section 2.2. We analyze the approximation quality of the proposed
preconditioners in Section 2.3. Finally, we describe how the proposed preconditioners can
be extended beyond GLMs in Section 2.4. Any proofs not provided in this section can found
in the arxiv report.

2.1 Mathematical and Algorithmic Formulation of Preconditioners

This section provides mathematical formulations for each proposed preconditioner in the
GLM setting, and object-oriented pseudocode for SSN. Each preconditioner has update

and direction methods. The update method constructs the preconditioner and estimates

7

https://arxiv.org/abs/2309.02014v2

Frangella, Rathore, Zhao, and Udell

the preconditioned smoothness constant (i.e., it combines update and get learning rate

methods in Meta-algorithm), while the direction method applies the preconditioner to a
vector (similar to direction in Meta-algorithm). These preconditioners play a critical role
in the optimization algorithms presented in Section 3.

2.1.1 Subsampled Newton (SSN)

The first preconditioning method we present is SSN (Erdogdu and Montanari, 2015; Roosta-
Khorasani and Mahoney, 2019). SSN forms a preconditioner using the Hessian of a random
subsample of the terms in the finite-sum objective (FSM). Given a point w ∈ Rp, SSN
constructs the preconditioner

P =
1

bH

∑
i∈B
∇2fi(w) + ρI, (1)

where ρ ≥ ν and B consists of bH elements sampled uniformly at random from [n]. For
GLMs, fi = φi(a

T
i w), so Eq. (1) simplifies to

P =
1

bH

∑
i∈B

φ′′i (a
T
i w)aia

T
i + ρI =

1

bH
ATBΦ′′(ABw)AB + ρI. (2)

If bH ≥ p, we may form and factor P (via Cholesky) in O(bHp
2 + p3) time and compute

P−1v for v ∈ Rp in O(p2) time via triangular solves. When bH ≤ p (as is typical), we
compute the Cholesky factorization LLT = 1

bH
Φ′′(ABw)1/2ABA

T
BΦ′′(ABw)1/2 + ρI and

P−1v =

(
v − 1

bH
ATBΦ′′(ABw)1/2L−TL−1Φ′′(ABw)1/2ABv

)
/ρ

via the Woodbury formula (Higham, 2002). Lemma 1 summarizes the operational costs.

Lemma 1 Let v ∈ Rp and let P be as in (2). If bH ≤ p, then the Cholesky factorization
can be constructed in O(b2Hp+ b3H) time and P−1v can be computed in O(bHp) time. Fur-
thermore, if the data matrix A is row-sparse with sparsity parameter s, the computational
cost of P−1v can be reduced to O(bHs) time.

The Pssn class (Table 3 and Algorithms 1 and 2) provides an implementation of the SSN
preconditioner. The attributes of the Pssn class are given in Table 3 and pseudocode for the
update and direction methods is provided in Algorithms 1 and 2, respectively.

Attribute Description
ρ Regularization for preconditioner
b Size of Hessian batch used for preconditioner construction
X Square root of subsampled Hessian (excluding l2-regularization)
L Lower-triangular Cholesky factor for storing preconditioner
λP Estimate of preconditioned smoothness constant

Table 3: Attributes of the Pssn class.

The update method takes a GLM M, Hessian batches B1,B2, and vector w ∈ Rp as
input. In the first phase, this method constructs the SSN preconditioner P at w by com-
puting the square root of the subsampled Hessian, followed by an appropriate Cholesky

8

PROMISE: Preconditioned Stochastic Optimization Methods

Algorithm 1 Update Pssn preconditioner and preconditioned smoothness constant

Require: Pssn object with attributes ρ, b,X,L, λP
function Pssn.update(M,B1,B2, w)

ρ← Pssn.ρ . Get attributes

Phase 1: Update preconditioner
Asub ←M.get data(B1)
dsub ←M.get hessian diagonal(B1, w)
X ← diag(

√
dsub)Asub . Square root of subsampled Hessian

if |B1| ≥ p then
L← cholesky(XTX + ρI)

else
L← cholesky(XXT + ρI)

end if

Phase 2: Update estimated preconditioned smoothness constant
Asub ←M.get data(B2)
dsub ←M.get hessian diagonal(B2, w)
Z ← ATsubdiag(dsub)Asub +M.get reg()I . Subsampled Hessian

λP ← eig(Z(XTX + ρI)−1, k = 1) . Compute largest eigenvalue

Pssn.b← |B1|,Pssn.X ← X,Pssn.L← L,Pssn.λP ← λP . Set attributes

Algorithm 2 Compute Pssn direction

Require: Pssn object with attributes ρ, b,X,L, λP
function Pssn.direction(g)

b← Pssn.b, L← Pssn.L,X ← Pssn.X . Get attributes
if b ≥ p then

v ← L−1g . Triangular solve
v ← L−T v . Triangular solve
return v

else
v ← Xg
v ← L−1v . Triangular solve
v ← L−T v . Triangular solve
v ← XT v
return (g − v)/ρ

end if

factorization. The matrix used in the Cholesky factorization changes depending on the
Hessian batchsize in order to obtain the computational costs in Lemma 1. In the sec-
ond phase, this method estimates the preconditioned smoothness constant by computing
λ1(P−1/2∇̂2F (w)P−1/2) = λ1(∇̂2F (w)P−1). We never instantiate the subsampled Hessian
to perform this calculation. Instead, we define matrix-vector products with the subsampled
Hessian and inverse preconditioner and compute the largest eigenvalue via powering (our
implementation uses scipy.sparse.linalg.eigs).

The direction method takes a vector g ∈ Rp (typically a stochastic gradient) as input.
This method then computes P−1g using the Cholesky factor L and the square root of the
subsampled Hessian X (as necessary). The reason for having two cases is to achieve the
computational complexity in Lemma 1 by taking advantage of the Woodbury formula.

2.1.2 Nyström Subsampled Newton (NySSN)

NySSN combines the SSN preconditioner with randomized low-rank approximation, specif-
ically the randomized Nyström approximation (Williams and Seeger, 2000; Gittens and Ma-

9

Frangella, Rathore, Zhao, and Udell

honey, 2016; Tropp et al., 2017). This approach was previously developed by in Frangella
et al. (2023a) to precondition stochastic gradient descent. Given H ∈ S+

p (R), the random-
ized Nyström approximation with respect to a random test matrix Ω ∈ Rp×r is given by

Ĥ = (HΩ)
(
ΩTHΩ

)†
(HΩ)T . (3)

Common choices for Ω include standard normal random matrices, subsampled randomized
Hadamard transforms, and sparse sign embeddings (Tropp et al., 2017). The benefit of the
latter two test matrices is that computation of the sketch HΩ becomes cheaper.

For a minibatch B (|B| = bH) and query point w ∈ Rp, NySSN takesH = 1
bH
ATBΦ′′(ABw)AB

in (3) and produces a randomized low-rank approximation Ĥ of (the un-regularized portion
of) the subsampled Hessian.

A practical algorithm for constructing the randomized low-rank approximation outputs
Ĥ in the factored form U Λ̂UT , where U ∈ Rp×r is an orthogonal matrix containing approx-
imate eigenvectors and Λ̂ ∈ Rr×r is a diagonal matrix containing approximate eigenvalues.
We emphasize that this algorithm never forms 1

bH
ATBΦ′′(ABw)AB explicitly. The resulting

preconditioner is

P = Ĥ + ρI = U Λ̂UT + ρI. (4)

The dominant costs in the (practical) construction of P are computing the sketch HΩ
and a SVD of a p × r matrix. Furthermore, we can compute P−1v via the Woodbury
formula, which yields

P−1v = U
(

Λ̂ + ρI
)−1

UT v +
1

ρ
(v − UUT v).

We summarize the costs of these operations in Lemma 2.

Lemma 2 Let v ∈ Rp and let P be as in (4). Then P can be constructed in O(bHrp+ r2p)
time and P−1v can be computed in O(rp) time. For GLMs, bH ≥ r, so the construction
cost is reduced to O(bHrp).

The main advantage of NySSN over SSN is in the setting where the data matrix A is
dense and has rapid spectral decay. When A has rapid spectral decay, we can use a relatively
small value of r (r ≤ 10) to construct the NySSN preconditioner. With this small value of
r, the O(rp) cost of applying the NySSN preconditioner to a vector is usually cheaper than
the O(bHp) cost of applying the SSN preconditioner. On the other hand, when A is row-
sparse with sparsity parameter s, the cost of applying the SSN preconditioner to a vector
is reduced to O(bHs), which negates the speedups provided by the NySSN preconditioner.

Our code repository, linked in Section 6, implements the NySSN preconditioner.

2.1.3 Sketch-and-Solve Subsampled Newton (SASSN)

The next preconditioning technique we discuss is SASSN. Similar to NySSN, the funda-
mental goal of SASSN is to reduce the cost of the SSN preconditioner by replacing it with
a randomized low-rank approximation. However, instead of using the randomized Nyström
approximation, SASSN computes an approximation in the style of the Newton Sketch (Pi-
lanci and Wainwright, 2017; Lacotte et al., 2021). To start, observe that the subsampled

10

PROMISE: Preconditioned Stochastic Optimization Methods

Hessian ∇̂2F (w) has the form

∇̂2f(w) + νI = RTR+ νI,

where R = Φ′′(ABw)1/2AB. Hence, given a test matrix Ω ∈ Rr×bH , we construct the
preconditioner

P = RTΩTΩR+ ρI. (5)

The dominant costs in the construction of P are computing the sketch ΩR and a
Cholesky factorization of ΩR(ΩR)T + ρI. Taking Ω to be a column-sparse or row-sparse
(LESS-uniform) embedding (Derezinski et al., 2021), ΩR can be computed in O(bHp) time.
A preconditioner generated by a column-sparse embedding is referred to as SASSN-C, while
a preconditioner generated by a row-sparse embedding is referred to as SASSN-R. SASSN-R
tends to be better than SASSN-C because it is cheaper to apply to vectors when the data
matrix A is row-sparse. Similar to the NySSN preconditioner, we can compute P−1v via
the Woodbury Formula, which yields

P−1v =
1

ρ

(
v − (ΩR)T

(
ΩR(ΩR)T + ρI

)−1
(ΩR)v

)
.

We summarize the costs of these operations in Lemma 3.

Lemma 3 Let v ∈ Rp and let P be as in (5). Then P can be constructed in O(bHp+r2p+r3)
time and P−1 may be applied to vectors in O(rp) time. Furthermore, if the data matrix A
is row-sparse with sparsity parameter s, the computational cost of P−1v for SASSN-R can
be reduced to O(rs) time.

Similar to NySSN, the costs of constructing and applying the SASSN preconditioner
are lower than the costs incurred by SSN. A potential advantage of SASSN over NySSN
is that SASSN requires O(bHp + r2p + r3) time to construct the preconditioner, whereas
NySSN requires O(bHrp). Furthermore, the SASSN-R preconditioner takes O(rs) time
to apply when the data matrix A is row-sparse, whereas NySSN takes O(rp).

However, our experiments (Section 6) suggest that the SASSN preconditioner tends to
be of lower quality than the NySSN preconditioner (i.e., it does not reduce the condition
number as much), and the theoretical complexity advantage of SASSN is not always re-
alized as the computations in NySSN benefit from (embarassing) parallelism. Concrete
comparisons and recommendations between SSN, NySSN, SASSN-C, and SASSN-R are
given in Tables 4 and 5 below. An implementation of the SASSN-C/SASSN-R precondi-
tioners can be found in our code repository, which is linked in Section 6.

2.2 Preconditioner Defaults and Comparisons

All of the proposed preconditioners require a regularization ρ, and the NySSN, SASSN-R,
and SASSN-C preconditioners require a rank r for forming the low-rank approximation.
We recommend setting ρ = 10−3 and r = 10. We also summarize the costs to construct and
apply each preconditioner in Table 4. These costs assume the Hessian batchsize bH = b√nc
in the PROMISE algorithms; we provide motivation for this selection in Section 2.3. We
also provide guidelines for which preconditioner to use as the problem size varies in Table 5;
we do not recommend SASSN-C in practice.

11

Frangella, Rathore, Zhao, and Udell

Preconditioner Construction cost
Cost to
apply

Cost to apply
(sparse)

SSN O(np+ n3/2) O(
√
np) O(

√
ns)

NySSN O(
√
nrp) O(rp) O(rp)

SASSN-C O(
√
np) O(rp) O(rp)

SASSN-R O(
√
np) O(rp) O(rs)

Table 4: Summary of costs of proposed preconditioners. s denotes the row sparsity of the
data matrix A.

Regime SSN NySSN SASSN-R
n� p (dense) 2 1 3
n� p (sparse) 1 2 3
n ∼ p (dense) 3 1 2
n ∼ p (sparse) 1 3 2
n� p (sparse) 1 3 2

Table 5: Guidelines for selecting a preconditioner. The best preconditioner for each regime
is assigned a rank of 1. NySSN is effective for dense problems, but SSN generally works
better for sparse problems because it preserves the sparsity of the data.

2.3 Quality of the Preconditioners

We now analyze the quality of the SSN, NySSN, and SASSN preconditioners that were
introduced in Section 2.1. Our goal is to show that these preconditioners satisfy the following
ζ-spectral approximation property with high probability.

Definition 4 (ζ-spectral approximation) Let w ∈ Rp, ζ ∈ (0, 1). Then we say P is a
ζ-spectral approximation of ∇2F (w) if the following relation holds:

(1− ζ)P � ∇2F (w) � (1 + ζ)P. (6)

If P satisfies Definition 4, then

κ(P−1/2∇2F (w)P−1/2) ≤ 1 + ζ

1− ζ .

Hence preconditioning ∇2F (w) by P results in a good (small) condition number for moder-
ate ζ (e.g., ζ ≤ .9). Moreover, as P−1/2∇2F (w)P−1/2 is nearly the identity, P−1 is close to
∇2F (w)−1, which ensures the approximate Newton direction computed with P−1 is close
to the true Newton direction. As a consequence of this last observation, essentially all
works on approximate Newton methods require the Hessian approximation to satisfy the
conditions of Definition 4 (Pilanci and Wainwright, 2017; Roosta-Khorasani and Mahoney,
2019; Marteau-Ferey et al., 2019a; Ye et al., 2021).

2.3.1 Preliminaries on sampling

To establish the ζ-approximation property for the preconditioners, we require some funda-
mental concepts from matrix approximation via random sampling, which we now review.
We start with the definition of ridge leverage scores (Cohen et al., 2017; Li et al., 2020).

12

PROMISE: Preconditioned Stochastic Optimization Methods

Definition 5 (Ridge leverage scores) Let ν ≥ 0 and i ∈ [n]. Then the ith ridge leverage
score of a matrix A ∈ Rn×p is given by

lνi (A) :=
1

n
aTi

(
1

n
ATA+ νI

)†
ai.

where aTi is the ith row of A. The maximum ridge leverage score is lν∞(A) := max1≤i≤n l
ν
i (A).

The ith ridge leverage score measures the importance of row i in the matrix A. These scores
play a crucial role in determining how well the matrix 1

nA
TA+νI may be approximated via

uniform sampling. To understand this relation, we recall the notions of effective dimension
and ridge leverage incoherence.

Definition 6 (Effective dimension and ridge leverage coherence) Given A ∈ Rn×p
and ν ≥ 0, the effective dimension of A is given by

dνeff(A) :=
n∑
i=1

lνi (A) =

p∑
j=1

1
nσ

2
j (A)

1
nσ

2
j (A) + ν

=

p∑
j=1

1
nλj(A

TA)
1
nλj(A

TA) + ν
. (7)

If H ∈ S+
p (R) with H = 1

nA
TA, then we overload notation and define dνeff(H) := dνeff(A).

The ridge leverage coherence is given by

χν(A) :=
n

dνeff(A)
lν∞(A). (8)

Similarly, if H ∈ S+
p (R) with H = 1

nA
TA, we overload notation and define χν(H) := χν(A).

Effective dimension: discussion. The effective dimension dνeff(A) has an intuitive inter-
pretation: it provides a smoothed count of the eigenvalues greater than or equal to the
regularization ν. In the regularized setting, only directions associated with eigenvalues
larger than ν matter, so dνeff(A) rather than p is the relevant measure of degrees of freedom
for the problem. Consequently, the effective dimension often appears in fields that deal
with l2-regularized problems, including non-parametric learning, RandNLA, and statistical
learning (Caponnetto and De Vito, 2007; Hsu et al., 2014; Marteau-Ferey et al., 2019b). As
many data matrices have fast spectral decay (Derezinski et al., 2020), or obtain it through
some algorithmic transformation, such as the celebrated random features method of Rahimi
and Recht (2007), dνeff(A) is often much smaller than min{n, p}.

When the loss function f belongs to the GLM family and A has polynomial spec-
tral decay, the following lemma demonstrates that the effective dimension of the Hessian,
1
nA

TΦ′′(Aw)A, is much smaller than the ambient dimension p. Various results of this form
are well-known in the literature, see for instance Caponnetto and De Vito (2007); Bach
(2013); Marteau-Ferey et al. (2019a).

Lemma 7 (Effective dimension under polynomial decay) Let f be a GLM loss sat-
isfying supw∈R φ

′′(w) ≤ B, with data matrix A ∈ Rn×p and regularization ν. Suppose the
empirical covariance matrix 1

nA
TA has polynomial (or faster) spectral decay:

1

n
λj(A

TA) ≤ Cj−2β (1 ≤ j ≤ p),

13

Frangella, Rathore, Zhao, and Udell

for some C > 0 and β ∈ Z+ satisfying β ≥ 1. Then for any w ∈ Rp,

dνeff

(
1

n
ATΦ′′(Aw)A

)
≤ π/(2β)

sin(π/(2β))

(
BC

ν

)1/2β

.

Hence, if ν = O(1
n) we have

dνeff

(
1

n
ATΦ′′(Aw)A

)
= O

(√
n
)
.

We provide a proof of Lemma 7 in Appendix B.1. Given mild hypotheses, Lemma 7 shows
that the effective dimension of the Hessian for GLMs is O(

√
n). Thus, we generally expect

the effective dimension of the Hessian, dνeff

(
1
nA

TΦ′′(Aw)A
)
, to be significantly smaller than

the ambient dimension of the problem, p. The “smallness” of the effective dimension has
been exploited in numerous works to develop fast algorithms for solving a variety of machine
learning problems (Bach, 2013; Alaoui and Mahoney, 2015; Rudi et al., 2017; Marteau-Ferey
et al., 2019a; Lacotte et al., 2021; Zhao et al., 2022; Frangella et al., 2023b). Similar to
these prior works, we will also exploit the small effective dimension of the Hessian to develop
effective preconditioners that can be constructed at negligible cost.

We now establish that the various preconditioning methods introduced in Section 2.1
provide a ζ-spectral approximation with high probability.

2.3.2 Subsampled Newton

SSN yields a ζ-spectral approximation for GLMs with high probability, formalized below.

Proposition 8 Let w ∈ Rp, ζ0 ∈ (0, 1), and suppose f is a GLM. Construct the subsampled

Hessian with batchsize bH = Ω

χρ(∇2f(w))dρeff(∇2f(w)) log

(
d
ρ
eff

(∇2f(w))

δ

)
ζ2
0

. Then for ζ = 1 −

(1− ζ0)ν/ρ, with probability at least 1− δ,

(1− ζ)(∇̂2f(w) + ρI) � ∇2f(w) + νI � (1 + ζ)(∇̂2f(w) + ρI). (9)

Proposition 8 is well-known in the literature (Li et al., 2020). It shows that when χρ(∇2f(w)) =
O(1), a batchsize of bH = Õ(dρeff(∇2f(w))) is sufficient to ensure that the subsampled Hes-
sian is a ζ-spectral approximation. Furthermore, when the data matrix exhibits polynomial
spectral decay, applying Lemma 7 reduces this requirement to bH = Õ(

√
n). This lat-

ter reduction motivates our default hyperparameter setting bH = b√nc for the PROMISE
algorithms in Section 3.

Proposition 8 should be contrasted with the Hessian batchsize requirements of works
where the fi’s are taken to be arbitrary convex functions. To facilitate this comparison, we
first state the following simple lemma.

Lemma 9 (dνeff vs. κmax for GLMs) Let f be a GLM, ν > 0, and κmax = Lmax/ν. Then

χν(∇2f(w))dνeff(∇2f(w)) ≤ κmax.

14

PROMISE: Preconditioned Stochastic Optimization Methods

As stated above, some works (Roosta-Khorasani and Mahoney, 2019; Ye et al., 2021;
Dereziński, 2022) assume the fi’s possess no structure aside from convexity, which leads
to the batchsize requirement bH = O(κmax log(p/δ)/ζ2

0). Lemma 9 shows that κmax ≥
χν(∇2f(w))dνeff(∇2f(w)), so the needed batchsize is always at least as large as the one
prescribed by Proposition 8. Moreover, when the data matrix A is ill-conditioned, the
gap in required batchsizes can be significant. As a concrete example, consider the setting
of Lemma 7 with ridge leverage incoherent A: χν(∇2f(w))dνeff(∇2f(w)) = O(

√
n), while

κmax = O(n). Hence, Proposition 8 predicts a small Hessian batchsize, while the require-
ment based on κmax states the full Hessian must be used. Thus, the Hessian batchsize
required for convex GLMs is considerably smaller than that for a sum of arbitrary convex
functions.

2.3.3 Nyström Subsampled Newton

NySSN yields a ζ-spectral approximation for GLMs with high probability, formalized below.

Proposition 10 Let w ∈ Rp, ζ0 ∈ (0, 1), and suppose f is a GLM. Construct the sub-

sampled Hessian with batchsize bH = Ω

χν(∇2f(w))dνeff(∇2f(w)) log

(
dνeff(∇2f(w))

δ

)
ζ2
0

. Further,

assume Ω is a Gaussian random matrix with r = Ω

(
dρeff(∇̂2f(w))+log(1

δ
)

ζ2
0

)
columns. Then

for ζ = 1− (1− ζ0)ν/ρ, with probability at least 1− δ,

(1− ζ)(Ĥ + ρI) � ∇2f(w) + νI � (1 + ζ)(Ĥ + ρI). (10)

The regularization parameter ρ controls how much we may truncate the rank parameter r.
As ρ increases, dρeff(∇̂2f(w)) decreases, so we can use a smaller value of r to construct the
preconditioner; conversely, as ρ approaches ν, we must use a larger value of r.

We observe a trade-off: a smaller rank parameter leads to faster computation and less
storage, but potentially a less effective preconditioner and slower convergence. In practice,
this tradeoff is not as dramatic as the theory might suggest, and we find a rank of r = 10
provides excellent performance in a wide range of applications (Section 6).

2.3.4 Sketch-and-solve Subsampled Newton

An analogous result for the SASSN preconditioners can be found in the arxiv report.

2.4 Beyond GLMs?

At this juncture, it is natural to ask whether the preconditioners we present can be ex-
tended to settings beyond GLMs. From a theoretical perspective, the answer is yes: the
approximation bounds in this section hold for general convex finite-sum objectives, with
slight adjustments. For instance, the batchsize for SSN depends upon a more complicated
version* of the Hessian dissimilarity parameter presented in Section 5.4.1. From a practical

*. For details, see Frangella et al. (2023a).

15

https://arxiv.org/abs/2309.02014v2

Frangella, Rathore, Zhao, and Udell

perspective, both SSN and NySSN are compatible with general convex finite-sum objec-
tives; SASSN is not compatible with general convex finite-sum objectives, since it requires
access to the square root of the stochastic Hessian.

3. Algorithms

In this section, we introduce the PROMISE algorithms SketchySVRG (Section 3.2), SketchySAGA
(Section 3.3), and SketchyKatyusha (Section 3.4). A summary of these algorithms in pro-
vided in Table 6. Each algorithm is compatible with all four preconditioning methods
(SSN, NySSN, SASSN-C, SASSN-R) described in Section 2.1. Each algorithm comes
with default hyperparameters, which we use in the empirical evaluation in Section 6. In
particular, we describe how to automatically compute the learning rate for each algorithm
using the estimated preconditioned smoothness constant. The learning rate is hard to tune
in stochastic optimization, and it is remarkable that this automated selection works across
a wide range of problems (Section 6). Finally, we recommend the best algorithm to use for
two important applications, ridge and l2-regularized logistic regression (Section 3.5).

Algorithm Base Algorithm
Variance
reduction

Acceleration
Stochastic
gradients

only?
SketchySVRG
(Algorithm 3)

SVRG
(Johnson and Zhang, 2013)

3 7 7

SketchySAGA
(Algorithm 4)

b-nice SAGA
(Gazagnadou et al., 2019)

3 7 3

SketchyKatyusha
(Algorithm 5)

Loopless Katyusha
(Kovalev et al., 2020)

3 3 7

Table 6: Summary of algorithms in PROMISE. Ticks are pros while crosses are cons.
SVRG and Katyusha require some full gradients rather than stochastic gradients only.

3.1 Notation in Algorithms

Throughout this section, M denotes a GLM with the oracles defined in Table 2. We use
P to denote a preconditioner object, which is a member of one of the four preconditioner
classes (Pssn,Pnyssn,Psassn-c,Psassn-r). U ⊆ N denotes a (possibly infinite) set of times that
indicate when to update the preconditioner. We also use the index j to track the time when
the preconditioner is constructed: every time the preconditioner is updated, the index j is
updated to the most recently used element of U . This index does not have to be tracked in
the implementations of these algorithms, but it plays a key role in the theoretical analysis
of the proposed algorithms (Section 5).

3.2 SketchySVRG

We formally introduce SketchySVRG in Algorithm 3.

Explanation of algorithm. SketchySVRG is a preconditioned version of SVRG (Johnson
and Zhang, 2013). Similar to SVRG, SketchySVRG consists of an “outer” and “inner” loop
indexed by s and k, respectively.

16

PROMISE: Preconditioned Stochastic Optimization Methods

Algorithm 3 SketchySVRG

Require: initialization ŵ0, gradient and Hessian batchsizes bg and bH , preconditioner object P , model M, precon-
ditioner update times U , learning rate multiplier α, snapshot update frequency m

Initialize: snapshot ŵ ← ŵ0

for s = 0, 1, . . . do . Outer loop
ḡ ←M.get full grad(ŵ) . Full gradient at snapshot
w0 ← ŵ
for k = 0, 1, . . . ,m− 1 do . Inner loop

if ms+ k ∈ U then . Update preconditioner & learning rate
Sample independent batches S1

k ,S
2
k . |S1

k | = |S
2
k | = bH

P.update(M,S1
k ,S

2
k , wk) . Compute preconditioner Pj at wk & update P.λP

η ← α/P.λP . Update learning rate
end if
Sample batch Bk . |Bk| = bg
∇̂F (wk)←M.get stoch grad(Bk, wk)

∇̂F (ŵ)←M.get stoch grad(Bk, ŵ)

gk ← ∇̂F (wk)− ∇̂F (ŵ) + ḡ . Unbiased estimate of ∇F (wk)
vk ← P.direction(gk) . Get approx. Newton step P−1

j gk
wk+1 ← wk − ηvk . Update parameters

end for
Option I: ŵ ← wm . Update snapshot to final inner iterate
Option II: ŵ ← wt for t ∼ Unif({0, 1, . . . ,m− 1}) . Update snapshot randomly

end for

The algorithm starts in the outer loop by computing a full gradient ḡ at the snapshot ŵ,
which is critical for performing variance reduction. The algorithm then sets the first iterate
in the inner loop, w0, equal to ŵ.

The inner loop of the algorithm updates the parameters with a preconditioned, variance-
reduced stochastic gradient, vk. SketchySVRG uses the preconditioner update times U to
determine when the preconditioner and learning rate should be updated.

After m iterations of the inner loop, the algorithm returns to the outer loop and updates
the snapshot ŵ by either using the final inner iterate wm (Option I) or sampling the previous
m iterates uniformly randomly (Option II). In practice, we use Option I, but the theoretical
analysis is conducted using Option II (Section 5.5). This discrepancy also appears in the
original SVRG analysis (Johnson and Zhang, 2013) and is therefore not a drawback of the
analysis in this paper.

Default hyperparameters. SketchySVRG’s key hyperparameters include gradient and
Hessian batch sizes bg and bH , preconditioner update times U , learning rate multiplier α,
and snapshot update frequency m. For gradient batch size bg, we suggest 256 for medium
and 4096 for large data sets, while bH should be b√nc, as motivated in Section 2.3. We
recommend setting U = {0, u, 2u, . . .}, where u = ∞ for problems with a constant Hes-
sian (i.e., we only update the preconditioner once in total), like least squares/ridge re-
gression, and u = dn/bge (i.e., update the preconditioner after each pass through the
data set) for problems with a non-constant Hessian, such as logistic regression. We rec-
ommend α ∈ [1/3, 1/2]; our practical implementation uses the SAGA-inspired update
rule η ← max{1/(2(νn + P.λP)), 1/(3P.λP)}. We recommend snapshot update frequency
m ∈ [n/bg, 2n/bg] to compute a full gradient every one or two passes through the data set;
our experiments set m = dn/bge.

17

Frangella, Rathore, Zhao, and Udell

3.3 SketchySAGA

We formally introduce SketchySAGA in Algorithm 4.

Algorithm 4 SketchySAGA

Require: initialization w0, gradient and Hessian batchsizes bg and bH , preconditioner object P , model M, precon-
ditioner update times U , learning rate multiplier α

Initialize: gradient table ψ0 ← 0 ∈ Rp×n, table avg. x0 ← 1
n
ψ01n ∈ Rp

for k = 0, 1, . . . do
if k ∈ U then . Update preconditioner & learning rate

Sample independent batches S1
k ,S

2
k . |S1

k | = |S
2
k | = bH

P.update(M,S1
k ,S

2
k , wk) . Compute preconditioner Pj at wk & update P.λP

η ← α/P.λP . Update learning rate
end if
Sample batch Bk . |Bk| = bg
aux←

∑
i∈Bk (M.get stoch grad(i, wk)− ψik)

gk ← xk + 1
|Bk|

aux . Unbiased estimate of ∇F (wk)

xk+1 ← xk + 1
n

aux . Update table average

ψik+1 ←
{
ψik, i /∈ Bk
M.get stoch grad(i, wk), i ∈ Bk

. Update table columns for all i ∈ [n]

vk ← P.direction(gk) . Get approx. Newton step P−1
j gk

wk+1 ← wk − ηvk . Update parameters
end for

Explanation of algorithm. SketchySAGA, a minibatch variant of SAGA with precondi-
tioning, updates the preconditioner and learning rate at specified times in U . Each iteration
involves computing stochastic gradients for each index in batch Bk, which then update an
auxiliary vector

aux :=
∑
i∈Bk

(
∇fi(wk)− ψik

)
.

This auxiliary vector aids in updating the variance-reduced stochastic gradient gk and the
table average xk+1. The gradient table ψ is updated accordingly; if an index i is in the batch,
its row in ψ gets updated with the stochastic gradient (essential for variance reduction),
otherwise it remains unchanged.

SketchySAGA then calculates the preconditioned variance-reduced stochastic gradient
vk for parameter updates, eliminating the need for full gradient computations and making
it efficient for large-scale GLMs. The memory usage is dominated by the gradient table ψ,
which typically requires O(np) storage. However, this can be reduced to O(n) for GLMs
(Defazio et al., 2014). Implementing this storage optimization involves straightforward
modifications to the updates of aux and ψ, and separating the regularization term νw from
the stochastic gradient calculation. This improved algorithm is used in our experiments.

Default hyperparameters. The main hyperparameters in SketchySAGA are the gradi-
ent and Hessian batchsizes bg and bH , preconditioner update times U , and learning rate
multiplier α. We recommend setting bg, bH , and U similar to SketchySVRG. Furthermore,
we recommend setting α ∈ [1/3, 1/2], although our practical implementation again uses
η ← max{1/(2(νn+ P.λP)), 1/(3P.λP)}.

3.4 SketchyKatyusha

We formally introduce SketchyKatyusha in Algorithm 5.

18

PROMISE: Preconditioned Stochastic Optimization Methods

Algorithm 5 SketchyKatyusha

Require: initialization w0, gradient and Hessian batchsizes bg and bH , preconditioner object P , model M, precon-
ditioner update times U , momentum multiplier α, momentum parameter θ2, snapshot update probability π, strong
convexity parameter µ

Initialize: snapshot y ← w0, z0 ← w0, full gradient ḡ ←M.get full grad(w0)

for k = 0, 1, . . . do
if k ∈ U then . Update preconditioner & learning rate

Sample independent batches S1
k ,S

2
k . |S1

k | = |S
2
k | = bH

P.update(M,S1
k ,S

2
k , wk) . Compute preconditioner Pj at wk & update P.λP

L← P.λP
σ ← µ/L . Estimate of inverse condition number
θ1 ← min(

√
αnσ, 1/2) . Update momentum parameter

η ← θ2
(1+θ2)θ1

. Update learning rate

end if
xk ← θ1zk + θ2y + (1− θ1 − θ2)wk . “Negative momentum” step
Sample batch Bk . |Bk| = bg
∇̂F (xk)←M.get stoch grad(Bk, xk)

∇̂F (y)←M.get stoch grad(Bk, y)

gk ← ∇̂f(xk)− ∇̂f(y) + ḡ . Unbiased estimate of ∇F (xk)
vk ← P.direction(gk) . Get approx. Newton step P−1

j gk

zk+1 ← 1
1+ησ

(ησxk + zk − η
L
vk)

wk+1 ← xk + θ1(zk+1 − zk) . Update parameters
Sample U ∼ Unif([0, 1])
if U ≤ π then . Update snapshot & full gradient with probability π

y ← wk
ḡ ←M.get full grad(y)

end if
end for

Explanation of algorithm. SketchyKatyusha, a preconditioned version of Loopless Katyusha
(Kovalev et al., 2020), updates the preconditioner and learning rate at specified times in
U . The keys to its acceleration are the vectors xk and zk; at each iteration, a “negative
momentum” step computes xk as a convex combination of zk, snapshot y, and current it-
erate wk, which moderates xk’s deviation from y. This approach merges the advantages of
variance reduction and acceleration.

Following this, SketchyKatyusha calculates the preconditioned variance-reduced stochas-
tic gradient vk and then zk+1, and proceeds with a Nesterov momentum-like step to update
the parameters wk+1. It sporadically updates the snapshot y and full gradient ḡ based on a
probability π, enabling a simpler, single-loop implementation instead of Katyusha’s original
double-loop design (Allen-Zhu, 2018).

Default hyperparameters. The main hyperparameters in SketchyKatyusha are the gradi-
ent and Hessian batchsizes bg and bH , preconditioner update times U , momentum multiplier
α, momentum parameter θ2, snapshot update probability π, and strong convexity param-
eter µ. We recommend setting bg, bH , and U similar to SketchySVRG. We recommend
setting α = 2/3, θ2 = 1/2, π = bg/n, and µ = ν, where ν is the regularization parameter in
the GLM.

3.5 Algorithm Recommendations

We present recommended algorithms for ridge regression and l2-regularized logistic regres-
sion in Tables 7 and 8, respectively.

19

Frangella, Rathore, Zhao, and Udell

Data Regime
Recommendation
(full gradients)

Recommendation
(streaming ≤ 10

epochs)

Recommendation
(streaming > 10

epochs)
Preconditioner

Dense SketchyKatyusha SketchySGD SketchySAGA NySSN

Sparse SketchyKatyusha SketchySGD SketchySAGA SSN

Table 7: Recommended algorithms for ridge regression. We recommend SketchySGD for
streaming settings with limited computation (≤ 10 epochs) as SketchySAGA offers no sig-
nificant advantage over short durations.

Data Regime
Recommendation
(full gradients)

Recommendation
(streaming ≤ 10

epochs)

Recommendation
(streaming > 10

epochs)
Preconditioner

Dense
SketchyKatyusha

SketchySAGA
SketchySGD SketchySAGA NySSN

Sparse
SketchyKatyusha

SketchySAGA
SketchySGD SketchySAGA SSN

Table 8: Recommended algorithms for l2-regularized logistic regression. We recom-
mend SketchySGD for streaming settings with limited computation (≤ 10 epochs) as
SketchySAGA offers no significant advantage over short durations.

4. Related Work

We review the literature on stochastic second-order and preconditioned stochastic gradient
methods for solving (FSM), with emphasis on work that assumes strong convexity.

The deficiencies of the stochastic first-order methods presented in Section 1 are well-
known within the optimization and machine learning communities. Indeed, in the past
decade or so, research on stochastic second-order methods and stochastic preconditioning
techniques for finite-sum optimization has exploded. Roughly, these methods can be divided
into three categories: 1) stochastic second-order methods with full gradients, 2) stochastic
second-order methods with stochastic gradients, and 3) preconditioned stochastic gradient
methods. The dividing line between stochastic second-order methods and preconditioned
methods is not always clear, as many preconditioners use second-order information, includ-
ing the PROMISE framework. We review the literature on these three approaches in detail
below.

4.1 Stochastic Second-order Methods with Full Gradients

We begin with stochastic second-order methods that use full gradients and a stochastic
approximation to the Hessian. To the authors’ knowledge, the earliest method of this
form targeting (FSM) is Byrd et al. (2011). Byrd et al. (2011) subsample the Hessian and
use this stochastic approximation in conjunction with an L-BFGS style update. Erdogdu
and Montanari (2015); Roosta-Khorasani and Mahoney (2019) independently investigated
the application of Newton’s method to solve (FSM), where the Hessian is replaced with
an approximation constructed through subsampling. The subsampled Newton method, as
pioneered in these works, serves as the foundation for many subsequent developments in
stochastic second-order methods.

20

PROMISE: Preconditioned Stochastic Optimization Methods

In addition to introducing new algorithms, the works discussed above also provide anal-
ysis that lead to various convergence guarantees, which we now review. The analysis of
Byrd et al. (2011) is quite coarse, only showing their method converges to the global op-
timum, provided the objective is strongly convex and the subsampled Hessian is always
positive definite. Byrd et al. (2011) provides neither a convergence rate nor a theoretical
advantage over first-order methods. The analyses of Erdogdu and Montanari (2015) and
Roosta-Khorasani and Mahoney (2019) yield considerably stronger results. Both works es-
tablish linear convergence in the strongly convex setting. Furthermore, Roosta-Khorasani
and Mahoney (2019) prove local superlinear convergence of Subsampled Newton, albeit
under certain unattractive assumptions such as exponentially growing the Hessian batch-
size bH . Despite these assumptions, the results of Roosta-Khorasani and Mahoney (2019)
point to potential benefits of stochastic second-order methods over first-order methods. We
also note the analyses of these papers have been refined by Ye et al. (2021); Na et al.
(2022). In particular, Na et al. (2022) propose a novel averaging scheme for the subsampled
Hessian, which achieves local superlinear convergence without requiring a growing Hessian
batchsize. Unfortunately, this approach is limited to settings where the dimension p of the
feature vectors is modest, as it requires forming the subsampled Hessian for averaging, at
a computational cost of O(bHp

2) and a storage cost of O(p2).

As an alternative to subsampling, some methods use sketching to construct a stochas-
tic approximation to the full Hessian (Pilanci and Wainwright, 2017; Gower et al., 2019a;
Lacotte et al., 2021). Sketching the Hessian has two main benefits over subsampling: (i) it
generally produces higher-accuracy approximations to the Hessian (Martinsson and Tropp,
2020), and (ii) it is robust to the origins of the data. By robust, we mean that with an ap-
propriate sketching matrix, the sketch size required to ensure the ζ-spectral approximation
property is independent of the ridge leverage coherence. In detail, if the Hessian approxima-
tion is constructed from a sketching matrix belonging to an appropriate random ensemble,
the sketch size required to ensure the ζ-spectral approximation property holds with high
probability, is only Õ(dνeff(A)) (Lacotte et al., 2021). In contrast, the Hessian batchsize
required by subsampling to ensure the ζ-spectral approximation property depends upon
the ridge leverage coherence, which can be quite large when the data contains outliers.

However, sketching has several disadvantages relative to subsampling. A notable disad-
vantage of existing sketching-based methods is that they require a full pass through the data
to approximate the Hessian, while subsampling methods do not. It is desirable to minimize
full passes through the data when solving large-scale problems, which limits the usefulness
of existing sketching-based methods in this setting. Another limitation of sketching-based
methods is that they may only be applicable to problems with certain structure. As a
concrete example, the Newton Sketch (Pilanci and Wainwright, 2017; Lacotte et al., 2021)
requires access to a matrix R such that ∇2f(w) = RTR. While such a matrix is always
available when f is a GLM, this is not the case for more general losses. In contrast, subsam-
pling can always be used to approximate the Hessian of a finite-sum objective, regardless
of the form of the loss function. Last, we note that if f is a GLM, then the Newton Sketch
with a row-sampling sketching matrix is equivalent to Subsampled Newton.

The analysis guarantees of sketching-based (approximate) second-order methods are
similar to their subsampled counterparts. Pilanci and Wainwright (2017); Lacotte et al.
(2021) focus on self-concordant functions for their global convergence analysis and show

21

Frangella, Rathore, Zhao, and Udell

fast linear convergence independent of the condition number. Additionally, Pilanci and
Wainwright (2017) show local superlinear convergence for smooth and strongly convex ob-
jectives with Lipschitz Hessians, but require a sketch size that depends on the condition
number of the problem, which can be larger than n when the problem is ill-conditioned.
However, in the setting where p is moderate in size, this issue may be resolved by using the
Hessian averaging scheme of Na et al. (2022). Gower et al. (2019a) prove convergence for
functions that are relatively smooth and relatively convex, a generalization of smoothness
and strong convexity to the local Hessian norm. They establish linear convergence with a
rate that depends upon the relative condition number and the smallest non-zero eigenvalue
of an expected projection matrix. When the objective is quadratic, the relative condition
number equals 1 and so the convergence rate is independent of the condition number, which
shows an improvement of over first-order methods.

4.2 Stochastic Second-order Methods with Stochastic Gradients

In scenarios where both n and p are large, full gradients become prohibitively expen-
sive. Consequently, a scalable second-order method must use both stochastic gradients and
stochastic Hessian approximations. To address this challenge, many methods that employ
fully stochastic first- and second-order information have been proposed for solving (FSM).
All such proposals employ subsampling-based approximations to the Hessian (Byrd et al.,
2016; Moritz et al., 2016; Gower et al., 2016; Bollapragada et al., 2018; Roosta-Khorasani
and Mahoney, 2019; Bollapragada et al., 2019; Wang and Zhang, 2019; Dereziński, 2022).
These methods can be further categorized based on whether they directly compute the
search direction by applying the inverse subsampled Hessian (Roosta-Khorasani and Ma-
honey, 2019; Bollapragada et al., 2019; Wang and Zhang, 2019; Dereziński, 2022), or by us-
ing the subsampled Hessian to stabilize an L-BFGS style update (Byrd et al., 2016; Moritz
et al., 2016; Gower et al., 2016; Bollapragada et al., 2018). Hence most stochastic second-
order methods that use stochastic gradients have their roots in the full-gradient methods of
Byrd et al. (2011); Erdogdu and Montanari (2015); Roosta-Khorasani and Mahoney (2019).

The convergence guarantees of existing proposals vary greatly, often leaving much to be
desired. Byrd et al. (2016) established an O(1/k)-rate for their stochastic L-BFGS method
assuming strong convexity. However, their analysis relies on two restrictive assumptions:
(i) bounded variance of stochastic gradients and (ii) strict positive definiteness of the sub-
sampled Hessian. The first is known to be false for strongly convex functions, unless the
iterates lie in a compact set, and the second fails in common applications such as GLMs,
where the subsampled Hessian is singular unless bH ≥ p. Roosta-Khorasani and Mahoney
(2019) present a range of convergence results for a variety of settings, including when F
is strongly convex, for which they establish fast local linear convergence. Hence the Sub-
sampled Newton method enjoys the fast local convergence of Newton’s method, albeit at
a linear rather than quadratic rate. Nevertheless, the fast local convergence rate shows an
advantage over stochastic first-order methods, whose convergence depends upon the con-
dition number, regardless of how close the iterates are to the optimum. Unfortunately, in
order to achieve their fast local convergence result, Roosta-Khorasani and Mahoney (2019)
require an exponentially increasing gradient batchsize, and that the subsampled Hessian
batchsize satisfy bH = Õ(κ/ε2), where ε ∈ (0, 1). Hence the theoretical analysis requires

22

PROMISE: Preconditioned Stochastic Optimization Methods

rapidly growing gradient batchsizes and large Hessian batchsizes, which is antithetical to
the purpose of stochastic methods.

The first work to obtain a linear rate of convergence for solving (FSM) without requiring
large/growing gradient and Hessian batchsizes is Moritz et al. (2016). Moritz et al. (2016)
combine the stochastic L-BFGS method of Byrd et al. (2016) with SVRG to reduce the
variance of the stochastic gradients without growing the gradient batchsize. Although
Moritz et al. (2016) proves global linear convergence, fast local linear convergence is not
established, and no theoretical benefit over SVRG is demonstrated. Similar remarks hold
for the stochastic L-BFGS methods of Gower et al. (2016); Bollapragada et al. (2018). More
recently, Dereziński (2022) proposed Stochastic Variance Reduced Newton (SVRN), which
combines Subsampled Newton with SVRG. Dereziński (2022) shows SVRN exhibits fast
local linear convergence. However, the analysis requires the gradient batchsize to satisfy
bg = Õ(κ), which is still very large, and can easily exceed n for ill-conditioned problems.

4.3 Preconditioned Stochastic Gradient Methods

Taking a general viewpoint, the stochastic second-order methods discussed above are all
special cases of preconditioned stochastic gradient methods, where the current precondi-
tioner Pk is based on an approximation to the Hessian matrix. An early notable proposal
is the preconditioned SVRG algorithm by Gonen et al. (2016), which employs a precondi-
tioner obtained through low-rank approximation to the Hessian using the randomized block
Krylov method (Musco and Musco, 2015). Despite exhibiting improvements over SVRG,
this approach requires multiple passes through the data matrix, hindering its suitability for
larger problems. Another method, SVRG2 by Gower et al. (2018), combines SVRG with
a preconditioner based on a randomized Nyström approximation to the Hessian, but also
requires a costly full pass through the data at every outer iteration. Liu et al. (2019) pro-
pose preconditioned variants of SVRG and Katyusha using either the covariance matrix or
a diagonal approximation. However, the former is impractical for large-scale settings, and
the latter, although scalable, may perform poorly. Additionally, their fixed preconditioner
approach may lead to suboptimal performance for non-quadratic problems.

4.4 Relation to PROMISE

The methods most closely related to PROMISE are Subsampled Newton (Roosta-Khorasani
and Mahoney, 2019) and SVRN (Dereziński, 2022). When a PROMISE method uses the
SSN preconditioner, it may be viewed as combining Subsampled Newton with the corre-
sponding stochastic gradient algorithm. Variance reduction stabilizes PROMISE iterations
to allow linear convergence without exponentially growing gradient batchsizes, unlike the
batchsizes required by Subsampled Newton (Roosta-Khorasani and Mahoney, 2019). As
SVRN is simply Subsampled Newton combined with SVRG, it follows that SketchySVRG
equipped with the SSN preconditioner is equivalent to SVRN. However, despite this equiv-
alence, the aims of this work and those of Dereziński (2022) are quite different. Dereziński
(2022) focuses on proving fast local linear convergence under the hypotheses of large gradi-
ent minibatches: their results require bg = Õ(κ). Moreover, Dereziński (2022) only suggests
using SVRN to finish off the optimization, and that in the beginning, Subsampled Newton
with full gradients should be used to get the iterates sufficiently close to the optimum. This

23

Frangella, Rathore, Zhao, and Udell

Algorithm bg
bH/

Sketch size

Lazy
preconditioner

updates

Fast
local-linear
convergence

SketchySVRG
(Algorithm 3)

Õ(τν?) Õ
(
χν(1

n
ATΦ′′(Aw)A)dνeff(

1
n
ATΦ′′(Aw)A)

ζ20

)
3 3

Subsampled
Newton
(Roosta-

Khorasani and
Mahoney,

2019)

Exponentially
increasing

Õ(κmax

ζ20
) 7 3

Newton Sketch
(Lacotte et al.,

2021)
Full Õ

(
dνeff(

1
n
ATΦ′′(Aw)A)
ζ20

)
7 3

SVRN
(Dereziński,

2022)
Õ(κmax) Õ

(
κmax

ζ20

)
7 3

SLBFGS
(Moritz et al.,

2016)
Constant Constant 7 7

Progressive
Batching
L-BFGS

(Bollapragada
et al., 2018)

Increasing Increasing 7 7

Table 9: Comparison of preconditioned stochastic gradient methods for solving (FSM)
when F is a GLM. Here bg and bH are gradient and Hessian batchsizes, κmax = Lmax/ν
is the condition number, χν

(
1
nA

TΦ(Aw)A
)

and dνeff

(
1
nA

TΦ′′(Aw)A
)

are the ridge-leverage
coherence and effective dimension of the Hessian, while τν? denotes the Hessian dissimilarity.
Note χν

(
1
nA

TΦ′′(Aw)A
)
dνeff

(
1
nA

TΦ′′(Aw)A
)

and τν? are never larger than κmax. Hence, of
all the methods, SketchySVRG has the best required gradient and Hessian batchsizes, and
is the only method whose theory accounts for lazy updates.

recommendation contrasts with this work, which shows global linear convergence, allows
for lazy updates, and admits variance reduction schemes beyond SVRG. We also prove fast
local linear convergence of SketchySVRG with moderate gradient batchsizes, a significant
theoretical and practical improvement over the requirements of Dereziński (2022).

To facilitate a straightforward comparison between PROMISE and prior work, we
present Table 9. Table 9 compares the properties of various stochastic second-order meth-
ods for solving (FSM) when F is a GLM. We select SketchySVRG as a representative
for PROMISE. Inspection of Table 9 shows SketchySVRG is the method that enjoys the
best batchsize requirements, while still attaining fast local linear convergence. Indeed,
χν(∇2f(w))dνeff(∇2f(w)) and τν? are always smaller than κmax and n (Lemma 9, Lemma 14).
Moreover, it is the only method in Table 9 whose theory accounts for lazy updates to the
preconditioner, which is essential for good practical performance.

5. Theory

In this section we establish (global and local) linear convergence results for the PROMISE
methods on smooth, strongly convex, finite-sum objectives (including but not restricted to

24

PROMISE: Preconditioned Stochastic Optimization Methods

GLMs). This section begins with our assumptions and then introduces the key concepts
of quadratic regularity and the quadratic regularity ratio, which generalize the notions
of strong convexity, smoothness, and condition number to the Hessian norm. We follow
this by introducing Hessian dissimilarity, which plays a key role in analyzing PROMISE
methods with stochastic gradients. Finally, we state the main convergence theorems and
provide a convergence proof for SketchySVRG which illustrates the techniques in our analy-
sis. Our first theorem establishes global linear convergence, while our second theorem shows
SketchySVRG achieves fast, local convergence independent of the condition number. Any
proofs not provided in this section can be found in the arxiv report. Linear convergence
results for SketchySAGA and SketchyKatyusha are also available in the arxiv report.

5.1 A Subtlety in Notation

We index the preconditioner in two different ways in this section; sometimes we denote the
preconditioner by Pj , and other times we denote the preconditioner by Pk (or in the case

of SketchySVRG, P
(s)
k). In this setting, j indexes the iterate where the preconditioner is

constructed, while k (or
(s)
k) indexes the current iterate in the algorithm.

There is a simple way to map a Pk to the corresponding Pj . If the preconditioner update
indices U = {u1, u2, . . . , um}, then a given Pk for k ∈ {ui, ui + 1, . . . , ui+1 − 1} is the same
as Pj for j = ui. As a concrete example, suppose U = {0, 4, 10}. Then, for k ∈ {0, 1, 2, 3},
Pk is the same as Pj where j = 0; for k ∈ {4, 5, 6, 7, 8, 9}, Pk is the same as Pj where j = 4;
for k ∈ {10, 11, . . .}, Pk is the same as Pj where j = 10.

5.2 Assumptions

Here we provide assumptions that will be needed in the convergence analyses of the PROMISE
methods.

Assumption 1 (Smoothness and convexity) For each i ∈ [n], fi(w) is Li-smooth and
convex.

The above assumption is standard in the analysis of stochastic gradient methods for solving
(FSM). This assumption is also needed to ensure quadratic regularity (a property that we
introduce later in this section), which is key to showing convergence of our algorithms.

Assumption 2 (ζ-spectral approximation) If the preconditioner Pj was constructed at
wj, where j ∈ U , then

(1− ζ)Pj � ∇2f(wj) + νI � (1 + ζ)Pj ,

where ζ ∈ (0, 1).

Assumption 2 states each preconditioner constructed by the algorithm satisfies the ζ-
spectral approximation property, which is reasonable as PROMISE preconditioners satisfy
this property with high probability. Assumption 2 can be viewed as conditioning on the
event that the preconditioners constructed by the algorithm satisfy the ζ-spectral approxi-
mation property. There are two different strategies to make sure this event holds with high
probability across the optimization trajectory:

25

https://arxiv.org/abs/2309.02014v2
https://arxiv.org/abs/2309.02014v2

Frangella, Rathore, Zhao, and Udell

• Fix the number of iterations in advance and apply a union bound.

• Let the failure probability decrease like 1/u2.

In practice, this is not necessary: we construct the preconditioner at each update time with
the same Hessian batchsize and rank parameter.

5.3 Technical Preliminaries

5.3.1 Quadratic Regularity

We start by introducing the upper and lower quadratic regularity constants for a smooth,
convex function F : C 7→ R, where C is a closed convex subset of Rp. These ideas are crucial
for establishing linear convergence under infrequent updating of the preconditioner.

Definition 11 (Quadratic regularity) Let F be a twice differentiable function, and C
a closed convex set. Then we say F is C-upper quadratically regular, if there exists 0 ≤
γu(C) <∞, such that for all w0, w1, w2 ∈ C,

F (w2) ≤ F (w1) + 〈∇F (w1), w2 − w1〉+
γu(C)

2
‖w2 − w1‖2∇2F (w0).

Similarly, we say F is C-lower quadratically regular, if there exists 0 < γ`(C), such that for
all w0, w1, w2 ∈ C

F (w2) ≥ F (w1) + 〈∇F (w1), w2 − w1〉+
γ`(C)

2
‖w2 − w1‖2∇2F (w0).

We say F is C-quadratically regular if 0 < γ` and γu <∞. Further, if F is C-quadratically
regular, we define the quadratic regularity ratio to be

q(C) :=
γu(C)
γ`(C)

.

Moreover, if F (w) = 1
n

∑n
i=1 Fi(w), and each Fi is C-quadratically regular, we denote the

corresponding quadratic regularity constants by γui(C) and γ`i(C), and we define

γmax
u (C) := max

i∈[n]
γui , γmin

` (C) := min
i∈[n]

γ`i .

Quadratic regularity holds whenever F can be upper- and lower-bounded in terms of the
Hessian at any w0 ∈ C. Hence the upper and lower quadratic regularity constants may
be viewed as global generalizations of the smoothness and strong convexity constants to
the Hessian norm ‖ · ‖∇2F (w). Moreover, the quadratic regularity ratio q generalizes the
condition number κ to the Hessian norm. There is an explicit formulation of γu(C) and
γ`(C) in terms of F and C; see Appendix A for more details.

Upper and lower quadratic regularity expand upon stable Hessians from Karimireddy
et al. (2018) and its refinements relative smoothness and relative convexity from Gower
et al. (2019a). The relative smoothness and relative convexity parameters from Gower
et al. (2019a) are defined similarly to the quadratic regularity constants, except they have
w0 = w1. Unfortunately, relative smoothness and relative convexity are insufficient for our

26

PROMISE: Preconditioned Stochastic Optimization Methods

analysis, which incorporates infrequent updating. Under infrequent updating, the precondi-
tioner is constructed at a point w0 6= w1, w2. Relative smoothness only provides bounds in
terms of ∇2F (w1), whereas our analysis requires bounds in terms of ∇2F (w0), i.e., the Hes-
sian at the iterate where the preconditioner is constructed, which is exactly what quadratic
regularity provides.

The additional power given by quadratic regularity could imply it only holds for a
restrictive class of functions. However, the following proposition shows this is not the case,
as quadratic regularity holds under many standard hypotheses, including smoothness and
strong convexity.

Proposition 12 (Sufficient conditions for quadratic regularity) The following con-
ditions all imply F is C-quadratically regular:

1. The function F is L-smooth and µ-strongly convex over C. Then F is C-quadratically
regular with

µ

L
≤ γ`(C) ≤ γu(C) ≤ L

µ
.

2. The function F is µ-strongly convex and has a M -Lipschitz Hessian over C, and C is
compact with diameter D. Then F is C-quadratically regular with(

1 +
MD

µ

)−1

≤ γ`(C) ≤ γu(C) ≤ 1 +
MD

µ
.

Proposition 12 is similar to Theorem 1 in Karimireddy et al. (2018), which establishes
analogous sufficient conditions for ensuring a stable Hessian. Moreover, the bounds attained
on the quadratic regularity constants are identical to those attained in Karimireddy et al.
(2018): this is notable since stable Hessians do not account for lazy updating, but our
analysis does.

5.4 When does the Quadratic Regularity Ratio Improve over the Condition
Number?

We now provide concrete examples of when quadratic regularity improves upon the condition
number.

Convex quadratic functions. Let F (w) = 1
2w

THw+bTw+c, where H ∈ S+
p (R). Since F

is quadratic, it has constant Hessian and it equals its own Taylor expansion. It immediately
follows that γ`(C) = γu(C) = 1. Hence q(C) = 1, which is a significant improvement over
κ(H) when H is ill-conditioned.

Quasi-self concordant functions on a bounded domain. A function f is said to be M -
quasi-self concordant (M -qsc) over C if

D3F (x)[u, u, v] ≤M‖u‖2∇2F (x)‖v‖ ∀x ∈ C and ∀u, v ∈ Rp,

where D3F (x) is the trilinear form representing the third derivative of F (Nesterov, 2018).
Let R > 0 and suppose that D = diam(C) ≤ log(R)/M . Then we prove in Appendix B.2
that

q(C) ≤ R2.

27

Frangella, Rathore, Zhao, and Udell

Any GLM (which includes non-quadratic problems like logistic and Poisson regression)
with a data matrix A whose rows satisfy ‖ai‖ ≤ 1* for all i ∈ [n] is 1-quasi-self-concordant
(Karimireddy et al., 2018; Doikov, 2023). Thus, for R = e, we have q(C) ≤ 8. In contrast,

κ(C) = Θ
(
σ2

max(A)+nν
σ2

min(A)+nν

)
, which is large for ill-conditioned A. The bound for GLMs should

be contrasted with item 2 of Proposition 12, where requires D = O(ν/M) to ensure q(C)
is a small constant. As ν is typically very small, D will be very small, while for GLMs D
can be as large as e and q(C) will be a small constant. This shows that for objectives of
interest, the iterates do not need to be in a tiny set about the optimum (where the objective
is nearly quadratic) for the quadratic regularity ratio to be a constant independent of the
condition number.

5.4.1 Hessian Dissimilarity

The next important idea is the Hessian dissimilarity, which quantifies how large the gradient
batchsize must be to realize the benefits of preconditioning.

Definition 13 Let C be a closed convex subset of Rp. The Hessian dissimilarity is

τν? (C) := sup
w∈C

max
1≤i≤n

λ1

(
(∇2f(w) + νI)−1/2(∇2fi(w) + νI)(∇2f(w) + νI)−1/2

)
.

The Hessian dissimilarity bounds the worst-case value over C, of the norm ratio:

‖v‖2∇2Fi(w)

‖v‖2∇2F (w)

,

between the full Hessian ∇2F (w) and the Hessian of any term ∇2Fi(w) in the sum. Hessian
dissimilarity is analogous to the ridge leverage coherence in Section 2.3: while ridge lever-
age coherence measures the uniformity of the rows of a matrix, the Hessian dissimilarity
measures the uniformity of constituent psd Hessians of a finite-sum convex function F (w).
Furthermore, for GLMs, we will see that the Hessian dissimilarity is controlled by a uniform
version of the ridge leverage coherence.

In our analysis of PROMISE, the Hessian dissimilarity parameter τν? appears in the
bound on the preconditioned smoothness constant (Proposition 16), where it controls the
gradient batchsize needed to ensure a good preconditioned smoothness constant. More
precisely, it is the gradient batchsize required to ensure the preconditioned smoothness
constant is O(1) on average, when the gradients are sampled uniformly at random. We
believe this issue could be alleviated by importance sampling, but leave it as a direction for
future work, as we have found uniform sampling to be sufficient in our experiments.

The Hessian dissimilarity never exceeds n, as shown by the following lemma.

Lemma 14 (Hessian dissimilarity never exceeds n) Define κmax is as in Lemma 9.
The dissimilarity parameter satisfies

1 ≤ τν? (C) ≤ min {n, 1 + κmax} .
*. This is a standard normalization step employed in packages like scikit-learn for stochastic optimizers

like SAGA.

28

PROMISE: Preconditioned Stochastic Optimization Methods

Lemma 14 shows the the Hessian dissimilarity never exceeds n, and may be much smaller if
the fi’s are well-conditioned. Unfortunately, for ill-conditioned problems, we can easily have
τν? = n, in which case there is no improvement in the gradient batchsize needed (in theory)
over a full-gradient algorithm. In practice, large gradient batchsizes are unnecessary in any
of our numerical experiments, which suggests the bound in Lemma 14 is pessimistic. In
particular, this bound does not account for the structure of the objective. For GLMs, we can
derive a more informative bound on the Hessian dissimilarity (see Proposition 15 below),
which reveals a deep connection to ridge leverage scores and ridge leverage coherence.

Proposition 15 (Hessian dissimilarity for GLMs) Consider minimizing a regularized
GLM

F (w) =
1

n

n∑
i=1

φi(a
T
i w) +

ν

2
‖w‖2.

Further suppose that supx∈R φ
′′
i (x) ≤ B, for some B > 0. Then

τν? ≤ 1 + χν?d
ν/B
eff (A),

where χν? = supw∈Rp χ
ν(Φ′′(Aw)1/2A) and Φ′′(Aw) = diag

(
[φ′′1(aT1 w) . . . φ′′n(aTnw)]

)
. In par-

ticular, for least squares and logistic regression,

τν? ≤ 1 + χν?d
ν
eff(A).

Proposition 15 shows that for GLMs, the Hessian dissimilarity is controlled by the global
ridge leverage coherence of the Hessian, χν? . When χν? is close to 1, the batchsize required
to see the full effects of preconditioning is not much larger than the effective dimension
of the data matrix. As dνeff(A) is much smaller than n under mild assumptions (recall
Lemma 7), this implies that a much smaller gradient batchsize suffices to enjoy the effects of
preconditioning. This improved theory agrees with our empirical results. Conversely, when
the data matrix has high coherence, Proposition 15 suggests that large gradient batchsizes
may be necessary to realize the benefits of preconditioning.

5.4.2 The Smoothness of the Preconditioned Stochastic Gradient

Convergence analysis of stochastic gradient methods requires control of the smoothness
constant of the minibatch stochastic gradient. To analyze preconditioned methods, we
must control the smoothness in the preconditioned norm (‖ · ‖P−1) instead of the Euclidean
norm (‖ · ‖2). The following proposition provides such control in expectation, in terms of
the quantity LP , which we call the preconditioned expected smoothness constant. This
proposition extends Proposition 3.8 of Gower et al. (2019b), which handles the case P = I.

Proposition 16 (Preconditioned expected smoothness) Let F be γu upper-quadratically
regular, P be a ζ-spectral approximation, and recall γmax

u := maxi∈[n] γui. Instate Assump-
tion 1 and Assumption 2. Then for any w′, w ∈ Rp,

E‖∇̂F (w)− ∇̂F (w′)‖2P−1 ≤ 2LP
(
F (w)− F (w′)− 〈∇F (w′), w − w′〉

)
,

where

LP :=

(
n(bg − 1)

bg(n− 1)
γu + τν?

n− bg
bg(n− 1)

γmax
u

)
(1 + ζ).

29

Frangella, Rathore, Zhao, and Udell

The proof of Proposition 16 in Appendix B.3.

The preconditioned expected smoothness constant LP in Proposition 16 is the precon-
ditioned analogue of the smoothness constant in the stochastic gradient setting. Indeed, if
n = bg, then LP = (1 + ζ)γu, which is the smoothness constant of F with respect to the
preconditioned norm ‖ · ‖P . When γu = O(1) we have LP = O(1). However, PROMISE
operates in the setting bg � n, in which case Proposition 16 yields a new phenomenon not
present for full gradients bg = n; namely, that even if γmax

u = O(1), it is not guaranteed
that LP = O(1). To ensure LP = O(1), the gradient batchsize must satisfy bg = O(τν?).
Thus, to realize the benefits of preconditioning, bg must be sufficiently large.

The Hessian dissimilarity determines the required size of the bg. The dependence on τν?
reflects the requirement that bg must be large enough to ensure that Hessian of the minibatch
objective (i.e., the first derivative of the minibatch gradient) is a good approximation to
the Hessian of the full objective. If bg is too small, the corresponding minibatch Hessian
may have curvature that is quite different from the full Hessian. In this case, we should not
expect a preconditioner built from a good approximation of the full Hessian to help, as it
contains information unrelated to that of the minibatch stochastic gradient. Moreover, we
have the natural conclusion that the required gradient batchsize is smaller when the ∇2Fi
are more similar, and larger when they are more dissimilar.

Overall, Proposition 16 shows that preconditioning is not a panacea. For problems with
highly non-uniform data, convergence of PROMISE methods may be slow if the gradient
batchsize is smaller than O(τν?). We emphasize this limitation is independent of any partic-
ular preconditioning technique, and would remain true even if PROMISE used the perfect
preconditioner—the Hessian itself. The problem stems from the use of uniform sampling
to construct the stochastic gradient. Evidently, given our extensive empirical results in
Section 6, problem instances requiring large gradient batches seem to be uncommon. This
is unsurprising, as the data in many ML problems is (approximately) i.i.d.; hence we have
strong reasons to believe that data is relatively uniform due to statistical similarity.

To our knowledge, the analysis above is the first to demonstrate the necessity of a
minimum gradient batchsize to see the benefits of preconditioning. Previously, Dereziński
(2022) observed that least squares with highly coherent data matrices requires large gradient
batchsizes, and demonstrated the phenomena empirically. Moreover, Dereziński (2022)
shows that leverage score sampling to select the gradients can reduce the required gradient
batchsize. Our analysis generalizes this observation to arbitrary loss functions, and provides
a simple explanation based on the expected preconditioned smoothness constant.

5.5 SketchySVRG

Theorem 17 shows the global linear convergence of SketchySVRG.

Theorem 17 (SketchySVRG convergence) Instate the hypotheses of Assumption 1-
Assumption 2. Run SketchySVRG with fixed learning rate η = 1

8LP and m = 19
(1−ζ)

LP
γ`

inner iterations. Then

E[F (ŵ(s))]− F (w?) ≤ ε

30

PROMISE: Preconditioned Stochastic Optimization Methods

after s = 10 log(1/ε) outer iterations. Hence, the total number of stochastic gradient queries
required to reach an ε-suboptimal point is bounded by

10

(
n+ 19

1 + ζ

1− ζ

(
n
bg − 1

n− 1
q + τν?

n− bg
n− 1

qmax

))
log

(
1

ε

)
.

The proof of Theorem 17 is given in Section 5.7.

Theorem 17 shows that SketchySVRG converges linearly at rate controlled by the
quadratic regularity ratio q and the maximum quadratic regularity ratio qmax. We have
seen these quantities are well-behaved locally for structured functions (Section 5.4). In par-
ticular, for functions with a Lipschitz continuous Hessian and qsc-functions, the quadratic
regularity ratio is bounded by a constant in any appropriately sized neighborhood of the
optimum. Unfortunately, it is difficult to show that the quadratic regularity ratio is small
over the entire domain. Hence we cannot conclude in general that SketchySVRG is faster
than SVRG. This is unsurprising: existing lower bounds for Newton’s method and its ap-
proximate variants are no better than those for accelerated gradient descent (Arjevani and
Shamir, 2017; Arjevani et al., 2019).

Nevertheless, our experiments in Section 6 show that SketchySVRG converges faster
than SVRG to the optimum. Moreover, we verify that the quadratic regularity constants
and quadratic regularity ratio along the trajectory are much smaller than what worst-case
bounds would predict, which helps explain the improved performance of SketchySVRG over
SVRG.

Corollary 18 (SketchySVRG: Fast ridge regression) Instate the hypotheses of The-
orem 17, and suppose F is quadratic. Run SketchySVRG with gradient batchsize bg ≥ 1

and m = 191+ζ
1−ζ

n
bg

inner iterations. Then

E[F (ŵ(s))]− F (w?) ≤ ε

where ŵ(s) is the output after running s = 10 log
(

1
ε

)
outer iterations. Hence the total

number of stochastic gradient evaluations to reach an ε-suboptimal point is bounded by

10

(
1 + 19

1 + ζ

1− ζ

)
n log

(
1

ε

)
.

5.6 SketchySVRG: Fast Local Convergence

We establish local linear convergence of SketchySVRG independent of the condition number
in the neighborhood

Nε0(w?) =

{
w ∈ Rp : ‖w − w?‖∇2F (w?) ≤

ε0ν
3/2

2M

}
,

where M is the uniform Lipschitz constant for each ∇2Fi. This result is analagous to the
fast local convergence of Newton’s method in the full gradient setting.

31

Frangella, Rathore, Zhao, and Udell

Theorem 19 Let ε0 ∈ (0, 1/6]. Suppose that each Fi has an M -Lipschitz Hessian, and
that w0 ∈ Nε0(w?). Instate Assumption 1 and Assumption 2 with ζ = ε0. Run Algorithm 3
using Option I with U = {0}, m = 6 inner iterations, s = 2 log(1/ε) outer iterations, η = 1,
and bg = Õ

(
τ(Nε0(w?)) log(1

δ)
)
. Then with probability at least 1− δ,

F (ŵ(s))− F (w?) ≤ ε.

Hence the total number of stochastic gradient queries required to reach an ε-suboptimal point
is bounded by

3

[
n+ 6Õ

(
τ(Nε0(w?)) log

(
1

δ

))]
log

(
1

ε

)
.

The proof is given in Appendix B.4.
Theorem 19 shows that once the iterates are close enough to the optimum, SketchySVRG

converges linearly at a rate independent of the condition number, provided the gradient
batchsize satisfies bg = Õ(τν? (Nε0(w?))). Recall τν? (Nε0(w?)) is always smaller than n, and
is significantly smaller when there are no outliers amongst the individual Hessians ∇2Fi.

Theorem 19 significantly improves the required gradient batchsize relative to the prior
state-of-the-art. Previously, the best-known batch size requirment was due to Dereziński
(2022), which proved a result similar to Theorem 19 when P is the SSN preconditioner,
but required bg = Õ(κmax). Although this bound on bg improves upon the results of
Roosta-Khorasani and Mahoney (2019), it can easily exceed n for ill-conditioned prob-
lems. In contrast, Theorem 19 reduces the required gradient batchsize from Õ(κmax) to
Õ(τν? (Nε0(w?))). In the ill-conditioned setting, this reduction can be dramatic. As a con-
crete example, Corollary 21 shows that for GLMs (with some mild hypotheses), the required
gradient batchsize is as small as Õ(

√
n), while prior bounds would indicate a required batch-

size of O(n). Hence, Theorem 19 supports modest gradient batchsizes, which agrees with
practice, as PROMISE methods provide excellent empirical performance without large gra-
dient batch sizes. The key idea for achieving the improvements in Theorem 19 is quadratic
regularity, which enables tighter control over the gradient in the inverse Hessian norm with
high probability.

Remark 20 In the worst case, τν? (Nε0(w?)) = n. Thus, Theorem 19 would require bg =

Õ(n) to achieve fast local convergence. By shrinking the size of Nε0(w?), we can still achieve
fast local convergence with bg � n. The downside of shrinking Nε0(w?) is that SketchySVRG
will take longer to converge.

To better understand the implications of Theorem 19, we present the following corollary,
which addresses the setting where F is a GLM.

Corollary 21 Instate the hypotheses of Theorem 19 and let F be a bounded GLM. Moreover
suppose its data matrix A has polynomially decaying singular values, the regularization
satisfies ν = O(1/n), and the ridge leverage incoherence satisfies χν?(Nε0(w?)) = O(1)*.
Run Algorithm 3 with bg = Õ

(√
n log(1

δ)
)
. Then with probability at least 1− δ, at most

3

[
n+ 6Õ

(√
n log

(
1

δ

))]
log

(
1

ε

)
*. Equivalently, Φ′′(Aw?)

1/2A is ridge leverage incoherent.

32

PROMISE: Preconditioned Stochastic Optimization Methods

stochastic gradient queries are required to find an ε-suboptimal point.

Corollary 21 shows that under mild hypotheses on A and the Hessian, SketchySVRG
achieves fast local convergence with a small gradient batchsize of Õ(

√
n), for common

values of the regularization parameter ν. Prior results such as Roosta-Khorasani and Ma-
honey (2019); Dereziński (2022) would require bg = O(n), which indicates full gradients
must be used. Thus, the tighter analysis provided here yields a real improvement over
prior work, as it shows that large gradient batch sizes are unnecessary to see the benefits
of preconditioning for ill-conditioned GLMs.

5.7 Convergence Proof of SketchySVRG

In this section we prove Theorem 17, which establishes linear convergence of SketchySVRG.
The proof is divided into a sequence of helper lemmas; taken together these lemmas allow
us to easily establish the theorem.

5.7.1 Notation

For clarity in the proof, we explicitly keep track of the outer iteration that a quantity

belongs to. Specifically, we write w
(s)
k for the kth iterate in outer iteration s, and do the

same for other quantities. Under this convention, v
(s)
k denotes the variance-reduced gradient

at the kth iteration of outer iteration s, and P
(s)
k is the current preconditioner at the kth

iteration of outer iteration s.

5.7.2 Preliminary Lemmas

Here, we establish helper lemmas needed to prove Theorem 17. We start by bounding the
second moment of the preconditioned variance-reduced stochastic gradients.

Lemma 22 (Variance bound) Let v
(s)
k = ∇̂F (w

(s)
k)−∇̂F (ŵ(s))+∇F (ŵ(s)) be the variance-

reduced stochastic gradient at inner iteration k in outer iteration s. Then

E‖v(s)
k ‖2(P (s)

k)−1
≤ 4LP [F (w

(s)
k)− F (w?) + F (ŵ(s))− F (w?)].

Proof We have

E‖v(s)
k ‖2(P (s)

k)−1

(1)

≤ 2E‖∇̂F (w
(s)
k)− ∇̂F (w?)‖2

(P
(s)
k)−1

+ 2E‖[∇̂F (ŵ(s))− ∇̂F (w?)]−∇F (ŵ(s))‖2
(P

(s)
k)−1

= 2E‖∇̂F (w
(s)
k)− ∇̂F (w?)‖2

(P
(s)
k)−1

+ 2E‖[∇̂F (ŵ(s))− ∇̂F (w?)]− E[∇̂F (ŵ(s))− ∇̂F (w?)]‖2
(P

(s)
k)−1

(2)

≤ 2E‖∇̂F (w
(s)
k)− ∇̂F (w?)‖2

(P
(s)
k)−1

+ 2E‖∇̂F (ŵ(s))− ∇̂F (w?)‖2
(P

(s)
k)−1

(3)

≤ 4LP [F (w
(s)
k)− F (w?) + F (ŵ(s))− F (w?)].

Here, (1) uses ‖a + b‖2A ≤ 2
(
‖a‖2A + ‖b‖2A

)
and (2) uses E‖X − EX‖2A ≤ E‖X‖2A, which

are valid for any random variable X and symmetric positive definite matrix A. Finally, (3)

33

Frangella, Rathore, Zhao, and Udell

applies Proposition 16 with w′ = w? twice.

Next, we have the following one-step relation.

Lemma 23 (One-step bound) Suppose we are in outer iteration s at inner iteration k

and w
(s)
k+1 = w

(s)
k − η(P

(s)
k)−1v

(s)
k . Then

Ek‖w(s)
k+1−w?‖2P (s)

k

≤ ‖w(s)
k −w?‖2P (s)

k

+2η (2ηLP − 1) [F (w
(s)
k)−F (w?)]+4η2LP [F (ŵ(s−1))−F (w?)].

Proof Simply use the definition of the update, expand the square, and invoke Lemma 22.

We now come to the key lemma for establishing convergence, which shows a contraction
of suboptimalities between consecutive outer iterations.

Lemma 24 (outer iteration contraction) Suppose we are in outer iteration s+1. Then

E0:s[F (ŵ(s+1))]− F (w?) ≤
[

1

(1− ζ)γ`η(1− 2ηLP)m
+

2ηLP
1− 2ηLP

](
F (ŵ(s))− F (w?)

)
,

(11)
where E0:s denotes the expectation conditioned on outer iterations 0 through s.

Proof Summing the bound in Lemma 23 over k = 0, . . .m− 1, we reach

m−1∑
k=0

Ek‖w(s)
k+1 − w?‖2P (s)

k

≤
m−1∑
k=0

‖w(s)
k − w?‖2P (s)

k

+ 2ηm (2ηLP − 1)
1

m

m−1∑
k=0

[F (w
(s)
k)− F (w?)]

+ 4mη2LP [F (ŵ(s))− F (w?)].

Now, taking the expectation over all the inner iterations conditioned on outer iterations 0
through s, we find

E0:s‖w(s)
m − w?‖2P (s)

k

≤ ‖ŵ(s) − w?‖2
P

(s)
0

+ 2ηm (2ηLP − 1)
(
E0:s

[
F (ŵ(s+1))

]
− F (w?)

)
+ 4mη2LP [F (ŵ(s))− F (w?)].

Rearranging and invoking quadratic regularity of f , we reach

E0:s‖w(s)
m − w?‖2P (s)

k

+ 2ηm (1− 2ηLP)
(
E0:s

[
F (ŵ(s+1))

]
− F (w?)

)
≤ 2

(
1

(1− ζ)γ`
+ 2mη2LP

)
[F (ŵ(s))− F (w?)].

Hence we conclude

E0:s[F (ŵ(s+1))]− F (w?) ≤
[

1

(1− ζ)γ`η(1− 2ηLP)m
+

2ηLP
1− 2ηLP

](
F (ŵ(s))− F (w?)

)
.

34

PROMISE: Preconditioned Stochastic Optimization Methods

5.7.3 SketchySVRG Convergence: Proof of Theorem 17

Proof From Lemma 24 we have,

E0:s−1[F (ŵ(s))]− F (w?) ≤
[

1

(1− ζ)γ`η(1− 2ηLP)m
+

2ηLP
1− 2ηLP

](
F (ŵ(s−1))− F (w?)

)
.

Setting η = 1
8LP and m = 19

1−ζ q̄, we obtain

E0:s−1[F (ŵ(s))]− F (w?) ≤
9

10

(
F (ŵ(s−1))− F (w?)

)
.

Taking the total expectation over all outer iterations, and recursing, we reach

E[F (ŵ(s))]− F (w?) ≤
(

9

10

)s
(F (w0)− F (w?)) .

Hence after s = 10 log
(
F (w0)−F (w?)

ε

)
outer iterations we have

E[F (ŵ(s))]− F (w?) ≤ ε.

6. Numerical Experiments

In this section, we provide four sets of experiments to demonstrate the effectiveness of the
PROMISE methods for l2-regularized least squares and logistic regression problems. We
also investigate the quadratic regularity ratio. We present the following results:

• Performance Experiments (Section 6.1): We compare PROMISE methods to SVRG,
b-nice SAGA (henceforth referred to as SAGA), Loopless Katyusha (L-Katyusha),
and stochastic L-BFGS (SLBFGS), whose learning rates are tuned. We find that our
methods outperform the competition on a testbed of 51 medium-sized least squares
and logistic regression problems.

• Suboptimality experiments (Section 6.2): We show that PROMISE methods achieve
global linear convergence on several least squares and logistic regression problems,
which matches the global linear convergence guarantees in Section 5. Furthermore,
our methods converge faster than the competition.

• Showcase experiments (Section 6.3): We evaluate PROMISE methods against the
competition on the url, yelp, and acsincome data sets, which originate in real-world
applications and lead to large-scale problems. We again find that our methods out-
perform the competition.

• Streaming experiments (Section 6.4): We test PROMISE methods on performing
logistic regression with a large-scale transformation of the HIGGS data set. This
transformed data set is so large that it does not fit in the memory of most comput-
ers, putting these experiments in a streaming setting where the computation of full
gradients is prohibitive. Our methods continue to outperform the competition.

35

Frangella, Rathore, Zhao, and Udell

• Regularity study (Section 6.5): We demonstrate that the quadratic regularity ra-
tio, γu/γ`, is well-behaved over the optimization trajectory, which provides empirical
support for our claims in Section 6.5.

The experiments in Sections 6.1 to 6.5 run PROMISE methods with the default hyper-
parameters given in Section 3. Throughout the experiments, we set the l2-regularization pa-
rameter ν = 10−2/ntr, where ntr is the number of samples in the training set, which typically
results in an ill-conditioned problem. All preconditioners use the default values of r and ρ in
Section 2.2. Additional details appear in Appendix D of https://arxiv.org/abs/2309.02014v2
and code for our experiments can be found at https://github.com/udellgroup/PROMISE.

6.1 Performance Experiments

Our first set of experiments compares the performance of SketchySVRG, SketchySAGA, and
SketchyKatyusha, with their default hyperparameters, to SVRG, SAGA, L-Katyusha, and
SLBFGS, with tuned hyperparameters, on solving ridge and l2-regularized logistic regression
problems. These experiments therefore understate the performance improvement that can
be expected by using PROMISE methods. Moreover, we modify SLBFGS to compute the
preconditioner once per epoch rather than at every iteration for a fair comparison.

SAGA/SketchySAGA require one full pass through the data per epoch, while SVRG/L-
Katyusha/SLBFGS/SketchySVRG/SketchyKatyusha use two full passes through the data
per epoch since they compute full gradients*. By using the number of full data passes
we (roughly) equate the computation required for computing gradients, making for a fair
comparison. We compute the minimum F (w?) for all ridge and logistic regression problems
via scikit-learn (Pedregosa et al., 2011). We run neither SketchySGD nor SGD because
these algorithms do not converge linearly.

Our primary metrics for comparing the performance of these methods are the wall-clock
time and number of full data passes to reach suboptimality within 10−4 of the minimum,
F (w?). Each optimizer is run either until this suboptimality condition is met (i.e., the
problem is solved), or for 200 full data passes (100 epochs for SVRG, L-Katyusha, SLBFGS,
SketchySVRG, and SketchyKatyusha, 200 epochs for SAGA and SketchySAGA).

6.1.1 Ridge Regression

We solve ridge regression problems of the form

minimizew∈Rp
1

ntr

ntr∑
i=1

1

2
(aTi w − bi)2 +

ν

2
‖w‖22,

where ai ∈ Rp is a datapoint, bi ∈ R is a label, and ν > 0 is the regularization parameter.

Our experiments in this setting are performed on a testbed of 17 data sets from OpenML
(Vanschoren et al., 2013) and LIBSVM (Chang and Lin, 2011). We apply random features
(Rahimi and Recht, 2007; Mei and Montanari, 2022) to most, but not all, data sets; further
details regarding preprocessing may be found in the arxiv report.

*. L-Katyusha and SketchyKatyusha compute full gradients with random probability, and our hyperpa-
rameter settings result in one full gradient computation per epoch, in expectation.

36

https://arxiv.org/abs/2309.02014v2
https://github.com/udellgroup/PROMISE

PROMISE: Preconditioned Stochastic Optimization Methods

Results appear in Fig. 2, which shows the proportion of problems solved by both our
methods and the competitor methods as a function of wall-clock time and full data passes.
When combined with any of the SSN, NySSN, SASSN-C, and SASSN-R precondition-
ers, SketchySVRG, SketchySAGA, and SketchyKatyusha uniformly outperform competitor
methods. SketchyKatyusha and SketchySVRG perform slightly better than SketchySAGA,
supporting our recommendation to use SketchyKatyusha for ridge regression.

6.1.2 l2-regularized Logistic Regression

We solve l2-regularized logistic regression problems of the form

minimizew∈Rp
1

ntr

ntr∑
i=1

log(1 + exp(−biaTi w)) +
ν

2
‖w‖22,

where ai ∈ Rp is a datapoint, bi ∈ {−1, 1} a label, and ν > 0 the regularization parameter.

These experiments use a testbed of 34 data sets from LIBSVM. We apply random
features to a few of the data sets; further details regarding preprocessing appear in the
arxiv report.

The results of these experiments appear in Fig. 3, which shows the proportion of prob-
lems solved by both our methods and the competitor methods as a function of wall-clock
time and full data passes. When combined with any one of the SSN, NySSN, SASSN-
C, and SASSN-R preconditioners, SketchySVRG, SketchySAGA, and SketchyKatyusha
uniformly outperform SVRG, SAGA and L-Katyusha. In addition, SketchySAGA and
SketchyKatyusha outperform SLBFGS, which also employs preconditioning.

Overall, SketchySAGA and SketchyKatyusha perform much better than SketchySVRG
here, supporting our recommendation in Section 3.5 to use SketchyKatyusha (assuming we
can compute full gradients) or SketchySAGA for logistic regression.

6.2 Suboptimality Experiments

We examine the objective suboptimality (with respect to the lowest attained training loss
for all methods) for SketchySVRG, SketchySAGA, and SketchyKatyusha, with their default
hyperparameters, and the competitor methods, with tuned hyperparameters. For simplic-
ity, we only show PROMISE methods with the NySSN and SSN preconditioner. Each
optimizer is run for 200 full data passes (100 epochs for SVRG, L-Katyusha, SLBFGS,
SketchySVRG, and SketchyKatyusha, 200 epochs for SAGA and SketchySAGA).

Figs. 4 and 5 display objective suboptimality (with respect to the lowest attained training
loss) for selected data sets on ridge and l2-regularized logistic regression. The objective
suboptimality for PROMISE methods decreases linearly for ridge and logistic regression,
which matches the theoretical convergence guarantees in Section 5. On ridge regression,
PROMISE methods uniformly outperform the competition, even reaching machine precision
on the yolanda data set! On logistic regression, PROMISE methods generally outpeform
SVRG, SAGA, and L-Katyusha. Interestingly, SLBFGS outperforms PROMISE methods
on ijcnn1. However, SLBFGS can be unstable; for example, SLBFGS initially outperforms
PROMISE methods on SUSY, but the training loss suddenly spikes and then diverges.

37

https://arxiv.org/abs/2309.02014v2

Frangella, Rathore, Zhao, and Udell

0 100 200 300 400 500 600
Wall-clock time (s)

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200
Full data passes

0.0

0.2

0.4

0.6

0.8
P

ro
p

or
ti

on
of

p
ro

b
le

m
s

so
lv

ed

SVRG

SAGA

L-Katyusha

SLBFGS

SketchySVRG (NySSN)

SketchySVRG (SASSN-C)

SketchySVRG (SASSN-R)

SketchySVRG (SSN)

SketchySAGA (NySSN)

SketchySAGA (SASSN-C)

SketchySAGA (SASSN-R)

SketchySAGA (SSN)

SketchyKatyusha (NySSN)

SketchyKatyusha (SASSN-C)

SketchyKatyusha (SASSN-R)

SketchyKatyusha (SSN)

Figure 2: PROMISE methods solve ridge regression problems faster than competitors.

0 100 200 300 400 500 600
Wall-clock time (s)

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200
Full data passes

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
or

ti
on

of
p

ro
b

le
m

s
so

lv
ed

SVRG

SAGA

L-Katyusha

SLBFGS

SketchySVRG (NySSN)

SketchySVRG (SASSN-C)

SketchySVRG (SASSN-R)

SketchySVRG (SSN)

SketchySAGA (NySSN)

SketchySAGA (SASSN-C)

SketchySAGA (SASSN-R)

SketchySAGA (SSN)

SketchyKatyusha (NySSN)

SketchyKatyusha (SASSN-C)

SketchyKatyusha (SASSN-R)

SketchyKatyusha (SSN)

Figure 3: PROMISE methods (and SLBFGS) solve l2-regularized logistic regression prob-
lems faster than competitors.

38

PROMISE: Preconditioned Stochastic Optimization Methods

0 50 100 150 200
Full data passes

10−10

10−6

10−2

102
e2006

0 50 100 150 200
Full data passes

10−8

10−4

100

104
yearpredictionmsd

0 50 100 150 200
Full data passes

10−17

10−12

10−7

10−2

yolanda
S

u
b

op
ti

m
al

it
y

SVRG

SAGA

SLBFGS

L-Katyusha

SketchySVRG (SSN)

SketchySVRG (NySSN)

SketchySAGA (SSN)

SketchySAGA (NySSN)

SketchyKatyusha (SSN)

SketchyKatyusha (NySSN)

Figure 4: Suboptimality comparisons between our proposed methods and tuned competitor
methods for selected data sets on ridge regression.

0 50 100 150 200
Full data passes

10−10

10−6

10−2

102
ijcnn1

0 50 100 150 200
Full data passes

10−12

10−8

10−4

100
real-sim

0 50 100 150 200
Full data passes

10−12

10−8

10−4

100

susy

S
u

b
op

ti
m

al
it

y

SVRG

SAGA

SLBFGS

L-Katyusha

SketchySVRG (SSN)

SketchySVRG (NySSN)

SketchySAGA (SSN)

SketchySAGA (NySSN)

SketchyKatyusha (SSN)

SketchyKatyusha (NySSN)

Figure 5: Suboptimality comparisons between our proposed methods and tuned competitor
methods for selected data sets on l2-regularized logistic regression.

6.3 Showcase Experiments

Our second set of experiments compares the performance of SketchySVRG, SketchySAGA,
and SketchyKatyusha, with their default hyperparameters, to SVRG, SAGA, L-Katyusha,
and SLBFGS with both default and tuned hyperparameters on the url, yelp, and acsincome
data sets. All three data sets originate in real-world applications: the url data set is used
to train a l2-regularized logistic regression classifier that detects malicious websites using
features derived from URLs, the yelp data set is used to train a l2-regularized logistic
regression classifier that predicts sentiment from user reviews, and the acsincome data
set is used to train a ridge regression classifier that predicts income given demographic
information such as age, employment, and education. After preprocessing, all three of these
data sets have ntr > 106 training examples, while url and yelp have p > 106 features, putting
all three of these data sets in the big-data regime. We provide two sets of comparisons:
the first set compares our methods to SVRG, SAGA, and L-Katyusha with their default
hyperparameters, while the second set compares our methods to SVRG, SAGA, L-Katyusha,

39

Frangella, Rathore, Zhao, and Udell

and SLBFGS with their tuned hyperparameters. We run each optimizer with a fixed time
budget: 1 hour for url and yelp, and 2 hours for acsincome.

The first set of comparisons appears in Fig. 6, which compares our methods and the
competitor methods (with default hyperparameters) on test classification error (url, yelp)
and test loss (acsincome) as a function of wall-clock time. When combined with either of the
SSN or NySSN preconditioners, SketchySVRG, SketchySAGA, and SketchyKatyusha uni-
formly outperform the competitor methods on their default hyperparameters. Our methods
generalize better to test data than the competitor methods while running much faster.

0 20 40 60
Wall-clock time (min.)

0

1

2

3

4

T
es

t
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)

url

0 20 40 60
Wall-clock time (min.)

2

3

4

5

T
es

t
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)

yelp

0 50 100
Wall-clock time (min.)

2.80

5.00

T
es

t
L

os
s

×10−1 acsincome

SVRG

SAGA

L-Katyusha

SketchySVRG (NySSN)

SketchySVRG (SSN)

SketchySAGA (NySSN)

SketchySAGA (SSN)

SketchyKatyusha (NySSN)

SketchyKatyusha (SSN)

Figure 6: Comparisons to competitor methods on test metrics with default learning rates
(SVRG, SAGA) and smoothness parameters (L-Katyusha).

The second set of comparisons appears in Fig. 7, which compares our methods and
the competitor methods (with tuned hyperparameters) on test metrics as a function of
wall-clock time. PROMISE methods outperform the competition on url and acsincome
and perform comparably on yelp. Moreover, recall that the performance of the competitor
methods is only possible after hyperparameter tuning, which is quite expensive for data
sets of this size, whereas PROMISE methods still obtain good performance with default
hyperparameters.

0 20 40 60
Wall-clock time (min.)

0

1

2

3

4

T
es

t
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)

url

0 20 40 60
Wall-clock time (min.)

2

3

4

5

T
es

t
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)

yelp

0 50 100
Wall-clock time (min.)

2.80

5.00

T
es

t
L

os
s

×10−1 acsincome

SVRG

SAGA

L-Katyusha

SLBFGS

SketchySVRG (NySSN)

SketchySVRG (SSN)

SketchySAGA (NySSN)

SketchySAGA (SSN)

SketchyKatyusha (NySSN)

SketchyKatyusha (SSN)

Figure 7: Comparisons to competitor methods on test metrics with tuned learning rates
(SGD, SVRG, SAGA, SLBFGS) and smoothness parameters (L-Katyusha).

40

PROMISE: Preconditioned Stochastic Optimization Methods

6.4 Streaming Experiments

We apply random features to the HIGGS data set to obtain a transformed data sets with
size 840 GB (see the arxiv report for more details). This transformed data set is much
larger than the hard drive and RAM of most computers. We solve a l2-regularized logistic
regression problem on this transformed data set. To perform optimization, we load the
original data set in memory and at each iteration, form a minibatch of the transformed data
set by applying random features to a minibatch of the data. In this setting, computing a full
gradient of the objective is computationally prohibitive, so we exclude SVRG, L-Katyusha,
SLBFGS, SketchySVRG, and SketchyKatyusha. We compare our methods to SGD and
SAGA with their tuned hyperpameters. All optimization methods are run for 10 epochs.

The comparison to tuned versions of SGD and SAGA is presented in Fig. 8. On this
problem, PROMISE methods (SketchySGD and SketchySAGA) perform well while the
competitors (SGD and SAGA) struggle to make any progress. The NySSN preconditioner
outperforms the SSN preconditioner on this large, dense problem: it achieves similar test
loss at each iteration but is faster on wall-clock time. We only plot test loss, as computing
the training loss suffers from the same computational issues as computing a full gradient.
The plots with respect to wall-clock time only show the time taken in optimization; they
do not include the time taken in repeatedly applying the random features transformation.

0 1000 2000 3000 4000
Wall-clock time (s)

6.4

7.0
×10−1 higgs

2 4 6 8 10
Epochs

6.4

7.0
×10−1 higgs

T
es

t
L

os
s

SGD

SAGA

SketchySGD (NySSN)

SketchySGD (SSN)

SketchySAGA (NySSN)

SketchySAGA (SSN)

Figure 8: PROMISE methods outperform (tuned) SGD and SAGA on HIGGS.

6.5 Regularity Study: Why do PROMISE Methods Converge Fast Globally?

The theory in Section 5 shows that the PROMISE algorithms converge linearly, with the
rate of convergence being controlled by the weighted quadratic regularity ratio q̄. It is
encouraging that the convergence rate is no longer controlled by the condition number, yet
the quantity q̄ is not local, and so could be quite large. Indeed, Proposition 12 implies
in the worst case it may be as large as κ2, which is at odds with the empirical results
in Sections 6.1 to 6.4. Here we provide an empirical argument that partly explains why
PROMISE methods exhibit faster convergence than stochastic first-order methods. The key
observation in this regard is that the optimization trajectory does not arbitrarily traverse
Rp—it stays in localized regions. Thus, the speed of convergence is determined by the local
values of q̄, and not its global value over all of Rp. As the value of q̄ over a localized region
may be better behaved than over the whole space, PROMISE methods can take larger

41

https://arxiv.org/abs/2309.02014v2

Frangella, Rathore, Zhao, and Udell

step-sizes, which leads to faster convergence. Furthermore, as the iterates approach the
optimum, the values of q̄ over these localized regions approach 1. Hence we expect the local
weighted quadratic regularity ratio to be small.

In this section, we provide empirical evidence for the hypothesis of the preceding para-
graph by studying a local version of the quadratic regularity ratio q along the optimization
trajectory. To this end, we start by defining appropriate local versions of the quadratic reg-
ularity constants, which we base on the definitions of quadratic regularity in Appendix A.
Close inspection of our analysis reveals that we only need quadratic regularity with w0 equal
to the iterate where we compute the preconditioner, w1 set to be the current iterate, and w2

set equal to the optimum. Hence appropriate definitions for the local quadratic regularity
constants γu,j , γ`,j and local quadratic regularity ratio qj are given by

γu,j := max
w∈Sj

∫ 1

0
2(1− t)

‖w? − w‖2∇2F (w+t(w?−w))

‖w? − w‖2∇2F (wj)

dt, (12)

γ`,j := min
w∈Sj

∫ 1

0
2(1− t)

‖w? − w‖2∇2F (w+t(w?−w))

‖w? − w‖2∇2F (wj)

dt, (13)

qj :=
γu,j
γ`,j

, (14)

where wj is the iterate where we compute the preconditioner, Sj is the set of iterates
associated with the preconditioner Pj (i.e., iterates on the trajectory between wj , inclusive
and wj+1, exclusive), and w? is the optimum.

Fig. 9 shows qj for eight data sets over 50 epochs of training using SketchySAGA with
the NySSN preconditioner. For all of these data sets, qj ≈ 1 after 20 epochs of training.
Furthermore, this phenomenon occurs before SketchySAGA converges close to the optimum;
Table 10 demonstrates that qj ≈ 1 well before the problem has been solved (within 10−4 of
F (w?) as in Section 6.1). For example, ijcnn1 takes 94 epochs to be solved by SketchySAGA
with the NySSN preconditioner, but qj ≈ 1 in less than 5 epochs.

0 10 20 30 40 50
Epochs

100

101

q j

a9a

gisette

ijcnn1

mushrooms

phishing

rcv1

real-sim

w8a

Figure 9: Plots of qj over the optimization trajectory for selected data sets.

42

PROMISE: Preconditioned Stochastic Optimization Methods

data set a9a gisette ijcnn1 mushrooms phishing rcv1 real-sim w8a

of epochs 15 86 94 20 71 49 39 28

Table 10: Number of epochs to solve logistic regression problems on selected datsets.

7. Conclusion

We introduce PROMISE, a framework for combining scalable preconditioning techniques
with popular stochastic optimization methods. In particular, we present a variety of pre-
conditioning techniques (SSN, NySSN, SASSN-C, SASSN-R, DiagSSN) and develop
the preconditioned stochastic second-order methods SketchySVRG, SketchySAGA, and
SketchyKatyusha. Furthermore, we provide default hyperparameters for these precondition-
ers and algorithms, which enable them to work out-of-the-box, even on highly ill-conditioned
data.

To analyze the PROMISE methods, we introduce quadratic regularity and the quadratic
regularity ratio, which generalize the notions of smoothness, strong convexity, and condition
number to the Hessian norm. We also introduce Hessian dissimilarity, which allows us to
give practical requirements on the gradient batchsize, a first in the literature. We show that
PROMISE methods have global linear convergence, and that this convergence is condition-
number free for ridge regression. Moreover, we show that SketchySVRG converges linearly
at a rate independent of the condition number, once the iterates are close enough to the
optimum. Hence, SketchySVRG enjoys the fast local convergence one would expect of a
Newton-type method.

We empirically demonstrate the superiority of PROMISE methods over popular com-
petitor methods for ridge and logistic regression. PROMISE methods, with their default
hyperparameters, consistently outperform the competition, even when they have been tuned
to achieve their best performance.

Acknowledgments

We would like to thank Catherine Chen, John Duchi, Daniel LeJeune, Michael Mahoney,
Mert Pilanci, Aaron Sidford, and Ali Teshnizi for helpful discussions regarding this work.
Furthermore, we would like to thank the action editor Peter Richtarik and the four anony-
mous reviewers for their feedback, which improved this manuscript. The authors gratefully
acknowledge support from the the National Science Foundation (NSF) Award IIS-2233762,
the Office of Naval Research (ONR) Award N000142212825 and N000142312203, and the
Alfred P. Sloan Foundation. Finally, we would like to thank GPT-4 for inspiring the title
of this work.

43

Frangella, Rathore, Zhao, and Udell

Appendix A. Another Definition of Quadratic Regularity

Our presentation of the upper (lower) quadratic regularity constant γu (γ`) in Definition 11
is based on a quadratic upper (lower) bound on F . Here, we present an equivalent definition
for γu and γ`.

The upper quadratic regularity constant is defined by

γu(C) := sup
w0∈C

(
sup

w1,w2∈C,w1 6=w2

∫ 1

0
2(1− t)

‖w2 − w1‖2∇2F (w1+t(w2−w1))

‖w2 − w1‖2∇2F (w0)

dt

)
. (15)

Similarly, the lower quadratic regularity constant is defined by

γ`(C) := inf
w0∈C

(
inf

w1,w2∈C,w1 6=w2

∫ 1

0
2(1− t)

‖w2 − w1‖2∇2F (w1+t(w2−w1))

‖w2 − w1‖2∇2F (w0)

dt

)
. (16)

Appendix B. Proofs of Main Results

B.1 Proof of Lemma 7

Proof The proof is by direct calculation. Indeed, by definition

dνeff

(
1

n
ATΦ′′(Aw)A

)
= dνeff

(
Φ′′(Aw)1/2A

)
=

n∑
j=1

1
nσ

2
j (Φ

′′(Aw)1/2A)
1
nσ

2
j (Φ

′′(Aw)1/2A) + ν

(1)

≤
n∑
j=1

CBj−2β

CBj−2β + ν

(2)
=

n∑
j=1

CB

CB + νj2β
≤
∫ ∞

0

CB

CB + νx2β
dx

(3)
= CBν−1/(2β)

∫ ∞
0

1

CB + u2β
du

(4)
= CBν−1/(2β) × (CB)

1
2β
−1 π/(2β)

sin(π/(2β))
=

π/(2β)

sin(π/(2β))

(
CB

ν

)1/2β

.

Here (1) uses ATΦ′′(Aw)A � BATA, our hypotheses on that 1
nλj

(
ATA

)
≤ Cj−2β, and

that x
x+ν is increasing in x for x ≥ 0, (2) multiplies the numerator and denominator

by j2β, (3) uses the substitution u = ν1/2β, and (4) uses the fact that
∫∞

0
1

CB+u2β du =

(CB)
1

2β
−1 π/(2β)

sin(π/(2β)) (Sutherland, 2017). The second claim follows from the first by plug-

ging in ν = O(1/n).

B.2 Quadratic Regularity for M-QSC Functions on Bounded Domains

In this subsection we prove the bound on q(C) for M -qsc functions on a bounded domain
presented in Section 5.4.

Let w0, w1, w2 ∈ C. Consider the quantity:∫ 1

0
2(1− t)

‖w2 − w1‖2∇2F (w1+t(w2−w1))

‖w2 − w1‖∇2F (w0)
dt.

As F is M -qsc, it holds that (see for instance Lemma 2.5 in Doikov (2023))

∇2F (w0)e−M‖w1−w0+t(w2−w1)‖ � ∇2F (w1 + t(w2 − w1)) � ∇2F (w0)eM‖w1−w0+t(w2−w1)‖.

44

PROMISE: Preconditioned Stochastic Optimization Methods

Observing the relation

‖w1 − w0 + t(w2 − w1)‖ = ‖(1− t)(w1 − w0) + t(w2 − w0)‖ ≤ D,

we deduce:

exp(−MD) ≤
∫ 1

0
2(1− t)

‖w2 − w1‖2∇2F (w1+t(w2−w1))

‖w2 − w1‖∇2F (w0)
dt ≤ exp(MD).

Thus, as w0, w1, w2 are arbitrary, the preceding display combined with the definitions in
Appendix A, yield:

q(C) ≤ exp(2MD).

Hence if D ≤ log(R)/M , we obtain:

q(C) ≤ exp(2 log(R)) ≤ R2 ≤ 8,

whenever R ≤ e.

B.3 Proof of Proposition 16

We begin by recalling the following fundamental result from Gower et al. (2019b).

Theorem 25 (Theorem 3.6 and Proposition 3.8, Gower et al. (2019b)) Suppose F =
1
n

∑n
i=1 Fi(w), where Fi : Rp 7→ R. Let the following conditions hold:

1. Fi is convex, for every i ∈ [n].

2. For each i ∈ [n], there exists a matrix Mi ∈ S++
p (R), such that for all x, h ∈ Rp

Fi(w + h) ≤ Fi(w) + 〈∇Fi(w), h〉+
1

2
‖h‖2Mi

.

3. There exists a matrix M ∈ S++
p (R), such that for all x, h ∈ Rp

F (w + h) ≤ F (w) + 〈∇F (w), h〉+
1

2
‖h‖2M .

Then for any w,w′ ∈ Rp, it holds that

E‖∇̂F (w)− ∇̂F (w′)‖2 ≤ 2L
(
F (w)− F (w′)− 〈∇F (w′), w − w′〉

)
,

where

L =
n(bg − 1)

bg(n− 1)
λ1 (M) +

n− bg
bg(n− 1)

max
i∈[n]

λ1(Mi).

With these preliminaries out of the way, we commence the proof of Proposition 16.
Proof Observe that each Fi satisfies:

Fi(w + h) ≤ Fi(w) + 〈∇Fi(w), h〉+
1

2
‖h‖2Mi

,

45

Frangella, Rathore, Zhao, and Udell

with Mi = γui∇2Fi(w0), where w0 is the point where the preconditioner P is constructed.
Hence performing the change of variable w = P−1/2z and defining FPi(z) = Fi(P

−1/2z), FP (z) =
F (P−1/2z), we reach

FPi(z + h̃) ≤ FPi(z) + 〈∇FPi(z), h̃〉+
γui
2
‖h̃‖2∇2FPi (z0),

FP (z + h̃) ≤ FP (z) + 〈∇FP (z), h̃〉+
γu
2
‖h̃‖2∇2FP (z0).

Hence the conditions of Theorem 25 are satisfied withMi = γui∇2FPi(z0),M = γu∇2FP (z0),
and so we reach

E‖∇̂FPi(z)− ∇̂FPi(z′)‖2 ≤ 2L
(
FPi(z)− FPi(z′)− 〈∇FPi(z′), z − z′〉

)
,

with L as in Theorem 25. Thus, we obtain

E‖∇̂F (w)− ∇̂F (w′)‖2P−1 ≤ 2L
(
F (w)− F (w′)− 〈∇F (w′), w − w′〉

)
.

Now,

L =
n(bg − 1)

bg(n− 1)
λ1 (M) +

n− bg
bg(n− 1)

max
i∈[n]

λ1(Mi)

=
n(bg − 1)

bg(n− 1)
γuλ1

(
1

n

n∑
i=1

∇2FPi(z0)

)
+

n− bg
bg(n− 1)

max
i∈[n]

λ1

(
γui∇2FPi(z0)

)
(1)

≤ n(bg − 1)

bg(n− 1)
γu(1 + ζ) +

n− bg
bg(n− 1)

γmax
u λ1

(
∇2FPi(z0)

)
(2)

≤
(
n(bg − 1)

bg(n− 1)
γu + τν?

n− bg
bg(n− 1)

γmax
u

)
(1 + ζ) = LP ,

where (1), (2) both use that P is a ζ-spectral approximation, and (2) uses ∇2Fi(w) �
τν?∇2F (w), which follows by definition of τν? . Hence for all w,w′ ∈ Rp

E‖∇̂F (w)− ∇̂F (w′)‖2P−1 ≤ 2LP
(
F (w)− F (w′)− 〈∇F (w′), w − w′〉

)
,

as desired.

B.4 SketchySVRG: Fast Local Convergence

In this section, we prove Theorem 19, which shows local condition number-free convergence
of SketchySVRG in the neighborhood

Nε0(w?) =

{
w ∈ Rp : ‖w − w?‖∇2F (w?) ≤

ε0ν
3/2

2M

}
.

The result proven here, substantially improves upon the local convergence result of Dereziński
(2022), which requires a gradient batch size of Õ(κ) to obtain fast local convergence. In con-
trast, Theorem 19 only requires the gradient batchsize to satisfy bg = Õ(τν? (Nε0(w?)), which
is often orders of magnitude smaller than κ in the ill-conditioned setting (see Corollary 21).

46

PROMISE: Preconditioned Stochastic Optimization Methods

The overarching idea of the proof is similar to other local analyses of stochastic Newton
methods (Li et al., 2020; Derezinski et al., 2021; Dereziński, 2022). Namely, we seek to
show the iterates belong to progressively smaller neighborhoods of the optimum, with a
contraction rate independent of the condition number.

We start with standard notation, which will be used throughout the proof.

B.4.1 Notation

We define the following quantities:

∆
(s)
k := w

(s)
k − w?, p

(s)
k := ∇2F (w

(s)
k)−1v

(s)
k , p̃

(s)
k := P−1v

(s)
k .

∆
(s)
k is the distance of the current iterate to the optimum, p

(s)
k is the exact Newton direction,

and p̃
(s)
k is the approximate Newton direction actually computed by the algorithm.

B.4.2 Preliminary Lemmas

We begin with the following technical lemma, which shows the following items hold in
Nε0(w?): (1) the quadratic regularity constants are close to unity, (2) the Hessians are
uniformly close in the Loewner ordering, (3) taking an exact Newton step moves the iterate
closer to the optimum in the Hessian norm, (4) ∇Fi(w), ∇F (w) are (1 + ε0) Lipschitz in
Nε0(w?), and (5) P−1 is uniformly good approximation to the inverse Hessian.

Lemma 26 Let w,w′ ∈ Nε0(w?), and suppose P is a ε0-spectral approximation constructed
at some w0 ∈ Nε0(w?), then the following items hold.

1.
1

1 + ε0
≤ γmin

` (Nε0(w?)) ≤ γmax
u (Nε0(w?)) ≤ (1 + ε0).

2.

(1− ε0)∇2F (w) � ∇2F (w′) � (1 + ε0)∇2F (w).

3.

‖w − w? −∇2F (w)−1∇F (w)‖∇2F (w) ≤ ε0‖w − w?‖∇2F (w).

4.

‖∇Fi(w)−∇Fi(w?)‖∇2Fi(w′)−1 ≤ (1 + ε0)‖w − w?‖∇2Fi(w′), for all i ∈ [n],

‖∇F (w)−∇F (w?)‖∇2F (w′)−1 ≤ (1 + ε0)‖w − w?‖∇2F (w′).

5. ∥∥∥∇2F (w)1/2(∇2F (w)−1 − P−1)∇2F (w)1/2
∥∥∥ ≤ 3ε0.

We will use the following version of Bernstein’s inequality for vectors, which slightly
refines a result of Minsker (2017).

47

Frangella, Rathore, Zhao, and Udell

Lemma 27 (Bernstein’s inequality for vectors) Let {Xi}1≤i≤m, be a sequence of in-
dependent mean zero random vectors in Rp satisfying ‖Xi‖ ≤ R and E[‖Xi‖2] ≤ ς2 for all
i ∈ [m], Then

P

(∥∥∥∥∥ 1

m

m∑
i=1

Xi

∥∥∥∥∥ ≥ t
)
≤ 8 exp

(
−min

{
mt2

4ς2
,
−3mt

4R

})
,

for all t ≥
√

ς2

m + R
3m .

Proof The result follows immediately from applying Theorem 7.3.1. of Tropp et al. (2015)
to the scaled sequence {Xi/m}1≤i≤m.

Our next lemma controls the deviation of the stochastic gradient: ∇̂F (w)− ∇̂F (w?)−
∇F (w), in the norm ‖ · ‖∇2F (w′)−1 . This lemma is the key to improving over the local

convergence analysis of Dereziński (2022), which requires a gradient batchsize of Õ(κ). The
improvement is possible thanks to quadratic regularity and Hessian dissimilarity. Quadratic
regularity enables us to directly reason in the norms

(
‖ · ‖∇2F (w′), ‖ · ‖∇2F (w′)−1

)
, while

Hessian dissimilarity allows for the tightest control possible over the gradient batchsize.

Lemma 28 Let βg ∈ (0, 1). Suppose w,w′ ∈ Nε0(w?), and bg ≥ 32τν? (Nε0 (w?)) log(8
δ

)

β2
g

. Then

with probability at least 1− δ,

‖∇̂F (w)− ∇̂F (w?)−∇F (w)‖∇2F (w′)−1 ≤ βg‖w − w?‖∇2F (w′).

Proof We begin by observing that

∥∥∥∇̂F (w)− ∇̂F (w?)−∇F (w)
∥∥∥2

∇2F (w′)−1
=

∥∥∥∥∥ 1

bg

∑
i∈B

ṽi

∥∥∥∥∥
2

,

where

ṽi = ∇2F (w′)−1/2(∇Fi(w)−∇Fi(w?)−∇F (w)).

Now,

‖ṽi‖2 ≤ 2‖∇Fi(w)−∇Fi(w?)‖2∇2F (w′)−1 + 2‖∇F (w)‖2∇2F (w′)−1

≤ 2τν? (Nε0(w?))‖∇Fi(w)−∇Fi(w?)‖2∇2Fi(w′)−1 + 2‖∇F (w)‖2∇2F (w′)−1

= 2τν? (Nε0(w?))‖∇Fi(w)−∇Fi(w?)‖2∇2Fi(w′)−1 + 2‖∇F (w)−∇F (w?)‖2∇2F (w′)−1 .

Here, the second inequality is due to the definition of Hessian dissimilarity. Now, invoking
item 4 of Lemma 26 we reach

‖ṽi‖2 ≤ 2τν? (Nε0(w?))(1 + ε0)2‖w − w?‖2∇2Fi(w′)
+ 2(1 + ε0)2‖w − w?‖2∇2F (w′)

≤ 4(1 + ε0)2τν? (Nε0(w?))
2‖w − w?‖2∇2F (w′),

48

PROMISE: Preconditioned Stochastic Optimization Methods

So, for each i ∈ B, it holds with probability 1 that

‖ṽi‖ ≤ 2(1 + ε0)τν? (Nε0(w?))‖w − w?‖∇2F (w′).

Thus, we may set R = 2(1 + ε0)τν? (Nε0(w?))‖w − w?‖∇2F (w′).
Next, observe that

E[‖ṽi‖]2 ≤ E‖∇Fi(w)−∇Fi(w?)‖2∇2F (w′)−1

≤ τν? (Nε0(w?))E‖∇Fi(w)−∇Fi(w?)‖2∇2Fi(w′)−1

(1)

≤ τν? (Nε0(w?))E[2(1 + ε0)(Fi(w)− Fi(w?)− 〈∇Fi(w?), w − w?〉)]
≤ 2(1 + ε0)τν? (Nε0(w?)) (F (w)− F (w?))

(2)

≤ 2(1 + ε0)2τν? (Nε0(w?))‖w − w?‖2∇2F (w′).

Here (1) uses Fi(w) ≥ Fi(w?) + 〈∇Fi(w?), w−w?〉+ 1
2(1+ε0)‖w−w?‖2∇2Fi(w?), which follows

from lower quadratic regularity of F and item 1 of Lemma 26. Last, (2) applies upper
quadratic regularity and item 1 of Lemma 26. Hence, the variance is bounded by

ς2 = 2(1 + ε0)2τν? (Nε0(w?))‖w − w?‖2∇2F (w′).

Now, we invoke Lemma 27 to find

P

∥∥∥∥∥ 1

bg

∑
i∈B

ṽi

∥∥∥∥∥ ≥
√

4ς2 log
(

8
δ

)
bg

+
4R log

(
8
δ

)
3bg

 ≤ δ.
The last display immediately implies with probability at least 1− δ, that∥∥∥∇̂F (w)− ∇̂F (w?)−∇F (w)

∥∥∥2

∇2F (w′)−1
≤ 8ς2 log(8/δ)

bg
+

32R2 log2(8/δ)

9b2g

=

[
16(1 + ε0)2τν? (Nε0(w?)) log(8/δ)

bg
+ 2

(
8(1 + ε0)τν? (Nε0(w?)) log(8/δ)

3bg

)2
]
‖w − w?‖2∇2F (w′)

≤ β2
g‖w − w?‖2∇2F (w′)

where the last inequality follows from bg ≥ 32τν? (Nε0 (w?)) log(8
δ

)

β2
g

and ε ∈ (0, 1/6). The desired

claim now follows by taking square roots.

The next lemma shows that for sufficiently large bg (with high probability) the distance
to the optimum in the ∇2F (w?)-norm decreases when an exact Newton step based on the
current iterate is taken.

Lemma 29 Let w
(s)
k ∈ Nε0(w?), and βg ∈ (0, 1). Suppose the gradient batchsize satisfies

bg = O
(
τν? (Nε0 (w?)) log(k+1

δ)
β2
g

)
. Then with probability at least 1− δ

(k+1)2 ,

‖∆(s)
k − p

(s)
k ‖∇2F (w?) ≤ (1 + ε0)

[
(ε0 + βg)‖∆(s)

k ‖∇2F (w?) + βg‖∆(s)
0 ‖∇2F (w?)

]
.

49

Frangella, Rathore, Zhao, and Udell

Proof We begin by applying the triangle inequality to reach

‖∆(s)
k − p

(s)
k ‖∇2F (w

(s)
k)

= ‖∆(s)
k −∇2F (w

(s)
k)−1v

(s)
k ‖∇2F (w

(s)
k)

= ‖∇2F (w
(s)
k)∆

(s)
k − (∇̂F (w

(s)
k)− ∇̂F (ŵ(s)) +∇F (ŵ(s)))‖∇2F (w

(s)
k)−1

≤ ‖∇2F (w
(s)
k)∆

(s)
k −∇F (w

(s)
k)‖∇2F (w

(s)
k)−1

+ ‖∇F (w
(s)
k)− ∇̂F (w

(s)
k) + ∇̂F (ŵ(s))−∇F (ŵ(s))‖∇2F (w

(s)
k)−1 .

To bound the first term, we apply item 3. of Lemma 26, which yields

‖∆(s)
k −∇2F (w

(s)
k)−1∇F (w

(s)
k)‖∇2F (w

(s)
k)
≤ ε0‖∆(s)

k ‖∇2F (w
(s)
k)
.

For the second term, the triangle inequality yields

‖∇F (w
(s)
k)− ∇̂F (w

(s)
k) + ∇̂F (ŵ(s))−∇F (ŵ(s))‖∇2F (w

(s)
k)−1

≤ ‖∇̂F (w
(s)
k)− ∇̂F (w?)−∇F (w

(s)
k)‖∇2F (w

(s)
k)−1

+ ‖∇̂F (ŵ(s))− ∇̂F (w?)−∇F (ŵ(s))‖∇2F (w
(s)
k)−1 .

Now, we can apply Lemma 28, to find that

‖∇̂F (w
(s)
k)− ∇̂F (w?)−∇F (w

(s)
k)‖∇2F (w

(s)
k)−1 ≤ βg‖∆(s)

k ‖∇2F (w
(s)
k)
,

‖∇̂F (ŵ(s))− ∇̂F (w?)−∇F (ŵ(s))‖∇2F (w
(s)
k)−1 ≤ βg‖∆(s)

0 ‖∇2F (w
(s)
k)
,

with probability at least 1− δ
(k+1)2 . So,

‖∇F (w
(s)
k)− ∇̂F (w

(s)
k) + ∇̂F (ŵ(s))−∇F (ŵ(s))‖∇2F (w

(s)
k)−1

≤ βg
(
‖∆(s)

k ‖∇2F (w
(s)
k)

+ ‖∆(s)
0 ‖∇2F (w

(s)
k)

)
,

Combining the upper bounds on terms 1 and 2, we find

‖∆(s)
k − p

(s)
k ‖∇2F (w

(s)
k)
≤ (ε0 + βg)‖∆(s)

k ‖∇2F (w
(s)
k)

+ βg‖∆(s)
0 ‖∇2F (w

(s)
k)
.

Hence applying item 2. of Lemma 26 twice, we conclude

‖∆(s)
k − p

(s)
k ‖∇2F (w?) ≤ (1 + ε0)

[
(ε0 + βg)‖∆(s)

k ‖∇2F (w?) + βg‖∆(s)
0 ‖∇2F (w?)

]
,

with probability at least 1− δ
(k+1)2 .

Next we have the following result, which shows (with high probability) the distance to
the optimum of the iterate actually computed by Algorithm 3 is decreasing in the ∇2F (w?)-

norm. In particular, this implies w
(s)
k+1 remains in Nε0(w?).

50

PROMISE: Preconditioned Stochastic Optimization Methods

Lemma 30 Instate the hypotheses of Lemma 29. Then the following items hold with prob-
ability at least 1− δ

(k+1)2 .

1. ‖∆(s)
k+1‖∇2F (w?) ≤ 7

12‖∆
(s)
k ‖∇2F (w?) + 1

4‖∆
(s)
0 ‖∇2F (w?)

2. w
(s)
k+1 ∈ Nε0(w?).

Proof To start off, we apply the triangle inequality to reach

‖∆(s)
k+1‖∇2F (w?) ≤ ‖∆(s)

k − p
(s)
k ‖∇2F (w?) + ‖p(s)

k − p̃
(s)
k ‖∇2F (w?).

The first term may be bounded by invoking Lemma 29, so for now we focus on bounding
the second term, which represents the error from computing an approximate Newton step.
To this end, observe that

‖p(s)
k − p̃

(s)
k ‖∇2F (w?) =

∥∥∥∇2F (w
(s)
k)1/2(p

(s)
k − p̃

(s)
k)
∥∥∥
∇2F (w

(s)
k)−1/2∇2F (w?)∇2F (w

(s)
k)−1/2

(1)

≤ (1 + ε0)
∥∥∥∇2F (w

(s)
k)1/2(p

(s)
k − p̃

(s)
k)
∥∥∥

= (1 + ε0)
∥∥∥∇2F (w

(s)
k)1/2(∇2F (w

(s)
k)−1 − P−1)∇2F (w

(s)
k)1/2(∇2F (w

(s)
k)1/2p

(s)
k)
∥∥∥

(2)

≤ 21

6
ε0‖p(s)

k ‖∇2F (w
(s)
k)
≤ 4ε0‖p(s)

k ‖∇2F (w?)

≤ 4ε0

(
‖∆(s)

k ‖∇2F (w?) + ‖∆(s)
k − p

(s)
k ‖∇2F (w?)

)
,

where (1) uses item 2 of Lemma 26, and (2) uses item 4 of Lemma 26, along with ε0 ≤ 1/6.
Combining the preceding upper bound with our initial bound, we reach

‖∆(s)
k+1‖∇2F (w?) ≤ (1 + 4ε0)‖∆(s)

k − p
(s)
k ‖∇2F (w?) + 4ε0‖∆(s)

k ‖∇2F (w?).

Now, invoking Lemma 29 to bound ‖∆(s)
k − p

(s)
k ‖∇2F (w?), we find with probability at least

1− δ/(k + 1)2, that

‖∆(s)
k+1‖∇2F (w?) ≤ [(1 + ε0)(1 + 4ε0)(ε0 + βg) + 4ε0] ‖∆(s)

k ‖∇2F (w?) + (1 + ε0)(1 + 4ε0)βg‖∆(s)
0 ‖∇2F (w?).

Using ε0 ≤ 1
6 , the preceding display becomes

‖∆(s)
k+1‖∇2F (w?) ≤

(
1

3
+ 2βg

)
‖∆(s)

k ‖∇2F (w?) + 2βg‖∆(s)
0 ‖∇2F (w?).

Now, let us set βg = 1
8 , then the preceding display simplifies to

‖∆(s)
k+1‖∇2F (w?) ≤

7

12
‖∆(s)

k ‖∇2F (w?) +
1

4
‖∆(s)

0 ‖∇2F (w?),

which proves the first claim. To see the second claim, note that

max{‖∆(s)
k ‖∇2F (w?), ‖∆(s)

0 ‖∇2F (w?)} ≤ ε0ν
3/2/(2M),

as w
(s)
k , ŵ(s) ∈ Nε0(w?). Hence, the second claim follows immediately from the first.

51

Frangella, Rathore, Zhao, and Udell

Lemma 31 (One-stage analysis) Let ŵ(s) ∈ Nε0(w?). Run Algorithm 3 with m = 6
inner iterations and gradient batchsize satisfies bg = O

(
τν? (Nε0(w?)) log

(
m+1
δ

))
. Then with

probability at least 1− δ:

1. ŵ(s+1) ∈ N 2
3
ε0

(w?).

2. F (ŵ(s+1))− F (w?) ≤ 2
3(F (ŵ(s))− F (w?)).

Proof As ŵ(s) ∈ Nε0(w?), it follows by union bound that the conclusions of Lemma 30

hold for all w
(s)
k , where k ∈ {0, . . . ,m− 1}, with probability at least

1−
m−1∑
k=0

δ

(m+ 1)2
= 1− m

(m+ 1)2
δ ≥ 1− δ.

Consequently,

‖∆(s)
m ‖∇2F (w?) ≤

7

12
‖∆(s)

m−1‖∇2F (w?) +
1

4
‖∆(s)

0 ‖∇2F (w?).

We now recurse on the previous display, and use m = 6 > log(1/15)
log(7/12) , to reach

‖∆(s)
m ‖∇2F (w?) ≤

(
7

12

)m
‖∆(s)

0 ‖∇2F (w?) +

(
m−1∑
k=0

(
7

12

)k) 1

4
‖∆(s)

0 ‖∇2F (w?)

≤ 1

15
‖∆(s)

0 ‖∇2F (w?) +
1

4(1− 7
12)
‖∆(s)

0 ‖∇2F (w?)

=

(
1

15
+

3

5

)
‖∆(s)

0 ‖∇2F (w?) ≤
2

3
‖∆(s)

0 ‖∇2F (w?).

Hence ŵ(s+1) = w
(s)
m ∈ N 2

3
ε0

(w?). Using this last inclusion, and applying upper quadratic

regularity, followed by lower quadratic regularity, we find

F (ŵ(s+1))− F (w?) ≤
1 + ε0

2
‖∆(s)

m ‖2∇2F (w?) ≤
1 + ε0

2

4

9
‖∆(s)

0 ‖2∇2F (w?)

≤ (1 + ε0)2 4

9

(
F (ŵ(s))− F (w?)

)
≤ 2

3

(
F (ŵ(s))− F (w?)

)
,

as desired.

B.4.3 Proof of Theorem 19

We now come to the proof of Theorem 19, which is reduced to union bounding over the
conclusion of Lemma 31.
Proof By hypothesis, we may invoke Lemma 31 to conclude the output of the first outer
iteration satisfies

F (ŵ(1))− F (w?) ≤
2

3
(F (w0)− F (w?)), and ŵ(1) ∈ Nε0(w?)

52

PROMISE: Preconditioned Stochastic Optimization Methods

with probability at least 1− δ. Hence we can apply Lemma 31 again to ŵ(s), the output of
the second outer iteration. Repeating this logic for all the remaining outer iterations, we
find by union bound, that with probability at least 1− sδ,

F (ŵ(s))− F (w?) ≤
(

2

3

)s
(F (w0)− F (w?)) ≤ ε.

The theorem now follows by scaling δ down by 3 log ((F (w0)− F (w?))/ε).

References

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with
statistical guarantees. In Advances in Neural Information Processing Systems, 2015.

Zeyuan Allen-Zhu. Katyusha: the first direct acceleration of stochastic gradient methods.
Journal of Machine Learning Research, 18(221):1–51, 2018.

Yossi Arjevani and Ohad Shamir. Oracle complexity of second-order methods for finite-sum
problems. In International Conference on Machine Learning, 2017.

Yossi Arjevani, Ohad Shamir, and Ron Shiff. Oracle complexity of second-order methods
for smooth convex optimization. Mathematical Programming, 178:327–360, 2019.

Francis Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on
Learning Theory, 2013.

Raghu Bollapragada, Jorge Nocedal, Dheevatsa Mudigere, Hao-Jun Shi, and Ping Tak Peter
Tang. A progressive batching L-BFGS method for machine learning. In International
Conference on Machine Learning, 2018.

Raghu Bollapragada, Richard H Byrd, and Jorge Nocedal. Exact and inexact subsampled
Newton methods for optimization. IMA Journal of Numerical Analysis, 39(2):545–578,
2019.

Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic
Hessian information in optimization methods for machine learning. SIAM Journal on
Optimization, 21(3):977–995, 2011.

Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic
quasi-Newton method for large-scale optimization. SIAM Journal on Optimization, 26
(2):1008–1031, 2016.

Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares
algorithm. Foundations of Computational Mathematics, 7:331–368, 2007.

53

Frangella, Rathore, Zhao, and Udell

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Michael B Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-rank
approximation via ridge leverage score sampling. In ACM-SIAM Symposium on Discrete
Algorithms, pages 1758–1777. SIAM, 2017.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, 2014.

Micha l Dereziński. Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Mini-
mization with Large Batches. arXiv preprint arXiv:2206.02702, 2022.

Michal Derezinski, Feynman T Liang, Zhenyu Liao, and Michael W Mahoney. Precise
expressions for random projections: Low-rank approximation and randomized Newton.
In Advances in Neural Information Processing Systems, 2020.

Michal Derezinski, Jonathan Lacotte, Mert Pilanci, and Michael W Mahoney. Newton-
LESS: Sparsification without trade-offs for the sketched Newton update. In Advances in
Neural Information Processing Systems, 2021.

Nikita Doikov. Minimizing quasi-self-concordant functions by gradient regularization of
newton method. arXiv preprint arXiv:2308.14742, 2023.

Murat A Erdogdu and Andrea Montanari. Convergence rates of sub-sampled Newton meth-
ods. In Advances in Neural Information Processing Systems, 2015.

Zachary Frangella, Pratik Rathore, Shipu Zhao, and Madeleine Udell. SketchySGD:
Reliable stochastic optimization via randomized curvature estimates. arXiv preprint
arXiv:2211.08597, 2023a.

Zachary Frangella, Joel A. Tropp, and Madeleine Udell. Randomized Nyström precondi-
tioning. SIAM Journal on Matrix Analysis and Applications, 44(2):718–752, 2023b.

Nidham Gazagnadou, Robert Gower, and Joseph Salmon. Optimal mini-batch and step
sizes for SAGA. In International Conference on Machine Learning, 2019.

Alex Gittens and Michael W Mahoney. Revisiting the Nyström method for improved large-
scale machine learning. The Journal of Machine Learning Research, 17(1):3977–4041,
2016.

Alon Gonen, Francesco Orabona, and Shai Shalev-Shwartz. Solving ridge regression using
sketched preconditioned SVRG. In International Conference on Machine Learning, 2016.

Robert Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block BFGS: Squeezing
more curvature out of data. In International Conference on Machine Learning, 2016.

Robert Gower, Nicolas Le Roux, and Francis Bach. Tracking the gradients using the Hessian:
A new look at variance reducing stochastic methods. In International Conference on
Artificial Intelligence and Statistics, 2018.

54

PROMISE: Preconditioned Stochastic Optimization Methods

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik. RSN: randomized sub-
space Newton. In Advances in Neural Information Processing Systems, 2019a.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and
Peter Richtárik. SGD: General analysis and improved rates. In International Conference
on Machine Learning, 2019b.

Nicholas J Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Random design analysis of ridge regression.
Foundations of Computational Mathematics, 3(14):569–600, 2014.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems, 2013.

Sai Praneeth Karimireddy, Sebastian U Stich, and Martin Jaggi. Global linear convergence
of Newton’s method without strong-convexity or Lipschitz gradients. arXiv preprint
arXiv:1806.00413, 2018.

Dmitry Kovalev, Konstantin Mishchenko, and Peter Richtárik. Stochastic Newton
and cubic Newton methods with simple local linear-quadratic rates. arXiv preprint
arXiv:1912.01597, 2019.

Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don’t jump through hoops and
remove those loops: SVRG and Katyusha are better without the outer loop. In Interna-
tional Conference on Algorithmic Learning Theory, 2020.

Jonathan Lacotte, Yifei Wang, and Mert Pilanci. Adaptive Newton sketch: Linear-time
optimization with quadratic convergence and effective Hessian dimensionality. In Inter-
national Conference on Machine Learning, 2021.

Xiang Li, Shusen Wang, and Zhihua Zhang. Do subsampled Newton methods work for
high-dimensional data? In AAAI Conference on Artificial Intelligence, 2020.

Yanli Liu, Fei Feng, and Wotao Yin. Acceleration of SVRG and Katyusha X by inexact
preconditioning. In International Conference on Machine Learning, 2019.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Globally convergent Newton
methods for ill-conditioned generalized self-concordant losses. In Advances in Neural
Information Processing Systems, 2019a.

Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Be-
yond least-squares: Fast rates for regularized empirical risk minimization through self-
concordance. In Conference on Learning Theory, 2019b.

Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Founda-
tions and algorithms. Acta Numerica, 29:403–572, 2020.

Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 75(4):667–766, 2022.

55

Frangella, Rathore, Zhao, and Udell

Stanislav Minsker. On some extensions of Bernstein’s inequality for self-adjoint operators.
Statistics & Probability Letters, 127:111–119, 2017.

Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic
L-BFGS algorithm. In Artificial Intelligence and Statistics, 2016.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems,
2011.

Cameron Musco and Christopher Musco. Randomized block Krylov methods for stronger
and faster approximate singular value decomposition. In Advances in Neural Information
Processing Systems, 2015.

Sen Na, Micha l Dereziński, and Michael W Mahoney. Hessian averaging in stochastic
Newton methods achieves superlinear convergence. Mathematical Programming, pages
1–48, 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on op-
timization, 19(4):1574–1609, 2009.

Yurii Nesterov. Lectures on Convex Optimization. Springer, 2018.

Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 1999.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in Python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

Mert Pilanci and Martin J Wainwright. Newton sketch: A near linear-time optimization
algorithm with linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–
245, 2017.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in Neural Information Processing Systems, 2007.

Farbod Roosta-Khorasani and Michael W Mahoney. Sub-sampled Newton methods. Math-
ematical Programming, 174(1):293–326, 2019.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale
kernel method. In Advances in Neural Information Processing Systems, 2017.

Danica J Sutherland. Fixing an error in Caponnetto and de Vito (2007). arXiv preprint
arXiv:1702.02982, 2017.

Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Fixed-rank approx-
imation of a positive-semidefinite matrix from streaming data. In Advances in Neural
Information Processing Systems, 2017.

56

PROMISE: Preconditioned Stochastic Optimization Methods

Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230, 2015.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

Jialei Wang and Tong Zhang. Utilizing second order information in minibatch stochastic
variance reduced proximal iterations. Journal of Machine Learning Research, 20(42):
1–56, 2019.

Christopher Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems, 2000.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite
objectives. In Advances in Neural Information Processing Systems, 2016.

Haishan Ye, Luo Luo, and Zhihua Zhang. Approximate Newton methods. Journal of
Machine Learning Research, 22(66):1–41, 2021.

Shipu Zhao, Zachary Frangella, and Madeleine Udell. NysADMM: faster composite con-
vex optimization via low-rank approximation. In International Conference on Machine
Learning, 2022.

57

	Introduction
	PROMISE
	Contributions
	Roadmap
	Notation

	Scalable Preconditioning Techniques
	Mathematical and Algorithmic Formulation of Preconditioners
	Subsampled Newton (SSN)
	Nyström Subsampled Newton (NySSN)
	Sketch-and-Solve Subsampled Newton (SASSN)

	Preconditioner Defaults and Comparisons
	Quality of the Preconditioners
	Preliminaries on sampling
	Subsampled Newton
	Nyström Subsampled Newton
	Sketch-and-solve Subsampled Newton

	Beyond GLMs?

	Algorithms
	Notation in Algorithms
	SketchySVRG
	SketchySAGA
	SketchyKatyusha
	Algorithm Recommendations

	Related Work
	Stochastic Second-order Methods with Full Gradients
	Stochastic Second-order Methods with Stochastic Gradients
	Preconditioned Stochastic Gradient Methods
	Relation to PROMISE

	Theory
	A Subtlety in Notation
	Assumptions
	Technical Preliminaries
	Quadratic Regularity

	When does the Quadratic Regularity Ratio Improve over the Condition Number?
	Hessian Dissimilarity
	The Smoothness of the Preconditioned Stochastic Gradient

	SketchySVRG
	SketchySVRG: Fast Local Convergence
	Convergence Proof of SketchySVRG
	Notation
	Preliminary Lemmas
	SketchySVRG Convergence: Proof of thm:convSketchySVRG

	Numerical Experiments
	Performance Experiments
	Ridge Regression
	l2-regularized Logistic Regression

	Suboptimality Experiments
	Showcase Experiments
	Streaming Experiments
	Regularity Study: Why do PROMISE Methods Converge Fast Globally?

	Conclusion
	Another Definition of Quadratic Regularity
	Proofs of Main Results
	Proof of lemma:EffDimBnd
	Quadratic Regularity for M-QSC Functions on Bounded Domains
	Proof of prop:precondgradvar
	SketchySVRG: Fast Local Convergence
	Notation
	Preliminary Lemmas
	Proof of thm:sksvrgloccon

